
Engineering Efficient Planners with SAT
Jussi Rintanen

Griffith University and the Australian National University
Australia

Abstract. Planning with SAT has long been viewed as a main ap-
proach to AI planning. In comparison to other approaches, its high
memory requirements have been considered to be a main obstacle
to its scalability to large planning problems. Better implementation
technology, especially addressing the memory use, together with a
shift of understanding about SAT-based planning during the past ten
years, enables planners that radically differ from those from the late
1990s. We discuss a SAT-based planning system that implements
modern versions of virtually all components of first planners that
used SAT, focusing on the new implementation technology for a
compact clause representation that is both simpler and more effec-
tive than ones proposed earlier. Specifically, the decreased memory
requirements enable the use of top-level solution strategies that lift
the performance of SAT-based planning to the same level with other
search methods.

1 INTRODUCTION

During the last decade, SAT, the prototypical NP-complete prob-
lem of testing the satisfiability of the formulas in the classical
propositional logic [3], has emerged, due to dramatically improved
SAT solvers, as a practical language for representing hard combi-
natorial search problems and solving them, in areas as diverse as
model-checking [1], FPGA routing [25], test pattern generation [11],
scheduling [4], haplotype inference [12], and diagnosis [23]. Plan-
ning as Satisfiability, which enjoyed a lot of attention in the late
1990s after the early works by Kautz and Selman [8, 9], remained
less popular for more than ten years. This is somewhat surprising,
considering the great successes of SAT in other areas of computer
science. This situation can be traced back to properties of early
SAT-based planning systems, which have made for example heuris-
tic state-space search [2] more attractive for solving the planning
community’s standard benchmark problems. Only the most recent
works have shown that SAT-based planning can achieve a perfor-
mance comparable to the best implementations of other search meth-
ods [19, 18] for these problems.

In this work, we discuss the problems SAT based planning has
been perceived to have and solutions that have been proposed. We
show that what have been widely assumed to be inherent restric-
tions of the SAT approach to planning, are in fact not. Eliminating
these issues leads to planning systems that are competitive with other
planning systems with the standard planning benchmark problems.
Specifically, we discuss two critical issues of SAT-based planning:
potentially high memory requirements, and the necessity and utility
of guaranteeing that plans have the shortest possible horizon length
(parallel optimality). We will argue that these two issues are actually
closely intertwined. We discuss implementation techniques that ad-

dress these two issues, present one new implementation technique to
reduce memory consumption, and show that the perceived disadvan-
tages of SAT as a planning method have largely disappeared.

Our new technical contribution addresses the memory usage.
Compact encodings of planning in SAT [21, 20] often reduce the
memory requirements by a factor of 20 or more in comparison to
Graphplan-based encodings [9, 10]. We will reduce the memory re-
quirements further by a factor of 3 or more, not by changing the
encoding, but its representation inside the SAT solver. Although the
best encodings are quite compact, our experiments show that the ad-
ditional reduction – used in the M and Mp planners we have pre-
sented earlier [19] – can still be crucial. We argue that our solution
to compact clause representation is more effective than the one pro-
vided recently by Pralet and Verfaillie [14].

The structure of the paper is as follows. Section 2 describes the
Planning and Satisfiability approach, the issues critical to its time and
space complexity in practice, and makes a comparison between the
state-of-the-art now and in the late 1990s. In Section 3 we present a
new representation of binary clauses in SAT problems with recurring
structure and its implementation in a modern SAT solver as well as
a planner based on it. Section 4 presents a study of the impact of
the compact representation on a planner’s performance. Section 5
discusses related work before concluding the paper.

2 BACKGROUND
A classical planning problem is defined by a set F of facts (or state
variables) the valuations of which correspond to states, one initial
state, a set A of actions (that represent the different possibilities of
changing the current state), and a goal description which expresses
the possible goal states in terms of the facts F . A solution to the
planning problem is a sequence of actions that transform the initial
state step by step to one of the goal states. The classical planning
problem can be translated into a SAT problem of the following form.

