
Unified Definition of Heuristics for Classical Planning
Jussi Rintanen1

Abstract. In many types of planning algorithms distance heuristics
play an important role. Most of the earlier works restrict to STRIPS
operators, and their application to a more general language with dis-
junctivity and conditional effects first requires an exponential size
reduction to STRIPS operators.

I present direct formalizations of a number of distance heuristics
for a general operator description language in a uniform way, avoid-
ing the exponentiality inherent in earlier reductive approaches. The
formalizations use formulae to represent the conditions under which
operators have given effects. The exponentiality shows up in satisfia-
bility tests with these formulae, but would appear to be a minor issue
because of the small size of the formulae.

1 Introduction

Much of planning research has been carried out in the context of
STRIPS operators, named after the famous planning system [3]. A
STRIPS operator consists of three sets of facts: a precondition, an
add list, and adeletelist. There are many actions that cannot be ex-
pressed in terms of STRIPS operators only, for example anything
with context-dependent effects, but it is well known that any classi-
cal planning problem (one initial state, deterministic actions) can be
translated into an equivalent one with STRIPS operators only. How-
ever, this translation may increase the size of the planning problem
exponentially, and therefore it is not desirable.

In this paper we use a general language for expressing classical
planning problems, including conditional effects and disjunctive pre-
conditions. We show that for many purposes a small toolbox of def-
initions based on the propositional logic is sufficient for handling a
general operator definition rather elegantly. Specifically, we consider
a number ofdistance heuristicsdeveloped for STRIPS planning, and
generalize them to a much more expressive planning language.

Anecdotal evidence from the planning community tells that han-
dling conditional effects and disjunctive preconditions elegantly is
difficult. Indeed, no clear formalizations of the above heuristics – or
many planning algorithms and other planning techniques – in the full
generality of conditional effects and disjunctive preconditions have
been published. Related works and planning system implementations
rely onad hoctechniques, for example on an exponential translation
of all formulae into DNF and on eliminating conditional effects. We
show how general operator definitions can be handled concisely and
elegantly without an exponential blow up in size or processing time.

The outline of this paper is as follows. In Section 4.1 we generalize
Bonet and Geffner’s [1] max heuristic to operators with conditional
effects and arbitrary disjunctive preconditions. A novelty here is that
the heuristic is not defined as a cyclic recursion equation. In Section
4.2 we do the same to Bonet and Geffner’s [1] additive heuristic, and
in Section 4.3 to Hoffmann and Nebel’s [7]relaxed planheuristic.

1 National ICT Australia, Canberra Research Laboratory, Canberra, Australia

2 Preliminaries

We give a definition of operators that corresponds to ADL/PDDL
operators [4] that have been grounded which means that quantifiers
forall andexistshave been eliminated and all parameters have been
instantiated with objects of appropriate types in all possible ways.

We use the classical propositional logic with the connectives
∨,∧,¬ and the constant symbolstrue> andfalse⊥. The state vari-
ables of a planning problem are the atomic propositions of the logic.
State variablesa ∈ A and their negations areliterals. Thecomple-
mentl of a literall is defined bya = ¬a and¬a = a for all a ∈ A.

Definition 1. LetA be a set of state variables. An operator overA is
a pair 〈c, e〉 wherec is a formula overA describing the precondition
ande is an effect overA. Effects are recursively defined as follows.

1. > is an effect (the dummy effect).
2. a and¬a for state variablesa ∈ A are effects.
3. e1 ∧ · · · ∧ en is an effect ife1, . . . , en are effects overA (the

special case withn = 0 is defined as the dummy effect>.)
4. c B e is an effect ifc is a formula ande is an effect overA.

Conditional effectsc B e mean thate is executed ifc is true.

Definition 2 (Operator execution). Let o = 〈c, e〉 be an operator
overA ands a state (an assignment of truth values toA.) The opera-
tor is executablein s if s |= c and{a,¬a} 6⊆ [e]s for all a ∈ A. The
set[e]s of literals (theactive effectsof e in s) is defined as follows.

1. [>]s = ∅
2. [a]s = {a} for a ∈ A
3. [¬a]s = {¬a} for a ∈ A
4. [e1 ∧ · · · ∧ en]s = [e1]s ∪ . . . ∪ [en]s
5. [c B e]s = [e]s if s |= c and[c B e]s = ∅ otherwise.

