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Abstract

Reasoning about the knowledge of an agent is an
important problem in many areas of Al. For exam-
ple in diagnosis a basic question about a system is
whether it is possible to diagnose it, that is, whether
it is always possible to know whether a faulty be-
havior has occurred. In this paper we investigate
the complexity of this diagnosability problem and
the size of automata that perform diagnosis.

There are algorithms for testing diagnosability in
polynomial time in the number of states in the sys-
tem. For succinct system representations, which
may be exponentially smaller than the state space
of the system, the diagnosability problem is con-
sequently in EXPTIME. We show that this upper
bound is not tight and that the decision problem is
in fact PSPACE-complete.

On-line diagnosis can be carried out by diagnosers
which are automata that recognize faulty behavior.
We show that diagnosers in the worst case have
a size that is exponential in the number of states,
both for explicit and succinct system representa-
tions. This is a consequence of the diagnoser hav-
ing to maintain beliefs about the state of the system.

Introduction

captured by representing them in terms of state variables, we
also consider a more compact representation with state vari-
ables. Our results show that the exponentially more compact
representation leads in the worst case to a corresponding in-
crease of complexity.

The structure of the paper is as follows. In Section 2 we de-
fine transition systems and succinct transition systems. Sec-
tion 3 defines the framework of diagnosers and diagnosability
of Sampath et al1999. In Section 4 we present the main re-
sults which establish the complexity of diagnosability testing.
In Section 5 we derive tight upper and lower bounds for the
worst-case size of smallest diagnosers. Section 6 discusses
related work and concludes the paper.

2 Preliminaries
We define transition systems following Sampath ef993.

Definition 2.1 (Transition systems) A transition system is a
tupleT = (X, X,, X, X¢, 6, so) where

e X is a set of states,

Y, is a set ofbbservable events

e Y., is a set ofunobservable events

e Y is a set offailure events

¢ §C X x(X,UX,UXy) x X is atransition relation,
e 59 € X is aninitial state.

Faults in dynamic systems can be diagnosed by an exter- ]
nal diagnoser that observes the system behavior and infers Initially, s, is the state of the system. A sequence of events
the occurrence of failure evenfSampathet al, 1999. A

main problem in on-line diagnosis is the construction of diag-Statesso, s1, . .

eo, - - -, en—1 takes place and the system goes through some
., 8p, such that(s;, e;, s;+1) € d forall i €

nosers which are deterministic finite automata that keep track0; - --,n — 1}.

of the possible state of the system on the basis of the obser- For ' = (X, %, 3y, 3,6, 50), €o, .-
vations and detect the occurrence of faults. Existing algoguence of events iii if there are states;, . .

.,ep_1 IS a se-
., 8p such that

rithms for constructing diagnosers have exponential runningsi; €, si+1) € ¢ foralli € {0,...,n —1}. _
times and construct diagnosers of exponential size. In this The state sequence nor the unobservable or the failure
work we investigate the inherent Comp|exity of diagnosersevents can be observed. Detection of failures is based on the
and the complexity of constructing them, giving tight upperseguence of observable events only. )

and lower bounds for the sizes of smallest diagnosers and the A basic assumption made by Sampath e{2299 is that

time it takes to construct diagnosers. Our results show thdhere are no infinite event sequences exclusively consisting of
the asymptotic worst-case time and memory consumption ofinobservable events.

existing algorithms cannot be improved.

The work is based on the framework proposed by Sampatfssumption 2.2 There is no cycle in the transition graph

et al. [1999. Since many systems exhibit regularities bestconsisting of unobservable events only.



2.1 Succinct System Representation Diagnosability is defined as the possibility to detect every

The state spaces of many systems are highly regular, and ti§currence of a failure event: the contin_uation of every event
transition relations of events can be represented more congequence thatincludes a failure event will at some future time
pactly in terms of changes to the values of state variable?0int be observationally distinguishable from every event se-
This also makes it possible to practically represent large sygiuence that does not include a failure event.

tems. Given a sefl of state variables, a state is defined as a

valuation ofA. We will restrict to two-valued (Boolean) state Definition 3.1 (Diagnosability) A transition systemil’ =
variables but in general there may be several different val{X, X,,X,, Xy, 0, so) is diagnosableff there is an integer
ues. The transition relation associated with an event can bé > 0 such that for any sequenoeof events iri” that ends in
expressed as a propositional formulasdandA’. The setd’  afailure event, for all sequences = oo’ ando, in T such
consists of propositional variablesfor everya € A. When  that|r(o')| > d andn(o1) = 7(02), o2 includes a failure

an event takes place, the variablesdimepresent the old val- event.

ues of the state variables and the variabled’inepresent the
corresponding new values. For example, given state variable
A = {a, b}, an event that makestrue and does not change
the value ofb can be expressed as the formafla: (b < b').
An arbitrary binary relation on the valuations 4fcan be ex-
pressed as a propositional formula, which suggests a succi
representation of transition systems in terms of state variabl
and formulae.

