
Habilitationsschrift

Automated Planning: Algorithms and Complexity

vorgelegt von

Dr. Jussi Rintanen

Albert-Ludwigs-Universität Freiburg
Institut für Informatik

Juli 2005

Contents

1 Introduction 1
1.1 Contributions of this work . 3

2 Preliminaries 8
2.1 Transition systems . 8

2.1.1 Deterministic transition systems . 9
2.2 Classical propositional logic . 10

2.2.1 Quantified Boolean formulae . 11
2.3 Succinct transition systems . 12

2.3.1 Deterministic succinct transition systems 13
2.3.2 Extensions . 15
2.3.3 Normal form for deterministic operators 15
2.3.4 Normal forms for nondeterministic operators 16

2.4 Computational complexity . 17

3 Deterministic planning 21
3.1 State-space search . 22

3.1.1 Progression and forward search . 22
3.1.2 Regression and backward search . 22

3.2 Planning by heuristic search algorithms . 28
3.3 Reachability . 30

3.3.1 Distances . 30
3.3.2 Invariants . 31

3.4 Approximations of distances . 32
3.4.1 Admissible max heuristic . 32
3.4.2 Inadmissible additive heuristic . 36
3.4.3 Relaxed plan heuristic . 37

3.5 Algorithm for computing invariants . 41
3.5.1 Applications of invariants in planning by regression and satisfiability . . 44

3.6 Planning as satisfiability in the propositional logic 44
3.6.1 Actions as propositional formulae . 44
3.6.2 Translation of operators into propositional logic 46
3.6.3 Finding plans by satisfiability algorithms 47

3.7 Definitions of parallel plans . 49
3.7.1 ∀-Step semantics . 50

ii

CONTENTS iii

3.7.2 Process semantics . 55
3.7.3 ∃-Step semantics . 57

3.8 Planning as satisfiability with parallel plans . 62
3.8.1 The base encoding . 62
3.8.2 ∀-Step semantics . 65
3.8.3 Process semantics . 69
3.8.4 ∃-Step semantics . 72
3.8.5 Experiments . 76

3.9 Evaluation algorithms . 86
3.9.1 Algorithm S: sequential evaluation . 91
3.9.2 Algorithm A: multiple processes . 91
3.9.3 Algorithm B: geometric division of CPU use 93
3.9.4 Properties of the algorithms . 96
3.9.5 Experiments . 100

3.10 Literature . 105

4 Conditional planning: complexity 108
4.1 Preliminaries . 109

4.1.1 Alternative observation models . 109
4.1.2 Plans . 110
4.1.3 Decision problems . 111
4.1.4 Reductions between objectives . 113

4.2 Lower bounds of complexity . 114
4.2.1 Planning with full observability . 114
4.2.2 Planning without observability . 119
4.2.3 Planning with partial observability . 123
4.2.4 Plans with loops . 126

4.3 Upper bounds of complexity . 129
4.3.1 Planning with full observability . 129
4.3.2 Planning with unobservability . 136
4.3.3 Planning with partial observability . 139

4.4 Summary of the results . 142
4.4.1 Lower bounds for reachability . 144
4.4.2 Upper bounds for reachability . 144

5 Algorithms for nondeterministic planning 146
5.1 Nondeterministic operators . 146

5.1.1 Regression for nondeterministic operators 147
5.1.2 Translation of nondeterministic operators into propositional logic 147

5.2 Computing with transition relations as formulae 150
5.2.1 Existential and universal abstraction . 150
5.2.2 Images and preimages as formula manipulation 151

5.3 Planning without observability . 154
5.3.1 Planning by evaluation of QBF . 154
5.3.2 Distance heuristics for the belief space 160

5.4 Planning with partial observability . 168

iv CONTENTS

5.4.1 Problem representation . 169
5.4.2 Complexity of basic operations . 173
5.4.3 Algorithms . 174

5.5 Literature . 177

Bibliography 178

Index 187

Chapter 1

Introduction

Planning in Artificial Intelligence is a formalization of decision making about the actions to be
taken. Consider an intelligent robot. The robot is a computational mechanism that takes input
through its sensors that allow the robot to observe its environment and to build a representation of
its immediate surroundings and parts of the world it has observed earlier. For a robot to be useful
it has to be able to act. A robot acts through its effectors which are devices that allow the robot to
move itself and other objects in its immediate surroundings. A robot resembling a human being
has hands and feet, or their muscles, as effectors.

At an abstract level, a robot is a mechanism that maps its observations, which are obtained
through the sensors, to actions which are performed by means of the effectors. Planning is the
decision making needed in producing a sequence of actions given a sequence of observations. The
more complicated the environment and the tasks of the robot are, the more intelligent the robot
has to be. For genuine intelligence it is important that the robot is able to plan its actions also in
challenging situations.

We view planning as an algorithmic problem. Given a formalization of the world and its dy-
namics an algorithm is used in finding a plan that satisfies the objectives the agent has.

In the simplest cases when the world and the actions are deterministic and the initial state of
the world is known, planning can be viewed as finding a path in the transition graph describing
the effects of different actions to the state of the world. The use of conventional s-t-reachability
algorithms, however, is often not practical because of the potentially very high number of states.
Indeed, the representation of the world and the actions typically used in AI planning is based on
state variables and operators describing the effects of the actions, and consequently the size of
the transition graph may be exponential in the size of the problem description. Most work on AI
planning concentrates on utilizing the regularities of the problem description to avoid the explicit
construction of the transition graph.

Planning is complicated by different kinds of incompleteness the knowledge of the agent has
about the current and the future states of the world. First, the unpredictability of the effects of
some actions may make it difficult to achieve the desired goals. The unpredictability of the actions
and the world is known as nondeterminism: when a given action is taken, the successor state of
the current world state is not determined uniquely by the action, and hence there may be several
possible successor states. Nondeterminism may be due to inherent unpredictability of the world
or simply a product of the incompleteness of the knowledge about the dynamics of the world. We
do not further distinguish between these two types of nondeterminism.

Second, the current state of the world might not be uniquely known to the agent. The agent may

1

2 CHAPTER 1. INTRODUCTION

world

sensors effectors

sensor interpretation:
vision, speech, . . .

motion planning

knowledge representation
learning

task planning

Figure 1.1: Software architecture of an intelligent robot

be capable of sensing and observing some aspects of the world, but other aspects of the world are
inaccessible to it. This is known as partial observability. Partial observability makes it necessary
to formalize the knowledge an agent has. The knowledge determines which states of the world the
agent considers as possible current states, and possibly also assigns different degrees of probability
to the possible current states.

Efficient and general planning algorithms are needed for building intelligent systems that are
able to adjust to unforeseen situations quickly and robustly and choose the appropriate actions that
lead to achieving the goals.

The most general formalizations of planning are intractable. The term domain-independent
planning refers to a class of problems expressible in a general problem description language and
to algorithms for solving any problem in the class.

The most commonly used languages used in domain-independent planning, for example the
PDDL language [Ghallab et al., 1998], are based on state variables and operators. Languages
that use state variables are very powerful and many NP-hard problems, including the satisfiability
problem of the classical propositional logic and the halting problems of some classes of resource-
bounded Turing machines, are easily expressible as planning problems, which makes domain-
independent planning in its general forms intractable. All known algorithms for most types of
planning problems require exponential time in the worst case.

Intractability does not necessarily imply high runtimes of algorithms in typical or average cases.
The research problems that arises in this setting include identifying the sources of computational
difficulty in different classes of planning problems, finding techniques for tackling computational
difficulty, and devising algorithms that are efficient for as wide classes of planning problems as
possible.

1.1. CONTRIBUTIONS OF THIS WORK 3

1.1 Contributions of this work

This work makes contributions to several areas in AI planning: analysis of the computational
complexity of different types of planning problems, algorithms for planning under the assumption
of determinism and one initial state, and algorithms for planning under incomplete information.

The non-probabilistic planning problems with incomplete information addressed by this work
can be seen as discrete non-probabilistic relatives of the policy construction problems of Markov
decision processes (MDPs) [Howard, 1960; Puterman, 1994] and partially observable MDPs
(POMDPs) [Smallwood and Sondik, 1973; Sondik, 1978]. As we ignore probabilities, we cannot
speak about expected rewards and expected costs as in the MDP and POMDP frameworks, which
makes it difficult to quantify the value of a plan in terms of typical behavior. However, contrary
to the POMDP policy construction problem that is unsolvable when policies with at least a given
value are sought for [Madani et al., 2003], planning problems addressed in this work are solvable.

A main difference to conventional MDP and POMDP formulations in our work as in most of
AI planning is that problem instances are represented in terms of a succinct state-variable based
representation that allows exponentially more concise description of problem instances that the
enumerative representation of transition relations and transition probabilities. Similar approach
can also been used in connection with POMDPs [Mundhenk et al., 2000].

A practically important subclass of planning problems is those with deterministic actions and
one initial state. This subclass is known as classical planning. Because of the lack of uncertainty
about the initial state and the effects of actions, the state of the world after every action can be
predicted unambiguously. For this special case it suffices to consider only plans that are sequences
of actions.

The results of this work cover some of the main approaches that have been presented for classi-
cal planning. We have generalized some of the earlier techniques used in connection with heuristic
state-space search, and present a range of new techniques for plan search by means of algorithms
for the satisfiability problem of the classical propositional logic.

The contributions of this work are as follows.

Complexity analysis of non-probabilistic planning with partial observability

1. The complexity results in Chapter 4.

A part of the results have been published [Rintanen, 2004a].

The main result establishes the 2-EXP-completeness of general non-probabilistic planning
with partial observability. We have analyzed the decision problem of whether a plan exists.
The corresponding decision problem for partially observable Markov Decision Processes of
whether there is a policy with at least a given value is not solvable [Madani et al., 2003].
It has been argued that conditional planning is not feasible because the associated plans
are big, and robotic control and other applications should use algorithms that only decide
one action ahead. However, the 2-EXP-hardness of plan existence directly also implies
the 2-EXP-hardness of deciding whether taking a given action is safe in the sense that it
does not make the goals unreachable. Hence deciding about the first action to be taken
is computationally just as difficult as deciding general plan existence. Of course, it may
be a practical consideration that a complete plan for reaching a goal does not have to be
represented explicitly.

4 CHAPTER 1. INTRODUCTION

Earlier research has identified the complexity of probabilistic planning problems with dif-
ferent restriction to observability and different horizon lengths [Littman, 1997; Mundhenk
et al., 2000], the complexity of the nondeterministic planning problem without observability
[Haslum and Jonsson, 2000], and the complexity of probabilistic and nondeterministic plan-
ning problems under different observability assumptions assuming plans of polynomial size
and/or polynomial execution length [Littman et al., 1998; Rintanen, 1999; Baral et al., 2000;
Turner, 2002].

Other related works include the analyses of computational complexity of controller and plan
synthesis in a temporal logic framework, possibly under observability restrictions [Pnueli
and Rosner, 1989; Vardi, 1995; Kupferman and Vardi, 1997; Giacomo and Vardi, 2000;
Calvanese et al., 2002]. In many of the problems analyzed in these works the complexity of
the satisfiability problem of the underlying temporal logic dominates the complexity of the
controller and plan synthesis problems. For example, the CTL∗ synthesis problem consid-
ered by Kupferman and Vardi [1997] is 2-EXP-complete, which is also the complexity of
the satisfiability problem of CTL∗.

Algorithms for non-probabilistic planning with partial observability

1. The framework for non-probabilistic planning with partial observability in Section 5.4.

A part of the results have been published [Rintanen, 2005].

We have presented a representation of dynamic-programming type backward search for
planning with partial observability in the discrete belief space without probabilities. Al-
though efficient algorithms for non-probabilistic fully observable planning with a dynamic-
programming character exist [Cimatti et al., 2003], recent work on non-probabilistic con-
ditional planning [Bertoli et al., 2001b] had resorted to forward search because of the con-
ceptual simplicity and seemingly because of the conceptual difficulty of backward search
in the belief space. Backward search approaches in general are more effective in avoiding
repeatedly solving the same subproblems.

Related works include heuristic search algorithms solving partially observable planning
problems [Bonet and Geffner, 2000; Bertoli et al., 2001b; 2001a], and algorithms for solv-
ing MDPs and POMDPs [Howard, 1960; Sondik, 1971; Smallwood and Sondik, 1973]. The
works on MDPs and POMDPs are based on dynamic-programming type updates similar to
our work, and our work could be viewed as a discrete counterpart of the POMDP framework
of Sondik and Smallwood.

2. Representation of non-probabilistic planning with nondeterminism and partial observability
as evaluation of quantified Boolean formulae. The approach is very general but in Section
5.3.1 we present the basic case without observability only.

A part of the results have been published [Rintanen, 1999].

The basic insight is that even under plan size restrictions plan search for problems with
nondeterminism or observability restrictions cannot in general be usefully viewed as a sat-
isfiability problem as in the deterministic one-initial state case [Kautz and Selman, 1992;
1996]. The problem has a quantification structure requiring the use of QBF or some other
generalization of the propositional satisfiability problem: there is a plan such that for all
possible eventualities there is an execution of the plan leading to a goal state. This naturally

1.1. CONTRIBUTIONS OF THIS WORK 5

leads to quantified Boolean formulae with three quantifiers ∃∀∃. Since the plan and the set
of eventualities unambiguously determine the execution which can be found in polynomial
time these QBF correspond to decision problems on the second level of the polynomial hi-
erarchy: is there a polynomial-size plan that always reaches a goal state with a polynomially
long execution.

Our work introduced the use of quantified Boolean formulae QBF in solving advanced rea-
soning tasks in AI and about transition systems. Many follow-up works exist. This includes
the use of a satisfiability algorithm for testing whether a given candidate plan found by an
ad hoc search algorithm is a valid plan [Castellini et al., 2003] and complexity analyses of
planning under partial observability based on QBF [Turner, 2002].

3. The definition of a family of distance heuristics for planning with partial observability in
Section 5.3.2. Our definition of n-distances generalizes most of the heuristics defined earlier
for partially observable problems

A part of the results have been published [Rintanen, 2004b].

Earlier heuristics include the cardinality of belief states [Bertoli et al., 2001a] and the
distances/costs of the fully observable problem [Bonet and Geffner, 2000]. Recent work
has concentrated on planning graph based [Blum and Furst, 1997] implementation tech-
niques for approximating the distances obtained by relaxing the problem to a corresponding
fully observable problem [Bryce and Kambhampati, 2004]. Smith and Weld [1998] gave
a heuristic that can be viewed as a specialized planning graph based approximation of our
n-distances but restricted to deterministic problems.

4. The algorithm for planning with full observability based on the procedure prune in Section
4.3.1. This algorithm generalizes an algorithm presented by Cimatti et al. [2003] for solving
the special case of the problem restricted to reaching a given goal state. These algorithms
are loosely related to the value iteration algorithm for Markov decision processes. Since the
MDP model uses expected rewards as the criterion for comparing plans and not a designated
set of goal states that must be reached the non-probabilistic problem we solve is different
from the MDP problem. Simulation of goal states by rewards in the MDP model is not
accurate in the sense that a plan for an MDP that maximizes rewards that are only obtained
in goal states may fail to reach a goal state with a non-zero probability.

Algorithms for deterministic (classical) planning

1. Generalization of a range of techniques introduced for solving the deterministic planning
problem to a richer plan definition language that includes conditional effects, including the
generalization of some of the main distance heuristics [Bonet and Geffner, 2001; Hoffmann
and Nebel, 2001] (Section 3.3) and the introduction of a regression operator for operators
with conditional effects (Section 3.1.2).

Practically all earlier works on these topics were restricted to the class of STRIPS operators
which have a conjunction of (positive) literals as a precondition and effects (assignments of
values to state variables) that are executed unconditionally. Our work shows how a small and
relatively simple set of concepts suffices for representing many of the important techniques
uniformly and concisely.

6 CHAPTER 1. INTRODUCTION

2. The algorithm for computing invariants in Section 3.5.

An early variant of the algorithm has been published [Rintanen, 1998].

Invariant in planning have been used for pruning search trees. This differs from the applica-
tions of invariants in computer-aided verification where invariants are desirable properties
of a transition system [Bensalem et al., 1996].

The computation of mutexes in Blum and Furst’s [1997] planning graphs is closely related
to my invariant algorithm but there are also major differences. Similarly to my invariant
algorithm Blum and Furst’s construction essentially performs an approximative reachability
analysis that gives upper bounds on the set of states that are reachable in a given number of
time steps. However, Blum and Furst restrict to a narrow class of operators with uncondi-
tional effects only, and their construction allows the application of several operators in one
time point. For this reason the intermediate stages in my invariant computation give a lower
bound on the number of actions needed to reach a state while Blum and Furst’s construction
does not. Hence the former yields an admissible heuristic for guiding a heuristic search
algorithm for planning and the latter does not.

Other works that introduce algorithms for computing invariants include [Gerevini and Schu-
bert, 1998; Fox and Long, 1999]. In comparison to these works our algorithm is conceptu-
ally simpler and equally or more powerful.

3. The analysis of different notions of partially-ordered plans in Section 3.7.

The best known notion of parallel or partially-ordered plans stems from the research on
partial-order planning [Sacerdoti, 1975; McAllester and Rosenblitt, 1991]. If two operators
have no mutual ordering constraint they can be ordered in any order. Partial orderings in this
context are related to partial-order reduction techniques used in computer-aided verification
[Godefroid, 1991; Valmari, 1991].

A slightly more restrictive notion of partially-ordered plans have been used in the Graphplan
algorithm [Blum and Furst, 1997] and in planning by satisfiability [Kautz and Selman, 1996;
1999] in which the partial orders are required to be modular. A strict partial order < on a
countable set is modular if all the elements i can be assigned an integer f(i) so that i < j
iff f(i) < f(j).

The motivation for the use of partially ordered plans in the Graphplan algorithm and in
planning by satisfiability is that planning is more efficient if less time points are needed
for the plan. For satisfiability algorithms a smaller number of time points directly leads to
smaller formulae and less propositional variables, and hence to a smaller search space.

A more relaxed notion of partially-ordered plans was proposed by Dimopoulos et al. [1997].

We have analyzed the computational complexity of these two notions of partially-ordered
plans and given results indicating the boundary between more restricted tractable and in-
tractable definitions of partially-ordered plans.

These results are also applicable to bounded model-checking [Biere et al., 1999] which is
an extension of planning by satisfiability.

4. Asymptotically optimal encodings of partially ordered plans in the classical propositional
logic in Section 3.8.

1.1. CONTRIBUTIONS OF THIS WORK 7

These results and those of Section 3.7 are joint work with Keijo Heljanko and Ilkka Niemelä
and have been published as a technical report [Rintanen et al., 2005] and submitted for
journal publication.

Earlier encodings of partially-ordered plans [Kautz and Selman, 1996; 1999] in a declarative
language like the propositional logic had a quadratic size. In our work we have given asymp-
totically optimal linear-size encodings of the main tractable notions of partially-ordered
plans. Our encodings make planning as satisfiability practical to many problems that were
earlier difficult to solve because of high formula size or high runtimes.

5. Two new algorithms for controlling a plan search process based on looking for plans of a
given length in Section 3.9.

A part of the results have been published [Rintanen, 2004c].

All previous work on planning by satisfiability [Kautz and Selman, 1992; 1996; 1999] and
related approaches [Blum and Furst, 1997] were based on testing the existence of a plan
of a given length, and if it was shown that no plans of that length exists, the plan length
was increased. This procedure guarantees that the first plan that is found has the minimum
length.

In practice the procedure is very inefficient if the objective is to find any plan, not neces-
sarily the optimal one, because proving that plans of length n − 1 do not exist is typically
much more expensive than finding a plan of length n, where n is the length of the shortest
plan. Furthermore, planning by satisfiability [Kautz and Selman, 1992; 1996] and related
approaches [Blum and Furst, 1997] have almost exclusively been used in connection with
plan notions for which the plan length parameter does not correspond to the most natural
plan size criterion, the number of operators in a plan, but to a less directly useful measure
of the number of time points in a plan. Hence the procedure that guarantees optimality
with respect to number of time points does not in general guarantee the smallest number of
operators.

The algorithms we have proposed allow trading optimality with respect to the number of
time points to improved runtimes to find a plan. The algorithms attempt to find plans for
different numbers of time points simultaneously and in many cases avoids the very expen-
sive proofs that plans of certain lengths do not exist. Our algorithm and experiments demon-
strate that much of the perceived superiority of heuristic state-space search over planning
as satisfiability on planning benchmarks when optimality guarantees are not required is due
to the fact that planners based on satisfiability testing were giving optimality guarantees or
proofs of close-to-optimality whereas the heuristic state-space planners did not.

Chapter 2

Preliminaries

In this chapter we define the formal machinery needed in the rest of the work for describing
different planning problems and algorithms. We give the basic definitions related to the classical
propositional logic, theory of computational complexity, and the definition of the transition system
model that is the basis of most work on planning.

2.1 Transition systems

We define transition systems in which states are atomic objects and actions are represented as
binary relations on the set of states.

Definition 2.1 A transition system is a 5-tuple Π = 〈S, I,O,G, P 〉 where

1. S is a finite set of states,

2. I ⊆ S is the set of initial states,

3. O is a finite set of actions o ⊆ S × S,

4. G ⊆ S is the set of goal states, and

5. P = (C1, . . . , Cn) is a partition of S to non-empty classes of observationally indistin-
guishable states satisfying

⋃
{C1, . . . , Cn} = S and Ci ∩ Cj = ∅ for all i, j such that

1 ≤ i < j ≤ n.

Making an observation tells which set Ci the current state belongs to. Distinguishing states
within a given Ci is not possible by observations. If two states are observationally distinguishable
then plan execution can proceed differently for them.

The number n of components in the partition P determines different classes of planning prob-
lems with respect to observability restrictions. If n = |S| then every state is observationally
distinguishable from every other state. This is called full observability. If n = 1 then no observa-
tions are possible and the transition system is unobservable. The general case n ∈ {1, . . . , |S|} is
called partial observability.

An action o is applicable in states for which it associates at least one successor state. We define
images of states as imgo(s) = {s′ ∈ S|sos′} and (weak) preimages of states as preimgo(s′) =
{s ∈ S|sos′}. Generalization to sets of states is imgo(T) =

⋃
s∈T imgo(s) and preimgo(T) =

8

2.1. TRANSITION SYSTEMS 9

⋃
s∈T preimgo(s). For sequences o1, . . . , on of actions imgo1;...;on(T) = imgon(· · · imgo1(T) · · ·)

and preimgo1;...;on(T) = preimgo1(· · · preimgon(T) · · ·). The strong preimage of a set T of states
is the set of states for which all successor states are in T , defined as spreimgo(T) = {s ∈ S|s′ ∈
T, sos′, imgo(s) ⊆ T}.

Lemma 2.2 Images, strong preimages and weak preimages of sets of states are related to each
other as follows. Let o be any action and S and S′ any sets of states.

1. spreimgo(T) ⊆ preimgo(T)

2. imgo(spreimgo(T)) ⊆ T

3. If T ⊆ T ′ then imgo(T) ⊆ imgo(T ′).

4. preimgo(T ∪ T ′) = preimgo(T) ∪ preimgo(T ′).

5. s′ ∈ imgo(s) if and only if s ∈ preimgo(s).

Proof:

1. spreimgo(T) = {s ∈ S|s′ ∈ T, sos′, imgo(s) ⊆ T} ⊆ {s ∈ S|s′ ∈ T, sos′} =
⋃

s′∈T {s ∈
S|sos′} =

⋃
s′∈T preimgo(s′) = preimgo(T).

2. Take any s′ ∈ imgo(spreimgo(T)). Hence there is s ∈ spreimgo(T) so that sos′. As
s ∈ spreimgo(T), imgo(s) ⊆ T . Since s′ ∈ imgo(s), s′ ∈ T .

3. Assume T ⊆ T ′ and s′ ∈ imgo(T). Hence sos′ for some s ∈ T by definition of images.
Hence sos′ for some s ∈ T ′ because T ⊆ T ′. Hence s′ ∈ imgo(T ′) by definition of images.

4. preimgo(T ∪T ′) =
⋃

s′∈T∪T ′{s ∈ S|sos′} =
⋃

s′∈T {s ∈ S|sos′}∪
⋃

s′∈T ′{s ∈ S|sos′} =
preimgo(T) ∪ preimgo(T ′)

5. s′ ∈ imgo(s) iff sos′ iff s ∈ preimgo(s).

�

2.1.1 Deterministic transition systems

Transition systems which we use in Chapter 3 have only one initial state and deterministic actions.
For this subclass observability is irrelevant because the state of the transition system after a given
sequence of actions can be predicted exactly. We use a simpler formalization of them.

Definition 2.3 A deterministic transition system is a 4-tuple Π = 〈S, I,O,G〉 where

1. S is a finite set of states,

2. I ∈ S is the initial state,

3. O is a finite set of actions o ⊆ S × S that are partial functions, and

4. G ⊆ S is the set of goal states.

10 CHAPTER 2. PRELIMINARIES

That the actions are partial functions means that for any s ∈ S and o ∈ O there is at most one
state s′ such that sos′. We denote the unique successor state s′ of a state s in which operator o
is applicable by s′ = appo(s). For sequences o1; . . . ; on of operators we define appo1;...;on(s) as
appon(· · · appo1(s) · · ·).

2.2 Classical propositional logic

Let A be a set of propositional variables (atomic propositions). We define the set of propositional
formulae inductively as follows.

1. For all a ∈ A, a is a propositional formula.

2. If φ is a propositional formula, then so is ¬φ.

3. If φ and φ′ are propositional formulae, then so is φ ∨ φ′.

4. If φ and φ′ are propositional formulae, then so is φ ∧ φ′.

5. The symbols ⊥ and >, respectively denoting truth-values false and true, are propositional
formulae.

The symbols ∧, ∨ and ¬ are connectives respectively denoting the conjunction, disjunction and
negation. We define the implication φ→ φ′ as an abbreviation for ¬φ ∨ φ′, and the equivalence
φ↔ φ′ as an abbreviation for (φ→φ′) ∧ (φ′→φ).

A valuation of A is a function v : A → {0, 1} where 0 denotes false and 1 denotes true.
Valuations are also known as assignments or models. For propositional variables a ∈ A we define
v |= a if and only if v(a) = 1. A valuation of the propositional variables in A can be extended to
a valuation of all propositional formulae over A as follows.

1. v |= ¬φ if and only if v 6|= φ

2. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

3. v |= φ ∧ φ′ if and only if v |= φ and v |= φ′

4. v |= >

5. v 6|= ⊥

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formula φ is satisfiable (consistent) if there is at least one valuation v so that
v |= φ. Otherwise it is unsatisfiable (inconsistent). A finite set F of formulae is satisfiable if∧

φ∈F φ is. A propositional formula φ is valid or a tautology if v |= φ for all valuations v. We
denote this by |= φ. A propositional formula φ is a logical consequence of a propositional formula
φ′, written φ′ |= φ, if v |= φ for all valuations v such that v |= φ′. A propositional formula that
is a proposition variable a or a negated propositional variable ¬a for some a ∈ A is a literal. A
formula that is a disjunction of literals is a clause.

A formula φ is in negation normal form (NNF) if all occurrences of negations are directly
in front of propositional variables. Any formula can be transformed to negation normal form by

2.2. CLASSICAL PROPOSITIONAL LOGIC 11

applications of the De Morgan rules ¬(φ∨φ′) ≡ ¬φ∧¬φ′ and ¬(φ∧φ′) ≡ ¬φ∨¬φ′, the double
negation rule ¬¬φ ≡ φ. A formula φ is in conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals. A formula φ is in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals. Any formula in CNF or in DNF is also in NNF.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
with quantification over the truth-values of propositional variables. Quantified Boolean formulae
(QBF) are like propositional formulae but there are two new syntactic rules for the quantifiers.

6. If φ is a formula and a ∈ A, then ∀aφ is a formula.

7. If φ is a formula and a ∈ A, then ∃aφ is a formula.

Further, there is the requirement that every variable is quantified, that is, every occurrence of
a ∈ A in a QBF is in the scope of either ∃a or ∀a.

Define φ[ψ/x] as the formula obtained from φ by replacing occurrences of the propositional
variable x by ψ.

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
> and ⊥. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean functions associated with the connectives ∨, ∧ and ¬.

Definition 2.4 (Truth of QBF) A formula ∃xφ is true if and only if φ[>/x] ∨ φ[⊥/x] is true.
(Equivalently, if φ[>/x] is true or φ[⊥/x] is true.)

A formula ∀xφ is true if and only if φ[>/x] ∧ φ[⊥/x] is true. (Equivalently, if φ[>/x] is true
and φ[⊥/x] is true.)

A formula φ with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only if φ is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.5 The formulae ∀x∃y(x↔ y) and ∃x∃y(x ∧ y) are true.
The formulae ∃x∀y(x↔ y) and ∀x∀y(x ∨ y) are false. �

Note that a QBF with only existential quantifiers is true if and only if the formula without the
quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides with the
validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases and to
view each quantifier as quantifying a set of formulae, for example ∃x1x2∀y1y2φ.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
complete [Meyer and Stockmeyer, 1972], and many computational problems that presumably
cannot be translated into the satisfiability problem of the propositional logic in polynomial time
(assuming that NP6=PSPACE) can be efficiently translated into QBF.

12 CHAPTER 2. PRELIMINARIES

2.3 Succinct transition systems

It is often more natural to represent the states of a transition system as valuations of state variables
instead of enumeratively as in Section 2.1. The binary relations that correspond to actions can
often be represented compactly in terms of the changes the actions cause to the values of state
variables.

We represent states in terms of a set A of Boolean state variables which take the values true or
false. Each state is a valuation of A (a function s : A→ {0, 1}.)

Definition 2.6 Let A be a set of state variables. An operator is a pair 〈c, e〉 where c is a proposi-
tional formula over A (the precondition), and e is an effect over A. Effects over A are recursively
defined as follows.

1. a and ¬a for state variables a ∈ A are effects over A.

2. e1 ∧ · · · ∧ en is an effect over A if e1, . . . , en are effects over A (the special case with n = 0
is the empty effect >).

3. c B e is an effect over A if c is a formula over A and e is an effect over A.

4. e1| · · · |en is an effect over A if e1, . . . , en for n ≥ 2 are effects over A.

The compound effects e1 ∧ · · · ∧ en denote executing all the effects e1, . . . , en simultaneously.
In conditional effects c B e the effect e is executed if c is true in the current state. The effects
e1| · · · |en denote nondeterministic choice between the effects e1, . . . , en. Exactly one of these
effects is chosen randomly.

Operators describe a binary relation on the set of states as follows.

Definition 2.7 (Operator application) Let 〈c, e〉 be an operator over A. Let s be a state (a valu-
ation of A). The operator is applicable in s if s |= c and every set E ∈ [e]s is consistent. The set
[e]s is recursively defined as follows.

1. [a]s = {{a}} and [¬a]s = {{¬a}} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {
⋃n

i=1Ei|E1 ∈ [e1]s, . . . , En ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and [c′ B e]s = {∅} otherwise.

4. [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s .

An operator 〈c, e〉 induces a binary relationR〈c, e〉 on states as follows: states s and s′ are related
by R〈c, e〉 if s |= c and s′ is obtained from s by making the literals in some E ∈ [e]s true and
retaining the values of state variables not occurring in E.

We call the sets in [e]s the sets of alternative active effects of e. For an operator o = 〈c, e〉 we
also define [o]s = [e]s. We define images and preimages for operators o in terms of R(o), for
instance by preimgo(s) = preimgR(o)(s).

Definition 2.8 A succinct transition system is a 5-tuple Π = 〈A, I,O,G, V 〉 where

1. A is a finite set of state variables,

2.3. SUCCINCT TRANSITION SYSTEMS 13

2. I is a formula over A describing the initial states,

3. O is a finite set of operators over A,

4. G is a formula over A describing the goal states, and

5. V ⊆ A is the set of observable state variables.

Succinct transition systems with V = A are fully observable, and succinct transition systems
with V = ∅ are unobservable. Without restrictions on V the succinct transition systems are
partially observable.

We can associate a transition system with every succinct transition system.

Definition 2.9 Given a succinct transition system Π = 〈A, I,O,G, V 〉, define the transition sys-
tem F (Π) = 〈S, I ′, O′, G′, P 〉 where

1. S is the set of all Boolean valuations of A,

2. I ′ = {s ∈ S|s |= I},

3. O′ = {R(o)|o ∈ O},

4. G′ = {s ∈ S|s |= G}, and

5. P = (C1, . . . , Cn) where v1, . . . , vn for n = 2|V | are all the Boolean valuations of V and
Ci = {s ∈ S|s(a) = vi(a) for all a ∈ V } for all i ∈ {1, . . . , n}.

The transition system may have a size that is exponential in the size of the succinct transition
system. However, the construction takes only polynomial time in the size of the transition system.

2.3.1 Deterministic succinct transition systems

A deterministic operator has no occurrences of | in the effect. Further, in this special case the
definition of operator application is slightly simpler.

Definition 2.10 (Operator application) Let 〈c, e〉 be a deterministic operator over A. Let s be a
state (a valuation of A). The operator is applicable in s if s |= c and the set [e]det

s is consistent.
The set [e]det

s is recursively defined as follows.

1. [a]det
s = {a} and [¬a]det

s = {¬a} for a ∈ A.

2. [e1 ∧ · · · ∧ en]det
s =

⋃n
i=1[ei]

det
s .

3. [c′ B e]det
s = [e]det

s if s |= c′ and [c′ B e]det
s = ∅ otherwise.

A deterministic operator 〈c, e〉 induces a partial function R〈c, e〉 on states as follows: two states
s and s′ are related by R〈c, e〉 if s |= c and s′ is obtained from s by making the literals in [e]det

s

true and retaining the truth-values of state variables not occurring in [e]det
s .

14 CHAPTER 2. PRELIMINARIES

We define appo(s) = s′ by sR(o)s′ and appo1;...;on(s) = s′ by appon(. . . appo1(s) . . .), just
like for non-succinct transition systems. For sets T of operators we define [T]det

s =
⋃

o∈T [o]det
s .

Define appT (s) as the state that is obtained from s by making the literals in [T]det
s true. For this

to be defined must [T]det
s be consistent. We formally define deterministic succinct transition

systems.

Definition 2.11 A deterministic succinct transition system is a 4-tuple Π = 〈A, I,O,G〉 where

1. A is a finite set of state variables,

2. I is an initial state,

3. O is a finite set of operators over A, and

4. G is a formula over A describing the goal states.

We can associate a deterministic transition system with every deterministic succinct transition
system.

Definition 2.12 Given a deterministic succinct transition system Π = 〈A, I,O,G〉, define the
deterministic transition system F (Π) = 〈S, I,O′, G′〉 where

1. S is the set of all Boolean valuations of A,

2. O′ = {R(o)|o ∈ O}, and

3. G′ = {s ∈ S|s |= G}.

A subclass of operators considered in many early and recent works restrict to STRIPS operators.
An operator 〈c, e〉 is a STRIPS operator if c is a conjunction of state variables and e is a conjunction
of literals. STRIPS operators do not allow disjunctivity in formulae nor conditional effects. This
class of operators is sufficient in the sense that any transition system can be expressed in terms of
STRIPS operators only if the identities of operators are not important: when expressing a transition
system in terms of STRIPS operators only some operators correspond to an exponential number
of STRIPS operators.

Example 2.13 Let A = {a1, . . . , an} be the set of state variables. Let o = 〈>, e〉 where

e = (a1 B ¬a1) ∧ (¬a1 B a1) ∧ · · · ∧ (an B ¬an) ∧ (¬an B an)〉.

This operator reverses the values of all state variables. As its set of active effects [e]det
s is different

in every one of 2n states, this operator corresponds to 2n STRIPS operators.

o0 = 〈¬a1 ∧ ¬a2 ∧ · · · ∧ ¬an, a1 ∧ a2 ∧ · · · ∧ an〉
o1 = 〈a1 ∧ ¬a2 ∧ · · · ∧ ¬an,¬a1 ∧ a2 ∧ · · · ∧ an〉
o2 = 〈¬a1 ∧ a2 ∧ · · · ∧ ¬an, a1 ∧ ¬a2 ∧ · · · ∧ an〉
o3 = 〈a1 ∧ a2 ∧ · · · ∧ ¬an,¬a1 ∧ ¬a2 ∧ · · · ∧ an〉

...
o2n−1 = 〈a1 ∧ a2 ∧ · · · ∧ an,¬a1 ∧ ¬a2 · · · ∧ ¬an〉

�

2.3. SUCCINCT TRANSITION SYSTEMS 15

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (2.1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2.2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (2.3)

e ∧ (c B e) ≡ e (2.4)

e ≡ > B e (2.5)

e1 ∧ (e2 ∧ e3) ≡ (e1 ∧ e2) ∧ e3 (2.6)

e1 ∧ e2 ≡ e2 ∧ e1 (2.7)

c B > ≡ > (2.8)

e ∧ > ≡ e (2.9)

Table 2.1: Equivalences on effects

2.3.2 Extensions

The basic language for effects could be extended with further constructs. A natural construct is
sequential composition of effects. If e and e′ are effects, then also e; e′ is an effect that corresponds
to first executing e and then e′. Definition 3.11 and Theorem 3.12 show how effects with sequential
composition can be reduced to effects without sequential composition.

2.3.3 Normal form for deterministic operators

Deterministic operators can be transformed to a particularly simple form without nesting of con-
ditionality B and with only atomic effects e as antecedents of conditionals φ B e. Normal forms
are useful as they allow concentrating on a particularly simple form of effects.

Table 2.1 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.10 are straightforward. An effect e is equivalent to > ∧ e, and conjunctions of effects can be
arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving all occurrences of B inside ∧ so that the consequents
of B are atomic effects.

Definition 2.14 A deterministic effect e is in normal form if it is > or a conjunction of one or
more effects c B a and c B ¬a with at most one occurrence of atomic effect a and ¬a for any
a ∈ A. An operator 〈c, e〉 is in normal form if e is in normal form.

Theorem 2.15 For every deterministic operator there is an equivalent one in normal form. There
is one that has a size that is polynomial in the size of the operator.

Proof: We can transform any deterministic operator into normal form by using the equivalences
in Table 2.1. The proof is by structural induction on the effect e of the operator 〈c, e〉.

Induction hypothesis: the effect e can be transformed to normal form.
Base case 1, e = >: This is already in normal form.

16 CHAPTER 2. PRELIMINARIES

Base case 2, e = a or e = ¬a: An equivalent effect in normal form is > B e by Equivalence
2.5.

Inductive case 1, e = e1 ∧ e2: By the induction hypothesis e1 and e2 can be transformed into
normal form, so assume that they already are. If one of e1 and e2 is >, by Equivalence 2.9 we can
eliminate it.

Assume e1 contains c1 B l for some literal l and e2 contains c2 B l. We can reorder e1∧e2 with
Equivalences 2.6 and 2.7 so that one of the conjuncts is (c1 B l) ∧ (c2 B l). Then by Equivalence
2.3 it can be replaced by (c1 ∨ c2) B l. Since this can be done repeatedly for every literal l, we
can transform e1 ∧ e2 into normal form.

Inductive case 2, e = z B e1: By the induction hypothesis e1 can be transformed to normal
form, so assume that it already is.

If e1 is >, e can be replaced by > which is in normal form.
If e1 = z′ B e2 for some z′ and e2, then e can be replaced by the equivalent (by Equivalence

2.2) effect (z ∧ z′) B e2 in normal form.
Otherwise, e1 is a conjunction of effects z B l. By Equivalence 2.1 we can move z inside the

conjunction. Applications of Equivalences 2.2 transform the effect into normal form.
In this transformation the conditions c in c B e are copied into front of the atomic effects.

Let m be the sum of the sizes of all the conditions c, and let n be the number of occurrences of
atomic effects a and ¬a in the effect. An upper bound on size of the new effect is O(nm) which
is polynomial in the size of the original effect. �

2.3.4 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.3 to nondeterministic effects and opera-
tors. In the normal form nondeterministic choices and conjunctions are the outermost constructs,
and consequents e of conditional effects c B e are atomic effects.

Definition 2.16 (Normal form for nondeterministic operators) A deterministic effect is in nor-
mal form if it is > or a conjunction of one or more effects c B a and c B ¬a with at most one
occurrence of a and ¬a for any a ∈ A.

A nondeterministic effect is in normal form if it is e1| · · · |en or e1 ∧ · · · ∧ en for effects ei that
are in normal form.

A nondeterministic operator 〈c, e〉 is in normal form if e is in normal form.

For showing that every nondeterministic effect can be transformed into normal form we use
further equivalences that are given in Table 2.2.

Theorem 2.17 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the former.

Proof: Transformation to normal form is like in the proof of Theorem 2.15. Additional equiva-
lences needed for nondeterministic choices are 2.10 and 2.11. �

Example 2.18 The effect

a B (b|(c ∧ f)) ∧ ((d ∧ e)|(b B e))

2.4. COMPUTATIONAL COMPLEXITY 17

c B (e1| · · · |en) ≡ (c B e1)| · · · |(c B en) (2.10)

e ∧ (e1| · · · |en) ≡ (e ∧ e1)| · · · |(e ∧ en) (2.11)

(e′1| · · · |e′n′)|e2| · · · |en ≡ e′1| · · · |e′n′ |e2| · · · |en (2.12)

(e′ ∧ (c B e1))|e2| · · · |en ≡ (c B ((e′ ∧ e1)|e2| · · · |en)) ∧ (¬c B (e′|e2| · · · |en))(2.13)

Table 2.2: Equivalences on nondeterministic effects

in normal form is

((a B b)|((a B c) ∧ (a B f))) ∧ (((> B d) ∧ (> B e))|(b B e)).

�

For some applications a still simpler form of operators is useful. In the second normal form
for nondeterministic operators nondeterminism may appear only at the outermost structure in the
effect.

Definition 2.19 (Normal form II for nondeterministic operators) A deterministic effect is in nor-
mal formal II if it is > or a conjunction of one or more effects c B a and c B ¬a with at most one
occurrence of a and ¬a for any a ∈ A.

A nondeterministic effect is in normal form II if it is of form e1| · · · |en where ei are deterministic
effects in normal form II.

A nondeterministic operator 〈c, e〉 is in normal form II if e is in normal form II.

Theorem 2.20 For every operator there is an equivalent one in normal form II.

Proof: By Theorem 2.17 there is an equivalent operator in normal form. The transformation
further into normal form II requires equivalences 2.11 and 2.12. �

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbooks [Balcázar et al., 1988;
1990; Papadimitriou, 1994].

The definition of ATMs we use is like that of Balcázar et al. [1990] but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMs) are a special case of
alternating Turing machines.

Definition 2.21 An alternating Turing machine is a tuple 〈Σ, Q, δ, q0, g〉 where

• Σ is a finite alphabet (the contents of tape cells),

• Q is a finite set of states (the internal states of the ATM),

18 CHAPTER 2. PRELIMINARIES

• δ is a transition function δ : Q× (Σ ∪ {|,�}) → 2(Σ∪{|})×Q×{L,N,R},

• q0 is the initial state, and

• g : Q→ {∀,∃, accept, reject} is a labeling of the states.

The symbols | and �, the end-of-tape symbol and the blank symbol, in the definition of δ
respectively refer to the beginning of the tape and to the end of the tape. It is required that s = |
and m = R for all 〈s, q′,m〉 ∈ δ(q, |) for any q ∈ Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape symbol | may not be changed. For s ∈ Σ we
restrict s′ in 〈s′, q′,m〉 ∈ δ(q, s) to s′ ∈ Σ, that is, | gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Note that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM is 〈q, σ, σ′〉 where q is the current state, σ is the tape contents left of
the R/W head with the rightmost symbol under the R/W head, and σ′ is the tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM. The configuration is universal (∀) if g(q) = ∀, and existential (∃) if g(q) = ∃.

The computation of an ATM starts from the initial configuration 〈q0, |a, σ〉where aσ is the input
string of the Turing machine. Below ε denotes the empty string.

Successor configurations are defined as follows.

1. A successor of 〈q, σa, σ′〉 is 〈q′, σ, a′σ′〉 if 〈a′, q′, L〉 ∈ δ(q, a).

2. A successor of 〈q, σa, σ′〉 is 〈q′, σa′, σ′〉 if 〈a′, q′, N〉 ∈ δ(q, a).

3. A successor of 〈q, σa, bσ′〉 is 〈q′, σa′b, σ′〉 if 〈a′, q′, R〉 ∈ δ(q, a).

4. A successor of 〈q, σa, ε〉 is 〈q′, σa′�, ε〉 if 〈a′, q′, R〉 ∈ δ(q, a).

We write 〈q, σ〉 ` 〈q′, σ′〉 if the latter is a successor configuration of the former. A configuration
〈q, σ, σ′〉 of an ATM is final if g(q) = accept or g(q) = reject.

The acceptance of an input string by an ATM is defined recursively starting from final configu-
rations. A final configuration is 0-accepting if g(q) = accept. A non-final universal configuration
is n-accepting for n ≥ 1 if its every successor configuration is m-accepting for some m < n
and one of its successor configurations is n− 1-accepting. A non-final existential configuration is
n-accepting for n ≥ 1 if at least one of its successor configurations is n − 1-accepting and it has
no m-accepting successor configurations for any m < n − 1. Finally, an ATM accepts a given
input string if its initial configuration is n-accepting for some n ≥ 0. A configuration is accepting
if it is n-accepting for some n ≥ 0.

If an ATM accepts a given input string, then we can define an accepting computation subtree of
the ATM and the input string as a set T of accepting configurations such that

1. the initial configuration is in T ,

2. if c ∈ T is a ∀-configuration then c′ ∈ T for all configurations c′ such that c ` c′,

3. if c ∈ T is an n-accepting ∃-configuration then c′ ∈ T for at least one c′ such that c ` c′

and c′ is m-accepting for some m < n.

2.4. COMPUTATIONAL COMPLEXITY 19

A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM with |δ(q, s)| = 1 for all q ∈ Q and s ∈ Σ.

The complexity classes used in this work are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input length n. Formally,

PSPACE =
⋃
k≥0

DSPACE(nk).

Other complexity classes are similarly defined in terms of the time consumption on a determin-
istic Turing machine (DTIME(f(n)), time consumption on a nondeterministic Turing machine
(NTIME(f(n)), or time or space consumption on alternating Turing machines (ATIME(f(n)) or
ASPACE(f(n))) [Balcázar et al., 1988; 1990].

P =
⋃

k≥0 DTIME(nk)
NP =

⋃
k≥0 NTIME(nk)

EXP =
⋃

k≥0 DTIME(2nk
)

NEXP =
⋃

k≥0 NTIME(2nk
)

EXPSPACE =
⋃

k≥0 DSPACE(2nk
)

2-EXP =
⋃

k≥0 DTIME(22nk

)

2-NEXP =
⋃

k≥0 NTIME(22nk

)

APSPACE =
⋃

k≥0 ASPACE(nk)
AEXPSPACE =

⋃
k≥0 ASPACE(2nk

)

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing machines [Chandra et al., 1981], for example

EXP = APSPACE
2-EXP = AEXPSPACE.

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this work, we can equivalently use conventional programming languages (like C or
Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this work, the proofs of membership of a given computational problem in a certain
complexity class are usually given in terms of a program in a simple programming language com-
parable to a small subset of C or Java, instead of giving a formal description of a Turing machine
because the latter would usually be very complicated and difficult to understand.

A problem L is C-hard (where C is any of the complexity classes) if all problems in the class C
are polynomial time many-one reducible to it; that is, for all problems L′ ∈ C there is a function

20 CHAPTER 2. PRELIMINARIES

fL′ that can be computed in polynomial time on the size of its input and fL′(x) ∈ L if and only if
x ∈ L′ for all inputs x. We say that the function fL′ is a translation from L′ to L. A problem is
C-complete if it belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
between tractable and intractable problems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important that
certain basic steps in these algorithms can be guaranteed to be tractable.

In this work we analyze the complexity of many computational problems, showing them to be
complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the
problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the following.1

class complete problem
P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)
PSPACE truth-value of quantified Boolean formulae

Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae [Papadimitriou and Yannakakis, 1986].

1For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.

Chapter 3

Deterministic planning

In this chapter we describe a number of algorithms for solving the historically most important
and most basic type of planning problem. Two rather strong simplifying assumptions are made.
First, all actions are deterministic which means that under every action every state has at most one
successor state. Second, there is only one initial state.

Under these restrictions, whenever a goal state can be reached, it can be reached by a fixed se-
quence of actions. With more than one initial state it would be necessary to use different sequences
of actions for different initial states, and with nondeterministic actions the sequence of actions to
be taken is not simply a function of the initial state, and for producing appropriate sequences of
actions a more general notion of plans with branches/conditionals becomes necessary. This is
because after executing an action, even when the starting state is known, the state that is reached
cannot be predicted, and the way plan execution continues depends on the newly reached state. In
Chapters 4 and 5 we relax both of these restrictions, and consider planning with nondeterministic
actions and more than one initial state.

The structure of this chapter is as follows. First we discuss the two ways of traversing the tran-
sition system without producing the graph explicitly. In forward traversal we repeatedly compute
the successor states of our current state, starting from the initial state. In backward traversal we
must use sets of states, represented as formulae, because there may be several goal states, and
further, a given state may have several predecessor states under one action.

Then in Section 3.3 we discuss the use of heuristic search algorithms for performing the search
in the transition graphs and the computation of distance heuristics to be used in estimating the
value of the current states or sets of states.

A very different approach to planning is obtained by translating the planning problem into the
classical propositional logic and then finding plans by algorithms that test the satisfiability of
formulae in the propositional logic. This approach is called planning by satisfiability. In Section
3.7 we perform a detailed analysis of different notions of plans and in Section 3.8 we present
efficient translations of these plan notions into the propositional logic. In Section 3.9 we consider
the problem of plan search for planning as satisfiability and propose two new efficient algorithms
for finding plans when no optimality guarantees are needed.

21

22 CHAPTER 3. DETERMINISTIC PLANNING

3.1 State-space search

The simplest possible planning algorithm generates all states (valuations of the state variables),
constructs the transition graph, and then finds a path from the initial state I to a goal state g ∈ G
for example by a shortest-path algorithm. The plan is then simply the sequence of operators
corresponding to the edges on the shortest path from the initial state to a goal state. However,
this algorithm is not feasible when the number of state variables is higher than 20 or 30 because
the number of valuations is very high: 220 = 1048576 ∼ 106 for 20 Boolean state variables and
230 = 1073741824 ∼ 109 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space ex-
plicitly and to produce only the successor or predecessor states of the states currently under con-
sideration. This form of plan search can be easiest viewed as the application of general-purpose
search algorithms that can be employed in solving a wide range of search problems. The best
known heuristic search algorithms are A∗, IDA∗ and their variants [Hart et al., 1968; Pearl, 1984;
Korf, 1985] which can be used in finding shortest plans or plans that are guaranteed to be close to
the shortest ones.

There are two main possibilities to find a path from the initial state to a goal state: traverse
the transition graph forwards starting from the initial state, or traverse it backwards starting from
the goal states. The main difference between these possibilities is that there may be several goal
states (and one state may have several predecessor states with respect to one operator) but only one
initial state: in forward traversal we repeatedly compute the unique successor state of the current
state, whereas with backward traversal we are forced to keep track of a possibly very high number
of possible predecessor states of the goal states. Backward search is slightly more complicated to
implement but it allows to simultaneously consider several paths leading to a goal state.

3.1.1 Progression and forward search

We have already defined progression for single states s as appo(s). The simplest algorithm for the
deterministic planning problem does not require the explicit representation of the whole transition
graph. The search starts in the initial state. New states are generated by progression. As soon as a
state s such that s |= G is found a plan is guaranteed to exist: it is the sequence of operators with
which the state s is reached from the initial state.

A planner can use progression in connection with any of the standard search algorithms. Later
in this chapter we will discuss how heuristic search algorithms together with heuristics yield an
efficient planning method.

3.1.2 Regression and backward search

With backward search the starting point is a propositional formula G that describes the set of goal
states. An operator is selected, the set of possible predecessor states is computed, and this set is
again described by a propositional formula. A plan has been found when a formula that is true
in the initial state is reached. The computation of a formula representing the predecessor states
of the states represented by another formula is called regression. Regression is more powerful
than progression because it allows handling potentially very big sets of states, but it is also more
expensive.

