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Abstract
We propose more scalable encodings of temporal
planning in SMT. The first contribution is practical
clock-based encodings of resources and effect de-
lays. Existing encodings of effect delays (Shin and
Davis, 2015) have a quadratic size, due to the ne-
cessity to determine the time differences between
steps for a linear number of steps. Clocks im-
prove this to linear. The second contribution is a
new relaxed scheme for steps. Existing schemes re-
quire a step for every time point with discontinuous
change. This is relaxed, improving scalability.

1 Introduction
After the successes of SAT in solving the classical planning
problem [Kautz and Selman, 1996; 1999], Shin and Davis
[2005] proposed the encodings of temporal and hybrid sys-
tems planning in the SAT modulo Theories (SMT) frame-
work. While the work solves conceptual problems of tem-
poral planning with SMT, it has not proved successful in
terms of performance. Shin & Davis adopted a temporal
model with ε-separation [Fox and Long, 2003], which can
double the number of steps, with a high performance penalty
for constraint-based methods [Rintanen, 2015b]. ITSAT
[Rankooh and Ghassem-Sani, 2015] – probably the best scal-
able temporal planner – avoids the problems of ε-separation
by reducing the temporal problem to a non-temporal one. IT-
SAT, however, often generates plans with makespans twice
the optimal, which in practice is unacceptable. Rintanen
[2015a] adopts a temporal model without ε-separation and
with opportunities for discretization to integer time, which
is not possible with ε-separation.

The first application of SMT was classical planning with
numeric variables [Wolfman and Weld, 1999]. SMT was little
used before the recent works on temporal planning, and very
recently on continuous change [Bryce et al., 2015].
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In this work, we pursue the fundamentals of temporal (and
hybrid) planning further, believing that full temporal model
is needed during search to achieve good-quality plans. First,
we address the number of steps in SMT encodings, analogous
to the number of time points in SAT encodings of classical
planning [Kautz and Selman, 1996]. Shin and Davis [2005]
require a step for every time point in which an action or a
discrete change takes place. We propose a relaxed scheme
in which one step can summarize discrete changes in multiple
preceding time points. Second, we address the asymptotic
size of encodings, reducing a encoding of time delays from
quadratic to linear, while avoiding the excessive number of
clocks of earlier encodings [Rintanen, 2015a].

The resulting encodings improve earlier state of the art
in SMT-based temporal planning, solving dozens more of
the standard benchmark problems, and sometimes improving
runtimes by two orders of magnitude.

2 Model of Temporal Planning
We adopt the formal framework of Rintanen [2015a]. A tem-
poral action consists of a precondition φ (a propositional for-
mula), and effects which are negated or unnegated state vari-
ables associated with times ≥0, indicating how much after
the action the effect will take place. When the action is at
absolute time t, then an effect for time t′ is at absolute time
t+t′. We call t′ the delay. An action can allocate a resource
for a duration d0, at some time t0 relative to the starting point
of the action: the resource is allocated for the interval t+t0
to t+t0+d0, and no other action can take place if it allocates
the same resource for an intersecting interval.

Definition 1 (Actions with Resources) Let X be a finite set
of state variables and R a finite set of resources. An action is
a triple 〈p,q,e〉 where
• the precondition p is a propositional formula over X ,
• the resource requirement q is a set of tuples

– (ts,td,r)⊆Q×Q×R such that td≥0, and
– (ts,td,r,n)⊆Q×Q×R×N such that td≥0, and

• the effect e is a set of pairs (t,l) where t≥0 is a rational
number and l is a literal over X .

We refer to the precondition p of an action a by prec(a),
the resource requirement q by rreq(a), and the effects e by



eff(a). The set R of resources is divided in two types. Unary
resources, expressed by triples (ts,td,r), model absolute ex-
clusion inside a group of actions: only one action can allocate
r at a time. State resources, expressed by tuples (ts,td,r,n),
where n is the state, can be used by multiple actions as long
as the state n is the same.

