
Scheduling with Contingent Resources and Tasks

Jussi Rintanen∗

Department of Information and Computer Science
Aalto University, Finland

Abstract

Finding optimal schedules for the most commonly consid-
ered classes of scheduling problems is NP-complete. Best
algorithms scale up to very large scheduling problems when
optimality is not required and good solution quality suffices.
These problems have perfect information in the sense that the
resource availability, set of tasks, task duration, and other im-
portant facts, are fully known at the time of constructing a
schedule. However, the assumption of perfect information
is rarely satisfied, and real-world scheduling faces several
forms of uncertainty, most notably with respect to durations
and availability of resources. The effective handling of uncer-
tainty is a major issue in applying scheduling in new areas.
In this work, we investigate the properties of a number of
classes of problems of contingent scheduling, in which as-
signments of resources to tasks depend on resource availabil-
ity and other facts that are only known fully during execu-
tion, and hence the off-line construction of one fixed schedule
is insufficient. We show that contingent scheduling in most
general cases is most likely outside the complexity class NP,
and resides, depending on the assumptions, in PSPACE, Σp

2

or Πp
2 . The results prove that standard constraint-satisfaction

and SAT frameworks are in general not straightforwardly ap-
plicable to contingent scheduling.

Introduction
There are several approaches to handle uncertainty in
scheduling (Beck and Wilson 2007), including the proac-
tive approach in which the uncertain future events are ex-
plicitly and fully considered during scheduling time, and the
reactive approach in which first a simplified full-information
variant of the problem is solved as if uncertainty did not ex-
ist, and unanticipated events are dealt with as they arise.
Our work will exclusively focus on proactive approaches,
mainly because reactive approaches are in general inherently
incomplete. Proactive approaches have further been split to
redundancy-based, probabilistic and contingent (Beck and
Wilson 2007; Herroelen and Leus 2005). Redundancy-based

∗Also affiliated with Griffith University, Brisbane, Australia,
and the Helsinki Institute of Information Technology, Finland. This
work was funded by the Academy of Finland (Finnish Centre of
Excellence in Computational Inference Research COIN, 251170).
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approaches offer a trade-off between the quality of a sched-
ule and its robustness under delays or failures, by maintain-
ing a reserve of potentially superfluous additional resources.
The probabilistic approach observes failure probabilities and
delays explicitly, but provides only one conventional sched-
ule that maximizes a performance metric like the makespan.
Finally, the contingent approach (which is the focus of this
paper) recognizes that different schedules are needed under
different contingencies, and computes them either off-line
before the execution phase or on-line as information about
the contingencies becomes available. This is the most gen-
eral approach, eliminating the limitations (incompleteness,
suboptimality) of the other approaches at the cost of in-
creased complexity.

The fundamental decision problem in scheduling is
whether a schedule of a given makespan exists. The most ba-
sic forms of scheduling are NP-complete (Garey and John-
son 1979). Different types of uncertainty in scheduling in-
clude the following (Davenport and Beck 2000).

1. Uncertainty about task durations
2. Introduction of new tasks during execution
3. Cancellation of existing tasks during execution
4. Uncertainty about resource availability
5. Uncontrollable alternative resources
6. Changes in the due dates
7. Changes in the ready dates
The complexity of scheduling with durational uncertainty
follows from known results (Beck and Wilson 2007;
Hagstrom 1988): determining the expected duration of a
schedule with fixed task and resource choices is #P-hard,
where #P is the class of counting problems where the out-
put value corresponds to the number of executions of a
nondeterministic Turing machine with a polynomial time
bound. This is presumably harder than NP, and “almost”
PSPACE-hard since PH⊆P#P ⊆PSPACE. We therefore ad-
dress contingencies other than durational uncertainty, which
have been not been investigated before.

Our work explicitly addresses uncertainty of forms 4 and
5. Uncertainty 6 and 7 are reducible to our basic framework,
through restrictions on resource availability that force tasks
to certain time intervals, but we do not address them explic-
itly. The overall impact of uncontrollability of tasks (2, 3) is

analogous to uncontrollability of resource availability, but is
left out of this paper because of space limitations.

We consider bounded contingencies and worst-case cost
measures. When there is no bound on the number of contin-
gencies occurring simultaneously, worst-case cost measures
consider each schedule to be as good as one in which all
possible failures occur. Therefore, similarly to some appli-
cations of contingent scheduling (Drummond, Bresina, and
Swanson 1994), we have a guarantee or an assumption that
only certain combinations of contingencies can take place.
The decision problem we address is testing whether there
is a schedule that, in the worst case, doesn’t exceed given
resource and time constraints. Worst-case costs are prefer-
able to expected costs in many situations, including risk-
averseness for example when a schedule is executed only
once and cost or time overruns are not an acceptable op-
tion. Expected costs are most relevant over long sequences
of scheduling scenarios, when the outcomes of an individual
scenario is interesting only in terms of its contribution to the
overall cost over a long time frame. Also, a schedule that
minimizes worst-case resource consumption tends to reduce
the variability in different executions of the schedule, which
by itself may be desirable.