3.1. STATE-SPACE SEARCH 23

Definition 3.1 We define the condition EPCl(e) of literal l made true when an operator with the
effect e is applied recursively as follows.

EPCl(>) = ⊥
EPCl(l) = >

EPCl(l′) = ⊥ when l 6= l′ (for literals l′)
EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)

EPCl(c B e) = c ∧ EPCl(e)

The case EPCl(e1 ∧ · · · ∧ en) = EPCl(e1)∨ · · · ∨EPCl(en) is defined as a disjunction because
it is sufficient that at least one of the effects makes l true.

Definition 3.2 Let A be the set of state variables. We define the condition EPCl(o) of operator
o = 〈c, e〉 being applicable so that literal l is made true as c ∧ EPCl(e) ∧

∧
a∈A ¬(EPCa(e) ∧

EPC¬a(e)).

For effects e the truth-value of the formula EPCl(e) indicates in which states l is a literal to
which the effect e assigns the value true. The connection to the earlier definition of [e]det

s is stated
in the following lemma.

Lemma 3.3 LetA be the set of state variables, s a state onA, l a literal onA, and o and operator
with effect e. Then

1. l ∈ [e]det
s if and only if s |= EPCl(e), and

2. appo(s) is defined and l ∈ [e]det
s if and only if s |= EPCl(o).

Proof: We first prove (1) by induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]det

s we have l 6∈ [>]det
s = ∅, and by definition of

EPCl(>) we have s 6|= EPCl(>) = ⊥, so the equivalence holds.
Base case 2, e = l: l ∈ [l]det

s = {l} by definition, and s |= EPCl(l) = > by definition.
Base case 3, e = l′ for some literal l′ 6= l: l 6∈ [l′]det

s = {l′} by definition, and s 6|= EPCl(l′) =
⊥ by definition.

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]det

s if and only if l ∈ [e′]det
s for some e′ ∈ {e1, . . . , en}

if and only if s |= EPCl(e′) for some e′ ∈ {e1, . . . , en}
if and only if s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
if and only if s |= EPCl(e1 ∧ · · · ∧ en).

The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions of EPCl(e) and [e]det

s as well as elementary facts about propositional formulae.
Inductive case 2, e = c B e′:
l ∈ [c B e′]det

s if and only if l ∈ [e′]det
s and s |= c

if and only if s |= EPCl(e′) and s |= c
if and only if s |= EPCl(c B e′).

The second equivalence is by the induction hypothesis. This completes the proof of (1).
(2) follows from the fact that the conjuncts c and

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) in EPCl(o)

exactly state the applicability conditions of o. �

24 CHAPTER 3. DETERMINISTIC PLANNING

Note that any operator 〈c, e〉 can be expressed in normal form in terms of EPCa(e) as〈
c,

∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

The formula EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) expresses the condition for the truth a ∈ A after the
effect e is executed in terms of truth-values of state variables before: either a becomes true, or a
is true before and does not become false.

Lemma 3.4 Let a ∈ A be a state variable, o = 〈c, e〉 ∈ O an operator, and s and s′ = appo(s)
states. Then s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a.

Proof: Assume that s |= EPCa(e)∨ (a∧¬EPC¬a(e)). We perform a case analysis and show that
s′ |= a holds in both cases.

Case 1: Assume that s |= EPCa(e). By Lemma 3.3 a ∈ [e]det
s , and hence s′ |= a.

Case 2: Assume that s |= a ∧ ¬EPC¬a(e). By Lemma 3.3 ¬a 6∈ [e]det
s . Hence a is true in s′.

For the other half of the equivalence, assume that s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Hence
s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)).

Case 1: Assume that s |= a. Now s |= EPC¬a(e) because s |= ¬a ∨ EPC¬a(e), and hence by
Lemma 3.3 ¬a ∈ [e]det

s and hence s′ 6|= a.
Case 2: Assume that s 6|= a. Since s |= ¬EPCa(e), by Lemma 3.3 a 6∈ [e]det

s and hence s′ 6|= a.
Therefore s′ 6|= a in all cases. �

The formulae EPCl(e) can be used in defining regression.

Definition 3.5 (Regression) Let φ be a propositional formula and o = 〈c, e〉 an operator. The
regression of φwith respect to o is regro(φ) = φr∧c∧χwhere χ =

∧
a∈A ¬(EPCa(e)∧EPC¬a(e))

and φr is obtained from φ by replacing every a ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Define
regre(φ) = φr ∧ χ and use the notation regro1;...;on(φ) = regro1(· · · regron(φ) · · ·).

The conjuncts of χ say that none of the state variables may simultaneously become true and
false. The operator is not applicable in states in which χ is false.

Remark 3.6 Regression can be equivalently defined in terms of the conditions the state variables
stay or become false, that is, we could use the formula EPC¬a(e) ∨ (¬a ∧ ¬EPCa(e)) which tells
when a is false. The negation of this formula, which can be written as (EPCa(e)∧¬EPC¬a(e))∨
(a ∧ ¬EPC¬a(e)), is not equivalent to EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). However, if EPCa(e) and
EPC¬a(e) are not simultaneously true, we do get equivalence, that is,

¬(EPCa(e) ∧ EPC¬a(e)) |= ((EPCa(e) ∧ ¬EPC¬a(e)) ∨ (a ∧ ¬EPC¬a(e)))
↔ (EPCa(e) ∨ (a ∧ ¬EPC¬a(e)))

because ¬(EPCa(e) ∧ EPC¬a(e)) |= (EPCa(e) ∧ ¬EPC¬a(e)) ↔ EPCa(e).

An upper bound on the size of the formula obtained by regression with operators o1, . . . , on

starting from φ is the product of the sizes of φ, o1, . . . , on, which is exponential in n. However,
the formulae can often be simplified because there are many occurrences of > and ⊥, for example
by using the equivalences>∧φ ≡ φ, ⊥∧φ ≡ ⊥, >∨φ ≡ >, ⊥∨φ ≡ φ, ¬⊥ ≡ >, and ¬> ≡ ⊥.

3.1. STATE-SPACE SEARCH 25

For unconditional operators o1, . . . , on (with no occurrences of B), an upper bound on the size of
the formula (after eliminating > and ⊥) is the sum of the sizes of o1, . . . , on and φ.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same does not seem to be possible for progression
because there is no known simple definition of successor states of a set of states expressed in
terms of a formula: simple syntactic progression is restricted to individual states only (see Section
5.2 for a general but expensive definition of progression for arbitrary formulae.)

The important property of regression is formalized in the following lemma.

Theorem 3.7 Let φ be a formula over A, o an operator over A, and S the set of all states i.e.
valuations of A. Then {s ∈ S|s |= regro(φ)} = {s ∈ S|appo(s) |= φ}.

Proof: We show that for any state s, s |= regro(φ) if and only if appo(s) is defined and appo(s) |=
φ. By definition regro(φ) = φr∧c∧χ for o = 〈c, e〉where φr is obtained from φ by replacing every
state variable a ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) and χ =

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

First we show that s |= c ∧ χ if and only if appo(s) is defined.
s |= c ∧ χ iff s |= c and {a,¬a} 6⊆ [e]det

s for all a ∈ A by Lemma 3.3
iff appo(s) is defined by Definition 2.10.

Then we show that s |= φr if and only if appo(s) |= φ. This is by structural induction over
subformulae φ′ of φ and formulae φ′r obtained from φ′ by replacing a ∈ A by EPCa(e) ∨ (a ∧
¬EPC¬a(e))

Induction hypothesis: s |= φ′r if and only if appo(s) |= φ′.
Base case 1, φ′ = >: Now φ′r = > and both are true in the respective states.
Base case 2, φ′ = ⊥: Now φ′r = ⊥ and both are false in the respective states.
Base case 3, φ′ = a for some a ∈ A: Now φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). By Lemma 3.4

s |= φ′r if and only if appo(s) |= φ′.
Inductive case 1, φ′ = ¬θ: By the induction hypothesis s |= θr iff appo(s) |= θ. Hence s |= φ′r

iff appo(s) |= φ′ by the truth-definition of ¬.
Inductive case 2, φ′ = θ ∨ θ′: By the induction hypothesis s |= θr iff appo(s) |= θ, and s |= θ′r

iff appo(s) |= θ′. Hence s |= φ′r iff appo(s) |= φ′ by the truth-definition of ∨.
Inductive case 3, φ′ = θ ∧ θ′: By the induction hypothesis s |= θr iff appo(s) |= θ, and s |= θ′r

iff appo(s) |= θ′. Hence s |= φ′r iff appo(s) |= φ′ by the truth-definition of ∧. �

Regression can be performed with any operator but not all applications of regression are useful.
First, regressing for example the formula a with the effect ¬a is not useful because the new unsat-
isfiable formula describes the empty set of states. Hence the sequence of operators of the previous
regressions steps do not lead to a goal from any state. Second, regressing a with the operator 〈b, c〉
yields regr〈b,c〉(a) = a ∧ b. Finding a plan for reaching a state satisfying a is easier than finding a
plan for reaching a state satisfying a∧ b. Hence the regression step produced a subproblem that is
more difficult than the original problem, and it would therefore be better not to take this regression
step.

Lemma 3.8 Let there be a plan o1, . . . , on for 〈A, I,O,G〉. If regrok;...;on(G) |= regrok+1;...;on(G)
for some k ∈ {1, . . . , n− 1}, then also o1, . . . , ok−1, ok+1, . . . , on is a plan for 〈A, I,O,G〉.

Proof: By Theorem 3.7 appok+1;...;on(s) |= G for any s such that s |= regrok+1;...;on(G). Since
appo1;...;ok−1

(I) |= regrok;...;on(G) and regrok;...;on(G) |= regrok+1;...;on(G) also appo1;...;ok−1
(I) |=

26 CHAPTER 3. DETERMINISTIC PLANNING

regrok+1;...;on(G). Hence appo1;...;ok−1;ok+1;...;on(I) |= G and o1; . . . ; ok−1; ok+1; . . . ; on is a plan
for 〈A, I,O,G〉. �

Therefore any regression step that makes the set of states smaller in the set-inclusion sense
is unnecessary. However, testing whether this is the case may be computationally expensive.
Although the following two problems are closely related to SAT, it could be possible that the
formulae obtained by reduction to SAT would fall in some polynomial-time subclass. We show
that this is not the case.

Lemma 3.9 The problem of testing whether regro(φ) 6|= φ is NP-hard.

Proof: We give a reduction from SAT to the problem. Let φ be any formula. Let a be a state
variable not occurring in φ. Now regr〈¬φ→a,a〉(a) 6|= a if and only if (¬φ→ a) 6|= a, because
regr〈¬φ→a,a〉(a) = ¬φ→ a. (¬φ→ a) 6|= a is equivalent to 6|= (¬φ→ a)→ a that is equivalent
to the satisfiability of ¬((¬φ→ a) → a). Further, ¬((¬φ→ a) → a) is logically equivalent to
¬(¬(φ ∨ a) ∨ a) and further to ¬(¬φ ∨ a) and φ ∧ ¬a.

Satisfiability of φ ∧ ¬a is equivalent to the satisfiability of φ as a does not occur in φ: if φ is
satisfiable, there is a valuation v such that v |= φ, we can set a false in v to obtain v′, and as a
does not occur in φ, we still have v′ |= φ, and further v′ |= φ ∧ ¬a. Clearly, if φ is unsatisfiable
also φ ∧ ¬a is.

Hence regr〈¬φ→a,a〉(a) 6|= a if and only if φ is satisfiable. �

Also the problem of testing whether a regression step leads to an empty set of states is difficult.

Lemma 3.10 The problem of testing that regro(φ) is satisfiable is NP-hard.

Proof: Proof is a reduction from SAT. Let φ be a formula. regr〈φ,a〉(a) is satisfiable if and only if
φ is satisfiable because regr〈φ,a〉(a) ≡ φ.

The problem is NP-hard even if we restrict to operators that have a satisfiable precondition: φ
is satisfiable if and only if (φ∨¬a)∧a is satisfiable if and only if regr〈φ∨¬a,b〉(a∧ b) is satisfiable.
Here a is a state variable that does not occur in φ. Clearly, φ ∨ ¬a is true when a is false, and
hence φ ∨ ¬a is satisfiable. �

Of course, testing that regro(φ) 6|= φ or that regro(φ) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions
of state variables and to unconditional effects (STRIPS operators with only positive literals in
preconditions.) In this special case both goals G and operator effects e can be viewed as sets of
literals, and the definition of regression is particularly simple: regressing G with respect to 〈c, e〉
is (G\e) ∪ c. If there is a ∈ A such that a ∈ G and ¬a ∈ e, then the result of regression is ⊥, that
is, the empty set of states. We do not use this restricted type of regression in this work.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching. For example, the backward step from
g with operator 〈a ∨ b, g〉 yields a ∨ b. This formula corresponds to two non-disjunctive goals,
a and b. For each of these new goals a separate subtree is produced. Disjunctivity caused by
conditional effects can similarly be handled by branching. However, this branching may lead to a
very high branching factor and thus to poor performance.

3.1. STATE-SPACE SEARCH 27

In addition to being the basis of backward search, regression has many other applications in
reasoning about actions. One of them is the composition of operators. The composition o1 ◦ o2
of operators o1 = 〈c1, e1〉 and o2 = 〈c2, e2〉 is an operator that behaves like applying o1 followed
by o2. For a to be true after o2 we can regress a with respect to o2, obtaining EPCa(e2) ∨ (a ∧
¬EPC¬a(e2)). Condition for this formula to be true after o1 is obtained by regressing with e1,
leading to

regre1(EPCa(e2) ∨ (a ∧ ¬EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ (regre1(a) ∧ ¬regre1(EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ ((EPCa(e1) ∨ (a ∧ ¬EPC¬a(e2))) ∧ ¬regre1(EPC¬a(e2))).

Since we want to define an effect φ B a of o1 ◦o2 so that a becomes true whenever o1 followed by
o2 would make it true, the formula φ does not have to represent the case in which a is true already
before the application of o1 ◦ o2. Hence we can simplify the above formula to

regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

An analogous formula is needed for making ¬a false. This leads to the following definition.

Definition 3.11 (Composition of operators) Let o1 = 〈c1, e1〉 and o2 = 〈c2, e2〉 be two opera-
tors on A. Then their composition o1 ◦ o2 is defined as〈

c,
∧
a∈A

(
((regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2)))) B a)∧
((regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2)))) B ¬a)

)〉

where c = c1 ∧ regre1(c2) ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).

Note that in o1◦o2 first o1 is applied and then o2, so the ordering is opposite to the usual notation
for the composition of functions.

Theorem 3.12 Let o1 and o2 be operators and s a state. Then appo1◦o2(s) is defined if and only
if appo1;o2(s) is defined, and appo1◦o2(s) = appo1;o2(s).

Proof: Let o1 = 〈c1, e1〉 and o2 = 〈c2, e2〉. Assume appo1◦o2(s) is defined. Hence s |= c1 ∧
regre1(c2)∧

∧
a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)), that is, the precondition of o1 ◦o2 is true, and s 6|=

(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A, that is, the effects do not contradict each other.

Now appo1(s) in appo1;o2(s) = appo2(appo1(s)) defined because s |= c1∧
∧

a∈A ¬(EPCa(e1)∧
EPC¬a(e1)). Further appo1(s) |= c2 by Theorem 3.7 because s |= regre1(c2). From s 6|=
(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A logically follows s 6|= regre1(EPCa(e2))∧regre1(EPC¬a(e2))
for all a ∈ A. Hence by Theorem 3.7 appo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) for all a ∈ A, and by
Lemma 3.3 appo2(appo1(s)) is defined.

For the other direction, since appo1(s) is defined, s |= c1 ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).
Since appo2(appo1(s)) is defined, s |= regre1(c2) by Theorem 3.7.

It remains to show that the effects of o1 ◦o2 do not contradict. Since appo2(appo1(s)) is defined
appo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) and s 6|= EPCa(e1) ∧ EPC¬a(e1) for all a ∈ A. Hence
by Theorem 3.7 s 6|= regre1(EPCa(e2)) ∧ regre1(EPC¬a(e2)) for all a ∈ A. Assume that for

28 CHAPTER 3. DETERMINISTIC PLANNING

some a ∈ A s |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))), that is, a ∈ [o1 ◦
o2]det

s . If s |= regre1(EPCa(e2)) then s 6|= regre1(EPC¬a(e2)) ∨ ¬regre1(EPCa(e2)). Otherwise
s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)) and hence s 6|= EPC¬a(e1). Hence in both cases s 6|=
regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))), that is, ¬a 6∈ [o1 ◦ o2]det

s . Therefore
appo1◦o2(s) is defined.

We show that for any a ∈ A, appo1◦o2(s) |= a if and only if appo1(appo2(s)) |= a. Assume
appo1◦o2(s) |= a. Hence one of two cases hold.

1. Assume s |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

If s |= regre1(EPCa(e2)) then by Theorem 3.7 and Lemma 3.3 a ∈ [e1]det
appo1 (s). Hence

appo1;o2(s) |= a.

Assume s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)). Hence by Lemma 3.3 a ∈ [e1]det
s and

appo1(s) |= a, and appo1(s) 6|= EPC¬a(e2) and ¬a 6∈ [e2]det
appo1 (s). Hence appo1;o2(s) |= a.

2. Assume s |= a and s 6|= regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))).

Since s 6|= regre1(EPC¬a(e2)) by Theorem 3.7 appo1(s) 6|= EPC¬a(e2) and hence ¬a 6∈
[e2]det

appo1 (s).

Since s 6|= EPC¬a(e1) ∧ ¬regre1(EPCa(e2)) by Lemma 3.3 ¬a 6∈ [e1]det
s or appe1(s) |=

EPCa(e2) and hence by Theorem 3.7 a ∈ [e2]det
appo1 (s).

Hence either o1 does not make a false, or if it makes, makes o2 it true again so that appo1;o2(s) |= a
in all cases.

Assume appo1;o2(s) |= a. Hence one of the following three cases must hold.

1. If a ∈ [e2]det
appo1 (s) then by Lemma 3.3 appo1(s) |= EPCa(e2). By Theorem 3.7 s |=

regre1(EPCa(e2)).

2. If a ∈ [e1]det
s and ¬a 6∈ [e2]det

appo1 (s) then by Lemma 3.3 appo1(s) 6|= EPC¬a(e2). By
Theorem 3.7 s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)).

3. If s |= a and¬a 6∈ [e2]det
appo1 (s) and¬a 6∈ [e1]det

s then by Lemma 3.3 appo1(s) 6|= EPC¬a(e2).
By Theorem 3.7 s 6|= regre1(EPC¬a(e2)).

By Lemma 3.3 s 6|= EPC¬a(e1).

In the first two cases the antecedent of the first conditional in the definition of o1 ◦ o2 is true,
meaning that appo1◦o2(s) |= a, and in the third case s |= a and the antecedent of the second
conditional effect is false, also meaning that appo1◦o2(s) |= a. �

The above construction can be used to eliminate sequential composition from operator effects
(Section 2.3.2).

3.2 Planning by heuristic search algorithms

Search for plans can be performed forwards or backwards respectively with progression or regres-
sion as described in Sections 3.1.1 and 3.1.2. There are several algorithms that can be used for

3.2. PLANNING BY HEURISTIC SEARCH ALGORITHMS 29

the purpose, including depth-first search, breadth-first search, and iterative deepening, but without
informed selection of operators these algorithms perform poorly.

The use of additional information for guiding search is essential for achieving efficient planning
with general-purpose search algorithms. Algorithms that use heuristic estimates on the values of
the nodes in the search space for guiding the search have been applied to planning very success-
fully. Some of the more sophisticated search algorithms that can be used are A∗ [Hart et al., 1968],
WA∗ [Pearl, 1984], IDA∗ [Korf, 1985], and simulated annealing [Kirkpatrick et al., 1983].

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
The most important heuristics are estimates of distances between states. The distance is the min-
imum number of operators needed for reaching a state from another state. In Section 3.4 we will
present techniques for estimating the distances between states and sets of states. In this section we
will discuss how heuristic search algorithms are applied in planning.

When search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds backwards by
regression starting from the goal states, we estimate the distance between the initial state and the
current set of goal states as computed by regression.

All the systematic heuristic search algorithms can easily be implemented to keep track of the
search history which for planning equals the sequence of operators in the incomplete plan under
consideration. Therefore the algorithms are started from the initial state I (forward search) or from
the goal formula G (backward search) and then proceed forwards with progression or backwards
with regression. Whenever the search successfully finishes, the plan can be recovered from the
data structures maintained by the algorithm.

Local search algorithms do not keep track of the search history, and we have to define the
elements of the search space as prefixes or suffixes of plans. For forward search we use sequences
of operators (prefixes of plans)

o1; o2; . . . ; on.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the end of the plan or by deleting some of the last operators.

Definition 3.13 (Neighbors for local search with progression) Let 〈A, I,O,G〉 be a succinct tran-
sition system. For forward search, the neighbors of an incomplete plan o1; o2; . . . ; on are the
following.

1. o1; o2; . . . ; on; o for any o ∈ O such that appo1;...;on;o(I) is defined
2. o1; o2; . . . ; oi for any i < n

When appo1;o2;...;on(I) |= G then o1; . . . ; on is a plan.
Also for backward search the incomplete plans are sequence of operators (suffixes of plans)

on; . . . ; o1.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the beginning of the plan or by deleting some of the first operators.

Definition 3.14 (Neighbors for local search with regression) Let 〈A, I,O,G〉 be a succinct tran-
sition system. For backward search, the children of an incomplete plan on; . . . ; o1 are the follow-
ing.

30 CHAPTER 3. DETERMINISTIC PLANNING

1. o; on; . . . ; o1 for any o ∈ O such that regro;on;...;o1(G) is defined

2. oi; . . . ; o1 for any i < n

When I |= regron;...;o1(G) then on; . . . ; o1 is a plan.
Backward search and forward search are not the only possibilities to define planning as a search

problem. In partial-order planning [McAllester and Rosenblitt, 1991] the search space consists of
incomplete plans which are partially ordered multisets of operators. The neighbors of an incom-
plete plan are those obtained by adding an operator or an ordering constraint. Incomplete plans can
also be formalized as fixed length sequences of operators in which zero or more of the operators
are missing. This leads to the constraint-based approaches to planning, including the planning as
satisfiability approach that is presented in Section 3.6.

3.3 Reachability

The notion of reachability is important in defining whether a planning problem is solvable and in
deriving techniques that speed up search for plans.

3.3.1 Distances

First we define the distances between states in a transition system in which all operators are deter-
ministic. Heuristics in Section 3.4 are approximations of distances.

Definition 3.15 Let I be an initial state and O a set of operators. Define the forward distance
sets Dfwd

i for I,O that consist of those states that are reachable from I by at most i operator
applications as follows.

Dfwd
0 = {I}

Dfwd
i = Dfwd

i−1 ∪ {s|o ∈ O, s ∈ imgo(D
fwd
i−1)} for all i ≥ 1

Definition 3.16 Let I be a state, O a set of operators, and Dfwd
0 , Dfwd

1 , . . . the forward distance
sets for I,O. Then the forward distance of a state s from I is

δfwd
I (s) =

{
0 if s = I

i if s ∈ Dfwd
i \Dfwd

i−1.

If s 6∈ Dfwd
i for all i ≥ 0 then δfwd

I (s) = ∞. States that have a finite forward distance are reachable
(from I with O).

Distances can also be defined for formulae.

Definition 3.17 Let φ be a formula. Then the forward distance δfwd
I (φ) of φ is i if there is state

s such that s |= φ and δfwd
I (s) = i and there is no state s′ such that s′ |= φ and δfwd

I (s) < i. If
I |= φ then δfwd

I (φ) = 0.

A formula φ has a finite distance <∞ if and only if 〈A, I,O, φ〉 has a plan.
Reachability and distances are useful for implementing efficient planning systems. We mention

two applications.

3.3. REACHABILITY 31

First, if we know that no state satisfying a formula φ is reachable from the initial states, then we
know that no operator 〈φ, e〉 can be a part of a plan, and we can ignore any such operator.

Second, distances help in finding a plan. Consider a deterministic planning problem with goal
state G. We can now produce a shortest plan by finding an operator o so that δfwd

I (regro(G)) <
δfwd
I (G), using regro(G) as the new goal state and repeating the process until the initial state I is

reached.
Of course, since computing distances is in the worst case just as difficult as planning (PSPACE-

complete) it is in general not useful to use subprocedures based on exact distances in a planning
algorithm. Instead, different kinds of approximations of distances and reachability have to be used.
The most important approximations allow the computation of useful reachability and distance
information in polynomial time in the size of the succinct transition system. In Section 3.4 we will
consider some of them.

3.3.2 Invariants

An invariant is a formula that is true in the initial state and in every state that is reached by
applying an operator in a state in which it holds. Invariants are closely connected to reachability
and distances: a formula φ is an invariant if and only if the distance of ¬φ from the initial state is
∞. Invariants can be used for example to speed up algorithms based on regression.

Definition 3.18 Let I be a set of initial states and O a set of operators. An formula φ is an
invariant of I,O if s |= φ for all states s that are reachable from I by a sequence of 0 or more
operators in O.

An invariant φ is the strongest invariant if φ |= ψ for any invariant ψ. The strongest invariant
exactly characterizes the set of all states that are reachable from the initial state: for every state s,
s |= φ if and only if s is reachable from the initial state. We say “the strongest invariant” even
though there are actually several strongest invariants: if φ satisfies the properties of the strongest
invariant, any other formula that is logically equivalent to φ, for example φ ∨ φ, also does. Hence
the uniqueness of the strongest invariant has to be understood up to logical equivalence.

Example 3.19 Consider a set of blocks that can be on the table or stacked on top of other blocks.
Every block can be on at most one block and on every block there can be one block at most. The
actions for moving the blocks can be described by the following schematic operators.

〈ontable(x) ∧ clear(x) ∧ clear(y), on(x, y) ∧ ¬clear(y) ∧ ¬ontable(x)〉
〈clear(x) ∧ on(x, y), ontable(x) ∧ clear(y) ∧ ¬on(x, y)〉
〈clear(x) ∧ on(x, y) ∧ clear(z), on(x, z) ∧ clear(y) ∧ ¬clear(z) ∧ ¬on(x, y)〉

We consider the operators obtained by instantiating the schemata with the objectsA,B and C. Let
all the blocks be initially on the table. Hence the initial state satisfies the formula

clear(A) ∧ clear(B) ∧ clear(C) ∧ ontable(A) ∧ ontable(B) ∧ ontable(C)∧
¬on(A,B) ∧ ¬on(A,C) ∧ ¬on(B,A) ∧ ¬on(B,C) ∧ ¬on(C,A) ∧ ¬on(C,B)

that determines the truth-values of all state variables uniquely. The strongest invariant of this

32 CHAPTER 3. DETERMINISTIC PLANNING

problem is the conjunction of the following formulae.

clear(A) ↔ (¬on(B,A) ∧ ¬on(C,A)) clear(B) ↔ (¬on(A,B) ∧ ¬on(C,B))
clear(C) ↔ (¬on(A,C) ∧ ¬on(B,C)) ontable(A) ↔ (¬on(A,B) ∧ ¬on(A,C))
ontable(B) ↔ (¬on(B,A) ∧ ¬on(B,C)) ontable(C) ↔ (¬on(C,A) ∧ ¬on(C,B))
¬on(A,B) ∨ ¬on(A,C) ¬on(B,A) ∨ ¬on(B,C)
¬on(C,A) ∨ ¬on(C,B)
¬on(B,A) ∨ ¬on(C,A) ¬on(A,B) ∨ ¬on(C,B)
¬on(A,C) ∨ ¬on(B,C)
¬(on(A,B) ∧ on(B,C) ∧ on(C,A)) ¬(on(A,C) ∧ on(C,B) ∧ on(B,A))

We can schematically give the invariants for any set X of blocks as follows.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x)
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y)
¬on(x, y) ∨ ¬on(x, z) when y 6= z
¬on(y, x) ∨ ¬on(z, x) when y 6= z
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1)) for all n ≥ 1, {x1, . . . , xn} ⊆ X

The last formula says that the on relation is acyclic. �

3.4 Approximations of distances

The approximations of distances are based on the following idea. Instead of considering the num-
ber of operators required to reach individual states, we approximately compute the number of
operators to reach a state in which a certain state variable has a certain value. So instead of using
distances of states, we use distances of literals. This is similar to the distance estimation of belief
states in terms of distances of states in Section 5.3.2 in the sense that both use the distances of the
components of an object to estimate the distance of the object.

The estimates are not accurate for two reasons. First, and more importantly, distance estimation
is done one state variable at a time and dependencies between state variables are ignored. Second,
to achieve polynomial-time computation, satisfiability tests for a formula and a set of literals to
test the applicability of an operator and to compute the distance estimate of a formula, have to
be performed by an inaccurate polynomial-time algorithm that approximates NP-hard satisfiabil-
ity testing. As we are interested in computing distance estimates efficiently the inaccuracy is a
necessary and acceptable compromise.

3.4.1 Admissible max heuristic

We give a recursive procedure that computes a lower bound on the number of operator applications
that are needed for reaching from a state I a state in which state variables a ∈ A have certain
values. This is by computing a sequence of sets Dmax

i of literals. The set Dmax
i consists literals

that are true in all states that have distance ≤ i from the state I .
Recall Definition 3.2 of EPCl(o) for literals l and operators o = 〈c, e〉:

EPCl(o) = c ∧ EPCl(e) ∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

3.4. APPROXIMATIONS OF DISTANCES 33

Definition 3.20 Let L = A∪{¬a|a ∈ A} be the set of literals on A and I a state. Define the sets
Dmax

i for i ≥ 0 as follows.

Dmax
0 = {l ∈ L|I |= l}

Dmax
i = Dmax

i−1 \{l ∈ L|o ∈ O,Dmax
i−1 ∪ {EPCl(o)} is satisfiable}, for i ≥ 1

Since we consider only finite sets A of state variables and |Dmax
0 | = |A| and Dmax

i+1 ⊆ Dmax
i

for all i ≥ 0, necessarily Dmax
i = Dmax

j for some i ≤ |A| and all j > i.
The above computation starts from the set Dmax

0 of all literals that are true in the initial state I .
This set of literals characterizes those states that have distance 0 from the initial state. The initial
state is the only such state.

Then we repeatedly compute sets of literals characterizing sets of states that are reachable with
1, 2 and more operators. Each set Dmax

i is computed from the preceding set Dmax
i−1 as follows. For

each operator o it is tested whether it is applicable in one of the distance i−1 states and whether it
could make a literal l false. This is by testing whether EPCl(o) is true in one of the distance i− 1
states. If this is the case, the literal l could be false, and it will not be included in Dmax

i .
The sets of states in which the literals Dmax

i are true are an upper bound (set-inclusion) on the
set of states that have forward distance i.

Theorem 3.21 Let Dfwd
i , i ≥ 0 be the forward distance sets and Dmax

i the max-distance sets for
I and O. Then for all i ≥ 0, Dfwd

i ⊆ {s ∈ S|s |= Dmax
i } where S is the set of all states.

Proof: By induction on i.
Base case i = 0: Dfwd

0 consists of the unique initial state I and Dmax
0 consists of exactly those

literals that are true in I , identifying it uniquely. Hence Dfwd
i = {s ∈ S|s |= Dmax

i }.
Inductive case i ≥ 1: Let s be any state in Dfwd

i . We show that s |= Dmax
i . Let l be any literal

in Dmax
i .

Assume s ∈ Dfwd
i−1. As Dmax

i ⊆ Dmax
i−1 also l ∈ Dmax

i−1 . By the induction hypothesis s |= l.
Otherwise s ∈ Dfwd

i \Dfwd
i−1. Hence there is o ∈ O and s0 ∈ Dfwd

i−1 with s = appo(s0). By
Dmax

i ⊆ Dmax
i−1 and the induction hypothesis s0 |= l. As l ∈ Dmax

i , by definition of Dmax
i the set

Dmax
i−1 ∪ {EPCl(o)} is not satisfiable. By s0 ∈ Dfwd

i−1 and the induction hypothesis s0 |= Dmax
i−1 .

Hence s0 6|= EPCl(o). By Lemma 3.3 applying o in s0 does not make l false. Hence s |= l. �

The sets Dmax
i can be used for estimating the distances of formulae. The distance of a formula

is the minimum of the distances of states that satisfy the formula.

Definition 3.22 Let φ be a formula. Define

δmax
I (φ) =

{
0 iff Dmax

0 ∪ {φ} is satisfiable
d iff Dmax

d ∪ {φ} is satisfiable and Dmax
d−1 ∪ {φ} is not satisfiable, for d ≥ 1.

Lemma 3.23 Let I be a state, O a set of operators, and Dmax
0 , Dmax

1 , . . . the sets given in Defi-
nition 3.20 for I and O. Then appo1;...;on(I) |= Dmax

n for any operators {o1, . . . , on} ⊆ O.

Proof: By induction on n.

34 CHAPTER 3. DETERMINISTIC PLANNING

Base case n = 0: The length of the operator sequence is zero, and hence appε(I) = I . The set
Dmax

0 consists exactly of those literals that are true in s, and hence I |= Dmax
0 .

Inductive case n ≥ 1: By the induction hypothesis appo1;...;on−1(I) |= Dmax
n−1 .

Let l be any literal in Dmax
n . We show it is true in appo1;...;on(I). Since l ∈ Dmax

n and Dmax
n ⊆

Dmax
n−1 , also l ∈ Dmax

n−1 , and hence by the induction hypothesis appo1;...;on−1(I) |= l. Since l ∈
Dmax

n it must be that Dmax
n−1 ∪ {EPCl(on)} is not satisfiable (definition of Dmax

n) and further that
appo1;...;on−1(I) 6|= EPCl(on). Hence applying on in appo1;...;on−1(I) does not make l false, and
consequently appo1;...;on(I) |= l.

�

The next theorem shows that the distance estimates given for formulae yield a lower bound on
the number of actions needed to reach a state satisfying the formula.

Theorem 3.24 Let I be a state, O a set of operators, φ a formula, and Dmax
0 , Dmax

1 , . . . the sets
given in Definition 3.20 for I and O. If appo1;...;on(I) |= φ, then Dmax

n ∪ {φ} is satisfiable.

Proof: By Lemma 3.23 appo1;...;on(I) |= Dmax
n . By assumption appo1;...;on(I) |= φ. Hence

Dmax
n ∪ {φ} is satisfiable. �

Corollary 3.25 Let I be a state and φ a formula. Then for any sequence o1, . . . , on of operators
such that appo1;...;on(I) |= φ, n ≥ δmax

I (φ).

The estimate δmax
s (φ) never overestimates the distance from s to φ and it is therefore an admis-

sible heuristic. It may severely underestimate the distance, as discussed in the end of this section.

Distance estimation in polynomial time

The algorithm for computing the sets Dmax
i runs in polynomial time except that the satisfiability

tests forD∪{φ} are instances of the NP-complete SAT problem. For polynomial time computation
we perform these tests by a polynomial-time approximation that has the property that ifD∪{φ} is
satisfiable then asat(D,φ) returns true, but not necessarily vice versa. A counterpart of Theorem
3.21 can be established when the satisfiability tests D ∪ {φ} are replaced by tests asat(D,φ).

The function asat(D,φ) tests whether there is a state in which φ and the literals D are true, or
equivalently, whether D ∪ {φ} is satisfiable. This algorithm does not accurately test satisfiability,
and may claim that D ∪ {φ} is satisfiable even when it is not. This, however, never leads to
overestimating the distances, only underestimating. The algorithm runs in polynomial time and is
defined as follows.

asat(D,⊥) = false
asat(D,>) = true
asat(D, a) = true iff ¬a 6∈ D (for state variables a ∈ A)

asat(D,¬a) = true iff a 6∈ D (for state variables a ∈ A)
asat(D,¬¬φ) = asat(D,φ)

asat(D,φ1 ∨ φ2) = asat(D,φ1) or asat(D,φ2)
asat(D,φ1 ∧ φ2) = asat(D,φ1) and asat(D,φ2)

asat(D,¬(φ1 ∨ φ2)) = asat(D,¬φ1) and asat(D,¬φ2)
asat(D,¬(φ1 ∧ φ2)) = asat(D,¬φ1) or asat(D,¬φ2)

3.4. APPROXIMATIONS OF DISTANCES 35

In this and other recursive definitions about formulae the cases for ¬(φ1 ∧φ2) and ¬(φ1 ∨φ2) are
obtained respectively from the cases for φ1 ∨ φ2 and φ1 ∧ φ2 by the De Morgan laws.

The reason why the satisfiability test is not accurate is that for formulae φ ∧ ψ (respectively
¬(φ ∨ ψ)) we make recursively two satisfiability tests that do not require that the subformulae φ
and ψ (respectively ¬φ and ¬ψ) are simultaneously satisfiable.

We give a lemma that states the connection between asat(D,φ) and the satisfiability ofD∪{φ}.

Lemma 3.26 Let φ be a formula and D a consistent set of literals (it contains at most one of a
and ¬a for every a ∈ A.) If D ∪ {φ} is satisfiable, then asat(D,φ) returns true.

Proof: The proof is by induction on the structure of φ.
Base case 1, φ = ⊥: The set D ∪ {⊥} is not satisfiable, and hence the implication trivially

holds.
Base case 2, φ = >: asat(D,>) always returns true, and hence the implication trivially holds.
Base case 3, φ = a for some a ∈ A: If D ∪ {a} is satisfiable, then ¬a 6∈ D, and hence

asat(D, a) returns true.
Base case 4, φ = ¬a for some a ∈ A: If D ∪ {¬a} is satisfiable, then a 6∈ D, and hence

asat(D,¬a) returns true.
Inductive case 1, φ = ¬¬φ′ for some φ′: The formulae are logically equivalent, and by the

induction hypothesis we directly establish the claim.
Inductive case 2, φ = φ1∨φ2: IfD∪{φ1∨φ2} is satisfiable, then eitherD∪{φ1} orD∪{φ2}

is satisfiable and by the induction hypothesis at least one of asat(D,φ1) and asat(D,φ2) returns
true. Hence asat(D,φ1 ∨ φ2) returns true.

Inductive case 3, φ = φ1∧φ2: IfD∪{φ1∧φ2} is satisfiable, then bothD∪{φ1} andD∪{φ2}
are satisfiable and by the induction hypothesis both asat(D,φ1) and asat(D,φ2) return true. Hence
asat(D,φ1 ∧ φ2) returns true.

Inductive cases 4 and 5, φ = ¬(φ1 ∨ φ2) and φ = ¬(φ1 ∧ φ2): Like cases 2 and 3 by logical
equivalence. �

The other direction of the implication does not hold because for example asat(∅, a∧¬a) returns
true even though the formula is not satisfiable. The procedure is a polynomial-time approximation
of the logical consequence test from a set of literals: asat(D,φ) always returns true if D ∪ {φ} is
satisfiable, but it may return true also when the set is not satisfiable.

Informativeness of the max heuristic

The max heuristic often underestimates distances. Consider an initial state in which all n state
variables are false and a goal state in which all state variables are true and a set of n operators each
of which is always applicable and makes one of the state variables true. The max heuristic assigns
the distance 1 to the goal state although the distance is n.

The problem is that assigning every state variable the desired value requires a different operator,
and taking the maximum number of operators for each state variable ignores this fact. In this case
the actual distance is obtained as the sum of the distances suggested by each of the n state variables.
In other cases the max heuristic works well when the desired state variable values can be reached
with the same operators.

Next we will consider heuristics that are not admissible like the max heuristic but in many cases
provide a much better estimate of the distances.

36 CHAPTER 3. DETERMINISTIC PLANNING

3.4.2 Inadmissible additive heuristic

The max heuristic is very optimistic about the distances, and in many cases very seriously underes-
timates them. If two goal literals have to be made true, the maximum of the goal costs (distances)
is assumed to be the combined cost. This however is only accurate when the easier goal is achieved
for free while achieving the more difficult goal. Often the goals are independent and then a more
accurate estimate would be the sum of the individual costs. This suggests another heuristic, first
considered by Bonet and Geffner [2001] as a more practical variant of the max heuristic in the
previous section. Our formalization differs from the one given by Bonet and Geffner.

Definition 3.27 Let I be a state and L = A ∪ {¬a|a ∈ A} the set of literals. Define the sets D+
i

for i ≥ 0 as follows.

D+
0 = {l ∈ L|I |= l}

D+
i = D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i} for all i ≥ 1

We define cost(φ, i) by the following recursive definition.

cost(⊥, i) = ∞
cost(>, i) = 0
cost(a, i) = 0 if ¬a 6∈ D+

0 , for a ∈ A
cost(¬a, i) = 0 if a 6∈ D+

0 , for a ∈ A
cost(a, i) = j if ¬a ∈ D+

j−1\D
+
j for some j < i

cost(¬a, i) = j if a ∈ D+
j−1\D

+
j for some j < i

cost(a, i) = ∞ if ¬a ∈ D+
j for all j < i

cost(¬a, i) = ∞ if a ∈ D+
j for all j < i

cost(φ1 ∨ φ2, i) = min(cost(φ1, i), cost(φ2, i))
cost(φ1 ∧ φ2, i) = cost(φ1, i) + cost(φ2, i)

cost(¬¬φ, i) = cost(φ, i)
cost(¬(φ1 ∧ φ2), i) = min(cost(¬φ1, i), cost(¬φ2, i))
cost(¬(φ1 ∨ φ2), i) = cost(¬φ1, i) + cost(¬φ2, i)

Note that a variant of the definition of the max heuristic could be obtained by replacing the sum
+ in the definition of costs of conjunctions by max. The definition of cost(φ, i) approximates
satisfiability tests similarly to the definition of asat(D,φ) by ignoring the dependencies between
propositions.

Similarly to max distances we can define distances of formulae.

Definition 3.28 Let φ be a formula. Define

δ+I (φ) = cost(φ, n)

where n is the smallest i such that D+
i = D+

i−1.

The following theorem shows that the distance estimates given by the sum heuristic for literals
are at least as high as those given by the max heuristic.

Theorem 3.29 Let Dmax
i , i ≥ 0 be the sets defined in terms of the approximate satisfiability tests

asat(D,φ). Then Dmax
i ⊆ D+

i for all i ≥ 0.

3.4. APPROXIMATIONS OF DISTANCES 37

Proof: The proof is by induction on i.
Base case i = 0: By definition D+

0 = Dmax
0 .

Inductive case i ≥ 1: We have to show that Dmax
i−1 \{l ∈ L|o ∈ O, asat(Dmax

i−1 ,EPCl(o))} ⊆
D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i}. By the induction hypothesis Dmax
i−1 ⊆ D+

i−1. It is
sufficient to show that cost(EPCl(o), i) < i implies asat(Dmax

i−1 ,EPCl(o)).
We show this by induction on the structure of φ = EPCl(o).
Induction hypothesis: cost(φ, i) < i implies asat(Dmax

i−1 , φ)=true.
Base case 1, φ = ⊥: cost(⊥, i) = ∞ and asat(Dmax

i ,⊥)=false.
Base case 2, φ = >: cost(⊥, i) = 0 and asat(Dmax

i ,⊥)=true.
Base case 3, φ = a: If cost(a, i) < i then ¬a 6∈ D+

j for some j < i or ¬a 6∈ D+
0 . Hence

¬a 6∈ D+
i−1. By the outer induction hypothesis ¬a 6∈ Dmax

i−1 and consequently ¬a 6∈ Dmax
i . Hence

asat(Dmax
i ,⊥)=true.

Base case 4, φ = ¬a: Analogous to the case φ = a.
Inductive case 5, φ = φ1 ∨ φ2: Assume cost(φ1 ∨ φ2, i) < i. Since cost(φ1 ∨ φ2, i) =

min(cost(φ1, i), cost(φ2, i)), either cost(φ1, i) < i or cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence either

asat(Dmax
i−1 , φ1) or asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∨ φ2).

Inductive case 6, φ = φ1∧φ2: Assume cost(φ1∧φ2, i) < i. Since i ≥ 1 and cost(φ1∨φ2, i) =
cost(φ1, i) + cost(φ2, i), both cost(φ1, i) < i and cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence both

asat(Dmax
i−1 , φ1) an asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∧ φ2).

Inductive case 7, φ = ¬¬φ1: By the induction hypothesis cost(φ1, i) < i implies asat(Dmax
i−1 , φ1).

By definition cost(¬¬φ1, i) = cost(φ1, i) and asat(D,¬¬φ) = asat(D,φ). By the induction hy-
pothesis cost(¬¬φ1, i) < i implies asat(Dmax

i−1 ,¬¬φ1).
Inductive case 8, φ = ¬(φ1 ∨ φ2): Analogous to the case φ = φ1 ∧ φ2.
Inductive case 9, φ = ¬(φ1 ∧ φ2): Analogous to the case φ = φ1 ∨ φ2. �

That the sum heuristic gives higher estimates than the max heuristic could in many cases be
viewed as an advantage because the estimates would be more accurate. However, in some cases
this leads to overestimating the actual distance, and therefore the sum distances are not an admis-
sible heuristic.

Example 3.30 Consider an initial state such that I |= ¬a∧¬b∧¬c and the operator 〈>, a∧b∧c〉.
A state satisfying a ∧ b ∧ c is reached by this operator in one step but δ+I (a ∧ b ∧ c) = 3. �

3.4.3 Relaxed plan heuristic

The max heuristic and the additive heuristic represent two extremes. The first assumes that sets
of operators required for reaching the individual goal literals maximally overlap in the sense that
the operators needed for the most difficult goal literal include the operators needed for all the
remaining ones. The second assumes that the required operators are completely disjoint.

Usually, of course, the reality is somewhere in between and which notion is better depends on
the properties of the operators. This suggests yet another heuristic: we attempt to find a set of
operators that approximates, in a sense that will become clear later, the smallest set of operators
that are needed to reach a state from another state. This idea has been considered by Hoffman
and Nebel [2001]. If the approximation is exact, the cardinality of this set equals the actual dis-

38 CHAPTER 3. DETERMINISTIC PLANNING

tance between the states. The approximation may both overestimate and underestimate the actual
distance, and hence it is does not yield an admissible heuristic.

The idea of the heuristic is the following. We first choose a set of goal literals the truth of which
is sufficient for the truth ofG. These literals must be reachable in the sense of the setsDmax

i which
we defined earlier. Then we identify those goal literals that were the last to become reachable and
a set of operators making them true. A new goal formula represents the conditions under which
these operator can make the literals true, and a new set of goal literals is produced by a simplified
form of regression from the new goal formula. The computation is repeated until we have a set of
goal literals that are true in the initial state.

The function goals(D,φ) recursively finds a set M of literals such that M |= φ and each literal
in M is consistent with D. Note that M itself is not necessarily consistent, for example for D = ∅
and φ = a ∧ ¬a we get M = {a,¬a}. If a set M is found goals(D,φ) = {M} and otherwise
goals(D,φ) = ∅.

Definition 3.31 Let D be a set of literals.

goals(D,⊥) = ∅
goals(D,>) = {∅}
goals(D, a) = {{a}} if ¬a 6∈ D
goals(D, a) = ∅ if ¬a ∈ D

goals(D,¬a) = {{¬a}} if a 6∈ D
goals(D,¬a) = ∅ if a ∈ D

goals(D,¬¬φ) = goals(D,φ)

goals(D,φ1 ∨ φ2) =
{

goals(D,φ1) if goals(D,φ1) 6= ∅
goals(D,φ2) otherwise

goals(D,φ1 ∧ φ2) =
{
{L1 ∪ L2} if goals(D,φ1) = {L1} and goals(D,φ2) = {L2}
∅ otherwise

goals(D,¬(φ1 ∧ φ2)) =
{

goals(D,¬φ1) if goals(D,¬φ1) 6= ∅
goals(D,¬φ2) otherwise

goals(D,¬(φ1 ∨ φ2)) =
{
{L1 ∪ L2} if goals(D,¬φ1) = {L1} and goals(D,¬φ2) = {L2}
∅ otherwise

Above in the case for φ1∨φ2 if both φ1 and φ2 yield a set of goal literals the set for φ1 is always
chosen. A practically better implementation is to choose the smaller of the two sets.

Lemma 3.32 Let D be a set of literals and φ a formula.

1. goals(D,φ) 6= ∅ if and only if asat(D,φ) = true.

2. If goals(D,φ) = {M} then {l|l ∈M} ∩D = ∅ and asat(D,
∧

l∈M l) = true.

Proof:

1. This is by an easy induction proof on the structure of φ based on the definitions of asat(D,φ)
and goals(D,φ).

2. This is because l 6∈ D for all l ∈M . This can be shown by a simple induction proof.

�

3.4. APPROXIMATIONS OF DISTANCES 39

1: procedure relaxedplan(A,I,O,G);
2: L := A ∪ {¬a|a ∈ A}; (* All literals *)
3: compute sets Dmax

i as in Definition 3.20;
4: if asat(Dmax

i , G) = false for all i ≥ 0 then return ∞; (* Goal not reachable *)
5: t := δmax

I (G);
6: LG

t+1 := ∅;
7: Nt+1 := ∅;
8: Gt := G;
9: for i := t downto 1 do

10: begin
11: LG

i := (LG
i+1\Ni+1) ∪ {l ∈M |M ∈ goals(Dmax

i , Gi)}; (* The goal literals *)
12: Ni := {l ∈ LG

i |l ∈ Dmax
i−1 }; (* Goal literals that become true between i− 1 and i *)

13: Ti := a minimal subset of O so that Ni ⊆ {l ∈ L|o ∈ Ti, asat(Dmax
i−1 ,EPCl(o))};

14: Gi−1 :=
∧

l∈Ni

∨
{EPCl(o)|o ∈ Ti}; (* New goal formula *)

15: end
16: return |T1|+ |T2|+ · · ·+ |Tt|;

Figure 3.1: Algorithm for finding a relaxed plan

Lemma 3.33 Let D and D′ ⊆ D be sets of literals. If goals(D,φ) = ∅ and goals(D′, φ) = {M}
for some M , then there is l ∈M such that l ∈ D\D′.

Proof: Proof is by induction in the structure of formulae φ.
Induction hypothesis: If goals(D,φ) = ∅ and goals(D′, φ) = {M} for some M , then there is

l ∈M such that l ∈ D\D′.
Base cases 1 & 2, φ = > and 2 φ = ⊥: Trivial as the condition cannot hold.
Base case 3, φ = a: If goals(D, a) = ∅ and goals(D′, a) = M = {{a}}, then respectively

¬a ∈ D and ¬a 6∈ D′. Hence there is a ∈M such that a ∈ D\D′.
Inductive case 1, φ = ¬¬φ′: By the induction hypothesis as goals(D,¬¬φ′) = goals(D,φ′).
Inductive case 2, φ = φ1 ∨φ2: Assume goals(D,φ1 ∨φ2) = ∅ and goals(D′, φ1 ∨φ2) = {M}

for some M . Hence goals(D,φ1) = ∅ and goals(D,φ2) = ∅, and goals(D′, φ1) = {M} or
goals(D′, φ2) = {M}. Hence by the induction hypothesis with φ1 or φ2 there is l ∈M such that
l ∈ D\D′.

Inductive case 3, φ = φ1 ∧φ2: Assume goals(D,φ1 ∧φ2) = ∅ and goals(D′, φ1 ∧φ2) = {M}
for some M . Hence goals(D,φ1) = ∅ or goals(D,φ2) = ∅, and goals(D′, φ1) = {L1} and
goals(D′, φ2) = {L2} for some L1 and L2 such that M = L1 ∪ L2. Hence by the induction
hypothesis with φ1 or φ2 there is either l ∈ L1 or l ∈ L2 such that l ∈ D\D′.

Inductive cases φ = ¬(φ1 ∧ φ2) and φ = ¬(φ1 ∨ φ2) are analogous to cases 2 and 3. �

Definition 3.34 Define δrlx
I (φ) = relaxedplan(A, I,O, φ).

Like the sum heuristic, the relaxed plan heuristic gives higher distance estimates than the max
heuristic.

Theorem 3.35 Let φ be a formula and δmax
I (φ) the max-distance defined in terms of asat(D,φ).

