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Abstract

The applicability of lexicographic comparison in
nonmonotonic reasoning with specificity is inves-
tigated. A priority mechanism based on lexico-
graphic comparison is defined for Reiter’s default
logic. The following principle – earlier used by
Geffner and Pearl in conditional entailment – is
used as the basis for specificity-based priorities for
normal default theories: for each rule there is a con-
text where it may not be defeated by any other rule.
A method for computing priorities according to the
principle is given. Connection to earlier work is
discussed.

1 Introduction
Two kinds of weaknesses have been identified in nonmono-
tonic logics: insensitivity to specificity [Poole, 1985] and sen-
sitivity to irrelevant premises [Geffner and Pearl, 1992]. Only
the first kind of weakness is present in systems that are de-
fined using some form of maximal consistency [Reiter, 1980;
Moore, 1985; Poole, 1988]. In the well-known example,
Tweety is a penguin, penguins are birds, penguins usually
cannot fly, birds usually can. Reiter’s default logic does not
say anything about the flying ability of Tweety. The rule con-
cerning the flying ability of penguins is more specific than the
rule about birds, and the rule about penguins should be used.
Reiter and Criscuolo [1981] suggest that the application of
less specific defaults can be explicitly blocked by using semi-
normal defaults. Others introduce priorities [Lifschitz, 1985;
Konolige, 1988; Brewka, 1989; Baader and Hollunder, 1993;
Brewka, 1994; Rintanen, 1994]. Priorities are given as order-
ings of predicates, formulae, or default rules: in conflicting
situations preference is given to items with a higher priority.

The second kind of weakness shows up in logics based on
probability [Adams, 1975; Pearl, 1988] and in logics that are
defined directly by stating the properties a consequence re-
lation should satisfy, for example the preferential logics of
Kraus et al. [1990]. These logics give the correct answers in
the standard examples about specificity, for instance concern-
ing Tweety’s flying ability. Their weakness is apparent when
a set of premises is extended with an irrelevant premise: most
of the useful consequences are cancelled. For example, if

Tweety is a black penguin, Tweety’s inability to fly cannot be
inferred.

In this paper, we investigate the applicability of lexico-
graphic priorities as a mechanism for resolving default con-
flicts according to specificity. Our approach is conserva-
tive: we do not propose any original notion of specificity.
To date, the most successful area in defeasible reasoning –
from the point of view of handling both specificity and ir-
relevant premises – is inheritance reasoning [Horty, 1994].
Therefore it seems desirable that solutions to these problems
in a more general setting would subsume some form of in-
heritance reasoning. Different inheritance theories propose
different specificity notions. A weak but reasonable principle
that is found for example in the preferential logics of Kraus
et al. and that is also respected by inheritance theories is the
following: given a default that allows the conclusion of β
from α, the premise α and no other premises, conclude β.
This principle is used in the definition of conditional entail-
ment [Geffner and Pearl, 1992] and we shall use it in deriv-
ing priorities from specificity. We strengthen Reiter’s default
logic with a priority mechanism that uses lexicographic com-
parison. Lexicographic comparison has been used in earlier
work on explicit priorities, for example in [Lifschitz, 1985;
Brewka, 1989; Geffner and Pearl, 1992; Ryan, 1992].

The outline of the paper is as follows. In Section 2 we
present the specificity notion, and in Section 3 we extend de-
fault logic with a priority mechanism. In Section 4 we show
how nonmonotonic reasoning that respects the specificity no-
tion can be achieved in the extended default logic and how
it subsumes an inheritance theory. In Section 5 we discuss
how the specificity principle is too weak for default theories
in general, claim that priority mechanisms that lexicographi-
cally order extensions or models are in general too weak for
achieving inheritance-like reasoning, and discuss the possi-
bility of stronger priorities in more general but still restricted
cases.

2 Specificity in default logic
Many formalizations of defeasible reasoning that address
specificity [Kraus et al., 1990; Lehmann and Magidor, 1992;
Adams, 1975; Pearl, 1988; 1990; Goldszmidt et al., 1990]
employ or fulfill a principle not fulfilled by default logic. For
default theories 〈D,B ∪C〉 with normal defaults D the prin-



ciple can be expressed as follows.

〈D,B ∪ {α}〉 |=x β for all defaults
α : β
β
∈ D (1)

Above D is the set of default rules of a default theory, B is
a set of sentences that forms the background1, and |=x is a
consequence relation. The consequence relation usually dis-
cussed in the context of default logic is cautious reasoning
∆ |=c φ, which means that the formula φ is contained in all
extensions of the default theory ∆. This consequence relation
does not fulfill Condition 1.

