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Abstract

Probabilistic planning with observability restric-
tions, as formalized for example as partially ob-
servable Markov decision processes (POMDP), has
a wide range of applications, but it is computation-
ally extremely difficult. For POMDPs, the most
general decision problems about existence of poli-
cies satisfying certain properties are undecidable.
We consider a computationally easier form of plan-
ning that ignores exact probabilities, and give an al-
gorithm for a class of planning problems with par-
tial observability. We show that the basic backup
step in the algorithm is NP-complete. Then we pro-
ceed to give an algorithm for the backup step, and
demonstrate how it can be used as a basis of an ef-
ficient algorithm for constructing plans.

1 Introduction
When the sequence of states that will be visited during plan
execution cannot be exactly predicted, for example because of
nondeterminism, it is necessary to produce plans that apply
different actions depending on how the plan execution has
proceeded so far. Such plans are called conditional plans.

Construction of conditional plans is particularly difficult
when there is no full observability; that is, when during plan
execution it is not possible to uniquely determine what the
current state of the world is. Planning problems having this
property are said to be partially observable, and their solution
requires that the sets of possible current world states – the be-
lief states – are (implicitly) maintained during plan execution
and (implicitly) represented by a plan.

The earliest work on planning with partial observability
was in the framework of partially observable Markov decision
processes (POMDPs)[Smallwood and Sondik, 1973; Kael-
bling et al., 1998]. Planning with POMDPs is computation-
ally difficult. For unbounded horizon lengths an unbounded
number of probability distributions corresponding to belief
states needs to be considered, and finding optimal plans is not
in general solvable[Madaniet al., 1999]. A natural approach
for easing the computational difficulty of POMDP planning
is to consider horizons of a bounded length[Mundhenket
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al., 2000]. A second approach which has been pursued
with algorithms for conditional planning[Weld et al., 1998;
Bonet and Geffner, 2000; Bertoliet al., 2001], ignores prob-
abilities and hence directly yields a finitary problem. Main
decision problems related to non-probabilistic planning with
partial observability are 2-EXP-complete[Rintanen, 2004a].

A main difference between POMDPs and corresponding
non-probabilistic problems is that the latter do not use proba-
bilistic notions like success probability or expected cost, and
require that a plan must reach the goals with certainty. An
implication of success probability 1 is that uncertainty about
observations and sensing can be ignored: if an observation is
correct with a probability strictly less than 1 then it is as good
as no observation at all.

For this planning problem we present an iterative algorithm
that has some resemblance to iterative algorithms for solving
POMDPs. The algorithm maintains a data structure repre-
senting those belief states for which a conditional plan has
been shown to exist. Initially this data structure represents
those belief states consisting of goal states only. Then this
data structure is repeatedly extended by performing search
backwards from the goal belief states.

The structure of the paper is as follows. Section 2 defines
the planning problem. Sections 3 and 4 respectively describe
the formal framework and analyze its properties. Section 5
proposes a planning algorithm and Section 6 presents exper-
imental results obtained with an implementation of the algo-
rithm. Section 7 concludes the paper.

2 The Planning Problem
In this section we present a formalization of planning in
which states are atomic objects without internal structure.

Definition 1 A problem instanceis 〈S, I,O,G, P 〉 whereS
is the set of states,I ⊆ S is the set of initial states,O
is the set of actionso ⊆ S × S, G ⊆ S is the set of
goal states andP = (C1, . . . , Cn) is a partition ofS into
classes of observationally indistinguishable states satisfying⋃
{C1, . . . , Cn} = S andCi ∩ Cj = ∅ for all i, j such that

1 ≤ i < j ≤ n.

Making an observation tells which setCi the current state
belongs to. Distinguishing states in a givenCi is not possible.



An action is a relation between states and their successor
states. An actiono is applicablein a states if sos′ for some
s′ ∈ S. Define theimageof a setB of states with respect to an
actiono as imgo(B) = {s′ ∈ S|s ∈ B, sos′}. Thepreimage
is preimgo(B) = {s ∈ S|∅ 6= imgo({s}) ⊆ B}, consisting
of those states from whicho is guaranteed to reach a state in
B. An actiono is deterministic if it is a partial function.