The successor state appo(s) of s undero is obtained froms by mak-
ing the literals in[e]s true and retaining the values of state variables
not occurring in[e]s. For sequencesσ = o1; o2; . . . ; on of operators
we define appσ(s) = appon(· · · appo2(appo1(s)) · · ·).

Example 1. Consider the operator〈a, e〉 wheree = ¬a ∧ (¬c B
¬b) and a states such thats |= a∧ b∧ c. The operator is executable
becauses |= a. Now[e]s = {¬a} and app〈a,e〉(s) |= ¬a∧ b∧ c. �

A problem instanceis a quadruple〈A, I, O, G〉 whereA is the set
of state variables,I is the initial state,O is the set of operators and
G is the goal formula. A sequenceσ = o1; . . . ; on of operators is a
plan for the problem instance ifappσ(I) |= G.

The formula EPCl(e) expresses the conditions under which the
literal l is assignedtruewhen the effecte is executed.

Definition 3. Define the formula EPCl(e) recursively as follows.

EPCl(>)=⊥
EPCl(l)=>

EPCl(l
′)=⊥ whenl 6= l′ (for literals l′)

EPCl(e1 ∧ · · · ∧ en)= EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e)=c ∧ EPCl(e)

The caseEPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
is defined as a disjunction because it is sufficient that at least one of
the effectse1, . . . , en makesl true. For example,EPCa(a∧b) ≡ >,
EPCa(b) ≡ ⊥ and EPCa((b B a) ∧ (c B a)) ≡ b ∨ c.

We define a formula that indicates when an operator is executable
so that a given literal becomes true.

Definition 4. Let A be the set of state variables ando = 〈c, e〉 an
operator overA. Define

EPCl(o) = c ∧ EPCl(e) ∧
^

a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

There is a connection betweenEPCl(e) and the definition of[e]s.

Lemma 1. Let A be the set of state variables,s a state overA, l a
literal overA, ando an operator overA with the effecte. Then

1. l ∈ [e]s if and only ifs |= EPCl(e), and
2. appo(s) is defined andl ∈ [e]s if and only ifs |= EPCl(o).

The proof of this lemma and some that follow are by structural
induction and can be found in a technical report [9].

3 Reachability and Distances

The notion of reachability is important in defining whether a plan-
ning problem is solvable and in deriving techniques that speed up
search for plans. Distances between states are closely related to
reachability and will be defined next. Heuristics in Section 4 are ap-
proximations of distances. Defineimgo(S) = { appo(s)|s ∈ S}.

Definition 5. Let I be an initial state andO a set of operators. De-
fine thedistance setsDfwd

i for I, O which consist of those states that
are reachable fromI by executing at mosti operators.

D
fwd
0 ={I}

D
fwd
i =D

fwd
i−1 ∪ {s|o ∈ O, s ∈ imgo(D

fwd
i−1)} for all i ≥ 1

Definition 6. Given a stateI, a setO of operators and the distance
setsDfwd

0 , D
fwd
1 , . . . for I, O, the distanceof a states from I is

δ
fwd
I (s) =


0 if s = I

i if s ∈ D
fwd
i \Dfwd

i−1.

If s 6∈ D
fwd
i for all i ≥ 0 thenδ

fwd
I (s) = ∞. States that have a finite

distance arereachable(from I with O).

Distances can also be defined for formulae.

Definition 7. Thedistanceδfwd
I (φ) of a formulaφ is i ≥ 1 if there

is a states such thats |= φ andδ
fwd
I (s) = i and there is no states′

such thats′ |= φ andδ
fwd
I (s′) < i. If I |= φ thenδ

fwd
I (φ) = 0.

A formulaφ has a finite distance iff〈A, I, O, φ〉 has a plan.
Reachability and distances are useful for implementing efficient

planning systems. We mention two applications. First, if the precon-
dition of an operator is not reachable, the operator can never be ap-
plied and can be ignored. Second, having an oracle that could tell the
distances of states for free would directly yield a planning algorithm:
step by step choose a sequence of operators that decrease the distance
of the goal formula from the current state by one.

Computing distances is in the worst case just as difficult as plan-
ning itself (PSPACE-complete), and hence it is usually not useful
to use exact distances. Instead, different kinds ofapproximationsof
distances and reachability can be used.