Definition 2 (Plans and Executions with Resources) For a
problem instance 〈X,R,I,A,G〉, with state variables X , re-
sources R, initial state I , actions A, and goal G, a plan π is
a finite set of pairs (a,t) such that the following holds.

1. t≥0 is a rational number and a∈A is an action.

2. For all {(t1,a1),(t2,a2)}⊆π such that for some r∈R
• (ts1,t

d
1,r)∈rreq(a1) and (ts2,t

d
2,r)∈rreq(a2), or

• (ts1,t
d
1,r,n1)∈rreq(a1), (ts2,t

d
2,r,n2)∈rreq(a2),

and n1 6=n2,

either

(a) t1+ts1+td1≤t2+ts2, or
(b) t2+ts2+td2≤t1+ts1.

3. There is an execution v :Q×X→{0,1} which is a map-
ping from non-negative rational time points and state
variables to 0 and 1 such that

(a) v(0,x)=I(x) for all x∈X ,
(b) v(t,prec(a))=1 for all (a,t)∈π
(c) if (a,t)∈π and (t′,l)∈eff(a), then v(t+t′,l)=1,
(d) state variables not changed by actions retain their

values: for any tl and tu such that tl<tu, if
• v(tl,x)=1, and
• there is no (a,t′)∈π such that (t′′,¬x)∈eff(a)

and tl<t′+t′′≤tu
then v(ti,x)=1 for all ti such that tl<ti≤tu.
(Analogously for v(tl,x)=0.)

4. There is t such that v(t′,G)=1 for all t′>t.

Effects (0,l) that make preconditions of simultaneous ac-
tions true (including the action itself) are not allowed.

3 SMT Encodings of Temporal Planning
Timelines in temporal planning are continuous, but it is suf-
ficient to represent explicitly only a finite sequence of time
points in which an action starts or an effect takes place, called
steps. For Boolean state variables X={x1,...,xn}, actions
A={a1,...,am}, and N+1 steps, we need SMT variables
x@i and a@i for all x∈X , a∈A, and i∈{0,...,N}. For each
step, these SMT variables indicate the values of state vari-
ables and whether an action is taken. Variables τ@i denote
the absolute time at step i, and ∆@i=τ@i−τ@(i−1). We
constrain these values by ∆@i>0.

If φ is the precondition of action a, we have the formula

a@i→φ@i (1)

where φ@i is the formula obtained from φ by replacing each
x by x@i. By causes(x)@i we denote the disjunction of all
the conditions under which x becomes true at step i. These

formulas typically refer to atomic propositions for earlier
steps. Similarly causes(¬x)@i for x becoming false. Hence
when causes(l)@i is true, the effect l takes place.

causes(x)@i→x@i (2)
causes(¬x)@i→¬x@i (3)

Frame axioms allow inferring that the value of a state variable
remains unchanged.

(x@i∧¬x@(i−1))→causes(x)@i (4)
(¬x@i∧x@(i−1))→causes(¬x)@i (5)

How the disjuncts of causes(x)@i are defined depends on
when the action causing the change takes place, and how the
time difference between the action and the effect is expressed.
Here we first present the Shin&Davis style encoding of delay,
and will consider other options later.

A disjunct of causes(x)@i for effects x at a relative time
t>0 of an action a is

i−1∨
j=0

(a@j∧((τ@i−τ@j)=t)) (6)

if encoded in the spirit of Shin and Davis’ [2005] formula
(4.3). These constraints have a quadratic size. When t>0, to
guarantee that there is a step for every effect, we need

a@i→
N∨

j=i+1

(τ@j−τ@i=t). (7)

3.1 Resource Constraints
Consider actions a1 and a2 such that (t1,d1,r)∈rreq(a1) and
(t2,d2,r)∈rreq(a2). If the intervals ]t1,t1+d1[ and ]t2,t2+
d2[ overlap, then the actions cannot be at the same step. The
following constraint prevents these two actions from starting
at the same step.