Plans are directed graphs with two kinds of nodes: action
nodes and observation nodes.

Definition 2 Let〈S, I,O,G, (C1, . . . , Cn)〉 be a problem in-
stance. A plan is a triple〈N, b, l〉 where

• N is a finite set of nodes,

• b ∈ N is the initial node,

• l : N → (O×N)∪22S×N is a function that assigns each
node an action and a successor node〈o, n〉 ∈ O × N

or a set of states and successor nodes〈C, n〉 ∈ 22S×N

whereC =
⋃
{C ′

1, . . . , C
′
m} for some{C ′

1, . . . , C
′
m} ⊆

{C1, . . . , Cn}. In the first case the node is an action
node and in the second an observation node.
For all n ∈ N and{〈C,m〉, 〈C ′,m′〉} ⊆ l(n) the ob-
servationsC andC ′ may not intersect:C ∩ C ′ = ∅.
Nodes withl(n) = ∅ are terminal.

We restrict to acyclic plans. Acyclicity means that the
graph〈N,E〉, where〈n, n′〉 ∈ E iff l(n) = 〈o, n′〉 for some
o or 〈C, n′〉 ∈ l(n) for someC, is acyclic.1

Plan execution starts from the initial nodeb and any of the
initial states. For an action node with label〈o, n〉 in states
executeo and continue fromn and a state in imgo(s). For an
observation node identify〈C, n〉 in the node label so thats ∈
C, and then continue fromn ands. A plan solves a problem
instance if all of its executions terminate in a terminal node
and a goal state. Execution of an acyclic plan can have at
most as many steps as there are nodes in the plan.

3 Problem Representation
Now we introduce the representation for sets of state sets for
which a plan for reaching goal states exists.

In the following example states are viewed as valuations
of state variables, and the observational classes correspond to
valuations of those state variables that are observable.

Example 3 Consider the blocks world with the state vari-
ables clear(X) observable, allowing to observe the top-
most block of each stack. With three blocks there are
7 observational classes because there are 7 valuations of
{clear(A), clear(B), clear(C)} with at least one block clear.

Consider the problem of trying to reach the state in which
all blocks are on the table. For each block there is an action
for moving it onto the table from wherever it was before. If

1Construction of cyclic plans requires looking at more global
properties of transition graphs than what is needed for acyclic plans.
The difficulties of cyclic plans in our framework are similar to those
in the MDP/POMDP framework when using average rewards in-
stead of finite horizons or discounted rewards[Puterman, 1994].

a block cannot be moved nothing happens. Initially we only
have the empty plan for the goal states.
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Then we compute the preimages of this set with actions
that respectively put the blocks A, B and C onto the table, and
split the resulting sets to the different observational classes.
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Now for these 7 belief states we have a plan consisting of
one or zero actions. But we also have plans for sets of states
that are only represented implicitly. These involve branching.
For example, we have a plan for the state set consisting of the
four states in which respectively all blocks are on the table,
A is on C, A is on B, and B is on A. This plan first makes
observations and branches, and then executes the plan asso-
ciated with the belief state obtained in each case. Because 3
observational classes each have 2 belief states, there are23

maximal state sets with a branching plan. From each class
only one belief state can be chosen because observations can-
not distinguish between belief states in the same class.

We can find more belief states that have plans by comput-
ing preimages of existing belief states. Let us choose the be-
lief states in which respectively all blocks are on the table, B
is on C, C is on B, and C is on A, and compute their union’s
preimage with A-onto-table. The preimage intersected with
the observational classes yields new belief states: for the class
with A and B clear there is a new 2-state belief state covering
both previous belief states in the class, and for the class with
A clear there is a new 2-state belief state.
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Computation of further preimages yields for each observa-
tional class a belief state covering all the states in that class,
and hence a plan for every belief state. �

The above example shows how the exponential number of
state sets (corresponding to the Cartesian product of the ob-
servational classes) considered by Rintanen[2002] is repre-
sented only implicitly. The algorithm by Rintanen[2002] ex-



plicitly generates the state sets, the number of which in many
cases is very high. With the new representation the computa-
tional complexity is shifted from the size of the representation
to the time it takes to find a combination of belief states hav-
ing a useful preimage. This shift is useful for two reasons.
First, much of the space complexity (and the time complexity
it implies) is traded to time complexity only: the state sets are
not represented explicitly (except in the unobservable special
case.) Second, the succinct representation allows much better
control on which belief states to produce, and although find-
ing one new belief state and plan still takes worst-case expo-
nential time, this may be performed by clever algorithms and
be further sped up by heuristics.