Our results place contingent scheduling in complexity
classes PSPACE, Πp

2 and Σp
2. This is the first time a detailed

and rigorous complexity analysis of contingent scheduling
problems has been carried out. Earlier works, which are
algorithm-oriented, have indicated the apparent need for an
exponential number of schedules (Drummond, Bresina, and
Swanson 1994), suggesting – but not proving – a complexity
beyond the class NP. As uncertainty in the kind of formaliza-
tions of scheduling we consider can be viewed as nondeter-
minism, results from probabilistic planning (Littman 1997),
which subsumes general forms of scheduling, suggest an
EXP upper bound. Our results tighten these obvious upper
and lower bounds substantially, demonstrating the feasibility
of the simplest quantified variants of CSP and SAT problems
for contingent scheduling.

The structure of the paper is as follows. We first define
the classes of scheduling problems we analyze in this work.
This is followed by the new contributions of the work, in
the form of a detailed complexity analysis. Finally, we dis-
cuss related work, and we conclude the paper pointing out
remaining open problems.

Problem Definition
We focus on unpredictable resource availability and unavail-
ability in connection with worst-case performance measures.
Since, in the worst case, any and every resource could be un-
available, we want to consider bounded formalizations of re-
source unavailability, so that the unavailability of a resource
typically guarantees the availability of another resource. For
example, we could have a guarantee that of three resources,
at a given time point at least one of them is available. Our
formalization can model temporary or permanent failure of
resources, as well as other dependencies between resources
for example caused by two or more high-level resources be-
ing dependent on the same exclusive lower level resource.

Since a given resource may fail or otherwise not be avail-
able, we also must address problems where the overall suc-
cess of a schedule does not depend on the availability of any
single resource. At the level of individual tasks this means
that the completion of the task does not exclusively rely on a
single resource, or that completing the task is not a necessary
condition for the success of the schedule overall. In the first
case there may be several alternative resources that may be
used for completing the task, and in the second case there
may be alternative tasks of which some need to be com-
pleted, but not necessary all of them.

Our formalization of alternative resources is quite general.
For example, forms of uncertainty in task duration can be
represented in the framework by having, for a given task, al-
ternative resources with different durations to complete the
task, and which resource is available is outside the sched-
uler’s control. Task failure (at the point when it is ready to
be started) can be represented as all of the relevant resources
not being available. There are several other representational
possibilities in our definitions which we will not discuss in
more detail here.

Apart from resource availability and alternative resources
for tasks, our formalization of scheduling is conventional.
A scheduling problem consists of a partially ordered set T
of tasks (with a strict (irreflexive) partial order), a set R
of resources (machines, for example), and a relation C ⊆
T × R × N which expresses which resources can be used
for completing which tasks and what is the duration. Each
resource can be utilized by at most one task at a time. To
cover the standard job-shop scheduling problem, we also in-
clude sets of tasks the execution of which cannot overlap,
which can be used for representing the notion of jobs as it
arises in job-shop scheduling. Overall, our definitions ex-
plicitly or implicitly covers most types of formalizations of
scheduling, and then generalizes them to cover commonly
occurring types of contingencies.

Although our definitions include a sufficient generality to
represent several features of important real-world problems,
our model ignores ones that don’t interfere with complexity
lower or upper bounds. For example, we only model unary
resources and tasks that don’t need more than one resource,
because our hardness results don’t need more, and it is obvi-
ous that more complex models of resources could be easily
accommodated in the complexity upper bound proofs (mem-
bership in a complexity class.)

A scheduling problem is solved by assigning each task
one of the alternative resources, and imposing a total order-
ing on the tasks that use the same resource. If the transitive
closure of the union of the partial order on all tasks with the
total orderings for the resources is irreflexive, then the as-
signment of resources to tasks qualifies as a solution. Now
the resulting partial ordering can be topologically sorted and
each task can be assigned a starting time satisfying the obvi-
ous constraints. This assignment of starting times is a sched-
ule. The difference between the earliest starting time and
the latest completion time of any task in a schedule is its
makespan.

In a conventional schedule the tasks-resource assignment
at a given time point is independent of past events, and hence

the behavior of the schedule is always the same. A con-
tingent schedule, on the other hand, allows different task-
resource assignments depending on how the execution of
the schedule has proceeded so far. A contingent schedule
can be viewed as a tree that assigns a possibly different task-
resource assignment for every possible execution.

As we consider bounds on the contingencies with respect
to resource availability, we have to express what is guar-
anteed about resources. A common constraint on resource
availability is that at least one resource is available, or from
two or more resources, exactly one resource is available.
Similarly, a given resource could be available alternatively
at different time points. A general language for express-
ing such dependencies is Boolean logic. We adopt general
Boolean formulae, with connectives ∨, ∧ and ¬, as the lan-
guage for expressing dependencies in resource availability
at different time points.