Example 2.1 Consider the following set of defaults D.

P : B
B

B : F
F

P : ¬F
¬F

The default theory ∆ = 〈D, {P}〉 has two extensions. Both
contain P and B, one contains ¬F and the other contains F .
Therefore ∆ 6|=c ¬F . �

In ε-semantics [Pearl, 1988] a counterpart of Condition 1 is
directly justified by the definition of conditional probability.
Outside probabilistic systems, this condition has been used
for example by Poole [1991]. A default can be viewed as
expressing a rule that applies unconditionally in the context
specified by the antecedent of the rule. In Example 2.1 above,
if P is read as “x is a penguin”,B as “x is a bird”, and F as “x
is able to fly”. If B is all the information available, conclude
that x flies. If P is all the information available, conclude that
x does not fly.

Consequence relations for default logic that treat speci-
ficity properly should fulfill at least Condition 1. As shown
above, |=c is not such a relation. A natural way to strengthen
it is to consider only a subset of the extensions, those in which
conflicts are resolved without violating specificity, and take
their intersection. Such a subset can be selected for example
by lexicographic comparison.

3 Priorities in default logic
Lexicographic priorities in the context of expressive non-
monotonic logics have been earlier investigated in [Rintanen,
1994]. In that paper a definition of preferred stable expan-
sions for autoepistemic logic was given. A similar definition
can be devised for default logic. The significance of defaults
is represented by a strict partial order, that is, a transitive and
asymmetric relation P . If defaults δ and δ′ are related as
δPδ′, then the application of δ is more desirable than the ap-
plication of δ′. The default δ has higher priority.

Below, L denotes the language of the propositional logic,
and D the set of all defaults α:β/β where {α, β} ⊆ L.

Definition 3.1 (Application) A default α:β/β is applied in
E ⊆ L, if α ∧ β ∈ E. This is written as appl(α:β/β,E).

1This – possibly controversial – division between background
B and evidence C (necessary and contingent facts) is made in all
the afore-mentioned formalisms that address specificity. The back-
ground may affect the priorities, the evidence may not.

Figure 1: An extended penguin triangle

Definition 3.2 (Preferred extensions) Let ∆ = 〈D,W 〉 be
a default theory, and P a strict partial order on D. Let E be
an extension of ∆. Then E is a P-preferred extension if there
is a strict total order T ⊇ P onD such that for all extensions
E′ of ∆, for all δ ∈ D,

appl(δ, E′\E) implies that for some δ′ ∈ D,
δ′T δ and appl(δ′, E\E′).

Definition 3.3 The fact that formula φ is contained in all P-
preferred extensions of ∆ is written as ∆ |=P φ.

Example 3.1 For the default theory 〈D, ∅〉 depicted in Figure
1 the following priorities are needed.

P =
{〈

P : ¬R
¬R

,
Q : R
R

〉
,

〈
P : ¬R
¬R

,
R : S
S

〉}
The default theory 〈D, {P}〉 has two extensions
that respectively apply {P :¬R/¬R,P :Q/Q} and
{P :Q/Q,Q:R/R,R:S/S}. Only the first one is P-
preferred. The two extensions and all strict total orders
T ⊇ P on the defaults are depicted below on the left (the
default P :Q/Q is omitted because it is applied in both
extensions). The most significant defaults are the lowest.
Application is depicted as • and non-application as ◦.

If 〈P :¬R/¬R,R:S/S〉 were omitted in P , the strict total
order R:S/S, P :¬R/¬R,P :Q/Q,Q:R/R would extend P ,
and consequently there would be a P-preferred extension in
which P :R/R were not applied. The diagram on the right
depicts the unwanted total order.

�

4 Specificity-based priorities
Pre-computed explicit priorities are useful if the computa-
tion can be performed once and the priorities can be used in
answering a wide variety queries concerning the knowledge



base. Priorities for a default theory 〈D,B ∪ C〉 depend only
on the defaults D and the background B. As long as changes
are made only to the contingent information C, no recompu-
tation of priorities is needed.

Next we show how Condition 1 can be fulfilled in default
logic with the lexicographic priority mechanism defined in
the preceding section.

Definition 4.1 Let 〈D,B〉 be a default theory and f a func-
tion from D × 2D × 2L to 2D. Define P∆,f as follows.