4 Distance Heuristics

Many approximations of distances are based on the following idea.
Instead of considering the number of operators required to reach indi-
vidual states, we compute approximate numbers of operators to reach
states in which certain literals are true. So instead of distances of
states, we use distances of literals. Within the computation of dis-
tances of literals, distances of formulae are estimated in terms of the
distances of literals, which introduces an inaccuracy because the de-
pendencies between literals are ignored. The heuristics therefore may
underestimate the actual distance and only yield a lower bound for it.

4.1 Admissible Max Heuristic

Effective heuristics were presented by McDermott [8], Bonet et al.
[2, 1] and Haslum and Geffner [6]. We first describe a generalization
of the Bonet et al.maxheuristics to our definition of operators.

We give a procedure that computes a lower bound on the number
of operator applications that are needed for reaching from a stateI
a state in which certain literals are true. SetsDmax

i consist of literals
that are true in all states that have a distance≤ i.

Definition 8. LetL = A∪ {¬a|a ∈ A} be the set of literals overA
andI a state. For alli ≥ 1 define themax-distance sets

Dmax
0 ={l ∈ L|I |= l}, and

Dmax
i =Dmax

i−1\{l ∈ L|o ∈ O, Dmax
i−1 ∪ {EPCl(o)} is satisfiable}.

The computation starts fromDmax
0 which consists of all literals

that are true in the initial stateI. This set therefore characterizes
those states that have distance 0 from the initial state.

Then we compute sets of literals characterizing states with dis-
tance 1, 2 and so on. Each setDmax

i is computed from the preceding
setDmax

i−1 by testing for each operatoro whether it is executable in
one of the distancei − 1 states and whether it could make a literal
l false. This is by testing whetherEPCl(o) is true in one of the dis-
tancei− 1 states. If it is,l will not be included inDmax

i .
Since we consider only finite setsA of state variables and

|Dmax
0 | = |A| and Dmax

i+1 ⊆ Dmax
i for all i ≥ 0, necessarily

Dmax
i = Dmax

j for somei ≤ |A| and allj > i.
Every state with distance≤ i satisfiesDmax

i .

Theorem 9. LetDfwd
i , i ≥ 0 be the distance sets andDmax

i the max-

distance sets forI andO. Then for alli ≥ 0, D
fwd
i ⊆ {s ∈ S|s |=

Dmax
i } whereS is the set of all states.

The setsDmax
i can be used for estimating the distances of formu-

lae. The distance of a formula is the minimum of the distances of
states that satisfy it.

Definition 10. Letφ be a formula. Define

δmax
I (φ) =

8<:
0 iff Dmax

0 ∪ {φ} is satisfiable
d iff Dmax

d ∪ {φ} is satisfiable and
Dmax

d−1 ∪ {φ} is not satisfiable, for d ≥ 1.

Lemma 2. Let I be a state, O a set of operators, and
Dmax

0 , Dmax
1 , . . . the max-distance sets forI and O. Then

appo1;...;on(I) |= Dmax
n for any operators{o1, . . . , on} ⊆ O.

The next theorem shows that the distance estimates are a lower
bound on the actual distances.

Theorem 11. Let I be a state,O a set of operators,φ a for-
mula, andDmax

0 , Dmax
1 , . . . the max-distance sets forI and O. If

appo1;...;on(I) |= φ, thenDmax
n ∪ {φ} is satisfiable.

Proof. By Lemma 2 appo1;...;on(I) |= Dmax
n . By assumption

appo1;...;on(I) |= φ. HenceDmax
n ∪ {φ} is satisfiable.

Corollary 12. For a formulaφ and a stateI, if o1, . . . , on is a se-
quence of operators and appo1;...;on(I) |= φ thenn ≥ δmax

I (φ).

The estimateδmax
s (φ) never overestimates the distance froms to

φ and it is therefore an admissible heuristic. It may severely un-
derestimate the distance, as discussed in Section 4.2. A familyhm

of stronger admissible heuristics has been proposed by Haslum and
Geffner [6]. The heuristich1 is the max heuristic. There is an algo-
rithm for computingm-literal invariant clauses that generalizes the
setsDmax to sets ofm-literal clauses [9] and yields thehm heuristic.