ΦT = I ∧ T (0, 1) ∧ T (1, 2) ∧ · · · ∧ T (T − 1, T) ∧G

Here I represents the unique initial state, expressed in terms of
propositional variables f@0 where f ∈ F is a fact, and G repre-
sents the goal states, expressed in terms of propositional variables
f@t, f ∈ F . The formulas T (i, i + 1) represent the possibilities of
taking actions between time points i and i + 1. These formulas are
expressed in terms of propositional variables f@i and f@(i+ 1) for
f ∈ F and a@i for actions a ∈ A.

The formula ΦT is satisfiable if and only if a plan with T + 1 time
points exists. Planning therefore reduces to performing satisfiability
tests for different T . The effectiveness of the planner based on this
idea is determined by the following.

1. The form of the formulas T (i, i+ 1).
2. The way the values of t for ΦT to be solved are chosen.
3. The way the SAT instances ΦT are solved.

Below we will discuss the first two issues, and their interplay. The
third, SAT solving, can be performed with generic SAT solvers [13]
or SAT solvers specialized for planning [19].

2.1 Encodings of T (i, i+ 1)

The encoding of transitions from i to i+1 as the formulas T (i, i+1)
determines how effectively the satisfiability tests of the formulae ΦT

can be performed. The leading encodings are the factored encoding
of Robinson et al. [21] and the ∃-step encoding of Rintanen et al.
[20]. Both of them use the notion of parallel plans, which allow sev-
eral actions at each time point and hence time horizons much shorter
than the number of actions in a plan. The encoding by Robinson et
al. is often more compact than that by Rintanen et al., but the lat-
ter allows more actions in parallel, which leads to shorter plans and
smaller formulae. Both of these encodings are often more than an
order of magnitude smaller than earlier ones such as the GraphPlan-
based encodings of Kautz and Selman [9, 10] and their variants, still
very recently widely used by other researchers, and also substantially
more efficient [20, 22]. This is due to the very large quadratic repre-
sentation of action exclusion in the Graphplan encodings. Rintanen et
al. [20] and Sideris and Dimopoulos [22] show that eliminating logi-
cally redundant mutexes and improving the quadratic representation
to linear dramatically reduce the size of the formulas.

An interesting property of ΦT is that the transition relation for-
mula T (i, i + 1) is repeated for several time points i. The formula
encodes the actions to change the state at time i to its successor at
i + 1. A priori, all possible actions are available at each time point.
Attempts to take advantage of this have gone into two opposite di-
rections. Kautz and Selman’s GraphPlan-based encodings attempt to
decrease the size of the SAT problems by eliminating some of the ac-
tions that are not possible in the initial state and other early states. In
Section 3 we approach the repetitive structure of the formulas from a
different angle.

2.2 Scheduling the solution of SAT instances
Kautz and Selman [9] proposed testing the satisfiability of ΦT for
different values of t = 0, 1, 2, . . . sequentially, until a satisfiable
formula is found. This strategy, which is conceptually the same as
breadth-first search, is asymptotically optimal if the k parameter cor-
responds to the plan quality measure to be minimized, as it would
with sequential plan encodings that allow at most one action at a
time. However, BlackBox uses Graphplan-style parallel plans for
which the k parameter is meaningless because Graphplan’s paral-
lelism notion does not correspond to the actual physical possibility of
taking actions is parallel. For STRIPS, Graphplan-style parallelism
exactly matches the possibility of totally ordering the actions to a se-
quential plan [20]. Hence the parallelism can be viewed as a form
of partial order reduction [6], the purpose of which is to avoid con-
sidering all n! different ordering of n independent actions, as a way
of reducing the state-space explosion problem. In this context the k
parameter often only provides a weak lower bound on the sequen-
tial plan length. So if the minimality of k does not have a practical
meaning, why minimize it? The proof that k is minimal is the most
expensive part of a run of BlackBox and similar planners.