Next we formalize the framework in detail.

Definition 4 (Belief space)LetP = (C1, . . . , Cn) be a par-
tition of the set of all states. Thena belief spaceis ann-tuple
〈G1, . . . , Gn〉 whereGi ⊆ 2Ci for all i ∈ {1, . . . , n} and
B 6⊂ B′ for all i ∈ {1, . . . , n} and{B,B′} ⊆ Gi.

Notice that in each component of a belief space we only
have set-inclusion maximal belief states. The simplest belief
spaces are obtained from setsB of states asB(B) = 〈{C1 ∩
B}, . . . , {Cn ∩B}〉. A belief space is extended as follows.

Definition 5 (Extension) LetP = (C1, . . . , Cn) be the par-
tition of all states,G = 〈G1, . . . , Gn〉 a belief space, andT a
set of states. DefineG⊕T as〈G1 d (T ∩C1), . . . , Gn d (T ∩
Cn)〉 where the operationd adds the latter set of states to the
former set of sets of states and eliminates sets that are not set-
inclusion maximal, defined asU d V = {R ∈ U ∪ {V }|R 6⊂
K for all K ∈ U ∪ {V }}.

A belief spaceG = 〈G1, . . . , Gn〉 represents the set of
sets of states flat(G) = {B1 ∪ · · · ∪ Bn|Bi ∈ Gi for all i ∈
{1, . . . , n}} and its cardinality is|G1| · |G2| · . . . · |Gn|.

4 Complexity of Basic Operations
The basic operations on belief spaces needed in planning al-
gorithms are testing the membership of a set of states in a
belief space, and finding a set of states whose preimage with
respect to an action is not contained in the belief space. Next
we analyze the complexity of these operations.

Theorem 6 For belief spacesG and state setsB, testing
whether there isB′ ∈ flat(G) such thatB ⊆ B′, and com-
putingG⊕B takes polynomial time.

Proof: Idea: A linear number of set-inclusion tests suffices.
�

Our algorithm for extending belief spaces by computing
the preimage of a set of states (Lemma 8) uses exhaustive
search and runs in worst-case exponential time. This asymp-
totic worst-case complexity is very likely the best possible
because the problem is NP-hard. Our proof for this fact is a
reduction from SAT: represent each clause as the set of liter-
als that are not in it, and then a satisfying assignment is a set
of literals that is not included in any of the sets, corresponding
to the same question about belief spaces.

Theorem 7 Testing if for belief spaceG there isR ∈ flat(G)
such that preimgo(R) 6⊆ R′ for all R′ ∈ flat(G) is NP-
complete. This holds even for deterministic actionso.

Proof: Membership is easy: ForG = 〈G1, . . . , Gn〉 choose
nondeterministicallyRi ∈ Gi for everyi ∈ {1, . . . , n}, com-
puteR = preimgo(R1∪· · ·∪Rn), and verify thatR∩Ci 6⊆ B
for somei ∈ {1, . . . , n} and allB ∈ Gi. Each of these steps
takes only polynomial time.

Let T = {c1, . . . , cm} be a set of clauses over propositions
A = {a1, . . . , ak}. We define a belief space based on states
{a1, . . . , ak, â1, . . . , âk, z1, . . . , zk, ẑ1, . . . , ẑk}. The stateŝa
represent negative literals. Define

c′i = (A\ci) ∪ {â|a ∈ A,¬a 6∈ ci} for i ∈ {1, . . . ,m},
G = 〈{c′1, . . . , c′m}, {{z1}, {ẑ1}}, . . . , {{zk}, {ẑk}}〉 ,
o = {〈ai, zi〉|1 ≤ i ≤ k} ∪ {〈âi, ẑi〉|1 ≤ i ≤ k}.