Then δrlx
I (φ) ≥ δmax

I (φ).

40 CHAPTER 3. DETERMINISTIC PLANNING

Proof: We have to show that for any formula G the procedure call relaxedplan(A,I,O,G) returns a
number ≥ δmax

I (G).
First, the procedure returns ∞ if and only if asat(Dmax

i , G) = false for all i ≥ 0. In this case
by definition δmax

I (G) = ∞.
Otherwise t = δmax

I (G). Now t = 0 if and only if asat(Dmax
0 , G) = true. In this case the

procedure returns 0 without iterating the loop starting on line 9.
We show that if t ≥ 1 then for every i ∈ {1, . . . , t} the set Ti is non-empty, entailing |T1| +

· · ·+ |Tt| ≥ t = δmax
I (G). This is by an induction proof from t to 1.

We use the following auxiliary result. If asat(Dmax
i−1 , Gi) = false and asat(Dmax

i , Gi) = true
and l 6∈ Dmax

i for all l ∈ LG
i then Ti is well-defined and Ti 6= ∅. The proof is as follows.

By Lemma 3.32 goals(Dmax
i−1 , Gi) = ∅ and goals(Dmax

i , Gi) = {M} for some M .
By Lemma 3.33 there is l ∈M such that l ∈ Dmax

i−1 and hence Ni 6= ∅. By definition
l ∈ Dmax

i−1 for all l ∈ Ni. By Ni ⊆ LG
i and the assumption about LG

i l 6∈ Dmax
i for

all l ∈ Ni. Hence l ∈ Dmax
i−1 \Dmax

i for all l ∈ Ni. Hence by definition of Dmax
i for

every l ∈ Ni there is o ∈ O such that asat(Dmax
i−1 ,EPCl(o)). Hence there is Ti ⊆ O

so that Ni ⊆ {l ∈ L|o ∈ Ti, asat(Dmax
i−1 ,EPCl(o))} and the value of Ti is defined. As

Ni 6= ∅ also Ti 6= ∅.

In the induction proof we establish the assumptions of the auxiliary result and then invoke the
auxiliary result itself.

Induction hypothesis: For all j ∈ {i, . . . , t}

1. l 6∈ Dmax
j for all l ∈ LG

j ,

2. asat(Dmax
j , Gj) = true and asat(Dmax

j−1 , Gj) = false, and

3. Tj 6= ∅.

Base case i = t:

1. l 6∈ Dmax
t for all l ∈ LG

t by (2) of Lemma 3.32 because LG
t = {l ∈ goals(Dmax

t , Gt)}.

2. As t = δmax
I (Gt) by definition asat(Dmax

t−1 , Gt) = false and asat(Dmax
t , Gt) = true.

3. By the auxiliary result from the preceding case.

Inductive case i < t:

1. We have l 6∈ Dmax
i for all l ∈ LG

i because LG
i = (LG

i+1\Ni+1) ∪ {l ∈ goals(Dmax
i , Gi)}

and by the induction hypothesis l 6∈ Dmax
i+1 for all l ∈ LG

i+1 and by (2) of Lemma 3.32
l 6∈ Dmax

i for all l ∈M for M ∈ goals(Dmax
i , Gi).

2. By definition Gi =
∧

l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. By definition of Ti+1 for every

l ∈ Ni+1 there is o ∈ Ti+1 such that asat(Dmax
i ,EPCl(o)) = true. By definition of

asat(Dmax
i , φ1 ∨ φ2) and asat(Dmax

i , φ1 ∧ φ2) for φ1 and φ2 also asat(Dmax
i , Gi) = true.

Then we show that asat(Dmax
i−1 , Gi) = false. By definition ofDmax

i , asat(Dmax
i−1 ,EPCl(o)) =

false for all l ∈ Dmax
i and o ∈ O. Hence asat(Dmax

i−1 ,EPCl(o)) = false for all l ∈ Ni+1

and o ∈ O because l ∈ Dmax
i . Hence asat(Dmax

i−1 ,EPCl(o)) = false for all l ∈ Ni+1 and
o ∈ Ti+1 because Ti+1 ⊆ O. By definition Gi =

∧
l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. Hence

by definition of asat(D,φ) also asat(Dmax
i−1 , Gi) = false.

3.5. ALGORITHM FOR COMPUTING INVARIANTS 41

3. By the auxiliary result from the preceding case.

�

3.5 Algorithm for computing invariants

Planning with backward search and regression suffers from the following problem. Often only
a fraction of all valuations of state variables represent states that are reachable from the initial
state and represent possible world states. The goal formula and many of the formulae produced
by regression often represent many unreachable states. If the formulae represent only unreachable
states a planning algorithm may waste a lot of effort determining that a certain sequence of actions
is not the suffix of any plan1. Also planning with propositional logic (Section 3.6) suffers from the
same problem.

Planning can be made more efficient by restricting search to states that are reachable from the
initial state. However, determining whether a given state is reachable from the initial state is
PSPACE-complete. Consequently, exact information on the reachability of states could not be
used for speeding up the basic forward and backward search algorithms: solving the subproblem
would be just as complex as solving the problem itself.

In this section we will present a polynomial time algorithm for computing a class of invariants
that approximately characterize the set of reachable states. These invariants help in improving
the efficiency of planning algorithms based on backward search and on satisfiability testing in the
propositional logic (Section 3.6).

Our algorithm computes invariants that are clauses with at most n literals, for some fixed n.
For representing the strongest invariant arbitrarily high n may be needed. Although the runtime
is polynomial for any fixed n, the runtimes grow quickly as n increases. However, for many
applications short invariants of length n = 2 are sufficient, and longer invariants are less important.

The algorithm first computes the set of all 1-literal clauses that are true in the initial state. This
set exactly characterizes the set of distance 0 states consisting of the initial state only. Then the
algorithm considers the application of every operator. If an operator is applicable it may make
some of the clauses false. These clauses are removed and replaced by weaker clauses which are
also tested against every operator. When no further clauses are falsified, we have a set of clauses
that are guaranteed to be true in all distance 1 states. This computation is repeated for distances
2, 3, and so on, until the clause set does not change. The resulting clauses are invariants because
they are true after any number of operator applications.

The flavor of the algorithm is similar to the distance estimation in Section 3.4: starting from a
description of what is possible in the initial state, inductively determine what is possible after i
operator applications. In contrast to the distance estimation method in Section 3.4 the state sets
are characterized by sets of clauses instead of sets of literals.

Let Ci be a set of clauses that characterizes those states that are reachable by i operator applica-
tions. Similarly to distance computation, we consider for each operator and for each clause in Ci

whether applying the operator may make the clause false. If it can, the clause could be false after
i operator applications and therefore will not be in the set Ci+1.

1A symmetric problem arises with forward search because with progression one may reach states from which goal
states are unreachable.

42 CHAPTER 3. DETERMINISTIC PLANNING

1: procedure preserved(φ,C,o);
2: φ = l1 ∨ · · · ∨ ln for some l1, . . . , ln and o = 〈c, e〉 for some c and e;
3: for each l ∈ {l1, . . . , ln} do
4: if C ∪ {EPCl(o)} is unsatisfiable then goto OK; (* l cannot become false. *)
5: for each l′ ∈ {l1, . . . , ln}\{l} do (* Otherwise another literal in φ must be true. *)
6: if C ∪ {EPCl(o)} |= EPCl′(o) then goto OK; (* l′ becomes true. *)
7: if C ∪ {EPCl(o)} |= l′ ∧ ¬EPCl′(o) then goto OK; (* l′ was and stays true. *)
8: end do
9: return false; (* Truth of the clause could not be guaranteed. *)

10: OK:
11: end do
12: return true;

Figure 3.2: Algorithm that tests whether o may falsify l1 ∨ · · · ∨ ln in a state satisfying C

Figure 3.2 gives an algorithm that tests whether applying an operator o ∈ O in some state s
may make a formula l1 ∨ · · · ∨ ln false assuming that s |= C ∪ {l1 ∨ · · · ∨ ln}.

The algorithm performs a case analysis for every literal in the clause, testing in each case
whether the clause remains true: if a literal becomes false, either another literal becomes true
simultaneously or another literal was true before and does not become false.

Lemma 3.36 Let C be a set of clauses, φ = l1 ∨ · · · ∨ ln a clause, and o an operator. If
preserved(φ,C,o) returns true, then appo(s) |= φ for any state s such that s |= C ∪ {φ} and
o is applicable in s. (It may under these conditions also return false).

Proof: Assume s is a state such that s |= C ∧ φ, appo(s) is defined and appo(s) 6|= φ. We show
that the procedure returns false.

Since s |= φ and appo(s) 6|= φ at least one literal in φ is made false by o. Let {l⊥1 , . . . , l⊥m} ⊆
{l1, . . . , ln} be the set of all such literals. Hence s |= l⊥1 ∧ · · · ∧ l⊥m and {l⊥1 , . . . , l⊥m} ⊆ [e]det

s .
The literals in {l1, . . . , ln}\{l⊥1 , . . . , l⊥m} are false in s and o does not make them true.

Choose any l ∈ {l⊥1 , . . . , l⊥m}. We show that when the outermost for each loop starting on line
3 considers l the procedure will return false.

Since l ∈ [e]det
s and o is applicable in s by Lemma 3.3 s |= EPCl(o). Since by assumption

s |= C, the condition of the if statement on line 4 is not satisfied and the execution proceeds by
iteration of the inner for each loop.

Let l′ be any of the literals in φ except l. Since appo(s) 6|= φ, l′ 6∈ [e]det
s . Hence by Lemma

3.3 s 6|= EPCl′(o), and as s |= C ∪ {EPCl(o)} the condition of the if statement on line 6 is not
satisfied and the execution continues from line 7. Analyze two cases.

1. If l′ ∈ {l⊥1 , . . . , l⊥m} then by assumption l′ ∈ [e]det
s and by Lemma 3.3 s |= EPCl′(o). Hence

C ∪{EPCl(o)} 6|= ¬EPCl′(o) and the condition of the if statement on line 7 is not satisfied.

2. If l′ 6∈ {l⊥1 , . . . , l⊥m} then s 6|= l′. Hence C ∪ {EPCl(o)} 6|= l′ and the condition of the if
statement on line 7 is not satisfied.

Hence on none of the iterations of the inner for each loop is a goto OK executed, and as the loop
exits, the procedure returns false. �

3.5. ALGORITHM FOR COMPUTING INVARIANTS 43

1: procedure invariants(A, I,O, n);
2: C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a}; (* Clauses true in the initial state *)
3: repeat
4: C ′ := C;
5: for each o ∈ O and l1 ∨ · · · ∨ lm ∈ C such that not preserved(l1 ∨ · · · ∨ lm,C ′,o) do
6: C := C\{l1 ∨ · · · ∨ lm};
7: if m < n then (* Clause length within pre-defined limit. *)
8: begin (* Add weaker clauses. *)
9: C := C ∪ {l1 ∨ · · · ∨ lm ∨ a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};

10: C := C ∪ {l1 ∨ · · · ∨ lm ∨ ¬a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};
11: end
12: end do
13: until C = C ′;
14: return C;

Figure 3.3: Algorithm for computing a set of invariant clauses

Figure 3.3 gives the algorithm for computing invariants consisting of at most n literals. The
loop on line 5 is repeated until there are no o ∈ O and clauses φ in C such that preserved(φ,C ′,o)
returns false. This exit condition for the loop is critical for the correctness proof.

Theorem 3.37 Let A be a set of state variables, I a state, O a set of operators, and n ≥ 1 an
integer. Then the procedure call invariants(A, I,O, n) returns a set C of clauses with at most n
literals so that for any sequence o1; . . . ; om of operators from O appo1;...;om(I) |= C.

Proof: Let C0 be the value first assigned to the variable C in the procedure invariants, and
C1, C2, . . . be the values of the variable in the end of each iteration of the outermost repeat loop.

Induction hypothesis: for every {o1, . . . , oi} ⊆ O and φ ∈ Ci, appo1;...;oi(I) |= φ.
Base case i = 0: appε(I) for the empty sequence is by definition I itself, and by construction

C0 consists of only formulae that are true in the initial state.
Inductive case i ≥ 1: Take any {o1, . . . , oi} ⊆ O and φ ∈ Ci. First notice that preserved(φ,Ci,o)

returns true because otherwise φ could not be in Ci. Analyze two cases.

1. If φ ∈ Ci−1, then by the induction hypothesis appo1;...;oi−1(I) |= φ. Since φ ∈ Ci

preserved(φ,Ci−1,o) returns true. Hence by Lemma 3.36 appo1;...;oi(I) |= φ.

2. If φ 6∈ Ci−1, it must be because preserved(φ′,Ci−1,o′) returns false for some o′ ∈ O and
φ′ ∈ Ci−1 such that φ is obtained from φ′ by conjoining some literals to it. Hence φ′ |= φ.

Since φ′ ∈ Ci−1 by the induction hypothesis appo1;...;oi−1(I) |= φ′. Since φ′ |= φ also
appo1;...;oi−1(I) |= φ. Since the function call preserved(φ,Ci,o) returns true by Lemma 3.36
appo1;...;oi(I) |= φ.

This finishes the induction proof. The iteration of the procedure stops when Ci = Ci−1, mean-
ing that the claim of the theorem holds for arbitrarily long sequences o1; . . . ; om of operators. �

The algorithm does not find the strongest invariant for two reasons. First, only clauses until
some fixed length are considered. Expressing the strongest invariant may require clauses that are

44 CHAPTER 3. DETERMINISTIC PLANNING

longer. Second, the test performed by preserved tries to prove for one of the literals in the clause
that it is true after an operator application. Consider the clause a∨b∨c and the operator 〈b∨c,¬a〉.
We cannot show for any literal that it is true after applying the operator but we know that either b
or c is true. The test performed by preserved could be strengthened to handle cases like these, for
example by using the techniques discussed in Section 5.2, but this would make the computation
more expensive and eventually lead to intractability.

To make the algorithm run in polynomial time the satisfiability and logical consequence tests
should be performed by algorithms that approximate these tests in polynomial time. The procedure
asat(D,φ) is not suitable because it assumes that D is a set of literals, whereas for preserved the
set C usually contain clauses with 2 or more literals. There are generalizations of the ideas behind
asat(D,φ) to this more general case but we do not discuss the topic further.

3.5.1 Applications of invariants in planning by regression and satisfiability

Invariants can be used to speed up backward search with regression. Consider the blocks world
with the goal AonB∧BonC. Regression with the operator that moves B onto C from the table yields
AonB ∧ Bclear ∧ Cclear ∧ BonT. This formula does not correspond to an intended blocks world
state because AonB is incompatible with Bclear, and indeed, ¬AonB ∨ ¬Bclear is an invariant
for the blocks world. Any regression step that leads to a formula that is incompatible with the
invariants can be ignored because that formula does not represent any state that is reachable from
the initial state, and hence no plan extending the current incomplete plan can reach the goals.

Another application of invariants and the intermediate sets Ci produced by our invariant al-
gorithm is improving the heuristics in Section 3.4. Using Dmax

i for testing whether an operator
precondition, for example a ∧ b, has distance i from the initial state, the distances of a and b are
used separately. But even when it is possible to reach both a and b with i operator applications,
it might still not be possible to reach them both simultaneously with i operator applications. For
example, for i = 1 and an initial state in which both a and b are false, there might be no single op-
erator that makes them both true, but two operators, each of which makes only one of them true. If
¬a∨¬b ∈ Ci, we know that after i operator applications one of a or b must still be false, and then
we know that the operator in question is not applicable at time point i. Therefore the invariants
and the sets Ci produced during the invariant computation can improve distance estimates.

3.6 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning was introduced in 1992 by Kautz and Selman
[1992; 1996]. In this approach the problem of reachability of a goal state from a given initial
state is translated into propositional formulae φ0, φ1, φ2, . . . so that every valuation that satisfies
formula φi corresponds to a plan of length i. Planning proceeds by first testing the satisfiability of
φ0. If φ0 is unsatisfiable, continue with φ1, φ2, and so on, until a satisfiable formula φn is found.
From a valuation that satisfies φn a plan of length n can be constructed.

3.6.1 Actions as propositional formulae

First we need a representation of actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 45

Given a set of state variables A = {a1, . . . , an}, one could describe an action directly as a
propositional formula φ over propositional variables A ∪ A′ where A′ = {a′1, . . . , a′n}. Here the
variables A represent the values of state variables in the state s in which an action is taken, and
variables A′ the values of state variables in a successor state s′.

A pair of valuations s and s′ can be understood as a valuation of A ∪ A′ (the state s assigns a
value to variables A and s′ to variables A′), and a transition from s to s′ is possible if and only if
s, s′ |= φ.

Example 3.38 The action that reverses the values of state variables a1 and a2 is described by
φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2). The following 4× 4 incidence matrix represents this action.

a′1a
′
2 a

′
1a

′
2 a

′
1a

′
2 a

′
1a

′
2

a1a2 00 01 10 11
00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

The matrix can be equivalently represented as the following truth-table.

a1 a2 a
′
1 a

′
2 φ

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

�

Example 3.39 Let the set of state variables beA = {a1, a2, a3}. The formula (a1 ↔ a′2)∧(a2 ↔
a′3) ∧ (a3 ↔ a′1) represents the action that rotates the values of the state variables a1, a2 and a3

one position right. The formula can be represented as the following adjacency matrix. The rows

46 CHAPTER 3. DETERMINISTIC PLANNING

correspond to valuations of A and the columns to valuations of A′ = {a′1, a′2, a′3}.

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table
with one row for every valuation of A ∪A′, a total of 64 rows. �

The action in Example 3.39 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for determinism is that the
formula is of the form (φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) ∧ ψ where A = {a1, . . . , an} is the set of
all state variables, φi are formulae over A (without occurrences of A′ = {a′1, . . . , a′n}). There are
no restrictions on ψ. Formulae of this form uniquely determine the value of every state variable
in the successor state in terms of the values in the predecessor state. Therefore they represent
deterministic actions.

3.6.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators is represented as disjunction.

Definition 3.40 The formula τA(o) which represents the operator o = 〈c, e〉 is defined by

τA(e) =
∧

a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e))
τA(o) = c ∧ τA(e).

The formula τA(e) expresses the value of a in the successor state in terms of the values of
the state variables in the predecessor state and requires that executing e may not make any state
variable simultaneously true and false. This is like in the definition of regression in Section 3.1.2.
The formula τA(o) additionally requires that the operator’s precondition is true.

Example 3.41 Consider operator 〈a ∨ b, (b B a) ∧ (c B ¬a) ∧ (a B b)〉. The corresponding
propositional formula is

(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ (b ∧ ¬⊥)) ↔ b′)
∧((⊥ ∨ (c ∧ ¬⊥)) ↔ c′)
∧¬(b ∧ c) ∧ ¬(a ∧ ⊥) ∧ ¬(⊥ ∧⊥)

≡ (a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ b) ↔ b′)
∧(c↔ c′)
∧¬(b ∧ c).

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 47

�

Lemma 3.42 Let s and s′ be states and o an operator. Let v : A ∪ A′ → {0, 1} be a valuation
such that

1. for all a ∈ A, v(a) = s(a), and

2. for all a ∈ A, v(a′) = s′(a).

Then v |= τA(o) if and only if s′ = appo(s).

Proof: Assume v |= τA(o). Hence s |= c and s |=
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)), and therefore
appo(s) is defined. Consider any state variable a ∈ A. By Lemma 3.4 and the assumption
v |= (EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′, the value of every state variable in s′ matches the
definition of appo(s). Hence s′ = appo(s).

Assume s′ = appo(s). Since s′ is defined, v |= τA(o) and v |=
∧

a∈A ¬(EPCa(e)∧EPC¬a(e)).
By Lemma 3.4 v |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a. �

Definition 3.43 Define R1(A,A′) = τA(o1) ∨ · · · ∨ τA(on).

The valuations that satisfy this formula do not uniquely determine which operator was applied
because for a given state more than one operator may produce the same successor state. However,
in such cases it does not matter which operator is applied, and when constructing a plan from the
valuation any of the operators may be chosen arbitrarily.

It has been noticed that extending R1(A,A′) by 2-literal invariants (see Section 3.5) reduces
runtimes of algorithms that test satisfiability. Note that invariants do not affect the set of models of
a formula representing planning: any satisfying valuation of the original formula also satisfies the
invariants because the values of variables describing the values of state variables at any time point
corresponds to a state that is reachable from the initial state, and hence this valuation also satisfies
any invariant.

3.6.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating succinct transition systems 〈A, I,O,G〉 into
propositional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.6.1 we showed how operators can be described by propositional formulae over sets
A and A′ of propositional variables, the set A describing the values of the state variables in the
state in which the operator is applied, and the set A′ describing the values of the state variables in
the successor state of that state.

For a fixed plan length n, we use sets A0, . . . , An of variables to represent the values of state
variables at different time points, with variables Ai representing the values at time i. In other
words, a valuation of these propositional variables represents a sequence s0, . . . , sn of states. If
a ∈ A is a state variable, then we use the propositional variable ai for representing the value of a
at time point i.

Then we construct a formula so that the state s0 is determined by I , the state sn is determined
by G, and the changes of state variables between any two consecutive states corresponds to the
application of an operator.

48 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.44 Let 〈A, I,O,G〉 be a deterministic transition system. Define ι0 =
∧
{a0|a ∈

A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} for the initial state and Gn as the formula G with every
variable a ∈ A replaced by an. Define

Φseq
n = ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An) ∧Gn

where Ai = {ai|a ∈ A} for all i ∈ {0, . . . , n}.

A plan can be found by using the formulae Φseq
i as follows. We start with plan length i = 0, test

the satisfiability of Φseq
i , and depending on the result, either construct a plan (if Φseq

i is satisfiable),
or increase i by one and repeat the previous steps, until a plan is found.

If there are no plans, it has to be somehow decided when to stop increasing i. An upper bound on
plan length is 2|A| − 1 where A is the set of state variables but this upper bound does not provide
a practical termination condition for this procedure. Some work on more practical termination
conditions are cited in Section 3.10.

The construction of a plan from a valuation v that satisfies Φseq
i is straightforward. The plan

has exactly i operators, and this plan is known to be the shortest one because the formula Φseq
i−1

had already been determined to be unsatisfiable. First construct the execution s0, . . . , si of the
plan from v as follows. For all j ∈ {0, . . . , i} and a ∈ A, sj(a) = v(aj). The plan has the
form o1, . . . , oi. Operator oj for j ∈ {1, . . . , i} is identified by testing for all o ∈ O whether
appo(sj−1) = sj . There may be several operators satisfying this condition, and any of them can
be chosen.

Example 3.45 Let A = {a, b}. Let the state I satisfy I |= a ∧ b. Let G = (a ∧ ¬b) ∨ (¬a ∧ b)
and o1 = 〈>, (a B ¬a) ∧ (¬a B a)〉 and o2 = 〈>, (b B ¬b) ∧ (¬b B b)〉. The following formula
is satisfiable if and only if 〈A, I, {o1, o2}, G〉 has a plan of length 3.

(a0 ∧ b0)
∧(((a0 ↔ a1) ∧ (b0 ↔ ¬b1)) ∨ ((a0 ↔ ¬a1) ∧ (b0 ↔ b1)))
∧(((a1 ↔ a2) ∧ (b1 ↔ ¬b2)) ∨ ((a1 ↔ ¬a2) ∧ (b1 ↔ b2)))
∧(((a2 ↔ a3) ∧ (b2 ↔ ¬b3)) ∨ ((a2 ↔ ¬a3) ∧ (b2 ↔ b3)))
∧((a3 ∧ ¬b3) ∨ (¬a3 ∧ b3))

One of the valuations that satisfy the formula is the following.

time i
0 1 2 3

ai 1 0 0 0
bi 1 1 0 1

This valuation corresponds to the plan that applies operator o1 at time point 0, o2 at time point 1,
and o2 at time point 2. There are also other satisfying valuations. The shortest plans have length 1
and respectively consist of the operators o1 and o2. �

Example 3.46 Consider the following problem. There are two operators, one for rotating the
values of bits abc one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the

3.7. DEFINITIONS OF PARALLEL PLANS 49

following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(¬a2 ∧ ¬b2 ∧ c2)

Since the literals describing the initial and the goal state must be true, we can replace occurrences
of these state variables in the subformulae for operators by > and ⊥.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((> ↔ b1) ∧ (⊥ ↔ c1) ∧ (⊥ ↔ a1)) ∨ ((¬> ↔ a1) ∧ (¬⊥ ↔ b1) ∧ (¬⊥ ↔ c1)))
∧(((a1 ↔ ⊥) ∧ (b1 ↔ >) ∧ (c1 ↔ ⊥)) ∨ ((¬a1 ↔ ⊥) ∧ (¬b1 ↔ ⊥) ∧ (¬c1 ↔ >)))
∧(¬a2 ∧ ¬b2 ∧ c2)

After simplifying we have the following.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1)
∧((¬a1 ∧ b1 ∧ ¬c1) ∨ (a1 ∧ b1 ∧ ¬c1))
∧(¬a2 ∧ ¬b2 ∧ c2)

The only way of satisfying this formula is to make the first disjuncts of both disjunctions true, that
is, b1 must be true and a1 and c1 must be false. The resulting valuation corresponds to taking the
rotation action twice.

Consider the same problem but now with the goal state 101.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(a2 ∧ ¬b2 ∧ c2)

We simplify again and get the following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1))
∧((¬a1 ∧ b1 ∧ c1) ∨ (¬a1 ∧ b1 ∧ ¬c1))
∧(a2 ∧ ¬b2 ∧ c2)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. �

3.7 Definitions of parallel plans

In this section we consider a more general notion of plans in which several operators can be applied
simultaneously. This kind of plans are formalized as sequences of sets of operators. In such a plan
the operators are partially ordered because there is no ordering on the operators taking place at the
same time point. This notion of plans is useful for two reasons.

50 CHAPTER 3. DETERMINISTIC PLANNING

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there are n such operators, there are n! plans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm shows that there is
no plan of length n consisting of these operators, it has to show that none of the n! plans reaches
the goals. This may be combinatorially very difficult if n is high.

Second, when several operators can be applied simultaneously, it is not necessary to represent all
intermediate states of the corresponding sequential plans: partially-ordered plans require less time
points than the corresponding sequential plans. This reduces the number of propositional variables
that are needed for representing the planning problem, which may make testing the satisfiability
of these formulae much more efficient.

For presenting the results in the rest of this chapter we use a simpler definition of operators
that makes it easier to distinguish between STRIPS operators and general conditional operators.
An operator is defined as a triple 〈p, e, c〉 where p is a propositional formula, e is a set of literals
(the unconditional effects) and c is a set of pairs d B g (the conditional effects) where d is a
propositional formula and g is a set of literals. These operators in our standard definition are
〈p,

∧
(e ∪ {d B

∧
g|d B g ∈ c})〉. For operators 〈p, e, c〉 we define EPCl(e, c) = EPCl(

∧
(e ∪

{d B
∧
g|d B g ∈ c})).

3.7.1 ∀-Step semantics

We formally present a semantics that generalizes the semantics used in most works on parallel
plans, for example by Kautz and Selman [1996].

Earlier definitions of parallel plans have been based on the notion of interference. The parallel
application of a set of operators is possible if the operators do not interfere. Lack of interference
guarantees that the operators can be executed sequentially in any total order and that the terminal
state is independent of the ordering. As shown in Theorem 3.49, non-interference and executability
in any order coincide for STRIPS operators. Our definition of operators extends the definition of
STRIPS operators considerably, and instead of non-interference in Definition 3.47 we adopt the
more abstract and intuitive order-independence as the basic principle in the ∀-step semantics.

For the efficiency of plan search and plan validation it is important that the test whether a plan
is executable and achieves the goals is tractable. For this reason we investigate the tractability of
our general definition of ∀-step semantics and then identify restricted tractable classes of ∀-step
plans. This investigation goes beyond earlier works like by Blum and Furst [1997] and Kautz and
Selman [1996; 1999] which restrict to STRIPS operators.

Definition 3.47 (∀-Step plans) For a set of operators O and an initial state I , a ∀-step plan for
O and I is a sequence T = 〈S0, . . . , Sl−1〉 of sets of operators for some l ≥ 0 such that there is a
sequence of states s0, . . . , sl (the execution of T) such that

1. s0 = I , and

2. for all i ∈ {0, . . . , l−1} and every total ordering o1, . . . , on of Si, appo1;...;on(si) is defined
and equals si+1.

We show that this abstract definition yields the standard definition of parallel plans for STRIPS
operators which requires that no operator falsifies the precondition of any other operator that is
applied simultaneously.

3.7. DEFINITIONS OF PARALLEL PLANS 51

Lemma 3.48 Let T = 〈S0, . . . , Sl−1〉 be a ∀-step plan with execution s0, . . . , sl. Then the fol-
lowing hold.

1. There is no i ∈ {0, . . . , l − 1} and {〈p, e, c〉, 〈p′, e′, c′〉} ⊆ Si and a ∈ A such that a ∈ e
and ¬a ∈ e′.

2. appo(si) is defined for every o ∈ Si.

Proof: For (1) we derive a contradiction by assuming the opposite. Take an ordering of the oper-
ators such that 〈p, e, c〉 and 〈p′, e′, c′〉 are the last operators in this order. Hence si+1 |= ¬a. But
the ordering in which the two operators are the other way round leads to a state s′i+1 such that
s′i+1 |= a. This contradicts the assumption that T is a ∀-step plan. Hence (1) holds.

Consider any operator o ∈ Si and any ordering in which o is the first operator. For the operators
to be executable in this order, o has to be applicable in si. Therefore (2). �

For operators without conditional effects (including STRIPS operators) the above lemma means
that for every set Si of parallel operators appSi(si) is defined. With conditional effects sequential
execution in any order is sometimes possible even when simultaneous execution is not: consider
for example {〈>, ∅, {(¬a ∧ ¬b) B {a,¬b}, b B {a}}〉, 〈>, ∅, {(¬a ∧ ¬b) B {¬a, b}, a B {b}}〉}
executed in a state satisfying ¬a ∧ ¬b.

Theorem 3.49 Let O be a set of STRIPS operators, I a state, and T = 〈S0, . . . , Sl−1〉 ∈ (2O)l.
Then T is a ∀-step plan for O and I if and only if there is a sequence of states s0, . . . , sl such that

1. s0 = I ,

2. si+1 = appSi(si) for all i ∈ {0, . . . , l − 1}, and

3. for no i ∈ {0, . . . , l − 1} and two operators {〈p, e, ∅〉, 〈p′, e′, ∅〉} ⊆ Si there is m ∈ e such
that m is one of the conjuncts of p′.

Proof: We first prove the only if part. Since T is a ∀-step plan, it has an execution s0, . . . , sl as in
Definition 3.47. We show that the three conditions on the right side of the equivalence are satisfied
by this sequence of states.

By the definition of ∀-step plans, the first state of the execution is the initial state I . Hence we
get (1).

By (1) of Lemma 3.48 for all i ∈ {0, . . . , l − 1} the sets Ei = [Si]det
si

=
⋃
{e|〈p, e, ∅〉 ∈ Si}

are consistent. By (2) of the same lemma the preconditions of all operators in Si are true in si.
Hence the state appSi(si) is defined. The changes made by any total ordering of Si equal Ei

because the effects of no operator in Si override any effect of another operator in Si. Therefore
si+1 = appSi(si). This establishes (2).

For the sake of argument assume that there is literal m and i ∈ {0, . . . , l− 1} so that m ∈ e for
some 〈p, e, ∅〉 ∈ Si and m is a conjunct of the precondition p′ of some other 〈p′, e′, ∅〉 ∈ Si. Then
in every total ordering of the operators in which 〈p, e, ∅〉 immediately precedes 〈p′, e′, ∅〉 the latter
would not be applicable. This, however, contradicts the definition of ∀-step plans. Therefore (3).

Then we prove the if part. Assume there is a sequence s0, . . . , sl satisfying (1), (2) and (3). We
show that T and s0, . . . , sl satisfy Definition 3.47 of ∀-step plans.

That s0 = I is directly by our assumption (1).

52 CHAPTER 3. DETERMINISTIC PLANNING

We show that appo1;...;on(si) = appSi(si) for all i ∈ {0, . . . , l − 1} and all total orderings
o1, . . . , on of Si. Since appSi(si) is defined, the precondition of every o ∈ Si is true in si and
Ei =

⋃
{e|〈p, e, ∅〉 ∈ Si} is consistent. Take any total ordering o1, . . . , on of Si. By (3) no

operator in Si can disable another operator in Si. Hence appo1;...;on(si) is defined. Since Ei is
consistent, effects of no operator can be overridden by another operator in Si. Hence appSi(si) =
si+1 = appo1;...;on(si). Since this holds for any total ordering of Si, the definition of ∀-step plans
is fulfilled. �

Testing whether a sequence of sets of STRIPS operators is a ∀-step plan can be done in polyno-
mial time. A simple quadratic algorithm tests the operators pairwise for occurrences of a literal and
its complement in the effects of the two operators and in the effect of one and in the precondition
of the other. Computing the successor states is similarly polynomial time computation.

In the general case, however, the definition of ∀-step plans is computationally rather complex.
The next theorem gives the justification for restricting to a narrow class of ∀-step plans in the
following. The proof of the theorem shows that co-NP-hardness holds even when operators have
no conditional effects. Hence the high complexity emerges merely from disjunctivity in operator
preconditions.

Theorem 3.50 Testing whether a sequence of sets of operators is a ∀-step plan is co-NP-hard.

Proof: The proof is by reduction from TAUT. Let φ be any propositional formula. Let A =
{a1, . . . , an} be the set of propositional variables occurring in φ. The set of state variables is A.
Let oz = 〈φ, ∅, ∅〉. Let S = {〈>, {a1}, ∅〉, . . . , 〈>, {an}, ∅〉, oz}. Let s and s′ be states such that
s 6|= a and s′ |= a for all a ∈ A. We show that φ is a tautology if and only if T = 〈S〉 is a ∀-step
plan for S and s.

Assume φ is a tautology. Now for any total ordering o0, . . . , on of S the state appo0;...,on(s) is
defined and equals s′ because all preconditions are true in all states, and the set of effects of all
operators is A (the set is consistent and making the effects true in s yields s′.) Hence T is a ∀-step
plan.

Assume T is a ∀-step plan. Let v be any valuation. We show that v |= φ. Let Sv =
{〈>, {a}, ∅〉|a ∈ A, v |= a}. The operators S can be ordered to o0, . . . , on so that the oper-
ators Sv = {o0, . . . , ok} precede oz and S\(Sv ∪ {oz}) follow oz . Since T is a ∀-step plan,
appo0;...;on(s) is defined. Since also appo0;...;ok;oz(s) is defined, the precondition φ of oz is true in
v = appo0;...;ok

(s). Hence v |= φ. Since this holds for any valuation v, φ is a tautology. �

Membership in co-NP is easy to show. There is a nondeterministic polynomial-time algorithm
that can determine that a sequence of sets of operators is not a ∀-step plan. It first guesses an index
i and a total ordering for the first i− 1 steps and two total orderings for step i and then computes
the two states that are reached by applying the operators in the first i − 1 steps followed by one
total ordering of step i. If the states differ or if not all operators are applicable, then the definition
of ∀-step plans is not fulfilled.

To obtain a tractable notion of ∀-step plans for all operators we can generalize the notion of
interference used for STRIPS operators to arbitrary operators. Lack of interference is a sufficient
but not necessary condition for a set of operators to be executable in every order with the same
results. First we define positive and negative occurrences of state variables a ∈ A in a formula
inductively as follows.

3.7. DEFINITIONS OF PARALLEL PLANS 53

Definition 3.51 (Positive and negative occurrences) We say that a state variable a occurs posi-
tively in φ if positive(a, φ) is true. Similarly, a occurs negatively in φ if negative(a, φ) is true.

positive(a, a) = true, for all a ∈ A
positive(a, b) = false, for all {a, b} ⊆ A such that a 6= b

positive(a, φ ∧ φ′) = positive(a, φ) or positive(a, φ′)
positive(a, φ ∨ φ′) = positive(a, φ) or positive(a, φ′)

positive(a,¬φ) = negative(a, φ)

negative(a, b) = false, for all {a, b} ⊆ A
negative(a, φ ∧ φ′) = negative(a, φ) or negative(a, φ′)
negative(a, φ ∨ φ′) = negative(a, φ) or negative(a, φ′)

negative(a,¬φ) = positive(a, φ)

A state variable a occurs in φ if it occurs positively or occurs negatively in φ.

Below we also consider positive and negative occurrences of state variables in effects. A state
variable a occurs positively as an effect in operator 〈p, e, c〉 if a ∈ e or if there is f B d ∈ c so
that a ∈ d. A state variable a occurs negatively as an effect in operator 〈p, e, c〉 if ¬a ∈ e or there
is f B d ∈ c such that ¬a ∈ d.

Definition 3.52 (Interference) Let A be a set of state variables. Operators o = 〈p, e, c〉 and
o′ = 〈p′, e′, c′〉 over A interfere if there is a ∈ A that

1. occurs positively as an effect in o and occurs in f for some f B d ∈ c′ or occurs negatively
in p′,

2. occurs positively as an effect in o′ and occurs in f for some f B d ∈ c or occurs negatively
in p,

3. occurs negatively as an effect in o and occurs in f for some f B d ∈ c′ or occurs positively
in p′, or

4. occurs negatively as an effect in o′ and occurs in f for some f B d ∈ c or occurs positively
in p.

Proposition 3.53 Testing whether two operators interfere can be done in polynomial time in the
size of the operators.

There are simple examples of valid ∀-step plans in which operators interfere according to the
above definition. Hence the restriction to steps without interfering operators rules out many plans
covered by the general definition (Definition 3.47.)

Example 3.54 Consider a set A of state variables and any set S of operators of the form

〈>, ∅, {a B {¬a}|a ∈ A′} ∪ {¬a B {a}|a ∈ A′}〉

where A′ is any subset of A (dependent on the operator.) Hence each operator reverses the values
of a certain set of state variables. Executing the operators in any order results in the same state in
every case. Hence 〈S〉 is a ∀-step plan according to Definition 3.47 but any two operators affecting
the same state variable interfere. �

54 CHAPTER 3. DETERMINISTIC PLANNING

Before formally connecting the notion of interference to plans that satisfy the ∀-step semantics
we define a more relaxed notion of interference that is dependent on the state. In Section 3.8 we
primarily use the state-independent notion of interference.

Definition 3.55 (Interference in a state) LetA be a set of state variables. Operators o = 〈p, e, c〉
and o′ = 〈p′, e′, c′〉 over A interfere in a state s if there is a ∈ A so that

1. a ∈ [o]det
s and a occurs in d for some d B f ∈ c′ or occurs negatively in p′,

2. a ∈ [o′]det
s and a occurs in d for some d B f ∈ c or occurs negatively in p,

3. ¬a ∈ [o]det
s and a occurs in d for some d B f ∈ c′ or occurs positively in p′, or

4. ¬a ∈ [o′]det
s and a occurs in d for some d B f ∈ c or occurs positively in p.

Lemma 3.56 Let s be a state and o and o′ two operators. If o and o′ interfere in s, then o and o′

interfere.

Proof: Definition of interference has the form that o and o′ interfere if there is an effect (conditional
or unconditional) that fulfills some property. Interference in s is the same, except that a restriction
to the subclass of effects active in s is made.

As an example we consider one case. Other cases are analogous. So assume o and o′ interfere in
s because (case (1)) there is a ∈ A such that a ∈ [o]det

s and a occurs negatively in the precondition
of o′. Now case (1) of the definition of interference is fulfilled because there is a ∈ A that occurs
negatively in the precondition of o′. �

Lemma 3.57 Let s be a state and S a set of operators so that appS(s) is defined and no two
operators interfere in s. Then appS(s) = appo1;...;on(s) for any total ordering o1, . . . , on of S.

Proof: Let o1, . . . , on be any total ordering of S. We prove by induction on the length of a prefix
of o1, . . . , on the following statement for all i ∈ {0, . . . , n − 1} by induction on i: s |= a if and
only if appo1;...;oi(s) |= a for all state variables a occurring in an antecedent of a conditional effect
or a precondition of operators oi+1, . . . , on.

Base case i = 0: Trivial.
Inductive case i ≥ 1: By the induction hypothesis the antecedents of conditional effects of oi

have the same value in s and in appo1;...;oi−1(s), from which follows [oi]det
s = [oi]det

appo1;...;oi−1 (s).

Since oi does not interfere in s with operators oi+1, . . . , on, no state variable occurring in [oi]det
s

occurs in an antecedent of a conditional effect or in the precondition of oi+1, . . . , on. Hence these
state variables do not change. Since [oi]det

s = [oi]det
appo1;...;oi−1 (s), this also holds when oi is applied

in appo1;...;oi−1(s). This completes the induction proof.
Since appS(s) is defined, the precondition of every o ∈ S is true in s and [o]det

s is consistent.
Based on the fact we have established above, the precondition of every o ∈ S is true also in
appo1;...;ok

(s) and [o]det
appo1;...;ok

(s) is consistent for any {o1, . . . , ok} ⊆ S\{o}. Hence any total

ordering of the operators is executable. Based on the fact we have established above, [o]det
s =

[o]det
appo1;...;ok

(s) for every {o1, . . . , ok} ⊆ S\{o}. Hence every operator causes the same changes
no matter what the total ordering is. Since appS(s) is defined, no operator in S undoes the effects

3.7. DEFINITIONS OF PARALLEL PLANS 55

of another operator. Hence the same state s′ = appS(s) is reached in every case. �

Theorem 3.58 Let I be a state, O a set of operators, and T = 〈S0, . . . , Sl−1〉 ∈ (2O)l such
that there is a sequence s0, s1, . . . , sl of states with s0 = I and si+1 = appSi(si) for all i ∈
{0, . . . , l − 1}. If for no i ∈ {0, . . . , l − 1} and {o, o′} ⊆ Si such that o 6= o′ the operators o and
o′ interfere in si, then T is a ∀-step plan for O and I .

Proof: Directly by Lemma 3.57. �

Theorem 3.59 Let I be a state, O a set of operators, and T = 〈S0, . . . , Sl−1〉 ∈ (2O)l such
that there is a sequence s0, s1, . . . , sl of states with s0 = I and si+1 = appSi(si) for all i ∈
{0, . . . , l − 1}. If for no i ∈ {0, . . . , l − 1} and {o, o′} ⊆ Si such that o 6= o′ the operators o and
o′ interfere, then T is a ∀-step plan for O and I .

Proof: By Lemma 3.56 and Theorem 3.58. �

The state-dependent definition of interference in some cases allows more parallelism than the
state-independent definition.

Example 3.60 Consider S = {〈>, ∅, {a B {¬b}}〉, 〈>, ∅, {b B {¬a}}〉}. The operators interfere
according to Definition 3.52. However, the operators do not interfere in states s such that s |=
¬a ∧ ¬b because no effect is active. �

A still more relaxed notion of interference that allows changing shared state variables as long as
the preconditions do not become false nor the values of antecedents of conditional effects change
leads to high complexity because states other than the current one have to be considered. Even if
none of the operators change the values of antecedents of conditional effects or preconditions in
the current state, they may do this in states reachable by applying another operator. For example,
the operator 〈a ∨ b, {c}, ∅〉 is not disabled by 〈>, {¬a}, ∅〉 nor 〈>, {¬b}, ∅〉 alone, but in states
reached by one of these operators the other operator disables it.

The source of the high complexity of the general definition is that on different execution orders,
all of which must result in the same state, a different sequence of intermediate states is visited,
and it seems unavoidable to make these intermediate states explicit when reasoning about the
executions.

3.7.2 Process semantics

The idea of the process semantics is that we only consider those ∀-step plans that fulfill the fol-
lowing condition. There is no operator o applied at time t+1 with t ≥ 0 such that the sequence of
sets of operators obtained by moving o from time t+ 1 to time t would be a ∀-step plan that leads
to the same state.

As an example consider a set S of operators that are all initially applicable and no two operators
interfere or have contradicting effects. If we have time points 0 and 1, we can apply each operator
alternatively at 0 or at 1. The resulting state at time point 2 will be the same in all cases. So, under
∀-step semantics the number of equivalent plans on two time points is 2|S|. Process semantics

56 CHAPTER 3. DETERMINISTIC PLANNING

says that no operator that is applicable at 0 may be applied later than at 0. Hence under process
semantics there is only one plan instead of 2|S|.

The idea of the process semantics was previously investigated in connection with Petri nets
[Best and Devillers, 1987]. It can be seen as a way of canonizing ∀-step executions into a nor-
mal form in which each operator of the ∀-step plan occurs as early as possible. This canonical
normal form is similar to the Foata normal form in the theory of Mazurkiewicz traces [Diekert
and Métivier, 1997; Heljanko, 2001]. Bounded model checking with 1-safe Petri nets roughly
corresponds to planning with STRIPS operators.

Definition 3.61 (Process plans) For a set of operators O and an initial state I a process plan for
O and I is a ∀-step plan 〈S0, . . . , Sl−1〉 forO and I with the execution s0, . . . , sl such that there is
no i ∈ {1, . . . , l − 1} and o ∈ Si so that 〈S0, . . . , Si−1 ∪ {o}, Si\{o}, . . . , Sl−1〉 is a ∀-step plan
for O and I with the execution s′0, . . . , s

′
l such that sj = s′j for all j ∈ {0, . . . , i− 1, i+ 1, . . . , l}.

Note that it is possible that o ∈ Si−1, and when transforming a ∀-step plan to a corresponding
process plan, the number of operators in the plan may decrease. It is possible to define an alter-
native process semantics so that moving an operator earlier is possible only if the total number of
operators is preserved.

The important property of process semantics is that even though the additional condition reduces
the number of valid plans, whenever there is a plan with t time steps under ∀-step semantics, there
is also a plan with at most t time steps under process semantics that leads to the same final state.
From any ∀-step plan a plan satisfying the process condition is obtained by repeatedly moving
operators violating the condition one time point earlier.

Theorem 3.62 Let π = 〈A, I,O,G〉 be a transition system and 〈S0, . . . , Sl−1〉 a ∀-step plan for
π. Then there is a process plan 〈S′0, . . . , S′l−1〉 for π.

Proof: Define a mapping ρ from plans to plans: plan ρ(T) is obtained from T by moving one
operator earlier according to Definition 3.61 if possible, and otherwise ρ(T) = T . Define the
function f(〈S0, . . . , Sl−1〉) =

∑l−1
i=0(i · |Si|). Note that f(ρ(T)) < f(T) if ρ(T) 6= T . Since f

can take only positive values, only finitely many moves are possible. When f(ρ(T)) = f(T), T
is a process plan. Hence a process plan is obtained after finitely many moves. �

Theorem 3.63 Testing whether a sequence of sets of operators is a process plan is polynomial-
time reducible to testing whether a sequence of sets of operators is a ∀-step plan.

Proof: The definition of process plans gives a procedure for doing the test. Consider 〈S0, . . . , Sl−1〉.
For every operator in S1 ∪ · · · ∪Sl−1 we have to test the process condition. There are |S1|+ · · ·+
|Sl−1| such tests. �

We will later concentrate on ∀-step plans in which no two simultaneous operators interfere,
and hence it is convenient to define a narrower class of process plans that is compatible with the
narrower class of ∀-step plans.

Definition 3.64 (i-Process plans) For a set of operatorsO and an initial state I a process plan for
O and I is a ∀-step plan 〈S0, . . . , Sl−1〉 forO and I with the execution s0, . . . , sl such that there is

3.7. DEFINITIONS OF PARALLEL PLANS 57

no i ∈ {1, . . . , l − 1} and o ∈ Si so that 〈S0, . . . , Si−1 ∪ {o}, Si\{o}, . . . , Sl−1〉 is a ∀-step plan
for O and I with the execution s′0, . . . , s

′
l such that sj = s′j for all j ∈ {0, . . . , i− 1, i+ 1, . . . , l}

and additionally, for no i ∈ {0, . . . , l − 1} and {o, o′} ∈ Si such that o 6= o′ the operators o and
o′ interfere.

3.7.3 ∃-Step semantics

We present a general formalization of a notion of parallel plans that was first considered by Di-
mopoulos et al. [1997].

Definition 3.65 (∃-Step plans) For a set O of operators and an initial state I , a ∃-step plan is
T = 〈S0, . . . , Sl−1〉 ∈ (2O)l together with a sequence of states s0, . . . , sl (the execution of T) for
some l ≥ 0 such that

1. s0 = I , and

2. for every i ∈ {0, . . . , l − 1} there is a total ordering o1 < . . . < on of Si such that
si+1 = appo1;...;on(si).

The difference to ∀-step semantics is that instead of requiring that each step Si can be ordered
to any total order, it is sufficient that there is one order that maps state si to si+1. Unlike in ∀-
step semantics, the successor si+1 of si is not uniquely determined solely by Si, as the successor
depends on the implicit ordering of Si. Hence the definition has to make the execution s0, . . . , sl

explicit. There are also other important technical differences between ∃-step and ∀-step semantics,
most notably the fact that the properties given in Lemma 3.48 for ∀-step semantics do not hold for
∃-step semantics.

The more relaxed definition of ∃-step plans sometimes allows much more parallelism than the
definition of ∀-step plans.

Example 3.66 Consider a row of n Russian dolls, each slightly bigger than the preceding one.
We can nest all the dolls by putting the first inside the second, then the second inside the third, and
so on, until every doll except the biggest one is inside another doll.

For four dolls this can be formalized as follows.

o1 = 〈out1 ∧ out2 ∧ empty2, {1in2,¬out1,¬empty2}, ∅〉
o2 = 〈out2 ∧ out3 ∧ empty3, {2in3,¬out2,¬empty3}, ∅〉
o3 = 〈out3 ∧ out4 ∧ empty4, {3in4,¬out3,¬empty4}, ∅〉

The shortest ∀-step plan that nests the dolls is 〈{o1}, {o2}, {o3}〉. The ∃-step plan 〈{o1, o2, o3}〉
nests the dolls in one step. �

Theorem 3.67 (i) Each ∀-step plan is a ∃-step plan, and (ii) for every ∃-step plan T there is a
∀-step plan whose execution leads to the same final state as that of T .

Proof: (i) Consider a ∀-step plan T = 〈S0, . . . , Sl−1〉. Any total ordering of Si, i ∈ {0, . . . , l −
1} takes state si to the same si+1. Hence, T is a ∃-step plan. (ii) For a ∃-step plan T =
〈S0, . . . , Sl−1〉, a ∀-step plan whose execution leads to the same final state as that of T is {o01}, . . . , {o0n0

}, . . . , {ol−1
1 }, . . . , {ol−1

nl−1
}

where for every i ∈ {0, . . . , l − 1}, the sequence {oi
1}, . . . , {oi

ni
} is a total ordering of Si given

58 CHAPTER 3. DETERMINISTIC PLANNING

by Condition 2 of Definition 3.65. �

Next we identify restricted intractable and tractable classes of ∃-step plans.

Theorem 3.68 Let O be a set of operators and I a state. Testing whether T = 〈S0, . . . , Sl−1〉 ∈
(2O)l is a ∃-step plan for O and I with some execution s0, . . . , sl is NP-hard, even when the set of
atomic effects of operators in Si for every i ∈ {0, . . . , l − 1} is consistent.

Proof: By reduction from SAT. Let φ be any propositional formula. Let A be the set of proposi-
tional variables occurring in φ. Let s and s′ be states such that s 6|= a for all a ∈ A and s′ |= a
for all a ∈ A. We claim that φ is satisfiable if and only if 〈S〉 with S = {〈>, {a}, ∅〉|a ∈
A} ∪ {〈φ, ∅, ∅〉} is a ∃-step plan with execution s, s′.

So assume φ is satisfiable and v : A → {0, 1} is a valuation satisfying φ. Then for any total
order on S such that exactly the operators Sv = {〈>, {a}, ∅〉|a ∈ A, v(a) = 1} precede oφ =
〈φ, ∅, ∅〉 satisfies the definition of ∃-step plans because executing Sv produces the state/valuation
v that satisfies the precondition of oφ.