More complex algorithms for scheduling the SAT tests for differ-
ent t have been proposed and shown both theoretically and in practice

to lead to dramatically more efficient planning, often by several or-
ders of magnitude [20]. These algorithms avoid the expensive proofs
of minimality of the parallel plan length, and in practice still lead
to plans of comparable quality to those with the minimal parallel
length. These algorithms solve several SAT problems in parallel, for
a bounded range of horizon lengths [20]. This is not feasible with the
1990s encodings of planning as SAT, as even solving a SAT prob-
lem for one horizon length was often impractical due to the size of
the formulas. Hence the two issues, the size of the encodings and
the strategies of considering different horizon lengths, are closely
intertwined: without compact encodings and clause representations,
efficient plan search, with multiple SAT instances solved simultane-
ously, is infeasible. The large size of the early encodings is probably
the best explanation why the use of the sequential strategy has been
popular still quite recently.

Figure 1 shows the performance improvements from BlackBox’s
successor SATPLAN06 with Graphplan-style plans (∀-step plans
[20]), parallel optimality and standard SAT solvers (SATPLAN06),
to the same with a compact ∀-step encoding (A-opt), the same with
more efficient ∃-step encoding (E-opt), the same without parallel op-
timality (E, corresponding to the M planner [19]), and finally, to a
planning-specific heuristic (Mp [19]). The 998 STRIPS instances in
the curves are from the planning competitions from 1998 until 2008.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

Mp
M

E-opt
A-opt

SATPLAN06

Figure 1. Progress in Planning with SAT

Of the above performance improvements, especially the one be-
tween E-opt and E is quite dramatic. The parallel optimality of ear-
lier SAT-based planners (by having the planners perform a form of
breadth-first search) leads to poor scalability and very high runtimes,
due to the exponentially increasing runtimes of the unsatisfiable for-
mulae. It is often very easy and sometimes almost trivial to find a
plan given a sufficiently long horizon, but proving that no shorter
plans exist is often very difficult.

Figure 2 depicts the gap between the longest horizon length with
a completed unsatisfiability test and the horizon length for the found
plan, for the Mp planner [19] and all planning competition instances
solved by it. The dots concentrate in the area below 50 steps, but out-
side this area there are typically an area of 30 to 50 horizon lengths

for which the SAT test was not completed, in the vast majority of
cases because their difficulty well exceeded the capabilities of cur-
rent SAT solvers. This explains why parallel strategies which avoid
the unnecessary and expensive parallel optimality proofs are neces-
sary for efficient planning.

 0

 50

 100

 150

 200

 0 50 100 150 200

u
p

p
e

r
b

o
u

n
d

 M
p

lower bound Mp

Figure 2. Lower and upper bounds of plan lengths

3 COMPACT REPRESENTATION OF BINARY
CLAUSES

We next present a compact binary clause representation that substan-
tially reduces the memory requirements of SAT solvers when they
are solving problems such as planning, in which several copies of a
large transition relation formula are needed. We have very success-
fully used this representation as a part of two planners, M and Mp
[19], which scale up to very large planning problems much better
than earlier SAT-based planners.

Instances T (0, 1), . . ., T (T − 1, T) of the transition relation dif-
fer only with respect to the time tags in the propositional variables.
We propose a schematic representation for these clauses, which is
instantiated with specific time tags whenever a specific instance of
the clause is needed. We restrict this to binary clauses only, as they
usually dominate the size of SAT encodings of planning. Concretely,
for a clause l1@t1 ∨ l2@t2 in T (i, i+ 1), with {t1, t2} ⊆ {i, i+ 1},
we represent the clause only once, parameterized with i. This re-
duces the number of occurrences of each binary clause in ΦT from
T + 1 to 1. Further, our SAT solver can interleave the solution of ΦT

for several values of t (see Sections 2.2 and 3.3), and as the binary
clauses are the same in every ΦT , one copy of each clause suffices.
When solving n instances of ΦT for T ∈ {k, . . . , k + n}, the total
reduction in the number of occurrences of each binary clause is from∑n

i=0(k + i) = k(n+ 1) + n(n+1)
2

to 1.

