
Asymptotically Optimal Encodings of Conformant Planning in QBF

Jussi Rintanen
NICTA Ltd & the Australian National University

Canberra, Australia

Abstract

The world is unpredictable, and acting intelligently requires
anticipating possible consequences of actions that are taken.
Assuming that the actions and the world are deterministic,
planning can be represented in the classical propositional
logic. Introducing nondeterminism (but not probabilities) or
several initial states increases the complexity of the planning
problem and requires the use of quantified Boolean formulae
(QBF).
The currently leading logic-based approaches to conditional
planning use explicitly or implicitly a QBF with the prefix
∃∀∃. We present formalizations of the planning problem as
QBF which have an asymptotically optimal linear size and
the optimal number of quantifier alternations in the prefix: ∃∀
and ∀∃. This is in accordance with the fact that the planning
problem (under the restriction to polynomial size plans) is on
the second level of the polynomial hierarchy, not on the third.

Introduction
Conditional planning is the problem of constructing a plan
that reaches the goals despite the nondeterminism in the ac-
tions or in the world. There are different flavors of condi-
tional planning, with different definitions of plans, observ-
ability assumptions and the form of uncertainty.

Conditional planning without probabilities can be moti-
vated on two grounds. First, the probabilities of the differ-
ent nondeterministic events may be unknown and the ob-
jective is to guarantee that the goals are reached. This is a
difference to Markov decision processes. Second, nondeter-
minism can be understood as an intelligent opponent whose
actions cannot be a priori associated probabilities with, as in
game playing (Russell & Wolfe 2005).

Planning research targets problems with very big state
spaces. Unlike extensive games in game theory, the state
spaces of planning problems are typically expressed in terms
of valuations of state variables. This makes it possible to
express and solve big problem instances without explicitly
enumerating all the states.

Some of the main approaches to solving non-probabilistic
conditional planning problems with observability restric-
tions (partial observability) are search in the belief space
(Bonet & Geffner 2000) and logic-based approaches more

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

or less directly based on quantified Boolean formulae (QBF)
(Rintanen 1999). The latter generalize SAT-based classical
planning (Kautz & Selman 1996).

In this paper we investigate solutions methods for non-
deterministic planning without observability in the QBF
framework. This planning problem is also known as confor-
mant planning. An efficient solution method for QBF-based
planning, analogously to SAT-based planning, consists of
the following three largely orthogonal components.

1. Efficient QBF encodings Φ(t) of the planning problem for
given plan lengths t.
QBF encodings have been presented by Rintanen (1999).
QBFs with prefix ∃∀ are implicit in (Giunchiglia 2000):
search for plans (corresponding to the ∃ quantifier) is per-
formed explicitly, and validity/correctness of candidate
plans (corresponding to the ∀ quantifier) is reduced to a
satisfiability test. See the discussion of related work.

2. Efficient algorithms for evaluating Φ(t).
QBF can be evaluated by algorithms that general-
ize the Davis-Putnam procedure to AND-OR search
(Giunchiglia, Narizzano, & Tacchella 2002) and algo-
rithms based on eliminating quantifiers in the QBF (Biere
2005) or in its representation in some normal form like
DNNF (Palacios & Geffner 2005).

3. Efficient algorithms for finding values of t such that Φ(t)
corresponds to a plan.
The simplest algorithm sequentially tries out values
0, 1, 2, 3, . . . of t. More sophisticated algorithms that al-
low trading optimal plan length to improved runtimes are
the same as for SAT planning (Rintanen, Heljanko, &
Niemelä 2006).

In this work we address problem 1 by devising a new QBF
encoding for nondeterministic planning without observabil-
ity (conformant planning). The encoding can be directly
generalized to more general conditional planning problems
with partial observability, and it can be applied in connec-
tion with all the main approaches to evaluate QBF. Encod-
ings that have been presented earlier (Rintanen 1999) are not
optimal with respect to two problem parameters: asymptotic
size and the number of quantifier alternations. We rectify the
problem with the latter parameter in this paper. Optimality
with respect to the size which is related to the interference

constraints has already been presented (Rintanen, Heljanko,
& Niemelä 2006).