4.1.1 Distance Estimation in Polynomial Time

The computation of the setsDmax
i and the distancesδmax

I (φ) is
polynomial time except for the NP-complete satisfiability tests for
D∪{φ} whereD is a set of literals. Hereφ = EPCl(o) for a literal
l and an operatoro. The size ofφ is in the worst case quadratic in the
size ofo, and hence the formulaeφ are typically small. The cost of
the satisfiability test is exponential in the size ofφ and linear inD,
and hence the NP-completeness is almost never an issue.

However, to show that our approach is feasible even in the un-
realistic case of huge operators we give a simple polynomial time
approximation asat(D, φ) of the satisfiability tests with the property
that if D∪{φ} is satisfiable then asat(D, φ)= true. The proof of The-
orem 9 works when the satisfiability tests ofD∪{φ} are replaced by
asat(D, φ). The approximation never leads to overestimating the dis-
tances, only underestimating, and for STRIPS operators the approx-
imation never makes a difference and for general operators rarely.
Define asat(D, φ) as follows.

asat(D,⊥)= false
asat(D,>)= true
asat(D, a)= true iff ¬a 6∈ D (for a ∈ A)

asat(D,¬a)= true iff a 6∈ D (for a ∈ A)
asat(D,¬¬φ)=asat(D, φ)

asat(D, φ1 ∨ φ2)=asat(D, φ1) or asat(D, φ2)
asat(D, φ1 ∧ φ2)=asat(D, φ1) and asat(D, φ2)

asat(D,¬(φ1 ∨ φ2))=asat(D,¬φ1) and asat(D,¬φ2)
asat(D,¬(φ1 ∧ φ2))=asat(D,¬φ1) or asat(D,¬φ2)

The cases for¬(φ1 ∧ φ2) and¬(φ1 ∨ φ2) are respectively obtained
from the cases forφ1 ∨ φ2 andφ1 ∧ φ2 by the De Morgan laws.

The inaccuracy of the satisfiability tests stems from the fact that
for formulaeφ1 ∧φ2 (respectively¬(φ1 ∨φ2)) we make recursively

two satisfiability tests that do not require thatφ1 and φ2 (respec-
tively ¬φ1 and¬φ2) are simultaneouslysatisfiable. For example,
asat(∅, a ∧ ¬a)= true althougha ∧ ¬a is unsatisfiable.

Lemma 3. Letφ be a formula andD a set of literals. IfD ∪ {φ} is
satisfiable, then asat(D, φ) returns true.

4.2 Inadmissible Additive Heuristic

The max heuristic is very optimistic about the distances, and in many
cases it seriously underestimates them. If there are two goal literals,
the maximum of the goal costs (distances) is taken to be the com-
bined cost. This however is only accurate when the easier goal is
achieved for free while achieving the more difficult one. Goals are
often independent and then a more accurate estimate would be the
sum of the individual costs. To fix this problem Bonet and Geffner
[1] proposed a more practical variant of the max heuristic.

Our definition is based on an auxiliary definition for the cost of
achieving a formula. The cost of a literal is the number of steps it
takes to achieve it, in a similar approximative sense as in themax
heuristic. The cost of a disjunction is the minimum cost of the dis-
juncts. The cost of a conjunction is thesumof the costs of the con-
juncts. This is the difference to themaxheuristic where the cost of a
conjunction is themaximumof the costs of the conjuncts.

Definition 13. Let I be a state andL = A ∪ {¬a|a ∈ A} the set of
literals. Define the setsD+

i for i ≥ 0 as follows.

D+
0 ={l ∈ L|I |= l}

D+
i =D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i} for all i ≥ 1

We define cost(φ, i) as follows.

cost(⊥, i)=∞
cost(>, i)=0
cost(a, i)=0 if ¬a 6∈ D+

0 , for a ∈ A
cost(¬a, i)=0 if a 6∈ D+

0 , for a ∈ A
cost(a, i)=j if ¬a ∈ D+

j−1\D
+
j for somej < i

cost(¬a, i)=j if a ∈ D+
j−1\D

+
j for somej < i

cost(a, i)=∞ if ¬a ∈ D+
j for all j < i

cost(¬a, i)=∞ if a ∈ D+
j for all j < i

cost(φ1 ∨ φ2, i)=min(cost(φ1, i), cost(φ2, i))
cost(φ1 ∧ φ2, i)=cost(φ1, i) + cost(φ2, i)

cost(¬¬φ, i)=cost(φ, i)
cost(¬(φ1 ∧ φ2), i)=min(cost(¬φ1, i), cost(¬φ2, i))
cost(¬(φ1 ∨ φ2), i)=cost(¬φ1, i) + cost(¬φ2, i)

The above definitions would appear to be cyclic but the defini-
tion of D+

i refers to cost(φ, j) for j ≤ i only and the definition of
cost(φ, i) refers toDi

j for j < i only.
The definition of cost(φ, i) ignores dependencies between con-

juncts in the same way as the definition asat(D, φ).