3.1 Unit propagation with compact clauses
We use facts f ∈ F in literals f and ¬f . We write l@i when we
mean f@i for l = f and ¬f@i for l = ¬f . The complement l of a
literal l is defined by f = ¬f and ¬f = f .

Figure 3 gives the standard unit propagation procedure in which
conseqs(l) = {l′|l ∨ l′ ∈ C} represents all consequences of l in-
ferred with binary clauses in the setC of input clauses (we implicitly
assume commutativity: l∨ l′ ∈ C iff l′∨ l ∈ C.) When all the binary

1: procedure propagate(l,v);
2: if v |= l then return false;
3: v := v modified so that l is true;
4: push l into the stack;
5: repeat
6: pop l from the stack;
7: for all l′ ∈ conseqs(l) do
8: if v |= l′ then return false;
9: if v 6|= l′ then

10: v := v modified so that l′ is true;
11: push l′ into the stack;
12: end if
13: end for
14: Propagate with l and longer clauses;
15: until the stack is empty;
16: return true;

Figure 3. Unit Propagation

clauses come from the T copies of T (i, i + 1), we can represent
conseqs(l) implicitly and more compactly. Propositional variables
are represented as integers. There are V1 propositional variables for
each time point i, numbered from 0 to V1 − 1. Now, a state or action
variable x at time t, which we write as x@t, is represented as the
propositional variable with index x+ tV1. Conversely, x in x@t can
be extracted with the modulo operation x = x@t%V1, and the time
tag can be extracted as t = x@t/V1. We define conseqs(l@i) only
for i = 0, and obtain its elements with binary resolution with the set
C that consists of all the 2-literal clauses in T (0, 1) and T (−1, 0).
We define conseqs(l@0) = {l′@t′|l@0 ∨ l′@t′ ∈ C}. Hence for all
l′@t′ ∈ conseqs(l@0) we always have t′ ∈ {−1, 0, 1}.

The unit propagation algorithm, extended to handle schematically
represented two-literal clauses, is given in Figure 4. On line 7 we
iterate over all consequences of the representative l@0 of l@t at time
point 0. These consequences are literals for the relative time points
-1, 0 and 1. On line 8 we test whether the literal consequence was
obtained with binary clauses in the actual clause set: we typically
have literals l′@ − 1 ∈ conseqs(l@0), and l′@1 ∈ conseqs(l@0),
and if the time tag t of the original literal l@t was 0 or T , then some
of these consequences would be for time points -1 or T + 1, and was
obtained with clauses not in the actual clause set.

3.2 Embedding in a SAT solver
This implementation of schematic binary clauses can embedded in
any modern SAT solver implementation, requiring only minor mod-
ifications. The arithmetics for mappings between the timed and un-
timed representations through quotients and remainders causes a neg-
ligible overhead.

Notice that there are also binary clauses that cannot be, in gen-
eral, schematically represented, including those representing disjunc-

1: procedure propagate(l@t,v);
2: if v |= l@t then return false;
3: v := v modified so that l@t is true;
4: push l@t into the stack;
5: repeat
6: pop l@t from the stack;
7: for all l′@t′ ∈ conseqs(l@0) do
8: if t+ t′ ≥ 0 and t+ t′ ≤ T then
9: if v |= l′@(t+ t′) then return false;

10: if v 6|= l′@(t+ t′) then
11: v := v modified so that l′@(t+ t′) is true;
12: push l′@(t+ t′) into the stack;
13: end if
14: end if
15: end for
16: Propagate with l@t and longer clauses;
17: until the stack is empty;
18: return true;

Figure 4. Unit Propagation for Schematic Binary Clauses

tive goals, and binary clauses generated by the conflict-driven clause
learning (CDCL) procedure. Both these classes of binary clauses are
represented in the conventional non-schematic way.

Representation of longer clauses and unit propagation for them
remains unchanged. Binary clauses strongly dominate the SAT en-
coding size for most planning problems, and for STRIPS the only
category of non-binary clauses is that of frame axioms which enu-
merate the possible causes for a change of a given state variable. The
set of all frame axioms has a size that is linear in the size of the orig-
inal (grounded) problem instance, and often represents only a very
small fraction of all clauses in the SAT encoding.