Assume 〈S〉 is a ∃-step plan. Hence there is a total ordering o1, . . . , on of S such that appo1;...;on(s)
is defined. Hence appo1;...;oj (s) |= φ where o1, . . . , oj are the operators preceding oφ. Therefore
φ is satisfiable. �

The preceding theorem (Theorem 3.68) and the following (Theorem 3.69) can be strengthened
so that all operators in Si are applicable in si. This shows that our later restriction to sets Si so
that appSi(si) is defined does not directly reduce complexity.

From the above proof we see that NP-hardness holds even when there are no conditional effects
and the effects of the operators are not in conflict with each other. However, the proof assumes
disjunctivity in preconditions because φ may be any formula. The question arises if the problem
is easier for STRIPS operators.

Theorem 3.69 LetO be a set of STRIPS operators and I a state. Testing whether T = 〈S0, . . . , Sl−1〉 ∈
(2O)l is a ∃-step plan for O and I with some execution s0, . . . , sl is NP-hard.

Proof: We reduce the NP-complete problem SAT to testing whether a sequence of sets of operators
is a ∃-step plan. Let C be a set of clauses, n = |C| and P the set of propositional variables
occurring in C. Assign an index i ∈ {1, . . . , n} to each clause. The state variables are A =
{c1, . . . , cn} ∪ {Ua|a ∈ P}. Define

o+a = 〈Ua, {¬Ua, cia+
1
, . . . , cia+

ma+
}, ∅〉 for all a ∈ P,

where ia+
1 , . . . , ia+

ma+
are the indices of clauses in which a occurs positively

o−a = 〈Ua, {¬Ua, cia−1
, . . . , cia−ma−

}, ∅〉 for all a ∈ P,
where ia−1 , . . . , ia−ma− are the indices of clauses in which a occurs negatively

om = 〈c1 ∧ · · · ∧ cn, {Ua|a ∈ P}, ∅〉, and
S = {o+a |a ∈ A} ∪ {o−a |a ∈ P} ∪ {om}.

Let s and s′ be states such that s |= ¬c1∧· · ·∧¬cn∧
∧

a∈P Ua and s′ |= c1∧· · ·∧cn∧
∧

a∈P ¬Ua.
We show that 〈S〉 is a ∃-step plan with execution s, s′ if and only if C is satisfiable. Assume that
v : P → {0, 1} is a valuation that satisfies C. Take any total ordering < of S such that for all

3.7. DEFINITIONS OF PARALLEL PLANS 59

1: procedure linearize(s,S)
2: while S 6= ∅ do
3: if there is o = 〈p, e, ∅〉 ∈ S
4: such that s |= p and e ∩ {l|l ∈ p′} = ∅ for all 〈p′, e′, ∅〉 ∈ S\{o}
5: then S := S\{o}
6: else return false;
7: s := appo(s);
8: end while
9: return true;

Figure 3.4: Algorithm for testing whether a set of non-conflicting STRIPS operators can be lin-
earized

a ∈ P , o+a < om iff v(a) = 1 and o−a < om iff v(a) = 0. Applying the operators preceding om

makes the state variables c1, . . . , cn true (because v is a valuation that satisfies C) and the state
variables Ua, a ∈ P false. Now om is applicable and its application makes all Ua, a ∈ P true
again. Then the remaining operators are applicable, making every Ua, a ∈ P false. Hence that
total ordering satisfies the definition of ∃-step plans for 〈S〉 with execution s, s′.

For the other direction, assume that 〈S〉 is a ∃-step plan with execution s, s′ which means that
the operators can be applied in some order < to obtain s′ from s. Since for every a ∈ P the
operators o+a and o−a have Ua as the precondition and both make Ua false and only om can make
Ua true, it must be that o+a < om < o−a or o−a < om < o+a . Define v : P → {0, 1} by v(a) = 1 iff
o+a < om. For om to be applicable c1 ∧ · · · ∧ cn must be true. Hence the operators applied before
om correspond to a valuation v that satisfies every clause in C. Therefore v |= C. �

Restrictions of the previous two theorems separately do not yield tractability, but together they
do.

Theorem 3.70 LetO be a set of STRIPS operators and I a state. Testing whether T = 〈S0, . . . , Sl−1〉 ∈
(2O)l with no Si containing operators with mutually conflicting effects, is a ∃-step plan for O and
I with some execution s0, . . . , sl is polynomial time.

Proof: Since no two simultaneous operators have effects that conflict each other the execution
of the plan – if one exists – is unambiguously determined by the sets of effects of operators of
S0, . . . , Sl−1: s0 = I and si+1 = app{〈>,e,∅〉|〈p,e,∅〉}(si) for all i ∈ {0, . . . , l − 1}. The question
that we must answer in polynomial time is whether the operators at each time point can be ordered
so that the precondition is satisfied when an operator is applied.

The test is performed by the procedure calls linearize(si, Si) for all i ∈ {0, . . . , l − 1}. This
procedure is given in Figure 3.4. It runs in polynomial time in the size of S because the number
of iterations of the while loop is bounded by the cardinality of S and all the computation in one
iteration is polynomial time in the size of S. We show that the procedure returns true if and only
if a linearization of S exists.

Assume linearize(s,S) returns true. Hence there is a sequence of states s′0, . . . , s
′
|S| and a

sequence o′0, . . . , o
′
|S|−1 of operators such that s′0 = s and s′i+1 = appo′i

(s′i) for every i ∈
{0, . . . , |S| − 1}. Hence appo′0;...;o′|S|−1

(s) = appS(s) which satisfies the conditions a set S has to
satisfy in the definition of ∃-step plans.

60 CHAPTER 3. DETERMINISTIC PLANNING

Assume linearize(s,S) returns false. We show that no linearization exists. Since false is re-
turned, for every 〈p, e, ∅〉 ∈ S′ ⊆ S either s′ 6|= p (where S′ and s′ are the last values the
variables S and s have obtained) or e falsifies the precondition of at least one of the operators
in S′\{〈p, e, ∅〉}. Let o1, . . . , on be any total ordering of S. We show that appo1;...;on(s) is not
defined, and hence the total ordering does not satisfy Definition 3.65.

Take the operator oi = 〈pi, ei, ∅〉 ∈ S′ that comes earliest in the ordering o1, . . . , on.
If s′i = appo1;...;oi−1(s) is not defined (because the precondition of one of the operators is

false when the operator is applied), then also appo1;...;on(s) is not defined. So assume s′i =
appo1;...;oi−1(s) is defined.

Since linearize(s,S) returns false, either s′ 6|= pi or oi falsifies the precondition of at least one
of S′\{oi}.

In the first case, as none of the operators in S\S′ falsifies any literal in the precondition of any
operator in S′, it must be that s 6|= pi. Since s′ 6|= pi, there is at least one conjunct (a literal) of
pi that is not made true by any operator in S\S′. Since {o1, . . . , oi−1} ⊆ S\S′, this literal is also
not true in s′i and hence s′i 6|= pi.

In the second case, as oi is the first operator of Si in the ordering, one of the literals in the
precondition of at least one operator in S′\{oi} becomes false when oi is applied. Since the
operators in S are pairwise non-conflicting, there is no operator that could make this literal and
precondition true again (here we use the assumption that S consists of STRIPS operators.) Hence
appo1;...;on(s) is not defined, and the definition of ∃-step plans is not satisfied. �

To obtain a tractable notion of ∃-step plans for operators in general we introduce, similarly to
∀-step semantics, a syntactic notion characterizing dependencies between operators that leads to a
simple graph-theoretic test for plans.

Our quest for tractable notions of ∃-step plans is motivated by the need to effectively encode
the planning problem in the propositional logic (Section 3.8.) Even though Theorem 3.70 allows
∃-step plans in which the preconditions of some of the operators in Si are false in si, we will not
consider encodings of this generality. The reason for this is that there seem to be no such simple
encodings of the semantics in the propositional logic that would not involve making the implicit
intermediate states explicit. Making the intermediate states explicit would directly contradict the
motivation of studying parallel encodings in the first place.

Definition 3.71 (Affect) Let A be a set of state variables and o = 〈p, e, c〉 and o′ = 〈p′, e′, c′〉
operators over A. Then o affects o′ if there is a ∈ A such that

1. a ∈ (e ∪
⋃
{d|f B d ∈ c}) and a occurs in f for some f B d ∈ c′ or occurs negatively in

p′, or

2. ¬a ∈ e or ¬a ∈ d for some f B d ∈ c and a occurs in f for some f B d ∈ c′ or occurs
positively in p′.

This is like Definition 3.52 but considers only one direction of interference: if o and o′ interfere,
then either o affects o′ or o′ affects o.

Lemma 3.72 Let o1 < · · · < on be an ordering of a set S of operators so that if o < o′ then o
does not affect o′. Let s be a state so that s |= p and [o]det

s is consistent for every 〈p, e, c〉 ∈ S.
Then the following hold.

3.7. DEFINITIONS OF PARALLEL PLANS 61

1. appo1;...;oi(s) |= pj for every i ∈ {1, . . . , n − 1} and j ∈ {i + 1, . . . , n} where pj is the
precondition of oj .

2. [oj]det
s = [oj]det

appo1;...;oi (s)
for every i ∈ {1, . . . , n− 1} and j ∈ {i+ 1, . . . , n}.

3. For every i ∈ {1, . . . , n}, if app{o1,...,oi}(s) is defined, then appo1;...;oi(s) = app{o1,...,oi}(s).

Proof: By induction on i.
Base case i = 0: Trivial.
Inductive case i ≥ 1: First we note that appo1;...;oi(s) is defined because by the induction

hypothesis for case (1) the precondition of oi is true in appo1;...;oi−1(s), and by the assumptions
and the induction hypothesis for case (2) [oi]det

appo1;...;oi−1 (s) is consistent.

Now consider any j ∈ {i+ 1, . . . , n}.
Case (1): By the induction hypothesis appo1;...;oi−1(s) |= pj . Since oi does not affect oj , oi does

not falsify pj . Hence appo1;...;oi(s) |= pj .
Case (2): By the induction hypothesis [oj]det

s = [oj]det
appo1;...;oi−1 (s). Since oi does not affect oj , oi

does not change the value of any state variable occurring in the antecedent of a conditional effect
of oj . Hence [oj]det

s = [oj]det
appo1;...;oi (s)

.
Case (3): By the induction hypothesis, if app{o1,...,oi−1}(s) is defined, then appo1;...;oi−1(s) =

app{o1,...,oi−1}(s). So assume also app{o1,...,oi}(s) is defined, that is, [oi]det
s does not contradict

[{o1, . . . , oi−1}]det
s . By (2) [oi]det

s = [oi]det
appo1;...;oi−1 (s). Since the effects of oi do not override the

effects of any operator earlier in the sequence, we get appo1;...;oi(s) = app{o1,...,oi}(s). �

Theorem 3.73 Let O be a set of operators, I a state, T = 〈S0, . . . , Sl−1〉 ∈ (2O)l, and s0, . . . , sl

a sequence of states. If

1. s0 = I ,

2. for every i ∈ {0, . . . , l − 1} there is a total ordering < of Si such that if o < o′ then o does
not affect o′, and

3. si+1 = appSi(si) for every i ∈ {0, . . . , l − 1},

then T is a ∃-step plan for O and I .

Proof: Since by assumption appSi(si) is defined, the preconditions of all operators in Si are true
in si and [o]det

si
is consistent for every o ∈ Si. Hence the assumptions of Lemma 3.72 are satisfied

and by (3) appo1;...;on(si) = appSi(si) for some total ordering o1, . . . , on of Si. �

For STRIPS operators the subclass of ∃-step plans definable by using the notion of affects in
Theorem 3.73 is not very restrictive. In comparison to arbitrary ∃-step plans, the only restrictions
are that sets S of simultaneous operators have no contradicting effects and all operators are ap-
plicable in the current state s, or in other words, that appS(s) is defined. This is stated in the
following theorem.

Theorem 3.74 Let π = 〈A, I,O,G〉 be a transition system so that every operator in O is a
STRIPS operator and let T = 〈S0, . . . , Sl−1〉 be a ∃-step plan for π with execution s0, . . . , sl so

62 CHAPTER 3. DETERMINISTIC PLANNING

that s0 = I and si+1 = appSi(si) for every i ∈ {0, . . . , l − 1}. Then for every i ∈ {0, . . . , l − 1}
there is a total ordering < of Si such that if o < o′ then o does not affect o′.

Proof: For STRIPS operators an operator o affects o′ if and only if o has an effect m and m is
one of the conjuncts in the precondition of o′. The result follows from the proof of Theorem 3.70.
The procedure linearize repeatedly selects an operator that does not affect any of the remaining
operators. �

Even though the class of ∃-step plans based on affects is narrower than the class sanctioned by
Definition 3.65, much more parallelism is still possible in comparison to the class of ∀-step plans
satisfying the non-interference condition. For instance, nesting of Russian dolls in Example 3.66
belongs to this class.

Similarly to the notion of interference in a state (Definition 3.55), we could define a state-
specific notion of affects. This would lead to a slightly more relaxed but still efficient test of
whether ∃-step semantics is fulfilled.

It is possible to combine ∃-step semantics with processes, but we leave this to future work.

3.8 Planning as satisfiability with parallel plans

Planning as satisfiability was introduced by Kautz and Selman [1992]. In addition to being a
powerful approach to planning, it is also the basis of bounded model checking [Biere et al., 1999]2.

In this section we present encodings of the different semantics of parallel plans in the proposi-
tional logic. A basic assumption in all these encodings is that for sets S of simultaneous operators
applied in state s the state appS(s) is defined, that is, all the preconditions are true in s and the
set of active effects of the operators is consistent. Given this assumption, the encodings of all the
semantics share a common part which is described next.

3.8.1 The base encoding

Planning can be performed by propositional satisfiability testing as follows. Produce formulae
φ0, φ1, φ2, . . . such that φl is satisfiable iff there is a plan of length l. The formulae are tested
for satisfiability in the order of increasing plan length, and from the satisfying assignment that is
found a plan is constructed. The encodings of the different semantics for parallel plans differ only
in the formulae that restrict the simultaneous application of operators. Next we describe the part
of the encodings shared by all the semantics.

For the transition system π = 〈A, I,O,G〉 let the (Boolean) state variables beA = {a1, . . . , an}
and the operators O = {o1, . . . , om}. For every state variable a ∈ A we have the propositional
variables at which express the value of a at different time points t ∈ {0, . . . , l}. Similarly, for
every operator o ∈ O we have ot for expressing whether o is applied at t ∈ {0, . . . , l − 1}. For
formulae φ about the values of the state variables we denote the formula with all state variables
subscripted with the index to a time point t by φt.

Given a transition system π = 〈A, I,O,G〉, a formula Φπ,l is generated to answer the following
question. Is there an execution of a sequence of l sets of operators from O that reaches a state

2Bounded model checking was developed at CMU after Alessandro Cimatti gave a seminar talk on the techniques
used in the 1998 AIPS planning competition in which the BLACKBOX planner by Kautz and Selman participated
[Cimatti, 2003].

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 63

satisfying G from the initial state I? The formula Φπ,l is conjunction of I0 (formula describing
the initial state with propositional variables subscripted by time point 0), Gl, and the formulae
described below, instantiated with all t ∈ {0, . . . , l − 1}.

First, for every o = 〈p, e, c〉 ∈ O there are the following formulae. The precondition p has to
be true when the operator is applied.

ot→pt (3.1)

If o is applied, then its unconditional effects e are true at the next time point.

ot→et+1 (3.2)

Here we view sets e of literals as conjunctions of literals. For every f B d ∈ c the effects d will
be true if f is true at the preceding time point.

(ot ∧ ft)→dt+1 (3.3)

Second, the value of a state variable does not change if no operator that changes it is applied.
Hence for every state variable a we have two formulae, one expressing the conditions for the
change of a from true to false,

(at ∧ ¬at+1)→((o1t ∧ (EPC¬a(e1, c1))t) ∨ · · · ∨ (om
t ∧ (EPC¬a(em, cm))t)) (3.4)

where ei, ci are the unconditional and conditional effects of operator i. The other expresses change
of a from false to true,

(¬at ∧ at+1)→((o1t ∧ (EPCa(e1, c1))t) ∨ · · · ∨ (om
t ∧ (EPCa(em, cm))t)). (3.5)

The formulae Φπ,l, just like the definition of appS(s), allow sets of operators in parallel that do
not correspond to any sequential plan. For example, the operators 〈a, {¬b}, ∅〉 and 〈b, {¬a}, ∅〉
may be executed simultaneously resulting in a state satisfying ¬a ∧ ¬b, even though this state is
not reachable by the two operators sequentially. Plans following the three semantics of parallel
plans can always be executed sequentially. Further formulae that are discussed in the next sections
are needed for capturing the three semantics.

Theorem 3.75 Let π = 〈A, I,O,G〉 be a transition system. Then there is T = 〈S0, . . . , Sl−1〉 ∈
(2O)l so that s0, . . . , sl are states so that I = s0, sl |= G, and si+1 = appSi(si) for all i ∈
{0, . . . , l − 1} if and only if there is a valuation satisfying the formula Φπ,l.

Proof: For the proof from left to right, we construct a valuation v as follows. For all i ∈ {0, . . . , l}
and all state variables a ∈ A define v(ai) = si(a). For all i ∈ {0, . . . , l − 1} and all operators
o ∈ O define v(oi) = 1 iff o ∈ Si.

We show that v |= Φπ,l. From this it directly follows that v |= I0 ∧ Gl. It remains to show
satisfaction of instances of the schemata (3.1), (3.2), (3.3), (3.4) and (3.5).

1. Consider any i ∈ {0, . . . , l − 1} and o = 〈p, e, c〉 ∈ O. If o 6∈ Si, then v 6|= oi and
immediately v |= oi → pi (Formula 3.1). So assume o ∈ Si. By assumption si is a state
such that appSi(si) is defined. Hence the precondition of o is true in si. Hence v |= oi→pi

(Formula 3.1).

64 CHAPTER 3. DETERMINISTIC PLANNING

2. Consider any i ∈ {0, . . . , l − 1} and o = 〈p, e, c〉 ∈ O. If o 6∈ Si, then v 6|= oi and
immediately v |= oi→ei+1 (Formula 3.2). So assume o ∈ Si. As o ∈ Si, the unconditional
effects e of o are true in si+1 = appSi(si). Hence v |= oi→ei+1 (Formula 3.2).

3. Consider any i ∈ {0, . . . , l − 1} and o = 〈p, e, c〉 ∈ O and f B d ∈ c. If o 6∈ Si, then
v 6|= oi and immediately v |= (oi ∧ fi) → ei+1 (Formula 3.2). So assume o ∈ Si. Now
v |= (oi ∧ fi)→ di+1 (Formula 3.3) because if si |= f then the literals d are active effects
and are true in si+1 and consequently v |= di+1.

4. Consider any i ∈ {0, . . . , l−1} and a ∈ A. According to the definition of si+1 = appSi(si),
a can be true in si and false in si+1 only if ¬a ∈ [o]det

si
for some o ∈ Si. By Lemma 3.3

¬a ∈ [o]det
si

if and only if si |= EPC¬a(e, c), where o = 〈p, e, c〉. So if the antecedent of
(ai ∧ ¬ai+1)→ ((o1i ∧ (EPC¬a(e1, c1))i) ∨ · · · ∨ (om

i ∧ (EPC¬a(em, cm))i)) is true, then
one of the disjuncts of the consequent is true, where O = {o1, . . . , om} and ei, ci are the
effects of oi. This yields the truth of instances of Formula 3.4.

Proof for Formula 3.5 is analogous.

For the proof from right to left, assume v is a valuation satisfying the formula Φπ,l. We construct
a plan 〈S0, . . . , Sl−1〉 and a corresponding execution s0, . . . , sl.

Define for all i ∈ {0, . . . , l} the state si as the valuation of A such that si(a) = v(ai) for every
a ∈ A. Define Sj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}.

Obviously I = s0 and sl |= G. We show that si+1 = appSi(si) for all i ∈ {0, . . . , l − 1}.
The precondition p of every operator o ∈ Si is true in si because v |= oi and v |= oi→pi ∈ Φπ,l

(Formula 3.1).
si+1 |= [o]det

si
for every o ∈ Si because v |= oi and v |= oi→ei+1 ∈ Φπ,l for the unconditional

effects e of o (Formula 3.2) and v |= (oi ∧ fi)→di+1 for conditional effects f B d of o. This also
means that [Si]det

si
is consistent and appSi(si) is defined.

For state variables a not occurring in [Si]det
si

we have to show that si(a) = si+1(a). Since a does
not occur in [Si]det

si
, for every o ∈ {o1, . . . , om} = O either o 6∈ Si or both a 6∈ [o]det

si
and ¬a 6∈

[o]det
si

. Hence either v 6|= oi or (by Lemma 3.3) v |= ¬(EPCa(o))i ∧ ¬(EPC¬a(e, c))iwhere o =
〈p, e, c〉. This together with the assumptions that v |= (ai ∧ ¬ai+1)→((o1i ∧ (EPC¬a(e1, c1))i) ∨
· · ·∨ (om

i ∧ (EPC¬a(em, cm))i)) (Formula 3.4) and v |= (¬ai∧ai+1)→((o1i ∧ (EPCa(e1, c1))i)∨
· · ·∨(om

i ∧(EPCa(em, cm))i)) (Formula 3.5) implies v |= (ai→ai+1)∧(¬ai→¬ai+1). Therefore
every a ∈ A not occurring in [Si]det

si
remains unchanged. Hence si+1 = appSi(si). �

Proposition 3.76 The size of the formula Φπ,l is linear in l and the size of π.

Theorem 3.75 says that a sequence of operators fulfilling certain conditions exists if and only if
a given formula is satisfiable. The theorems connecting certain formulae to certain notions of plans
(Theorems 3.77, 3.80, 3.85, 3.86, 3.87) provide an implication only in one direction: whenever
the formula for a given value of parameter l is satisfiable, a plan of l time points exists. The other
direction is missing because the formulae in general only approximate the respective semantics
and there is no guarantee that the formula for a given l is satisfiable when a plan with l time points
exists. However, the formula with some higher value of l is satisfiable. This follows from the fact
that whenever a ∀-step or ∃-step plan 〈S0, . . . , Sl−1〉 with n = |S0| + · · · + |Sl−1| occurrences

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 65

of operators exists, there is a plan consisting of n singleton sets, and the corresponding formulae
Φπ,n ∧ Φx

O,n are satisfiable. The formulae Φx
O,n encode the parallel semantics x for formulae O.

An exact match between the ∀-step semantics and its encodings holds for transition systems
with STRIPS operators only (Theorem 3.78.)

The implications of the approximative nature of the ∀-step semantics encodings for process
semantics are more serious. For STRIPS operators the encodings for process semantics are exact:
the formula for n time points is satisfiable if and only if a process plan of length n exists. However,
in the general case the inexactness of the underlying ∀-step encoding leads to a mismatch between
process semantics and the formulae. The problem is that the movement of an operator to an earlier
time point may be prevented by the too strict ∀-step semantics encoding even when it is allowed by
Definition 3.47. Hence the process semantics has to be understood in relation to particular classes
of ∀-step plans: an operator has to be moved earlier only if there is a corresponding ∀-step plan
belonging to the subclass in question, for example, the subclass of ∀-step plans in which no two
parallel operators interfere. This is the reason why we introduced the notion of i-process plans in
Definition 3.64.

In planning as satisfiability it is often useful to use constraints that do not affect the set of satis-
fying valuations but help pruning the set of incomplete solutions encountered during satisfiability
testing and therefore speed up plan search. The most important type of such constraints for many
planning problems is invariants which are formulae that are true in all states reachable from the
initial state. Typically, one uses only a restricted class of invariants that are efficient (polynomial
time) to identify. There are efficient algorithms for finding many invariants that are 2-literal clauses
[Blum and Furst, 1997; Rintanen, 1998]. Theorem 3.75 does not hold if invariants are included be-
cause invariants contain information about the set of states that are not reachable by any sequential
plan. For example, the formula a ∨ b is an invariant that would rule out states satisfying ¬a ∧ ¬b
that are reachable from any state satisfying a ∧ b by simultaneous application of 〈a, {¬b}, ∅〉 and
〈b, {¬a}, ∅〉 but not sequentially reachable by these operators. However, the additional constraints
in the following sections which restrict the parallel application of operators guarantee that only se-
quentially reachable states are considered. Therefore in the presence of the additional constraints
for the different semantics invariants do not affect the set of satisfying valuations.

3.8.2 ∀-Step semantics

We have showed in Section 3.7.1 that the classes of ∀-step plans definable in terms of the notions
of interference and interference in a state are tractable, in contrast to the general definition that is
co-NP-hard.

In this section we present two encodings of the subclass of plans following ∀-step semantics
in which no two parallel operators interfere. The first encoding is similar to the one used by
Kautz and Selman in the BLACKBOX planner [Kautz and Selman, 1999] and has a size that is
quadratic in the number of the operators. The size of the second encoding is linear in the size
of the operators. Encodings for the more relaxed notion of interference in a state can be given,
including an encoding with a linear size, but we do not discuss them in detail in this work.

A quadratic encoding

The simplest encoding of the interference condition in Definition 3.52 is by formulae

¬ot ∨ ¬o′t (3.6)

66 CHAPTER 3. DETERMINISTIC PLANNING

for every pair of interfering operators o and o′. Note that according to our definition, operators
that could never be applied simultaneously (because of conflicting preconditions or effects) may
interfere. The formulae (3.6) for these kinds of pairs of operators are of course superfluous. Define
Φ∀step,1

O,l as the conjunction of the formulae (3.6) for all time points t ∈ {0, . . . , l − 1} and for all
pairs of interfering operators {o, o′} ⊆ O that could be applied simultaneously. There are O(ln2)
such formulae for n operators.

Theorem 3.77 Let π = 〈A, I,O,G〉 be a transition system. There is a ∀-step plan of length l for
π if Φπ,l ∧ Φ∀step,1

O,l is satisfiable.

Proof: Directly by Theorems 3.59 and 3.75. �

A similar quadratic-size encoding can also be given for state-dependent interference. The state-
dependence is easy to encode by a formula that has a size proportional to the two operators: the
simultaneous execution is allowed if none of the operators has an active effect that changes a
state variable in the precondition or antecedent of a conditional effect of the other. Note that for
STRIPS operators the state-dependent and state-independent notions of interference coincide, and
even further, the above encoding of the ∀-step semantics is perfectly accurate.

Theorem 3.78 Let π = 〈A, I,O,G〉 be a transition system where O is a set of STRIPS operators.
There is a ∀-step plan of length l for π if and only if Φπ,l ∧ Φ∀step,1

O,l is satisfiable.

Proof: The if direction is by Theorem 3.77. It remains to show the only if direction. So assume
there is a ∀-step plan T = 〈S0, . . . , Sl−1〉. By Theorem 3.75 there is a valuation v such that
v |= Φπ,l. We show that also v |= Φ∀step,1

O,l , that is, any conjunct ¬oi ∨ ¬o′i of Φ∀step,1
O,l for i ∈

{0, . . . , l − 1} and {o, o′} ⊆ O is satisfied by v.
Since ¬oi ∨ ¬o′i is in Φ∀step,1

O,l , o and o′ interfere. By Definition 3.52 this means for operators
without conditional effects that there is a literalm such thatm is an effect of o andm is a conjunct
of the precondition of o′, or the other way round. Hence by Theorem 3.49 {o, o′} 6⊆ Si. By the
construction of v in the proof of Theorem 3.75 v |= ¬oi ∨ ¬o′i. Hence every conjunct of Φ∀step,1

O,l

is satisfied by v. �

A linear encoding

As the size of Φπ,l is linear in l and the size of π, the quadratic encoding of the interference con-
straints may dominate the size of Φπ,l∧Φ∀step,1

O,l . We give a linear-size encoding for the interference
constraints.

The idea of the encoding is to order all operators that may make a state variable p ∈ A false (re-
spectively true) or that have a positive (respectively negative) occurrence of p in the precondition
or any occurrence in an antecedent of a conditional effect arbitrarily as o1, . . . , on. Whenever an
operator o that falsifies p is applied, a sequence of implications prevents the application of every
operator o′ preceding or following o whenever o′ has positive occurrences of p in the precondition
or any occurrences in the antecedents of conditional effects. One chain of implications, through a
set of auxiliary propositional variables, goes to the right in the ordering and another chain to the
left.

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 67

o1
t o2

t o3
t o4

t o5
t

a2,m1

t a4,m1

t a5,m1

t

a1,m2

t a2,m2

t a4,m2

t

Figure 3.5: A linear-size encoding of interference constraints

We define a formula for every literal m ∈ A ∪ {¬p|p ∈ A} for preventing the simultaneous
application of operators that falsify m and operators that require m to remain true. Let o1, . . . , on

be any fixed ordering of the operators. Let Em be the set of operators that may falsify m, and let
Rm be the set of operators that may require m to remain true.

The formula is the conjunction of chain(o1, . . . , on;Em;Rm;m1) and chain(on, . . . , o1;Em;Rm;m2)
for all literals m where

chain(o1, . . . , on;E;R;m) =
∧
{oi

t→aj,m
t |i < j, oi ∈ E, oj ∈ R, {oi+1, . . . , oj−1} ∩R = ∅}

∪{ai,m
t →aj,m

t |i < j, {oi, oj} ⊆ R, {oi+1, . . . , oj−1} ∩R = ∅}
∪{ai,m

t →¬oi
t|oi ∈ R}.

The parameter m is needed to make the names of the auxiliary variables unique. The m1 and m2

are two names distinguishing the auxiliary variables for the two sets of formulae for literal m.

Example 3.79 Consider the following operators.

o1 = 〈x, {¬x, y}, ∅〉
o2 = 〈x, {¬x, z}, ∅〉
o3 = 〈z, {¬x}, ∅〉
o4 = 〈x, {z}, ∅〉
o5 = 〈x, {¬x}, ∅〉

The formulae that encode the constraints on the simultaneous application for these operators and
the state variable x are depicted in Figure 3.5. �

The number of 2-literal clauses in chain(o1, . . . , on;Em;Rm;mi) is at most three times the
number of operators in which m occurs and hence the number of 2-literal clauses in

chain(o1, . . . , on;Em;Rm;m1) ∧ chain(on, . . . , o1;Em;Rm;m2)

is at most six times the number of operators. Since we have these formulae for every literal m, the
number of 2-literal clauses is linearly bounded by the size of the set of operators. Let Φ∀step,2

O,l be
the conjunction of the above formulae for all literals m and time points t ∈ {0, . . . , l − 1}.

Theorem 3.80 Let π = 〈A, I,O,G〉 be a transition system. Φπ,l ∧ Φ∀step,1
O,l is satisfiable if and

only if Φπ,l ∧Φ∀step,2
O,l is satisfiable. Hence there is a ∀-step plan for π of length l if Φπ,l ∧Φ∀step,2

O,l

is satisfiable.

68 CHAPTER 3. DETERMINISTIC PLANNING

Proof: Let v be a valuation such that v |= Φ∀step,1
O,l . We construct a valuation v′ that satisfies

Φ∀step,2
O,l . For all variables occurring in Φ∀step,1

O,l we have v′(x) = v(x). Additionally, v′ assigns

values to the auxiliary variables ai,m1

t and ai,m2

t occurring only in Φ∀step,2
O,l .

Let v′(aj,m1

t) = 1 iff there is oi ∈ Em such that i < j and v(oi
t) = 1. Let v′(aj,m2

t) = 1 iff
there is oi ∈ Em such that i > j and v(oi

t) = 1.
We consider only the components of the first conjunct of chain(o1, . . . , on;Em;Rm;m1) ∧

chain(on, . . . , o1;Em;Rm;m2). The second conjunct is analogous.
Consider oi

t → aj,m1

t such that i < j, oi ∈ Em, o
j ∈ Rm, {oi+1, . . . , oj−1} ∩ Rm = ∅. If

v′(oi
t) = 1, then by the definition of v′ also v′(aj,m1

t) = 1 because i < j and v′(oi
t) = 1.

Consider ai,m1

t → aj,m1

t such that i < j, {oi, oj} ⊆ Rm, {oi+1, . . . , oj−1} ∩ Rm = ∅. If
v(ai,m1

t) = 1, then there is oi′ ∈ Em such that i′ < i and v′(oi′
t) = 1. Therefore by the definition

of v′ we have v′(aj,m1

t) = 1.
Consider ai,m1

t →¬oi
t such that oi ∈ Rm. If v(ai,m1

t) = 1, then there is oi′ ∈ Em such that
i′ < i and v′(oi′

t) = 1. Since v′ |= ¬oi′
t ∨ ¬oi

t, it must be that v′ |= ¬oi
t.

Hence all conjuncts of chain(o1, . . . , on;Em;Rm;m1) are true in v′.
For the other direction, let v be a valuation such that v |= Φ∀step,2

O,l . We show that v |= Φ∀step,1
O,l .

Take any conjunct ¬ot ∨ ¬o′t of Φ∀step,1
O,l . If v 6|= ot, then the truth immediately follows. Assume

v |= ot. Since o = 〈p, e, c〉 and o′ = 〈p′, e′, c′〉 interfere, there is a state variable a ∈ A that occurs
as a negative effect of o and either in d for some f B d ∈ c′ or positively in p′ (or, the roles of o and
o′ are the other way around, or the polarity of the occurrences of a is complementary: the proofs
of these cases are analogous.) Now o ∈ Ea and o′ ∈ Ra. We assume that the index o is lower than
that of o′. The case with a higher index is analogous: instead of chain(o1, . . . , on;Ea;Ra; a1) we
consider chain(on, . . . , o1;Ea;Ra; a2).

We show that because v |= chain(o1, . . . , on;Ea;Ra; a1)t, also v |= ¬o′t.
The formula chain(o1, . . . , on;Ea;Ra; a1)t contains a sequence of implications o′t → aj1,a

t →
aj2,a

t → · · · → ajk,a
t → ¬ojk

t where ojk = o′. Since these implications are true in v, v 6|= o′t.
Therefore v |= ¬ot ∨ ¬o′t. Since this holds for all conjuncts of Φ∀step,1

O,l , we have v |= Φ∀step,1
O,l .

Since v |= Φπ,l ∧ Φ∀step,1
O,l by Theorem 3.77 there is a ∀-step plan of length l for π. �

The number of auxiliary propositional variables is linearly proportional to the number of oper-
ators and state variables. Hence this linear-size encoding of the interference constraints may lead
to formulae with a much higher number of propositional variables than with the quadratic size
encoding of the constraints. The higher number of propositional variables may negatively affect
the runtimes of satisfiability algorithms.

A compromise between the size of the constraints and the number of propositional variables is
possible. There is an encoding of the constraints with only a logarithmic number of new propo-
sitional variables and with only O(n log n) clauses which improves the quadratic encoding with
respect to the number of clauses and the linear encoding with respect to the number of propo-
sitional variables. We describe the idea of the encoding without formalizing it and proving it
correct.

The idea of the encoding is similar to that of chain(o1, . . . , on;Em;Rm;) in that an arbitrary
ordering is imposed on the operators and the application of an operator prevents the application
of operators later in the ordering. For each literal m we encode a binary number between 0 and

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 69

|Rm| − 1 in a logarithmic number of state variables. Then there is a formula for each operator o
in Em stating that the binary number for m has a value that is at least as high as the index of the
first operator in Rm that follows o. For each operator o′ in Rm there is similarly a formula that
says that o′ is not applied if the value of the binary number is lower than the index of o′. Hence no
operator in Rm following an applied operator in Em is applied.

The linear-size encoding and the above n log n-size encoding can both be made state-dependent
by observing the application of o with respect to the constraints related to literal m only if m is an
active effect of o.

3.8.3 Process semantics

The encoding of process semantics extends the encoding of ∀-step semantics. We take all formulae
for the latter (for example Φπ,l ∧Φ∀step,2

O,l) and have further formulae specific to process semantics.
The encoding of the underlying ∀-step semantics encoding and the additional constraints for

process semantics are tightly coupled: when the constraints force the movement of an operator to
the preceding time point, the ∀-step semantics constraints for the preceding time points must be
compatible with the move. In this section we discuss the encoding of the process constraints for
the subclass of ∀-step plans based on interference (Definition 3.52 and Section 3.8.2.) Constraints
compatible with broader classes of ∀-step plans (for example based on Definition 3.55) are more
complicated.

The formulae for process semantics prevent the application of an operator o at time t + 1 if
moving o to time t also resulted in a valid ∀-step plan according to Definition 3.47 and the state at
time t+ 2 stayed the same.

An operator o may be applied at time t+ 1 only if at least one of the following conditions hold.

• The precondition of o became true at t+ 1 (and is false at t.)

• The operator o interferes with an operator at time point t (Definition 3.52.)

This includes the following pairwise tests.

– Could one operator falsify the precondition of the other?

– Could one operator change the set of active effects of the other. In other words, could
it change the value of the antecedent of a conditional effect of the other?

Note that if none of the operators at t interfere with the operator at t + 1 then the operator
would have the same effects at t as it has at t+ 1.

• The active effects of o are in conflict with the active effects of an operator at t.

We give a linear-size encoding of these conditions. Let the set of state variables be A =
{a1, . . . , an}. We introduce the following auxiliary propositional variables.

• The variables ai,1
t denote that an operator at time t+1 makes (may make) ai true, and hence

a justification for not moving the operator earlier is that

– there is an operator at t with a negative occurrence of ai in its precondition, or

– there is an operator at t with an occurrence of ai in the lhs of a conditional effect,

70 CHAPTER 3. DETERMINISTIC PLANNING

• The variables ai,¬1
t denote that an operator at time t + 1 makes (may make) ai false, and

hence a justification for not moving that operator earlier is that

– there is an operator at t with a positive occurrence of ai in its precondition, or

– there is an operator at t with an occurrence of ai in the lhs of a conditional effect.

• The variables ai,2
t denote that an operator at time t + 1 has an occurrence of ai in the

antecedent of a conditional effect, and hence a justification for not moving that operator
earlier is that there is an operator at t that changes the value of ai.

• The variables ai,3
t denote that an operator at time t+ 1 has a positive occurrence of ai in the

precondition, and hence a justification for not moving that operator earlier is that there is an
operator at t that makes (may make) ai false.

• The variables ai,¬3
t denote that an operator at time t + 1 has a negative occurrence of ai in

the precondition, and hence a justification for not moving that operator earlier is that there
is an operator at t that makes (may make) ai true.

• The variables ai,4
t denote that an operator at time t+1 (actually) makes ai true, and hence a

justification for not moving that operator earlier is that there is an operator at t that (actually)
makes ai false.

• The variables ai,¬4
t denote that an operator at time t + 1 (actually) makes ai false, and

hence a justification for not moving that operator earlier is that there is an operator at t that
(actually) makes ai true.

Note that the definition of interference in Definition 3.52 is about occurrences of a state variable
in the effects of one operator and in the precondition or in the antecedents of conditional effects of
another operator. This is the reason why in the above description we have stated that an operator
may make a state variable true or false. Below we make this more explicit.

We need the following formulae for each state variable ai and all t ∈ {0, . . . , l − 1}.

ai,1
t+1→(o1t ∨ · · · ∨ on

t) (3.7)

where o1, . . . , on are all the operators o that have an occurrence of ai in the lhs of a conditional
effect, or a negative occurrence of ai in the precondition.

ai,¬1
t+1 →(o1t ∨ · · · ∨ on

t) (3.8)

where o1, . . . , on are all the operators o that have a positive occurrence of ai in the precondition,
or an occurrence of ai in the lhs of a conditional effect.

ai,2
t+1→(o1t ∨ · · · ∨ on

t) (3.9)

where o1, . . . , on are all the operators in which ai occurs in an effect.

ai,3
t+1→(o1t ∨ · · · ∨ on

t) (3.10)

where o1, . . . , on are all the operators o that have the effect ¬ai (possibly conditional).

ai,¬3
t+1 →(o1t ∨ · · · ∨ on

t) (3.11)

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 71

where o1, . . . , on are all the operators o that have the effect ai (possibly conditional).
Additionally, for each operator o ∈ O we need a formula that lists all the possible justifications

for not moving the operator one step earlier. These formulae are

ot→(¬pt−1 ∨ φ) (3.12)

where p is the precondition of o and φ is the disjunction of the propositional variables

• ai,1
t such that ai is an effect (possibly conditional) of o,

• ai,¬1
t such that ¬ai is an effect (possibly conditional) of o,

• ai,2
t such that ai occurs in the antecedent of a conditional effect of o,

• ai,3
t such that ai occurs positively in the precondition of o, and

• ai,¬3
t such that ai occurs negatively in the precondition of o.

For the variables ai,4
t and ai,¬4

t we replace each positive occurrence of ai
t in the consequent of the

implication of Formula 3.3 by (ai
t∧a

i,4
t ∧ai,¬4

t−1) and each occurrence of ¬ai
t by (¬ai

t∧a
i,¬4
t ∧ai,¬4

t−1)
for all t ∈ {1, . . . , l − 1}. This is to indicate that ai or ¬ai is an active effect of the operator at
time t.

The variables ai,2
t , ai,3

t and ai,¬3
t and the associated formulae are not needed if all operators are

STRIPS operators. For STRIPS operators the use of variables ai,4
t and ai,¬4

t could be replaced by
the use ai,1

t and ai,¬1
t .

Let the formula Φprocess
O,l be a conjunction of all the above formulae. The size of Φprocess

O,l is
linear in the size of the set O of operators because there are at most 2l variable occurrences for
every state variable occurrence in every operator.

Theorem 3.81 Let π = 〈A, I,O,G〉 be a transition system. There is i-process plan T of length l
for π if Φπ,l ∧ Φ∀step,2

O,l ∧ Φprocess
O,l is satisfiable.

Proof: Assume v is a valuation such that v |= Φπ,l ∧ Φ∀step,2
O,l ∧ Φprocess

O,l . Define for all i ∈
{0, . . . , l} the state si as the valuation of A such that si(a) = v(ai) for every a ∈ A. Define
Sj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}. By Theorem 3.80 T = 〈S0, . . . , Sl−1〉 is a
∀-step plan.

Assume that T is not an i-process plan because for some i ∈ {1, . . . , l − i} and ox ∈ Si, T ′ =
〈S0, . . . , Si−1∪{ox}, Si\{ox}, . . . , Sl−1〉 is a ∀-step plan in which no two simultaneous operators
interfere. We show that this leads to a contradiction with the assumption that v |= Φprocess

O,l .
Consider ox

i →(¬px
i−1 ∨ j1 ∨ · · · ∨ jn). Assume that v satisfies this formula. Since v |= ox

i (as
ox ∈ Si), at least one of the disjuncts in the right side is true in v. It cannot be that v |= ¬px

i−1

where px is the precondition of ox because otherwise ox would not be applicable at time i − 1 in
T ′.

So some other disjunct of j1 ∨ · · · ∨ jn must be satisfied by v. This leads to a long and tedious
case analysis. We only give as an example the proof for the disjunct aq,1

i for a state variable aq that
is a positive effect of ox. If v |= aq,1

i , then because v |= aq,1
i →(o1i−1∨· · ·∨on

i−1) where o1, . . . , on

are all the operators that have an occurrence of aq in the lhs of a conditional effect or a negative
occurrence in the precondition. Hence there is an operator oy ∈ Si−1 that has an occurrence of

72 CHAPTER 3. DETERMINISTIC PLANNING

aq in the lhs of a conditional effect or a negative occurrence in the precondition. Hence ox and oy

interfere, and both are at i− 1 in T ′, which contradicts our assumptions.
Therefore it must be the case that T is an i-process plan. �

3.8.4 ∃-Step semantics

We give three encodings of the constraints that guarantee that the plans follow the ∃-step seman-
tics. The first two (Sections 3.8.4 and 3.8.4) exactly encode the acyclicity test, allowing maximum
parallelism with respect to a given disabling graph (as defined in Section 3.8.4). However, the
first of these encodings has a cubic size and the second involves guessing a topological ordering
for the set of operators, and therefore these encodings would not appear to be practical. The third
encoding (Section 3.8.4) is based on assigning a fixed ordering on the operators and allowing the
simultaneous application of a subset of the operators only if none of the operators affects the oper-
ators later in the ordering. The size of this encoding is linear in the size of the set of operators, but
it allows less parallelism than the first two encodings. However, in our experiments this encoding
has turned out to be very efficient.

To improve the efficiency of the encodings we consider a method for utilizing the structural
properties of planning problems in the form of disabling graphs in Section 3.8.4. The idea is to
identify operators for which the existence of a linearization required by the ∃-step semantics can
be guaranteed, no matter in which state the set of operators is simultaneously applied. The set
of operators is partitioned to subsets of operators potentially involved in a cycle that cannot be
linearized. Constraints guaranteeing the linearization property need to be given only for such sub-
sets. The decomposition method in some cases splits the set of all operators to singleton subsets.
If all sets are singleton, the linearization property is guaranteed for any subset of operators applied
simultaneously, and there is no need to introduce further constraints on operator application. The
technique improves all the three encodings of the ∃-step semantics on many types of structured
problems.

Disabling graphs

The motivation for using disabling graphs is the following. Define a circularly disabled set as a
set of operators that is applicable in some state and on all total orderings of the operators at least
one operator affects an operator later in the ordering. Now any set-inclusion minimal circularly
disabled set is a subset of a strong component (or strongly connected component, abbreviated as
SCC) of the disabling graph.

Definition 3.82 Let π = 〈A, I,O,G〉 be a transition system. A graph 〈O,E〉 is a disabling graph
for π when E ⊆ O ×O is the set of directed edges so that 〈o, o′〉 ∈ E if

1. there is a state s such that s is reachable from I by operators in O and app{o,o′}(s) is
defined, and

2. o affects o′.

For a given set of operators there are typically several disabling graphs because the graph obtained
by adding an edge to a disabling graph is also a disabling graph. Also the complete graph 〈O,O×
O〉 is a disabling graph. For every set of operators there is a unique minimal disabling graph, but

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 73

computing minimal disabling graphs is NP-hard because of the consistency tests and PSPACE-
hard because of the reachability tests of s in Condition 1. Computing non-minimal disabling
graphs is easier because the consistency and reachability tests may be approximated.

We may allow the simultaneous application of a set of operators from the same SCC if the
subgraph of the disabling graph induced by those operators does not contain a cycle.3

Lemma 3.83 LetO be a set of operators andG = 〈O,E〉 a disabling graph forO. LetC1, . . . , Cm

be the strong components of G. Let s be a state. Let O′ be a set of operators so that appO′(s)
is defined. If for every i ∈ {1, . . . ,m} the subgraph 〈Ci ∩ O′, E ∩ ((Ci ∩ O′) × (Ci ∩ O′))〉
of G induced by Ci ∩ O′ is acyclic, then there is a total ordering o1, . . . , on of O′ such that
appo1;...;on(s) = appO′(s).

Proof: Let the indices ofC1, . . . , Cm be such that for all i ∈ {1, . . . ,m−1} and j ∈ {i+1, . . . ,m}
there are no edges from an operator in Ci to an operator in Cj . Such a numbering exists because
the sets Ci are strong components of G (the strong components always form a tree.) Since the
subgraph induced by Ci ∩ O′ is acyclic for every i ∈ {1, . . . ,m}, we can impose an ordering
o1 <i . . . <i oni on Ci ∩O′ so that if o <i o

′ then there is no edge from o to o′, that is, o does not
affect o′.

Now we can construct a total order o1 < · · · < on on O′ as follows. For all {o, o′} ∈ O′,
o < o′ if {o, o′} ⊆ Ci for some i ∈ {1, . . . ,m} and o <i o

′, or o ∈ Ci and o′ ∈ Cj and i < j.
Now for all {o, o′} ⊆ O′, if o < o′ then o does not affect o′. Hence appo1;...;on(s) = appO′(s) by
Lemma 3.72. �

Note that acyclicity is a sufficient but not a necessary condition for a set of operators to be
executable in some order, even for minimal disabling graphs. This is because the edges are inde-
pendent of the state, exactly like the notion of interference in Definition 3.52. As in Example 3.60
two operators may form a cycle in the disabling graph but can nevertheless be executed in any order
with the same results. However, for STRIPS operators and minimal disabling graphs acyclicity
exactly coincides with executability in some order, as we show in Lemma 3.84. This fact was
already implicitly used in Theorem 3.74.

Lemma 3.84 Let π = 〈A, I,O,G〉 be a transition system and 〈O,E〉 a disabling graph for π
such that 〈o, o′〉 ∈ E only if o affects o′. Let s be a state reachable from I by some sequence of
operators in O and let S = {o1, . . . , on} be a set of STRIPS operators so that appo1;...;on(s) and
appS(s) are defined for some ordering o1, . . . , on of S. Then the subgraph of 〈O,E〉 induced by
S is acyclic.

Proof: Fact A: Since appS(s) is defined, there are no {〈p, e, ∅〉, 〈p′, e′, ∅} ⊆ S and a ∈ A so that
a ∈ e and ¬a ∈ e′.

Since appo1;...;on(s) is defined, there are no i ∈ {1, . . . , n − 1} and j ∈ {i + 1, . . . , n} such
that oi affects oj . If there were, oi would make one of the literals in the precondition of oj false
and by Fact A no operator ok, k ∈ {i+ 1, . . . , j − 1} could make the precondition true again, and
hence appo1;...;oj (s) would not be defined. As no operator in S affects a later operator, and there
is an edge from an operator to another only if the former affects the latter, the subgraph of 〈O,E〉

3In ∀-step semantics simultaneous application is allowed only if the subgraph induced by all applied operators does
not have any edges.

74 CHAPTER 3. DETERMINISTIC PLANNING

induced by S is acyclic. �

Next we discuss three ways of deriving constraints that guarantee that operators occupying one
SCC of a disabling graph can be totally ordered to a valid plan.

Encoding of size O(n3)

We can exactly test that the intersection of one SCC and a set of simultaneous operators do not
form a cycle. The next encoding allows the maximum parallelism with respect to a given disabling
graph, but it is expensive in terms of formula size.

We use auxiliary propositional variables ci,jt for all operators with indices i and j indicating that
the operators oi, o1, o2, . . . , on, oj are applied and each operator affects its immediate successor in
the sequence. Let oi and oi′ belong to the same SCC of the disabling graph and let there be an
edge from oi to oi′ . Then we have the formulae (oi

t∧oi′
t)→ci,i

′

t and (oi
t∧c

i′,j
t)→ci,jt for all j such

that i′ 6= j 6= i. Further we have formulae ¬(oi
t ∧ c

i′,i
t) for preventing the completion of a cycle.

There is a cubic number of formulae, each having a constant size (two or three variable oc-
currences). The number of propositional variables ci,jt is quadratic in the number of operators in
an SCC. Some problems have SCCs of hundreds or thousands of operators, and this would mean
millions or billions of formulae, which would often make the encoding impractical.

Theorem 3.85 Let π = 〈A, I,O,G〉 be a transition system. There is a ∃-step plan of length l for
π if Φπ,l ∧ Φ1lin,1

O,l is satisfiable.

Proof: Let v be a valuation such that v |= Φπ,l∧Φ1lin,1
O,l . Define for all i ∈ {0, . . . , l} the state si as

the valuation of A such that si(a) = v(ai) for every a ∈ A. Define Sj = {o ∈ O|v(oj) = 1} for
all j ∈ {0, . . . , l−1}. By Theorem 3.75 we only have to test the condition that for 〈S0, . . . , Sl−1〉,
its execution s0, . . . , sl and every i ∈ {0, . . . , l− 1} there is a total ordering o1, . . . , on of Si such
that appo1;...;on(si) = appSi(si).

By Lemma 3.83 it suffices to show that the subgraph of the disabling graph induced by Si ∩ C
for every SCC C of the disabling graph is acyclic. For the sake of argument assume that the
subgraph has a cycle. Hence there are operators o′1, . . . , o′m in Si such that o′j affects o′j+1 for
all j ∈ {1, . . . ,m− 1} and o′m affects o′1. But the formulae

o′m−1
i ∧ o′mi →cm−1,m

i , o′m−2
i ∧ cm−1,m

i →cm−2,m
i , . . . , o′1i ∧ c2,m

i →c1,m
i ,¬(o′mi ∧ c1,m

i)

together with o′1i , . . . , o
′m
i are inconsistent. Since these formulae are conjuncts of Φ1lin,1, there

can be no cycle in the subgraph induced by Si ∩ C. �

Encoding of size O(e log2 n)

A more compact encoding is obtained by assigning a log2 n-bit binary number to each of the n
operators and by requiring that the number of operator o is lower than that of o′ if there is an edge
from o′ to o in the disabling graph.4 The size of the encoding is O(e log2 n) where e is the number
of edges in the disabling graph and n is the number of operators.