Definition 14. Letφ be a formula. Define

δ+
I (φ) = cost(φ, n)

wheren is the smallesti such thatD+
i = D+

i−1.

The following theorem shows that the distance estimates of the
additive heuristic are never lower than those of the max heuristic.

Theorem 15. Let Dmax
i , i ≥ 0 be the sets defined in terms of the

approximate tests asat(D, φ). ThenDmax
i ⊆ D+

i for all i ≥ 0.

Proof. The proof is by induction oni.
Base casei = 0: By definitionD+

0 = Dmax
0 .

Inductive casei ≥ 1: By the induction hypothesisDmax
i−1 ⊆

D+
i−1. To showDmax

i−1\{l ∈ L|o ∈ O, asat(Dmax
i−1, EPCl(o))} ⊆

D+
i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i} it is sufficient to show

that cost(EPCl(o), i) < i implies asat(Dmax
i−1, EPCl(o)).

We show this by induction on the structure ofφ = EPCl(o).
Induction hypothesis: cost(φ, i) < i implies asat(Dmax

i−1, φ)=true.
Base case 1,φ = ⊥: cost(⊥, i) = ∞ and asat(Dmax

i ,⊥)=false.
Base case 2,φ = >: cost(>, i) = 0 and asat(Dmax

i ,>)=true.
Base case 3,φ = a: If cost(a, i) < i then¬a 6∈ D+

j for some
j < i or ¬a 6∈ D+

0 . Hence¬a 6∈ D+
i−1. By the outer induc-

tion hypothesis¬a 6∈ Dmax
i−1 and consequently¬a 6∈ Dmax

i . Hence
asat(Dmax

i , a)=true.
Base case 4,φ = ¬a: Analogous to the caseφ = a.
Inductive case 5,φ = φ1∨φ2: Assume cost(φ1∨φ2, i) < i. Since

cost(φ1∨φ2, i) = min(cost(φ1, i), cost(φ2, i)), either cost(φ1, i) <
i or cost(φ2, i) < i. By the induction hypothesis cost(φ1, i) < i im-
plies asat(Dmax

i−1, φ1), and cost(φ2, i) < i implies asat(Dmax
i−1, φ2).

Hence either asat(Dmax
i−1, φ1) or asat(Dmax

i−1, φ2). Therefore by defini-
tion asat(Dmax

i−1, φ1 ∨ φ2).
Inductive case 6,φ = φ1 ∧ φ2: Assume cost(φ1 ∧ φ2, i) < i.

Sincei ≥ 1 and cost(φ1 ∨ φ2, i) = cost(φ1, i) + cost(φ2, i), both
cost(φ1, i) < i and cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1, φ1), and cost(φ2, i) < i im-
plies asat(Dmax

i−1, φ2). Hence both asat(Dmax
i−1, φ1) an asat(Dmax

i−1, φ2).
Therefore by definition asat(Dmax

i−1, φ1 ∧ φ2).
Inductive case 7,φ = ¬¬φ1: By the induction hypoth-

esis cost(φ1, i) < i implies asat(Dmax
i−1, φ1). By definition

cost(¬¬φ1, i) = cost(φ1, i) and asat(D,¬¬φ) = asat(D, φ).
By the induction hypothesis cost(¬¬φ1, i) < i implies
asat(Dmax

i−1,¬¬φ1).
Inductive case 8,φ = ¬(φ1 ∨ φ2): Analogously toφ = φ1 ∧ φ2.

Inductive case 9,φ = ¬(φ1∧φ2): Analogously toφ = φ1∨φ2.

That the additive heuristic gives higher estimates than the max
heuristic could in many cases be viewed as an advantage because the
estimates would be more accurate. However, sometimes this leads to
overestimating the actual distance, and the heuristic is therefore not
admissible (but see recent work by Haslum et al. [5].)