3.3 Planner implementation

Since we cannot reduce an unbounded horizon length planning prob-
lem to SAT, nor do we want to search plans for one fixed-length
horizon only, several SAT tests, for different horizon lengths, need to
be performed. The main question here is how the CPU is allocated to
solving the different SAT problems.

We have implemented a parallelized strategy for assigning CPU
time to different horizon lengths, handled in connection with the
restart mechanism of the SAT solver [7, 13]. The strategy B of Rin-
tanen et al. [20] assigns CPU at a relative rate γt for horizon length
t (not assigning any time to horizon lengths for which the computa-
tion has already been completed, of course), where 0 < γ < 1, so
that of any two consecutive horizon lengths t and t + 1, the latter
gets γ times of the CPU of the former. The strategy is implemented
with a counter c that is gradually increased, and when cγt exceeds
the number of runs (restarts) made for horizon length t so far, one
more run will be made before restarting. The rate of increase of c is
chosen so that the shortest currently active horizon length will be run
on every round, and the longer horizon lengths less often. Instead of
considering all horizon lengths, the planner looks at every third only,
0, 3, 6, 9, 12, . . ., which is better suited to the relatively long plan
lengths encountered in practice. Accordingly, the planner only con-
siders 20 SAT instances at a time, initially looking at horizon lengths
0, 3, 6, . . . , 54, 57.

Our SAT solver shares many of the data structures used in solving
the SAT instances for several horizon lengths. For example, there is

only one stack and only one clause database. The deletion of infre-
quently used long causes from the database takes place uniformly and
simultaneously for all the SAT instances. The CDCL algorithm is run
for all the instances in the same process and thread. The switching
from one instance to another takes place during the frequent restarts
of the CDCL algorithm. The switch operation is inexpensive. There
is the obvious possibility to distribute the solution of the SAT in-
stances to several threads, solved by different cores of the same CPU.

4 EXPERIMENTS

We illustrate the memory savings achieved by the compact clause
representation with a brief comparison to a leading SAT solver Pre-
cosat (winner of the 2009 SAT solving competition and one of the
best performing solvers for planning problems), and a more detailed
comparison between alternative implementations of a planning-
specific solver.

Consider the last instance (#20, ztravel-5-25b) of the ZenoTravel
(2002) domain. Mp solves this problem in a couple of seconds with
a peak memory consumption of 210 MB by the SAT solver when
solving the SAT problems for horizon lengths 6, 9, 12, 15 and 18. In
contrast, Precosat (one of the winners of the 2009 SAT competition)
allocated 79+140+220+237+262 = 938 MB for solving the same
SAT problems for a run of the same duration (and without delivering
a solution in that time.) This is almost 5 times the 210 MB used
by our solver. For the last DriverLog instance 8-6-25 our memory
consumption is 181 MB, and Precosat allocated 65 + 119 + 156 +
201 + 252 = 793 MB (similarly without delivering a solution.)

Differences in Mp planner with and without the compact represen-
tation of binary clauses, respectively denoted by Mp and Mp-sparse,
are similar, as shown in Figure 5. For two of the domains from the

200

300

400

500

700

1000

1500

2000

3000

200 300 400 500 700 1000 1500 2000 3000

M
B

 o
f

m
e

m
o

ry
 M

p
-s

p
a

rs
e

MB of memory Mp

Figure 5. Comparison of memory consumption

planning competitions, Airport and Blocks World, the compact rep-
resentation is critical: for half of the instances of both domains the

planner runs out of memory (3 GB memory limit) when using a con-
ventional binary clause representation. There is typically a difference
of factor of 2 or 3. Sometimes the difference is small, most likely
because the higher memory consumption of the non-compact rep-
resentation is masked by the way the Linux GLIBC malloc works:
allocation of small blocks of memory for the binary clauses reuses
memory earlier allocated in small blocks by the front-end and later
freed, while with the compact representation they remain unused.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

ti
m

e
 i
n

 s
e

c
o

n
d

s
 M

p
-s

p
a

rs
e

time in seconds Mp

Figure 6. Comparison of runtimes by instance

Figure 6 shows the runtime differences between the two represen-
tations with 998 IPC instances (STRIPS). The compact representa-
tion is often faster, up to 40 per cent, because of fewer cache misses.