The existing encodings of conditional planning as a QBF
use the prefix ∃P∀C∃EΦ saying that there is a plan (repre-
sented by variables P) so that for all contingencies (repre-
sented by variables C) there is an execution (represented by
variables E) so that the goals are reached (Rintanen 1999).

The evaluation problem of ∃∀∃ QBF is a Σp
3-complete

problem. A simple complexity analysis shows that condi-
tional planning is simpler, located on the second level of the
polynomial hierarchy, not on the third (Rintanen 1999). A
Σp

2 Turing machine is a nondeterministic machine with an
NP oracle. The oracle Turing machine solves the planning
problem by guessing a polynomial-size plan and then test-
ing with the oracle, which runs in nondeterministic polyno-
mial time, that there is no bad execution of the plan. This
means that it is possible to formalize the planning problem
as a QBF with the prefix ∃∀. There is a generic way of turn-
ing the Turing machines in NPNP = Σp

2 membership proofs
into QBF, but this is not a practically useful or interesting
way of obtaining 2-quantifier QBF for conformant planning.

It is presumed that QBF with a smaller number of pre-
fix alternations are easier to evaluate (subject to complexity-
theoretic assumptions such as P6=NP.) Hence an efficient
QBF encoding of planning with an optimal prefix ∃∀ or ∀∃
should lead to more efficient planning than encodings with
prefix ∃∀∃. This is the starting point of this paper.

Preliminaries
We define in detail how (partially-ordered/parallel) plans
with nondeterministic operators are represented in the
propositional logic. The encoding of nondeterminism is im-
portant for understanding how the QBF in the later sections
work.

Definition 1. Let A be a set of state variables. An operator
is a pair 〈c, e〉 where c is a propositional formula over A
(the precondition), and e is an effect over A. Effects over A
are recursively defined as follows.

1. a and ¬a for state variables a ∈ A are effects over A.
2. e1 ∧ · · · ∧ en is an effect over A if e1, . . . , en are effects

over A (the special case with n = 0 is the empty effect
>).

3. c B e is an effect over A if c is a formula over A and e is
an effect over A.

4. e1| · · · |en is an effect over A if e1, . . . , en for n ≥ 2 are
effects over A.

The compound effects e1 ∧ · · · ∧ en denote executing all
the effects e1, . . . , en simultaneously. In conditional effects
c B e the effect e is executed if c is true in the current state.
The effects e1| · · · |en denote nondeterministic choice be-
tween the effects e1, . . . , en. Exactly one of them is chosen
randomly.

Definition 2 (Operator execution). Let 〈c, e〉 be an operator
over A. Let s be a state (a valuation of A). The operator is
executable in s if s |= c and every set E ∈ [e]s is consistent.
The set [e]s is recursively defined as follows.

1. [a]s = {{a}} and [¬a]s = {{¬a}} for a ∈ A.
2. [e1∧· · ·∧en]s = {

⋃n
i=1 Ei|E1 ∈ [e1]s, . . . , En ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and [c′ B e]s = {∅} otherwise.
4. [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s .

The alternative successor states of a state s when opera-
tor 〈c, e〉 is executed are those that are obtained from s by
making the literals in some E ∈ [e]s true and retaining the
values of state variables not occurring in E.

A problem instance is 〈A, I,O,G〉 where A is a set of
state variables, I and G are formulae over A (respectively
representing the sets of initial and goal states), and O is a set
of operators over A. There is a solution plan for this problem
instance if there is a sequence o1, . . . , on of operators such
that {o1, . . . , on} ⊆ O and for all states s such that s |= I
the operator sequence is executable starting from s and every
execution terminates in a state s′ such that s′ |= G.

In the following we use a notion of plans that allows the
execution of one or more operators simultaneously as long
as they do not interfere, which means that executing them in
both orders o1; o2 and o2; o1 is possible and has the same ef-
fect in both cases. To obtain a sequential plan simultaneous
operators may be ordered arbitrarily.