The constantl is calledthe delay Not all failures can be
etected immediately after they have taken place, and the de-
lay expresses how many further events have to be observed
before being certain that a failure has taken place.
nct Whether a system is diagnosable or not is important when
dLying to construct a diagnoser for it. diagnoseris a de-
terministic finite automaton that recognizes sequences of ob-
servable events that correspond to sequences of events that
Definition 2.3 (Succinct transition systems) A succinct  Include at least one failure event. If a system is diagnosable
transition system is a tuple4, X,. ., X, 9, so) where then a diagnoser exists.
e Ais afinite set of state variables,
e Y, is a set ofobservable events
e 3, is a set ofunobservable events ]
. . Y, is a set of observable events,
e X, is a set offailure events

e §:X,UX,UX; — Lassigns each event a propositional 7:Q X_EO —>.Q”|s a partial funct.|on,
formula overA U A’ which represents a binary relation e 2o € Q is the initial state of the diagnoser, and

on the set of states, and Y C Q is the set ohccepting states
e 5o is an initial state (a valuation ofl).

Definition 3.2 A diagnoseis (Q, X,,, z0, Y') where
Q is a set of states (unrelated to the transition system),

A sequence, ..., e,_1 Of observable events takes a di-
There are other types of succinct representations, for exanagnoser through a sequeneg ..., z, of states such that
ple based on Petri nefslolloway et al, 1997. However, the  ~(z;,e;) = z,1. An executionz, ..., z, iS acceptingif

Petri net representation can be translated into the logic repre;, € Y. To accept means to detect a failure event.
sentation quite easily (assuming finite state Petri nets with an
n—s',afe.ty property), but not vice versa, so the logic represenpefinition 3.3 (Q,X,,v, z0,Y) is diagnoser forT =
tation is more general. (X,%0, %04, 2¢,6, s0) (with delayd) if

Any succinct transition system can be mapped to a transi-

. 1. for every sequencey,...,¢e,, eni1,---,En Of events
tion system as follows. in T' such that{eg,...,e,_1} g+20 UX, ande, €
Definition 2.4 LetT = (A, X,,X,, ¢, 4, so) be a succinct Xy and [m(ent1,. .., em)| < d, there is a prefix of
transition system. Then define the transition sysi{ffi) = (€0, .5 ensent1,.. . em) Which the diagnoser ac-
(X, %0, %0, B¢, 0, 80) where cepts, and if

1. X is the set of all valuations of, and 2. for a sequencey, . .., e, of events irfll" the diagnoser

2.0 ={(s,e,5) € Xx(B,US,US¢)x X|sU{(v',w) € acceptsr(eo, .. ., €m) then for somcez €{0,..,m d

A/ X {0,1}|(U7w) E S’} ): 6(6)}. 1}, en G Ej, {60,...,671,1} — EO U Zu aﬂ
[m(entls- - em)| < d.

3 Diagnosability We can define diagnosers for succinct transition systems
Sampath et al.[1995 give a definition of diagnosability analogously through the reduction to transition systems.
which we adapt to our notation. In some cases there is no finite upper bound on how long

Leto € (X, U, UX;)* be a sequence of events. We it may take before a failure is detected. For a system to be
define itsprojectionz (o) to the observable events recursively diagnosable the delay must be bounded.
as follows.

n(e) = e Example 3.4 (Unbounded delay)Consider the transition
m(ec) = w(o)ifeg, system in Figure 1. In the starting state two events are possi-

(

n(ec) = em(o)ifec, ble, of which the leftmost one is a failure event. After this an