5 RELATED WORK

Pralet and Verfaillie [14] have used a compact representation of CSP
problems that repeat the transition relation formula. However, unlike
in our framework, Pralet and Verfaillie have a trade-off between com-
pact encoding and efficiency: the compact slice encoding decreases
the power of constraint solving, sometimes substantially so. In the
worst case this leads to an exponential increase in the size of the
search tree traversed. Our proposal, on the other hand, modifies only
the implementation of unit propagation, does not decrease the power
of SAT inferences, and improves efficiency on modern CPUs because
of better cache utilization.

There is an earlier proposal for compact representation of binary
clauses [17], based on compactly representing bicliques in the graph
induced by binary clauses. This compacts the binary clauses at one
time point, but not related binary clauses at different time points.

It is interesting to now have a new look at the issues faced by the
SAT-based planners from late 1990s, more than 13 years later. Kautz
and Selman [10] conclude from their comparison of BlackBox to the
MEDIC planner [5] that “use of an intermediate graph representa-
tion appears to improve the quality of automatic SAT encodings of

STRIPS problems”. However, empirical or other demonstration of
the utility of planning graphs as a basis of encodings has not later
emerged. The useful information in planning graphs is the “persis-
tent” fact mutexes, equivalent to invariants [16], which can be eas-
ily, and more efficiently, computed without constructing the planning
graphs. The currently best encodings of planning in SAT encode the
planning problem much more compactly than the planning graph en-
codings allow. The performance advantage observed by Kautz and
Selman in the comparison to MEDIC was most likely due to the
more explicit representation of some of the reachability information
in planning graphs, which for current generation of SAT solvers [13]
– radically different from the ones from 1990s – does not make a
difference. Kautz and Selman do conclude: “SAT encodings become
problematically large in sequential domains with many operators, al-
though refinements to the encoding scheme can delay the onset of the
combinatorial explosion.” In retrospect, the “problematically large”
encoding can be seen to have been caused by the quadratic encoding
of action mutexes, which has later been reduced to linear [20], elimi-
nating the problem. A further disadvantage of planning graphs is that
they are incompatible with more efficient forms of parallel plans such
as the ∃-step plans [20].

Performance of SAT-based planners has dramatically advanced in
13 years. One major change has been improved SAT algorithms. Fur-
ther improvements have been in encodings and in the scheduling of
the SAT tests. Consider Kautz and Selman’s [10] Table 2, in which
they list the solution times for rocket.{a, b} and logistics.{a, b, c, d}
when finding minimal length Graphplan-style plans. Mp solves the
same problems (including the proof of the parallel optimality) with
speed-ups from 32 to 3300 over BlackBox. Without the parallel op-
timality proofs and by using encodings that allow more parallelism,
all instances are solved in 0.02 seconds or less, with speed-ups of
several thousands.

rocket a b logistics a b c d
BlackBox 57 60 66 126 180 156
Mp par. opt. 0.02 0.02 0.02 0.24 5.19 4.88
Mp 0.01 0.01 0.02 0.01 0.01 0.02

6 CONCLUSIONS
We have presented new implementation technology for solving SAT
problems and series of SAT problems that contain a sequence of in-
stances of a transition relation formula, as found in SAT encodings
of AI planning, bounded model-checking and other similar problems
that require reasoning about state, action or transition sequences.

This new technology, together with other advances in SAT solving
and encodings, has been implemented in a planning system, which
has a performance comparable to the most scalable and efficient plan-
ners that use explicit state-space search, such as YAHSP [24] and
LAMA [15]. A runtime comparison with all domains used in the
planning competitions from 1998 until 2011 is given in Figure 71. In
addition to the M and Mp planners [19], we also include the runtimes
of a new planner MpX which increases horizon lengths more aggres-
sively than Mp, at the cost of a potentially higher memory consump-
tion, but with substantially better scalability with problems with very
long plans, as well as E-opt which is M producing makespan-optimal
plans similarly to early SAT-based planners.

