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Abstract. In many types of planning algorithms distance heuristics?  Preliminaries
play an important role. Most of the earlier works restrict to STRIPS
operators, and their application to a more general language with did/e give a definition of operators that corresponds to ADL/PDDL
junctivity and conditional effects first requires an exponential sizeoperators [4] that have been grounded which means that quantifiers
reduction to STRIPS operators. forall andexistshave been eliminated and all parameters have been
| present direct formalizations of a number of distance heuristicgnstantiated with objects of appropriate types in all possible ways.
for a general operator description language in a uniform way, avoid- We use the classical propositional logic with the connectives
ing the exponentiality inherent in earlier reductive approaches. Th&/; A\, = and the constant symbdisie T andfalse L. The state vari-
formalizations use formulae to represent the conditions under whichbles of a planning problem are the atomic propositions of the logic.
operators have given effects. The exponentiality shows up in satisfisState variablea € A and their negations atierals. The comple-
bility tests with these formulae, but would appear to be a minor issuénent of a literall is defined bys = ~a and=a = a forall a € A.

because of the small size of the formulae. _ . .
Definition 1. Let A be a set of state variables. An operator oveis

) a pair (c, e) wherec is a formula overA describing the precondition
1 Introduction ande is an effect overd. Effects are recursively defined as follows.

Much of planning research has been carried out in the context of __.
. . T is an effect (the dummy effect).
STRIPS operators, named after the famous planning system [3]. .
. ) . . a and—q for state variables: € A are effects.
STRIPS operator consists of three sets of facts: a precondition, %n . .
. . . .e1 A --- ANey,is an effect ife, ..., e, are effects ove (the
addlist, and adeletelist. There are many actions that cannot be ex- . h . )
- . special case wit = 0 is defined as the dummy effélct)

pressed in terms of STRIPS operators only, for example anythin . o .

i . & cr> eisan effectifcis a formula anck is an effect over.
with context-dependent effects, but it is well known that any classi-
cal planning problem (one initial state, deterministic actions) can be~gnditional effects > e mean that is executed it: is true.
translated into an equivalent one with STRIPS operators only. How-
ever, this translation may increase the size of the planning problerefinition 2 (Operator execution). Leto = (c, e) be an operator
exponentially, and therefore it is not desirable. over A ands a state (an assignment of truth values4q The opera-

In this paper we use a general language for expressing classicar is executablén s if s = cand{a, ~a} Z [e]s forall a € A. The
planning problems, including conditional effects and disjunctive pre-set|e]; of literals (theactive effectf e in s) is defined as follows.
conditions. We show that for many purposes a small toolbox of def-
initions based on the propositional logic is sufficient for handling a1 .
general operator definition rather elegantly. Specifically, we consider.
a number oflistance heuristicdeveloped for STRIPS planning, and 3.
generalize them to a much more expressive planning language. 4.

Anecdotal evidence from the planning community tells that hans,
dling conditional effects and disjunctive preconditions elegantly is

difficult. Indeed, no clear formalizations of the above heuristics — orThe successor state app) of s undero is obtained froms by mak-

many planning algorithms and other planning techniques —in the fullng the literals in[e]; true and retaining the values of state variables
generality of conditional effects and disjunctive preconditions havenot occurring infe]s. For sequences = o1; 02; . . . ; 0, Of Operators

been published. Re_lated works and planning system injplementat_iomse define app(s) = app,,, (- - - appo, (@app, (s)) - - - ).

rely onad hoctechniques, for example on an exponential translation

of all formulae into DNF and on eliminating conditional effects. We Example 1. Consider the operatofa, e) wheree = —a A (—c¢ >

show how general operator definitions can be handled concisely andb) and a states such thats = a A b A ¢. The operator is executable

elegantly without an exponential blow up in size or processing timebecause |= a. Nowle], = {—a} and app,,.)(s) = ~aAbAc. B
The outline of this paper is as follows. In Section 4.1 we generalize