¬a1@i∨¬a2@i (8)

Now consider the case in which a1 may have been taken ear-
lier at time 0−t, and this may prevent a2 from taken at the
current step at time 0. The requirement that the allocations
of the resource by the two actions do not overlap means that
the relative time −t where the action a1 may have been taken
satisfies one of the following.

0−t+t1+d1≤t2
0−t+t1≥t2+d2

This means that either the first action frees the resource be-
fore the second allocates it, or vice versa. Simplified these
constraints are as follows.

t1+d1−t2≤t
t1−t2−d2≥t

Hence a2 is not allowed if a1 is at ]−t1+t2+d2,−t1−d1+
t2[ relative to the current time point.

a2@i→¬
i−1∨
j=0

(
a1@j∧(t1−t2−d2>∆i

j>t1+d1−t2)
)

(9)



Here ∆i
j=
∑i

k=j+1∆@k, or, equivalently, ∆i
j=τ@i−τ@j.

If t1<t2+d2, then testing the bound t1−t2−d2 is unnec-
essary, because no matter how recently the first action was
taken, that action can never allocate the resource after a2
freed it. Similarly, if t2≥t1+d1, the earlier action must al-
ready have freed the resource before the second action could
allocate, requiring no constraints.

Constraints on state resources are similar. A constraint for
a pair of actions is required only if the actions allocate the
same state resource with different states.

In all of the above constraints, a reference to a single action
(like a1@i) can be replaced by a disjunction of actions (like
a1@i∨a2@i∨···∨an@i), when all these actions allocate the
same resource for the same interval (and state.)

3.2 Effect Delays with Clocks
Rintanen [2015a] devised clock-based encodings of delays,
and then pointed out that there will be impractically many
real-valued variables, hampering efficient SMT solving. Here
we briefly explain the use of clocks, and in Section 6 we pro-
pose a practical scheme for sharing clocks between actions.

The values of a clock c at different steps i are represented
by SMT variables c@i. A clock c associated with action a is
initialized to zero when the action is taken

a@i→(c@i=0) (10)
and the value of the clock is increased at all other steps. Here
i∈{1,...,N}.

¬a@i→(c@i=c@(i−1)+∆@i) (11)
Trigger for effect x with delay t in causes(x)@i is now1

c@i=t. (12)
To guarantee that there is a step where (12) is true, we need

(c@(i−1)<t)→(c@i≤t). (13)
One clock per action can be insufficient if an action can

overlap itself. Self-overlap is atypical, but when it is re-
quired, there are three options. In specific situations one
clock can still suffice (see Section 5). If an action can self-
overlap only a bounded number of times, a bounded num-
ber of clocks is sufficient. In case of unbounded self-overlap
[Rintanen, 2007], a fall-back position would be to use a
clock-free scheme like that of Shin and Davis.

4 Summarized Effects
A main problem with the encodings is the high number of
steps, which increases solver runtimes. In the above encod-
ings, there must be a step for actions’ starting points, and also
for any time point where a state variable changes.

Example 1 Consider simultaneously taking three actions re-
spectively with durations 1, 2, and 3, and respectively with
effects x, y and z, to reach the goal x∧y∧z. With all encod-
ings considered before, four steps are needed (see Figure 1,
left): the starting step of all actions, and steps for the rela-
tive time points 1, 2, and 3, in which respectively x, y and z
become true, and with the goal x∧y∧z true at the last step.

1If an action can immediately follow itself, here c@(i−1)+∆@i
must replace c@i. Same fix is later needed in (14), (15) and (16).
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Figure 1: Steps for effects are not needed
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Figure 2: Plan with fewer steps may have a longer makespan

We propose a new scheme, in which a step is not necessary
for time points with change, and effect axioms are relaxed
to force an effect at a given step if its time is greater than
or equal to the change time. Essentially, the infinitely dense
line of real or rational time points has to be made explicit as
steps only at those time points in which an action is started, or
before such effect takes place that contradicts an earlier effect
which has not been recorded at a step yet.