To simplify the presentation we adopt the following
stricter assumption for executability than the one in Defi-
nition 2.
Assumption 1. Every operator is executable if and only if
its precondition is true.

For example, the operator 〈a, ((c B b)|d)∧ ((c B ¬b)|d)〉
is not allowed because its effects are not well-defined if c is
true. The same operator with precondition a∧¬c is allowed.

The operators are assumed to be in a normal form in
which effects e in conditional effects c B e do not con-
tain nondeterminism | (Rintanen 2003). For simplicity of
presentation we further transform nondeterministic choices
e1| · · · |en so that only binary choices exist. For example
a|b|c|d is replaced by (a|b)|(c|d). Each binary choice can be
encoded in terms of one auxiliary variable.

The condition for the atomic effect l to be executed when
e is executed is EPCnd

l (e, σ). The sequence σ of integers
is used for deriving unique names for auxiliary variables
xσ which control nondeterminism. The sequences corre-
spond to paths in the tree formed by nested nondeterministic
choices and conjunctions.

EPCl(>) =⊥
EPCl(l) =>
EPCl(l′) =⊥ when l 6= l′ (for literals l′)
EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = c ∧ EPCl(e)
EPCnd

l (e, σ) = EPCl(e) if e is deterministic
EPCnd

l (e1|e2, σ) = (xσ ∧ EPCnd
l (e1, σ1))

∨(¬xσ ∧ EPCnd
l (e2, σ1))

EPCnd
l (e1 ∧ · · · ∧ en, σ)=

∧n
i=1 EPCnd

l (ei, σi)

Nondeterminism is encoded by making the effects condi-
tional on the values of the auxiliary variables xσ . Different
valuations of these auxiliary variables correspond to differ-
ent nondeterministic effects.

The following frame axioms express the conditions un-
der which state variables a ∈ A may change from true to
false and from false to true. Let e1, . . . , en be the effects of
o1, . . . , on respectively. Each operator o ∈ O has a unique
integer index Ω(o). For a state variable a the propositional
variable a denotes the value of a in the current state and a′

denotes its value in the successor state.

(a ∧ ¬a′)→
∨n

i=1((oi ∧ EPCnd
¬a(ei,Ω(oi)))

(¬a ∧ a′)→
∨n

i=1((oi ∧ EPCnd
a (ei,Ω(oi)))

For o = 〈c, e〉 ∈ O there is a formula for describing val-
ues of state variables in the predecessor and successor states
when the operator is executed.

(o→c)∧∧
a∈A(o ∧ EPCnd

a (e,Ω(o))→a′)∧∧
a∈A(o ∧ EPCnd

¬a(e,Ω(o))→¬a′)

Example 1. Consider o1 = 〈¬a, (b|(c B d)) ∧ (a|c)〉 and
o2 = 〈¬b, (((d B b)|c)|a)〉. The execution of these opera-
tors is described by the following formulae.

¬(a ∧ ¬a′) (¬a ∧ a′)→((o1 ∧ x12) ∨ (o2 ∧ ¬x2))
¬(b ∧ ¬b′) (¬b ∧ b′)→((o1 ∧ x11) ∨ (o2 ∧ x2 ∧ x21 ∧ d))
¬(c ∧ ¬c′) (¬c ∧ c′)→((o1 ∧ ¬x12) ∨ (o2 ∧ x2 ∧ ¬x21))
¬(d ∧ ¬d′) (¬d ∧ d′)→(o1 ∧ ¬x11 ∧ c)

o1→¬a
(o1 ∧ x12)→a′ (o1 ∧ x11)→b′

(o1 ∧ ¬x12)→c′ (o1 ∧ ¬x11 ∧ c)→d′

o2→¬b
(o2 ∧ ¬x2)→a′ (o2 ∧ x2 ∧ x21 ∧ d)→b′

(o2 ∧ x2 ∧ ¬x21)→c′

�

Two operators o1 and o2 may be executed in parallel only if
they do not interfere. Hence we use formulae ¬(o1 ∧ o2) for
all operators o1 and o2 that interfere.