D0 =
{
α : β
β
∈ D|〈D,B ∪ {α} |=c β

}

Di+1 =

δ ∈ D\ ⋃
0≤k≤i

Dk|f(δ,D,B) ⊆
⋃

0≤k≤i

Dk


P0 = ∅
Pi+1 = {〈δ, δ′〉|δ ∈ Di+1, δ

′ ∈ f(δ,D,B)}
P∆,f = the transitive closure of

⋃
i≥0

Pi

If D0 ∪ · · · ∪ Dn = D for no n ≥ 0, then we leave P∆,f

undefined.

Given a function f , the above definition imposes an ordering
on defaults. For a default δ, f(δ,D,B) can be thought of as
the set of defaults that may become applied if a default con-
flict is resolved so that Condition 1 or some stronger speci-
ficity notion is violated. To avoid this, δ has to be given a
higher priority than any of the defaults in f(δ,D,B). Vio-
lation of Condition 1 is sometimes unavoidable, for example
when D = {A:B/B,A:¬B/¬B}.

Next we give one such function f . The notation ∆ |=b φ
means that φ is in at least one extension of ∆.

Theorem 4.2 Let ∆ = 〈D,B〉. Define f1(α:β/β,D,B) as

{δ ∈ D| E and E′ are extensions of 〈D,B ∪ {α}〉,
appl(δ, E′\E), appl(α:β/β,E\E′),
for no extension E′′ of 〈D,B ∪ {α, β}〉
{δ ∈ D|appl(δ, E′\E′′) or appl(δ, E′′\E′)} ⊂
{δ ∈ D|appl(δ, E\E′) or appl(δ, E′\E)}}.

Then |=P∆,f1
fulfills Condition 1 for 〈D,B〉.

Proof: The relation P = P∆,f1 is transitive and asymmetric
by construction. Let α:β/β be any default in D0. Clearly
〈D,B ∪ {α}〉 |=P β. Let δ = α:β/β be any default in Di

for some i ∈ {1, . . . , n}. Let T ⊇ P be any strict total or-
der on D. Let E′ be any extension of ∆ that does not apply
α:β/β (hence ¬β ∈ E′). By construction, there is an exten-
sion E of 〈D,B ∪ {α, β}〉 such that for all defaults δ′ such
that appl(δ′, E′\E), δPδ′. Hence δT δ′, and E′ cannot be
P-preferred. Therefore all P-preferred extensions contain β.
�

Gelfond and Przymusinska [1990] present theories of in-
heritance that are based on translating inheritance networks
into sets of formulae in autoepistemic logic. In Section 4b

of their paper, they give two formalizations of inheritance.
It turns out that the one that explicitly orders extensions of
an inheritance network is closely related to our definition
of specificity-based priorities and our priority mechanism2.
Our result below provides a conceptual simplification of Gel-
fond’s and Przymusinska’s work: reification of inheritance
networks is avoided as links can be directly represented as
default rules, and the ordering on extensions is justified by
Condition 1. We restrict to inheritance networks with only
defeasible links between classes. Strict links require stronger
priorities or non-normal defaults α:>/β.

Theorem 4.3 Assume that G is an inheritance network with
only one object x, and that there are no strict links be-
tween classes. The translation of G into default logic is
∆ = 〈D,B ∪ C〉, where

D =
{
P : Q
Q
| there is link P → Q in G

}
∪

{
P : ¬Q
¬Q

| there is link P 6→ Q in G
}

B = ∅
C = {P | there is strict link x⇒ P in G}
∪ {¬P | there is a strict link x 6⇒ P in G}.

Let P∆,f1 be the priorities for ∆ as given in Definition 4.1.
Then for any propositional variable P , P belongs to all
P∆,f1 -preferred extensions of ∆ if and only if H(x, P ) be-
longs to all belief sets of Th(G).

Condition 1 imposes only a lower bound on the consequence
relation. Reasoning with lexicographic priorities is mono-
tonic with respect to the priorities: the more priorities there
are, the more conclusions can be obtained. Consider the
Nixon Diamond. No priorities on the defaults involved vi-
olate Condition 1. Some priorities prefer “quakers are paci-
fists” to “republicans are not pacifists”. There is no reason for
this. It would seem that demanding that priorities are minimal
would solve this problem. This is not the case.{

P : Q
Q

P : A ∨B
A ∨B

Q : ¬A
¬A

Q : ¬B
¬B

}
If the second default is preferred to one or both of the last
two, Condition 1 is satisfied. However, minimal such pri-
orities give arbitrarily preference to one of the last two de-
faults. In conditional entailment [Geffner and Pearl, 1992],
this problem is avoided by considering all (minimal) priori-
ties. There is no obvious way to formalize this requirement
about the fairness of priorities. Our priorities are not mini-
mal and do not seem to be unfair because defaults are treated
symmetrically in cases like the above.