Since we consider alternative tasks, we also have to be
able to specify which combinations of completed tasks are
acceptable. Similarly to resources, we express the option-
ality of some tasks by Boolean formulae. We can restrict to
formulas with ∨ and ∧, because an objective in scheduling is
minimizing costs and makespans, and the minimal number
of tasks will be chosen in optimal schedules even without
explicitly forbidding them by ¬. For example, under mini-
mization, the constraint t1 ∨ t2 is as good as the constraint
t1 ↔ ¬t2, as no solution that unnecessarily includes both
tasks can be preferable to one that includes only one of them.

To model resource failures and other forms of uncontrol-
lable and unpredictable resource unavailability, we have a
set U of uncontrollable resources.

Finally, the ability of the scheduler to detect the avail-
ability of resources is formalized by the parameter H ∈
N ∪ {∞} for the observation horizon. With H = 1, the
scheduler knows whether r ∈ U is available only right be-
fore the resource could be assigned to a task. With H =∞,
all resource availability is known when the execution of a
schedule starts. As we will see later, the observation hori-
zon is critical in determining the complexity of scheduling.

The availability of resources in R\U is determined solely
by the use of other resources which are interdependent
through the resource availability formulae α. Obviously, if
the scheduler has already committed to using the resource r1
at time 1, and the formula α entails ¬(r1@1 ∧ r2@1), then
the resource r2 is not available at 1.

Definition 1 A scheduling problem consists of the following
components.

1. a finite set T of tasks
2. an irreflexive relation <⊆ T × T
3. a symmetric relation �⊆ T × T
The two relations respectively express ordering constraints
for tasks and whether tasks are not allowed to overlap.

4. a finite set R of resources
5. a set U ⊆ R of uncontrollable resources
6. a relation C ⊆ T ×R×N

This relation tells which resources can be used for the task
and what is the duration of the task with this resource.

7. a formula α on T (the task specification)
8. a formula β on R× {0, . . . , last} (the resource specifica-

tion)
9. an integer last ∈ N (the makespan)

10. H ∈ N ∪ {∞} (the observation horizon)

The task specification α characterizes which combinations
of tasks are sufficient. The resource specification expresses
dependencies between resources in terms of their availabil-
ity.

The execution of a schedule is characterized by sequences
R0, . . . , Rlast and S0, . . . , Slast respectively for the resources
available and the task-to-resource assignments for the tasks
starting at each time point. The sets Ri, which satisfy
(R\U) ⊆ Ri ⊆ R, are determined by the environment, and
the sets Si ⊆ T × R are determined by the scheduler. We
often write the pairs (r, t) ∈ S as r@t for better readability.

Define availablen(Rn) = (Rn × {n}) ∪ {¬(r, n)|r ∈
R\Rn}. The setsRi have to satisfy the following constraint.

1. The resource specification β is satisfied: β ∪⋃n
i=0 availablei(Ri) is consistent.

For sets S ⊆ T × R we define tasks(S) = {t|(t, r) ∈
S for some r ∈ R}, and resourcesn(S) = {(r, n +
i)|(t, r) ∈ S for some t ∈ T, (t, r, d) ∈ C for some d ∈
N, 0 ≤ i < d}. The latter is for the resources reserved by
tasks in S for their duration.

Now the scheduler has to decide about the task-to-
resource assignment Sn ⊆ T ×Rn for the current time point
based onR0, . . . , Rn−1+H and subject to the following con-
straints.

1. Resources dependencies are obeyed: β ∪⋃n
i=0 resourcesi(Si) ∪

⋃n−1+H
i=0 availablei(Ri) is

consistent.

2. Any resource is used by at most one task at a time: For all
(t, r) ∈ Sn, there is no (t′, r) ∈ Si for any i ∈ {0, . . . , n}
such that (t′, r, d) ∈ C for d > n− i.

3. Exclusive tasks may not overlap: For all (t, r) ∈ Sn there
is no (t′, r′) ∈ Si for any i ∈ {0, . . . , n} such that t � t′

and (t′, r′, d) ∈ C for d > n− i.
4. The ordering < is followed: j ≥ i+ d whenever (t, r) ∈
Si and (t′, r′) ∈ Sj and t < t′ and (t, r, d) ∈ C.

5. Tasks are started at most once: tasks(Si) ∩ tasks(Sj) = ∅
whenever 0 ≤ i < j ≤ last.

The task specification is satisfied: α ∪
⋃last

i=0 tasks(Si) ∪
{¬t|t ∈ T\

⋃last
i=0 tasks(Si)} is consistent.

Analysis of Complexity
Our results characterize the complexity of contingent
scheduling in terms of the following features.

alternative tasks Some combination of tasks has
to be completed, not necessar-
ily every task.

alternative assignments For a task, there may be more
than one resource that can be
used for completing it.

alternative resources Availability of a resource may
be conditional on the availabil-
ity or unavailability of other
resources.

uncontrollable resources Resources may be unavailable
due to external uncontrollable
reasons.

We formalize these features as follows.

Definition 2 An instance of contingent scheduling has

1. alternative tasks if and only if α is not logically equivalent
to
∧
T ,

2. alternative assignments if and only if there are (t, r, d) ∈
C and (t, r′, d′) ∈ C such that r 6= r′,

3. alternative resources if and only if β is not logically equiv-
alent to

∧
R, and

4. uncontrollable resources if and only if U 6= ∅.