We argued that the high memory consumption of early SAT-based
planners was a main obstacle to the use of parallelized planning

1 YAHSP is not included in the diagram because of its restriction to STRIPS
problems only.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.1 1 10 100 1000

n
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

time in seconds

E-opt
M

Mp
MpX

LAMA08
LAMA11

FF

Figure 7. Number of instances solved for all domains in the planning
competitions from 1998 until 2011. The best performing planners, MpX,

LAMA11 and Mp, respectively have scores 41.10, 40.48 and 38.88, defined
as sums of percentages of instances solved in 30 minutes for the 47 domains.

strategies, which in the past 10 years prevented SAT from being com-
petitive in solving many of the standard benchmark problems. Re-
duction of memory consumption was essential for achieving truly
efficient planners. This was achieved first through more compact
problem encodings, with a linear rather than a quadratic number of
clauses, and now in this work by more compact representation of
clause sets inside a SAT solver. The more compact representation
was shown to improve the performance of planning, first due to a re-
duction in memory overflows and premature termination of planner
runs, and second, more systematically but less importantly, due to
better cache utilization.

REFERENCES
[1] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu, ‘Symbolic model checking without BDDs’, in Tools and Algo-
rithms for the Construction and Analysis of Systems, Proceedings of 5th
International Conference, TACAS’99, ed., W. R. Cleaveland, volume
1579 of Lecture Notes in Computer Science, pp. 193–207. Springer-
Verlag, (1999).

[2] Blai Bonet and Héctor Geffner, ‘Planning as heuristic search’, Artificial
Intelligence, 129(1-2), 5–33, (2001).

[3] S. A. Cook, ‘The complexity of theorem proving procedures’, in Pro-
ceedings of the Third Annual ACM Symposium on Theory of Comput-
ing, pp. 151–158, (1971).

[4] Jamers. M. Crawford and Andrew B. Baker, ‘Experimental results on
the application of satisfiability algorithms to scheduling problems’, in
Proceedings of the 10th National Conference on Artificial Intelligence,
pp. 1092–1097, (1994).

[5] Michael Ernst, Todd Millstein, and Daniel S. Weld, ‘Automatic SAT-
compilation of planning problems’, in Proceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence, ed., Martha Pollack,
pp. 1169–1176. Morgan Kaufmann Publishers, (1997).

[6] P. Godefroid, ‘Using partial orders to improve automatic verifica-
tion methods’, in Proceedings of the 2nd International Conference on
Computer-Aided Verification (CAV ’90), Rutgers, New Jersey, 1990,
eds., Kim Guldstrand Larsen and Arne Skou, number 531 in Lecture
Notes in Computer Science, pp. 176–185. Springer-Verlag, (1991).

[7] Carla P. Gomes, Bart Selman, and Henry Kautz, ‘Boosting combinato-
rial search through randomization’, in Proceedings of the 14th National
Conference on Artificial Intelligence (AAAI-97) and 9th Innovative Ap-

plications of Artificial Intelligence Conference (IAAI-97), pp. 431–437.
AAAI Press, (1998).

[8] Henry Kautz and Bart Selman, ‘Planning as satisfiability’, in Proceed-
ings of the 10th European Conference on Artificial Intelligence, ed.,
Bernd Neumann, pp. 359–363. John Wiley & Sons, (1992).

[9] Henry Kautz and Bart Selman, ‘Pushing the envelope: planning, propo-
sitional logic, and stochastic search’, in Proceedings of the 13th Na-
tional Conference on Artificial Intelligence and the 8th Innovative Ap-
plications of Artificial Intelligence Conference, pp. 1194–1201. AAAI
Press, (1996).