We claim thatT is satisfiable if and only if there isB ∈
flat(G) such that preimgo(B) 6⊆ B′ for all B′ ∈ flat(G).

AssumeT is satisfiable, that is, there isM such that
M |= T . DefineM ′ = {zi|ai ∈ A,M |= ai} ∪ {ẑi|ai ∈
A,M 6|= ai}. Now M ′ ⊆ B for someB ∈ flat(G) because
from each class only one of{zi} or {ẑi} is taken. LetM ′′ =
preimgo(M

′) = {ai ∈ A|M |= ai} ∪ {âi|ai ∈ A,M 6|= ai}.
We show thatM ′′ 6⊆ B for all B ∈ flat(G). Take any
i ∈ {1, . . . ,m}. BecauseM |= ci, there isaj ∈ ci ∩ A such
that M |= aj (or ¬aj ∈ ci, for which the proof goes simi-
larly.) Now zj ∈ M ′, and thereforeaj ∈ M ′′. Also,aj 6∈ c′j .
As there is such anaj (or ¬aj) for every i ∈ {1, . . . ,m},
M ′′ is not a subset of anyc′i, and henceM ′′ 6⊆ B for all
B ∈ flat(G).

Assume there isB ∈ flat(G) such thatD = preimgo(B) 6⊆
B′ for all B′ ∈ flat(G). NowD is a subset ofA∪{â|a ∈ A}
with at most one ofai andâi for anyi ∈ {1, . . . , k}. Define
a modelM such that for alla ∈ A, M |= a if and only if
a ∈ D. We show thatM |= T . Take anyi ∈ {1, . . . ,m}
(corresponding to a clause.) AsD 6⊆ B for all B ∈ flat(G),
D 6⊆ c′i. Hence there isaj or âj in D\c′i. Consider the
case withaj (âj goes similarly.) Asaj 6∈ c′i, aj ∈ ci. By
definition ofM , M |= aj and henceM |= ci. As this holds
for all i ∈ {1, . . . ,m}, M |= T . �

5 Planning Algorithms
Based on the problem representation in the preceding section,
we devise a planning algorithm that repeatedly identifies new
belief states (and associated plans) until a plan covering the
initial states is found. The algorithm in Figure 2 tests for
plan existence; further book-keeping is needed for outputting
a plan. The size of the plan is proportional to the number of it-
erations the algorithm performs, and outputting the plan takes
polynomial time in the size of the plan. The algorithm uses
the subprocedurefindnew(Figure 1) for extending the belief
space (this is the NP-hard subproblem from Theorem 7). Our
implementation of the subprocedure orders setsf1, . . . , fm

by cardinality in a decreasing order: bigger belief states are
tried first. We also use a simple pruning technique for deter-
ministic actionso: If preimgo(fi) ⊆ preimgo(fj) for somei
andj such thati > j, then we may ignorefi.



PROCEDUREfindnew(o,A,F ,H);
IF F = 〈〉 ANDpreimgo(A) 6⊆ B for all B ∈ flat(H)
THEN RETURNA;
IF F = 〈〉 THEN RETURN∅;
F is 〈{f1, . . . , fm}, F2, . . . , Fk〉 for somek ≥ 1;
FORi := 1 TOm DO

B := findnew(o,A ∪ fi,〈F2, . . . , Fk〉,H);
IF B 6= ∅ THEN RETURNB;

END;
RETURN∅

Figure 1: Algorithm for finding new belief states

PROCEDUREplan(I,O,G);
H := B(G);
progress := true;
WHILEprogress andI 6⊆ I ′ for all I ′ ∈ flat(H) DO

progress := false;
FOR EACHo ∈ O DO

B := findnew(o,∅,H,H);
IF B 6= ∅ THEN

BEGIN
H := H ⊕ preimgo(B);
progress := true;

END;
END;

END;
IF I ⊆ I ′ for someI ′ ∈ flat(H) THEN RETURNtrue
ELSE RETURNfalse;

Figure 2: Algorithm for planning with partial observability

Lemma 8 LetH be a belief space ando an action. The pro-
cedure call findnew(o,∅,F,H) returns a setB′ of states such
that B′ = preimgo(B) for someB ∈ flat(F ) andB′ 6⊆ B′′

for all B′′ ∈ flat(H), and if no such belief state exists it re-
turns∅.