Bonet and Geffner’s [1] max heuristic to operators with conditional A Problem instancés a quadruplé A, I, O, G) whereA is the set

effects and arbitrary disjunctive preconditions. A novelty here is tha©f state variables is the initial state is the set of operators and

the heuristic is not defined as a cyclic recursion equation. In Sectiof iS the goal formula. A sequenee= o.;.. . ;0n Of Operators is a

4.2 we do the same to Bonet and Geffner’s [1] additive heuristic, andlan for the problem instance iapp, (1) = G.

in Section 4.3 to Hoffmann and Nebel's [@laxed plarheuristic. The formula EPG (e) expresses the conditions under which the
literal [ is assignedrue when the effect is executed.
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Tls=0
als ={a}forae A

—|a]s = {—\a} forae A

e1 A Aenls = [er]s U... U[en]s

cr>els = [e]s if s E cand[c > e]s = 0 otherwise.




Definition 3. Define the formula EP@e) recursively as follows. A formula ¢ has a finite distance iff4, I, O, ¢) has a plan.
Reachability and distances are useful for implementing efficient

EPG(T)=1 planning systems. We mention two applications. First, if the precon-
EPG())=T dition of an operator is not reachable, the operator can never be ap-
EPG (I")=L1 whenl # 1’ (for literals I") plied and can be ignored. Second, having an oracle that could tell the
EPC(e1 A---ANen)=EPG(e1) V- -V EPG(en) distances of states for free would directly yield a planning algorithm:
EPG(c > e)=cA EPG(e ) step by step choose a sequence of operators that decrease the distance
of the goal formula from the current state by one.
The caseEPC(e1 A -+ Aen) = EPG(er) V---V EPG(en) Computing distances is in the worst case just as difficult as plan-
is defined as a disjunction because it is sufficient that at least one @fing itself (PSPACE-complete), and hence it is usually not useful
the effects, . . ., e, makeg true. For exampleEPC.(aAb) = T,  to use exact distances. Instead, different kindapgfroximationsof
EPC.(b) = Land EPG,((b> a) A (c>a)) =bVe distances and reachability can be used.

We define a formula that indicates when an operator is executable

so that a given literal becomes true. . ..
g 4 Distance Heuristics

Definition 4. Let A be the set of state variables and= (c, e) an

- Many approximations of distances are based on the following idea.
operator overA. Define

Instead of considering the number of operators required to reach indi-
vidual states, we compute approximate humbers of operators to reach
EPG(0) = ¢\ EPG(e) A /\ ~(EPGi(e) A EPCoa(e)). states in which certain literals are true. So instead of distances of
acA states, we use distances of literals. Within the computation of dis-
tances of literals, distances of formulae are estimated in terms of the
distances of literals, which introduces an inaccuracy because the de-

Lemma 1. Let A be the set of state variablesa state overd, [ a pendencies between literals are ignored. The heuristics therefore may
literal over A, ando an operator ovetd with the effect. Then underestimate the actual distance and only yield a lower bound for it.

There is a connection betwedfPC (e) and the definition ofe]s.

1. 1 € [e]s ifand only ifs = EPG(e), and 4.1 Admissible Max Heuristic
2. app.(s) is defined and € [e], if and only ifs = EPG /(o).
Effective heuristics were presented by McDermott [8], Bonet et al.
The proof of this lemma and some that follow are by structural[2, 1] and Haslum and Geffner [6]. We first describe a generalization
induction and can be found in a technical report [9]. of the Bonet et almaxheuristics to our definition of operators.
We give a procedure that computes a lower bound on the number
. . of operator applications that are needed for reaching from a Etate
3 Reachability and Distances a state in which certain literals are true. SB8® consist of literals

. e . - that are true in all states that have a distaxdce
The notion of reachability is important in defining whether a plan-

ning problem is solvable and in deriving techniques that speed upefinition 8. LetL = AU {—ala € A} be the set of literals oved
search for plans. Distances between states are closely related $@d 7 a state. For alli > 1 define themax-distance sets
reachability and will be defined next. Heuristics in Section 4 are ap- B
proximations of distances. Defirieng,(S) = { app,(s)|s € S}. Di®={l € L|I = 1},and

