
A New Approach to Planning in Networks
Jussi Rintanen

NICTA & the Australian National University
Canberra, Australia

Abstract. Control of networks like those for transportation, power
distribution, communication to name a few, provides challenges to
planning and scheduling. Many problems can be defined in terms of
a basic state space model, but more general problems require an ex-
pressive language for talking about the topology and connectivity of
the system, which are outside the scope of standard planning lan-
guages. In this work we introduce a general framework for defining
planning languages for networked systems, with capability to express
properties of connectivity and topology of such systems.

1 Introduction

Other areas of computer science that use the transition system model
of actions include computer-aided verification and validation, where
reachability analysis and model-checking problems are described in
languages like SMV [6] and PROMELA [5]. These languages de-
scribe transition systems in terms concepts naturally occuring in the
relevant application areas of the tools.

Much of the high-level technological infrastructure has the form
of networks: transportation, telecommunications, power distribution
and water distribution are all based on networks with clearly defin-
able nodes and edges connecting them. Also, most of the standard
planning benchmark problems involve networks. Even minor exten-
sions to many of these problems are difficult to express compactly in
standard planning languages.

For network-structured applications we propose the use of high-
level planning languages with network features, as well as efficient
algorithms for directly solving the problems expressed in these lan-
guages. A practical requirement for this approach to be feasible is
that the overall complexity is not increased, in comparison to ex-
pressing the same problems in a standard classical planning lan-
guage. A nominally “tractable” reduction of network-planning prob-
lems to standard planning languages is often possible, but this in-
volves, in all but the simplest cases, a prohibitively high increase in
the size of the problem instance and solution times.

To illustrate the differences between the approaches, consider a
real-world planning problem with network structure that has been
considered in earlier work on AI planning: the power-supply restora-
tion problem for electricity distribution networks [7]. The first mod-
eling of this problem in a classical planning language similar to
PDDL leads to huge problem descriptions even for small networks
[1]. Using the axioms of PDDL [4] to express network connectivity
properties leads to a much more practical representation of the prob-
lem [2]. This formulation is compact but arguably not very natural as
the axiom mechanism (inductive definitions) doesn’t per se directly
represent any natural features of this domain.

2 Problem Definition
We model systems in terms of a set of nodes and connections be-
tween them. The properties of each node are expressed in terms of
state variables. Every node has the same set of state variables, but as
the actions need not treat the nodes uniformly, this is not a restriction.
In this paper we only consider a deterministic planning problem sim-
ilarly to classical planning, and hence we have a unique initial state
for the system.The state of the system consists of the connections and
the values of the state variables.

Definition 1 (State) For given sets A of state variables, V of nodes
and E of (atomic) connections, a state is a pair (v, e) where

• v : V ×A→ {0, 1} assigns a value to each state variable at each
node, and

• e : E → 2V×V assigns (atomic) connections a binary relation.

Definition 2 A network is defined as (A, V,E,O, I,G) where

• A is the set of (Boolean) state variables,
• V is the set of nodes,
• E is the set of (atomic) connections between the nodes,
• O is the set of actions (to be defined later),
• I is the the initial state, and
• G is a modal formula representing the goal of the system (to be

defined later.)

2.1 Network Properties
We employ modal logic to express properties of systems. The modal-
ities express connections between nodes.

• Atomic connections c ∈ E are connections.
• If c1 and c2 are connections then so are c1; c2, c1∪ c2 and c1∩ c2.
• If c is a connection then so are c∗ and c−1.
• If φ is a formula then φ? is a connection.

Composite connection c1; c2 between nodes n and n′ means that
n′ can be reached from n by first following c1 to some intermediate
node and from there c2 to n′. Connection c1∪c2 expresses disjunctiv-
ity: there is either connection c1 or c2. Analogously, c1∩c2 expresses
conjunctivity. The connection c∗ represents the reflexive transitive
closure of c. The connection c−1 is the inverse of c: a connection
going from n′ to n whenever c goes from n to n′. The connection φ?
conditionally connects a node with itself if φ is true.

Definition 3 The meaning JcKS
s of connections c in a state s =

(v, e) of S = (A, V,E,O, I,G) is defined as follows.

• JcKS
s = e(c) if c ∈ E

• Jc; c′KS
s = {(x, z)|(x, y) ∈ JcKS

s , (y, z) ∈ Jc′KS
s }

• Jc ∪ c′KS
s = JcKS

s ∪ Jc′KS
s

• Jc ∩ c′KS
s = JcKS

s ∩ Jc′KS
s

• Jc∗KS
s = JcKS

s ∗
• Jc−1KS

s = {(n,m)|(m,n) ∈ JcKS
s }

• Jφ?KS
s = {(t, t) ∈ V × V |s |=t φ}

Here the operations ∪, ∩ and ∗ on the right hand sides are the set-
theoretic union and intersection and the reflexive transitive closure.

The connections are used as a part of a modal language that in-
cludes the classical propositional logic. The atomic formulas include
the propositional variables and the names of nodes.