Hence there are nbandj such thats; = s; and$; = §;,

B C which entails that every pais;, §; occurs only once in the
A A sequence. This entails that the lengthof the sequences,
and therefore the delay, is at mot|? — | X|.
\FY/ This bound can be tightened M by noticing that

there cannot be and j such thats; = 5; and3; = s;, or
in other words, the order of the states in the pairs does not
matter. O

4 Complexity of Testing Diagnosability

Jiang et al.[2001] have shown that diagnosability testing is
in P. In this section we will show that this complexity upper
bound is not tight. Our results also show that the EXPTIME
upper bound for the diagnosability problem of succinct tran-
sition systems implied by the result of Jiang et al. is not tight.
A system is not diagnosable if there are two infinite event
sequences which have exactly the same observable events and
Figure 2: Delay may be quadratic in the number of states ©f Which one contains a failure event and the other not. If
this condition is not fulfilled, then every continuation of an
event sequence with a failure is distinguishable from all event
unbounded number of unobservable evehitmay take place sequences without a failure.
before the failure is diagnosed upon the occurrence of the ob- Jjang et al.[2001] showed how this test can be made fini-
servable evenB. B tary for finite state systems, and how it can be done in poly-
. nomial time. The basic construction is a product transition
A bounded delay may be quadratic in the number of stategy stem, sometimes callede twin plant in which states are
pairs(s, §) of states of the original system, and events repre-
Example 3.5 (Quadratic delay) There are transition sys- sentunobservable events in one or both of the components of
tems with a quadratic delay as depicted in Figuf&eastien,  these state pairs, or observable events shared by both compo-
2004. Of two sequences ando’ such thatr(o) = 7(¢’) =  nents. Failure events take place only in the first component
aaaaabaaaacaaadaaea the first begins with a failure event of each state pair. If in this system there is an event sequence
but the second does not. The sequesfcean continue with  from (s0, S0) to some(s, 5) which includes a failure event in
a buto cannot. This can be generalized to any numbef  the first component, and a non-empty event sequence back to
states. The delay i&2 —2) +(n —3) +---+3+2 = (s,5) then a pair of infinite event sequences witnessing non-
(r=1)n=2) _ 1 which isO(n?) in the number of states. @ diagnosability exists.
Candidate states;, §) are found by Tarjan’s strongly con-
This is also an upper bound on bounded delays. nected components (SCC) algoritHarjan, 1972 every
node contained in a nontrivial SCC is in a cycle contained in
Theorem 3.6 For a transition system with states, ifthe sys- the SCC. After finding the SCCs the diagnosability test re-
tem is diagnosable, then the delayiislx\2;‘x| where| X | duces to firlding a path '.[h.rough a failure event fr(mjl., 50)
is the number of states. to some(s, $) in a non-trivial SCC. If such a path exists the
system is not diagnosable.
Proof; Assume  sgegsieq - Sm—1€m, Smem  and Constructing the twin plant can be done in quadratic time
Soeodreq - Sm—1€m,8mém are two equally long se- in the number of states. Finding the SCCsiis linear time in the
quences of observable events interleaved with states thatmber of states in the twin plant, and finding a path to a non-
are distinguished at the last step (and not before) and dfivial SCC through a failure event can be done in polynomial
which the first contains an unobservable failure event and théime. Hence the diagnosability problem is in the complexity
second does not. All unobservable events and states othelass P. However, this complexity upper bound is not tight.
thansy and those immediately preceding an observable event We define the language NONDIAG which consists of all
are not included in the above sequences. non-diagnosable transition systems in some suitable repre-
For the sake of argument assume that there are pairs sentation.
statess;, §; ands;, ; such thatj > 4, s; = s; ands; = 5;. Ouir first result shows that determining non-diagnosability
Now the sequences;, . .., e;_; of events between these pairs can be done by using only logarithmic space by a nondeter-
of states could be repeated arbitrarily many times to have ainistic Turing machine, and hence the decision problem as-
pair of much longer sequences of events that are distinguistsociated with NONDIAG is in NLOGSPACE. This complex-
able only after the last event. This would violate our assumpity class is included in P but it is not known whether the in-
tion that the delay is bounded. clusion is propefJohnson, 1990