In the above example, this scheme allows a 2-step plan in
which all three effects, respectively for time points 1, 2 and
3, are recorded at the second step, associated with any time
point ≥3, as illustrated in Figure 1, right.

This scheme is easy to implement as a modification of the
clock-based encoding of effect delays presented earlier. We
only need in causes(x)@i for effects (l,t) the formula

(c@i≥t)∧(c@(i−1)<t), (14)

relaxing and replacing (12), and we don’t need formula (13).
This scheme creates new trade-offs between the makespans

and the number of steps, as illustrated in Figure 2.
The relaxed scheme may resemble the idea of paral-

lel plans in classical planning [Kautz and Selman, 1996;
Rintanen et al., 2006; Wehrle and Rintanen, 2007], where
multiple actions are allowed at the same step whenever they
are independent and can be ordered to a total order. Our
scheme allows merging multiple steps, but still assumes a
(non-strict) total ordering on the starting points of actions.

5 Clocks for Resource Constraints
We next present encodings of resource constraints expressed
in terms of clocks. Encodings of resource constraints pre-
sented earlier are based on pairwise exclusions of pairs of
actions or pairs of action sets. This types of encodings can
be quadratic in the worst case, although with many temporal
planning problems they can be improved to close to linear by
lumping together all actions that allocate a given resource for
the same (relative) time interval.

Our first observation is that clocks help achieve O(n) size
encodings, as opposed to quadratic size O(n2) as in formula
(9). As the number of resources is low (some dozens for stan-
dard benchmarks), associating the clocks with them is much
more practical than associating them with actions.



The core idea is that clocks can express resource alloca-
tions through their value in two different ways. First, a clock
value in the interval ]t,t+d[ denotes the allocation of the cor-
responding resource for a fixed duration d starting from a rel-
ative time point t counted from the resetting of the clock to 0
at the step where the action is taken. Second, a clock value
<0 can denote an allocation of any duration extending from
the current time point (and earlier) until the clock reaches
value 0. In this case, an action allocating the resource for du-
ration d from its beginning resets the clock to value −d. The
second option covers almost all resources in standard tem-
poral planning benchmark problems, which may allocate re-
sources for different durations but in almost all cases do it
from the beginning of an action.

Shared clocks cannot always accurately represent resource
allocations. Allocations of the same state resource by differ-
ent actions for different durations cannot be handled by one
clock. Similarly for other resources, in specific cases. When
clocks cannot be used, the fall-back strategy is to use the for-
mulas (9).

Example 2 Consider an action that allocates a unary re-
source for interval ]9,10[. Assume this action does not use
any other resource. Assume this action is taken at time points
0 and 1. The resource clock is reset to 0 at both time points.
Now the value of the clock from time point 1 on only rep-
resents the second instance of this action. Taking an action
that requires the same resource for the relative interval ]0,1[
would be possible at time 9, which is not correct.

Example 3 If all actions that allocate a given resource allo-
cate it for interval ]9,10[, then all resource conflicts can be
detected by using one clock. Assume an action is taken at
0. By checking the clock, it can be determined that a second
instance of the same action is not possible before time 1, at
which point the clock is reset.

An important special case, which covers almost all re-
source conflicts in almost all of the standard benchmark prob-
lems for temporal planning, is the following. Let all actions
allocate a resource at the action’s starting point (relative time
0), for durations da, dependent on the action a. The resource
clock c is reset to −da when action a is taken. An action
causes a resource conflict at a given time point iff c≤0.

Next we set out to devise a general encoding scheme which
uses clocks whenever possible and handles all cases correctly.
We consider two cases.

1. If at least one action allocates a resource r at relative
time 0 (the starting point of the action), use clock c0r .
If action a allocates r with (0,d,r), then at the starting
point of the action the clock c0r is reset to −d.

2. For any other allocation (t,d,r) (with t>0) occurring at
least once, use clock ct,dr .
Any action allocating r with (t,d,r) resets ct,dr to 0.

Next we discuss the conditions under which resource con-
flicts between actions can be detected by using the clocks as-
sociated with the resource allocations. Note that constraints
on actions taken at the same step are always handled by static

constraints as described earlier, and here we only address con-
straints on actions taken at different steps.