• The constants ⊥ and > (for false and true) are formulas.
• a for a state variable a ∈ A is a formula.
• n for a node n ∈ V is a formula.
• φ ∨ ψ is a formula where φ and ψ are formulae.
• ¬φ is a formula where φ is a formula.
• [c]φ is a formula if φ is a formula and c is a connection.
• n:φ is a formula if φ is a formula and n ∈ V is a node.

The modal operators [c] represent universal quantification over all
nodes that are reachable by a path described by c. The formula n is
true in the node n and false elsewhere. Formulae n : φ refer to the
truth of φ in node n. The meaning of→ and ∧ and↔ is defined in
the usual way, as is 〈c〉 by 〈c〉φ = ¬[c]¬φ.

Example 1 The next formula is true in cities (nodes) from which
one can fly to a tropical destination with a direct flight or two flights
without changing planes in the U.S.

〈flight ∪ (flight;¬US?; flight)〉tropics

The next formula is true if there are paths in a communications net-
work from the current node to node n that go through a designated
center node and only visit nodes that are safe on the way.

〈(link; safe?)∗; center?; (safe?; link)∗〉n �

At this point it is apparent that our logic is a variant of the proposi-
tional dynamic logic (PDL) [3] with a mechanism for referring to the
names of nodes. A truth-definition for this modal logic can be given
in the obvious way. We define s |= φ iff s |=n φ for all n ∈ V .

2.2 Actions
Actions can change the values of the state variables associated with
the nodes and the connections between the nodes.

An action consists of a precondition which determines the circum-
stances under which the action can be taken, as well as the effects that
indicate when and how do the values of the state variables change and
which connections between nodes are added or removed.

Definition 4 (Action) An action is 〈p, e〉 where p is a formula and e
is a set of pairs q B r where q is a formula and r is a set of literals.
The literals that can be effects in an action are n : a, ¬n : a and
(n, c, n′) and ¬(n, c, n′), where a ∈ A, n ∈ N , n′ ∈ N and c ∈ C.

Definition 5 (Successor state) Let S = (A, V,E,O, I,G) be a
system. Let 〈p, e〉 be an action and s = (v, g) a state. The action
is executable if s |= p and the set F =

S
{r|q B r, s |= q} is

consistent. The successor state of s is s′ = (v′, g′) where

• v′(n, a) =

8<:
1 if n:a ∈ F
0 if ¬n:a ∈ F
v(n, a) otherwise

for all n ∈ V and a ∈ A

• g′(c) =
g(c)\{(n, n′)|¬(n, c, n′) ∈ F}
∪{(n, n′)|(n, c, n′) ∈ F} for all c ∈ E

3 Examples
Many of the standard planning benchmark problems can be viewed
as consisting of nodes and connections between them.

Example 2 In Blocks World the blocks are the nodes and the on-
relation are the connections. Moving x from y onto z is defined by˙
x:〈on〉y ∧ x: [on−1]⊥ ∧ z: [on−1]⊥,> B {¬(x, on, y), (x, on, z)}

¸
.

Here x: [on−1]⊥ says that false is true in all nodes related to x by
on, meaning that there is no such node, i.e., the block is clear.

We can introduce an action that allows moving stacks of blocks.˙
x:〈on〉y ∧ z:¬〈on∗〉x ∧ z: [on−1]⊥,> B {¬(x, on, y), (x, on, z)}

¸
�

Example 3 With the network planning language it is easy to express
movement from one node to any of the reachable nodes. Here a and
b are names of locations and p is an object that moves.

〈a: (p ∧ 〈road∗〉b),> B {¬a:p, b:p}〉

Further extensions are possible. For example, we can require that
property φ is satisfied after each road segment along the path.

〈a: (p ∧ 〈(road;φ?)∗〉b),> B {¬a:p, b:p}〉 �

4 Conclusions
We have considered a language for planning in networks. The lan-
guage is directly relevant to many application domains with network
structure. The network model is even more general, allowing to ex-
press interesting properties of benchmarks that at the surface level are
not about networks. This is a consequence of many problems having
a relational/graph representation and the support of the language for
expressing properties of graphs.

Acknowledgements
The research was funded by Australian Government’s Department of
Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council through NICTA and the SuperCom project.

REFERENCES
[1] P. Bertoli, A. Cimatti, J. K. Slaney, and S. Thiébaux, ‘Solving power sup-

ply restoration problems with planning via symbolic model checking’, in
ECAI’02, pp. 576–580, (2002).

[2] B. Bonet and S. Thiébaux, ‘GPT meets PSR’, in ICAPS’03, pp. 102–112,
(2003).

[3] Michael J. Fischer and Richard E. Ladner, ‘Propositional dynamic logic
of regular programs’, J. Computer and System Sciences, 18(2), 194–211,
(1979).

[4] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, ‘PDDL - the Planning Domain Definition Lan-
guage, version 1.2’, Technical report, Yale Center for Computational Vi-
sion and Control, Yale University, (1998).

[5] Gerald J. Holzmann, Design and Validation of Computer Protocols,
Prentice Hall, 1991.

[6] Kenneth L. McMillan, Symbolic Model Checking, Kluwer, 1993.
[7] S. Thiébaux and M.-O. Cordier, ‘Supply restoration in power distribu-

tion systems – a benchmark for planning under uncertainty’, in ECP’01.
Springer, (2001).