Dmax D"\{l € Lo € O, D™¥'U {EPG(0)} is satisfiablé.
Definition 5. Let I be an initial state and) a set of operators. De-
fine thedistance set®™ for I, O which consist of those states that ~ The computation starts frof§*® which consists of all literals

are reachable frond by executing at mostoperators. that are true in the initial staté. This set therefore characterizes
those states that have distance 0 from the initial state.
f""d,{ [} Then we compute sets of literals characterizing states with dis-
wad D U {slocO,s¢ imgo(DI‘ﬁdl)} foralli > 1 tance 1 2 and so on. Each €21'®is computed from the preceding

set DI"@ by testing for each operaterwhether it is executable in

Definition 6. Given a statel, a setO of operators and the distance ©One of the distance — 1 states and whether it could make a ltera
fwd [ false. This is by testing whethdEPC;(o) is true in one of the dis-

setngWd, D;, ... for I, O, the distancef a states from I is . - X - max
tancei — 1 states. Ifitis] will not be included inD; .
0if s = I Since we consider only finite setd of state variables and
(s) = {ufs e pidy pivd |IDI® = |A| and DIE € D" for all i > 0, necessarily
i1 D" = D"®for somei < |A| and allj > i.
Every state with distance i satisfiesD"

smd

If s & D?"’d forall< >0 then&?’"d(s) = oo. States that have a finite
distance areeachablgfrom I with O). Theorem 9. Let D™ j > 0 be the distance sets adef"® the max-

distance sets fof andO. Then for alli > 0, DIWd C{seSlskE

Distances can also be defined for formulae. .
D"} whereS is the set of all states.

Definition 7. Thedistances; (¢) of a formulag is < > 1 if there The setsD"® can be used for estimating the distances of formu-

fwd . . /
is a states such thats ?: ¢ ands; " (s) =i and tmre IS no state lae. The distance of a formula is the minimum of the distances of
such thats’ = ¢ and&I ( ") <i.If I = ¢thend;  (¢) = 0. states that satisfy it.



Definition 10. Let¢ be a formula. Define two satisfiability tests that do not require that and ¢» (respec-
tively —¢1 and —¢2) are simultaneouslysatisfiable. For example,

max 0 iff DU {¢} is satisfiable asafl, a A —~a)= true althoughu A —a is unsatisfiable.
8T (¢) = < diff D'®*U {4} is satisfiable and
D' U {¢} is not satisfiable for d > 1. Lemma 3. Let¢ be a formula andD a set of literals. IfD U {¢} is

satisfiable, then aséb, ¢) returns true.
Lemma 2. Let I be a state, O a set of operators, and

DI D& the max-distance sets fof and O. Then L i -
aPPoy.....o, (1) = DM for any operatorsos, .. ., 0.} C O. 4.2 Inadmissible Additive Heuristic

;[pe max heuristic is very optimistic about the distances, and in many
cases it seriously underestimates them. If there are two goal literals,
the maximum of the goal costs (distances) is taken to be the com-

The next theorem shows that the distance estimates are a low
bound on the actual distances.

Theorem 11. Let I be a state,O a set of operatorsg a for- bined cost. This however is only accurate when the easier goal is
mula, andDJ'® D@ the max-distance sets fdrand O. If achieved for free while achieving the more difficult one. Goals are
appo,:....on (1) = ¢, thenDI'¥* U {4} is satisfiable. often independent and then a more accurate estimate would be the

sum of the individual costs. To fix this problem Bonet and Geffner

Proof. By Lemma 2 appoy;..0, (1) | DI By assumption  [1] proposed a more practical variant of the max heuristic.
appy;....0, (1) = ¢. HenceD'™ U {¢} is satisfiable. O Our definition is based on an auxiliary definition for the cost of
achieving a formula. The cost of a literal is the number of steps it
takes to achieve it, in a similar approximative sense as imtag
heuristic. The cost of a disjunction is the minimum cost of the dis-