Example 2. Consider an initial state such thatI |= ¬a ∧ ¬b ∧ ¬c
and the operator〈>, a∧b∧c〉. A state satisfyinga∧b∧c is reached
by this operator in one step butδ+

I (a ∧ b ∧ c) = 3. �

4.3 Inadmissible Relaxed Plan Heuristic

The max heuristic and the additive heuristic represent two extremes.
The first assumes that sets of operators required for reaching the dif-
ferent goal literals maximally overlap in the sense that the operators
for the most difficult goal literal include the operators for all the re-
maining ones. The second assumes that these sets are completely
disjoint. In some cases the first is better and in others the second.

To estimate the distances more accurately the operators should be
better taken into account, which suggests yet another approach to
computing a heuristic: attempt to find a set of operators that in a
very loose sense reaches the goals. This idea has been considered by
Hoffman and Nebel [7]. Arelaxed planis computed as follows (see
the algorithm in Figure 1.) We first choose a set of goal literals the
truth of which is sufficient for the truth of the goal formulaG. These
literals must be reachable in the sense of the setsDmax

i from Section
4.1. Then we identify the goal literalsl with the highest distance

(in theDmax
i sense) and a set of operators making them true. These

operators form the last step of the relaxed plan. A new goal formula
represents the conditions under which these operators can make the
literals true. Then a new set of goal literals is produced by a form of
regression from the new goal formula. The computation is repeated
until we have a set of goal literals that are true in the initial state.
Along the way we have constructed a relaxed plan.

The function goals(D, φ) recursively finds a setM of literals such
that M |= φ and each literal inM is consistent withD. Note that
M itself is not necessarily consistent, for example forD = ∅ and
φ = a∧¬a we getM = {a,¬a}. If a setM is found goals(D, φ) =
{M} and otherwise goals(D, φ) = ∅.

Definition 16. LetD be a set of literals.

goals(D,⊥)=∅
goals(D,>)={∅}
goals(D, a)={{a}} if ¬a 6∈ D
goals(D, a)=∅ if ¬a ∈ D

goals(D,¬a)={{¬a}} if a 6∈ D
goals(D,¬a)=∅ if a ∈ D

goals(D,¬¬φ)=goals(D, φ)

goals(D, φ1 ∨ φ2)=


goals(D, φ1) if goals(D, φ1) 6= ∅
goals(D, φ2) otherwise

goals(D, φ1 ∧ φ2)=

8<:
{L1 ∪ L2} if goals(D, φ1) = {L1}

and goals(D, φ2) = {L2}
∅ otherwise

goals(D,¬(φ1 ∧ φ2))=


goals(D,¬φ1) if goals(D,¬φ1) 6= ∅
goals(D,¬φ2) otherwise

goals(D,¬(φ1 ∨ φ2))=

8<:
{L1 ∪ L2} if goals(D,¬φ1) = {L1}

and goals(D,¬φ2) = {L2}
∅ otherwise

If both φ1 andφ2 yield goal literals forφ1 ∨ φ2 the set forφ1 is
chosen. A practically better choice is the smaller of the two sets.

Lemma 4. LetD be a set of literals andφ a formula.

1. goals(D, φ) 6= ∅ if and only if asat(D, φ) = true.
2. If goals(D, φ) = {M} then {l|l ∈ M} ∩ D = ∅ and

asat(D,
V

l∈M l) = true.

Proof. 1. This is an easy induction proof on the structure ofφ based
on the definitions of asat(D, φ) and goals(D, φ).

2. This is becausel 6∈ D for all l ∈ M . This can be shown by a
simple induction proof.

Lemma 5. LetD andD′ ⊆ D be sets of literals. If goals(D, φ) = ∅
and goals(D′, φ) = {M}, then there isl ∈ M such thatl ∈ D\D′.

Definition 17. Defineδrlx
I (φ) = relaxedplan(A, I, O, φ).

The additive and the relaxed plan heuristic are incomparable and
both give estimates at least as high as the max heuristic.

Theorem 18. Letφ be a formula andδmax
I (φ) the max-distance de-

fined in terms of asat(D, φ). Thenδrlx
I (φ) ≥ δmax

I (φ).