Let X be the set of auxiliary variables xσ in all of the
above formulae. The conjunction of all the above formulae
is denoted by R(A,A′, O,X).

We need several copies of the formula R(A,A′, O,X) to
represent sequences of operators. We use propositional vari-
ables ai to represent the values of state variables a ∈ A in
different time points i. The set of propositional variables for
the values of state variables in A at time point i is Ai. Now
we can for example represent (parallel) operator sequences
of length two between time points 0 and 2 in terms of the
formula

R(A0, A1, O0, X0) ∧R(A1, A2, O1, X1).

We abbreviate R(Ai, Ai+1, Oi, Xi) by T (i, i + 1).
Given a formula φ over some set of variables A, we write
φt for the formula over At that is obtained from φ by replac-
ing every a ∈ A by at.

Encoding with Prefix ∃∀∃
The standard encoding of conditional planning (without ob-
servability) as a quantified Boolean formula has the prefix
∃∀∃ (Rintanen 1999).

∃P∀C∃E

(
I0→

(
t−1∧
i=0

T (i, i + 1) ∧Gt

))
(1)

Here P =
⋃t−1

i=0 Oi, and C = A0 ∪
⋃t−1

i=0 Xi consists of
the propositional variables that express different contingen-
cies (initial states and nondeterminism), and E =

⋃t
i=1 Ai

is the set of all remaining propositional variables.
The QBF says that there is a plan such that for all possible

contingencies there is an execution that leads to a goal state.
Since there is no observability, the plan is a sequence of op-
erators that cannot depend on the initial state or any events
that happen during plan execution.

That three quantifiers are used is slightly surprising since
the conditional planning problem with the restriction to
polynomial size plans is on the second level of the poly-
nomial hierarchy, not on the third (Rintanen 1999). Given a
plan (a valuation of P), one of the initial states and the non-
deterministic choices (a valuation of P ∪ C), the execution
(a valuation of E) can be computed in linear time by unit
resolution.

Since reasoning with QBF with a shorter prefix is in gen-
eral more efficient, there is an obvious need to develop QBF
encodings of conditional planning with the prefix ∃∀ or ∀∃.

Encoding with Prefix ∃∀
Considering that the planning problem is in Σp

2, there is a
QBF with prefix ∃∀ for testing the existence of a plan. At
the technical level, given the ∃∀∃ QBF of the previous sec-
tion, we either have to eliminate all the innermost existential
variables, or make them universal. We follow the latter idea
because the obvious implementations of the former idea in-
crease the size of the QBF exponentially in the worst case.
For our QBF ∃P∀EΦ, given a valuation of P that represents
a plan, all of the valuations of the variables E should satisfy
Φ. These valuations represent executions of the plan (which
should reach the goals) as well as state sequences that do not
correspond to an execution and which therefore do not have
to reach the goals. A QBF that formalizes this is

∃P∀E

(
ι ∧

[(
I0 ∧

t−1∧
i=0

T (i, i + 1)

)
→Gt

]
∧ ν

)
(2)

where

P =
t−1⋃
i=0

Oi

E =
t⋃

i=0

Ai ∪
t−1⋃
i=0

Xi

ι=
t−1∧
i=0

∧
o1,o2∈Ointerfere

¬(oi
1 ∧ oi

2)

ν = I0→
t−1∧
i=0

i−1∧
j=0

T (j, j + 1)

→
∧
o∈O

(oi→prec(o)i)

 .

The precondition of an operator o is denoted by prec(o).
The formula ν states that the plan is executable: the pre-

conditions of the operators in the plan must be true after
executing the preceding steps of the plan. The correctness
of this formula depends on Assumption 1.

The formula ι states that the plan does not execute two
interfering operators simultaneously.