The estimatéT'®{(¢) never overestimates the distance frerto juncts. The cost of a conjunction is tsamof the costs of the con-
¢ and it is therefore an admissible heuristic. It may severely unjuncts. This is the difference to tteaxheuristic where the cost of a
derestimate the distance, as discussed in Section 4.2. A fafily ~conjunction is thenaximunof the costs of the conjuncts.
of stronger admissible heuristics has been proposed by Haslum a
Geffner [6]. The heuristi¢:* is the max heuristic. There is an algo-
rithm for computingm-literal invariant clauses that generalizes the
setsD™*to sets ofm-literal clauses [9] and yields tHe™ heuristic. Di={le LTk}

D} =D \{l € L|o € O, cos{ EPC(0),4) < i} forall i > 1

Corollary 12. For a formula¢ and a statel, if o1, ..., 0, is a se-
quence of operators and app.....,. (I) = ¢ thenn > §7'(¢).

IBjefinition 13. Let] be a state and. = AU {—a|a € A} the set of
literals. Define the set@jr for ¢« > 0 as follows.

4.1.1 Distance Estimation in Polynomial Time i
We define cosb, i) as follows.

The computation of the set®"® and the distances!"®X(¢) is

polynomial time except for the NP-complete satisfiability tests for cos( L, z):

D U{¢} whereD is a set of literals. Her¢ = EPG (o) for a literal cos{(T,i)=0

[ and an operatar. The size of is in the worst case quadratic in the cost{a,:)=0if —a & D0+, forae A

size ofo, and hence the formulag are typically small. The cost of cos(—a,i)=0ifa ¢ D}, fora c A

the satisfiability test is exponential in the sizego&nd linear inD, costa,i)=j if ~a € D+ \D* for somej < i

and hence the NP-completeness is almost never an issue. cos{—a,i)=jifa € D 1\D+ for somej < ¢
However, to show that our approach is feasible even in the un- costa,i)=oc if —a € DJr forall j <

realistic case of huge operators we give a simple polynomial time cos{—a,i)=ccif a € D+ forall j <

approximation aséD, ¢) of the satisfiability tests with the property cos{(¢1 V ¢2, ):mln(cos(qbl, i), coS{2,14))

thatif DU{¢} is satisfiable then asdp, ¢)=true. The proof of The- cos{é1 A ¢2,7)=cos{¢1, ) + cos{epo, i)

orem 9 works when the satisfiability testsiofU {¢} are replaced by cos(——¢, i) =cos(®, i)

asatD, ¢). The approximation never leads to overestimating the dis-  cos{(—(¢1 A ¢2),7) =min(cos{—¢1,1), COS(—¢2, 7))

tances, only underestimating, and for STRIPS operators the approx-  cos{—(¢1 V ¢2), i) =cos{—¢1,i) + cos{—¢p2, i)

imation never makes a difference and for general operators rarely.

Define asdtD, ¢) as follows. The above definitions would appear to be cyclic but the defini-
tion of D} refers to cogip, j) for j < i only and the definition of
asatD, L )=false cos{(¢, 1) refers toD} for j < i only.
asatD, T)=true The definition of cogip, 7) ignores dependencies between con-
asatD,a)=trueiff ma ¢ D (fora € A) juncts in the same way as the definition &8ate).
asa{D, —a)=trueiffa ¢ D (fora € A) o _
asatD, ——¢)=asatD, ¢) Definition 14. Let¢ be a formula. Define
asaftD, ¢1 V ¢2) =asatD, ¢1) or asatD, ¢o)
asafD, ¢, A ¢o)=asatD, 1) and asdtD, ¢2) 67 (¢) = costg, n)
asatD, (41 V ¢2)) =asatD, ~¢1) and asgiD, ~¢2) wheren is the smallest such thatD} = D |.
asafD, —(¢1 A ¢2))=asatD, ~¢1) or asatD, —¢pz) ‘ -

The following theorem shows that the distance estimates of the
The cases for(¢1 A ¢2) and—(¢1 V ¢2) are respectively obtained  aqgitive heuristic are never lower than those of the max heuristic.
from the cases fop:1 V ¢2 and¢: A ¢2 by the De Morgan laws.
The inaccuracy of the satisfiability tests stems from the fact thafrheorem 15. Let DI"® i > 0 be the sets defined in terms of the
for formulaeg, A ¢ (respectively-(¢1 V ¢2)) we make recursively — approximate tests as@d, ¢). ThenD;"® C D;" for all i > 0.