As pointed out earlier, uncontrollable resources without
dependencies between them would mean unavailability of
all resources in the worst case. With worst-case perfor-
mance measures this would be uninteresting, as it would
usually mean impossibility to schedule. This is why we
always assume alternative resources whenever uncontrolla-
bility is present. Similarly, if resources are uncontrollable,
we require either alternative tasks or for fixed tasks alterna-
tive ways of assigning resources to the tasks. Otherwise we
would either be back to the inevitable failure in the worst
case, or the uncontrollable resources would be irrelevant to
the tasks, both cases being uninteresting.

So for the two cases with uncontrollable resources, we
also consider alternative tasks or alternative resources for (a
fixed set of) tasks, as listed in Table 1.

Next we proceed with the presentation of the main tech-
nical results of the work. The first result is a reduction from
SAT to our formalization of scheduling. showing it NP-hard.
The NP-hardness of several important scheduling problems
such as job shop scheduling is already known (Garey and
Johnson 1979), and we give this result because the main con-
struction in the proof, which is new, will be used in subse-
quent proofs for establishing PSPACE-hardness of schedul-
ing with uncertainty.

Theorem 3 Scheduling without uncontrollable resources is
NP-complete.

Proof: Membership in NP is trivial: guess a schedule (tasks
and an assignment of resources for all tasks in all time
points) and verify in polynomial time that all constraints re-
quired for valid schedules are satisfied.

For the hardness proof, we give a reduction from 3-SAT
with at most 3 occurrences of each propositional variable

feature no
un

ce
rt

ai
nt

y

pr
ob

le
m

1

pr
ob

le
m

2

no
tc

on
si

de
re

d

uncontrollable resources X X X
alternative tasks X X
alternative assignments X X

N
P,

T
he

or
em

3

PS
PA

C
E

,T
he

or
em

5

PS
PA

C
E

,T
he

or
em

6

un
in

te
re

st
in

g

Table 1: Contingent scheduling problems

in the clause set. This restriction of 3-SAT is NP-complete
(Garey and Johnson 1979).

The scheduling problem has the following properties. The
task set is unordered. All tasks have unit duration. Each task
belongs to a set of three alternative tasks. Tasks correspond
to literals and the sets of three alternative tasks correspond
to clauses. Two alternative resources correspond to the two
truth-values of a propositional variable.

The timeline is partitioned to segments of length 3, and
in each segment, either the resource ri or the resource r̂i is
available. Hence either the tasks requiring resource ri or the
tasks requiring resource r̂i can be completed. By assump-
tion, there are at most 3 of each type of tasks and hence all
of them can be completed in the 3-step segment if needed.

Next we formalize this in detail. Let the 3-SAT in-
stance consist of n propositional variables p1, . . . , pn and
m clauses I = {c1, . . . , cm}. The ith literal of clause c is
denoted by liti(c). The scheduling problem is as follows.

1. The tasks are T = {lji |1 ≤ i ≤ m, 1 ≤ j ≤ 3}.

2. The task ordering < is the empty relation.

3. The task overlap relation � is the empty relation.

4. The resources are R = {r1, r̂1, . . . , rn, r̂n}.

5. U = ∅

6. C = {(lji , rk, 1)|litj(ci) = pk, 1 ≤ i ≤ m, 1 ≤ j ≤
3} ∪ {(lji , r̂k, 1)|litj(ci) = ¬pk, 1 ≤ i ≤ m, 1 ≤ j ≤ 3}

7. α =
∧m

i=1(l1i ∨ l2i ∨ l3i)

8. last = 3n− 1

9. Define

θi,k =
∧2

j=0 ri@(3k − 3 + j)

θ̂i,k =
∧2

j=0 r̂i@(3k − 3 + j)

¬θi,k =
∧2

j=0 ¬ri@(3k − 3 + j)

¬θ̂i,k =
∧2

j=0 ¬r̂i@(3k − 3 + j)

β =
∧n

i=1

(
(θi,i ∧ ¬θ̂i,i) ∨ (¬θi,i ∧ θ̂i,i)

)
∧
∧
{¬θi,j ∧ ¬θ̂i,j |1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

10. H = 1 (The value is irrelevant since everything is pre-
dictable.)

Clearly, given the 3-SAT instance, the scheduling problem
can be constructed in polynomial time.

Assume I is satisfied by some assignment v :
{p1, . . . , pn} → {0, 1}. We show that the scheduling prob-
lem has a solution.

LetRi = R for all i ∈ {0, . . . , last}. Define, for every i ∈
{1, . . . , n} and j ∈ {1, . . . , 3}, S3i−3+(j−1) = {(lhk , ri)} if
the hth literal in ck is pi and ck is the jth clause with an
occurrence of pi, and S3i−3+(j−1) = {(lhk , r̂i)} if the hth
literal in ck is ¬pi and ck is the jth clause with an occurrence
of ¬pi.