Unlike in the ∃∀∃ encoding in the previous section, the
formulae T (i, i + 1) do not have to include the interference
and precondition constraints because the reachability tests
for states is made assuming that the plan is valid. Validity is
tested separately by formulae ι and ν.

Formula 2 has O(n2) size because of a quadratic number
of occurrences of T (i, i + 1) in ν and the quadratic size of
ι. First we reduce the number of occurrences of T (i, i + 1)
to t. We recursively define a sequence of formulae denoted
by meta-variables φi, i ∈ {0, . . . , t}.

φi =
{

Gt if i = t∧
o∈O(oi→prec(o)i) ∧ (T (i, i + 1)→φi+1), i < t

Now Formula 2 can be logically equivalently phrased as

∃P∀E(ι ∧ (I0→φ0)). (3)

The subformula ι has a quadratic size. There is an asymp-
totically optimal linear size encoding of the interference
constraints (Rintanen, Heljanko, & Niemelä 2006). Let ι′

be this encoding and let X be the new auxiliary variables
occurring in this formula. Our QBF encoding of the plan-
ning problem having linear size is now the following.

∃P∃X∀E(ι′ ∧ (I0→φ0)) (4)

Most of the implemented QBF solvers expect the QBF to
be in CNF, and this now poses a problem. A translation into
CNF in general may increase the formula size exponentially.
There is an inexpensive CNF transformation that uses aux-
iliary variables. However, this transformation cannot be ap-
plied because the auxiliary variables must be existential, not
universal, and they cannot occur before E in the prefix, only
after E, which would take us back to a ∃∀∃ QBF which we
originally wanted to avoid. In the next section we construct
a QBF that avoids this problem.

Encoding with Prefix ∀∃
An encoding with prefix ∀∃ is obtained from the ∃∀ encod-
ing simply by negating the QBF and pushing the negation
through the quantifiers, yielding the QBF

∀P∀X∃E(¬ι′ ∨ (I0 ∧ ¬φ0)). (5)
This QBF says that for all candidate plans, either the def-

inition of plans is violated (interference, non-executability)
or there is an execution that does not lead to a goal state.

Since the inner quantifier is ∃, there is no problem apply-
ing a linear CNF transformation. The main practical differ-
ence to the ∃∀QBF is that the existence of plans corresponds
to the ∀∃QBF being false, not true. Hence a plan is obtained
as a valuation of P that falsifies the remaining ∃ QBF.

Some experiments showed that it is better to have less
variables quantified by the outermost quantifiers. We tested

also a different encoding ι2 of ¬ι′ in which the associated
auxiliary variables X ′ are existentially quantified. The for-
mula ι2 uses similar implication chains as ι′: if an operator
that makes a true is not executed, then a later such operator
(in an arbitrarily chosen ordering) is executed, and for one
executed operator that makes a true there is a later executed
operator in the ordering that either makes a false or requires
a not to be made true because it occurs in the precondition
or in the antecedent of a conditional effect. The formula ι2
is slightly more complicated than ¬ι′ but both have a linear
size and require a linear number of new auxiliary variables.
An alternative encoding of the planning problem that uses
the formula ι2 is hence

∀P∃X ′∃E(ι2 ∨ (I0 ∧ ¬φ0)). (6)

Experiments
We test the encodings by using some benchmark problems
presented in the literature. Bonet and Geffner (2000) pro-
posed one of the most interesting planning benchmarks that
have no observability, sorting networks (Knuth 1998). The
other benchmarks we consider – the BTC, blocks world
(BW), ring, and square problems – have a very simple struc-
ture but pose problems for the current generation of planning
algorithms. For a description see (Bonet & Geffner 2000).

The QBF that represent planning problems can be eval-
uated by Davis-Putnam style QBF algorithms or by other
types of algorithms. In this section we consider two general-
purpose QBF solvers that can be readily downloaded from
the Internet, QuBE-Rel by Giunchiglia et al. (2002) and
yQuaffle by Yu and Zhang&Malik (2002). Another ap-
proach to QBF evaluation was used by Palacios and Geffner
(2005) in connection with the standard ∃∀∃ encoding, and it
would be interesting to test the impact of the simpler ∃∀ pre-
fix on the planning runtimes with their DNNF-based com-
piler and a SAT solver. There is a close connection of this
approach to the algorithm by Biere (2005).