Theorem 4.1 NONDIAG is in NLOGSPACE. Proof: We reduce the halting problem of deterministic Tur-
o . ing machines with a polynomial space bound to the succinct
Proof: The p_roof is S|rr_1|Iar to the NLOGSPACE memberSh'p_diagnosability problem, showing the latter PSPACE-hard.
proof of testing the existence of a path between two nodes in payt of the reduction is like in the reductions to some other
a graph. We give a nondgterm|nlstlc algorithm that takes logzgccinct graph reachability problerfBylander, 199% We
arithmic space. The alorithm’s only data structure that doegan represent the Turing machine configurations, including
not have a constant size is the binary counter for_ counting Ughe contents of a polynomially long tape, in terms of a poly-
to n? wheren is the number of states. A cycle is detected homial number of state variables, and we can represent the
as in the P-time proof of Jiang et d2001. The algorithm  transitions of the Turing machine in terms of a formaila)
starts from the paifso, so) of initial states and nondetermin- \ynich represents an unobservable event.
istically chooses an event and a successor state for each mem-yse construct a transition system that is diagnosable if and
ber of the pair. The event for the second state may not be gny if the Turing machine accepts. First a failure event F
failure, and an observable event must always be shared by an unobservable non-failure event NF takes place. In the
both components of a state pair. The counter counts the stespn-failure case this is followed by an infinite sequence of
After a number of steps, including at least one failure eventeyents 1. In the failure case a simulation of the Turing ma-
the algorithm reaches a starting stetes) for a cycle. After  ching follows. If the Turing machine accepts then an event 2
this a sequence of events leading back«o) is nondeter-  takes place. This makes it possible to distinguish between the
ministically chosen. The Turing machine accepts if a cyclefajlure and non-failure cases. So the system is diagnosable if
is completed before the counter reachés The Turing ma- and only if the Turing machine accepts.

chine rejects if the counter reache$before completing the  Gjven a Turing machine, we define the succinct transition

cycle and encountering a failure event. O systenT” = (A, %, S, 5, 6, so) where
] e A consists of all the state variables needed for encod-
We also have a simple proof of NLOGSPACE-hardness. ing executions of the Turing machine with a bound on
) the number of used tape cells (see for example Bylan-
Theorem 4.2 NONDIAG is NLOGSPACE-hard. der[1994) and the state variablg that indicates that a

failure has taken place ardthat indicates that the exe-

Proof: We sketch a deterministic logarithmic space reduction cution has not started yet.

from the NLOGSPACE-complete problem of testing whether
a node in a directed graph is reachable from another node ® o = {1,2}, £, = {NF}, £; = {F}, and
[Johnson, 1990 .

LetG = (V, E) be a directed graph for which the existence S(NF) =TI A—f' A=T' A /\ (a—d)
of a path froms € V tot € V is tested. The reduction with aeA\L1T}
only logarithmic space proceeds by reading the input géaph ’
and outputting a corresponding transition system where states

— / ! 4
are the nodes aff and edges of7 correspond to an observ- S(F) =IAf A=I"A /\ (a = a’)

able event. The initial state of the transition system i¥he a€A\{f.I}
transition system additionally has a failure event F and an un-
observable event NF which may take place in the staBeth (1) ==IN-IAN(fAF A=aANTM)V (=f A=f)

events lead to the same (arbitrary) statd’inNow the tran-
sition system is not diagnosable if and onlyt iils reachable
from s. Construction of the transition system takes logarith-

where TM is a formula for simulating the change in the
Turing machine configuration in one execution step and
a is a state variable that represents the accepting inter-

mic space (actually only constant space.) U nal state of the Turing machine. If the Turing machine
o _ rejects it continues with event 1 indefinitely.
Similarly to NONDIAG we define the language When the Turing machine accepts at least one event 2
SUCCINCT-NONDIAG which consists of succinct transition takes place.
systems that are not diagnosable. 5(2)=fAa
Theorem 4.3 SUCCINCT-NONDIAG is in PSPACE e sq is a valuation that encodes the initial configuration of
' ' the Turing machine and seig(1) = 1.
Proof: Sketch: We could prove NPSPACE member- 0

ship similarly to Theorem 4.1 and then use the equality
PSPACE=NPSPACE. Alternatively, we could give a deter-
ministic algorithm for finding a path in a graph with polyno-
mial recursion depth and space consumption following By
lander[1994. O

Hence the succinct diagnosability problem is PSPACE-
complete, like some other path-finding problems in suc-
“cinctly represented graphs, the succinct s-t-reachability prob-
lem[Lozano and Balazar, 199Dand the plan existence prob-
lem of Al planning[Bylander, 199% This further suggests

The PSPACE upper bound can be shown to be tight. similar approaches to solving the diagnosability problem, for

example reduction to the propositional satisfiability problem
Theorem 4.4 SUCCINCT-NONDIAG is PSPACE-hard. SAT [Rintanen and Grastien, 2007



5 Size of Diagnosers By Assumption 2.2 is bounded by some constast| X|.

In this section we show that, assuming a sufficiently restricte% 612?3(;322 fgj;)t?gsst? gssﬂirgﬁ nodes ag(&) and the num-

definition of diagnosers, sometimes diagnosers are necessar-
ily quite large.