5 Beyond inheritance networks
Example 3.1 demonstrates that it is not sufficient to prioritize
defaults the conclusions of which are contradictory. To guar-
antee that a conflict is solved properly, it is necessary to give

2On page 412 in [Gelfond and Przymusinska, 1990], the relation
better is defined. The results in the paper assume that this relation is
asymmetric although it is not. Our results use a corrected definition.



Figure 2: Two independent penguin triangles

a lower priority also to those defaults that potentially become
applied if a conflict is resolved in a wrong way. In inheritance
networks, these defaults can be easily identified, as shown in
Section 4. This is not the case with default theories in general.
Next we give a variant of Example 3.1.

Example 5.1 Let ∆ = 〈D, ∅〉 where

D =
{
P : ¬R
¬R

,
P : Q
Q

,
Q : R
R

,
R ∧A : S

S

}
.

Priorities according to Definition 4.1 are P∆,f1 =
{〈P :¬R/¬R,Q:R/R〉}, but 〈D, {P,A}〉 6|=P∆,f1

¬R. The
conclusions with P∆,f1 are too weak. �

This is a problem not recognized in earlier work on lexico-
graphic priority mechanisms. To overcome it, it does not
suffice to consider Condition 1 only. A more general defini-
tion of specificity has to be devised. Such a definition should
cover also cases where the contingent sentences are not just
a prerequisite of one default. As hinted in Example 5.1, the
contingent facts may in an intricate way affect the set of de-
faults that potentially become applied. As priorities are to
be independent of the contingent facts, this creates new chal-
lenges for the definition of specificity based priorities, as il-
lustrated in the following example.

Example 5.2 Consider the defaults D in Figure 2. We
want 〈D, {A,C → P}〉 |=P ¬C. We also want
〈D, {P,R → A}〉 |=P ¬R. To fulfill these require-
ments, respectively the prioritiesA:¬C/¬CPP :¬R/¬R and
P :¬R/¬RPA:¬C/¬C are needed. Hence noP fulfills these
requirements. �

Similar examples can be constructed for other systems of
prioritized nonmonotonic reasoning that order extensions or
classical models by lexicographic or other form of com-
parison, for example [Geffner and Pearl, 1992; Brewka,
1989; Lifschitz, 1985; Ryan, 1992; Gärdenfors and Makin-
son, 1994]. The presence of disjunctive formulae in the
sets of contingent facts is an obstacle to the possibility of
inheritance-like reasoning in systems of default reasoning
that use fixed priorities with lexicographic comparison.

A natural line of research is to consider cases where the
contingent facts may not contain the kind of problematic im-
plicational formulae used in Example 5.2. A suitable restric-
tion is to require that the consistent facts are propositional
variables or their negations. With this restriction satisfac-
tory defeasible reasoning with specificity can hopefully be
achieved for a wide class of default theories.

6 Alternative definitions of prioritized
reasoning

The priority mechanism introduced in Definition 3.2 is only
one of several alternatives. That definition classifies defaults
to those that are applied in an extension and to those that are
not. Another reasonable classification is to defaults that are
not defeated and to defaults that are defeated.

Definition 6.1 (Defeat) A default α:β/β is defeated in E ⊆
L, if α ∧ ¬β ∈ E.

For prerequisite-free defaults application and non-defeat co-
incide. The notions differ for a default α:β/β and an exten-
sion E when the prerequisite α is not in E. Then α:β/β is
neither defeated nor applied in E. Another choice – orthogo-
nal to the choice between application and non-defeat – is the
way partiality in the priority partial orders is interpreted.

Definition 6.2 (Preferred2 extensions) Let ∆ = 〈D,W 〉 be
a default theory, and P a strict partial order on D. Let E be
an extension of ∆. Then E is a P-preferred2 extension if for
all extensions E′ of ∆, there is a strict total order T ⊇ P on
D such that for all δ ∈ D,

appl(δ, E′\E) implies that for some δ′ ∈ D,
δ′T δ and appl(δ′, E\E′).