Proof. The proof is by induction omn. (in the D" sense) and a set of operators making them true. These

Base case = 0: By definition D = D{"® operators form the last step of the relaxed plan. A new goal formula

Inductive casei > 1: By the induction hypothesiD"& C represents the conditions under which these operators can make the
D . To showD™\{l € Ll|o € O,asatD"® EPG{0))} C literals true. Then a new set of goal literals is produced by a form of
D \{l € L|o € O,cos{ EPG(0),i) < i} itis sufficient to show  regression from the new goal formula. The computation is repeated
that cost EPG;(0), i) < i implies asatD"® EPG;(0)). until we have a set of goal literals that are true in the initial state.

We show this by induction on the structuregpt= EPC(0). Along the way we have constructed a relaxed plan.

Induction hypothesis: cogt, i) < i implies asatD"&, ¢)=true. The function goalgD, ¢) recursively finds a se¥/ of literals such

Base case X = L: cos{L, i) = oo and asatD"® | )=false. that M = ¢ and each literal inV/ is consistent withD. Note that

Base case 2) = T: cos{T,4) = 0 and asatD!"® T)=true. M itself is not necessarily consistent, for example for= ( and

Base case 3p = a: If cost(a,i) < ithen—a ¢ Dj for some ¢ = aA—-awe getM = {a, ~a}. IfasetM is found goal§D, ¢) =
j < ior-a ¢ D§.Hence—a ¢ Dj ,. By the outer induc- {M?} and otherwise goal®, ¢) = 0.
tion hypothesis~a ¢ DM and consequentlya ¢ DM Hence

asat D" q)=true. Definition 16. Let D be a set of literals.
Base case 4) = —a: Analogous to the casg = a. goalg D, 1)=0
Inductive case 5 = ¢1 V ¢h2: Assume cosipy V ¢z, i) < i. Since goalg D, T)={0}
cos(1 Vo, i) = min(cos{¢r, i), cos{¢o, 7)), either costps, i) < goaly D, a)={{a}} if ~a ¢ D
i or cost¢s, i) < i. By the induction hypothesis cdst;, i) < i im- goaly D, a)=0if —a € D
plies asatD"®* ¢,), and costgs, i) < i implies asatD"® ¢.). goaly D, ~a)={{-a}}ifa g D
Hence either asab™®* ¢, ) or asatDM®", ¢, ). Therefore by defini- goaly D, —~a)=0ifa € D
tion asat DM 41 V ¢o). goal{ D, ~—¢)=goaly D, ¢)
Inductive case 6¢ = ¢1 A ¢a: Assume cogip A ¢o,i) < i. goals D, ¢ V 6 ):{905”5(197 ¢1) if goals(D, ¢1) # 0
Sincei > 1 and costé: V ¢2,i) = cos(¢1,i) + cos{¢e, i), both P12 goaly D, ¢2) otherwise
cos(¢1,i) < i and costes,i) < i. By the induction hypothesis {L1U Lz} ifgoals(D, ¢1) = {L1}
cos(¢1,i) < i implies asatD™® ¢1), and costps,i) < i im- goald D, ¢1 A ¢2)= and goalgD, ¢2) = {L2}
plies asatD"X #5). Hence both asabM®X ¢,) an asatD"3 ¢s). 0 otherwise
Therefore by definition as@b"® ¢1 A ¢2). goals( D, ~(¢1 A ¢2)) = {goals(D, —¢1) if goalg(D, —¢1) # 0
Inductive case 7,0 = --—¢i: By the induction hypoth- P TR goald D, ~¢) otherwise
esis codip1,i) < 4 implies asatD® ¢,). By definition {L1U Lo} ifgoals(D, ~¢1) = {L1}
cos{——¢1,i) = cos{¢1,i) and asatD,——¢) = asatD,¢).  90als(D,=(¢1V ¢2))= and goalgD, ~¢2) = {L2}
By the induction hypothesis cdst—¢1,7) < i implies 0 otherwise

asaf D" ——¢1).
Inductive case 8 = —(¢1 V ¢2): Analogously tap = ¢1 A ¢2.
Inductive case 9% = —(¢1 A ¢2): Analogously tap = ¢1 Vo, O