The size of diagnosers strongly depends on how compl
computation they are allowed to perform. The more comple . ;
the computation may be the smaller the diagnoser. There a%\/:rl];tlg{a?:?ﬁ;tbzfcr)]rgt t.?:ﬁ:gggaczglser\?ggf dg:j/et?t $$ “ob-
diagnosers that are Turing machines with only a constant siz at | : 1ately p y an unob
and that only need memory for storing the system descriptioffc" /2Ple event (it is preceded by an observable event or it is
and the set of all states, but executing such a diagnoser mé{ e f|?03t S;‘gtgos'zj;:‘?h”athe sequeBn@JE{a) in G(T') leads from
be too expensive for real-time on-line diagnosis. (50, 0)} (s, f) € B.

In this section we focus on diagnosers that are finite au-
tomata which can process each observation in constant tim

ekemma 5.1 Let o be a sequence of events in a systEm
;tarting in its initial statesg, in which exactly the failure

emma 5.2 LetT be a system with the initial statg. Leto
)e a sequence of observable events: léads in GT") from
5.1 Upper Bounds on Size {(s0,0)} to B such that there is soma, f) € B, then there

; ) ) is a sequence’ of events inl" such thato = 7 (¢’) and o’
We use the notion of belief states to derive an upper bound o ads fromso to s in T' and o’ includes exactly the failure

the size of smallest diagnosers. The basic construct is similagyentsf.

to that used by Sampath et 1995 and the size of smallest

diagnosers follows from the construct by Sampath et al. Finally, we show that GI') is a diagnoser. The accepting
LetT = (X, %,, %, 3¢, d, s0) be a transition system. Let states? of this diagnoser are those that include a known past

Go(T) = (V, E) be a graph in which the set of nodes= failure:( ;5 f # 0.

2Xx2%/ is the set of all set® C X x 257 of pairs(s, f) €
X x 2%s, and there is a labelled edg®, e, B’) € E from Theorem5.3LetT = (X,3,,%,,X,0,s0) be a system

B e Vto B’ € V if and only if either that is diagnosable with delay.
e ccXyandB’ = {(s', fu{e})|(s, f) € B,(s,e,s) € 1. Leto = ey, ..., e, be a sequence of eventsiirstarting
d}, or in sop and assume,, € X¢. Then for every sequence
P / of events, ..., e/ suchthatn(e},...,e,)| = dand
¢ g}e ZoUXy andB’ = {(s', f)l(s, f) € B, (s,¢,5) € e1,....en €),... €. isasequence of eventsihthere
' ism’ < msuchthatr(ey, ..., e, €),...,¢e..,) leadsin
A belief stateB with (s, f) € B means that it is possible G(T") from {(so, )} to B such thate,, € (|, f)cp f-
thats is the current state and its history includes exactly the .
2. If for a sequence of events, ... e, in T the path

failure events inf. Note that it is possible thdts, /) € B
and(s, f’) € B for somef # f’.
Theinitial nodeof the graph isB; = {(so,0)}.

The number of belief stateB C X x 2%/ is 2X12™7' proof: For (1) take any’ = ¢/, ..., ¢/, such thair(o")| =
This isO(2™) wheren is the number of states. d andoo’ is an event sequence . Let By, ..., By, be
This graph compactly encodes the states that could bthe belief states on the paitioco’) in G(T).
reached by a given event sequence and the failure events inAssumee,, ¢ ﬂ(s £)€Bn, /- By Lemma 5.2 there
that sequence: starting in the initial node follow the edgess 5 sequencer, of events such that (o) = oo’ and
corresponding to the events, andsf /) € BforthenodeB . does not occur inve’. This contradicts the fact that
that is reached, then it is possible to reachith that event  the system is diagnosable with deldy for all sequences
sequence which includes the failure eventg.in o1 = oo’ ando, of events inT such thatr(¢’)| > d and
A diagnoser cannot observe unobservable events, so Weo,) = 7(02), o2 includes the event. Hence it must be
construct a second graph{G) that represents the diagnoser's thate,, ¢ N 5. f. Nowe, €N B f for
view of the possible current states and their failure historiess / (2. /)€Bntm (& 1)€Bnms
. . - omem’ <n -+ m.
in terms of observable events. This construction takes poly- -

w(e1,...,en) in G(T) leads from{(so,?)} to B and
there ise € [, f)ep frthene € {er,... en}.