For the scheduling problem to have a solution, the
makespan bound last = 3n− 1 must be satisfied, some sub-
set of the tasks have to completed to satisfy the task specifi-
cation α, and the resource usage must comply with β.

By construction of our sets Si, we have used only one
of the two resources available in any of the 3-step schedule
segments. Hence β is satisfied.

Let l1k ∨ l2k ∨ l3k be any of the conjuncts of α. We will
show that at least one of these three tasks is completed. By
construction, there is a corresponding clause ck in I . At least
one of the literals in ck is true under v. Let it be the first one
¬pi for some i ∈ {1, . . . , n} (proof for the unnegated case
and for other positions is analogous.) By construction of the
sets S0, . . . , Slast, we have S3i−3+(j−1) = {(l1k, r̂i)}, where
ck is the jth clause with an occurrence of ¬pi. Hence one of
the three tasks in l1k ∨ l2k ∨ l3k is completed. As this holds for
any conjunct of α, the schedule is a valid solution.

For the proof in the other direction, consider a solution
R0, . . . , Rlast, S0, . . . , Slast of the scheduling problem. Con-
struct an assignment v : {p1, . . . , pn} → {0, 1} as v(pi) =
1 if S3i−3+(j−1) = {(l, ri)} for some l and j, and v(pi) = 0

otherwise. As for every conjunct l1k ∨ l2k ∨ l3k of α one of
the tasks is completed at some time point, one of the literals
in the corresponding clause is satisfied by v by construction.
Hence v satisfies I . �

The proof of the next theorem generalizes that of Theo-
rem 3. Instead of the scheduler selecting the resources for
every time point, at some points the selection of the avail-
able resources is outside the control of the scheduler. This
complicates the task of the scheduler because it is no longer
known in advance which resources will be available. This
lifts the complexity from NP to PSPACE.

Lemma 4 Deciding whether a QBF in 3-CNF and with at
most 3 occurrences of any variable in the body is true, is
PSPACE-complete.

Proof: The construction is straightforward and essentially
the same as for 3-SAT, introducing new variables to repre-
sent the fourth and further occurrences of a variable. The
only difference is the quantification: the new variables are
existential and are inserted in the prefix in front of the most
closely following existential variables. �

Theorem 5 The existence of schedules of any makespan,
with alternative tasks, without alternative assignments, with
uncontrollable resources, and with an observation horizon 1
is PSPACE-hard.

Proof: Sketch: We extend the reduction from the proof of
Theorem 3 to cover quantified Boolean formulae (QBF), an
extension of the SAT problem. Similarly to the proof of The-
orem 3, the resources are considered one at a time, in seg-
ments of three consecutive time points. The ordering of the
resources is the same as the ordering of the corresponding
propositional variables in the prefix of the QBF. By Lemma
4 we can restrict to QBF with at most three occurrences of
any variable in the body and still have PSPACE-hardness.

The controllability of each resource depends on whether
it is universally or existentially quantified. The ∀ vari-
ables of the QBF become the uncontrollable resources, and
the ∃ variables are controllable ones. Hence U = {ri ∈
R|pi is universal in the QBF}.

For this reduction it is essential that the observation hori-
zon H equals 1, so that any decision by the scheduler de-
pends only on the resource availability so far and is inde-
pendent of the resource availability in the future. Otherwise
the reduction is as in Theorem 3.

Testing the truth of the QBF, a PSPACE-complete prob-
lem (Garey and Johnson 1979), coincides with the solv-
ability of the scheduling problem, which is consequently
PSPACE-hard. �

In the above proof we used alternative tasks. Next we
show that PSPACE-hardness continues to hold if we use al-
ternative assignments instead.

Theorem 6 The existence of schedules of a given makespan,
without alternative tasks, with uncontrollable resources,
with alternative assignments, and with an observation hori-
zon 1 is PSPACE-hard.

Proof: We adapt the ideas of the previous proofs to this
problem. We consider two ways of performing each task,
one with a resource with which the duration is short (1)
and another with a long duration (4n). The resource with
the long duration is exclusive to the task in question. The
short resources come in pairs, similarly to the resources in
the previous proofs. A clause corresponds to three tasks.
The long resources for the three tasks may not temporally

overlap. The satisfaction of the clause corresponds to com-
pleting one of the tasks with a short resource. If the short
resource is not available, the task must be completed with
a long resource. If the tasks of one of the clauses are com-
pleted with long resources only, the makespan of the sched-
ule is necessarily at least 12n. If all of the clauses are com-
pleted with one or more short resources, the makespan is at
most 3n+ 4n+ 4n = 11n, using 3 instances of each of the
n short resources in an ordering determined by the prefix
of the QBF, followed by completing all the remaining tasks
with long resources, with the up to two tasks for each clause
sequentially with duration 4n+4n but the tasks for different
clauses in parallel, yielding a makespan 3n+ 4n+ 4n.

The QBF is true if and only if there is a schedule with a
makespan of at most 11n.

Similarly to the previous proof, we introduce uncontrol-
lable resources, which allows encoding the quantifier alter-
nation in QBF, leading to PSPACE-hardness.