4This encoding has also been independently discovered by Victor Khomenko [2005].

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 75

For every operator o and time point twe introduce the propositional variables io,0
t , . . . io,k

t where
k = dlog2 ne − 1 for encoding o’s index at time point t.

So, for any operators o and o′ so that o′ affects o use the following formula for guaranteeing
that the edges are always from an operator with a higher index to a lower index.

(ot ∧ o′t)→GT (io
′,0

t , . . . , io
′,k

t ; io,0
t , . . . , io,k

t) (3.13)

Above GT (io
′,0

t , . . . , io
′,k

t ; io,0
t , . . . , io,k

t) is a formula comparing two k-bit binary numbers. There
are such formulae that have a size that is linear in the number of bits.

Theorem 3.86 Let π = 〈A, I,O,G〉 be a transition system. There is a ∃-step plan of length l for
π if Φπ,l ∧ Φ1lin,2

O,l is satisfiable.

Proof: Similarly to the proof of Theorem 3.85, we have to show that the subgraph induced by every
set of simultaneous operators is acyclic. Formula 3.13 guarantees that the index of an operator to
which there is an edge from another operator is lower than the index of the latter. The existence of
a cycle would mean that there are also edges from an operator with a lower index to an operator to
a higher index but as such edges do not exist, there are no cycles in the graph. �

Note that given a set of literals describing which operators are applied at a given time point, for
the encoding in Section 3.8.4 unit resolution is sufficient for determining whether there is a cycle,
but not for the encoding in Section 3.8.4.

A linear-size encoding based on a fixed ordering of operators

Our third encoding does not allow all the parallelism allowed by the preceding encodings but it
leads to small formulae and seems to be very efficient in practice. With this encoding the set
of formulae constraining parallel application is a subset of those for the less permissive ∀-step
semantics. One therefore receives two benefits simultaneously: possibly much shorter parallel
plans and formulae with a smaller size / time points ratio.

The idea is to impose beforehand an (arbitrary) ordering on the operators o1, . . . , on in an SCC
and to allow parallel application of two operators oi and oj such that oi affects oj only if i ≥ j. Of
course, this restriction to one given linearization may rule out many sets of parallel operators that
could be applied simultaneously according to some other linearization than the fixed one.

A trivial implementation of this idea (similar to the ∀-step semantics encoding in Section 3.8.2)
has a quadratic size because of the worst-case quadratic number of pairs of operators that may not
be simultaneously applied. However, we may use one half of the implications in the linear-size
encoding for ∀-step semantics from Section 3.8.2. The linear-size encoding for the constraints for
∃-step semantics is thus simply the conjunction of formulae

chain(o1, . . . , on;Em;Rm;m)

for every literal m where Em is the set of operators that may falsify m (m occurs as an atomic
effect) andRm is the set of operators that may requirem to remain true (m occurs in the antecedent
of a conditional effect or positively in the precondition).

Theorem 3.87 Let π = 〈A, I,O,G〉 be a transition system. There is a ∃-step plan of length l for
π if Φπ,l ∧ Φ1lin,3

O,l is satisfiable.

76 CHAPTER 3. DETERMINISTIC PLANNING

Proof: Let v be a valuation such that v |= Φπ,l ∧ Φ1lin,3
O,l . Define for all i ∈ {0, . . . , l} the state si

as the valuation of A such that si(a) = v(ai) for every a ∈ A. Define Sj = {o ∈ O|v(oj) = 1}
for all j ∈ {0, . . . , l − 1}. Consider an SCC C of the disabling graph and the fixed ordering
o′1, . . . , o′n

′
of the operators in C ∩ Si for some i ∈ {0, . . . , l − 1}.

The formulae chain(o1, . . . , on;Em;Rm;m) in Φ1lin,3
O,l for all literals m guarantee that if o′j

affects o′k, then k < j. By Lemma 3.72 appSi(si) = appo′1;...;o′n′ (si). Hence the definition of
∃-step plans is satisfied. �

3.8.5 Experiments

The shortest encodings of the three semantics in Sections 3.8.2, 3.8.3 and 3.8.4 have sizes that are
linear in the size of the problem instance and the number of time points, and are therefore asymp-
totically optimal. The question arises whether the potentially much smaller number of time points
makes ∃-step semantics more efficient than ∀-step semantics and whether the potentially much
smaller number of plans makes the process semantics more efficient than ∀-step semantics. In this
section we answer these questions by comparing the different encodings of the three semantics
with respect to a number of planning problems.

We consider two problem classes. First, as a way of measuring the efficiency of the encod-
ings on “average” problem instances, we sample problem instances from the space of all prob-
lem instances characterized by certain parameter values, following Bylander [1996] and Rintanen
[2004d]. The problem instances we consider are rather small, 40 state variables and up to 280
operators, but rather challenging in the phase transition region.

Second, we consider some of the benchmarks used by the planning community. These problem
instances have a simple interpretation in terms of real-world planning tasks, like simple forms
of transportation planning. In contrast to the problem instances in the phase transition study,
the numbers of state variables and operators in these problems are much higher (up to several
thousands of state variables and tens of thousands of operators), and most of these problems can
be solved rather easily by domain-specific polynomial time algorithms when no optimality criteria
(for example minimal number of operators in a plan) have to be satisfied.

Implementation details

We briefly discuss details of the implementation of our translator from the planning domain de-
scription language PDDL [Ghallab et al., 1998] into propositional formulae in conjunctive normal
form.

The planning domain description language PDDL allows describing schematic operators that
are instantiated with a number of objects. For some of the standard benchmark problems the num-
ber of operators produced by a naı̈ve instantiation procedure is astronomic, and indeed all practical
planner implementations rely on heuristic techniques for avoiding the generation of ground oper-
ators that could never be part of a plan because no state satisfying the precondition of the operator
can be reached.

After instantiating the schematic PDDL operators, we perform a simple polynomial-time reach-
ability analysis for the possible values of state variables to identify operators that can never be
applied. For example, in the 1998 and 2000 AIPS planning competition logistics problems there
are operators for driving trucks between locations outside the truck’s home city, but the truck can

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 77

never leave its home city. Hence the state variables indicating that the truck’s location is a non-
home city can never be true. This analysis allows eliminating many irrelevant operators and it
is similar to the reachability analysis performed by the GraphPlan [Blum and Furst, 1997] and
BLACKBOX [Kautz and Selman, 1999] planners.

Similarly to BLACKBOX [Kautz and Selman, 1999] and other implementations of satisfiability
planning, our translation includes formulae lt∨ l′t for invariants l∨ l′ as produced by the algorithm
by Rintanen [1998]. This algorithm is defined for STRIPS operators only but can be generalized
to arbitrary operators (Section 3.5).

In the experiments we use disabling graphs that are not necessarily minimal but can be computed
in polynomial time. The test of whether two operators can be simultaneously applied in some state
is not exact: we only test whether the unconditional effects contradict directly or through an in-
variant and whether the preconditions have conjuncts that are complementary literals or contradict
through an invariant. For STRIPS operators the graphs are minimal whenever the invariants are
sufficient for determining whether a state in which two operators are both applicable is reachable.

The orderings in the ∃-step encoding of Section 3.8.4 were the ones in which the operators
came out of our PDDL front-end. Better orderings that minimize the number of pairs of operators
o and o′ such that o precedes and affects o′ could be produced by heuristic methods. They can
potentially increase parallelism and improve runtimes.

The AIPS 2000 planning competition Schedule benchmarks contain conditional effectsm B m,
sometimes simultaneously with effects m. The purpose of this is apparently to make it difficult
for planners like GraphPlan [Blum and Furst, 1997] or BLACKBOX [Kautz and Selman, 1999] to
apply several operators in parallel. Replacing effectsm B m by preconditionsmwhenever alsom
is an unconditional effect and by effects m whenever m is not an unconditional nor a conditional
effect of the operator, is a transformation that preserves the semantics of the operators exactly and
for this benchmark allows much more parallelism. The front-end of our translator performs this
transformation.

The SAT solvers we use only accept formulae in conjunctive normal form (CNF) as input.
Therefore all the propositional formulae have to be transformed to CNF. We use a simple scheme
for doing this. For any subformula of the form (φ1 ∧ φ2) ∨ ψ we introduce an auxiliary variable
x, replace the subformula by x ∨ ψ and add x→φ1 and x→φ2 to our set of formulae. Note that
almost all of the formulae in our encodings are already in CNF (modulo equivalences like ¬(φ ∧
ψ) ↔ ¬φ ∨ ¬ψ.) Exceptions to this are the precondition axioms for operators with disjunctive
preconditions and effect axioms for operators with conditional effects.

For effect axioms ot → et we only include those effects in e that are not consequences of
other effects and invariants. For example, many operators in the standard benchmarks have ef-
fects at(A,L1)∧¬at(A,L2) for representing the movement of an object from location 2 to location
1. Then ¬at(A,L1)∨¬at(A,L2) is an invariant that is included in the problem encoding. Since
¬at(A,L2) is a consequence of the invariant together with at(A,L1), the effect axiom 3.2 does not
have to state this explicitly. This reduces the size of the formulae slightly and has a small effect
on runtimes.

Experimental setting

For the experiments we use a 3.6 GHz Intel Xeon processor with 512 KB internal cache and the
Siege SAT solver version 4 by Ryan of the Simon Fraser University.

In addition to Siege V4, we ran tests with the May 13, 2004 version of zChaff. The runtimes are

78 CHAPTER 3. DETERMINISTIC PLANNING

close to the ones for Siege, often worse but in some cases slightly better. We could solve some of
the biggest structured instances (Section 3.8.5) in a reasonable time only with Siege. BerkMin and
some of the best solvers in the 2005 SAT solver competition are also rather good on the planning
problems.

As Siege V4 uses randomization, its runtimes vary, in some cases considerably. For the struc-
tured problems the tables give the average runtimes over 100 runs and 95 percent confidence
intervals for the average runtimes. As it is not known what the distribution of Siege runtimes
on a given instance is, we calculate the confidence intervals by using a standard bootstrapping
procedure [Efron and Tibshirani, 1986; 1993]. From the sample of 100 runtimes we resample
(with replacement) 4000 times a sample of 100 runtimes and then look at the distribution of these
averages. The 95 percent confidence interval is obtained as the 2.5 and 97.5 percentiles of this
distribution.

Problem instances sampled from the phase transition region

We considered problem instances with |A| = 40 state variables, corresponding to state spaces with
240 ∼ 1012 states, and STRIPS operators with 3 literals in the preconditions and 2 literals in the
effect, following Model A of Rintanen [2004d] in which precondition literals are chosen randomly
and independently, and effect literals are chosen randomly so that each propositional variable has
about the same number of occurrences in an atomic effect, both negatively and positively. In the
initial state all state variables are false and in the unique goal state all state variables are true.
We generated about 1000 soluble problem instances for ratios |O|

|A| of operators to state variables
varying from 1.85 to 5 at an interval of about 0.3. The number of operators then varied from
74 to 280. To find 1000 soluble instances for the smaller ratios we had to generate up to 45000
instances most of which are insoluble. Since we did not have a complete insolubility test, we
do not know how many of the instances that we could not solve within our limits on plan length
(60 time points) and CPU time (3 minutes per formula) are really insoluble. For the ∀-step and
the process semantics the number of instances solved within the time limit was slightly smaller
than for the ∃-step semantics, so the actual performance difference is slightly bigger than what the
diagram suggests.

Figure 3.6 depicts the average runtimes of Siege with the ∃-step (the linear-size encoding
from Section 3.8.4), ∀-step (the linear-size encoding from Section 3.8.2) and process semantics
(the linear-size encoding from Section 3.8.3 based on the linear-size ∀-step encoding from Sec-
tion 3.8.2). There are two sources of imprecision in the runtime comparison, the variation of
runtimes of Siege due to randomization and the random variation in the properties of problem
instances sampled from the space of all problem instances. For this reason we give estimates on
the accuracy of the averages of runtimes. The diagrams depicting the runtimes give error bars
indicating the 95 percent confidence intervals for the runtimes. Note that the scale of the runtime
diagram is logarithmic.

Figure 3.7 depicts the average numbers of operators in the plans. Figure 3.8 depicts the average
number of time points in the plans. The process and ∀-step semantics share the curve because the
shortest number of time points of a plan for any problem instance is the same for both.

As is apparent from the diagrams, the ∃-step semantics is by far the most efficient of the three.
The efficiency is directly related to the fact that with ∃-step semantics the shortest plans often
have less time points than with the ∀-step and process semantics. The encoding for the process
semantics is the slowest, most likely because of the higher number of propositional variables and

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 79

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5
 0.01

 0.1

 1

 10
pr

op
or

tio
n

of
 s

ol
ub

le
 in

st
an

ce
s

av
er

ag
e

tim
e

to
 fi

nd
 p

la
n

in
 s

ec
s

ratio # operators / # state variables

Model A: Runtimes

solubility
E−step
A−step

process

Figure 3.6: Runtimes of ∃-step, ∀-step and process semantics on problem instances with 40 state
variables sampled from the phase transition region.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5
 30

 40

 50

 60

 70

 80

pr
op

or
tio

n
of

 s
ol

ub
le

 in
st

an
ce

s

av
er

ag
e

nu
m

be
r o

f o
pe

ra
to

rs
 in

 p
la

ns

ratio # operators / # state variables

Model A: Operators in plans

solubility
E-step
A-step

process

Figure 3.7: Numbers of operators in plans for ∃-step, ∀-step and process semantics on problem
instances with 40 state variables sampled from the phase transition region.

80 CHAPTER 3. DETERMINISTIC PLANNING

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5
 0

 5

 10

 15

 20

 25

pr
op

or
tio

n
of

 s
ol

ub
le

 in
st

an
ce

s

av
er

ag
e

nu
m

be
r o

f t
im

e
po

in
ts

 in
 p

la
ns

ratio # operators / # state variables

Model A: Time points in plans

solubility
E-step

A-step/process

Figure 3.8: Numbers of time points in plans for ∃-step, ∀-step and process semantics on problem
instances with 40 state variables sampled from the phase transition region. For ∀-step and process
semantics the number of time points is always the same.

clauses and the ineffectiveness of the process constraints on these problems.
Interestingly, the number of operators in the ∃-step and ∀-step plans is almost exactly the same

despite the fact that the ∀-step semantics needs more time points. On the other hand, process
semantics imposes stricter constraints on the plans than the ∀-step semantics, and the number of
operators is therefore slightly smaller.

Structured problem instances

We evaluate the different semantics on a number of benchmarks from the AIPS planning compe-
titions of years 1998, 2000 and 2002. For a discussion of these benchmarks and their properties
see Section 3.9.5. We also tried the benchmarks from the year 2004 competition, but, although
most of them are easy to solve, they result in very big formulae, and the relative behavior of the
encodings of the different semantics on them is similar to the benchmarks we report in this paper.
Hence we did not run exhaustive tests with them.

For all other benchmarks we use the STRIPS version, but for the Schedule benchmark we use
the ADL version because with the STRIPS version our translator has problems with the very high
number of operators. However, the simplification mentioned in Section 3.8.5 transforms also these
operators to STRIPS operators.

In Tables 3.1, 3.8, 3.9, 3.10, 3.11 3.12, 3.13, 3.14 and 3.15 (all but the first are in the appendix)
we present for each problem instance the runtimes for the formulae corresponding to the highest
number of time points without a plan (truth value F) and the first satisfiable formula corresponding
to a plan (truth value T). The rows marked with the question mark indicate that none of the runs
successfully terminated and we therefore do not know whether the formulae are satisfiable or
unsatisfiable. The column ∃-step is for the ∃-step semantics encoding in Section 3.8.4, the column
process for the process semantics encoding in Section 3.8.3, the column ∀-step for the worst-case

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 81

instance len val ∃-step process ∀-step ∀-step l.
log-16-0 7 F 0.01 0.01

0.01

log-16-0 8 T 0.03 0.03
0.04

log-16-0 12 F 0.62 0.57
0.67 0.30 0.27

0.33 0.79 0.73
0.86

log-16-0 13 T 7.46 6.96
7.98 1.35 1.19

1.52 2.27 2.04
2.50

log-17-0 8 F 0.15 0.14
0.15

log-17-0 9 T 0.02 0.02
0.02

log-17-0 13 F 3.06 2.93
3.19 1.97 1.89

2.05 2.25 2.15
2.35

log-17-0 14 T 14.4013.71
15.11 3.22 2.93

3.55 4.48 4.07
4.91

log-18-0 8 F 0.13 0.13
0.14

log-18-0 9 T 0.33 0.26
0.40

log-18-0 14 F 8.18 7.74
8.67 5.83 5.50

6.17 6.77 6.47
7.08

log-18-0 15 T – 7.84 6.78
9.09 14.9513.13

16.78

log-19-0 8 F 0.23 0.22
0.25

log-19-0 9 T 0.33 0.22
0.46

log-19-0 14 F 10.23 9.54
10.95 11.2210.47

11.98 13.3912.68
14.12

log-19-0 15 T - 29.1025.33
33.05 –

log-20-0 8 F 0.25 0.24
0.26

log-20-0 9 T 0.88 0.64
1.17

log-20-0 14 F 12.3011.76
12.83 10.63 9.96

11.32 12.0111.36
12.67

log-20-0 15 T - – 41.1736.81
45.80

Table 3.1: Runtimes of Logistics problems

82 CHAPTER 3. DETERMINISTIC PLANNING

instance len ∃-step process ∀-step ∀-step l.
depot-16-4398 8 53.00 53

53 43.22 36
48 43.40 38

50 38.97 35
44

driver-4-4-8 9 54.19 50
61

driver-4-4-8 11 55.45 50
61 52.32 50

58 51.47 50
58

gripper-3 8 23.21 23
24

gripper-3 15 23.00 23
23 23.00 23

23 23.00 23
23

log-16-0 8 122.74105
131

log-16-0 13 146.47125
167 123.91106

141 125.32108
143

freecell5-4 13 32.99 30
35 32.65 30

33 34.02 31
35 32.46 30

33

elev-str-f24 17 58.38 51
63

elev-str-f24 32 40.00 40
40 40.00 40

40 40.00 40
40

satel-17 4 191.55 82
274

satel-17 6 95.00 83
106 122.14 92

158 96.73 85
105

sched-30-0 11 43.88 40
50 50.79 45

53 45.06 39
53 41.63 38

46

zeno-5-10 4 34.36 34
35

zeno-5-10 6 43.32 38
48 46.80 38

58 40.63 35
46

Table 3.2: Numbers of operators in plans

quadratic ∀-step semantics encoding in Section 3.8.2, and the column ∀-step l. for the linear ∀-step
semantics encoding in Section 3.8.2.

Runtimes for ∃-step semantics are in most cases reported on their own lines because its shortest
plan lengths differ from the other semantics. Each runtime is followed by the upper and lower
bounds of the 95 percent confidence intervals. We indicate by a dash - the formulae for which not
all runs finished within 180 seconds.

In Table 3.2 we compare the semantics in terms of the number of operators in plans. Blocks
World problems are sequential (only one operator can be applied at a time) and plan lengths equal
the number of time points. The average number of operators is followed by the lowest and the
highest number of operators any plan we found had.

In Table 3.3 we present data on formula sizes.
The lowest runtimes are usually obtained with the ∃-step semantics. It is often one or two orders

of magnitude faster. For problem instances that are more difficult than those depicted in the tables
the runtime differences are still bigger. Most of the benchmark problems allow parallelism, and in
most of these cases ∃-step semantics allows more operators in parallel than the ∀-step semantics.
For example in many of the problems involving transportation of objects by vehicles, with ∃-step
semantics a vehicle can leave a location simultaneously with loading or unloading an object to or
from the vehicle. The smaller parallel plan lengths directly lead to much faster planning.

For the Schedule benchmark ∃-step semantics does not allow more parallelism than the ∀-
step semantics. The linear-size ∃-step semantics is as efficient as the linear-size ∀-step semantics
encoding, and slightly less efficient than the quadratic-size ∀-step semantics encoding as far as
the unsatisfiable formulae are concerned. Interestingly, the relative efficiency of the encodings
reverses for satisfiable formulae corresponding to plans. As shown in Table 3.4, for satisfiable for-
mulae the SAT solver runtimes more closely reflect the relative sizes of the encodings: the linear-
size ∃-step encoding is the fastest, followed by the linear-size ∀-step encoding and the quadratic

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 83

instance len ∃-step process ∀-step ∀-step l.
P

103
C

103 MB P
103

C
103 MB P

103
C

103 MB P
103

C
103 MB

block-18-0 58 58.9 696.8 10.9 264.9 1218.8 24.9 58.9 696.8 10.9 201.0 1120.1 18.9
block-20-0 60 74.9 937.8 14.8 338.4 1607.2 32.9 74.9 937.8 14.8 257.7 1482.0 25.2
block-22-0 72 108.3 1431.0 22.9 490.5 2406.9 49.5 108.3 1431.0 22.9 374.6 2225.5 38.4
depot-17-6587 7 24.1 256.3 3.9 154.7 611.6 12.8 24.1 269.8 4.1 144.2 586.2 9.7
depot-18-1916 12 75.7 864.9 13.7 484.2 2052.0 45.4 75.7 899.4 14.2 457.7 1968.3 34.2
depot-15-4534 20 93.0 882.8 14.5 594.8 2360.2 53.7 93.0 918.8 15.0 550.2 2243.9 39.4
driver-2-3-6e 12 25.4 110.6 1.6 66.2 206.4 3.7 21.5 157.0 2.3 42.9 174.1 2.6
driver-3-3-6b 11 22.3 93.4 1.4 54.9 178.2 3.3 18.0 144.9 2.1 39.2 153.5 2.3
driver-4-4-8 11 48.5 210.7 3.3 117.0 401.3 7.7 37.7 382.5 5.8 89.4 352.3 5.4
gripper-2 11 1.0 4.7 0.1 2.9 8.8 0.1 1.0 5.3 0.1 1.5 7.2 0.1
gripper-3 15 1.8 8.7 0.1 5.0 16.1 0.3 1.8 9.7 0.1 2.7 13.2 0.2
gripper-4 17 2.4 12.5 0.2 6.9 23.1 0.4 2.4 13.9 0.2 3.7 19.0 0.3
log-16-0 13 18.7 105.4 1.5 46.6 174.3 3.1 18.7 139.1 2.0 27.0 146.3 2.2
log-20-0 15 29.1 174.8 2.5 72.4 284.6 5.1 29.1 236.6 3.5 42.5 240.6 3.6
log-24-0 15 37.8 240.8 3.5 94.3 385.1 6.9 37.8 333.0 4.9 55.9 328.2 5.0
elev/str-f8 12 1.0 2.4 0.0 4.1 8.1 0.1 1.0 3.0 0.0 2.1 5.7 0.1
elev/str-f12 14 2.4 5.8 0.1 10.3 21.4 0.3 2.4 7.7 0.1 5.7 15.6 0.2
elev/str-f16 22 6.4 15.7 0.2 27.8 60.7 1.1 6.4 21.0 0.3 16.2 44.7 0.7
elev/str-f20 26 11.5 28.4 0.4 50.5 112.5 2.0 11.5 38.3 0.6 30.2 83.7 1.3
elev/str-f24 28 17.5 43.4 0.7 77.5 174.7 3.1 17.5 58.9 0.9 47.2 131.0 2.0
satel-14 8 37.7 129.6 2.0 108.1 347.0 6.7 37.7 267.0 4.1 98.5 309.4 4.8
satel-15 8 49.0 168.5 2.7 142.0 454.0 9.2 49.0 327.3 5.1 130.1 405.3 6.6
satel-16 6 46.8 161.5 2.6 136.6 430.1 8.6 46.8 333.7 5.2 125.7 386.3 6.3
satel-17 6 54.0 185.6 3.0 160.6 500.1 10.1 54.0 346.7 5.4 148.5 449.8 7.5
satel-18 8 31.7 108.5 1.7 91.3 290.2 5.5 31.7 221.1 3.4 82.4 258.1 4.0
sched-10-0 7 7.3 40.2 0.6 16.5 58.4 1.1 3.4 73.5 1.0 11.3 53.0 0.8
sched-20-0 9 18.2 101.5 1.6 40.7 148.4 3.0 8.4 285.0 3.9 28.5 134.8 2.1
sched-30-0 11 32.9 185.3 3.0 72.9 271.7 5.5 15.1 700.0 10.3 51.4 246.6 3.9
sched-40-0 15 58.8 334.3 5.4 129.6 492.4 10.9 27.0 1595.3 24.6 91.8 445.9 7.1
sched-50-0 17 82.7 480.3 7.8 182.0 704.7 15.9 38.0 2720.7 42.0 129.2 638.5 10.9
zeno-3-8b 6 9.1 49.0 0.7 42.0 139.4 2.6 9.1 144.1 2.0 39.5 130.7 2.0
zeno-5-10 6 39.2 220.8 3.6 195.2 653.8 13.9 39.2 814.8 12.3 190.1 618.9 10.5
zeno-5-15 6 59.0 332.7 5.5 291.0 979.0 21.1 59.0 1639.5 25.0 283.6 926.6 16.0
zeno-5-15b 6 78.0 309.5 5.5 391.9 1182.9 26.3 78.0 2111.3 32.6 383.6 1114.4 19.5

Table 3.3: Sizes of formulae under the different encodings. The column P
103 gives the number

of propositional variables in thousands, the column C
103 the number of clauses in thousands, and

the column MB the size of the DIMACS encoded formulae in CNF in megabytes. The data are
on the satisfiable formulae corresponding to the length of shortest existing plans under ∀-step
semantics. The shortest ∃-step plans are in many cases shorter, and the required formulae then
correspondingly smaller.

84 CHAPTER 3. DETERMINISTIC PLANNING

size ∀-step encoding.
Numbers of operators in plans for the different encodings do not seem to follow any regular

pattern. In same cases the process semantics plans have the most operators, in others the ∀-step or
the ∃-step plans.

Contrary to our expectations based on the earlier results by Heljanko [2001] on Petri net dead-
lock detection problems, process semantics does not provide an advantage over ∀-step semantics
on these problems although there are often far fewer potential plans to consider. When showing
the inexistence of plans of certain length, the additional constraints could provide a big advantage
similarly to symmetry-breaking constraints.

Differences to the results by Heljanko are likely to be because of differences between the ap-
plication area and the type of SAT solvers and encodings used. The problem with the planning
problems would appear to be the high number of long clauses that usually do not lead to pruning
the search space and just add an overhead.

It is interesting to make a comparison between the quadratic and linear size encodings of the
∀-step semantics constraints respectively discussed in Sections 3.8.2 and 3.8.2. Even though the
worst-case formula sizes are smaller with the linear encoding, this did not directly translate into
smaller formulae and improved runtimes. First of all, even though the encoding from Section 3.8.2
is worst-case quadratic, the number of clauses ¬o ∨ ¬o′ is often small because not all pairs of
operators interfere. Also many pairs of interfering operators cannot be simultaneously applied,
and hence the corresponding clauses are not needed.

The only benchmark series in which the linear-size encoding substantially improves on the
worst-case quadratic-size encoding is Schedule. This is because in this benchmark there is a
very high number of pairs of interfering operators that can be applied simultaneously, and the
quadraticity therefore very clearly shows up. Hence the linear-size encoding leads to much smaller
formulae. Better runtimes are however obtained only for plan lengths higher than the shortest
existing plans, as shown in Figure 3.4. On still bigger instances the differences become still more
pronounced. These differences between the linear and quadratic size encodings often mean much
bigger differences in total runtimes on planners that use more sophisticated evaluation algorithms
than the standard sequential one, for example the algorithm we consider in Section 3.9.3.

Some of the sizes of SCCs of disabling graphs are depicted in Table 3.5. We only give the SCC
sizes for one instance of each benchmark series because the SCC sizes for all instances of each
series are similar. For example, all SCCs of all instances of the Blocks World, Depot, Gripper,
Elevator, Logistics, Satellite and ZenoTravel have size 1. For the other benchmarks, the SCC sizes
are a function of some of the problem parameters, like the number of vehicles.

Only few or no constraints on parallel operators are needed if all the strong components of
the disabling graphs are small. This directly contributes to the small size of the formulae for the
∃-step semantics. However, it is not clear whether this per se is a reason for the efficiency of
∃-step semantics. For problems in which shortest ∃-step and shortest ∀-step plans have the same
length, for example the blocks world problems, ∃-step encoding is not more efficient than the
corresponding ∀-step semantics encoding.

The BLACKBOX planner by Kautz and Selman [1999] is the best-known planner that imple-
ments the planning as satisfiability paradigm5. Our quadratic encoding of the ∀-step semantics
(Section 3.8.2) is closest to the planning graph based encoding used in the BLACKBOX planner.

5Surprisingly, the SAT encodings of planning by the SATPLAN04 planner of Kautz et al. (unpublished work) which
participated in the 2004 planning competition are for many benchmark problems much slower than the BLACKBOX
encodings, and only in few cases it is somewhat faster.

3.8. PLANNING AS SATISFIABILITY WITH PARALLEL PLANS 85

instance len val ∃-step ∀-step ∀-step l.
sched-35-0 13 T 3.43 2.65

4.33 3.86 3.13
4.65 3.14 2.46

3.95

sched-35-0 14 T 2.10 1.78
2.44 3.08 2.63

3.62 1.63 1.37
1.90

sched-35-0 15 T 1.39 1.20
1.57 2.81 2.41

3.26 1.83 1.58
2.13

sched-35-0 16 T 1.41 1.22
1.62 2.30 1.99

2.65 1.43 1.22
1.69

sched-35-0 17 T 1.28 1.13
1.43 3.08 2.66

3.53 1.43 1.24
1.63

sched-35-0 18 T 1.22 1.07
1.37 3.95 3.28

4.82 1.52 1.26
1.86

sched-35-0 19 T 1.20 1.04
1.37 5.62 4.73

6.56 1.40 1.25
1.54

sched-35-0 20 T 1.31 1.17
1.46 4.77 4.18

5.39 1.41 1.24
1.59

sched-35-0 21 T 1.04 0.90
1.19 4.80 4.26

5.36 1.07 0.93
1.24

sched-35-0 22 T 1.37 1.20
1.58 14.9713.44

16.58 1.38 1.23
1.54

sched-35-0 23 T 1.16 1.02
1.31 6.17 5.36

7.05 1.26 1.10
1.44

sched-35-0 24 T 1.64 1.44
1.83 10.14 8.89

11.51 2.13 1.85
2.42

sched-35-0 25 T 1.68 1.47
1.90 20.5218.31

22.69 1.83 1.58
2.12

sched-35-0 26 T 1.54 1.37
1.71 17.6515.64

19.71 2.11 1.82
2.42

sched-35-0 27 T 1.77 1.53
2.02 13.4611.74

15.36 1.56 1.34
1.80

sched-35-0 28 T 1.56 1.38
1.76 22.9620.09

26.10 2.22 1.86
2.64

Table 3.4: Runtimes for the satisfiable formulae for different plan lengths

instance SCCs
block-34-0 2312 × 1
depot-22-1817 22252 × 1
grip-5 98 × 1
elev/str-f60 3600 × 1
log-41-0 7812 × 1
satel-20 4437 × 1
zeno-5-25b 31570 × 1
driver-4-4-8 16 × 10 16 × 9 32 × 8 48 × 7 16 × 6 32 × 5 32 × 4 1312 × 1
sched-51-0 1 × 1173 1 × 51 1 × 1
freecell8-4 1 × 6882 99 × 1

Table 3.5: Sizes of SCCs of Disabling Graphs: n×m means that there are n SCCs of size m.

86 CHAPTER 3. DETERMINISTIC PLANNING

We give a comparison between the runtimes for our quadratic ∀-step semantics encoding and the
encoding used by BLACKBOX in Table 3.6,6 and between the formula sizes in Table 3.7.

The planning graph [Blum and Furst, 1997] is a data structure that represents constraints ¬ot ∨
¬o′t for pairs of interfering operators, 2-literal invariants, as well as 1-literal and 2-literal clauses
that indicate that certain values of state variables and application of certain operators are not possi-
ble at given time points. The 2-literal clauses in planning graphs are called mutexes. A peculiarity
of planning graphs is the NO-OP operators which are used as a marker for the fact that a given
state variable does not change its value. The problem encoding used by BLACKBOX is based on
translating the contents of planning graphs into 1-literal and 2-literal clauses.

For some of the easiest problems the BLACKBOX encoding is more efficient than the quadratic
∀-step semantics encoding (the Logistics problems and some instances of the Depot problem), but
in many cases it is much less efficient, most notably on the Blocks World, Driver and Gripper
problems. We believe that BLACKBOX’s efficiency on the easier problems is due to the explicit
reachability information in the planning graph that with our ∀-step semantics encoding has to be
inferred, and the inefficiency in general is due to the bigger formulae BLACKBOX produces.

The BLACKBOX encoding results in much bigger formulae than the quadratic ∀-step encoding,
for the biggest instances by factors up to 25. The main reason for this is the very straightforward
translation of planning graphs into propositional formulae BLACKBOX uses. This includes many
redundant interference mutexes for operators that can also be otherwise inferred not to be simul-
taneously applicable as well as many mutexes between NO-OPs and operators.

The ∀-step semantics formulae often have almost twice as many propositional variables as the
BLACKBOX formulae. This is due to the reachability information in the planning graphs that
allows to infer that only certain operators are applicable and that only certain state variable values
are possible at some of the early time points. Roughly the same reduction could be obtained for
our ∀-step semantics formulae by performing unit resolution and then eliminating all occurrences
of propositional variables occurring in a unit clause by subsumption.

We conclude that the BLACKBOX encoding is roughly comparable to our quadratic encoding
for the ∀-step semantics and hence in many cases much less efficient than our encoding for the
∃-step semantics. Further, the formulae for the BLACKBOX encoding are often several times
bigger.

3.9 Evaluation algorithms

Earlier research on classical planning that splits plan search into finding plans of given fixed
lengths, for instance the GraphPlan algorithm [Blum and Furst, 1997] and planning as satisfia-
bility [Kautz and Selman, 1996] and related approaches [Rintanen, 1998; Kautz and Walser, 1999;
Wolfman and Weld, 1999; van Beek and Chen, 1999; Do and Kambhampati, 2001], have without
exception adopted a sequential strategy for plan search. This strategy starts with (parallel) plan
length 0, and if no such plans exist, continues with length 1, length 2, and so on, until a plan is
found.

This standard sequential strategy is guaranteed to find a plan with the minimal number of time
points. If only one operator is applied at every time point then the plans are also guaranteed to
contain the minimal number of operators.

It seems that for finding a plan with the minimal number of time points the sequential strategy

6We were not able to test all the benchmarks with BLACKBOX because of certain bugs in BLACKBOX.

3.9. EVALUATION ALGORITHMS 87

instance len val ∀-step blackbox
block-12-1 33 F 0.06 0.06

0.06 0.20 0.20
0.21

block-12-1 34 T 0.05 0.05
0.05 0.22 0.21

0.23

block-14-1 35 F 0.35 0.34
0.35 18.0216.91

19.29

block-14-1 36 T 0.12 0.11
0.14 5.65 4.97

6.39

block-16-1 53 F 0.65 0.63
0.68 33.3831.10

35.66

block-16-1 54 T 0.38 0.36
0.40 13.8512.52

15.25

block-18-0 57 F 2.29 2.22
2.36 –

block-18-0 58 T 1.07 0.98
1.17 24.1521.61

26.90

log-17-0 13 F 1.97 1.89
2.05 0.42 0.40

0.44

log-17-0 14 T 3.22 2.91
3.56 1.06 0.91

1.22

log-18-0 14 F 5.83 5.50
6.18 3.25 2.98

3.55

log-18-0 15 T 7.84 6.74
9.07 2.21 1.86

2.59

log-19-0 14 F 11.2210.52
12.01 4.55 4.30

4.82

log-19-0 15 T 29.1025.25
33.00 13.7411.99

15.53

log-20-0 14 F 10.63 9.96
11.36 7.88 7.52

8.26

log-20-0 15 T – 15.9413.97
18.01

depot-14-7654 11 F 1.41 1.34
1.48 0.30 0.28

0.31

depot-14-7654 12 T 3.48 3.19
3.78 1.17 1.06

1.29

depot-16-4398 7 F 0.01 0.01
0.01 0.01 0.01

0.01

depot-16-4398 8 T 0.07 0.06
0.07 0.01 0.01

0.01

depot-18-1916 11 F 0.17 0.16
0.17 28.4123.75

33.44

depot-18-1916 12 T – –

driver-2-3-6d 15 F 19.0918.22
19.98 43.4440.04

46.98

driver-2-3-6d 16 T 8.04 7.16
9.00 18.9417.72

20.16

driver-2-3-6e 11 F 1.13 1.07
1.19 0.60 0.56

0.63

driver-2-3-6e 12 T 1.27 1.10
1.45 1.51 1.28

1.73

driver-3-3-6b 10 F 0.82 0.77
0.87 0.60 0.56

0.65

driver-3-3-6b 11 T 1.07 0.90
1.25 0.76 0.64

0.89

driver-4-4-8 10 F 1.30 1.26
1.33 0.56 0.52

0.61

driver-4-4-8 11 T 5.92 5.34
6.50 19.3517.88

20.89

gripper-2 10 F 0.08 0.08
0.09 0.34 0.32

0.36

gripper-2 11 T 0.02 0.01
0.02 0.12 0.10

0.15

gripper-3 14 F 3.91 3.49
4.35 41.0736.15

45.84

gripper-3 15 T 0.32 0.19
0.46 2.82 2.08

3.63

Table 3.6: Runtimes of the quadratic ∀-step semantics encoding vs. the BLACKBOX encoding

88 CHAPTER 3. DETERMINISTIC PLANNING

instance len ∀-step blackbox
P

103
C

103 MB P
103

C
103 MB

block-12-1 34 15.71 152.4 2.23 13.12 1035.3 14.80
block-14-1 36 22.44 233.7 3.47 24.88 2938.5 44.59
block-16-1 54 43.54 485.1 7.51 42.73 6012.7 94.72
block-18-0 58 58.88 696.8 10.92 61.79 11091.9 176.58
log-17-0 14 20.12 149.8 2.16 10.41 431.8 6.15
log-19-0 15 29.08 236.6 3.46 15.47 897.1 12.98
log-21-0 16 30.98 252.3 3.70 19.97 1301.6 19.43
log-23-0 16 40.22 355.1 5.29 24.13 1973.5 29.97
log-25-0 15 56.66 556.3 8.42 28.70 3419.9 52.70
depot-14-7654 12 30.99 357.5 5.52 12.79 1952.6 27.96
depot-16-4398 8 13.72 143.5 2.10 4.12 237.7 3.33
depot-18-1916 12 75.67 899.4 14.18 33.42 14599.4 230.82
driver-2-3-6d 16 23.00 168.5 2.51 15.60 1809.6 26.44
driver-2-3-6e 12 21.52 157.0 2.32 11.45 1432.2 20.47
driver-3-3-6b 11 17.97 144.9 2.12 8.86 972.9 13.87
driver-4-4-8 11 37.73 382.5 5.81 15.54 3406.7 49.92
gripper-2 11 1.01 5.3 0.06 1.15 15.2 0.19
gripper-3 15 1.76 9.7 0.12 2.13 36.7 0.48
gripper-4 19 2.72 15.5 0.20 3.39 71.6 0.97

Table 3.7: Formula sizes of the quadratic ∀-step semantics encodings vs. the BLACKBOX encod-
ing

cannot in general be improved. For example, a strategy that increases the plan length by more
than one until a satisfiable formula is found and then performs a binary search to find the shortest
plan does not typically improve runtimes because the cost of evaluating the unsatisfiable formulae
usually increases exponentially as the plan length increases.

However, when the objective is to find any plan, not necessarily with the minimal number of
time points, we can use more efficient search strategies for plan search. The standard sequential
strategy is often inefficient because the satisfiability tests for the last unsatisfiable formulae are
often much more expensive than for the first satisfiable formulae. Consider the diagrams in Fig-
ures 3.9 and 3.10 that represent some standard benchmarks problems as well as the diagrams in
Figure 3.11 that represent two difficult problem instances with 20 state variable sampled from the
phase transition region [Rintanen, 2004d]. Each diagram shows the cost of detecting the satis-
fiability or unsatisfiability of formulae that represent the existence of plans of different lengths.
Black bars depict unsatisfiable formulae and grey bars satisfiable formulae.

When the plan quality (the number of time points) is not a concern, we would like to run a
satisfiability algorithm with the satisfiable formula for which the runtime of the algorithm is the
lowest. Of course, we do not know which formulae are satisfiable and which have the lowest
runtime. With an infinite number of processors we could find in the smallest possible time a
satisfying assignment for one of the formulae: just let each processor i ∈ {0, 1, 2, . . .} test the
satisfiability of the formula for i time points. However, we do not have an infinite number of
processors, and we cannot even simulate an infinite number of processors running at the same
speed by a finite number of processors. But we can approximate this scheme.

Our first algorithm uses a finite number n of processes/processors. Our second algorithm uses

3.9. EVALUATION ALGORITHMS 89

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25

tim
e

in
 s

ec
s

time points

Evaluation times: logistics39-0

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60

tim
e

in
 s

ec
s

time points

Evaluation times: gripper10

Figure 3.9: SAT solver runtimes for two problem instances and different plan lengths

 0

 5

 10

 15

 20

 25

 30

 35

 40

 40 50 60 70 80 90

tim
e

in
 s

ec
s

time points

Evaluation times: blocks22

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20

tim
e

in
 s

ec
s

time points

Evaluation times: depot15

Figure 3.10: SAT solver runtimes for two problem instances and different plan lengths

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

tim
e

in
 s

ec
s

time points

Evaluation times: random1024

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

tim
e

in
 s

ec
s

time points

Evaluation times: random8597

Figure 3.11: SAT solver runtimes for two problem instances and different plan lengths

90 CHAPTER 3. DETERMINISTIC PLANNING

instance len val ∃-step process ∀-step ∀-step l.
gripper-2 5 F 0.01 0.01

0.01

gripper-2 6 T 0.01 0.01
0.01

gripper-2 10 F 0.14 0.13
0.15 0.08 0.08

0.09 0.12 0.12
0.13

gripper-2 11 T 0.04 0.03
0.04 0.02 0.01

0.02 0.05 0.04
0.05

gripper-3 7 F 0.23 0.23
0.24

gripper-3 8 T 0.17 0.16
0.18

gripper-3 14 F 9.39 8.43
10.47 3.91 3.48

4.35 8.84 7.84
9.93

gripper-3 15 T 1.72 1.18
2.34 0.32 0.19

0.47 0.69 0.36
1.08

gripper-4 9 F 12.8711.61
14.26

gripper-4 10 T 0.85 0.70
1.02

gripper-4 16 F – – –
gripper-4 17 ?
gripper-4 18 ?
gripper-4 19 T – – –

Table 3.8: Runtimes of Gripper problems

one process/processor to simulate an infinite number of processes but the simulation runs the
processes at variable rates so that for every formula φt and every k ≥ 0 there is a time point when
k seconds of CPU time has been spent for testing the satisfiability of φt. If all processes were run
at the same rate, this property could not be fulfilled.

Except for the rightmost diagram in Figure 3.10 and the leftmost diagram in Figure 3.11, the
diagrams depict steeply growing costs of determining unsatisfiability of a sequence of formulae
followed by small costs of determining satisfiability of formulae corresponding to plans. This
pattern could be abstracted as the diagram in Figure 3.12. The strategy implemented by our first
algorithm distributes the computation to n concurrent processes and initially assigns the first n
formulae to the n processes. Whenever a process finds its formula satisfiable, the computation
is terminated. Whenever a process finds its formula unsatisfiable, the process is given the first
unevaluated formula to evaluate. This strategy can avoid completing the evaluation of many of the
expensive unsatisfiable formulae, thereby saving a lot of computation effort.

An inherent property of the problem is that unsatisfiable (respectively satisfiable) formulae later
in the sequence are in general more expensive to evaluate than earlier unsatisfiable (respectively
satisfiable) formulae. The difficulty of the unsatisfiable formulae increases as i increases because
the formulae become less constrained, contradictions are not found as quickly, and search trees
grow exponentially. The increase in the difficulty of satisfiable formulae is less clear. For example,
for the first satisfiable formula φs there may be few plans while for later formulae there may
be many plans, and the formulae would be less constrained and easier to evaluate. However, as
formula sizes increase, the possibility of getting lost in parts of the search space that do not contain
any solutions also increases. Therefore an increase in plan length also later leads to an increase in
difficulty.

The new algorithms are useful if a peak of difficult formulae precedes easier satisfiable formu-
lae, for example when it is easier to find a plan of length n than to prove that no plans of length
n − 1 exists, or if the first strongly constrained satisfiable formulae corresponding to the shortest
plans are more difficult to evaluate than some of the later less constrained ones. The experiments

3.9. EVALUATION ALGORITHMS 91

instance len val ∃-step process ∀-step ∀-step l.
satel-14 4 F 9.43 8.81

10.12

satel-14 5 T 1.79 1.66
1.91

satel-14 7 F 38.2036.42
40.13 29.5928.17

31.12 30.9529.59
32.37

satel-14 8 T 6.20 5.83
6.61 4.38 4.06

4.73 5.82 5.31
6.37

satel-15 4 F 10.44 9.36
11.66

satel-15 5 T 1.60 1.45
1.75

satel-15 7 F 33.0430.92
35.37 26.5825.32

27.87 28.1126.72
29.59

satel-15 8 T 7.53 7.17
7.90 4.83 4.58

5.10 6.23 5.93
6.55

satel-16 3 F 1.73 1.54
1.93

satel-16 4 T 3.36 3.16
3.57

satel-16 5 F 20.3418.68
22.04 8.80 8.10

9.53 20.0918.61
21.74

satel-16 6 ?
satel-16 7 T 8.87 8.21

9.55 7.88 7.42
8.39 7.81 7.35

8.29

satel-17 3 F 0.28 0.25
0.30

satel-17 4 T 2.85 2.81
2.90

satel-17 5 F 2.74 2.46
3.08 1.45 1.32

1.63 1.72 1.66
1.78

satel-17 6 T 3.46 3.22
3.71 2.22 2.10

2.35 2.53 2.37
2.69

satel-18 4 F 0.07 0.07
0.07

satel-18 5 T 0.22 0.20
0.24

satel-18 7 F 0.60 0.57
0.63 0.30 0.29

0.31 0.54 0.52
0.57

satel-18 8 T 1.18 1.08
1.27 0.54 0.49

0.58 0.86 0.78
0.93

Table 3.9: Runtimes of Satellite problems

in Section 3.9.5 show that for many problems one or both of these conditions hold.
We discuss the standard sequential algorithm and the two new algorithms in detail next.

3.9.1 Algorithm S: sequential evaluation

The standard algorithm for finding plans in the satisfiability and related approaches to planning
tests the satisfiability of formulae for plan lengths 0, 1, 2, and so on, until a satisfiable formula is
found [Blum and Furst, 1997; Kautz and Selman, 1996]. This algorithm is given in Figure 3.13.
This algorithm, like the ones discussed next, can be extended so that it terminates whenever no
plans exist. This is by the observation that with n Boolean state variables there are at most 2n

reachable states and hence if a plan exists, then a plan of length less than 2n exists. This, however,
provides only an impractical termination test. More practical tests exist [Sheeran et al., 2000;
McMillan, 2003; Mneimneh and Sakallah, 2003].

3.9.2 Algorithm A: multiple processes

The first new algorithm (Figure 3.14) which we call Algorithm A is based on parallel or interleaved
evaluation of a fixed number n of formulae by n processes. As the special case n = 1 we have
Algorithm S. Whenever a process finishes the evaluation of a formula, it is given the first uneval-

92 CHAPTER 3. DETERMINISTIC PLANNING

0.1 0.1 0.2

5.0

1.0

1 2 5 6 73 4 8
1 2 3 1 2 3 1 (1)

1.0
0.5

plan length
run by process(1)

9

3.0

10.0

co
st

 o
f e

va
lu

at
io

n

Figure 3.12: Evaluation cost of the unsatisfiable formulae for plan lengths 1 to 6 and the satisfiable
formulae for plan length 7 and higher. With 3 processes, process 1 finds the first plan (satisfying
assignment) after evaluating the formulae for plan lengths 1, 4 and 7 in 0.1+1+0.5 = 1.6 seconds.
This is 3 × 1.6 = 4.8 seconds of total CPU time. The sequential strategy needs 0.1 + 0.1 +
0.2 + 1 + 5 + 10 + 0.5 = 16.9 seconds. With 4 processes a plan would be found by process 3 in
0.2 + 0.5 = 0.7 seconds, which is 4× 0.7 = 2.8 seconds of total CPU time.

1: procedure AlgorithmS()
2: i := 0;
3: repeat
4: test satisfiability of φi;
5: if φi is satisfiable then terminate;
6: i := i+ 1;
7: until 1=0;

Figure 3.13: Algorithm S

3.9. EVALUATION ALGORITHMS 93

instance len val ∃-step process ∀-step ∀-step l.
block-12-1 33 F 0.06 0.05

0.06 0.17 0.16
0.18 0.06 0.06

0.06 0.16 0.16
0.17

block-12-1 34 T 0.05 0.04
0.05 0.36 0.35

0.37 0.05 0.05
0.05 0.19 0.18

0.20

block-14-1 35 F 0.34 0.34
0.35 1.45 1.38

1.53 0.35 0.34
0.35 1.01 0.98

1.05

block-14-1 36 T 0.14 0.12
0.15 1.18 1.10

1.26 0.12 0.11
0.14 0.50 0.46

0.53

block-16-1 53 F 0.67 0.65
0.69 3.82 3.66

4.00 0.65 0.63
0.68 1.77 1.69

1.85

block-16-1 54 T 0.35 0.33
0.37 4.95 4.63

5.30 0.38 0.36
0.40 1.86 1.76

1.98

block-18-0 57 F 1.91 1.85
1.98 15.2014.32

16.11 2.29 2.22
2.36 6.56 6.33

6.80

block-18-0 58 T 0.94 0.87
1.01 8.04 7.41

8.67 1.07 0.98
1.17 3.42 3.19

3.66

block-20-0 59 F 2.49 2.37
2.61 8.34 8.04

8.66 2.57 2.43
2.74 5.37 5.09

5.66

block-20-0 60 T 1.86 1.79
1.92 9.55 9.25

9.87 1.80 1.74
1.85 4.93 4.66

5.21

block-22-0 71 F 38.1536.82
39.48 – 38.4937.28

39.76 51.6449.58
53.78

block-22-0 72 T 14.3412.88
15.82 – 14.3213.03

15.66 26.7224.83
28.64

Table 3.10: Runtimes of Blocks World problems

uated formula to evaluate. The constant ε determines the coarseness of CPU time division during
the evaluation. The for each loop in this algorithm and in the next algorithm can be implemented
so that several processors are used in parallel.

There is a simple improvement to the algorithm: when formula φi is found unsatisfiable, the
algorithm terminates the evaluation of all φj for j < i because they must all be unsatisfiable.
However, this modification does not usually have any effect because of the monotonically increas-
ing evaluation cost of the unsatisfiable formulae: φj would already have been found unsatisfiable
when φi with i > j is found unsatisfiable. We ignore this improvement in the following.

3.9.3 Algorithm B: geometric division of CPU use

In Algorithm A the choice of n is determined by the (assumed) width and height of the peak
preceding the first satisfiable formulae, and our experiments indicate that small differences in n
may make a substantial difference in the runtimes: consider for example the problem instance
logistics39-0 in Figure 3.9 for which runtime of Algorithm A with n = 1 is more than 10 times
the runtime with n = 2.

Our second algorithm which we call Algorithm B addresses the difficulty of choosing the value
n in Algorithm A. Algorithm B evaluates in an interleaved manner an unbounded number of
formulae. The amount of CPU given to each formula depends on its index: if formula φk is given
t seconds of CPU during a certain time interval, then a formula φi, i ≥ k is given γi−kt seconds.
This means that every formula gets only slightly less CPU than its predecessor, and the choice of
the exact value of the constant γ ∈]0, 1[is far less critical than the choice of n for Algorithm A.