That the additive heuristic gives higher estimates than the mak€Mmma 4. LetD be a set of literals and a formula.
heuristic could in many cases be viewed as an advantage because ihegoals(D, ) # 0 if and only if asatD, ¢) = true.
estimates would be more accurate. However, sometimes this leads4o ¢ goalsD,¢) = {M} then{l|l € M} N D = 0 and
overestimating the actual distance, and the heuristic is therefore not asa(D, \,., 1) = true.
admissible (but see recent work by Haslum et al. [5].) iNeM

If both ¢1 and¢- yield goal literals forg: V ¢2 the set forp, is
chosen. A practically better choice is the smaller of the two sets.

Proof. 1. This is an easy induction proof on the structuresdfased
on the definitions of aséb, ¢) and goaléD, ¢).

2. This is becausé ¢ D for all [ € M. This can be shown by a
simple induction proof. O

Example 2. Consider an initial state such thdt= —a A =b A —¢
and the operatof T, a AbAc). A state satisfying AbA cis reached
by this operator in one step bdf (a A b A c) = 3.

4.3 Inadmissible Relaxed Plan Heuristic Lemma5. LetD andD’ C D be sets of literals. If goal®, ¢) = 0
and goal§D’, ¢) = {M}, then there ig € M such that € D\D'.
The max heuristic and the additive heuristic represent two extremes.

The first assumes that sets of operators required for reaching the dif- i

ferent goal literals maximally overlap in the sense that the operator®€finition 17. Defined;” (¢) = relaxedplari4, I, O, ¢).
for the most difficult goal literal include the operators for all the re- The additive and the relaxed plan heuristic are incomparable and
maining ones. The second assumes that these sets are completg!%h give estimates at least as high as the max heuristic.

disjoint. In some cases the first is better and in others the second.

To estimate the distances more accurately the operators should heorem 18. Let ¢ be a formula and'®{¢) the max-distance de-

better taken into account, which suggests yet another approach ¥ ed in terms of aséD, ¢). Thené?x(@ > 6MaX( ),
computing a heuristic: attempt to find a set of operators that in a -

very loose sense reaches the goals. This idea has been consideredfigof. We have to show that for any formula the procedure call
Hoffman and Nebel [7]. Aelaxed planis computed as follows (see relaxedplarfA,l,0,G) returns a number §7G).

the algorithm in Figure 1.) We first choose a set of goal literals the The procedure returnso if and only if asatD"® G) = false
truth of which is sufficient for the truth of the goal formufa These ~ for all # > 0. In this case by definition]'®(G) = oco. Otherwise
literals must be reachable in the sense of the B§t&*from Section ¢ = §T"®(G). Now ¢ = 0 if and only if asatDJ'® G) = true. In
4.1. Then we identify the goal literalswith the highest distance this case the procedure returns 0 without iterating the loop (line 9.)



1: procedurerelaxedplan(A,l,0,G);
2. L:=AU{-ala € A}, (* Set of all literals *)
3:  compute set®"*as in Definition 8;
4: if asafDI"® @) = false for alli > 0 then return oo;
5. t:=07¥G);
6: LS, =0 (* Goal literals initially *)
70 Nit1:=0;
8 G::=G; (* Initial goal formula *)
9: for ¢ :=t¢downto1do
10: L§ = (L& \Nit1) U {l € MM € goalg D™ G;)};
11 N; :={l € L¢|l € D"®}; (* Goals becoming true at*)
12: T; := a minimal subset o (* Operators makingV;
13: sothatV; C {I € L|o € T;,asatD"% EPG(0))};
14: Gi-1:= Nien, VIEPG(0)[o € Ti};  (*New goal *)
15: enddo
16:  return |Ti| + [Te| + -« + |T3];