Proof: Sketch: The procedure goes through the ele-
ments 〈B1, . . . , Bn〉 of F1 × · · · × Fn and tests whether
preimgo(B1 ∪ · · · ∪Bn) is in H. The setsB1 ∪ · · · ∪Bn are
the elements of flat(F ). The traversal throughF1 × · · · × Fn

is by generating a search tree with elements ofF1 as children
of the root node, elements ofF2 as children of every child of
the root node, and so on, and testing whether the preimage is
in H. The second parameter of the procedure represents the
state set constructed so far from the belief space, the third pa-
rameter is the remaining belief space, and the last parameter
is the belief space that is to be extended, that is, the new belief
state may not belong to it. �

The correctness proof of the procedureplanconsists of the
following lemma and theorems. The first lemma simply says
that extending a belief spaceH is monotonic in the sense that
the members of flat(H) can only become bigger.

Lemma 9 AssumeT is any set of states andB ∈ flat(H).
Then there isB′ ∈ flat(H ⊕ T ) so thatB ⊆ B′.

The second lemma says that if we have belief states in dif-
ferent observational classes such that each is included in a
belief state of a belief spaceH, then there is a set in flat(H)
that includes all these belief states.

Lemma 10 LetB1, . . . , Bn be sets of states so that for every
i ∈ {1, . . . , n} there isB′

i ∈ flat(H) such thatBi ⊆ B′
i, and

there is no observational classC such that for some{i, j} ⊆
{1, . . . , n} bothi 6= j andBi∩C 6= ∅ andBj∩C 6= ∅. Then
there isB′ ∈ flat(H) such thatB1 ∪ · · · ∪Bn ⊆ B′.

The proof of the next theorem shows how the algorithm
is capable of finding any plan by constructing it bottom up
starting from the leaf nodes. The construction is based on
first assigning a belief state to each node in the plan, and then
showing that the algorithm reaches that belief state from the
goal states by repeated computation of preimages.

Theorem 11 Whenever there exists a finite acyclic plan for a
problem instance, the algorithm in Figure 2 returnstrue.

Proof: Assume there is a plan〈N, b, l〉 for a problem instance
〈S, I,O,G, P 〉. Label all nodes of the plan as follows. The
root nodeb is labeled withI, that is,Z(b) = I. When all
parent nodes of a noden have a label, we assign a label ton.
Let l(n1) = 〈o1, n〉, . . . , l(nm) = 〈om, n〉 for action nodes
n1, . . . , nm that haven as the child node, and letl(n′1) =
{〈C1, n〉, . . .}, . . . , l(n′k) = {〈Ck, n〉, . . .} for all observation
nodesn′1, . . . , n

′
k with n as one of the children. ThenZ(n) =

imgo1
(Z(n1))∪· · ·∪ imgom

(Z(nm))∪ (Z(n′1)∩C1)∪· · ·∪
(Z(n′k)∩Ck). If the above labeling does not assign anything
to a noden, then assignZ(n) = ∅. Each node is labeled with
those states that are possible in that node on some execution.

We show that if plans forZ(n1), . . . , Z(nk) exist, where
n1, . . . , nk are children of a noden in a possible plan, then
the algorithm determines that a plan forZ(n) exists as well.

Induction hypothesis: For each plan noden such that all
paths to a terminal node have lengthi or less, its labelB =
Z(n) is a subset of someB′ ∈ flat(H) whereH is the value
of the program variableH after thewhile loop exits andH
could not be extended further.

Base casei = 0: Terminal nodes of the plan are labeled
with subsets ofG. By Lemma 9, there isG′ such thatG ⊆ G′

andG′ ∈ flat(H) because initiallyH = B(G) and thereafter
it was repeatedly extended.

Inductive casei ≥ 1: Let n be a plan node. By the induc-
tion hypothesis for all childrenn′ of n, Z(n′) ⊆ B for some
B ∈ flat(H).