Let the QBF consist of n propositional variables
p1, . . . , pn, ordered in the prefix in this order, andm 3-literal
clauses I = {c1, . . . , cm}. The predicate univ(pi) indicates
whether the variable is universally or existentially quanti-
fied. The ith literal of clause c is denoted by liti(c). By
Lemma 4 we restrict to QBF with at most three occurrences
of any variable in the body. The scheduling problem is as
follows.

1. The tasks are T = {lji |1 ≤ i ≤ m, 1 ≤ j ≤ 3},
2. The task ordering < is the empty relation.
3. The task overlap relation � is the empty relation.

4. The resources areR = {r1, r̂1, . . . , rn, r̂n}∪{rji |1 ≤ i ≤
m, 1 ≤ j ≤ 3}. Here rji are the long resources specific to
each task.

5. U = {ri|1 ≤ i ≤ n, univ(ri)}
6. C = {(lji , rk, 1)|litj(ci) = pk} ∪ {(lji , r̂k, 1)|litj(ci) =

¬pk} ∪ {(lji , r
j
i , 3n)|1 ≤ i ≤ m, 1 ≤ j ≤ 3}.

7. α =
∧m

i=1(l1i ∧ l2i ∧ l3i)

8. last = 12n− 1

9.

ε=
∧last

i=0

∧m
j=1(¬(r1j@i ∧ r2j@i)∧
¬(r1j@i ∧ r3j@i)∧
¬(r2j@i ∧ r3j@i))

θi,k =
∧2

j=0 ri@(3k − 3 + j)

θ̂i,k =
∧2

j=0 r̂i@(3k − 3 + j)

¬θi,k =
∧2

j=0 ¬ri@(3k − 3 + j)

¬θ̂i,k =
∧2

j=0 ¬r̂i@(3k − 3 + j)

β = ε ∧
∧n

i=1

(
(θi,i ∧ ¬θ̂i,i) ∨ (¬θi,i ∧ θ̂i,i)

)
∧
∧
{¬θi,j ∧ ¬θ̂i,j |1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

10. H = 1

The conjunct ε in β prevents the overlap of tasks with
long duration. This way an unsatisfied clause forces the
makespan to be at least 12n.

We only sketch the argument for the equivalence between
the existence of a schedule and the truth of the QBF. As
in the previous proof, there is a close correspondence be-
tween the AND-OR tree for the QBF and the alternating de-
cisions of the scheduler and the environment/adversary. If
the QBF evaluates to true, the scheduler has a strategy to al-
ways choose resources so that there is at least one short task
for every 3-task set, and the makespan is at most 11n. If the
QBF evaluates to false, then for some 3-task set all of them
are long, entailing makespan 12n. �

We have shown different variants of the scheduling prob-
lem PSPACE-hard. To establish PSPACE-completeness, we
additionally need to show membership in PSPACE.

Theorem 7 Determining whether an instance of contingent
scheduling can be solved with given resource bounds is in
PSPACE.

Proof: We only sketch the idea of the proof. The problem
can be solved by a depth-first AND-OR tree search algo-
rithm with a depth that is proportional to the number of
tasks. The AND-nodes correspond to the environment de-
cisions about resource availability, and the OR-nodes corre-
spond to the scheduler’s assignments of resources to tasks.
Only a polynomial amount of memory is needed in each
node of the search tree for checking that the alternative deci-
sions by the environment and the scheduler satisfy the con-
straints stated in the definition of executions. �

In the previous PSPACE-hardness results it is essential
that the observation horizon is short, so that the scheduler
decisions must be interleaved with observations. If the ob-
servation horizon is unbounded so that all relevant future
contingencies can be observed in the beginning of the exe-
cution, then the problem is easier.1

Theorem 8 Scheduling with observation horizon∞ is Πp
2-

complete.

Proof: We sketch a proof. Membership in Πp
2 is by an algo-

rithm that tests the existence of a schedule by a nondetermin-
istic polynomial-time Turing machine with an oracle for NP.
The Turing machine guesses all the observations (resource
availability), and then tests with an NP oracle the possibility
of assigning resources to tasks.

Πp
2-hardness is by a reduction from QBF with the pre-

fix ∀∃. The evaluation problem of this class of QBF is
Πp

2-complete. The reduction follows the previous hardness
proofs. The long observation horizon corresponds to the ad-
versary first determining which uncontrollable resources are
available, corresponding to outer ∀ quantifiers, followed by
the scheduler choosing which of the remaining resources to
use, corresponding to the inner ∃ quantifiers. �

1Notice that this is not the same as having no uncertainty, be-
cause the question of whether a schedule exists must be answered
before any of the actual contingent information becomes available.