Consider actions a1 and a2 (this includes the case a1=a2)
which respectively allocate the same unary resource r with
(0,d1,r) and (t2,d2,r). The constraint for handling conflicts
of this form is the following.

a2@i→
(
−c0r@i≤t2

)
(15)

Consider actions a1 and a2 which respectively allocate the
same unary resource r with (t1,d1,r) and (t2,d2,r). This
is the general case, which cannot always be handled with
clocks. The question is whether the clock ct1,d1

r repre-
sent a sufficient amount of information of earlier allocations
(t1,d1,r) of r so that the conflict with allocations (t2,d2,r)
can be detected with it, by using the following constraint.

a2@i→
(
t1+d1−ct1,d1

r @i≤t2
)

∨
(
t1−ct1,d1

r @i≥t2+d2
)

(16)
It turns out that the clock is insufficient only if the imme-

diately preceding action allocates the resource relatively later
than the current action does, and some still earlier action al-
locates the resource in a conflicting way.

Proposition 1 The clock ct1,d1
r is sufficient if t2+d2≥t1.

Proof: Consider action a2, taken at time t and allocating r
with (t2,d2,r), as well as actions a0 and a1, both of which
allocate the unary resource r with (t1,d1,r), with a1 taken at
some time t′<t and a0 at some time t′′ such that t′′+d1≤t′
(because both use the resource for duration d1).

We claim that if the allocation of r by a2 at time t′′0 does
not conflict with the allocation by a1, then it will not conflict
with the allocation by a0 either. Hence the conflict can be
detected from the clock which only represents the allocation
by the later action a1 but not by a0. Since a1 and a2 do not
conflict, their intervals of allocation do not overlap, that is,

t′+t1+d1≤t+t2
or

t′+t1≥t+t2+d2.
By assumption t2+d2≥t1 and t>t′, and hence the second
condition cannot be true, that is, a1 could not possibly al-
locate the resource after a2 has freed it. Therefore the only
possibility of not having a conflict is that

t′+t1+d1≤t+t2.
Now, because t′′<t′ we have

t′′+t1+d1≤t+t2.
Hence a2 does not conflict with a0 either. �

Same considerations apply to state resources.
In summary, the general scheme for deriving resource con-

straints is as follows. For a given resource r, we consider
each possible pair of allocations (t1,d1,r) and (t2,d2,r) at a
time (with all actions making the same allocation considered
together), and create a constraint to prevent the conflict be-
tween them. If t1=0, then we can always use formula (15).
If t1>0, then we use Proposition 1 to check if the clock ct1,d1

with formula (16) is sufficient, and if not, we use formula (9)
instead. For standard benchmarks this scheme generally leads
to the very compact constraints (15).



6 Shared Clocks for Effect Delays
Section 3.2 described how can could be used for representing
effects’ delay (for relative time points >0). The high number
of real-valued variables required makes that representation
impractical. However, a different kind of scheme for using
clocks typically avoids the high number of clocks. The basic
observation is that two (or more) actions can share a clock
whenever the actions cannot temporally overlap. Temporal
overlap is not possible when the actions use the same exclu-
sive resource for their whole duration.

Example 4 Consider actions for moving an object from lo-
cation to location. To prevent taking two actions moving the
object from one location to two different locations, all these
action allocate the same resource specific to the object for
their whole duration.

Now, in cases like above we can use one clock for a large
number of actions. The clock is reset when an action is taken,
and the actions’ effects take place when the clock reaches a
value corresponding to the delay of the effect.

The basic idea is to use the clock for those resource alloca-
tions that start at relative time point 0 of the action, and that
last until the last effect of the action. The actions cannot over-
lap because they use the same unary resource for their whole
duration. Hence this one clock can be shared by multiple ac-
tions. This way, practically all standard benchmark problems
require only some dozens of clocks.