All the experiments were run under Linux in a Dell Lati-
tude D610 laptop with a 2.0 GHz Intel Pentium M 760 pro-
cessor, 2MB cache and 1GB memory. Generation of all the
1300 QBF used in the experiments took 2 minutes of CPU
time, with a maximum of about two seconds per QBF. We
used the encoding 5 for all but the sorting network problems
for which the encoding 6 turned out to be better.

The runtimes of the QBF solvers QuBE and yQuaffle for
the ∀∃ and ∃∀∃ encodings of the benchmarks are given in
Table 1. No clear picture emerges from the runtimes. The
QuBE runtimes with the ∀∃ encoding are always worse than
with the ∃∀∃ encoding. The yQuaffle runtimes with ∀∃
are often better but in many cases worse. The strongest
solver/encoding combinations on these problems are yQuaf-
fle with ∀∃ and QuBE with ∃∀∃. The strength of ∃∀∃/QuBE
is in the BTC, BW and ring problems, and the strength
of ∀∃/yQuaffle in the sorting network problems. For the
square problems the results are mixed: ∀∃/yQuaffle can-
not prove tight plan length lower bounds in a reasonable
time but finds suboptimal solutions very quickly. However,
with parallel plan search algorithms which are not guaran-
teed to find optimal plans (Rintanen, Heljanko, & Niemelä

instance len plan prefix ∀∃ prefix ∃∀∃
QuBE yQuaffle QuBE yQuaffle

btc04-1 6 F 3.32 0.70 0.00 0.01
btc04-1 7 T 3.84 1.92 0.00 0.01
btc05-1 7 F 88.10 13.32 0.01 0.03
btc05-1 8 F - 158.56 0.02 0.04
btc05-1 9 T - - 0.01 0.05
BW2 2 F 0.05 0.02 0.00 0.01
BW2 3 T 0.11 0.05 0.01 0.02
BW3 5 F - 25.15 2.34 200.33
BW3 6 F - - 25.16 -
BW3 7 T - - 8.39 -
BW4 4 F - 25.46 234.76 -
ring02 4 F 7.33 0.15 0.01 0.00
ring02 5 T 98.88 0.09 0.01 0.00
ring03 5 F 257.78 1.52 0.03 0.02
ring03 6 F - 17.53 0.11 0.08
ring03 7 F - - 0.48 0.39
ring03 8 T - 136.93 1.29 1.83
ring04 4 F 14.93 0.29 0.01 0.03
ring04 5 F 363.01 2.01 0.03 0.05
ring04 6 F - 22.51 0.14 0.16
ring04 10 F - - 39.85 178.37
ring04 11 T - - 83.46 279.18
sort5 2 F 38.66 0.02 0.01 0.01
sort5 3 F - 0.07 0.15 0.18
sort5 4 F - 0.37 11.17 14.61
sort5 5 T - 0.25 2.34 16.38
sort6 4 F - 1.30 115.91 -
sort6 5 T - 0.66 209.78 -
sort7 3 F - 0.34 22.54 125.21
sort7 4 F - 3.08 - -
sort7 5,6,7 ? - - - -
sort7 8 T - 6.45 - -
sort7 9 T - 7.24 - -
sort8 3 F - 0.83 107.82 -
sort8 4 F - 7.70 - -
sort8 5,6 ? - - - -
sort8 7 T - 247.66 - -
sq3 5 F 4.26 8.90 0.02 0.01
sq3 6 F 66.16 - 0.06 0.05
sq3 7 F - - 0.36 0.19
sq3 8 F - - 4.06 1.13
sq3 9 F - - 37.17 7.01
sq3 10 T - - 63.84 166.93
sq3 11 T - - 22.88 184.34
sq3 12 T - 1.28 59.41 115.16
sq3 13 T - 1.31 87.09 102.17

Table 1: Runtimes with ∀∃ and ∃∀∃ encodings

2006) ∀∃/yQuaffle is for these problems more efficient than
∃∀∃/QuBE.