The above results establish the complexity of making the
next-step scheduling decisions (starting a task with given
available resources) as definite information about resource
availability becomes available. They do not say how and
when the reasoning for this is ultimately performed, whether
before or during the execution. This is a key question in
practical implementations of contingent scheduling,

There are two main approaches to implement the decision
making process. The first, often impractical one, involves
constructing a tree of scheduling decisions that covers all
possible contingencies that may arise. The size of the trees
is typically exponential. The advantage of the approach is
that during the execution time, no expensive decision mak-
ing remains. The second approach is to do the computa-
tion for the next-step decisions starting from scratch after
the relevant information becomes available. The memory
consumption in this scenario does not have to be prohibitive,
even in the worst case, as shown by our results which placed
all the problem variants in PSPACE. However, the compu-
tation for solving any NP-hard problem (including ones that
are also Πp

2-complete or PSPACE-complete) takes an expo-
nential time in the worst case and is therefore not necessarily
scalable to large problems. The choice between these two
approaches is essentially a trade-off between memory con-
sumption (in terms of the size of data structures computed
off-line to reduce the amount of computation needed on-
line) and the amount of computation needed on-line when
facing the next decisions.

A particular trade-off, embodied for example in the work
by Drummond et al. (1994), is to allow some incomplete-
ness at the cost of getting both fast on-line decision making
during execution and reasonably small contingent schedules.
To test whether such small schedules will solve the problem
instance at hand is substantially easier than testing the exis-
tence of solutions in general.

Theorem 9 Determining whether an instance of contingent
scheduling with a restriction to polynomial size schedules
has a solution with a given makespan is Σp

2-complete.

Proof: Sketch: The decision problem can be solved in poly-
nomial time by a nondeterministic Turing machine with an
NP-oracle. The Turing machine guesses a contingent sched-
ule in nondeterministic polynomial time, and then uses the
oracle to verify that the schedule is valid. The oracle guesses
a combination of contingencies and then verifies the valid-
ity of the schedule under these contingencies, which takes
polynomial time.

Σp
2-hardness of contingent scheduling can be established

by the proof idea already used in proofs of Theorems 3, 5
and 6, by reducing a ∃∀ QBF to contingent scheduling with
polynomial-size schedules. �

Related Work
Drummond et al. (1994) constructed contingent schedules
with a bound on the number of failure points for scheduling
a telescope. When the number of possible failure points in
a schedule is N , and there is a bound B on the number of

those failures actually occurring, there are C =
⋃B

n=0

∣∣∣∣NB
∣∣∣∣

situations that need to be covered. If B is independent of
N as N grows, the number of contingencies is linear in the
size of the scheduling problem. Hence, the uncertainty is
handled by computing those C schedules, starting the exe-
cution of the schedule that is most likely (typically the one
that does not involve any failures), and after detecting a fail-
ure switching to a schedule for the new failure combination.

Beck and Wilson (2007) consider a a job-shop schedul-
ing problem with stochastic durations. They point out that
computing the expected makespan of a given schedule is #P-
complete, as indicated by a result by Hagstrom (1988).

Frank and Dearden (2003) analyze the complexity of a
number of scheduling problems with uncertainty about re-
source consumption and job utility, and show them to be
NP-complete. In their model, if the resources required for
a job are not available, the job is not executed. Otherwise
the execution of the schedule proceeds as originally planned.
Since the approach does not consider proactive scheduling,
it is unsurprising that the complexity is not above NP.

Benedetti et al. (2008) investigate adversarial schedul-
ing problems which, similarly to our problems, allow only
a limited amount of uncertainty. Their focus is in the rep-
resentation and implementation of the problem as QCSP.
QCSP is of equal representational power as QBF, and hence
PSPACE-complete. A straightforward adaptation of our re-
sults justifies the use of QCSP (instead of CSP) in these
applications. Also Nightingale (2009) proposes quantified
CSPs, in the context of scheduling with machine failures
with given probabilities, with the goal of producing a sched-
ule with a success probability exceeding some constant.

The planning problem in AI is related to various schedul-
ing problems. While planning with full information and
polynomially sized plans is in NP (Kautz and Selman 1996),
contingent planning (worst-case cost measures, partial ob-
servability, nondeterminism) under the same restrictions is
Σp

2-complete (Rintanen 1999; Baral, Kreinovich, and Trejo
2000), and can be solved by reduction to quantified Boolean
formulae with two quantifier alternations (Rintanen 2007).
With unrestricted (exponential) plan sizes and a polynomial
decision horizon the planning problem is PSPACE-complete
(Turner 2002), similarly to the contingent scheduling prob-
lem with partial observability, whereas with unlimited de-
cision horizons the planning problem is 2-EXP-complete
(Rintanen 2004).

Corresponding probabilistic planning problems, formal-
ized as partially observable Markov decision processes
(POMDP), with compactly-represented exponentially large
underlying search spaces, are similarly very difficult, for
example EXPSPACE-complete when restricted to exponen-
tially long decision horizons (Mundhenk et al. 2000) and
unsolvable for many infinite horizon problems (Madani,
Hanks, and Condon 2003). The complexity of partially ob-
servable Markov decision processes coincides with that of
our most general contingent scheduling problem when the
state set and the transition relation of the POMDP have been
represented enumeratively and the length of the decision
horizon is proportional to the number of states (Papadim-

itriou and Tsitsiklis 1987). To reduce contingent schedul-
ing to POMDPs, more complex compact representations
(Mundhenk et al. 2000) must be used, because the under-
lying state-space is exponential.