6.1 Qualitative Clocks
Since a shared clock does not tell which action is active, we
must use qualitative (Boolean) clocks to do that. These indi-
cate a qualitative value range for the clock (a single value, or
a range of values).

Note that while the clock is initialized to −d when the ac-
tion allocates the resource with (t,d,r), the time values of the
qualitative clocks run from 0 until d, for clarity. The con-
straints for connecting the real-valued clock to the qualitative
clocks are given as (17)-(19), (27), (28), (36). The connection
between the real-valued clock c and the qualitative clock cq
representing the time since the start of the action, to the reset
value of the clock −da for this action, is

cq=c+da.

Let T={t1,...,tn} be time points, for example those (rel-
ative) time points in which the effects of a given action take
place.We use the propositional variables, qa<ti@j and qati@j,
for i∈{1,...,n} to abstractly represent the clock value c sat-
isfying respectively ti−1<c<ti and c=ti. The variables qa<ti
and qati are related to the real-valued clock in the obvious way
(where c+da=cq as discussed above.)

qa<ti@j → (ti−1<c@j+da) (17)
qa<ti@j → (c@j+da<ti) (18)
qati@j → (c@j+da=ti) (19)

Qualitative clocks are also useful because reasoning about
the clock values is possible before any of the relevant real-
valued variables have been set a value by the SMT solver. To

support these inferences we use the following formulas for all
i∈{1,...,n−1} and k∈{2,...,n}.

a@j → qa<t1@(j+1)∨qat1@(j+1) (20)
qa<ti@j → qa<ti@(j+1)∨qati@(j+1) (21)
qati@j → qa<ti+1

@(j+1)∨qati+1
@(j+1) (22)

qa<tk
@j → qa<tk

@(j−1)∨qatk−1
@(j−1) (23)

qatk@j → qa<tk
@(j−1)∨qatk−1

@(j−1) (24)

qa<t1@j → qa<t1@(j−1)∨a@(j−1) (25)
qat1@j → qa<t1@(j−1)∨a@(j−1) (26)

All the qualitative clock variables for a given step are mu-
tually exclusive. Further, when the qualitative clocks of dif-
ferent actions represent the same real-valued clock, all the
qualitative clock variables also for all these different actions
are mutually exclusive.

6.2 Summarized Effects
For the encodings that allow changes at time points not made
explicit as a step, as proposed earlier, we introduce variables

qa≥ti@j

for indicating that the clock reaches value ti at step j or be-
tween steps j−1 and j. These variables are related to the
clock values as follows.

qa≥ti@j→(c@(j−1)+da+∆i≥ti) (27)

qa≥ti@j→(c@(j−1)+da<ti) (28)

The qa≥ti variables are used with qa<ti (and without qati , re-
placing them), and they connect together more loosely. We
have for all i∈{1,...,n−1} and k∈{2,...,n}:

a@j→qa<t1@(j+1)∨qa≥t1@(j+1) (29)

qa<ti@j→q
a
<ti@(j+1)∨qa≥ti@(j+1) (30)

qa<tk
@j→qa<tk

@(j−1)∨qa≥tk−1
@(j−1) (31)

qa<t1@j→qa<t1@(j−1)∨a@(j−1) (32)
qa≥ti@j→q

a
≥ti+1

@j∨qa<ti+1
@(j+1)∨qa≥ti+1

@(j+1)(33)

qa≥tk@j→qa≥tk−1
@j∨qa<tk

@(j−1)∨qa≥tk−1
@(j−1) (34)

qa≥t1@j→qa<t1@(j−1)∨a@(j−1) (35)

Note that we can have qa≥ti@j and qa≥tj@j true at the same
step j, even for multiple tj , i 6=j. Additionally, variables qa<ti
satisfy the following.

qa<ti@j→(c@(j+1)+da<ti) (36)

In formulas causes(x)@i the qualitative clocks are used
similarly to real-valued action-specific clocks. Effect trig-
gering in effect and frame axioms (2) and (5) in different en-
coding styles is summarized below.