Algorithm B is given in Figure 3.15. Variable t, which is repeatedly increased by δ, character-
izes the total CPU time t

1−γ available so far. As the evaluation of φi proceeds only if it has been
evaluated for at most tγi − ε seconds, CPU is actually consumed less than t

1−γ , and there will be
at time t

1−γ only a finite number j ≤ logγ
ε
t of formulae for which evaluation has commenced.

In a practical implementation of the algorithm, the rate of increase δ of t is increased as the
computation proceeds; otherwise the inner foreach loop will later often be executed without eval-

94 CHAPTER 3. DETERMINISTIC PLANNING

1: procedure AlgorithmA(n)
2: P := {φ0, . . . , φn−1};
3: uneval := n;
4: repeat
5: P ′ := P ;
6: for each φ ∈ P ′ do
7: continue evaluation of φ for ε seconds;
8: if φ was found satisfiable then goto finish;
9: if φ was found unsatisfiable then

10: P := P ∪ {φuneval}\{φ};
11: uneval := uneval + 1;
12: end if
13: end do
14: until 0=1
15: finish:

Figure 3.14: Algorithm A

1: procedure AlgorithmB(γ)
2: t := 0;
3: for each i ≥ 0 do done[i] = false;
4: for each i ≥ 0 do time[i] = 0;
5: repeat
6: t := t+ δ;
7: for each i ≥ 0 such that done[i] = false do
8: if time[i] + nε ≤ tγi for some maximal n ≥ 1 then
9: continue evaluation of φi for nε seconds;

10: if φi was found satisfiable then goto finish;
11: time[i] := time[i] + nε;
12: if φi was found unsatisfiable then done[i] := true; end if
13: end if
14: end do
15: until 0=1
16: finish:

Figure 3.15: Algorithm B

3.9. EVALUATION ALGORITHMS 95

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 55 60 65 70 75 80 85

tim
e

in
 s

ec
s

time points

Algorithm B with parameter 0.5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 55 60 65 70 75 80 85

tim
e

in
 s

ec
s

time points

Algorithm B with parameter 0.8

Figure 3.16: Illustration of two runs of Algorithm B. When γ = 0.5 most CPU time is spent eval-
uating the first formulae, and when the first satisfiable formula is detected also the unsatisfiability
of most of the preceding unsatisfiable formulae has been detected. With γ = 0.8 more CPU is
spent for the later easier satisfiable formulae, and the expensive unsatisfiability tests have not been
completed before finding the first satisfying assignment.

96 CHAPTER 3. DETERMINISTIC PLANNING

instance len val ∃-step process ∀-step ∀-step l.
driver-2-3-6b 4 F 0.01 0.01

0.01

driver-2-3-6b 5 T 0.01 0.01
0.01

driver-2-3-6b 6 F 0.04 0.04
0.04 0.01 0.01

0.01 0.02 0.02
0.02

driver-2-3-6b 7 T 0.09 0.08
0.09 0.03 0.02

0.03 0.04 0.04
0.05

driver-2-3-6c 6 F 0.01 0.01
0.01

driver-2-3-6c 7 T 0.01 0.01
0.01

driver-2-3-6c 8 F 0.03 0.03
0.03 0.03 0.03

0.03 0.03 0.03
0.04

driver-2-3-6c 9 T 0.24 0.22
0.27 0.10 0.09

0.11 0.14 0.13
0.16

driver-2-3-6d 12 F 0.44 0.42
0.46

driver-2-3-6d 13 T 0.63 0.57
0.69

driver-2-3-6d 15 F 34.1432.82
35.45 19.0918.23

20.00 26.2725.27
27.27

driver-2-3-6d 16 T 17.7915.95
19.67 8.04 7.12

8.97 9.59 8.30
11.00

driver-2-3-6e 7 F 0.01 0.01
0.02

driver-2-3-6e 8 T 0.04 0.04
0.04

driver-2-3-6e 11 F 2.14 2.04
2.24 1.13 1.08

1.19 1.55 1.47
1.62

driver-2-3-6e 12 T 2.54 2.29
2.80 1.27 1.10

1.45 1.25 1.09
1.41

driver-3-3-6b 8 F 0.16 0.15
0.17

driver-3-3-6b 9 T 0.08 0.07
0.09

driver-3-3-6b 10 F 2.15 1.99
2.31 0.82 0.77

0.87 1.40 1.31
1.51

driver-3-3-6b 11 T 3.26 2.77
3.83 1.07 0.90

1.26 1.43 1.21
1.69

driver-4-4-8 8 F 0.14 0.13
0.15

driver-4-4-8 9 T 0.15 0.13
0.16

driver-4-4-8 10 F 4.68 4.49
4.87 1.30 1.26

1.33 2.84 2.75
2.94

driver-4-4-8 11 T 23.6921.93
25.60 5.92 5.35

6.49 13.0811.94
14.26

Table 3.11: Runtimes of DriverLog problems

uating any of the formulae further. We could choose δ for example so that the first unfinished
formula φi is evaluated further at every iteration (δ = ε

γi).
The constants n and γ respectively for Algorithms A and B are roughly related by γ = 1− 1

n :
of the CPU capacity 1

n = 1 − γ is spent evaluating the first unfinished formula, and the lower
bound for Algorithm B is similarly related to the lower bound for Algorithm A. Algorithm S is the
limit of Algorithm B when γ goes to 0.

3.9.4 Properties of the algorithms

We analyze the properties of the algorithms.

Definition 3.88 (Speed-up) The speed-up of an algorithm X (with respect to Algorithm S) is the
ratio of the runtimes of Algorithm S and the Algorithm X.

If the speed-up is greater than 1, then the algorithm is faster than Algorithm S.

3.9. EVALUATION ALGORITHMS 97

instance len val ∃-step process ∀-step ∀-step l.
sched-10-0 6 F 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

sched-10-0 7 T 0.01 0.01
0.01 0.07 0.05

0.10 0.01 0.01
0.01 0.01 0.01

0.01

sched-15-0 8 F 8.74 7.40
10.17 14.5713.27

15.88 3.44 2.86
4.10 11.5210.21

12.85

sched-15-0 9 T 0.16 0.12
0.22 0.23 0.19

0.27 0.14 0.11
0.16 0.36 0.27

0.44

sched-20-0 8 F 1.11 1.06
1.16 1.42 1.37

1.47 0.46 0.44
0.48 1.30 1.25

1.35

sched-20-0 9 T 0.14 0.11
0.18 0.24 0.21

0.28 0.19 0.19
0.20 0.10 0.09

0.11

sched-25-0 8 F 7.85 6.87
8.96 15.4714.61

16.37 2.14 1.96
2.35 8.53 7.57

9.56

sched-25-0 9 T 0.29 0.23
0.35 0.68 0.55

0.82 0.19 0.18
0.21 0.69 0.56

0.84

sched-30-0 10 F – – 8.12 5.93
10.45 –

sched-30-0 11 T 1.05 0.78
1.36 2.63 2.22

3.04 1.07 0.88
1.29 0.90 0.65

1.19

sched-35-0 10 F 26.2224.78
27.71 34.3532.89

35.87 10.26 9.72
10.80 30.0928.35

31.88

sched-35-0 13 T 3.43 2.66
4.37 3.53 3.02

4.09 3.86 3.15
4.68 3.14 2.49

3.96

Table 3.12: Runtimes of Schedule problems

In our analysis we assume that the constant ε in Algorithm A is infinitesimally small, and hence,
after a process finishes with one formula, the evaluation of the next formula starts immediately,
and the algorithm terminates immediately after a satisfiable formula is found.

If there is no peak because the last unsatisfiable formulae are not more difficult than some of the
first satisfiable ones, then Algorithm A with n ≥ 2 may need n times more CPU than Algorithm S
because n− 1 satisfiable formulae are evaluated unnecessarily. We formally establish worst-case
bounds for Algorithm A.

Theorem 3.89 The speed-up of Algorithm A with n processes is at least 1
n . This lower bound is

strict.

Proof: The worst case 1
n can show up in the following situation. Assume the first satisfiable

formula is evaluated in time t, the preceding unsatisfiable formulae are evaluated in time 0, and
the following satisfiable formulae are evaluated in time ≥ t. Then the total runtime of Algorithm
A is tn, while the total runtime of Algorithm S is t.

Assume the runtimes (CPU time) for the formulae are t0, t1, . . . , ts, . . ., and φs is the first
satisfiable formula. The total runtime of Algorithm S is

∑s
i=0 ti. This is also an upper bound on

the CPU time consumed by Algorithm A on φ0, . . . , φs. Additionally, Algorithm A may spend
CPU evaluating φs+1, φs+2, The evaluation of these formulae starts at the same time or later
than the evaluation of the first satisfiable formula φs. As n − 1 processes may spend all their
time evaluating these formulae after the evaluation of φs has started, the total CPU time spent
evaluating them may be at most (n− 1)ts. Hence Algorithm A spends CPU time at most

s∑
i=0

ti + (n− 1)ts

in comparison to
s∑

i=0

ti

98 CHAPTER 3. DETERMINISTIC PLANNING

instance len val ∃-step process ∀-step ∀-step l.
zeno-3-7b 3 F 0.01 0.01

0.01

zeno-3-7b 4 T 0.01 0.01
0.01

zeno-3-7b 5 F 0.10 0.10
0.10 0.02 0.02

0.02 0.05 0.05
0.06

zeno-3-7b 6 T 0.11 0.10
0.12 0.02 0.02

0.02 0.06 0.05
0.06

zeno-3-8 3 F 0.01 0.01
0.01

zeno-3-8 4 T 0.01 0.01
0.01

zeno-3-8 5 F 0.08 0.08
0.09 0.02 0.02

0.02 0.05 0.05
0.05

zeno-3-8 6 T 0.49 0.45
0.53 0.06 0.06

0.07 0.30 0.27
0.33

zeno-3-8b 3 F 0.01 0.01
0.01

zeno-3-8b 4 T 0.02 0.01
0.02

zeno-3-8b 5 F 0.17 0.16
0.17 0.03 0.02

0.03 0.11 0.11
0.12

zeno-3-8b 6 T 0.54 0.47
0.61 0.16 0.16

0.16 0.31 0.27
0.36

zeno-3-10 4 F 0.05 0.05
0.05

zeno-3-10 5 T 0.02 0.02
0.02

zeno-3-10 6 F 1.77 1.71
1.84 0.51 0.50

0.51 1.17 1.13
1.21

zeno-3-10 7 T 2.68 2.43
2.95 0.76 0.68

0.86 1.79 1.57
2.01

zeno-5-10 3 F 0.10 0.10
0.10

zeno-5-10 4 T 0.23 0.19
0.28

zeno-5-10 5 F 2.23 2.13
2.33 1.03 1.03

1.04 1.47 1.41
1.53

zeno-5-10 6 T 9.34 8.78
9.89 3.17 2.79

3.57 6.53 6.04
7.08

zeno-5-15 5 F –
zeno-5-15 6 T 21.3417.83

25.10

zeno-5-15 5 F 3.52 3.30
3.75 1.76 1.75

1.76 2.32 2.18
2.48

zeno-5-15 6 ?
zeno-5-15 7 T - 39.3435.65

43.34 -

Table 3.13: Runtimes of ZenoTravel problems

with Algorithm S. The speed-up is therefore at least∑s
i=0 ti∑s

i=0 ti + (n− 1)ts
=

1
1 + (n− 1) tsPs

i=0 ti

≥ 1
1 + n− 1

=
1
n
.

�

In the other direction, there is no finite upper bound on the speed-up of Algorithm A in com-
parison to Algorithm S for any number of processes n ≥ 2. Consider a problem instance with
evaluation time t0, t1 and t2 respectively for the first three formulae, the first two of which are
unsatisfiable and the third satisfiable. Let t0 = t2 and t1 = ct2. The constant c could be arbitrarily
high. Algorithm S runs in (c+ 2)t2 time, while Algorithm A with n = 2 runs in 2t2 time. Hence
the speed-up c+2

2 can be arbitrarily high.
Next we analyze the properties of Algorithm B assuming that the constants δ and ε are infinites-

imally small and the evaluation of all of the formulae φi therefore proceeds continuously at rate

3.9. EVALUATION ALGORITHMS 99

instance len val ∃-step process ∀-step ∀-step l.
depot-13-5646 7 F 0.01 0.01

0.01

depot-13-5646 8 T 0.01 0.01
0.01

depot-13-5646 8 F 0.02 0.02
0.02 0.01 0.01

0.01 0.01 0.01
0.01

depot-13-5646 9 T 0.27 0.26
0.29 0.04 0.04

0.05 0.08 0.08
0.09

depot-14-7654 9 F 0.05 0.05
0.06

depot-14-7654 10 T 0.10 0.09
0.11

depot-14-7654 11 F 3.07 2.95
3.19 1.41 1.34

1.48 2.17 2.07
2.29

depot-14-7654 12 T 8.18 7.55
8.82 3.48 3.19

3.78 4.26 3.87
4.66

depot-16-4398 7 F 0.01 0.01
0.01

depot-16-4398 8 T 0.01 0.01
0.01

depot-16-4398 7 F 0.03 0.03
0.03 0.01 0.01

0.01 0.02 0.01
0.02

depot-16-4398 8 T 0.43 0.41
0.46 0.07 0.06

0.07 0.12 0.11
0.13

depot-17-6587 5 F 0.01 0.01
0.01

depot-17-6587 6 T 0.01 0.01
0.01

depot-17-6587 6 F 0.24 0.23
0.26 0.02 0.02

0.02 0.13 0.11
0.14

depot-17-6587 7 T 0.69 0.65
0.74 0.03 0.03

0.03 0.27 0.25
0.29

depot-18-1916 11 F 0.29 0.28
0.29

depot-18-1916 12 T 5.80 5.02
6.61

depot-18-1916 11 F 1.12 1.04
1.20 0.17 0.16

0.17 0.51 0.48
0.54

depot-18-1916 12 T – – –

Table 3.14: Runtimes of Depot problems

γi.

Theorem 3.90 The speed-up of Algorithm B is at least 1− γ. This lower bound is strict.

Proof: As with Algorithm A the worst case is reached when all unsatisfiable formulae preceding
the first satisfiable formula φs are evaluated and the evaluation of many of the satisfiable ones has
proceeded far. The disadvantage in comparison to Algorithm S is the unnecessary evaluation of
many of the satisfiable formulae. Hence Algorithm B spends CPU time at most

s∑
i=0

ti +
∑
i≥1

tsγ
i =

s∑
i=0

ti +
1

1− γ
ts − ts

in comparison to
s∑

i=0

ti

with Algorithm S. The speed-up is therefore at leastPs
i=0 tiPs

i=0 ti+
1

1−γ
ts−ts

= 1

1+
1

1−γ ts−tsPs
i=0

ti

≥ 1

1+
1

1−γ ts−ts

ts

= 1
1+ 1

1−γ
−1

= 1− γ.

100 CHAPTER 3. DETERMINISTIC PLANNING

instance len val ∃-step process ∀-step ∀-step l.
freecell2-4 4 F 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

freecell2-4 5 T 0.01 0.01
0.01 0.02 0.01

0.02 0.01 0.01
0.01 0.01 0.01

0.01

freecell3-4 7 F 0.45 0.43
0.47 0.77 0.74

0.81 0.25 0.25
0.25 0.53 0.50

0.55

freecell3-4 8 T 0.13 0.11
0.15 0.25 0.22

0.28 0.18 0.17
0.18 0.11 0.10

0.13

freecell4-4 6 F 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

freecell4-4 7 T 0.05 0.04
0.05 0.12 0.11

0.13 0.02 0.02
0.02 0.08 0.07

0.08

freecell5-4 12 F 13.6012.94
14.29 17.3416.54

18.14 6.75 6.39
7.17 9.19 8.84

9.55

freecell5-4 13 T 59.5752.44
66.68 63.7857.28

70.33 35.7032.55
39.06 53.5947.44

60.17

Table 3.15: Runtimes of FreeCell problems

This lower bound is strict: if φi is satisfiable, evaluation times for φj , j < i are 0, and evaluation
times for φi, i > 1 are not lower than that of φ1, then the speed-up is only 1− γ. �

The worst-case speed-ups of these algorithms are the same if we observe the equation γ = 1− 1
n

relating their parameters.
Algorithm B does not have plan quality guarantees but Algorithm A has.

Theorem 3.91 If a plan exists, Algorithm A with parameter n ≥ 1 is guaranteed to find a plan
that is at most n− 1 steps longer than the shortest existing one.

Proof: So assume Algorithm A finds a plan with t steps. This means that the process for formula
φt determined that the formula is satisfiable. There are at most n − 1 processes for formulae φs

with s < t, and all formulae φs for s < t for which a process terminated are unsatisfiable.
All formulae preceding an unsatisfiable formula are unsatisfiable. Consider formula φt−n.
If the process evaluating φt−n has terminated, the formula must have been unsatisfiable, and

hence the plan from φt is at most n − 1 steps longer than the shortest existing one which much
have length over t− n.

If the process evaluating φt−n has not terminated, then the evaluation of one of the n − 1
formulae φt−n+1, . . . , φt−1 must already have been terminated, because there are n processes and
two of them were evaluating φt−n and φt. Since φt was the first one found satisfiable, one of
the formulae φt−n+1, . . . , φt−1 that was evaluated was unsatisfiable, and hence the formula φt−n

must also be unsatisfiable, yielding the same lower bound for the plan length. �

3.9.5 Experiments

Algorithms A and B increase efficiency for problem instances sampled from the set of all problem
instances (Section 3.8.5). The improvements in comparison to Algorithm S are biggest for easy
problem instances right of the hardest part of the phase transition region with 100 state variables
or more. For the most difficult instances in the middle of the phase transition region the satisfiable
formulae are often as difficult as the unsatisfiable ones and hence Algorithms A and B do not seem
to bring as much benefit. We did not carry out exhaustive experimentation because of the extremely
high computational resource consumption and the difficulty to derive exact characterizations of the

3.9. EVALUATION ALGORITHMS 101

performance improvement when most of the problem instances could not be practically solved by
using Algorithm S.

We illustrate properties of the algorithms on a collection of problems from the AIPS plan-
ning competitions. Plans for most of these problems can be found in polynomial time by simple
domain-specific algorithms, and planners using heuristic search [Bonet and Geffner, 2001] have
excelled on these problems, while they had been considered difficult for planners based on sat-
isfiability testing or CSP techniques. In this section we demonstrate that the our new algorithms
change this situation.

Many of these benchmark problems follow the same scheme in which objects are transported
with vehicles from their initial locations to their target locations (Logistics, Depots, DriverLog,
ZenoTravel, Gripper, Elevator), with one of them (Depots) combining transportation with stacking
objects as in the well-known Blocks World problem. Some others (Satellite, Rovers) are variations
of the transportation scenario in which different locations are visited to carry out some tasks. Some
of the benchmark problems have the form of a scheduling problem (Elevator, Schedule) but do not
involve any restrictions on resource consumption and therefore only test the property of feasibility
which for these problems can be tested in low polynomial time by a simple algorithm.

To demonstrate the usefulness of the algorithms for a wider range of problems, in addition to
the planning competition problems which are solvable by simple domain-specific algorithms in
polynomial time, we also consider hard instances of an NP-hard planning problem. The planning
competition problems are easy because they do not make restrictions on resource consumption and
satisfying one subgoal never makes it more difficult to satisfy another. Hence we also consider
a planning problem with critical restrictions on resource consumption. We call this problem the
Mechanic problem. The objective is to perform a maintenance operation to a fleet of n aircraft.
The aircraft fly according to some schedule and visit one of three airports five times during a time
period of t days. A mechanic/equipment can be present at one of the three airports on any given
day, and can perform the maintenance operation to all aircraft visiting that airport that day. This
problem can be viewed as a form of a set covering problem but we make it a sequential decision
making problem so that we can talk about completing the maintenance within t′ ≤ t first days of
the time period. We solve the problem for a t = 30, 40, 50, ... and set n = 3t. With n = 3t the
problem is rather strongly constrained but still usually soluble. For low n it is easier to find a plan
because there are only few aircraft, and for much higher n there are too many aircraft and no plan
necessarily exists.

For each problem instance we generate formulae for plan lengths up to 10 or 30 beyond the
first (assumed) satisfiable formula according to the ∃-step semantics encoding in Section 3.8.4.
We use the linear-size encoding of the parallelism constraints if it is less than half of the size of
the quadratic encoding that does not require introducing auxiliary propositional variables to avoid
exceeding Siege’s upper bound of 524288 propositional variables.

Then we test the satisfiability of every formula and cancel the run if the satisfiability is not
determined in 60 minutes of CPU time. Like in the experiments in Section 3.8.5, we use the
Siege V4 SAT solver by Lawrence Ryan of the Simon Fraser University on a 3.6 GHz Intel Xeon
computer.

Then we compute from the runtimes of all these formulae the total runtimes under algorithms
A and B with different values for the parameters n and γ. Algorithm S is the special case n = 1
of Algorithm A. The constants ε and δ determining the granularity of CPU time division are
set infinitesimally small. Formulae that are beyond the plan-length horizon or that take over 60
minutes to evaluate are considered as having infinite evaluation time. The times do not include

102 CHAPTER 3. DETERMINISTIC PLANNING

generation of the formulae. The two expensive parts of the formula generation are the computation
of the invariants and the disabling graph. For most of the benchmark problem instances these both
take a fraction of a second, but for some of the biggest instances of the Logistics, Depot, and
Driver problems 10 or 20 seconds, and a total of 6 minutes for the biggest ZenoTravel instance
and 3 minutes for the biggest Logistics instance. A more efficient implementation would bring
these times down to seconds.

The runtimes for a number of problems from the AIPS planning competitions of 1998, 2000
and 2002 and for the Mechanic problem are given in Table 3.16. For most benchmarks we give
the runtimes of the most difficult problem instances, which in some cases are the last ones in the
series, as well as some of the easier ones. Most of the runtimes that are not given in the table are
below one second for every evaluation strategy. Some of the benchmark series cannot be solved
until the end efficiently, and we give data just for some of the most difficult instances that can be
solved. We discuss these benchmark problems below.

The column “easiest” gives the shortest time it took to determine the satisfiability of any of the
satisfiable formulae corresponding to a plan. These times in almost all cases are very low, even
when the total runtime of Algorithms S, A and B is high. Hence in almost all cases the total time
it takes to find a plan is strongly dominated by the unsatisfiability tests.

3.9. EVALUATION ALGORITHMS 103

Algorithm A with n Algorithm B with γ easiest HSP FF
instance 1 2 4 8 16 0.5000 0.7500 0.8750 0.9375
block-18-0 8.6 7.8 7.6 5.8 6.6 8.0 7.9 7.7 9.3 0.1 6.4 –
block-20-0 11.3 12.2 13.8 16.9 15.5 13.0 16.5 20.1 18.3 0.2 82.1 0.0
block-22-0 122.4 106.9 96.7 77.0 35.4 106.0 62.2 33.5 27.0 0.3 79.6 0.5
block-24-0 2877.5 2675.7 1854.0 829.0 167.4 2087.3 583.3 284.8 246.8 0.7 – –
block-26-0 5347.5 5000.0 4640.1 3103.9 539.0 4116.7 1140.0 242.6 126.3 0.9 46.8 0.0
block-28-0 3447.8 3413.4 3246.8 1984.3 813.3 2867.0 1746.1 1027.6 336.4 1.1 – 27.2
block-30-0 – – 13949.9 7541.0 6349.1 13934.0 6577.4 1717.4 503.9 1.9 – 0.0
block-32-0 – – – 28695.4 14326.9 > 27h 36417.3 8182.8 2245.7 11.3 – 0.0
block-34-0 227.6 227.8 224.2 231.5 208.8 238.4 248.2 264.6 188.5 1.9 – 0.1
driver-4-4-8 0.5 0.6 0.3 0.5 0.8 0.6 0.6 0.7 1.1 0.1 2.9 0.1
driver-5-5-10 731.2 549.5 631.6 237.7 440.2 969.8 507.0 472.4 651.1 27.5 – –
driver-5-5-15 72.4 36.1 50.4 100.4 200.6 56.0 72.7 120.5 219.8 12.5 72.21 –
driver-5-5-20 1018.2 690.1 792.4 940.7 17.8 967.5 148.2 35.4 24.0 0.5 1428.0 –
driver-5-5-25 – 6433.9 2218.9 3542.3 4132.2 4553.4 4100.7 5800.5 7865.5 258.2 – 609.5
driver-8-6-25 – – 13333.9 11081.4 22162.6 27447.3 24120.5 22377.1 31375.3 1385.2 859.0 –
satel-12 31.1 5.1 1.4 1.8 2.7 4.0 2.5 3.1 4.6 0.2 3.3 0.1
satel-13 14.8 14.2 18.2 14.9 17.9 21.0 29.0 24.1 22.8 0.5 10.1 0.3
satel-19 45.1 28.4 21.6 5.0 5.6 42.3 13.1 9.4 10.1 0.3 8.8 0.3
satel-20 – 1806.4 266.6 33.0 35.0 187.1 69.3 55.3 63.5 2.1 23.2 4.9
gripper-5 3443.2 1053.7 35.5 7.2 5.0 31.7 16.2 2.1 0.9 0.0 0.0 0.0
gripper-6 – – 2679.6 23.4 10.4 121.9 45.6 4.1 1.7 0.0 0.0 0.0
gripper-7 – – – 491.3 28.3 1968.0 128.2 7.9 2.8 0.0 0.0 0.0
gripper-8 – – – 13285.5 293.1 57298.9 790.1 27.3 4.7 0.0 0.0 0.0
gripper-9 – – – – 832.6 > 27h 589.7 37.7 13.0 0.1 0.1 0.0
gripper-10 – – – – 216.3 31496.5 569.3 126.8 17.1 0.1 0.1 0.0
gripper-11 – – – – – > 27h 87479.2 2308.0 335.4 0.8 0.1 0.0
gripper-12 – – – – – > 27h > 27h 8306.4 1117.5 0.8 0.1 0.0
zeno-5-10 0.3 0.3 0.2 0.2 0.5 0.3 0.2 0.3 0.6 0.0 24.2 0.1
zeno-5-15 154.2 77.1 8.7 2.3 4.5 17.7 5.1 4.8 6.6 0.3 18.5 0.3
zeno-5-15b 40.5 25.3 7.1 9.4 9.1 24.4 14.6 17.6 17.7 0.5 104.5 0.4
zeno-5-20 – – 9036.9 6422.6 2896.0 16459.9 1364.2 126.8 64.8 1.1 188.4 1.4
zeno-5-20b – – – 10822.9 18744.6 87164.6 23385.8 21683.0 30471.3 1171.5 411.5 1.4
zeno-5-25 – – – 12987.1 25914.9 > 27h 37341.0 29810.9 39109.3 1619.7 332.4 4.4
sched-33-0 79.0 53.7 13.0 5.0 6.7 22.8 10.9 10.1 11.3 0.2 – 0.7
sched-35-0 2225.2 1435.5 19.5 3.6 2.9 14.3 7.8 4.9 5.2 0.2 – 0.7
sched-37-0 346.2 184.4 92.8 8.6 9.6 80.4 24.2 19.4 19.5 0.6 – 0.5
sched-39-0 – – – 592.2 140.3 5889.8 1084.6 437.6 221.9 1.9 – 1.7
sched-41-0 – – – 479.1 35.4 3040.7 237.1 91.7 80.7 1.3 – 1.0
sched-43-0 – 1565.2 23.9 11.6 17.4 47.3 20.0 21.4 23.7 0.4 – 2.2
sched-45-0 – – 1398.1 109.5 41.6 786.6 257.8 100.2 73.3 1.5 – 1.0
sched-47-0 – – – 14066.9 245.0 62768.3 1708.6 607.0 215.4 2.2 – 4.3
sched-49-0 – – – 9511.7 561.6 24913.2 2609.9 426.4 169.2 2.1 – 6.0
sched-51-0 – – – – 1151.2 > 27h 8327.0 1692.6 889.2 7.6 – 3.1
depot-09-5451 14.1 24.8 43.9 85.8 171.5 24.8 46.3 89.1 174.8 10.7 – 0.7
depot-12-9876 255.4 509.7 1018.6 2036.9 4073.6 509.9 1019.1 2037.5 4074.2 254.6 – 3.1
depot-15-4534 42.8 79.3 154.8 305.4 609.9 80.9 157.1 309.6 614.4 38.1 – 3.4
depot-18-1916 5.9 11.2 21.9 43.5 86.9 11.4 22.2 43.9 87.4 5.4 – 0.8
depot-19-6178 0.2 0.2 0.3 0.4 0.6 0.3 0.3 0.5 0.8 0.0 – 0.2
depot-20-7615 34.2 66.7 131.9 262.1 10.4 67.0 35.6 18.5 18.7 0.4 – 14.3
depot-21-8715 0.2 0.1 0.2 0.3 0.6 0.2 0.3 0.4 0.7 0.0 51.4 0.3
depot-22-1817 27.1 50.8 98.9 194.8 389.4 51.4 100.1 197.5 392.2 24.3 – 55.3
log-20-0 3.4 2.8 0.6 0.7 0.5 1.3 1.1 0.9 0.8 0.0 2.2 0.1
log-24-0 0.9 0.4 0.6 1.0 1.6 0.6 0.8 1.2 1.8 0.0 3.1 0.1
log-28-0 87.7 53.3 13.8 1.9 3.5 15.0 4.1 3.8 3.9 0.1 28.0 1.2
log-32-0 – 53.1 18.9 37.4 16.3 37.9 33.7 26.6 16.6 0.3 43.4 4.5
log-36-0 – 101.1 20.2 30.1 11.8 58.7 46.5 29.2 14.5 0.2 81.1 2.6
log-40-0 – – 111.2 4.6 7.2 37.5 10.6 9.9 13.5 0.4 267.8 4.5
log-41-0 – – 52.4 20.0 5.4 175.3 14.8 9.1 9.8 0.3 247.1 4.2
mechanic-30-90 0.5 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.5 0.0 4.1 0.1
mechanic-40-120 0.5 0.4 0.5 0.6 0.5 0.5 0.6 0.6 0.6 0.0 14.1 0.2
mechanic-50-150 1.1 1.0 1.0 1.7 2.9 1.2 1.4 2.0 2.7 0.1 226.7 0.4
mechanic-60-180 13.1 6.9 3.3 2.0 1.0 4.3 1.6 1.2 1.3 0.0 56.46 0.7
mechanic-70-210 4.5 2.9 2.4 1.0 1.3 3.3 1.8 1.5 1.8 0.1 – –
mechanic-80-240 2.0 3.0 1.1 1.5 2.4 2.4 1.7 2.0 2.8 0.1 213.9 3.1
mechanic-90-270 15.1 2.1 2.4 3.2 2.9 3.0 3.1 3.9 3.9 0.1 339.0 3.6
mechanic-100-300 77.0 47.2 52.2 17.3 8.0 64.5 37.5 25.6 14.7 0.2 – –
mechanic-110-330 162.0 192.5 117.8 81.4 42.2 164.7 90.2 64.6 40.3 0.6 – –
mechanic-120-360 991.4 717.5 273.5 61.3 30.6 185.8 72.8 56.6 62.4 0.9 – –

Table 3.16: Runtimes of Algorithms A and B. Column n = 1 is Algorithm S. Dash indicates a
missing upper bound on the runtime when some formulae were not evaluated in 60 minutes. The
best runtimes for Algorithms A and B are highlighted for each problem instance (sometimes this
is the special case Algorithm S.) The column “easiest” shows the lowest runtime for any of the
satisfiable formulae.

104 CHAPTER 3. DETERMINISTIC PLANNING

Algorithm A with n Algorithm B with ε
instance 1 2 4 8 16 0.500 0.750 0.875 0.938
blocks-34-0 124 / 124 125 / 124 125 / 124 125 / 124 125 / 124 125 / 124 125 / 124 135 / 129 135 / 129
driver-8-6-25 – – 12 / 193 14 / 206 14 / 206 11 / 178 14 / 206 14 / 206 14 / 206
satell-20 – 10 / 230 11 / 166 12 / 285 17 / 321 11 / 166 12 / 285 15 / 309 15 / 309
gripper-10 – – – – 25 / 65 25 / 65 25 / 65 49 / 150 49 / 150
zeno-5-15b 5 / 87 5 / 87 7 / 98 9 / 140 14 / 191 7 / 98 7 / 98 14 / 191 14 / 191
sched-37-0 13 / 60 13 / 60 13 / 60 16 / 57 20 / 69 14 / 52 16 / 57 16 / 57 20 / 69
depot-19-6178 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98
depot-20-7615 14 / 153 14 / 153 14 / 153 14 / 153 23 / 170 14 / 153 23 / 170 23 / 170 29 / 193
log-20-0 9 / 176 10 / 151 11 / 199 12 / 163 20 / 249 11 / 199 12 / 163 20 / 249 20 / 249
log-28-0 9 / 243 10 / 298 11 / 288 13 / 309 15 / 340 13 / 309 13 / 309 13 / 309 24 / 443

Table 3.17: Numbers of time points and operators in plans found by Algorithms A and B. Column
n = 1 is Algorithm S. Dash indicates missing data when some formulae were not evaluated in 60
minutes.

Table 3.17 shows the numbers of time points and operators in the plans obtained for some of
the benchmark problems reported in Table 3.16. In many cases the easiest satisfiable formulae
are not the first ones, and these formulae typically have satisfying assignments that correspond to
plans having many useless operators, which for algorithms A and B can lead to plans with many
more operators than for algorithm S. However, the benchmarks have a simple structure and these
plans with more operators are usually not genuinely different: the additional operators are either
irrelevant for reaching the goals or contain pairs of operators and their inverses. It would be easy
to eliminate these types of useless operators by a simple postprocessing step.

The Movie, MPrime and Mystery benchmarks from the 1998 competition and Rovers from
2002 are very easy for every evaluation strategy (fraction of a second in most cases) but we cannot
produce the biggest MPrime instance because of a memory restriction.

The Logistics (1998 and 2000) and Satellite (2002) series are solved completely. Proving inex-
istence of plans slightly shorter than the optimal plan length is in some cases difficult but the new
evaluation algorithms handle this efficiently.

The Depots (2002) problems are also relatively easy but in contrast to the rest of the benchmarks
the new evaluation algorithms in some cases increase the runtimes up to the theoretical worst case.

The DriverLog and ZenoTravel (2002) problems are solved quickly except for some of the
biggest instances. We cannot find satisfiable formulae for the last ZenoTravel problem within
our time limit7, and finding plans for the preceding two instances of ZenoTravel and the last two
of DriverLog is also slow. The difficulty lies in finding tight lower bounds for plan lengths by
determining the unsatisfiability of formulae.

Blocks World (2000) problems lead to very big formulae (size over 100 MB and over 524288
propositions), and we can solve only two thirds of the series.

Elevator (2000), Schedule (2000) and Gripper (1998) are a challenge because only very loose
lower bounds on plan length are easy to prove. Finding plans corresponding to a given satisfi-
able formula is very easy (some seconds at most) but locating these formulae is very expensive.
Increasing parameters n and γ improves runtimes.

The formulae generated for FreeCell (2002) are too big (hundreds of megabytes) for the current
SAT solvers to solve them efficiently. This benchmark series along with the blocks world problems
are the only ones that are not solved almost entirely.

7The number of propositions in formulae for plan lengths much higher than the presumed shortest plan length
exceeds Siege’s upper bound 524288.

3.10. LITERATURE 105

All in all, it seems that a conservative use of the new algorithms (especially Algorithm B with
γ ∈ [0.7..0.9]) leads to a general improvement in the runtimes in comparison to Algorithm S.

Decrease in plan quality is indirectly related to decrease in runtime. This depends on whether
the first satisfiable formulae are the easiest ones. In general, satisfying valuations that are found for
plan lengths much higher than the shortest plan length correspond to plans with more operators,
but not always.

3.10 Literature

Progression and regression were used early in planning research [Rosenschein, 1981]. Our defi-
nition of regression in Section 3.1.2 is related to the weakest precondition predicates for program
synthesis [de Bakker and de Roever, 1972; Dijkstra, 1976]. Instead of using the general definition
of regression we presented, earlier work on planning with regression and a definition of operators
that includes disjunctive preconditions and conditional effects has avoided all disjunctivity by pro-
ducing only goal formulae that are conjunctions of literals [Anderson et al., 1998]. Essentially,
these formulae are the disjuncts of regro(φ) in DNF, although the formulae regro(φ) are not gen-
erated. The search algorithm then produces a search tree with one branch for every disjunct of the
DNF formula. In comparison to the general definition, this approach often leads to a much higher
branching factor and an exponentially bigger search tree.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at the time [Kautz and Selman,
1992; 1996]. In addition to Kautz and Selman [1996], parallel plans were used by Blum and Furst
in their Graphplan planner [Blum and Furst, 1997]. Parallelism in this context serves the same
purpose as partial-order reduction [Godefroid, 1991; Valmari, 1991], reducing the number of or-
derings of independent actions to consider. Ernst et al. [1997] have considered translations of
planning into the propositional that utilize the regular structure of sets of operators obtained from
schematic operators. Planning by satisfiability has been extended to model-checking for testing
whether a finite or infinite execution satisfying a given Linear Temporal Logic (LTL) formula
exists [Biere et al., 1999]. This approach to model-checking is called bounded model-checking.

It is trickier to use a satisfiability algorithm for showing that no plans of any length exist than
for finding a plan of a given length. To show that no plans exist all plan lengths up to 2n − 1
have to be considered when there are n state variables. In typical planning applications n is
often some hundreds or thousands, and generating and testing the satisfiability of all the required
formulae is practically impossible. That no plans of a given length n < 2|A| do not exist does not
directly imply anything about the existence of longer plans. Some other approaches for solving
this problem based on satisfiability algorithms have been recently proposed [McMillan, 2003;
Mneimneh and Sakallah, 2003].

The use of general-purpose heuristic search algorithms has recently got a lot of attention. The
class of heuristics currently in the focus of interest was first proposed by McDermott [1999] and
Bonet and Geffner [2001]. The distance estimates δmax

I (φ) and δ+I (φ) in Section 3.4 are based on
the ones proposed by Bonet and Geffner [2001]. Many other distance estimates similar to Bonet
and Geffner’s exist [Haslum and Geffner, 2000; Hoffmann and Nebel, 2001; Nguyen et al., 2002].
The δrlx

I (φ) estimate generalizes ideas proposed by Hoffmann and Nebel [2001].
Other techniques for speeding up planning with heuristic state-space search include symmetry

106 CHAPTER 3. DETERMINISTIC PLANNING

reduction [Starke, 1991; Emerson and Sistla, 1996] and partial-order reduction [Godefroid, 1991;
Valmari, 1991; Alur et al., 1997], both originally introduced outside planning in the context of
reachability analysis and model-checking in computer-aided verification. Both of these techni-
ques address the main problem in heuristic state-space search, high branching factor (number of
applicable operators) and high number of states.

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effects [Rintanen, 1998]. The computation parallels the construction of planning
graphs in the Graphplan algorithm [Blum and Furst, 1997], and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of invariant
computation are useful for backward search algorithms: if a depth-bound of n is imposed on the
search tree, then formulae obtained by m regression steps (suffixes of possible plans of length
m) that do not satisfy clauses Cn−m cannot lead to a plan, and the search tree can be pruned. A
different approach to find invariants has been proposed by Gerevini and Schubert [1998].

Some researchers extensively use Graphplan’s planning graphs [Blum and Furst, 1997] for var-
ious purposes but we do not and have not discussed them in more detail for certain reasons. First,
the graph character of planning graphs becomes inconvenient when preconditions of operators are
arbitrary formulae and effects are conditional. As a result, the basic construction steps of planning
graphs become unintuitive. Second, even when the operators have the simple form, the practi-
cally and theoretically important properties of planning graphs are not graph-theoretic. We can
equivalently represent the contents of planning graphs as sequences of sets of literals and 2-literal
clauses, as we have done in Section 3.5. In general it seems that the graph representation does
not provide advantages over more conventional logic-based and set-based representations and is
primarily useful for visualization purposes.

The algorithms presented in this section cannot in general be ordered in terms of efficiency. The
general-purpose search algorithms with distance heuristics are often very effective in solving big
problem instances with a sufficiently simple structure. This often entails better runtimes than in
the SAT/CSP approach because of the high overheads with handling big formulae or constraint
nets in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach
but on which heuristic state-space search fails.

There are few empirical studies on the behavior of different algorithms on planning problems
in general or average. Bylander [1996] gives empirical results suggesting the existence of hard-
easy pattern and a phase transition behavior similar to those found in other NP-hard problems
like propositional satisfiability [Selman et al., 1996]. Bylander also demonstrates that outside the
phase transition region plans can be found by a simple hill-climbing algorithm or the inexistence
of plans can be determined by using a simple syntactic test. Rintanen [2004d] complemented
Bylander’s work by analyzing the behavior of different types of planning algorithms on difficult
problems inside the phase transition region, suggesting that current planners based on heuristic
state space search are outperformed by satisfiability algorithms on difficult problems.

The PSPACE-completeness of the plan existence problem for deterministic planning is due to
Bylander [1994]. The same result for another succinct representation of graphs had been estab-
lished earlier by Lozano and Balcazar [1990].

Any computational problem that is NP-hard – not to mention PSPACE-hard – is considered too
difficult to be solved in general. As planning even in the deterministic case is PSPACE-hard there
has been interest in finding restricted special cases in which efficient (polynomial-time) planning
is always guaranteed. Syntactic restrictions have been investigated by several researchers [Bylan-
der, 1994; Bäckström and Nebel, 1995] but the restrictions are so strict that very few interesting

3.10. LITERATURE 107

problems can be represented.
Schematic operators increase the conciseness of the representations of some problem instances

exponentially and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-complete [Erol et al., 1995]. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible and the plan existence problem is
undecidable [Erol et al., 1995].

Chapter 4

Conditional planning: complexity

In this chapter we analyze the complexity of non-probabilistic planning with observation restric-
tions under two objectives, reachability and maintenance goals. Reachability goals are the most
commonly considered objective a plan has to fulfill: reach any of a number of designated goal
states. Plan executions in this case always have a finite (though possibly unbounded) length. Our
interpretation of nondeterminism requires that the probability of every nondeterministic effect
(which is not made explicit in our formalization of planning) is non-zero. Although plan exe-
cutions may be arbitrarily long, the longer an execution is the smaller is its probability. Infinite
execution that do not reach a goal state are possible but they have 0 probability. Maintenance ob-
jective is defined in terms of infinite plan executions. A plan satisfies the objective if all executions
have an infinite length and only visit goal states.

Many of the results of this chapter are established by using a third objective which generalizes
both reachability and maintenance and which we call repeated reachability. Under this objective
plan executions are infinite and a plan has to repeatedly visit a goal state. Like for reachability
goals, there is no upper bound on the number of execution steps between visits of a goal state but
very long executions that do not visit a goal state have an extremely small probability.

We analyze the complexity of the plan existence problem under different observability restric-
tions and for the general nondeterministic actions and two subclasses of deterministic actions. For
the more general deterministic class of actions the values of all state variables in the successor state
are a function of the action and the current state. In the more restricted class of state-independent
deterministic actions actions the set of state variables that are assigned a value by an action is only
a function of the action, not of the current state. These two classes correspond to natural syntactic
restrictions of operators describing the actions. Planning with these two classes of deterministic
actions is in many cases substantially easier than in the general nondeterministic case.

In Section 4.2 we establish a number of complexity lower bounds in the form of hardness results
for complexity classes PSPACE, EXP and 2-EXP of planning under the reachability objective. In
the end of the section we explain briefly how the proofs of these lower bounds can be easily
adapted to maintenance to obtain the same lower bound for it.

In Section 4.3 we establish corresponding complexity upper bounds in the form of resource-
bounded algorithms under the repeated reachability, reachability and maintenance objectives.
These algorithms in some cases are of only theoretical interest and in Chapter 5 we introduce
some more practical approaches to solve these planning problems.

The lower and upper bound coincide and as a results we have proofs of PSPACE, EXP and
2-EXP-completeness of the planning problems.

108

4.1. PRELIMINARIES 109

4.1 Preliminaries

4.1.1 Alternative observation models

In Definition 2.8 we have defined observability in terms of a subset of the state variables that are
observable. More generally, observations could be arbitrary formulae instead of state variables,
and it could be possible to observe the values of these formulae without being able to observe the
values of their subformulae. Also, what is observable could be determined by the last operator that
has been applied. This is usually how sensing actions are formalized. To make certain observation
an action that enables the observation has to be taken.

In this section we show that the observation model we have adopted is as powerful as models
with non-atomic observations and sensing actions. The reduction from the more general model
requires state-dependent effects.

In the more general model, a succinct transition system 〈A, I,O,G, V 〉 does not have a fixed
set of observable state variables. Instead, V map each o ∈ O to a set of formulae over A: after
applying an operator o ∈ O the truth-values of the formulae V (o) can be observed. It can also be
that the value of a formula φ can be observed but not the values of its subformulae.

Let Π = 〈A, I,O,G, V 〉 be a succinct transition system under this more general definition. We
give a reduction to the basic definition. Let β1, . . . , βn be the formulae β ∈ V (o) for some o ∈ O.
We introduce new auxiliary state variables aβ1 , . . . , aβn , z, and zi for every i ∈ {1, . . . ,m} where
m is the number of operators in O. State variable aβ will have the same value as the respective
observation β right after applying an operator that allowed observing it. The state variables zi
control the application of operators that evaluate the values of observable formulae. Define the
succinct transition system C(Π) = 〈A, I ∧ z ∧¬z1 ∧ · · · ∧¬zm, O′, G, {aβ1 , . . . , aβn}〉 where O′

consists of
〈z ∧ c,¬z ∧ zi ∧ e〉
〈zi, z ∧ ¬zi ∧ ν〉

for every operator 〈c, e〉 ∈ O (operator’s index is i). The first operator replaces the old operator
and the effect ν in the second operator evaluates the observations β and copies their values to the
respective state variables aβ .

ν =
∧
{(β B aβ) ∧ (¬β B ¬aβ)|β ∈ V (o)}

The state variable z indicates that any operator can be applied, and zi indicates that operator i has
been applied and the corresponding observations are to be evaluated.

Theorem 4.1 Let Π be a succinct transition system. Then Π has a plan if and only if C(Π) has.

Proof: We only give a brief proof sketch.
The reduction guarantees that the value of aβ coincides with the value of β after an operator

with observation β has been applied.
Translations from plans for Π into plans for C(Π) and vice versa do not require changing the

structure of the plans, only one operator is interchanged with a sequence of two operators, or vice
versa.

Plans for Π can be translated into plans forC(Π) by replacing observations of β by observations
of aβ and replacing every operator with the corresponding two new operators.

Plans forC(Π) can be transformed into plans for Π by replacing observations aβ by β and mak-
ing the converse replacement of operators. The two operators in C(Π) obtained from one operator

110 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

in Π always appear together, and any branch between these two operators can be moved before the
first operator because the first operator does not make any observable information available. �

4.1.2 Plans

Plans determine which actions are executed. We formalize plans as a form of directed graphs.
Each node is assigned an operator and information on zero or more successor nodes.

Definition 4.2 Let Π = 〈A, I,O,G, V 〉 be a succinct transition system. A plan for Π is a triple
〈N, b, l〉 where

1. N is a finite set of nodes,

2. b ⊆ L×N maps initial states to starting nodes, and

3. l : N → O × 2L×N is a function that assigns each node an operator and a set of pairs
〈φ, n′〉 where φ is a formula over the observable state variables V and n′ ∈ N is a node.

Nodes n with l(n) = 〈o, ∅〉 for some o ∈ O are terminal nodes.

By ignoring the operators and branch formulae in a plan π we can construct a graph G(π) =
〈N,E〉 with E ⊆ N ×N such that 〈n, n′〉 ∈ E iff 〈φ, n′〉 ∈ B for l(n) = 〈o,B〉 and some φ. A
plan π is acyclic if there is no non-trivial path starting and ending at the same node in G(π).

Plan execution starts from a node n ∈ N and state s such that 〈φ, n〉 ∈ b and s |= I ∧ φ.
If there is no such 〈φ, n〉 ∈ b, then plan execution ends immediately. Execution in node n with
l(n) = 〈o,B〉 proceeds by executing the operator o and then testing for each 〈φ, n′〉 ∈ l(n)
whether φ is true in all possible current states, and if it is, continuing execution from plan node
n′. At most one φ may be true for this to be well-defined. Plan execution ends when none of the
branch labels matches the current state. In a terminal node plan execution necessarily ends.

We define the satisfaction of plan objectives in terms of the transition system that is obtained
when the original transition system is being controlled by a plan.

Definition 4.3 (Execution graph of a plan) Let 〈A, I,O,G, V 〉 be a succinct transition system
and π = 〈N, b, l〉 be a plan. Define the execution graph of π as a pair 〈M,E〉 where

1. M = S × (N ∪ {⊥,�}), where S is the set of Boolean valuations of A,

2. E ⊆M×M has an edge from 〈s, n〉 ∈ S×N to 〈s′, n′〉 ∈ S×N if and only if l(n) = 〈o,B〉
and for some 〈φ, n′〉 ∈ B

(a) s′ ∈ imgo(s) and

(b) s′ |= φ,

and an edge from 〈s, n〉 ∈ S ×N to 〈s′,⊥〉 if and only if

(a) l(n) = 〈o,B〉,
(b) s′ ∈ imgo(s), and

(c) there is no 〈φ, n′〉 ∈ B such that s′ |= φ,

4.1. PRELIMINARIES 111

and an edge from 〈s, n〉 ∈ S ×N to 〈s,�〉 if and only if

(a) l(n) = 〈o,B〉, and

(b) imgo(s) = ∅.

We need the node ⊥ to make all terminating plan executions explicit in the execution graph.
All nodes in the execution graph with ⊥ are terminal nodes. Without ⊥ there would be no sim-
ple graph-theoretic definition of terminating executions. Consider a node n with label l(n) =
〈o, {〈φ, n′〉}〉 so that imgo(s) = {s1, s2} and s1 |= φ and s2 6|= φ. The execution graph has
an edge from 〈n, s〉 to 〈s1, n′〉 and 〈s2,⊥〉. If we had no edge to 〈s2,⊥〉 it would seem that all
executions from 〈s, n〉 would continue to 〈s1, n′〉.

The node � is needed for handling plans that attempt to apply an operator that is not applicable.

4.1.3 Decision problems

There are different types of objectives the plans may have to fulfill. The most basic one which
is widely used in AI planning research is the reachability of a goal state. In this case each plan
execution has a finite length. Also problems with infinite plan executions are meaningful. A plan
does not reach a goal and terminate, but is a continuing process that has to repeatedly reach goal
states or avoid visiting bad states. Examples of these are different kinds of maintenance tasks:
keep a building clean and transport mail from location A to location B.

We define two objectives in terms of infinite plan executions. One is maintenance goals, the
other is repeated reachability. Infinite plan executions are also used in connection with Markov
decision processes and the average-reward and discounted geometric reward objectives [Puterman,
1994].

The plan objectives we use in this work are the following.

1. RG reachability (finite horizon)

The objective is to reach one of predefined goal states starting from the initial state. Length
of plan executions in this case is finite but for a given plan the length may still be unbounded
if some of the actions are nondeterministic and loops are allowed.

2. MG Maintenance goals (infinite horizon)

The objective is to take actions to stay indefinitely within the set of goal states: a plan has
to maintain a certain property. Plan executions in this case are infinite.

3. RRG repeated reachability (infinite horizon)

The objective is to repeatedly reach one of predefined goal states, possibly intermittently
visiting non-goal states. After a goal state has been reached, plan execution is continued
and a goal state has to be reached again.

In Section 4.1.4 we show that reachability goals and maintenance goals are special cases of
repeated reachability.

Note that repeated reachability is not a trivial extension of reachability goals because in the first
case plan execution can end only after reaching a belief state consisting of goal states only whereas
in the second case it might never be known whether the current state is a goal state. We illustrate
this by an example.