Proof. We have to show that for any formulaG the procedure call
relaxedplan(A,I,O,G) returns a number≥ δmax

I (G).
The procedure returns∞ if and only if asat(Dmax

i , G) = false
for all i ≥ 0. In this case by definitionδmax

I (G) = ∞. Otherwise
t = δmax

I (G). Now t = 0 if and only if asat(Dmax
0 , G) = true. In

this case the procedure returns 0 without iterating the loop (line 9.)

1: procedure relaxedplan(A,I,O,G);
2: L := A ∪ {¬a|a ∈ A}; (* Set of all literals *)
3: compute setsDmax

i as in Definition 8;
4: if asat(Dmax

i , G) = false for alli ≥ 0 then return ∞;
5: t := δmax

I (G);
6: LG

t+1 := ∅; (* Goal literals initially *)
7: Nt+1 := ∅;
8: Gt := G; (* Initial goal formula *)
9: for i := t downto 1 do

10: LG
i := (LG

i+1\Ni+1) ∪ {l ∈ M |M ∈ goals(Dmax
i , Gi)};

11: Ni := {l ∈ LG
i |l ∈ Dmax

i−1}; (* Goals becoming true ati *)
12: Ti := a minimal subset ofO (* Operators makingNi true *)
13: so thatNi ⊆ {l ∈ L|o ∈ Ti, asat(Dmax

i−1, EPCl(o))};
14: Gi−1 :=

V
l∈Ni

W
{ EPCl(o)|o ∈ Ti}; (* New goal *)

15: end do
16: return |T1|+ |T2|+ · · ·+ |Tt|;

Figure 1. Algorithm for finding a relaxed plan

We show that ift ≥ 1 thenTi 6= ∅ for every i ∈ {1, . . . , t},
entailing|T1|+ · · ·+ |Tt| ≥ t = δmax

I (G). This is by induction from
t to 1. We use the following auxiliary result. If asat(Dmax

i−1, Gi) =
false and asat(Dmax

i , Gi) = true andl 6∈ Dmax
i for all l ∈ LG

i then
Ti is well-defined andTi 6= ∅. The proof is as follows.

By Lemma 4 goals(Dmax
i−1, Gi) = ∅ and goals(Dmax

i , Gi) =
{M} for someM . By Lemma 5 there isl ∈ M such that
l ∈ Dmax

i−1 and henceNi 6= ∅. By definition l ∈ Dmax
i−1 for all

l ∈ Ni. By Ni ⊆ LG
i and the assumption aboutLG

i l 6∈ Dmax
i

for all l ∈ Ni. Hencel ∈ Dmax
i−1\Dmax

i for all l ∈ Ni. Hence
by definition ofDmax

i for everyl ∈ Ni there iso ∈ O such that
asat(Dmax

i−1, EPCl(o)). Hence there isTi ⊆ O so thatNi ⊆
{l ∈ L|o ∈ Ti, asat(Dmax

i−1, EPCl(o))} and the value ofTi is
defined. AsNi 6= ∅ alsoTi 6= ∅.

In the induction proof we establish the assumptions of the auxiliary
result and then invoke the auxiliary result itself.

Induction hypothesis: For allj ∈ {i, . . . , t}

1. l 6∈ Dmax
j for all l ∈ LG

j ,
2. asat(Dmax

j , Gj) = true and asat(Dmax
j−1, Gj) = false, and

3. Tj 6= ∅.

Base casei = t:

1. l 6∈ Dmax
t for all l ∈ LG

t by (2) of Lemma 4 becauseLG
t = {l ∈

goals(Dmax
t , Gt)}.

2. As t = δmax
I (Gt) by definition asat(Dmax

t−1, Gt) = false and
asat(Dmax

t , Gt) = true.
3. By the auxiliary result from the preceding case.