If n is an observation node with childrenn1, . . . , nk and
respective observationsC1, . . . , Ck, then Z(n) ∩ C1, . . .,
Z(n) ∩ Ck all occupy disjoint observational classes and su-
perset ofZ(n) ∩ Ci for everyi ∈ {1, . . . , k} is in flat(H).
Hence by Lemma 10Z(n) ⊆ B for someB ∈ flat(H).

If n is an action node with actiono and child noden′,
then imgo(Z(n)) ⊆ Z(n′), and by the induction hypothe-
sisZ(n′) ⊆ B′ for someB′ ∈ flat(H). We have to show that
Z(n) ⊆ B′′ for someB′′ ∈ flat(H). Assume that there is
no suchB′′. But now by Lemma 8 findnew(o,∅,H,H) would
returnB′′′ such that preimgo(B

′′′) 6⊆ B for all B ∈ flat(H),



and thewhile loop could not have exited withH, contrary to
our assumption aboutH. �

Theorem 12 LetΠ = 〈S, I,O,G, P 〉 be a problem instance.
If plan(I,O,G) returnstrue, thenΠ has a solution plan.

Proof: Let H0,H1, . . . be the sequence of belief spacesH
produced by the algorithm. We show that for alli ≥ 0, for
everyB ∈ flat(Hi) there is a plan that reachesG.

Induction hypothesis:Hi contains only such state setsB ∈
flat(Hi) for which a plan reachingG exists.

Base casei = 0: H0 = B(G), and the only state set inH0

is G. The empty plan reachesG from G.
Inductive casei ≥ 1: Hi+1 is obtained asHi⊕preimgo(B)

whereB = findnew(o,∅,Hi,Hi).
Because by Lemma 8B ∈ flat(Hi), by induction hypothe-

sis there is a planπ for B. The plan that executeso followed
by π reachesG from preimgo(B).

Let B be any member of flat(Hi+1). We show that forB
there is a plan for reachingG. The plan forB starts by a
branch2. We show that for every possible observation, cor-
responding to one observational class, there is a plan that
reachesG. Let Cj be thejth observational class. When ob-
servingCj , the current state is inBj = B ∩ Cj . Now for
Bj there isB′

j ∈ Hi+1,j with Bj ⊆ B′
j whereHi+1,j is the

jth component ofHi+1. Now by induction hypothesis there
is a plan forB′

j if B′
j ∈ Hi,j , and if B′

j ∈ Hi+1,j\Hi,j ,
then for the branch corresponding toCj we use the plan for
preimgo(B), asB′

j must be preimgo(B) ∩ Cj . �

Until now we have used only one partition of the state
space to observational classes. However, it is relatively
straightforward to generalize the above definitions and algo-
rithms to the case in which several partitions are used, each
for a different set of actions. This means that the possible
observations depend on the action that has last been taken.

6 Experimentation with an Implementation
We have implemented the algorithm from the previous sec-
tion and call the resulting planning system BBSP. The only
heuristic is the one described in the preceding sections:find-
new chooses bigger belief states first. The implementa-
tion is based on representing sets of states and actions as
BDDs [Burch et al., 1994]. There is a small improvement
in the belief space representation with BDDs: all components
of a belief space consisting of one belief state only are repre-
sented by one BDD.

We carried out a comparison to the MBP planner[Bertoli
et al., 2001] which uses forward-search together with some
heuristics for restricting branching. MBP starts search from
the initial states, and proceeds forward by taking actions,
leading to another set of states, or by using observations to
split the current state set to several smaller ones. Different
choices of actions and observations induce a search tree.