nomial time in the size of G@T). Any path in For (2) assume that, .. ., e, is a sequence of eventsin
. - ANy pathes, . -, &n, € such that the path(ey, . . ., e,,) in G(T) leads from{(so, 0)}
Go(T) such that is observable anél, . . ., e¢,, are unobserv- to B such that there is & F
able is represented in(@) by one edge with the label (s,f)eB 7 ,
Given GU(T) _ <‘/, E> define GT) _ <‘/7 El> as follows. Let o = 7T(€1, ceey em). Letm’ be the Ieasm_ such .that
There is an edgéB, e, B) € E' if and only if em IS an observable event, and lebe the state immediately
T following e, . Leto = 7(ey,...,em ) = w(e1,...,em). By
e ccX,and Lemmab5.1(s, f) € Bwheref = XN {eq,...,emn}. Since
f
e B' = (J, B, where By,...,B,, are all the nodes eeﬂ(s’f)er,ee{el,...,em/}g{el,...,em}. U
in Go(T') such that for alli € {1,...,m} there is a
pathes,...,e,,e from B to B; such thatn > 0 and Let G(T) = (V, E’). We define the diagnoser GD) =

E
{e1,...,en} CE, Uy, (V,%,,8,{(s0,0)}, A) where



B C a for a € 3. In the initial state an unobservable event takes
place. Then a sequence |&f| events takes place, eitheror
T N a for everya € %, followed by either an unobservable fail-
a1 A= CEoE g = ure or an unobservable non-failure event. A failure event has
taken place iff for some € X botha anda have taken place.

The number of different sequences of observable events be-
fore the failure events i8>/, No information on these se-
quences can be ignored before the last event has taken place.
Hence the smallest diagnoser 1243 states for representing
the first|X| events.

Clearly, similar systems can be constructed for arbitrary
sets3, and the number of states of these systems grows
quadratically in the cardinality of and the number of states
in the diagnosers grows exponentially. |

L |

-
! \4
N

;i ;I {A, B,C, D}. The events of the transition system arand
¢l Dl D

We adapt the construction in Theorem 5.4 to succinct tran-
sition systems by replacing the evends B,C, D by se-
quences of events corresponding to binary numbers, and uti-
lizing the regularity of the system to represent it more com-
pactly so that the number of states is exponential in the size of
the system description. This means that the number of nodes
e §={((B,e),B")|(B,e,B') € E'} and in the diagnoser is doubly exponentia(22”) in the size of

the system description.
e A={B e V| pepf#0}

Hence the graph @) = (V, E’) corresponds to a diag- Theorem 5.5 There are succinct systems for which the small-
noser forT. The diagnoser starts from the nofleso,)}.  estdiagnoser has size(2%").

After Qbservmg. an event € X, it follows Fhe COe~  broof: Letn be a size parameter that characterizes the num-
spon_dlng edge in the graph. Notice that unlike in the Uny aron of things to remember just likd, B, C, D in the proof
derlying system, each event in the grafii E’) leads to T

a unique successor node. When reaching a nBde of Theorem 5.4. Instead of producing a sequence of events
{(s1,£1) -+ (Sns )} with.f =N, fi # 0, the diag- A, A, B, B, C, C D, D indicating the different “values”
noser has detected the failure eveﬁgl ’ ’ of A, B, C andD, the succinct system produces a sequence

The number of nodes itV, E) is O(2") in the numben Vo, ..., Van 1 of 27 events 0 or 1 followed by an unobserv-
of states inI’. Some diagnosers may have more nodes thaﬁ‘ble failure or non-failure event, and then an event 0 or 1 for
(V, E) but those diagnosers are not the smallest ones. Hendgdicating a valuev and a sequence of events 0 or 1 that
the size of the smallest diagnosex2€2"). encodes an indexe {0,...,2" — 1} to f[he first sequence. If