In summary, it is not clear whether the ∀∃ encoding is an
improvement over the ∃∀∃ encoding, but on some problems
(sorting networks) the ∀∃ leads to by far the best runtimes.
The ∃∀∃ encoding dominates on the other problems which
have a far simpler structure than the sorting network prob-
lems. The most difficult soluble QBF for most benchmarks
series had sizes in the range between 10 KB and 30 KB.

The sizes of both the ∃∀∃ and the ∀∃ QBF grow linearly,
but the ∀∃ QBF are about twice as big because of the more
complicated structure with deep nesting of disjunctions at
the top level. Also the number of auxiliary variables needed
for CNF transformation is higher. It would be interesting to
see how non-CNF QBF solvers which take arbitrary formu-
lae or circuits as input would fare.

Related Work
Rintanen (1999) generalized the planning as satisfiability ap-
proach to nondeterministic planning problems and QBF, and
is the basis of this work. A follow-up work by Giunchiglia
(2000) does not represent the QBF explicitly, and splits plan-
ning to search for candidate plans and verifying their cor-
rectness. The latter is reduced to a satisfiability test. This ap-
proach can be directly compared to the ∀∃ and ∃∀ QBF pre-
sented by us but what is roughly the outermost ∃ quantifier
in our ∃∀ QBF is handled by an ad hoc search algorithm and
there is no exact match to the QBF. Brafman and Hoffmann
(2004) present a variant of Giunchiglia’s approach where the
search algorithm uses a heuristic.

Palacios and Geffner (2005) do not make the QBF ex-
plicit but their implicit QBF are like the ∃∀∃ of Rintanen
(1999). Their planning method is actually a general-purpose
algorithm for evaluating QBF by reduction to satisfiability
testing through an intermediate compilation to DNNF. The
reduction proceeds by eliminating the two inner quantifiers
∀∃ by universal and existential quantification, and a plan is
found by finding a satisfying assignment to the resulting for-
mula. Palacios and Geffner demonstrate that for some prob-
lems their approach has a clear advantage over an earlier
DNNF-based approach by Palacios et al. (2005).

The DNNF/SAT-based approach to QBF evaluation seems
more efficient for some of the planning problems than Davis-
Putnam style AND-OR search. Palacios and Geffner (2005)
report finding depth 6 sorting networks for 7 and 8 inputs
respectively in 46 and 4256 seconds and being able to prove
the optimality for 7 inputs in 355 second and for 8 inputs
not in less than 2 hours. The lower and upper bounds we
could show with the ∀∃ QBF for nets with 7 and 8 inputs
within a time limit of 400 seconds are looser. However, with
the ∃∀∃ encoding it would only be possible to show very
loose lower bounds for these nets and no upper bounds at
all. It would be interesting to test whether similar dramatic
improvement could be obtained with the DNNF approach by
using ∃∀ QBF instead of ∃∀∃ QBF.

Planning by heuristic search in the space of belief states
is very efficient for many types of problems, for example for
finding sorting networks that are relatively close to the op-
timal (Rintanen 2004). However, for finding networks with

optimal size or depth is not feasible further than up to 6 input
gates, which is also about where the QBF approaches scale
to: Palacios and Geffner prove the optimality of a 16 gate
network for the 7 input problem in one hour.

Conclusions
We have presented an encoding of conformant planning as
QBF with the prefixes ∃∀ and ∀∃, improving earlier encod-
ings which have the prefix ∃∀∃. Evaluation of these QBF
with AND-OR tree search QBF algorithms gives mixed re-
sults: in some cases the new encoding is more efficient,
sometimes less. However, for one very challenging problem,
sorting networks, the new encoding improves the efficiency
to a level which had earlier only achieved with a specialized
DNNF based approach.