112 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

G

Figure 4.1: Reason why plans cannot be defined as mappings from belief states to actions

Example 4.4 Consider the transition graph in Figure 4.1. The belief state initially and after taking
any action consists of all three states. To satisfy the repeated reachability criterion the two actions,
one depicted with a dotted line and the other with a continuous line, have to be alternated. In this
example Repeated Reachability objective is satisfied although at no point of time is it known that
a goal state is occupied. �

The example shows how the dependencies between consecutive belief states become important
in the repeated reachability problem. The belief state which is the set of possible current states
does not alone carry enough information for deciding whether the objective is fulfilled or not. As a
consequence plans cannot be defined as mappings from belief states (understood as sets of states)
to actions, unlike for maintenance or reachability goals.

Definition 4.5 (Reachability goals RG) A plan π = 〈N, b, l〉 solves a succinct transition system
〈A, I,O,G, V 〉 under the Reachability (RG) criterion if the corresponding execution graph fulfills
the following.

1. For every state s such that s |= I either s |= G or there is 〈φ, n〉 ∈ b such that s |= φ.

2. For all states s and 〈φ, n〉 ∈ b such that s |= I ∧φ, for every (s′, n′) to which there is a path
from (s, n) there is a path from (s′, n′) of length ≥ 0 to some (s′′, n′′) such that s′′ |= G,
(s′′, n′′) has no successor nodes and n′′ 6= �.

This plan objective with unbounded looping can be interpreted probabilistically. For every
nondeterministic choice in an operator we have to assume that each of the alternatives has a non-
zero probability. For goal reachability, a plan with unbounded looping is simply a plan that has no
finite upper bound on the length of its executions, but that with probability 1 eventually reaches
a goal state. A non-looping plan also reaches a goal state with probability 1 but there is a finite
upper bound on the execution length.

Definition 4.6 (Maintenance goals MG) A plan π = 〈N, b, l〉 solves a succinct transition sys-
tem 〈A, I,O,G, V 〉 under the Maintenance (MG) criterion if the corresponding execution graph
fulfills the following.

1. For every state s such that s |= I there is 〈φ, n〉 ∈ b such that s |= φ.

2. For every state s and 〈φ, n〉 ∈ b such that s |= I ∧ φ, if there is a path of length ≥ 0 from
(s, n) to some (s′, n′), then s′ |= G and (s′, n′) has a successor node.

Definition 4.7 (Repeated reachability goals RRG) A plan π = 〈N, b, l〉 solves a succinct tran-
sition system 〈A, I,O,G, V 〉 under the Repeated Reachability (RRG) criterion if the correspond-
ing execution graph fulfills the following.

1. For every state s such that s |= I there is 〈φ, n〉 ∈ b such that s |= φ.

4.1. PRELIMINARIES 113

2. For every state s and 〈φ, n〉 ∈ b such that s |= I ∧ φ, if there is a path from (s, n) to some
(s′, n′), then there is a path of length ≥ 1 from (s′, n′) to some (s′′, n′′) such that s′′ |= G.

The decision problem addressed in this work is whether a certain transition system has a plan
that satisfies the goal objective.

We primarily consider the two objectives reachability goals (RG) and maintenance goals (MG).
In some cases give a result for both simultaneously in terms of the repeated reachability goals
(RRG) objective. Each problem is analyzed under full observability (FO), without observability
(UO) and in the general case of partial observability (PO). In addition to arbitrary nondeterministic
operators (ND), we also analyze problems restricted to the subclass of deterministic operators (D),
and the subclass of deterministic state-independent operators (ID).

We assign names like PLANSAT-PO-ND-RRG to the decision problems. This problem is the
most general problem we consider, with partial observability, nondeterministic operators and the
repeated reachability criterion.

Some of our results are about the existence of acyclic plans, as defined in Section 4.1.2. Execu-
tion graphs of acyclic plans are acyclic. In these cases the name of the decision problem has the
form PLANSAT-PO-ND-acyclicRG. Note that for unobservable problems with reachability goals
we can always restrict to acyclic plans.

4.1.4 Reductions between objectives

Reachability goals and maintenance goals are easily reducible to repeated reachability. These re-
ductions are useful for proving lower bounds on plan existence problems for repeated reachability,
and for proving upper bounds on plan existence problems for reachability and maintenance goals.

Theorem 4.8 Let Π = 〈A, I,O,G, V 〉 be a succinct transition system. Then Π has a solu-
tion for RG if and only if Π′ has a solution for RRG, where Π′ = 〈A ∪ {a}, I ∧ ¬a,O ∪
{〈G, a〉, 〈a,>〉}, a, V 〉 and a 6∈ A.

Proof: Sketch: Assume a plan for Π under RG exists. Any terminal node n can be extended to
first apply 〈G, a〉 and then repeat 〈a,>〉 indefinitely. This results in a plan that eventually reaches
a state that satisfies G, then reaches G ∧ a, and then stays in that goal state indefinitely.

Assume a plan for Π′ under RRG exists. For the RRG criterion to be satisfied a state satisfying
a is visited on every execution, and therefore the plan has one or more occurrences of the operator
〈G, a〉. In the plan we delete all children of nodes that apply 〈G, a〉 and make those nodes terminal
nodes. Since every execution of Π until a state that satisfiesG is a prefix of an execution of Π′, and
every execution of Π′ eventually reaches a state that satisfies a, every execution of Π eventually
reaches a state that satisfies G. �

Theorem 4.9 Let Π = 〈A, I,O,G, V 〉 be a succinct transition system. Then Π has a solution for
MG if and only if Π′ has a solution for RRG, where Π′ = 〈A, I, {〈c ∧G, e〉|〈c, e〉 ∈ O}, G, V 〉.

Proof: Assume there is a plan that satisfies the maintenance objective for Π. The plan that is
obtained by replacing every operator 〈c, e〉 by 〈c∧G, e〉 satisfies the repeated reachability objective
for Π′: all operators of the latter plan are always applicable because every state reached during
execution satisfies G.

114 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

Assume there is a plan that satisfies the repeated reachability objective for Π′. Since G is true
always when applying an operator, G is true in all states reached during plan execution. Hence the
plan obtained by replacing every 〈c ∧G, e〉 by 〈c, e〉 satisfies the maintenance objective. �

Note that in both of these proofs all the operators in Π are deterministic (deterministic state-
independent) if and only if all those in Π′ are deterministic (deterministic state-independent). This
allows us to use – under the three classes of operators ND, D and ID– algorithms and complexity
upper bound proofs for repeated reachability also for reachability and maintenance, and complex-
ity lower bound proofs for reachability and maintenance also for repeated reachability.

4.2 Lower bounds of complexity

First we discuss the complexity of plan synthesis for reachability goals. These results also yield
lower bounds for the repeated reachability objective, and the hardness results for maintenance
goals are in most cases simple modifications of the Turing machine simulations presented in this
section.

For deterministic planning with only one initial state observability is not relevant because the
state after executing any sequence of operators can always be unambiguously predicted. This
problem is closely related to the s-t-reachability problem of succinctly represented graphs [Pa-
padimitriou and Yannakakis, 1986; Lozano and Balcázar, 1990] which is PSPACE-hard, too.

Theorem 4.10 ([Bylander, 1994]) Planning with one initial state and deterministic operators,
even for state-independent operators (PLANSAT-??-ID-RG), is PSPACE-hard.

The proof of this theorem is a simulation of polynomial-space deterministic Turing machines. It
can be obtained from the proof of Theorem 4.11 by restricting it to deterministic Turing machines.
It is easy to generalize the simulation to nondeterministic NPSPACE=PSPACE Turing machines.

4.2.1 Planning with full observability

When nondeterministic (with or without probabilities) operators are allowed, the complexity of
plan existence problems increases. Littman [1997] reduces the EXP-complete existence problem
of winning strategies in the game G4 [Stockmeyer and Chandra, 1979] to the plan existence prob-
lem of probabilistic planning. Probabilities do not play a role in G4 or in the reduction, and hence
also the plan existence problem of non-probabilistic planning with fully observability is EXP-hard.

Next we present a proof for the EXP-hardness of conditional planning with full observability by
a direct simulation of polynomial-space alternating Turing machines. The result follows from the
equality EXP=APSPACE. The proof of Theorem 4.10 by Bylander shows how PSPACE Turing
machines are simulated. For APSPACE we also need to simulate alternation, which means that
configurations of the TM may have several successor configurations, and that there are both ∀ and
∃ states.

For configurations with ∀ states all successor configurations must be accepting (final or non-
final) configurations. For configurations with ∃ states at least one successor configuration must be
an accepting (final or non-final) configuration. Both of these requirements can be represented in
the nondeterministic planning problem.

4.2. LOWER BOUNDS OF COMPLEXITY 115

The transitions from a configuration with a ∀ state will correspond to one nondeterministic
operator. That all successor configurations must be accepting (final or non-final) configurations
corresponds to the requirement in planning that from all successor states of a state a goal state
must be reached.

Every transition from a configuration with ∃ state will correspond to a deterministic operator.
Since only one of the operators is chosen to the plan it means that only one of the successor
configurations needs to be accepting.

Theorem 4.11 The problem of testing the existence of an acyclic plan for succinct transition sys-
tems with full observability (PLANSAT-FO-ND-acyclicRG) is EXP-hard, even with the restriction
to only one initial state.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with a polynomial space bound p(x).
Let σ be an input string of length n. We construct a succinct transition system 〈A, I,O,G,A〉with
full observability for simulating the Turing machine. The succinct transition system has a size that
is polynomial in the size of the description of the Turing machine and the input string.

The set A of state variables in the succinct transition system consists of

1. q ∈ Q for denoting the states of the ATM,

2. si for every symbol s ∈ Σ ∪ {|,�} and tape cell i ∈ {0, . . . , p(n)}, and

3. hi for the positions of the R/W head i ∈ {0, . . . , p(n)}.

The subscripts are the indices of the tape cells with which the state variables are associated.
The succinct transition system has exactly one initial state which represents the initial config-

uration of the ATM. It is described by the formula I which is the conjunction of the following
literals.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. si for all s ∈ Σ and i ∈ {1, . . . , n} such that ith input symbol is s.

4. ¬si for all s ∈ Σ and i ∈ {1, . . . , n} such that ith input symbol is not s.

5. ¬si for all s ∈ Σ and i ∈ {0, n+ 1, n+ 2, . . . , p(n)}.

6. �i for all i ∈ {n+ 1, . . . , p(n)}.

7. ¬�i for all i ∈ {0, . . . , n}.

8. |0

9. ¬|i for all n ∈ {1, . . . , p(n)}

10. h1

11. ¬hi for all i ∈ {0, 2, 3, 4, . . . , p(n)}

116 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the set O of operators corresponding to transitions of the ATM. We have to
distinguish between transitions for universal ∀ and existential ∃ states.1 For a given input symbol
and a ∀ state, the transitions from this state correspond to one nondeterministic operator, whereas
for a given input symbol and an ∃ state each transition corresponds to a different deterministic
operator.

We first define the effects of the operators. For all 〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)}
and 〈s′, q′,m〉 ∈ (Σ∪ {|})×Q×{L,N,R} define τs,q,i(s′, q′,m) = α∧ κ∧ θ where the effects
α, κ and θ are defined below.

The effect α describes the changes to the tape symbol at the R/W head. If s = s′ then α = >
as nothing on the tape changes. Otherwise α = ¬si ∧ s′i to denote that the new symbol in the ith
tape cell is s′ and not s.

The effect κ describes the change to the state of the ATM. We define κ = ¬q when i = p(n)
and m = R so that when the space bound is violated no accepting state is reached. Otherwise if
i < p(n) or m 6= R, define κ = > if q = q′ and κ = ¬q ∧ q′ if q 6= q′.

The effect θ describes the movement of the R/W head. Either the movement is to the left, there
is no movement, or the movement is to the right. By definition of ATMs movement at the left end
of the tape is always to the right.

θ =

¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R and i ≤ p(n)

> if m = R and i = p(n)

Next we define the operators separately for existential and universal ATM states. Let 〈s, q〉 ∈
(Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} and δ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then define k deterministic operators

os,q,i,1 = 〈hi ∧ si ∧ q, τs,q,i(s1, q1,m1)〉
os,q,i,2 = 〈hi ∧ si ∧ q, τs,q,i(s2, q2,m2)〉
...
os,q,i,k = 〈hi ∧ si ∧ q, τs,q,i(sk, qk,mk)〉.

For a given current symbol s, state q and tape cell i a plan determines which ∃ transition is chosen
by applying the corresponding operator.

If g(q) = ∀, then define one nondeterministic operator

os,q,i = 〈hi ∧ si ∧ q, (τs,q,i(s1, q1,m1)|
τs,q,i(s2, q2,m2)|
...
τs,q,i(sk, qk,mk))〉.

Since the transition is chosen nondeterministically a plan has to reach the goals for all transitions
from a ∀ configuration.

1There are no transitions for accepting and rejecting states.

4.2. LOWER BOUNDS OF COMPLEXITY 117

For establishing a connection between the accepting computation trees of an ATM and valid
plans define for an ATM configuration c = 〈q, σ, σ′〉 the state z = CS(c) as follows.

1. z(q) = 1

2. z(q′) = 0 for all q′ ∈ Q\{q}

3. z(si) = 1 iff (σσ′)[i] = s, for all s ∈ Σ and i ∈ {1, . . . , |σσ′|}

4. z(si) = 0 for all s ∈ Σ and i ∈ {|σσ′|, . . . , p(n)}

5. z(|0) = 1

6. z(|i) = 0 for all i ∈ {1, . . . , p(n)}

7. z(�i) = 0 for all i ∈ {0, . . . , |σσ′| − 1}

8. z(�i) = 1 for all i ∈ {|σσ′|, . . . , p(n)}

9. z(hi) = 1 iff i = |σ|, for all i ∈ {0, . . . , p(n)}

Claim A: For configurations 〈q, σ1, σ2〉 and 〈q′, σ′1, σ′2〉 such that q, q′ ∈ Q and g(q) = ∃,
〈q, σ1, σ2〉 ` 〈q′, σ′1, σ′2〉 if and only if imgo(CS(〈q, σ1, σ2〉)) = {CS(〈q′, σ′1, σ′2〉)} for some
o ∈ O.

Claim B: For a configuration 〈q, σ1, σ2〉 such that g(q) = ∀,

imgo(CS(〈q, σ1, σ2〉)) = {CS(〈q′, σ′1, σ′2〉)|〈q, σ1, σ2〉 ` 〈q′, σ′1, σ′2〉}

for some o ∈ O. Operators in O\{o} are not applicable in CS(〈q, σ1, σ2〉).
We prove that 〈A, I,O,G,A〉 has a plan if and only if the alternating Turing machine 〈Σ, Q, δ, q0, g〉

with input string σ accepts without violating the space bound.
If the Turing machine violates the space bound then all state variables q ∈ Q will be false and

no further operator will be applicable. Hence no goal state can be reached.
Otherwise, we can inductively extract from a computation tree of an accepting ATM a plan that

always reaches a goal state, and vice versa.
If the initial configuration 〈q0, |a, σ′〉 is a 0-accepting configuration then the plan is 〈∅, ∅, ∅〉.

In this case the starting node of the execution graph is 〈CS(〈q0, |a, σ′〉),⊥〉 which is a goal node
without successors.

We show how accepting computation trees are mapped to plans with execution graphs satisfy-
ing the RG criterion so that all paths in the graph have a finite length. We take the d-accepting
configurations of the ATM for d ≥ 1 to be the nodes in the plan. The construction proceeds
inductively.

Base case d = 1: Let c = 〈q, σ1, σ2〉 be an 1-accepting ∃-configuration with current symbol s,
R/W-head position i, and 0-accepting final configuration c′ reached by transition j. We define c as
a plan node with l(c) = 〈os,q,i,j , ∅〉.

In the execution graph there are two nodes 〈CS(c), c〉 and 〈CS(c′),⊥〉 with an edge be-
tween them. Since c′ is an accepting configuration CS(c′) is a goal state. Hence from the node
〈CS(c), c〉 there is a path of length 1 to a terminal node and this is the only maximal path starting
in that node.

118 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

Let c = 〈q, σ1, σ2〉 be an 1-accepting ∀-configuration with current symbol s, R/W-head position
i, and only 0-accepting successor configurations c1, . . . , cm. We define c as a plan node with
l(c) = 〈os,q,i, ∅〉.

In the execution graph there is the node 〈CS(c), c〉 with edges to nodes 〈CS(ci),⊥〉 where
CS(ci) is a goal state for every i ∈ {1, . . . ,m}. Hence from the node 〈CS(c), c〉 all maximal
paths have a length of 1 and end in a terminal node.

Inductive case d ≥ 2:

1. Let c be a d-accepting ∃-configuration with current symbol s, current state q and R/W head
position i, and let c′ be a d − 1-accepting successor configuration reached by transition
〈s′, q′,m〉.

The configuration c is mapped to a plan node c with l(c) = 〈os,q,i,j , {〈>, c′〉}〉 where s is
the current symbol, q is the current state, and j is the index of the transition 〈s′, q′,m〉.

By Claim A in the execution graph there is an edge from 〈CS(c), c〉 to 〈CS(c′), c′〉.

By the induction assumption all paths in the execution graph from 〈CS(c′), c′〉 have a length
of at most d− 1 and end in a node that corresponds to a goal state. Hence all paths starting
from 〈CS(c), c〉 have length at most d and end in a goal node.

2. Let c be a d-accepting ∀-configuration with successor configurations c1, . . . , ck, R/W head
position i, current symbol s, and state q. Let 〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉 be the transitions
from c that respectively reach c1, . . . , ck. For the plan node c define l(c) = 〈os,q,i, {〈s1i ∧
q1 ∧ l1, c1〉, . . . , 〈sk

i ∧ qk ∧ lk, ck〉}〉 where for every j ∈ {1, . . . , k}, lj = hi+1 if mj = R,
lj = hi−1 if mj = L and otherwise lj = hi.

By Claim B imgos,q,i(CS(c)) = {CS(c1), . . . , CS(ck)}. These states differ with respect
to state variables representing the symbol that was written, the state of the TM, and the
location of the R/W head. Branching in l(c) distinguishes between all these states. Hence in
the execution graph the edges from 〈CS(c), c〉 are to nodes 〈CS(c1), c1〉, . . . , 〈CS(ck), ck〉.

By the induction assumption all paths from the latter nodes have a length of at most d − 1
and end in a node that corresponds to a goal state, and at least one of the paths has length
d− 1. Hence all paths starting from 〈CS(c), c〉 have a length of at most d and end in a goal
node.

The plan is 〈N, b, l〉 where N is the set of d-accepting configurations for d ≥ 1 and b =
{〈>, 〈q0, |a, σ′〉〉} where σ = aσ′ is the input string. All paths in the execution graph that start
from the unique starting node 〈CS(〈q0, |a, σ′〉), 〈q0, |a, σ′〉〉 are finite and end in a node that cor-
responds to a goal state.

Then we show how acyclic plans are mapped to accepting computation trees of the ATM. The
proof is extended to cyclic plans in Section 4.2.4. The acyclicity of the plans entails the acyclicity
of the execution graphs.

Given an execution graph that satisfies the reachability criterion we construct an accepting com-
putation tree for the Turing machine. First we give a mapping from states to configurations. This
mapping is defined only for states v that correspond to configurations in the sense that v(q) = 1
for exactly one q ∈ Q and of the state variables representing the tape contents and the location of
the R/W head exactly one is true for any tape location. Any state reachable from the unique initial
state of the planning problem satisfies these requirements. Let SC(v) = 〈q, σ, σ′〉 where

4.2. LOWER BOUNDS OF COMPLEXITY 119

1. q is the state in Q such that v(q) = 1,

2. k is the number of symbols that are left from the R/W head so that v(hk) = 1,

3. σ is the symbol sequence of length k such that symbol i ∈ {0, . . . , k} is s ∈ Σ iff v(si) = 1,

4. σ′ = ε if k = e(n) or v(�k) = 1, and otherwise σ′ = s′1, . . . , s′m where m is such that
v(�k+m) = 0 and v(�k+m+1) = 1 and v(s′ik+i) = 1 for all i ∈ {1, . . . ,m} and some
s′i ∈ Σ.

Let sI be the unique state such that sI |= I . Let 〈N, b, l〉 be an acyclic plan for the succinct
transition system. Let R be the set of nodes of the execution graph to which there is a path from
the initial node 〈sI , n〉. We will show that T = {SC(s)|〈s, n〉 ∈ R} is an accepting computation
tree of the ATM.

Induction hypothesis: Let 〈s, n〉 ∈ R be a node in the execution graph so that there is path from
the initial node to 〈s, n〉 and the longest path to a terminal node has length d. Then SC(s) is a
d′-accepting configuration for some d′ ≤ d.

Base case d = 0: Let 〈s, n〉 ∈ R be a node in the execution graph with no successor nodes.
Let c = 〈q, σ, σ′〉 = SC(s). As 〈s, n〉 has no successors must s be a goal state. Hence q is an
accepting state and c is a 0-accepting final configuration.

Inductive case d ≥ 1: Let 〈s, n〉 ∈ R be a node in the execution graph for which the longest path
to a terminal node has length d. The configuration c = 〈q, σ, σ′〉 = SC(s) belongs to T . If c is
an ∃-configuration, then by Claim A 〈s, n〉 has exactly one successor node 〈s′, n′〉 and the longest
path from 〈s′, n′〉 to a terminal node has length d− 1. By the induction hypothesis SC(〈s′, n′〉) is
a d′− 1-accepting configuration of the Turing machine for somd d′ ≤ d. Hence c is a d′-accepting
configuration for some d′ ≤ d.

If c is a ∀-configuration, then by Claim B 〈s, n〉 has successor nodes 〈s1, n1〉, . . . , 〈sk, nk〉
from which the longest path to a terminal node has length ≤ d − 1. By the induction hypothesis
SC(〈s1, n1〉), . . . , SC(〈sk, nk〉) are d′ − 1-accepting configurations for some d′ ≤ d. Hence c is
an d′-accepting configuration for som d′ ≤ d.

Since T consists of accepting configurations only and it includes the initial configuration, the
ATM accepts.

As all alternating Turing machines with a polynomial space bound can be translated into a non-
deterministic planning problem in polynomial time, all decision problems in APSPACE are poly-
nomial time many-one reducible to nondeterministic planning. Hence the plan existence problem
is APSPACE-hard and EXP-hard. �

4.2.2 Planning without observability

The plan existence problem of conditional planning with unobservability is more complex than
that of conditional planning with full observability. We give a new EXPSPACE-hardness proof for
a result that was first proved by Haslum and Jonsson [2000] and later extend it to a 2-EXP-hardness
proof for the more general partially observable case.

We show the EXPSPACE-hardness by a direct simulation of exponential space Turing ma-
chines. The first problem is the representation of the exponentially long tape. In the PSPACE-
and APSPACE-hardness proofs of deterministic planning and conditional planning with full ob-
servability, it is possible to represent the polynomial number of tape cells as state variables of

120 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

the planning problem. With an exponential space bound an exponential number of state variables
would be needed, and such a reduction would not be possible in polynomial time.

Hence we have to find a more clever way of encoding the tape contents. It turns out that we
can use the uncertainty about the initial state for this purpose. When an execution of the plan
that simulates the Turing machine is started, we randomly choose one of the tape cells to be the
watched tape cell. This is the only cell of the tape for which the contents are represented in the
state variables. Of all changes to the working tape that the simulated TM makes, only the changes
of the watched tape cell are reflected in the state variables.

For guaranteeing that the plan corresponds to a simulation of the Turing machine, it is tested
whether the transition the plan makes when the current tape cell is the watched tape cell is the one
that assumes the current symbol to be the one that is stored in the state variables. If it is not, the
plan is not a valid plan. Since the watched tape cell could be any of the exponential number of
tape cells, all the transitions the plan makes are guaranteed to correspond to the contents of the
current tape cell of the Turing machine. So if the plan does not simulate the Turing machine, the
plan is not guaranteed to reach the goal states.

The proof uses several initial states and unobservability. Several initial states are needed for
selecting the watched tape cell, and unobservability is needed so that the plan cannot cheat: if the
plan can determine what the current tape cell is, it could choose transitions that correspond to the
Turing machine transitions only on the watched tape cell. Alternatively, we can have only one
initial state and select the watched tape cell by one nondeterministic operator in the beginning.

Theorem 4.12 The problems of testing the existence of a plan for succinct transition systems with
unobservability and deterministic operators (PLANSAT-UO-D-RG) and with nondeterministic op-
erators and one initial state (PLANSAT-UO-ND-RG-1) are EXPSPACE-hard.

Proof: We give a simulation of deterministic Turing machines with an exponential space bound.
Nondeterministic Turing machines could be simulated for a NEXPSPACE-hardness proof, but this
additional generality is not interesting because EXPSPACE = NEXPSPACE.

Below we give the proof for multiple initial states and deterministic operators, but we could
instead use one initial state and force the plan to first apply a special operator that nondeterminis-
tically generates the required successor states, so the theorem holds under either assumption.

Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with an exponential space bound e(x).
Let σ be an input string of length n. We denote the ith symbol of σ by σi.

The Turing machine may use space e(n), and for encoding numbers from 0 to e(n) correspond-
ing to the tape cells we need n∗ = dlog2(e(n) + 1)e Boolean state variables.

We construct a succinct transition system without observability for simulating the Turing ma-
chine. It has a size that is polynomial in the size of the description of the Turing machine and the
input string.

Unlike in the proof of Theorem 4.11 we cannot represent the contents of the tape by having a
state variable for every tape cell because an exponential number of state variables would be needed
and the reduction would take exponential time.

It turns out that it suffices to keep track of only one tape cell (that we call the watched tape cell)
that is randomly chosen in the beginning of every execution of the plan.

The set A of state variables in the succinct transition system consists of

1. q ∈ Q for denoting the states of the TM,

2. wi for i ∈ {0, . . . , n∗ − 1} for the index of the watched tape cell,

4.2. LOWER BOUNDS OF COMPLEXITY 121

3. s for every symbol s ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. hi for i ∈ {0, . . . , n∗ − 1} for the position of the R/W head.

The formula I which represents the initial states encodes the initial configuration of the TM
requires that the variables wi represent the index of one of the tape cells 0, . . . , e(n). The formula
I is the conjunction of the following formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. w < e(n) + 1

4. Initialization of the state variables for the contents of the watched tape cell.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

5. h = 1 for the initial position of the R/W head.

The initial state formula allows any valuation of the state variables wi. A given input string and a
valuation of variables wi the formula determines the values of the state variables s ∈ Σ uniquely.
The expressions w = i, w < i, w > i denote formulae that test integer equality and inequality of
the numbers encoded by w0, . . . , wn∗−1. Later we will also use effects h := h+ 1 and h := h− 1
which represent incrementing and decrementing the number encoded by h0, . . . , hn∗−1.

The goal formula is
G =

∨
{q ∈ Q|g(q) = accept}.

To define the operators we first define effects corresponding to transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and 〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) as α ∧ κ ∧ θ where α, κ and θ are defined below.
The effect α describes what happens to the tape symbol under the R/W head. If s = s′ then

α = > as nothing on the tape changes. Otherwise α = ((h = w) B (¬s∧s′)) so that if the current
tape cell is the watched one then the change is recorded in the state variables for the watched tape
cell contents.

The effect κ describes the change to the state of the TM. If the R/W movement is to the left
or if there is no movement we define κ = ¬q ∧ q′ if q 6= q′ and κ = > otherwise. If the
R/W head movement is to the right we define κ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and
κ = (h = e(n)) B ¬q if q = q′. Hence if the space bound is violated no operator will be
applicable and no accepting state can be reached.

The movement of the R/W head is described by θ.

θ =

h := h− 1 if m = L

> if m = N
h := h+ 1 if m = R

The operators are defined next. Let 〈s, q〉 ∈ (Σ ∪ {|,�}) × Q and δ(s, q) = {〈s′, q′,m〉}. If
g(q) 6= ∃ there is no operator because the computation from accepting and rejecting states does
not proceed further. If g(q) = ∃ then define

os,q = 〈((h 6= w) ∨ s) ∧ q, τs,q(s′, q′,m)〉.

122 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

The precondition (h 6= w) ∨ s is critical for the correct simulation of the TM. If the current tape
cell is the watched tape cell then the operator application is guaranteed to correspond to the TM
transition.

We show that for a given accepting computation tree T of the Turing machine there is a corre-
sponding plan and an execution graph that satisfies the RG criterion. First we define a mapping
from TM configurations c = 〈q, σ, σ′〉 and indices i ∈ {0, . . . , e(n)} of watched tape cells to
states of the transition system as z = CSi(c) where

1. z(q) = 1

2. z(q′) = 0 for all q′ ∈ Q\{q}

3. z(s) = 1 iff i ∈ {1, . . . , |σσ′|} and (σσ′)[i] = s, for all s ∈ Σ

4. z(|) = 1 iff i = 0

5. z(�) = 0 iff i ∈ {0, . . . , |σσ′|}

6. z(wj) = 1 iff jth bit of i is 1, for all j ∈ {0, . . . ,m− 1}

7. z(hj) = 1 iff jth bit of |σ| is 1, for all j ∈ {0, . . . , n∗ − 1}.

Let d be an integer such that the initial configuration cI is d-accepting. If d = 0 (the initial con-
figuration is an accepting final configuration) then define the plan π = 〈∅, ∅, ∅〉. In the execution
graph of this plan the starting nodes 〈CSi(cI),⊥〉, i ∈ {1, . . . , e(n)} are also terminal nodes and
there are no other nodes reachable from the starting nodes. Hence the RG criterion is satisfied.

If d ≥ 1 define π = 〈N, b, l〉 where b = {(>, cI)}. The plan nodes N = N1 ∪ · · · ∪ Nd and
their labels l = l1 ∪ · · · ∪ ld are defined below.

For every i ∈ {0, . . . , d} let Ni be the set of i-accepting configurations in T .
For every c ∈ N1 define l1(c) = 〈os,q, ∅〉 where s is the current symbol and q is the current

state of c. The 1-accepting configurations are terminal nodes in the plan and after the operators in
these nodes have been applied plan execution terminates.

For every i ∈ {2, . . . , d} and c ∈ Ni define li(c) = 〈os,q, {(>, c′)}〉 where c′ is the successor
configuration of c in T and s is the current symbol and q is the current state of c. Hence the plan
nodes that correspond to an i-accepting configuration for i ≥ 1 apply the operator that corresponds
to the transition in that configuration and continue from a plan node that corresponds to the unique
successor configuration.

The execution graph corresponding to the plan is X = 〈V,E〉 where

V0 = {〈CSj(c),⊥〉|0 ≤ j ≤ e(n), c ∈ N0}
Vi = {〈CSj(c), c〉|0 ≤ j ≤ e(n), c ∈ Ni} for all i ∈ {1, . . . , d}
E1 = {(〈s, c〉, 〈s′,⊥〉) ∈ V1 × V0|o ∈ O, s′ ∈ imgo(s)}
Ei = {(〈CSj(c), c〉, 〈CSj(c′), c′〉) ∈ Vi × Vi−1|0 ≤ j ≤ e(n), {c, c′} ⊆ T, c ` c′}

for all i ∈ {2, . . . , d}
V = V0 ∪ · · · ∪ Vd

E = E1 ∪ · · · ∪ Ed.

The execution graph consists of e(n) + 1 disjoint chains of length d. The nodes in Vd are the first
nodes in the chains. They are the initial nodes in the execution graph. The nodes in V0 are the last
nodes in the chains. They are the terminal nodes of the execution graph.

4.2. LOWER BOUNDS OF COMPLEXITY 123

A simple induction proof shows that there is a path from every initial node in the execution
graph to a terminal node that corresponds to a goal state of the planning problem. Hence the RG
criterion is satisfied by the plan.

Assume a plan for the succinct transition system exists. Since there are no observations this plan
always executes the same sequence o1, . . . , ok of operators. We construct a sequence c0, . . . , ck of
configurations that form an accepting computation tree of the Turing machine.

Let c0 = 〈q0, |a, σ′〉 where σ = aσ′ is the input string, and ci = NCoi(ci−1) for all i ∈
{1, . . . , k} where

NCos,q(〈q, σa, σ′〉) =

〈q′, σ, a′σ′〉 if δ(s, q) = 〈a′, q′, L〉
〈q′, σa′, σ′〉 if δ(s, q) = 〈a′, q′, N〉
〈q′, σa′b, σ′′〉 if δ(s, q) = 〈a′, q′, R〉 and σ′ = bσ′′

〈q′, σa′�, ε〉 if δ(s, q) = 〈a′, q′, R〉 and σ′ = ε

It is easy to verify that the operator sequence corresponds to the transition sequence of the TM,
assuming that when operator os,q is executed the current tape symbol is indeed s. Assume that
some os,q is the first operator that misrepresents the tape contents and that h = c for some tape
cell location c. There is an execution of the plan so that w = c. But in this case the precondition
of os,q would not be satisfied, and the plan is not executable. Hence a valid plan cannot contain
operators that misrepresent the tape contents. �

4.2.3 Planning with partial observability

We show that the plan existence problem of the general conditional planning problem with par-
tial observability is 2-EXP-hard. The hardness proof is by a simulation of AEXPSPACE=2-EXP
Turing machines.

The hardness proof is an extension of both the EXP-hardness proof of Theorem 4.11 and of
the EXPSPACE-hardness proof of Theorem 4.12. From the first proof we have the simulation of
alternation, and from the second proof the simulation of an exponentially long tape.

Theorem 4.13 The problem of testing the existence of an acyclic plan for succinct transition
systems with partial observability (PLANSAT-PO-ND-acyclicRG) is 2-EXP-hard. This holds even
when there is only one initial state.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with an exponential space bound
e(x). Let σ be an input string of length n. We denote the ith symbol of σ by σi.

The Turing machine may use space e(n), and for encoding numbers from 0 to e(n) correspond-
ing to the tape cells we need n∗ = dlog2(e(n) + 1)e Boolean state variables.

We construct a succinct transition system with full observability for simulating the Turing ma-
chine. The succinct transition system has a size that is polynomial in the size of the description of
the Turing machine and the input string.

We use watched tape cells as in the proof of Theorem 4.12.
The set A of state variables in the succinct transition system consists of

1. q ∈ Q for denoting the states of the TM,

2. wi for i ∈ {0, . . . , n∗ − 1} for the index of the watched tape cell,

124 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

3. s for every symbol s ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. s∗ for every s ∈ Σ ∪ {|} for the symbol last written (important for nondeterministic transi-
tions),

5. L, R and N for the last movement of the R/W head (important for nondeterministic transi-
tions), and

6. hi for i ∈ {0, . . . , n∗ − 1} for the position of the R/W head.

The observable state variables are L, N and R, q ∈ Q, and s∗ for s ∈ Σ. These are needed by
the plan to decide how to proceed execution after a nondeterministic transition with a ∀ state.

Define the initial state formula I as the conjunction of the following formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. ¬s∗ for all s ∈ Σ ∪ {|}.

4. w < e(n) + 1

5. Formulae for having the contents of the watched tape cell in state variables Σ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

6. h = 1 for the initial position of the R/W head.

Instead of encoding the choice of watched tape cells in the initial state formula, we could al-
ternatively use only one initial state and a nondeterministic operator that is only applicable in the
initial state and that would randomly select the watched tape cell. Hence the ATM simulation is
also possible with succinct transition systems with only one initial state.

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and 〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) as α ∧ κ ∧ θ where the effects α, κ and θ are defined as follows.
The effect α describes how the current tape symbol changes. If s = s′ then α = > as nothing

on the tape changes. Otherwise α = ((h = w) B (¬s ∧ s′)) ∧ s′∗ ∧ ¬s∗ to denote that the new
symbol in the watched tape cell is s′ and not s, and to make it possible for the plan to detect which
symbol was written onto the tape.

The effect κ describes the change to the state of the TM. If R/W head moves to the left or does
not move define κ = ¬q ∧ q′ if q 6= q′ and κ = > if q = q′. If R/W head moves to the right
κ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and κ = (h = e(n)) B ¬q if q = q′. Hence if the space
bound is violated no operator will be applicable and no accepting state can be reached.

4.2. LOWER BOUNDS OF COMPLEXITY 125

The movement of the R/W head is described by the effect

θ =

(h := h− 1) ∧ L ∧ ¬N ∧ ¬R if m = L

N ∧ ¬L ∧ ¬R if m = N
(h := h+ 1) ∧R ∧ ¬L ∧ ¬N if m = R

The observable state variables L, N and R are for the plan to make branching decisions.
Let 〈s, q〉 ∈ (Σ∪{|,�})×Q and δ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}. If g(q) = ∃, then

define k deterministic operators

os,q,1 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s1, q1,m1)〉
os,q,2 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s2, q2,m2)〉
...
os,q,k = 〈((h 6= w) ∨ s) ∧ q, τs,q(sk, qk,mk)〉

Hence, the plan determines which transition is chosen. If g(q) = ∀, then define one nondetermin-
istic operator

os,q = 〈((h 6= w) ∨ s) ∧ q, (τs,q(s1, q1,m1)|
τs,q(s2, q2,m2)|
...
τs,q(sk, qk,mk))〉.

This operator nondeterministically chooses which transition takes place.
We show that the succinct transition system has an acyclic plan if and only if the Turing machine

accepts without violating the space bound.
If the Turing machine violates the space bound then all state variables q ∈ Q will be false and

no further operator will be applicable. Hence no goal state can be reached.
Otherwise, it can be inductively shown that a computation tree of an accepting ATM can be

mapped to a conditional plan that always reaches a goal state, and vice versa. These mappings are
directly based on the mappings given in the proofs of Theorems 4.11 and 4.12 and we do not give
them in detail.

A computation tree can be mapped to a plan of the same form.

1. A 1-accepting configuration is mapped to a terminal plan node.

2. An ∃ configuration is mapped to a node that applies the deterministic operator that corre-
sponds to the transition in that configuration.

3. A ∀ configuration is mapped to a node that applies the nondeterministic operator that corre-
sponds to the transitions that are possible and then uses the observations to branch and reach
successor nodes corresponding to all the possible successor configurations.

The mapping from plans to computation trees is similar to the mapping in Theorem 4.11 except
that the states in plan executions cannot be directly mapped to ATM configurations as they do
not represent the tape contents explicitly. As in the proof of Theorem 4.12 the contents of the
tape must be recovered from the transition sequence that leads to the configuration from the initial
configuration.

Since all alternating Turing machines with an exponential space bound can be translated into
a nondeterministic planning problem with partial observability in polynomial time, all decision

126 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

problems in AEXPSPACE are polynomial time many-one reducible to nondeterministic planning,
and the plan existence problem is AEXPSPACE-hard and consequently 2-EXP-hard. �

Vardi and Stockmeyer [1985] established the 2-EXP-hardness of the satisfiability of the branch-
ing time temporal logic CTL∗ by a simulation of exponential-time alternating Turing machines,
but their proof idea is different from ours. Their proof encodes ATM configurations as sequences
of states, each corresponding to one tape cell, and tests the correctness of the differences between
two consecutive tape cells by CTL∗ formulae. Our proof encodes the ATM configurations in the
belief state – implicitly represented by a plan – by utilizing partial observability.

When operators are restricted to be deterministic or state-independent, complexity of the plan
existence problem in the most general cases decreases.

Our proofs for the EXP-hardness and 2-EXP-hardness of plan existence for planning with full
and partial observability use nondeterminism. Also the EXP-hardness proof of Littman [1997]
uses nondeterminism. The question arises whether complexity is lower when all operators are
deterministic. This turns out to be the case for planning with full (Theorem 4.16) and partial
observability (Theorem 4.24), but without observability there is no difference: the EXPSPACE-
hardness proof in this case uses deterministic operators only. In the partially observable case
determinism guarantees that the size of the current belief state can never increase, and this leads
to reduced complexity.

Interestingly, deterministic planning with one initial state is exactly as complex both with and
without conditional effects, but for planning with restrictions on observability there is a difference
in computational complexity. With deterministic state-independent operators the uncertainty about
actual current state monotonically decreases, and the values of state variables never change without
the new value being known, which leads to a belief space with a particularly simple structure.

4.2.4 Plans with loops

The complexity results of the above plan existence problems also hold when loops are allowed
in the plans. Loops are needed for finitely representing repetitive strategies that do not have an
upper bound on execution length. A typical problem would be to toss a die until its value is six.
Assuming that the probability of the die falling on every side is non-zero, eventually getting six
has probability 1, although the zero-probability event of unsuccessfully throwing the die infinitely
many times is still possible.

In this section we discuss how the earlier results are extended to the case with loops in the plans.
Looping is not possible in the unobservable case as it is impossible to decide when to stop looping,
but for the fully and partially observable cases looping is applicable.

The problem that looping plans cause for the proofs of Theorems 4.11 and 4.13 is that a Turing
machine computation of infinite length is not accepting but the corresponding infinite length zero-
probability plan execution is allowed to be a part of a plan. Hence for acyclic plans there is this
mismatch between plans and accepting computation trees.

To eliminate infinite plan executions we have to modify the Turing machine simulations given in
the proofs of those theorems. The modification involves counting the length of the plan executions
and rejecting when the plan has been executed so far that at least one configuration has been visited
more than once. This modification makes looping plans ineffective, and in the absence of loops
the simulation is faithful.

4.2. LOWER BOUNDS OF COMPLEXITY 127

Theorem 4.14 The problem of testing the existence of an acyclic plan for succinct transition
systems with full observability (PLANSAT-FO-ND-RG) is EXP-hard, even with the restriction to
only one initial state.

Proof: This is an easy modification of the proof of Theorem 4.11. If there are n state variables, an
acyclic plan exists if and only if a plan with execution length of at most 2n exists because visiting
any state more than once is unnecessary. Plans that rely on loops can be invalidated by counting
the number of actions taken and failing when it exceeds 2n. This counting can be done by having
n + 1 auxiliary state variables c0, . . . , cn which are initialized to false. Every operator 〈p, e〉 is
extended to 〈p, e∧ t〉 where t is an effect that increments the binary number encoded by c0, . . . , cn
by one until the most significant bit cn becomes one. The goal G is replaced by G ∧ ¬cn.

Therefore, a plan exists if and only if an acyclic plan exists if and only if the alternating Turing
machine accepts. �

In the fully observable case counting the execution length does not pose a problem because
we only have to count an exponential number of execution steps. This can be represented by a
polynomial number of state variables. In the partially observable case, however, we need to count
a doubly exponential number of execution steps, as the number of visited belief states may be
doubly exponential. A binary representation of these numbers requires an exponential number of
bits. We cannot use an exponential number of state variables for representing them because the
reduction to planning would not be polynomial time. However, partial observability with only a
polynomial number of auxiliary state variables has the power to count doubly exponentially far.

Theorem 4.15 The problem of testing the existence of a plan for succinct transition systems with
partial observability (PLANSAT-PO-ND-RG) is 2-EXP-hard. This holds even when there is only
one initial state.

Proof: We extend the proof of Theorem 4.13 by a counting scheme that makes cyclic plans in-
effective. We show how counting transitions can be achieved within a succinct transition system
obtained from the alternating Turing machine and the input string in polynomial time.

Since representing the number of transitions as a binary number requires an exponential num-
ber of state variables, we cannot represent the number explicitly. Instead, we use a randomized
technique to force the plan to implicitly count the number of Turing machine transitions so far.
The technique has some resemblance to the idea we used in the simulation of exponentially long
working tapes in proofs of Theorems 4.11 and 4.13 but now the idea is applied to incrementing a
number that has exponentially many digits.

For a succinct transition system with n state variables (that represent the Turing machine con-
figurations) executions that visit each belief state at most once may have a length of 22n

. Rep-
resenting these numbers requires 2n binary digits. We introduce n + 1 new unobservable state
variables d0, . . . , dn for representing the index of one of the digits and vd for the value of this
digit, and new state variables c0, . . . , cn through which the plan indicates changes to the count of
Turing machine transitions. There is a set of operators by means of which the plan sets the values
of these variables before applying an operator corresponding to a Turing machine transition.

The idea of the construction is the following. Whenever the count of TM transitions is incre-
mented, one of the 2n digits in the count changes from 0 to 1, and all of the less significant digits
change from 1 to 0. The plan is forced to communicate the index of the digit that changes from
0 to 1 by the state variables c0, . . . , cn. The unobservable state variables d0, . . . , dn, vd store the

128 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

index and the value of one of the digits. We call this digit the watched digit. One watched digit
is sufficient for verifying that the reporting of c0, . . . , cn by the plan is truthful because any of
the digits could be watched one and false reporting of its value is detected on one execution of
the plan, making the plan invalid. Plan execution fails when reporting is false or when the count
exceeds 22n

. For this reason a plan for the succinct transition system exists if and only if an acyclic
plan exists if and only if the Turing machine accepts the input string.

Next we define how the succinct transition systems defined in the proof of Theorem 4.13 are
extended to prevent unbounded looping in plans by means of a counter.

The initial state description is extended with the conjunct ¬dv in order to signify that the
watched digit is initially 0 (all the digits in the counter implicitly represented in the belief state
are 0.) The state variables d0, . . . , dn may have any values, which means that the watched digit is
chosen randomly. The state variables dv, d0, . . . , dn are all unobservable so that the plan cannot
know which digit is watched.

There is a state variable f that is initially set to false by having ¬f in the initial states formula.
It becomes true on plan executions that do not correspond to legal TM computations.

The goal G is extended to G ∧ ¬f ∧ ((d0 ∧ · · · ∧ dn)→¬dv) to prevent executions that lead
to setting f true or that have a length that exceeds 22n+1−1. The conjunct (d0 ∧ · · · ∧ dn)→¬dv

is false if the index of the watched digit is 2n+1 − 1 and the digit is true, corresponding to an
execution length ≥ 22n+1−1.

The new operators for indicating the changing digit are

〈>, ci〉 for all i ∈ {0, . . . , n} and
〈>,¬ci〉 for all i ∈ {0, . . . , n}.

The operators for Turing machine transitions are extended with the randomized test that tests
whether the digit the plan claims to change from 0 to 1 is the one that actually changes: every op-
erator 〈p, e〉 defined in the proof of Theorem 4.13 is replaced by 〈p, e∧t〉where t is the conjunction
of the following effects.

((c = d) ∧ dv) B f
(c = d) B dv

((c > d) ∧ ¬dv) B f
(c > d) B ¬dv

Here c = d denotes (c0 ↔ d0) ∧ · · · ∧ (cn ↔ dn), and c > d encodes the greater-than test for the
binary numbers encoded by c0, . . . , cn and d0, . . . , dn.

The above effects do the following.

1. When the plan claims that the watched digit changes from 0 to 1 and the value of dv is 1,
fail.

2. When the plan claims that the watched digit changes from 0 to 1, change dv to 1.

3. When the plan claims that a more significant digit changes from 0 to 1 and the value of dv

is 0, fail.

4. When the plan claims that a more significant digit changes from 0 to 1, set the value of dv

to 0.

4.3. UPPER BOUNDS OF COMPLEXITY 129

The fact that these effects guarantee the invalidity of a plan that relies on unbounded looping
is because the failure flag f will be set if the plan lies about the count, or the most significant bit
with index 2n+1 − 1 will be set if the count reaches 22n+1−1. Attempts of unfair counting are
recognized, and consequently f is set to true because of the following.

Assume that the binary digit at index i changes from 0 to 1 (and therefore all less significant
digits change from 1 to 0) and the plan incorrectly claims that it is the digit j that changes, and
this is the first time on this execution that the plan lies (hence the value of dv is the true value of
the watched digit.)

If j > i, then i could be the watched digit (and hence c > d), and for j to change from 0
to 1 the less significant bit i should be 1, but we would know that it is not because dv is false.
Consequently on this plan execution the failure flag f would be set.

If j < i, then j could be the watched digit (and hence c = d), and the value of dv would indicate
that the current value of digit j is 1, not 0. Consequently on this plan execution the failure flag f
would be set.

So, if the plan does not correctly report the digit that changes from 0 to 1, then the plan is not
valid. Hence any valid plan correctly counts the execution length which cannot exceed 22n+1−1. �

The lower bounds we have established for the reachability objective also hold for the mainte-
nance objective. The proofs are obtained from the proofs of Theorems 4.11, 4.12 and 4.13 by
using a counter for the number of actions taken: before the counter reaches 2n (for full observ-
ability) or 22n

(for partial observability) any state is a goal state, and after reaching the limit only
the original goal states are goal states. Indefinitely staying in a goal state is made possible by a
dummy operator that has no effects. This way the maintenance objective is satisfied if and only if
the Turing machine accepts.

4.3 Upper bounds of complexity

In this section we establish complexity upper bounds for the goal reachability RG and maintenance
MG criteria, in some cases by giving an algorithm for the most general repeated reachability
criterion RRG. The complexities of the criteria are the same in all cases we consider.

4.3.1 Planning with full observability

In the simplest deterministic fully observable cases the plan existence problem for repeated reach-
ability can be solved by identifying paths and cycles in the transition graph.

Theorem 4.16 Testing plan existence for succinct transition systems with deterministic operators
and only one initial state (PLANSAT-??-D-RRG-1) and for deterministic fully observable succinct
transition systems with several initial states (PLANSAT-FO-D-RRG) under the repeated reacha-
bility criterion is in PSPACE.

Proof: Let Π = 〈A, I,O,G,A〉 be a succinct transition system so that all operators in O are
deterministic.

The fully observable problem with several initial states easily reduces to the one initial state
case: iterate over all initial states and separately test for each whether a plan exists. Full observ-
ability is essential for this reduction to be correct because the plans for different initial states could

130 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

1: procedure FOreach(A,O,s,s′,m)
2: if m ≤ 0 then
3: if (s = s′ or there is o ∈ O such that {s′} = imgo(s)) then return true
4: else return false
5: else
6: for each valuation s′′ of A do
7: if FOreach(A,O,s,s′′,m− 1) and FOreach(A,O,s′′,s′,m− 1) then return true
8: end
9: return false

Figure 4.2: Algorithm for finding a path of length ≤ 2m from s to s′

not otherwise be chosen by observations.
For the case with one initial state and deterministic operators we give an algorithm for testing

the existence of plans. Let sI be the unique initial state. The plan existence problem can be solved
by in polynomial space as follows. Iterate over all states to find a state s such that

1. s |= G,

2. s is reachable from sI by at most 2|A| steps, tested by FOreach(A,O,sI ,s,|A|), and

3. there is a non-trivial path from s to itself. This is by testing FOreach(A,O,s′,s,|A|) for every
o ∈ O with imgo(s) = {s′}. If one of these calls returns true, a non-trivial path from s to
itself exists.

If such a state s exists then there is a sequence of actions that reaches s from sI and another
sequence of 1 or more actions that reaches s from itself. Executing the second action sequence
indefinitely satisfies the RRG criterion.

The reachability tests are for paths of a length of at most 2|A| because the number of states is
2|A| and if a path exists then a path of length at most 2|A| − 1 exists.

Iteration over all states s can be done in polynomial space, and FOreach(A,O,s,s′,m) needs
polynomial space inm and the sizes of the inputs. The procedure FOreach is given in Figure 4.2. �

Planning with full observability has properties that allow using a simpler definition of plans.
Essentially, plans with several nodes are unnecessary as no memory about the prior steps in the
plan execution need to be retained. Hence plans can be viewed as mappings from states to actions,
or equivalently, each state can be taken as a plan node, and after executing the associated action
the plan continues from the node corresponding to the successor state. In connection with Markov
decision processes [Howard, 1960; Puterman, 1994] this kind of history-independent policies have
been called stationary.

Theorem 4.17 Given a plan π = 〈N, b, l〉 for a succinct transition system Π = 〈A, I,O,G,A〉
under the RRG criterion, there is a function x : S → O and a plan π′ = 〈S, b′, l′〉 for Π such that
S is the set of all valuations of A (all states) and

1. b = {〈U(s), s〉|s ∈ S, s |= I}, and

2. l(s) = 〈x(s), {〈U(s′), s′〉|s′ ∈ imgx(s)(s)}〉 for every s ∈ S,

4.3. UPPER BOUNDS OF COMPLEXITY 131

where U(s) =
∧

({a ∈ A|s |= a} ∪ {¬a|a ∈ A, s |= ¬a}), and its execution graph is 〈M,E〉
where

1. M = S × S

2. E = {(〈s, s〉, 〈s′, s′〉) ∈M ×M |o ∈ O, s′ ∈ imgx(s)(s)}

and 〈M,E〉 satisfies the RRG criterion.