[10] Henry Kautz and Bart Selman, ‘Unifying SAT-based and graph-based
planning’, in Proceedings of the 16th International Joint Conference on
Artificial Intelligence, ed., Thomas Dean, pp. 318–325. Morgan Kauf-
mann Publishers, (1999).

[11] T. Larrabee, ‘Test pattern generation using Boolean satisfiability’,
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 11(1), 4–15, (1992).

[12] Inês Lynce and João Marques-Silva, ‘Efficient haplotype inference with
boolean satisfiability’, in Proceedings of the 21th National Confer-
ence on Artificial Intelligence (AAAI-2006), pp. 104–109. AAAI Press,
(2006).

[13] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik, ‘Chaff: engineering an efficient SAT solver’, in
Proceedings of the 38th ACM/IEEE Design Automation Conference
(DAC’01), pp. 530–535. ACM Press, (2001).

[14] Cédric Pralet and Gérard Verfaillie, ‘Slice encoding for constraint-
based planning’, in Proceedings of the 15th International Conference
on Principles and Practice of Constraint Programming, CP 2009, ed.,
I. P. Gent, volume 5732 of Lecture Notes in Computer Science, pp. 669–
683. Springer-Verlag, (2009).

[15] Silvia Richter and Matthias Westphal, ‘The LAMA planner: guiding
cost-based anytime planning with landmarks’, Journal of Artificial In-
telligence Research, 39, 127–177, (2010).

[16] Jussi Rintanen, ‘A planning algorithm not based on directional search’,
in Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Sixth International Conference (KR ’98), eds., A. G. Cohn,
L. K. Schubert, and S. C. Shapiro, pp. 617–624. Morgan Kaufmann
Publishers, (1998).

[17] Jussi Rintanen, ‘Compact representation of sets of binary constraints’,
in ECAI 2006. Proceedings of the 17th European Conference on Artifi-
cial Intelligence, eds., Gerhard Brewka, Silvia Coradeschi, Anna Perini,
and Paolo Traverso, pp. 143–147. IOS Press, (2006).

[18] Jussi Rintanen, ‘Planning with specialized SAT solvers’, in Proceed-
ings of the 25th AAAI Conference on Artificial Intelligence (AAAI-11),
pp. 1563–1566. AAAI Press, (2011).

[19] Jussi Rintanen, ‘Heuristics for planning with SAT’, in Principles and
Practice of Constraint Programming - CP 2010, 16th International
Conference, CP 2010, St. Andrews, Scotland, September 2010, Pro-
ceedings., ed., David Cohen, number 6308 in Lecture Notes in Com-
puter Science, pp. 414–428. Springer-Verlag, (2010).

[20] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä, ‘Planning as satis-
fiability: parallel plans and algorithms for plan search’, Artificial Intel-
ligence, 170(12-13), 1031–1080, (2006).

[21] Nathan Robinson, Charles Gretton, Duc-Nghia Pham, and Abdul Sattar,
‘SAT-based parallel planning using a split representation of actions’, in
ICAPS 2009. Proceedings of the Nineteenth International Conference
on Automated Planning and Scheduling, eds., Alfonso Gerevini, Adele
Howe, Amedeo Cesta, and Ioannis Refanidis, pp. 281–288. AAAI
Press, (2009).

[22] Andreas Sideris and Yannis Dimopoulos, ‘Constraint propagation in
propositional planning’, in ICAPS 2010. Proceedings of the Twentieth
International Conference on Automated Planning and Scheduling, pp.
153–160. AAAI Press, (2010).

[23] Alexander Smith, Andreas Veneris, Moayad Fahim Ali, and Anastasios
Viglas, ‘Fault diagnosis and logic debugging using Boolean satisfia-
bility’, Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24(10), (2005).

[24] Vincent Vidal, ‘A lookahead strategy for heuristic search planning’, in
ICAPS 2004. Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling, eds., Shlomo Zilberstein, Jana
Koehler, and Sven Koenig, pp. 150–160. AAAI Press, (2004).

[25] R. Glenn Wood and Rob A. Rutenbar, ‘FPGA routing and routability
estimation via Boolean satisfiability’, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 6(2), (1998).