Since a transition system may be exponentially bigger thaff{1€ Valuev; does not match then a failure has taken place.

its succinct representation, tfi%2") bound on the diagnoser hgeccoanssfcreugpgnavc\:lgt?e:trzcltsolIrlll;Strstce;nlr?olt:Igrltjarsee‘rlﬁ the svstern
size for enumerative representations yield9@2") bound " b ictions w P Y

on the size of diagnosers of succinct transition systems. here. The r)umber of states of the system is exponential n
n, and the size of the succinct representation of the system is

linear inn. The size of the smallest diagnoser is exponential

5.2 Lower Bounds on Size : S
) ] . in the number of states and doubly exponentiat.in O
We derive an exponential lower bound on the worst-case size

of smallest diagnosers by constructing a system for which

the smallest diagnoser has an exponential number of states. .

The high number of states in the smallest diagnoser is an i Related Work and Conclusions

dication of the need for the diagnoser to remember the paste have shown that the diagnosability problem of succinct

events. The number of possible past histories may grow exransition systems is PSPACE-complete. We also tightened

ponentially in the size of the system and the length of thean earlier known polynomial time upper bound of diagnos-

histories. The past histories may have to be encoded in thability testing of explicitly represented transition systems by

diagnoser and this leads to an exponential size. showing that non-diagnosability is NLOGSPACE-complete.
The work by Sampath et al1995 underlies much of the

Theorem 5.4 There are diagnosable systems for which thework in the diagnoser framework, and also our belief state

smallest diagnoser has sig®2") wheren is the number of ~€numeration algorithm in Section 5.1 is based on it.
states. Other related works include Tripak[2003 who shows

that diagnosability of transition systems represented as timed
Proof: Consider the system in Figure 3. Lel = automata is PSPACE-complete. This result can be contrasted

Figure 3: A system requiring a diagnoser of sixg")



[Bylander, 199% Tom Bylander. The computational com-
plexity of propositional STRIPS planningArtificial In-
telligence 69(1-2):165—-204, 1994.

[Grastien, 200b Alban Grastien. personal communication,
2006.

[Hollowayet al, 1997 L. E. Holloway, B. H. Krogh, and
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discrete-event systemBiscrete Event Dynamic Systems:
Theory and Applications7:151-190, 1997.

[Jianget al, 2001 Shengbing Jiang, Zhongdong Huang, Vi-
gyan Chandra, and Ratnesh Kumar. A polynomial algo-
rithm for diagnosability of discrete-event systemEEE
Transactions on Automatic Contrel6:1318-1321, 2001.

[Johnson, 1990D. S. Johnson. A catalog of complexity
classes. In J. Van Leeuwen, editbiandbook of Theoret-
ical Computer Sciencevolume A. Algorithms and Com-
plexity, pages 67-161. Elsevier Science Publishers, 1990.

[Lozano and Balazar, 199D Antonio Lozano and J@sL.
Figure 4: A system requiring a diagnoser of siz@2") Balcazar. The complexity of graph problems for succinctly
represented graphs. In Manfred Nagl, edit@raph-
Theoretic Concepts in Computer Science, 15th Interna-
to the polynomial time result of Jiang et 42001 and our tional Workshop, WG’89number 411 in Lecture Notes
more tight NLOGSPACE-membership resultin Theorem 4.1. in Computer Science, pages 277-286. Springer-Verlag,
More complex diagnosis problems for timed automata are in- 1990.

vestigated by Bouyer et 412003 o _ [Rintanen and Grastien, 2002ussi Rintanen and Alban
Wen et al. [2009 propose a polynomial time algorithm  Grastien. Diagnosability testing with satisfiability algo-
for testing diagnosability of transition systems represented as rithms. In Manuela Veloso, editdProceedings of the 20th

Petri nets. The algorithm tests for a sufficient but not nec-  |nternational Joint Conference on Attificial Intelligence
essary condition for diagnosability, and is therefore incom- AAA| Press, 2007.

plete. A variant of our Theorem 4.4 shows that, assumin
PSPACE£P, the test cannot be made complete by strengthe
ing it without losing the polynomial time property: the Turing
machine simulation in the proof of Theorem 4.4 can be per-
formed with Petri nets as well.
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