Conclusions
Our results motivate and justify the study of contin-
gent scheduling with new solution methods: Πp

2-hard and
PSPACE-hard problems are generally not practically solv-
able in standard constraint satisfaction frameworks such as
CSP, SAT or integer linear programming (IP). Quantified
variants of these problems, including quantified Boolean for-
mulae (QBF) (Stockmeyer 1976) and quantified CSPs (Bor-
deaux and Monfroy 2002) do have sufficient power to rep-
resent Πp

2-complete problems and everything until PSPACE.
The question is, how do these quantified problems – as rep-
resentational frameworks – help developing more effective
methods for contingent scheduling.

Open questions remain. We already referred to the #P-
hardness of the most basic questions about fixed schedules
with uncertainty about task durations. Conditioning task se-
lection according to already observed durations would seem
to lift the complexity of scheduling further, as we would
have a combination of expected costs and alternation be-
tween the environment decisions and the scheduler deci-
sions. This raises the question whether the problems are
complete for PSPACE or some class above it, with im-
plications to possible reductive approaches to scheduling.
The #P-complete scheduling problem with durational uncer-
tainty can be reduced to (weighted) model-counting prob-
lems (Bacchus, Dalmao, and Pitassi 2003) in polynomial
time. Which reductive methods have sufficient expressivity
when other forms of contingencies are introduced?

References
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. Algorithms
and complexity results for #SAT and Bayesian inference. In
Foundations of Computer Science, 2003. Proceedings. 44th
Annual IEEE Symposium on, 340–351. IEEE.
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness. Artificial Intelligence
122(1):241–267.
Beck, J. C., and Wilson, N. 2007. Proactive algorithms for
job shop scheduling with probabilistic durations. Journal of
Artificial Intelligence Research 28:183–232.
Benedetti, M.; Lallouet, A.; and Vautard, J. 2008. Mod-
eling adversary scheduling with QCSP+. In Proceedings of
the 2008 ACM Symposium on Applied Computing, 151–155.
ACM.
Bordeaux, L., and Monfroy, E. 2002. Beyond NP: Arc-
consistency for quantified constraints. In Proceedings of the
8th International Conference on Principles and Practice of
Constraint Programming, 17–32. Springer-Verlag.
Davenport, A. J., and Beck, J. C. 2000. A survey of
techniques for scheduling with uncertainty. Unpublished
manuscript.

Drummond, M.; Bresina, J. L.; and Swanson, K. 1994. Just-
in-case scheduling. In Proceedings of the 12th National
Conference on Artificial Intelligence, 1098–1104. AAAI
Press.
Frank, J., and Dearden, R. 2003. Scheduling in the face
of uncertain resource consumption and utility. In Rossi, F.,
ed., Principles and Practice of Constraint Programming –
CP 2003: 9th International Conference, 832–836. Springer-
Verlag.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability. San Francisco: W. H. Freeman and Company.
Hagstrom, J. 1988. Computational complexity of PERT
problems. Networks 18(2):139–147.
Herroelen, W., and Leus, R. 2005. Project scheduling un-
der uncertainty: Survey and research potentials. European
Journal of Operations Research 165:289–306.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In Pro-
ceedings of the 13th National Conference on Artificial In-
telligence and the 8th Innovative Applications of Artificial
Intelligence Conference, 1194–1201. AAAI Press.
Littman, M. L. 1997. Probabilistic propositional plan-
ning: Representations and complexity. In Proceedings of the
14th National Conference on Artificial Intelligence (AAAI-
97) and 9th Innovative Applications of Artificial Intelligence
Conference (IAAI-97), 748–754. AAAI Press.
Madani, O.; Hanks, S.; and Condon, A. 2003. On the un-
decidability of probabilistic planning and related stochastic
optimization problems. Artificial Intelligence 147:5–34.
Mundhenk, M.; Goldsmith, J.; Lusena, C.; and Allender, E.
2000. Complexity of finite-horizon Markov decision process
problems. Journal of the ACM 47(4):681–720.
Nightingale, P. 2009. Non-binary quantified CSP: algo-
rithms and modelling. Constraints 14(4):539–581.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12(3):441–450.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. Journal of Artificial Intelligence Research
10:323–352.
Rintanen, J. 2004. Complexity of planning with partial
observability. In ICAPS 2004. Proceedings of the Four-
teenth International Conference on Automated Planning and
Scheduling, 345–354. AAAI Press.
Rintanen, J. 2007. Asymptotically optimal encodings
of conformant planning in QBF. In Proceedings of the
22nd AAAI Conference on Artificial Intelligence (AAAI-07),
1045–1050. AAAI Press.
Stockmeyer, L. J. 1976. The polynomial-time hierarchy.
Theoretical Computer Science 3(1):1–22.
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. In Logics in Artificial Intelligence,
European Conference, JELIA 2002, 111–124. Springer-
Verlag.