2Some branches might not be needed, and if the intersection ofB
with only one observational class is non-empty the plan could start
with an action node instead of a degenerate observation node.

runtime in seconds iterations
problem |S| MBP BBSP BBSP
BTCS1601 98 0.60 1.21 32
BTCS1701 104 0.79 1.38 34
BTCS1801 110 1.01 2.08 36
BTCS1901 116 1.22 2.28 38
BTCS2001 122 1.44 2.52 40
medical18 148 7.34 2.49 21
medical20 164 24.13 2.91 23
medical22 180 60.53 3.48 25
medical24 196 > 20 m 4.11 27
medical26 212 > 20 m 6.61 29
emptyroom07 49 0.09 0.38 41
emptyroom08 64 0.12 0.63 53
emptyroom10 100 0.16 1.56 81
emptyroom15 225 0.37 9.60 198
emptyroom20 400 0.62 25.58 243
ring03 162 0.09 0.16 11
ring04 648 0.38 0.44 19
ring05 2430 1.99 1.03 23
ring06 8748 13.12 1.63 27
ring07 30618 94.73 2.41 31
ring08 104976 744.90 3.34 35
ring09 354294 > 20 m 5.55 39
ring10 1180980 > 20 m 7.06 43
BW03fo 13 32.64 0.14 9
BW04fo 73 > 20 m 0.67 22
BW05fo 501 > 20 m 6.43 46
BW06fo 4051 > 20 m 133.14 64
BW03pfo 13 0.13 0.12 9
BW04pfo 73 90.15 0.69 22
BW05pfo 501 > 20 m 6.29 46
BW06pfo 4051 > 20 m 133.88 64
BW03po 13 0.08 0.12 9
BW04po 73 0.71 0.64 22
BW05po 501 13.49 6.41 46
BW06po 4051 394.21 198.85 64

Table 1: Runtime comparison BBSP vs. MBP

Some of the MBP runtimes given by Bertoli et al.[2001]
are much better than given by us in this paper (specifically on
the medical and ring problems) because the branching heuris-
tic used by Bertoli et al. works well on their formulations of
the benchmarks: branch only on one observable state variable
if possible. We used a slightly different formulation where
one many-valued observation is replaced by a small number
of Boolean observations.

Runtimes of the planners are given in Table 1. The runs
were on a 360 MHz Sun Sparcstation under Solaris. The
problem instances are the same as in[Rintanen, 2002] where
MBP was shown in almost all cases to be faster than GPT
[Bonet and Geffner, 2000] and much faster than the YK̈A
planner[Rintanen, 2002] on most of the problems except the
blocks worlds problems with full or almost full observability.
BTCS is the bomb-in-the-toilet problem with sensing. In the
medical problems patients are cured by performing tests and
medicating. The emptyroom problems are about navigating
from an unknown location to the center of the room. The ring
problems are about closing and locking all the windows of
a building consisting of a cycle of rooms. BW is the blocks



world with increasing number of blocks with the goal to ar-
range them into one stack from any initial configuration under
different degrees of observability:fo is full observability,pfo
is with theon relation observable, andpo is partial observ-
ability (clear andontableare observable). The problems are
solvable under partial observability because moving a block
only requires that it is clear and a move action is applicable
no matter where the block is.

The rightmost column gives the number of iterations BBSP
needs for finding a plan. MBP runtimes in some cases grow
faster because it performs more search. This is most obvi-
ous in some of the problems with more observations as the
number of possible ways of branching becomes astronomi-
cal. In our algorithm, the dynamic programming character of
plan generation better avoids this explosion in the number of
belief states to be considered.

In forward search there is an inherent conflict between
A) keeping the size of plans and search trees down bynot
branching on all possible observations and B) branching
enough to be able to find a plan. In MBP a number of heuris-
tics is used for controlling branching, and for these bench-
marks the heuristics in most cases work very well. For back-
ward plan construction no similar conflict exists, and plan
construction by a form of dynamic programming leads to ef-
fective reuse of already constructed belief states and plans,
and there is no separate problem of deciding how to branch.

7 Conclusions and Future Work

We have presented a novel framework for non-probabilistic
conditional planning with partial observability, proposed a
backward search algorithm for finding plans, and shown that
the basic backup step of the algorithm is NP-hard. We have
also demonstrated how an efficient implementation of the
backup step leads to competitive planning.

For future work we propose considering the problem of
finding plans with quality guarantees, for example, plans with
optimal execution length, as well as planning under more gen-
eral infinite-horizon executions. Also, the use of more sophis-
ticated heuristics for driving the planning algorithm should
be considered, for example the ones proposed by Rintanen
[2004b] generalized to partially observable problems.
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