Inductive casei < t:

1. We havel 6∈ Dmax
i for all l ∈ LG

i becauseLG
i = (LG

i+1\Ni+1)∪
{l ∈ goals(Dmax

i , Gi)} and by the induction hypothesisl 6∈ Dmax
i+1

for all l ∈ LG
i+1 and by (2) of Lemma 4l 6∈ Dmax

i for all l ∈ M
for M ∈ goals(Dmax

i , Gi).
2. By definition Gi =

V
l∈Ni+1

W
{ EPCl(o)|o ∈ Ti+1}. By defi-

nition of Ti+1 for every l ∈ Ni+1 there iso ∈ Ti+1 such that
asat(Dmax

i , EPCl(o)) = true. By definition of asat(Dmax
i , φ1 ∨

φ2) and asat(Dmax
i , φ1 ∧ φ2) also asat(Dmax

i , Gi) = true.
Then we show that asat(Dmax

i−1, Gi) = false. By definition of
Dmax

i , asat(Dmax
i−1, EPCl(o)) = false for alll ∈ Dmax

i ando ∈ O.
Hence asat(Dmax

i−1, EPCl(o)) = false for alll ∈ Ni+1 ando ∈ O

becausel ∈ Dmax
i . Hence asat(Dmax

i−1, EPCl(o)) = false for all
l ∈ Ni+1 and o ∈ Ti+1 becauseTi+1 ⊆ O. By definition
Gi =

V
l∈Ni+1

W
{ EPCl(o)|o ∈ Ti+1}. Hence by definition of

asat(D, φ) also asat(Dmax
i−1, Gi) = false.

3. By the auxiliary result from the preceding case.

5 Conclusions

We have shown how a number of distance heuristics can be elegantly
generalized to an expressive planning language with conditional ef-
fects and arbitrary formulae. In comparison to the reductive approach
for handling general operators, our approach does not suffer from the
problem of exponential size of operator sets. The only exponentiality
is in the satisfiability tests, but as the structure of formulaeEPCl(o)
is usually very simple even in cases that are difficult to the reductive
approach, the worst-case exponentiality is not a serious issue, and
can be completely avoided by approximate satisfiability tests.

We have also clarified relations between different heuristics. Hoff-
mann and Nebel [7] do not elaborate on the close connection between
their Graphplan-based relaxed plan heuristic and Bonet and Geffner’s
max heuristic. Our formalization of the former makes the connection
very clear: a relaxed plan is a set of operator occurrences that in a
certain sense covers the changes between setsDmax

i andDmax
i+1 that

are relevant for reaching the goals. Planning graphs are not needed
for defining the relaxed plan heuristic.

Acknowledgements

This research was supported by National ICT Australia (NICTA).
in connection with the DPOLP project. NICTA is funded through
the Australian Government’sBacking Australia’s Abilityinitiative,
in part through the Australian National Research Council.

REFERENCES
[1] Blai Bonet and H́ector Geffner, ‘Planning as heuristic search’,Artificial

Intelligence, 129(1-2), 5–33, (2001).
[2] Blai Bonet, Ǵabor Loerincs, and H́ector Geffner, ‘A robust and fast

action selection mechanism for planning’, inProceedings of the 14th
National Conference on Artificial Intelligence (AAAI-97) and 9th Inno-
vative Applications of Artificial Intelligence Conference (IAAI-97), pp.
714–719, Menlo Park, California, (July 1997). AAAI Press.

[3] Richard E. Fikes and Nils J. Nilsson, ‘STRIPS: a new approach to the ap-
plication of theorem proving to problem solving’,Artificial Intelligence,
2(2-3), 189–208, (1971).

[4] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins, ‘PDDL -
the Planning Domain Definition Language, version 1.2’, Technical Re-
port CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vi-
sion and Control, Yale University, (October 1998).

[5] Patrik Haslum, Blai Bonet, and H́ector Geffner, ‘New admissible heuris-
tics for domain-independent planning’, inProceedings of the 20th Na-
tional Conference on Artificial Intelligence (AAAI-2005), pp. 1163–
1168, (2005).

[6] Patrik Haslum and H́ector Geffner, ‘Admissible heuristics for optimal
planning’, inProceedings of the Fifth International Conference on Arti-
ficial Intelligence Planning Systems, eds., Steve Chien, Subbarao Kamb-
hampati, and Craig A. Knoblock, pp. 140–149. AAAI Press, (2000).

[7] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan genera-
tion through heuristic search’,Journal of Artificial Intelligence Research,
14, 253–302, (2001).

[8] Drew V. McDermott, ‘Using regression-match graphs to control search
in planning’,Artificial Intelligence, 109(1–2), 111–159, (1999).

[9] Jussi Rintanen, ‘State-space traversal techniques for planning’, Re-
port 220, Albert-Ludwigs-Universität Freiburg, Institut f̈ur Informatik,
(2005).