Each P-preferred extension is P-preferred2 but not vice
versa. The generalization of lexicographic comparison to par-
tially ordered positions as given in the definition of preferred
has been earlier used by Brewka [1989]. The generaliza-
tion used in preferred2 has been earlier used for example by
Geffner and Pearl [1992] and Ryan [1992]. The last two do
not explicitly reduce lexicographic comparison with partially
ordered positions to lexicographic comparison with totally or-
dered positions. Brewka performs lexicographic comparison
implicitly in a procedure for computing preferred sets of for-
mulae.

There are no obvious differences in the expressivity of the
priority mechanisms suggested by the above definitions and
the one given in Section 3. A theorem corresponding to The-
orem 4.3 for a priority mechanism that uses defeat instead
of application requires stronger priorities than those obtained
merely on the basis of Condition 1. The reason for this is
that in inheritance networks, the number of defaults that are
potentially defeated in the intended extensions but not in the
unintended extensions, may be increased by extending the set
of contingent facts with propositional atoms.

7 Related work
Pearl’s system Z is an improvement over p-entailment
[Adams, 1975] and preferential logics of Kraus, Lehmann
and Magidor [1990] because it handles irrelevant premises
satisfactorily. System Z imposes an ordering on defaults (the
Z-ordering), and models of the defaults are ordered according
to the highest defeated default. This introduces a new kind
of weakness: if a member of some class is in some respect
exceptional, it is allowed to be exceptional in other respects



as well. Conditional entailment of Geffner and Pearl [1992]
remedies this problem: comparison by highest defeated de-
fault is replaced by lexicographic comparison that considers
significant also violations to defaults below the highest de-
feated one. Instead of the Z-ordering, all strict partial or-
ders that – together with lexicographic comparison – satisfy a
counterpart of Condition 1, are used. Within our framework,
conditional entailment can be defined as follows.

Definition 7.1 LetDc be a set of defaults α⇒ β andB ⊆ L
a set of formulae. Let D = {>:α→ β/α→ β|α ⇒ β ∈
Dc}. Then 〈〈Dc, B〉, C〉 conditionally entails γ, if γ is in all
P-preferred2 extensions of 〈D,B ∪ C〉 for all P such that
〈D,B ∪ {α}〉 |=P β for all α⇒ β ∈ Dc.

Delgrande and Schaub [1994] and Brewka [1994] present
methods for computing priorities for Reiter’s default logic.
Both identify minimal sets of conflicting defaults, Delgrande
and Schaub directly using the Z-ordering of Pearl, and
Brewka using a closely related idea that takes into account
the fact that default rules are unidirectional. Delgrande and
Schaub do not use priorities explicitly, but translate sets of
defaults and the priority information to sets of semi-normal
defaults rules. Brewka [1994] uses the priorities within his
prioritized default logic that is based on a variant of Re-
iter’s semiconstructive definition of extension. Similar pri-
ority mechanisms have been independently investigated else-
where [Marek and Truszczyński, 1993; Baader and Hollun-
der, 1993]. Neither Delgrande and Schaub nor Brewka verify
their systems against any correctness criteria or otherwise ex-
plicate the specificity notion they use. Both systems seem to
fulfill Condition 1.

Default logic with specificity as defined in this paper dif-
fers in some aspects from most of the inheritance theories.
The priorities are fixed, that is, they are the same for all ex-
tensions and all sets C of contingent information. Theories
of inheritance have priorities implicitly hidden in the defini-
tion of preemption. There are examples where fixed priorities
necessarily seem to produce too strong conclusions [Horty,
1994].

8 Conclusions
We have extended Reiter’s default logic with a lexicographic
priority mechanism and presented a method for computing
priorities according to specificity. The method produces pri-
orities that are sufficiently strong for inheritance networks.
Relaxing two restrictions made in inheritance networks – only
propositional atoms as prerequisites and factual knowledge
that is not disjunctive – reveals the priorities insufficient. It
seems that non-atomic prerequisites can be handled with a
lexicographic priority mechanism for a large class default the-
ories, but disjunctive contingent facts cannot.

Our research is closely related to Geffner’s and Pearl’s
work on conditional entailment [Geffner and Pearl, 1992].
Conditional entailment does not support inheritance reason-
ing. Delgrande [1994] extends conditional entailment to-
wards inheritance reasoning. Our results are likely to have
implications on research on that topic.

The computation of priorities from specificity is rather
complex and tightly intertwined with default reasoning itself.
In argument-based systems of defeasible reasoning [Simari
and Loui, 1992; Pollock, 1994] these two things are com-
bined: there is no division between the reasoning and prior-
ity components in these systems. This raises questions con-
cerning the usefulness of such division, for example from the
computational point of view.
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