Figure 1. Algorithm for finding a relaxed plan

We show that ift > 1 thenT; # 0 for everyi € {1,...,t},
entailing|T1 |+ - -+ |Ty| > t = 67'®(G). This is by induction from
t to 1. We use the following auxiliary result. If ag&@"% G;) =
false and asaD"® G,) = true andl ¢ D" for all | € L¢ then
T; is well-defined and’; # ). The proof is as follows.

By Lemma 4 goaleD"®* G;) = () and goaléD"® G;) =

{M} for someM. By Lemma 5 there i € M such that
1 € D" and henceV; # . By definition] € D" for all

I € N;. By N; C LY and the assumption aboiif’ [ ¢ D&
forall I € N;. Hencel € D"\ D"®for all | € N;. Hence
by definition of DI"®for everyl € N; there iso € O such that
asa{D"® EPG(0)). Hence there i§; C O so thatN; C

{l € Ljo € T;,asatD% EPG(0))} and the value of; is

defined. AsN; # 0 alsoT; # 0.

In the induction proof we establish the assumptions of the auxiliar;Ll]

result and then invoke the auxiliary result itself.
Induction hypothesis: For ajl € {i,...,t}

1. 1¢ Df®™foralll € LY,

2. asatD]"™ G,) = true and asaD}"¥, G;) = false, and
3. T # 0.

Base casé = t:

1. 1 ¢ D"®*foralll € LY by (2) of Lemma 4 becauseS = {I €
goald D" G)}.

2. Ast = 61'¥G,) by definition asatDi"®, G,) = false and
asa{D"® G;) = true.

3. By the auxiliary result from the preceding case.

Inductive casé < t:

1. We havel ¢ D"™foralll € L becausd.{ = (L& 1\ Nit1) U
{l € goalg D" @G;)} and by the induction hypothedi D%
foralll € LY, and by (2) of Lemma 4 ¢ D" forall I € M
for M € goalg D" G;).

2. By definitionG; = /\ZEM+1 V{EPG(0)|lo € Tiy1}. By defi-
nition of T;, for everyl € N,i1 there iso € T;4+1 such that
asa{D"® EPG (o)) = true. By definition of asgiD"® ¢; Vv
¢2) and asdtD"®™, ¢, A ¢2) also asgtD"®™ G;) = true.

Then we show that agdd"®’ G;) = false. By definition of
D" asat D% EPG(0)) = false for alll € D{"®ando € O.
Hence as#iD"% EPC (o)) = false for alll € N;+, ando € O

becausd € D™ Hence asgD"% EPC (o)) = false for all
l € Niy; ando € T;yq becausel; 11 C O. By definition
G; = /\ZENH_l V{EPG/(o)|o € T;+1}. Hence by definition of
asatD, ¢) also asatD!"®* G;) = false.

3. By the auxiliary result from the preceding case. O

5 Conclusions

We have shown how a number of distance heuristics can be elegantly
generalized to an expressive planning language with conditional ef-
fects and arbitrary formulae. In comparison to the reductive approach

true *)  for handling general operators, our approach does not suffer from the

problem of exponential size of operator sets. The only exponentiality
is in the satisfiability tests, but as the structure of formutG; (o)

is usually very simple even in cases that are difficult to the reductive
approach, the worst-case exponentiality is not a serious issue, and
can be completely avoided by approximate satisfiability tests.

We have also clarified relations between different heuristics. Hoff-
mann and Nebel [7] do not elaborate on the close connection between
their Graphplan-based relaxed plan heuristic and Bonet and Geffner’s
max heuristic. Our formalization of the former makes the connection
very clear: a relaxed plan is a set of operator occurrences that in a
certain sense covers the changes between/38& and D3 that
are relevant for reaching the goals. Planning graphs are not needed
for defining the relaxed plan heuristic.
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