disjunct of causes(x)@i for clock type
c@i=t own
qat @i shared
c@i≥t∧c@(i−1)<t own, summarization
qa≥t@i shared, summarization



ITSAT SD C R
08-crewplanning 30 30 10 14 15
08-elevators 30 16 4 6 9
08-elevators-num 30 - 4 8 13
08-openstacks 30 30 4 5 7
08-pegsol 30 30 30 30 30
08-sokoban 30 17 17 17 16
08-transport 30 - 4 6 8
08-woodworking 30 - 16 15 23
08-openstacks-adl 30 - 3 5 8
08-openstacks-num-adl 30 - 5 9 18
11-floortile 20 20 20 20 20
11-matchcellar 10 10 10 10 10
11-parking 40 9 12 12 12
11-storage 20 10 0 0 0
11-tms 20 20 20 20 20
11-turnandopen 20 20 18 18 18
14-floortile 20 20 20 20 20
14-matchcellar 20 20 19 20 19
14-parking 20 18 19 19 19
14-tms 20 20 20 20 20
14-turnandopen 20 9 5 5 5
14-driverlog 30 4 0 0 0
total (w/o numeric) 410 303 228 236 240
total 560 303 260 279 310

Table 1: Instances solved in 1800 seconds by domain

Only for the trigger c@i=t we need to force a step for
time t (formula (13)). For triggers qat @i this follows from
the axioms for qualitative clocks, requiring that all qualitative
clock-value ranges are visited in turn.

7 Experiments
We compare our result to the Shin-Davis style step scheme
and ITSAT which is one of the the strongest temporal plan-
ners [Rankooh and Ghassem-Sani, 2015], shown to outper-
form earlier planners [Gerevini et al., 2006; Coles et al.,
2010; Eyerich et al., 2012; Lu et al., 2013].

Experimentation was based on Rintanen’s [2015a] code,
including the discretization method to eliminate time vari-
ables whenever possible. We used MathSAT 5.3.6 [Aude-
mard et al., 2005; Cimatti et al., 2013] for instances with
real-valued variables, and PrecoSAT [Biere, 2010] for purely
Boolean ones. Experiments were run in Intel Xeon CPUs.

From the SMT approach, SD is the baseline encoding [Rin-
tanen, 2015a]. C is obtained from SD by using the clock-
based encodings of resource constraints and delays (Sections
5 and 6). R additionally uses summarized steps (Section 4).

Table 1 lists the number of IPC instances solved in 1800
seconds. ITSAT doesn’t handle numeric variables and can-
not solve the problems indicated with a dash. Differences be-
tween SD, C and R are not clearly visible here: many problem
series are solved (almost) completely by all planners, some
series are too difficult, and e.g. Parking gets fully discretized
and all three planners use the same SAT encoding. Figure
3 plots makespans for instances solved by both ITSAT and
R, with ITSAT makespans often close to twice those of R. R
makespans are higher only with few instances of TMS. On
these, C makespans are the same as ITSAT’s. Figure 4 shows
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Figure 4: Comparison of runtimes ITSAT vs. R

that ITSAT’s overall runtime advantage is not very system-
atic. Other data shows that R quite systematically improves
on C, but not on SD (despite overall improvement).

8 Conclusion
We proposed new ways of using clocks in SMT encodings of
temporal planning, decreasing the asymptotic size of some of
the core constraints for temporal planning, and showed that
the number of steps – a main factor in SAT/SMT solver per-
formance – can be reduced with a relaxed encoding scheme.
Both contributions improve the scalability of SMT in tem-
poral planning. Our experiments showed that although the
scalability and runtime improvements are not yet sufficient to
match the state of the art, represented by the ITSAT planner,
plan quality is much better than with ITSAT, which often gen-
erates plans with a makespan twice or more of the optimal.

Future work includes further investigation of schemes for
reducing the complexity of handling temporal dependencies
between actions, as well as better implementation technolo-
gies for temporal planning in general, for example following
the lines that have proved successful with classical planning
[Rintanen, 2012a; 2012b].
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