The work underlines the importance of developing more
efficient and robust algorithms for evaluating QBF. The QBF
solvers used in the experiments are similar but exhibit wildly
differing behaviors. We believe that the future successes of
QBF in many applications is strongly dependent on the de-
velopment of better algorithms for evaluating QBF.

Acknowledgements
This research was supported by NICTA Ltd in the frame-
work of the SuperCom and DPOLP projects. NICTA is
funded through the Australian Government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian Na-
tional Research Council.

References
Biere, A. 2005. Resolve and expand. In Theory and Ap-
plications of Satisfiability Testing, 7th International Con-
ference, SAT 2004, Vancouver, BC, Canada, May 10-13,
2004, Revised Selected Papers, number 3542 in Lecture
Notes in Computer Science, 59–70. Springer-Verlag.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Chien, S.;
Kambhampati, S.; and Knoblock, C. A., eds., Proceedings
of the Fifth International Conference on Artificial Intelli-
gence Planning Systems, 52–61. AAAI Press.
Brafman, R. I., and Hoffmann, J. 2004. Conformant plan-
ning via heuristic forward search: A new approach. In
Zilberstein, S.; Koehler, J.; and Koenig, S., eds., ICAPS
2004. Proceedings of the Fourteenth International Con-
ference on Automated Planning and Scheduling, 355–364.
AAAI Press.
Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2002.
Learning for quantified Boolean logic satisfiability. In Pro-
ceedings of the 18th National Conference on Artificial In-
telligence (AAAI-2002) and the 14th Conference on Inno-
vative Applications of Artificial Intelligence (IAAI-2002),
649–654.
Giunchiglia, E. 2000. Planning as satisfiability with ex-
pressive action languages: concurrency, constraints and
nondeterminism. In Cohn, A. G.; Giunchiglia, F.; and Sel-
man, B., eds., Principles of Knowledge Representation and

Reasoning: Proceedings of the Seventh International Con-
ference (KR 2000), 657–666. Morgan Kaufmann Publish-
ers.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In
Proceedings of the 13th National Conference on Artificial
Intelligence and the 8th Innovative Applications of Artifi-
cial Intelligence Conference, 1194–1201. AAAI Press.
Knuth, D. E. 1998. Art of Computer Programming, Vol-
ume 3: Sorting and Searching. Addison-Wesley Publishing
Company.
Palacios, H., and Geffner, H. 2005. Reducción de la plan-
ificación conformante a SAT mediante compilación a d-
DNNF. In XI Conferencia de la Asociación Española para
la Inteligencia Artificial. Also presented in an ICAPS’05
workshop as ”Mapping conformant planning into SAT
through compilation and projection”.
Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H.
2005. Pruning conformant plans by counting models on
compiled d-DNNF representations. In Biundo, S.; Myers,
K.; and Rajan, K., eds., ICAPS 2005. Proceedings of the
Fifteenth International Conference on Automated Planning
and Scheduling, 141–150. AAAI Press.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. Journal of Artificial Intelligence Research
10:323–352.
Rintanen, J. 2003. Expressive equivalence of formalisms
for planning with sensing. In Giunchiglia, E.; Muscettola,
N.; and Nau, D., eds., Proceedings of the Thirteenth Inter-
national Conference on Automated Planning and Schedul-
ing, 185–184. AAAI Press.
Rintanen, J. 2004. Distance estimates for planning in the
discrete belief space. In Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI-2004) and the
16th Conference on Innovative Applications of Artificial
Intelligence (IAAI-2004), 525–530. AAAI Press.
Russell, S., and Wolfe, J. 2005. Efficient belief-state AND-
OR search, with application to Kriegspiel. In Kaelbling,
L. P., ed., Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence, 278–285. Morgan Kauf-
mann Publishers.
Zhang, L., and Malik, S. 2002. Conflict driven learning in
a quantified Boolean satisfiability solver. In Proceedings
of the 2002 IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD2002), 442–448. ACM Press.