Proof: The construction is in two stages. First we construct a plan in which every plan node
uniquely identifies the state but there are several plan nodes corresponding to a state. Full observ-
ability is needed for this construction to work. Then plan nodes for each state are combined so
that there is a one-to-one match between plan nodes and states.

Define π′′ = 〈N ′′, b′′, l′′〉 where

• N ′′ = N × S,

• b′′ = {〈U(s), (n, s)〉|〈φ, n〉 ∈ b, s ∈ S, s |= φ ∧ I}, and

• l′′((n, s)) = 〈o, {〈U(s′), (n′, s′)〉|〈φ, n′〉 ∈ B, s′ ∈ S, s′ |= φ}〉 where l(n) = 〈o,B〉, for
every n ∈ N and s ∈ S.

In the execution graph of π′′ all the initial nodes and all nodes reachable from them have the
form 〈s, (n, s)〉 where s ∈ S and n ∈ N . The execution graph of π′′ satisfies the RRG criterion if
the execution graph of π does because for s, s′ ∈ S and n, n′ ∈ N there is an edge from 〈s, (n, s)〉
to 〈s′, (n′, s′)〉 if and only if there is an edge from 〈s, n〉 to 〈s′, n′〉 in the execution graph of π.

Let s1, . . . , sm be an enumeration of S. Next we combine for every si all nodes 〈si, (n, si)〉
while preserving the RRG criterion. Define a sequence of plans π0 = 〈N0, b0, l0〉, . . . , πm =
〈Nm, bm, lm〉 start from 〈N0, b0, l0〉 = π′′.

Assume we have constructed the plan πi−1 for some i ∈ {1, . . . ,m}. Assume that there is at
least one n ∈ N such that (n, si) is reachable from an initial node of the execution graph of πi−1.
Then there is at least one such n so that there is a path from (n, si) to a node (n′, s′) or s′ such that
s′ |= G that does not visit any node (n′′, si). Let n∗ be any such n. If no node (n, si) is reachable
from an initial node then let n∗ be any node in N . Let Fi(k) = k for all k ∈ Ni−1\(N × {si})
and Fi(k) = si for all k ∈ N × {si}.

• Ni = (N × {si+1, . . . , sm}) ∪ {s1, . . . , si},

• bi = {〈U(s), (n, s)〉 ∈ bi−1|〈φ, n〉 ∈ b, s |= φ, s 6∈ Ni} ∪ {〈U(s), s〉|s ∈ Ni, s |= I},

• li(k) = 〈o, {〈φ, Fi(k′)〉|〈φ, k′〉 ∈ B}〉 where li−1(k) = 〈o,B〉, for every k ∈ Ni\{si},

• li(si) = 〈o, {〈φ, Fi(k′)〉|〈φ, k′〉 ∈ B}〉 where li−1((n∗, s)) = 〈o,B〉.

kesken: jospa n∗ solmua ei olekaan?
kesken: argumentti miksi graafi edelleen on RRG

�

So in the fully observable case plans can be equivalently represented as mappings from states
to actions and the execution graph has a particularly simple form because no distinction between

132 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

1: procedure prune(S,O,G);
2: W−1 := S;
3: W0 := ∅;
4: repeat
5: W ′

0 := W0;
6: W0 := (W ′

0 ∪
⋃

o∈O preimgo(W ′
0 ∪G)) ∩ S;

7: until W0 = W ′
0; (* States from which a goal state can be reached by ≥ 1 operators *)

8: i := 0;
9: repeat

10: i := i+ 1;
11: k := 0;
12: S0 := ∅;
13: repeat
14: k := k + 1; (* States from which a state in G is reachable with ≤ k steps. *)
15: Sk := Sk−1 ∪

⋃
o∈O(S ∩ preimgo(Sk−1 ∪G) ∩ spreimgo(Wi−1 ∪G));

16: until Sk = Sk−1; (* States that stay within Wi−1 before reaching G. *)
17: Wi := Sk;
18: until Wi = Wi−1; (* States in Wi stay within Wi before reaching G. *)
19: return Wi;

Figure 4.3: Algorithm for detecting a loop that eventually makes progress

the current state and the current plan node needs to be made. To simplify the presentation of the
complexity proofs for the most general fully observable plannin problem we use this representation
of plans.

We give a new algorithm for solving the planning problem with nondeterministic operators, full
observability and repeated reachability goals. This problem generalizes the problem solved by
an algorithm given by Cimatti et al. [2003] (the global strong cyclic algorithm) for our simplest
objective of reachability goals. The algorithm runs in polynomial time in the size of the state space
and hence yields an exponential time upper bound for the plan existence problem. The algorithm
uses the subprocedure prune given in Figure 4.3.

We introduce some terminology. Let S be a set of states, O a set of operators, and x : S → O
a mapping from states to operators. A sequence s0, . . . , sn of states is an execution if for all
i ∈ {1, . . . , n} there is o ∈ O such that si ∈ imgo(si−1), and it is an execution of x if si ∈
imgx(si−1)(si−1) for all i ∈ {1, . . . , n}.

Lemma 4.18 (Procedure prune) Let S be a set of states, O a set of operators and G ⊆ S a
set of states. Then the procedure call prune(S,O,G) will terminate after a finite number of steps
returning a set of states W ⊆ S such that there is function x : W → O such that

1. for every s ∈ W there is an execution s0, s1, . . . , sn of x with n ≥ 1 such that s = s0 and
sn ∈ G,

2. imgx(s)({s}) ⊆W ∪G for every s ∈W , and

3. There is no function x satisfying the above properties for states not in W : for every s ∈
S\W and function x′ : S → O there is an execution s0, . . . , sn of x′ such that s = s0 and
there is no m ≥ n and execution sn, sn+1, . . . , sm such that sm ∈ G.

4.3. UPPER BOUNDS OF COMPLEXITY 133

Proof: The proof is by two nested induction proofs that respectively correspond to the repeat-until
loops on lines 9 and 13 in the procedure prune. If there is no plan that is guaranteed to reach a goal
state from a state s, then this is because for any plan after some number of executions steps i it is
possible to reach a state from which no sequence actions can reach a goal state. A plan covering
all other states exists with an execution reaching a goal state in some h steps. The outer loop and
induction go through i = 0, 1, 2, . . . and the inner loop and induction through h = 0, 1, 2,

Induction hypothesis: There is function x : Wi → O such that

1. for every s ∈Wi there is an execution s0, . . . , sn of x such that n ≥ 1, s = s0 and sn ∈ G,

2. imgx(s)({s}) ⊆Wi−1 ∪G for every s ∈Wi, and

3. for all functions x′ : S → O and states s ∈ S\Wi there is i′ ∈ {0, . . . , i} and an execution
s0, . . . , si′ of x′ such that s0 = s and there is no h ≥ i′ and execution si′ , si′+1, . . . , sh such
that sh ∈ G.

Base case i = 0:

1. W0 has been computed to fulfill exactly this property. We denote the value of the variables
W0 in the end of iteration i of the first repeat-until loop by W0,i.

Induction hypothesis:

(a) There is a function x : W0,j → O such that there is an execution of x for every
s ∈W0,j of length j ≥ 1 reaching a state in G.

(b) For states not in W0,j there is no x with this property.

Base case j = 1: After the first iteration W0,1 =
⋃

o∈O preimgo(G). Hence for every
s ∈W0,1 assign x(s) = o for any o such that s ∈ preimgo(G).

(a) Now there is an execution of length 1 from any s ∈W0,1 to a state in G.

(b) For states not in W0,1 no operator alone may reach a state in G.

Inductive case j ≥ 2: By induction hypothesis there is a function x with execution of length
j − 1 ≥ 1 for reaching a state in G for every state for which such an execution exists. We
extend this function to cover states s ∈ W0,j\W0,j−1 as follows: x(s) = o for any o such
that s ∈ preimgo(W0,j−1 ∪G).

(a) For any s ∈ W0,j there is an execution of x reaching a state in G because for states
s ∈W0,j−1 this is by the induction hypothesis, and for states inW0,j\W0,j−1 applying
the operator x(s) may reach a state inW0,j−1 for which an execution reachingG exists
by the induction hypothesis.

(b) Let s be a state such that there is a function x′ : S → O with an execution that
reaches G from s with j steps. Hence there is a state s′ for which an execution with
x′ reaches G from s′ with j − 1 steps. Hence by the induction hypothesis s ∈W0,j−1

and consequently s ∈ preimgx′(s)(W0,j−1). Therefore for any state not in W0,j there
is no such function x′.

2. As W−1 = S trivially imgx(s)({s}) ⊆W−1 ∪G.

134 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

3. States s ∈ W0\W−1 are exactly those states from which no operator sequence leads to G
by construction of W0, as shown above.

Inductive case i ≥ 1: For the inner repeat-until loop we prove inductively the following.
Induction hypothesis: There is function x : Sk → O such that

1. for every s ∈ Sk there is an execution s0, s1, . . . , sn of x such that n ∈ {1, . . . , k}, s = s0
and sn ∈ G,

2. imgx(s)({s}) ⊆Wi−1 ∪G for every s ∈ Sk, and

3. for all functions x′ : S → O and states s ∈ S\Sk either

(a) there is i′ ∈ {0, . . . , i} and an execution s0, . . . , si′ of x′ such that s0 = s and there is
no h ≥ i′ and execution si′ , si′+1, . . . , sh such that sh ∈ G, or

(b) there is no k′ ∈ {1, . . . , k} and an execution s0, . . . , sk′ of x′ such that s0 = s and
sk′ ∈ G.

Base case k = 0: Since S0 = ∅, cases (1) and (2) trivially hold for every s ∈ S0. It remains to
show the third component of the induction hypothesis.

3. For any s ∈ S\S0 = S (3b) is satisfied because it requires executions to be longer than
k = 0.

Inductive case k ≥ 1: We extend the function x : Sk−1 → O to cover states in Sk\Sk−1.
Let s be any state in Sk. If s ∈ Sk−1 then properties (1) and (2) are by the induction hypothesis.
Otherwise s ∈ Sk\Sk−1. Therefore by definition of Sk, s ∈ preimgo(Sk−1∪G)∩spreimgo(Wi−1∪
G) for some o ∈ O.

1. As s ∈ preimgo(Sk−1∪G) for some o ∈ O, by (4) of Lemma 2.2 either s ∈ preimgo(Sk−1)
or s ∈ preimgo(G).

If s ∈ preimgo(G) then we set x(s) = o. The desired execution consists of s and a state
s′ ∈ G.

If s ∈ preimgo(Sk−1)\preimgo(G) then there is a state s′ ∈ Sk−1 such that s′ ∈ imgo({s}).
By the induction hypothesis there is an execution of x starting from s′ that ends in a goal
state. For s such an execution is obtained by prefixing with o, so we define x(s) = o.

2. Since s ∈ spreimgo(Wi−1 ∪G) by (2) and (3) of Lemma 2.2 imgo({s}) ⊆Wi−1 ∪G.

3. Take any s ∈ S\Sk. Now for every operator o ∈ O, either s 6∈ spreimgo(Wi−1 ∪ G) or
s 6∈ preimgo(Sk−1 ∪G). Consider any function x′ : S → O such that x′(s) = o.

In the first case by the outer induction hypothesis there is i′ ∈ {0, . . . , i − 1} and an ex-
ecution s0, . . . , si′ of x′ such that s0 ∈ imgo(s) and there is no h ≥ i′ and execution
si′ , si′+1, . . . , sh such that sh ∈ G. Hence executing o first could similarly lead to the state
si′ from which no goal could be reached, now requiring i steps.

In the second case by the inner induction hypothesis for all s′ ∈ imgo(s) there is no execu-
tion of length k − 1 ending in a goal state.

Since this holds for any o ∈ O, every x′ has one of these properties.

4.3. UPPER BOUNDS OF COMPLEXITY 135

1: procedure planexistsFO(S,I ,O,G)
2: Gne := G;
3: repeat
4: W := prune(S,O,Gne);
5: G′

ne := Gne;
6: Gne := Gne ∩W ;
7: until Gne = G′

ne;
8: if I ⊆W then return true else return false;

Figure 4.4: Algorithm for nondeterministic planning with full observability

This completes the inner induction. To establish the induction step of the outer induction con-
sider the following. The inner repeat-until loops ends when Sk = Sk−1. This means that Sz = Sk

for all z ≥ k. Hence executions for reaching a goal state for (1) and (3) are allowed to have
arbitrarily high length k. The outer induction hypothesis is obtained from the inner induction
hypothesis by removing the upper bound and replacing Sk by Wi. By construction Wi = Sk.

This finishes the outer induction proof. The claim of the lemma is obtained from the outer
induction hypothesis by noticing that the outer loop exits when Wi = Wi−1 (it will exit after a
finite number of iterations because W0 is finite and its size decreases on every iteration) and by
replacing both Wi and Wi−1 by W we obtain the claim of the lemma. �

The main procedure of the decision procedure is given in Figure 4.4. The procedure first sets
Gne := G, and then repeatedly eliminates from Gne those goal states for which there is no plan
that is guaranteed to reach a state in Gne. The elimination of these states is by the subprocedure
prune (Figure 4.3 and Lemma 4.18).

After the last iteration of the loop Gne will be the maximal subset of G from which reaching a
state in Gne is guaranteed. The number of iterations is bounded by the number of states, and each
iteration has a runtime polynomial in the number of states. Hence the total runtime of this stage is
exponential in the size of the succinct transition system.

The last line of the procedure tests whether from every initial state a state inGne can be reached.
If so, then is a plan x so that from any state that can be reached from an initial state by using this
plan, there is a path to a goal state in Gne, including the state in Gne. Hence the RRG criterion is
satisfied.

Theorem 4.19 Testing plan existence for succinct transition systems with full observability under
the repeated reachability criterion (PLANSAT-FO-ND-RRG) is in EXP.

Proof: Given a succinct transition system Π, we can produce the corresponding transition system
F (Π) = (S, I,O,G, P) in exponential time. Then we call the procedure planexistsFO(S,I ,O,G)
which is given in Figure 4.4.

We prove an auxiliary result by induction on the number of iterations the loop makes. Let Wi

and Gne,i be the values of the program variables W and Gne respectively in iteration i and Gne,0

is the initial value G of Gne.
Induction hypothesis: There is x : Wi → O such that for all states s,

1. if s ∈Wi then there is an execution s1, . . . , sn of x such that s1 = s and sn ∈ Gne,i−1,

2. if s ∈Wi then imgx(s)(s) ⊆Wi, and

136 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

3. if s 6∈ Wi then for all x′ : S → O there is an execution s1, . . . , sn of x′ such that s1 = s
and there is no execution sn, . . . , sm for any m ≥ n such that sm ∈ G.

Base case i = 1: All three cases are directly by Lemma 4.18.
Inductive case i ≥ 2:

1. By Lemma 4.18 there is an execution leading to Gne,i−1 for every s ∈Wi.

2. By Lemma 4.18 imgx(s)(s) ⊆Wi for every s ∈Wi.

3. By Lemma 4.18 for every s 6∈ Wi and every x′ : S → O there is an execution s1, . . . , sn

of x′ such that s1 = s and there is no execution sn, . . . , sm for any m ≥ n such that
sm ∈ Gne,i−1.

Take any execution sn, . . . , sm for any m ≥ n. If sm 6∈ G then this execution does not lead
to G. If sm ∈ G then by the induction hypothesis and the fact that sm 6∈ Gne,i−1 ⊆ G there
is an execution sm, . . . , sm′ such that there is no execution sm′ , . . . , sm′′ such that sm′′ ∈ G.

Hence for the execution s1, . . . , sn, . . . , sm, . . . , sm′ there is no execution sm′ , . . . , sm′′

such that sm′ ∈ G.

The termination condition of the loop guarantees that from any state inW andGne ⊆W a state
in Gne is eventually reached.

Hence there is a plan x : S → O such that for all s ∈ I and for all executions s1, . . . , sn of x
such that s1 = s there is an execution sn, . . . , sm of x such that sm ∈ Gne ⊆ G. This satisfies the
RRG criterion.

Assume I 6⊆ W i.e. there is s ∈ I such that s 6∈ W . Then by the above results for all
x : S → O there is an execution s1, . . . , sn of x such that s1 = s and sm 6∈ G for all m ≥ n and
executions sn, . . . , sm. Hence if the algorithm returns false there is no plan that would satisfy the
RRG criterion. �

4.3.2 Planning with unobservability

Next we investigate the repeated reachability criterion for planning without observability and for
the most general case with partial observability. As pointed out in Example 4.4, the repeated
reachability criterion does not require that at any point of time it is known that the current state
is one of the goal states. This is why planning with the repeated reachability criterion does not
trivially reduce to planning with goal reachability.

Representing and recognizing dependencies between a belief state and its predecessor belief
states becomes necessary, and unlike for reachability goals, plans cannot be formalized as map-
pings from the current belief state to an action, that is, the belief states do not include all the
necessary information needed for testing the satisfaction of the plan objective.

The EXPSPACE lower bound for the complexity of the most general unobservable problem
PLANSAT-UO-ND-RRG is given by Theorem 4.12. We prove the EXPSPACE upper bound by
devising a corresponding decision procedure. The structure of plans for unobservable problems
is the same as for the PSPACE-complete fully observable deterministic problem with one initial
state considered in Theorem 4.16: a sequence of actions followed by a loop. The complication
in the unobservable case is that it is not necessarily ever known when a goal state is visited. The

4.3. UPPER BOUNDS OF COMPLEXITY 137

algorithm we give is an extension of the algorithm given in Theorem 4.16. First a path to the
starting belief state of a loop is found. Then a loop (a non-trivial path from the belief state to
itself) is found. Simultaneously with the loop we find for each state in the belief state an execution
that visits a goal state, showing that the loop satisfies the RRG criterion. All this can be done
by using only an exponential amount of memory, and hence the EXPSPACE membership of the
decision problem follows.

To show that this algorithm is complete, we first show that if a plan exists, then a plan with the
given structure with an initial segment followed by a loop exists. Then we derive an upper bound
on the length of such a loop.

In the unobservable case plans with an infinite execution reduce to a particularly simple form: a
sequence σ of operators (the prefix) followed by another sequence σ′ of operators (the loop) that is
repeated to produce the infinite sequence of operators σσ′σ′σ′ This is the structure of infinite
paths in a graph with only nodes of degree one. This plan induces an infinite sequence of belief
states, similarly consisting of a prefix σB followed by a loop σ′B , but the lengths of σB and σ′B do
not necessarily equal the lengths of σ and σ′.

Any plan can be transformed so that the length of the prefix and the loop for both operators and
the belief states coincide. LetB1 be the belief state reached after executing σ. After also executing
σ′ we may reach some other belief state B2 6= B1. Let B1, B2, . . . , Bn, . . . be the sequence of
belief states obtained this way, eachBi reached from the initial belief state by executing σ and then
σ′ i− 1 times. Since the number of belief states is finite, for some n ≥ 1 and k ∈ {1, . . . , n− 1},
Bk = Bn. Let n be the minimal such n. Now from Bn executing σ′ n − k times takes us to
Bn. Now we can view σσ′k−1 as the prefix of the plan and σ′n−k as the loop. This loop has the
property that Bn is its first belief state on every iteration.

We now derive an upper bound on the length of such a loop. Let o1, . . . , on be a loop with
belief states B0, . . . , Bn such that B0 = Bn and let s0, . . . , sn be an execution visiting a goal
state for one state s0 ∈ B0, that is, si ∈ G for some i ∈ {0, . . . , n}. Assume for some i, j, k ∈
{0, . . . , n} such that i 6= j 6= k 6= i both Bi = Bj = Bk and si = sj = sk. If sg ∈ G
for g ∈ {i, . . . , j − 1} then we obtain a shorter loop visiting G for s0 by eliminating operators
oj , . . . , ok−1, and if g ∈ {j, . . . , k − 1} we eliminate operators oi, . . . , oj−1. Hence there need to
be at most two occurrences of any Bi, si, and the loop needs to have a length of at most 2|S|2|S|.
Now we can concatenate the loops for all s ∈ B0, obtaining a loop that can visit a goal state from
any state in B0 and having a length of at most 2|S|2|S|2.

Theorem 4.20 Testing plan existence for succinct transition systems without observability under
the repeated reachability criterion (PLANSAT-UO-ND-RRG) is in EXPSPACE.

Proof: For a given a succinct transition system Π we first produce the corresponding transition
system F (Π) = 〈S, I,O,G, (S)〉 in exponential time. Then we find a plan by using the algorithm
with the main procedure given in Figure 4.7. The outer loop iterates over all belief states B that
may be the first in the loop that follows. This iteration takes only exponential space.

Let n = |S| be the cardinality of the state space.
For each B first test with UOreach(S,O,I ,B,n) that B is reachable from I . The procedure

UOreach is the standard recursive binary search algorithm for testing the existence of paths of
length 2n between two belief states, similar to the procedure FOreach in Figure 4.2.

Then it is tested whether there is a loop from B to itself and for every s ∈ B there is an
execution of the loop that visits a goal state. For testing the existence of such executions we use
mappings r : B → S. These mappings are used by procedure UOreachr to keep track of the

138 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

1: procedure UOreach(S,O,B,B′,m)
2: if m ≤ 0 then
3: if B = B′ or (B ⊆ {s ∈ S|sos′ for some s′ ∈ S} and B′ = imgo(B) for some o ∈ O)
4: then return true
5: else
6: for each B′′ ⊆ S do
7: if UOreach(S,O,B,B′′,m− 1) and UOreach(S,O,B′′,B′,m− 1) then return true;
8: end;
9: return false

Figure 4.5: Algorithm for finding a sequence of actions leading from B to B′

1: procedure UOreachr(S,O,B,r,B′,r′,m,Q)
2: if m ≤ 0 then
3: if (B = B′ and r = r′) (* Reachability by 0 actions *)
4: or (there is o ∈ O such that B ⊆ {s ∈ S|sos′ for some s′ ∈ S} and B′ = imgo(B)
5: and (r′(s) ∈ imgo(r(s)) or (r(s) = r′(s) and r(s) ∈ G)) for all s ∈ Q)
6: then return true
7: else
8: for each B′′ ⊆ S and function r′′ : Q→ S do
9: if UOreachr(S,O,B,r,B′′,r′′,m− 1,Q) and UOreachr(S,O,B′′,r′′,B′,r′,m− 1,Q)

10: then return true;
11: end;
12: return false

Figure 4.6: Algorithm for finding a sequence of action from B and B′ that may visit G

1: procedure UOplanexistence(S,I ,O,G)
2: for each B ⊆ S, operator o ∈ O and functions r : B → S and r′ : B → G do
3: if r(s) ∈ imgo(s) for all s ∈ B
4: and UOreach(S,O,I ,B,n)
5: and UOreachr(S,O,imgo(B),r,B,r′,n+ 1 + 2dlog2 ne,B) then return true
6: end do;
7: return false

Figure 4.7: A decision procedure for testing plan existence without observability

4.3. UPPER BOUNDS OF COMPLEXITY 139

visited states. That r(s) = s′ for some s ∈ B means that at a given point of execution the state s′

could have been reached when starting from s ∈ B. The value r(s) is updated on each operator
application when the loop is constructed until r(s) is a goal state. After reaching a goal state r(s)
is not updated further. Hence if r′(s) is a goal state when a loop from B back to itself has been
found then there is an execution of the loop that visits a goal state when execution starts from s.

The main procedure iterates over possible starting belief states B of a loop and also over r :
B → S and r′ : B → G, and then tests with UOreachr whether a loop that visits a goal state for
every s ∈ B exists. The procedure UOreachr can return an empty path, and therefore the main
procedure iterates also over the possible first operators o ∈ O of a loop. The initial values of r(s)
have to correspond to the chosen first operator of the loop (line 3). On line 5 the procedure call
UOreachr(S,O,imgo(B),r,B,r′,n + 1 + 2dlog2 ne) is made. If the procedure returns true, then
there is an operator sequence from B to imgo(B) to B, and since r′(s) ∈ G for every s ∈ B there
is for every s ∈ B an execution of this operator sequence that visits a goal state.

The maximum recursion depth is the logarithm of the maximum loop length:

log2(2
n2n2) = log2 2n + 1 + log2 n

2 = n+ 1 + 2 log2 n.

�

4.3.3 Planning with partial observability

A 2-EXP upper bound for partially observable problems under the maintenance and reachability
criteria can be directly obtained by using the algorithms for the corresponding fully observable
problems (Theorem 4.19): view belief states (sets of states) as states and view belief states that
consist of goal states only as goal states. For reachability and maintenance the plans that in Theo-
rem 4.19 are mappings from states to operators can be directly translated to plans according to the
general definition: each belief state corresponds to a plan node, the associated operator is applied,
and the observations are used to choose the successor plan node (belief state.)

For the RRG criterion and partial observability the algorithm of Theorem 4.19 cannot be directly
used because there are plans that are guaranteed to repeatedly reach a goal state but the belief state
never consists of goal states only, as pointed out in Example 4.4.

Theorem 4.21 Testing plan existence for succinct transition systems with partial observability
under the reachability criterion (PLANSAT-PO-ND-RG) is in 2-EXP.

Theorem 4.22 Testing plan existence for succinct transition systems with partial observability
under the maintenance criterion (PLANSAT-PO-ND-MG) is in 2-EXP.

For deterministic operators the belief state size monotonically decreases as plan execution pro-
ceeds. This leads to a particularly simple structure for plans when executions are infinite: they
consist of a branching non-looping part that ends in any of belief states B1, . . . , Bn. The sum of
the cardinalities of these belief states is less than or equal to the cardinality of the initial belief
state. Further, for each belief state B ∈ {B1, . . . , Bn} there is a non-branching loop to itself so
that for any starting state s ∈ B there is an execution that visits a goal state, and all belief states in
this loop have the same cardinality. Observations at this stage do not reduce the size of the belief
states.

140 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

1: procedure reachPOdet(S,O,B,L,(C1, . . . , Ck),i)
2: if i = 0 then
3: begin
4: for each j ∈ {1, . . . , k}
5: if imgo(B) ∩ Cj ⊆ B′ for no B′ ∈ L and o ∈ O such that B ⊆ {s ∈ S|sos′ for some s′ ∈ S}
6: and B ∩ Cj ⊆ B′ for no B′ ∈ L
7: then return false
8: end
9: return true

10: end
11: else
12: for each L′ ⊆ 2S such that

∑
B′∈L′ |B′| ≤ |B| and

13: for every B′ ∈ L′, B′ ⊆ Cj for some j ∈ {1, . . . , k}
14: if reachPOdet(S,O,B,L′,(C1, . . . , Ck),i− 1)
15: and reachPOdet(S,O,B′′,L,(C1, . . . , Ck),i− 1) = true for all B′′ ∈ L′
16: then return true
17: end for
18: return false

Figure 4.8: Algorithm that tests reachability of sets of belief states by deterministic operators in
EXPSPACE

Theorem 4.23 Assuming partial observability and deterministic operators, testing the existence
of a plan that always ends in one of the belief states B1, . . . , Bn can be done in exponential space.

Proof: The idea is similar to the EXPSPACE membership proof of planning without observabil-
ity: go through all possible intermediate stages of a plan by binary search (intermediate stage =
a maximal set of plan nodes of which none is a successor of another.) Determinism yields an
exponential upper bound on the sum of the cardinalities of the belief states that are possible after
a given number of actions, and it also entails that no belief state has to be visited more than once
(= acyclic plans). Hence plan executions have a doubly exponential length, and binary search only
needs exponential recursion depth. As only an exponential amount of memory is needed at each
call, the whole memory consumption is exponential.

Let F (Π) = 〈S, I,O,G, (C1, . . . , Ck)〉 be the transition system corresponding to a given suc-
cinct transition system Π. For belief state B and set L of belief states with

∑
B′∈L |B′| ≤ |S|, test

reachability of belief states in L from B with plans of depth 2i by algorithm in Figure 4.8.
Testing plan existence is by calling reachPOdet(S,O,B,L,(C1, . . . , Ck),|S|) for every B = I ∩

Ci, i ∈ {1, . . . , k}. Here L = {B1, . . . , Bn}. The algorithm always terminates, and a plan exists
if and only if answer true is obtained in all cases.

The space consumption is (only) exponential because the recursion depth is exponential and
the sets L′ ⊆ 2S with

∑
B′∈L′ |B′| ≤ |B| have size ≤ |S|. This small sets L′ suffice because all

operators are deterministic, and after any number of actions, independently of how the plan has
branched, the sum of the cardinalities of the possible belief states is not higher than the cardinality
of the set of initial states. This is because the size of a successor belief state cannot be bigger,
and the sum of sizes of belief states following a branch equals the size of the predecessor belief
state. �

4.3. UPPER BOUNDS OF COMPLEXITY 141

1: procedure planexistsPOdet(S,I ,O,G,(C1, . . . , Ck))
2: n := |S|; (* Number of states *)
3: for all sets L ⊆ 2S such that

∑
B∈L |B| < |I| do

4: if reachPOdet(S,O,I ,L,(C1, . . . , Ck),n) then
5: if for every B ∈ L (* Starting belief state of a loop *)
6: for some r : B → S and r′ : B → G and o ∈ O
7: such that r(s) ∈ imgo(s) for all s ∈ B
8: UOreachr(S,O,imgo(B),r,B,r′,n+ 1 + dlog2 ne,B)
9: then return true;

10: end for
11: return false

Figure 4.9: Algorithm for testing plan existence for deterministic operators and partial observabil-
ity

Theorem 4.24 Testing plan existence for succinct transition systems with partial observability
and deterministic operators under the repeated reachability criterion (PLANSAT-PO-D-RRG) is
in EXPSPACE.

Proof: The procedure for testing plan existence is given in Figure 4.9. The algorithm loops over
the sets of starting belief states of loops (the sum of their cardinalities is at most the cardinality of
the initial belief state).

For each potential set of loops’ starting belief states, the existence of an acyclic plan for reach-
ing these belief states is tested by the procedure reachPOdet that runs in exponential space by
Theorem 4.23.

Finally, the existence of a goal-visiting non-branching loop for each of the designated starting
belief states of a loop is tested by the procedure UOreachr, which runs in exponential space by
Theorem 4.20. �

Planning is still simpler when operators are state-independent so that the changes to the state
variables are always the same.

Theorem 4.25 Testing plan existence for succinct transition systems with partial observability
and deterministic state-independent operators under the repeated reachability criterion (PLANSAT-PO-ID-RRG)
is in PSPACE.

Proof: Since the set of observable state variables is always the same and no information about
the unobservable state variables can be obtained indirectly (through operators with conditional
effects), it suffices to initially observe everything, branch, and for every resulting belief state find
a sequential plan, consisting of a prefix and a loop that visits a goal state.

The algorithm represents belief states as triples (I, Lo, Lc) where I is the initial state formula,
Lo is the set of literals corresponding to the observations made in the initial state, and Lc is a
consistent set of literals characterizing the changes to state variables made by the operators.

The notation s ∈ B for a belief state B = (I, Lo, Lc) means that there is a state sI such that
sI |= {I} ∪ Lo and s is obtained from sI by making literals in Lc true. This can be tested in

142 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

1: procedure 3app(o,B,s,B′,s′)
2: let 〈I, Lo, Lc〉 = B;
3: let 〈I ′, L′o, L′c〉 = B′;
4: if s 6|= prec(o) for some s ∈ B
5: or imgo(s) 6= {s′}
6: or I 6= I ′

7: or Lo 6= L′o
8: or L′c 6= eff(o) ∪ {l ∈ Lc|l 6∈ eff(o)} then return false;
9: return true

Figure 4.10: Test for reachability of B′, s′ from B, s by operator o

nondeterministic polynomial time and hence in polynomial space.
This belief state representation is 3-valued in the sense that the value of each state variable is

true, false or unknown. The dependencies between state variable values are taken into account in
the membership tests s ∈ B by looking at the initial state formula I and the initial observations.

For n state variables, a given initial state formula I and given initial observations Lo there are
only O(3n) belief states that can be reached from an initial belief state B = 〈I, Lo, ∅〉. Each such
belief state B′ = 〈I, Lo, Lc〉 is uniquely characterized by the set Lc of changes made to the state
variables by state-independent operators. Since no sequential plan for reaching a belief state has
to visit any belief state more than once, such plans have a length O(3n).

The main procedure planexistsPOsi of the algorithm is given in Figure 4.13. The procedure
considers all initial belief statesB induced by the possible initial observations. Then the procedure
iterates over belief states B0 that could start a loop for B. First, B0 must be reachable from B.
This is tested with 3reach. Second, for every state s0 ∈ B0 there must be a sequence of operators
that visits G and returns to B0. This is tested with 3reachG. Since the operator sequence for every
s0 ∈ B0 may be different the actual loop is obtained by juxtaposing the operator sequences for
every s0 ∈ B0.

The procedures 3reach and 3reachG (Figures 4.11 and 4.12) are recursive similarly to the pro-
cedure FOreach in Figure 4.2. Since there are only O(2n) belief states the recursion depth is
only polynomial. Memory consumption at each call is only polynomial in the number of state
variables. Hence the whole memory consumption is only polynomial in the size of the succinct
transition system, and the plan existence problem is in PSPACE.

In both procedures the base case tests one-step reachability with the algorithm 3app (Figure
4.10) that tests applicability of operators in a 3-valued belief state. In the procedure 3app the set
of literals in the effect e of an operator 〈c, e〉 is denoted by eff(o) and the precondition c by prec(o).

�

4.4 Summary of the results

We summarize the results of this work and results established in earlier work.

4.4. SUMMARY OF THE RESULTS 143

1: procedure 3reach(A,O,B,s,B′,s′,m)
2: let 〈I, Lo, Lc〉 = B;
3: if m ≤ 0 then
4: if (B = B′ and s = s′) or 3app(o,B,s,B′,s′) for some o ∈ O then return true
5: else return false
6: else
7: for each B′′ ∈ {I} × {Lo} × 2A∪{¬a|a∈A} and s′′ ∈ B′′ do
8: if 3reach(A,O,B,s,B′′,s′′,m− 1) and 3reach(A,O,B′′,s′′,B′,s′,m− 1)
9: then return true

10: end for;
11: return false

Figure 4.11: Algorithm for finding a path from B, s to B′, s′

1: procedure 3reachG(A,O,G,B,s,B′,s′,m)
2: let 〈I, Lo, Lc〉 = B;
3: if m ≤ 0 then
4: if ((B = B′ and s = s′) or 3app(o,B,s,B′,s′) for some o ∈ O) and {s, s′} ∩G 6= ∅
5: then return true else return false
6: else
7: for each B′′ ∈ {I} × {Lo} × 2A∪{¬a|a∈A} and state s′′ ∈ B′′ do
8: if 3reachG(A,O,G,B,s,B′′,s′′,m− 1) and 3reach(A,O,B′′,s′′,B′,s′,m− 1)
9: then return true;

10: if 3reach(A,O,B,s,B′′,s′′,m− 1) and 3reachG(A,O,G,B′′,s′′,B′,s′,m− 1)
11: then return true
12: end for
13: return false

Figure 4.12: Algorithm for finding a path from B to B′ that visits G

1: procedure planexistsPOsi(A,I ,O,G,V)
2: if for every B = 〈I, Lo, ∅〉 ∈ {I} × 2A∪{¬a|a∈A} × {∅} and s : A→ {0, 1} such that
3: Lo ∪ {I} is consistent
4: {a ∈ A|a ∈ Lo or ¬a ∈ Lo} = V and (* All observations *)
5: s ∈ B (* Every matching initial state *)
6: for some B0 ∈ {I} × {Lo} × 2A∪{¬a|a∈A} and s0 ∈ B0 (* Loop’s starting belief state *)
7: 3reach(A,O,B,s,B0,s0,|A|) and (* Reachable from the initial belief state *)
8: for every s′ ∈ B0

9: for some s′′ ∈ B0

10: 3reachG(A,O,G,B0,s′,B0,s′′,|A|) (* Loop from s′ with visit to G *)
11: then return true

Figure 4.13: Algorithm for testing plan existence for deterministic state-independent operators
and partial observability

144 CHAPTER 4. CONDITIONAL PLANNING: COMPLEXITY

transition type
observability state-independent state-dependent state-dependent

deterministic (ID) deterministic (D) non-deterministic (ND)
full (FO) PSPACE (T4.10) PSPACE (T4.10) EXP (T4.14)
no (UO) PSPACE (T4.10) EXPSPACE (T4.12) EXPSPACE (T4.12)
partial (PO) PSPACE (T4.10) EXPSPACE (T4.12) 2-EXP (T4.15)

Table 4.1: Complexity lower bound (hardness) theorems for reachability and several initial states
(PLANSAT-??-??-RG)

transition type
observability state-independent state-dependent state-dependent

deterministic (ID) deterministic (D) non-deterministic (ND)
full (FO) PSPACE (T4.10) PSPACE (T4.10) EXP (T4.14)
no (UO) PSPACE (T4.10) PSPACE (T4.10) EXPSPACE (T4.12)
partial (PO) PSPACE (T4.10) PSPACE (T4.10) 2-EXP (T4.15)

Table 4.2: Complexity lower bound (hardness) theorems for reachability and one initial state
(PLANSAT-??-??-RG-1)

4.4.1 Lower bounds for reachability

On goal reachability we have hardness proofs for certain complexity classes for three different
degrees of observability (unobservable, full, partial) and transitions with three types of restrictions
(nondeterministic, deterministic state-dependent, deterministic state-independent). References to
theorems are given in Tables 4.1 and 4.2, the first for succinct transition systems with several initial
states, and the second with one initial state.

4.4.2 Upper bounds for reachability

For reachability we have constructive proofs of membership in the same complexity classes we
already proved hardness for reachability. These results show that the plan existence problems are
complete for the complexity classes in questions. References to theorems are given in Tables 4.3
and 4.4. With the exception of Theorem 4.21 the results were established with repeated reachabil-
ity and therefore they also hold for maintenance. 2-EXP upper bound for maintenance is stated in
Theorem 4.22.

transition type
observability state-independent state-dependent state-dependent

deterministic (ID) deterministic (D) non-deterministic (ND)
full (FO) PSPACE (T4.16) PSPACE (T4.16) EXP (T4.19)
no (UO) PSPACE (T4.25) EXPSPACE (T4.20) EXPSPACE (T4.20)
partial (PO) PSPACE (T4.25) EXPSPACE (T4.24) 2-EXP (T4.21)

Table 4.3: Complexity upper bound theorems for reachability and several initial states
(PLANSAT-??-??-RG)

4.4. SUMMARY OF THE RESULTS 145

transition type
observability state-independent state-dependent state-dependent

deterministic (ID) deterministic (D) non-deterministic (ND)
full (FO) PSPACE (T4.16) PSPACE (T4.16) EXP (T4.19)
no (UO) PSPACE (T4.16) PSPACE (T4.16) EXPSPACE (T4.20)
partial (PO) PSPACE (T4.16) PSPACE (T4.16) 2-EXP (T4.21)

Table 4.4: Complexity upper bound theorems for reachability and one initial state
(PLANSAT-??-??-RG-1)

Chapter 5

Algorithms for nondeterministic
planning

In Chapter 4 we proved complexity upper bounds for a number of nondeterministic planning
problems by giving resource-bounded algorithms that solve these problems. For the partially
observable problems these algorithms are in most cases not practical because of the very high
number of belief states these algorithms generate. In this chapter we consider more practical
algorithms for the some of these problems. Unlike the algorithms in Chapter 4, these algorithms
typically generate only a very small fraction of the belief states explicitly, and therefore they are
practical for much bigger problems.

Section 5.1.1 generalizes the regression operation for deterministic operators from Section 3.1.2
to nondeterministic operators. This regression operation can be used as a part of algorithms for
nondeterministic planning. In Section 5.1.2 we give a translation of nondeterministic operators
into the classical propositional logic.

Section 5.2 shows how the image and preimage operations used in some of the algorithms in
Chapter 4 can be implemented by formula manipulation and how the nondeterministic regression
operation is a special case of the general method of computing preimages. These techniques
have earlier been used in connection with symbolic model-checking [Burch et al., 1994; Clarke
et al., 1994; Bryant, 1992], and they can be used as an implementation technique of some of the
algorithms in Sections 4.3.1 and 5.4.

In the rest of the chapter we present some more practical approaches for synthesizing plans
under observability restrictions. Section 5.3.1 presents a more advanced translation of sets of
nondeterministic operators into the propositional logic and shows how it can be used as a part of a
quantified Boolean formula that represents the planning problem without observability. In Section
5.3.2 a powerful family of heuristics for search in the belief space is defined. Section 5.4 presents
a framework for plan search in the presence of partial observability.

5.1 Nondeterministic operators

In this section we will present a basic translation of nondeterministic operators into the proposi-
tional logic and a regression operation for nondeterministic operators. In the next sections we will
discuss a general framework for computing with nondeterministic operators and their transition
relations which are represented as propositional formulae. This framework provides techniques

146

5.1. NONDETERMINISTIC OPERATORS 147

for computing both regression and progression for sets of states that are represented as formulae.

5.1.1 Regression for nondeterministic operators

Regression for deterministic operators is given in Definition 3.5. It can be easily generalized to a
subclass of nondeterministic operators.

Definition 5.1 (Regression for nondeterministic operators) Let φ be a propositional formula
and o = 〈c, e1| · · · |en〉 an operator where e1, . . . , en are deterministic. Define

regrnd
o (φ) = regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ).

Theorem 5.2 Let φ be a formula over A, o an operator over A, and S the set of all states over A.
Then {s ∈ S|s |= regrnd

o (φ)} = spreimgo({s ∈ S|s |= φ}).

Proof: Let o = 〈c, (e1| · · · |en)〉.
{s ∈ S|s |= regrnd

o (φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ), . . . , s |= regr〈c,en〉(φ)}
= {s ∈ S|app〈c,e1〉(s) |= φ, . . . , app〈c,en〉(s) |= φ} T3.7
= {s ∈ S|s′ |= φ for all s′ ∈ imgo(s) and there is s′ |= φ with sos′}
= spreimgo({s ∈ S|s |= φ})

The second last equality is because imgo(s) = {app〈c,e1〉(s), . . . , app〈c,en〉(s)}. �

Example 5.3 Let o = 〈d, (b|¬c)〉. Then

regrnd
o (b↔ c) = regr〈d,b〉(b↔ c) ∧ regr〈d,¬c〉(b↔ c)

= (d ∧ (> ↔ c)) ∧ (d ∧ (b↔ ⊥))
≡ d ∧ c ∧ ¬b.

�

5.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.6.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

We define for effects e the sets changes(e) of state variables that are possibly changed by e, or
in other words, the set of state variables occurring in an atomic effect in e.

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(e1| · · · |en) = changes(e1) ∪ · · · ∪ changes(en)

We make the following assumption to simplify the translation.

148 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

Assumption 5.4 Let a ∈ A be a state variable. Let e1∧· · ·∧en occur in the effect of an operator.
If e1, . . . , en are not all deterministic, then a or ¬a may occur as an atomic effect in at most one
of e1, . . . , en.

This assumption rules out effects like (a|b) ∧ (¬a|c) that may make a simultaneously true
and false. It also rules out effects like ((d B a)|b) ∧ ((¬d B ¬a)|c) that are well-defined and
could be translated into the propositional logic. However, the additional complexity outweighs
the benefit of allowing them. Effects can often easily be transformed by the equivalences in Table
2.2 to satisfy Assumption 5.4: ((d B a)|b) ∧ ((¬d B ¬a)|c) is equivalent to ((d B a) ∧ (¬d B
¬a))|((d B a) ∧ c)|(b ∧ (¬d B ¬a))|(b ∧ c).

The problem in the translation that does not show up with deterministic operators is that for
nondeterministic choices e1| · · · |en the formula for each ei has to express the changes for exactly
the same set of state variables. This set B is given as a parameter to the translation function. The
set B has to include all state variables possibly changed by the effect.

τ nd
B (e) = τB(e) when e is deterministic

τ nd
B (e1| · · · |en) = τ nd

B (e1) ∨ · · · ∨ τ nd
B (en)

τ nd
B (e1 ∧ · · · ∧ en) = τ nd

B\(B2∪···∪Bn)(e1) ∧ τ
nd
B2

(e2) ∧ · · · ∧ τ nd
Bn

(en)
where Bi = changes(ei) for all i ∈ {2, . . . , n}

The first part of the translation τ nd
B (e) for deterministic e is the translation of deterministic effects

we presented in Section 3.6.2 restricted to state variables in B. The other two parts cover all
nondeterministic effects in normal form. In the translation of e1 ∧ · · · ∧ en all state variables that
are not changed are handled in the translation of e1. Assumption 5.4 guarantees that for each
τ nd
B (e) all state variables changed by e are in B.

Example 5.5 We translate the effect

e = (a|(d B a)) ∧ (c|d)

into a propositional formula. The set of state variables is A = {a, b, c, d}.

τ nd
{a,b,c,d}(e) = τ nd

{a,b}(a|(d B a)) ∧ τ nd
{c,d}(c|d)

= (τ nd
{a,b}(a) ∨ τ

nd
{a,b}(d B a)) ∧ (τ nd

{c,d}(c) ∨ τ
nd
{c,d}(d))

= ((a′ ∧ (b↔ b′)) ∨ (((a ∨ d) ↔ a′) ∧ (b↔ b′)))∧
((c′ ∧ (d↔ d′)) ∨ ((c↔ c′) ∧ d′))

�

For expressing a state in terms of A′ instead of A, or vice versa, we need to map a valuation
of A to a corresponding valuation of A′, or vice versa. for this purpose we define s[A′/A] =
{〈a′, s(a)〉|a ∈ A}.

Definition 5.6 Let A be a set of state variables. Let o = 〈c, e〉 be an operator over A in normal
form. Define τ nd

A (o) = c ∧ τ nd
A (e).

Lemma 5.7 Let o be an operator over a set A of state variables. Then

{v|v is a valuation of A ∪A′, v |= τ nd
A (o)} = {s ∪ s′[A′/A]|s, s′ ∈ S, s′ ∈ imgo(s)}.

5.1. NONDETERMINISTIC OPERATORS 149

Proof: We show that there is a one-to-one match between valuations satisfying τ nd
A (o) and pairs of

states and their successor states.
For the proof from right to left assume that s and s′ are states such that s′ ∈ imgo(s). Hence

there is E ∈ [e]s such that s′ is obtained from s by making literals in E true. Let v = s∪s′[A′/A].
We show that v |= τ nd

A (o). Let o = 〈c, e〉. Since imgo(s) is non-empty, s |= c. It remains to show
that v |= τ nd

A (e).
Induction hypothesis: Let e be any effect over a set B of state variables, and s and s′ states such

for some E ∈ [e]s s′ |= E and s(a) = s′(a) for every a ∈ B such that {a,¬a} ∩ E = ∅. Then
s ∪ s′[A′/A] |= τ nd

B (e).
Base case: e is a deterministic effect. There is only one E ∈ [e]s. A proof similar to that of

Lemma 3.42 shows that s ∪ s′[A′/A] |= τ nd
B (e).

Inductive case 1, e = e1 ∧ · · · ∧ en: By definition τ nd
B (e1 ∧ · · · ∧ en) = τ nd

B\(B2∪···∪Bn)(e1) ∧
τ nd
B2

(e2) ∧ · · · ∧ τ nd
Bn

(en) for Bi = changes(ei), i ∈ {2, . . . , n}. Let E be any member of [e]s and
s′ a state such that s′ |= E and s(a) = s′(a) for every a ∈ B such that {a,¬a} ∩ E = ∅. By
definition of [e]s we have E = E1 ∪ · · · ∪ En for some Ei ∈ [ei]s for every i ∈ {1, . . . , n}. The
assumptions of the induction hypothesis hold for every ei and Bi, i ∈ {2, . . . , n}:

1. s′ |= Ei because Ei ⊆ E.

2. By Assumption 5.4 s(a) = s′(a) for every a ∈ Bi such that {a,¬a} ∩ Ei = ∅.

Similarly for e1 and B\(B2 ∪ · · · ∪Bn). Hence s∪ s′[A′/A] |= τ nd
Bi

(ei) for all i ∈ {2, . . . , n} and
s ∪ s′[A′/A] |= τ nd

B\(B2∪···∪Bn)(ei), and therefore s ∪ s′[A′/A] |= τ nd
B (e).

Inductive case 2, e = e1| · · · |en: By definition τ nd
B (e1| · · · |en) = τ nd

B (e1) ∨ · · · ∨ τ nd
B (en). By

definition [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. Hence E ∈ [ei]s for some i ∈ {1, . . . , n}. Hence
the assumptions of the induction hypothesis hold for at least one ei, i ∈ {1, . . . , n} and we get
s∪ s′[A′/A] |= τ nd

B (ei). As τ nd
B (ei) is one of the disjuncts of τ nd

B (e) finally s∪ s′[A′/A] |= τ nd
B (e).

For the proof from left to right assume that v |= τ nd
B (e) for v = s ∪ s′[A′/A]. We prove by

structural induction that the changes from s to s′ correspond to [e]s.
Induction hypothesis: Let e be any effect,B a set of state variables that includes those occurring

in e, and s and s′ states such that v |= τ nd
B (e) where v = s∪ s′[A′/A]. Then there is E ∈ [e]s such

that s |= E and s(a) = s′(a) for all a ∈ B such that {a,¬a} ∩ E = ∅.
Base case: e is a deterministic effect. There is only one E ∈ [e]s. A proof similar to that of

Lemma 3.42 shows that the changes between s and s′ for a ∈ B correspond to E.
Inductive case 1, e = e1 ∧ · · · ∧ en: By definition [e]s = {E1 ∪ · · · ∪En|E1 ∈ [e1]s, . . . , En ∈

[en]s}, and by Assumption 5.4 sets of the state variables occurring in e1, . . . , en are disjoint.
By definition τ nd

B (e1 ∧ · · · ∧ en) = τ nd
B\(B2∪···∪Bn)(e1) ∧ τ nd

B2
(e2) ∧ · · · ∧ τ nd

Bn
(en) for Bi =

changes(ei), i ∈ {2, . . . , n}. The induction hypothesis for e and all a ∈ B is directly by
the induction hypothesis for all a ∈ B = (B\(B2 ∪ · · · ∪ Bn)) ∪ B2 ∪ · · · ∪ Bn because
v |= τ nd

B\(B2∪···∪Bn)(e1) ∧ τ
nd
B2

(e2) ∧ · · · ∧ τ nd
Bn

(en).
Inductive case 2, e = e1| · · · |en: By definition [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. By definition

τ nd
B (e1| · · · |en) = τ nd

B (e1) ∨ · · · ∨ τ nd
B (en). Because v |= τ nd

B (e1| · · · |en), v |= τ nd
B (ei) for some

i ∈ {1, . . . , n}. By the induction hypothesis there is E ∈ [ei]s with the given property. We get the
induction hypothesis for e because [ei]s ⊆ [e]s and hence also E ∈ [e]s.

Therefore s′ is obtained from s by making some literals inE ∈ [e]s true and retaining the values
of state variables not mentioned in E, and s′ ∈ imgo(s). �

150 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

5.2 Computing with transition relations as formulae

As discussed in Section 2.3, formulae are a representation of sets of states. In this section we
show how operations on transition relations have a counterpart as operations on formulae that
represent transition relations. These techniques have first been used in connection of symbolic
model-checking [Burch et al., 1994; Clarke et al., 1994].

Most implementations of the techniques in this section are based on binary decision diagrams
(BDDs) [Bryant, 1992], a representation (essentially a normal form) of propositional formulae
with useful computational properties, but the techniques are applicable to other representations of
propositional formulae as well.

5.2.1 Existential and universal abstraction

The most important operations performed on transition relations represented as propositional for-
mulae are based on existential abstraction and universal abstraction.

Definition 5.8 Existential abstraction of a formula φ with respect to an atomic proposition a is
the formula

∃a.φ = φ[>/a] ∨ φ[⊥/a].

Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition 5.9 Universal abstraction of a formula φ with respect to an atomic proposition a is the
formula

∀a.φ = φ[>/a] ∧ φ[⊥/a].

Existential and universal abstraction of φ with respect to a set of atomic propositions is defined
in the obvious way: for B = {b1, . . . , bn} such that B is a subset of the propositional variables
occurring in φ define

∃B.φ = ∃b1.(∃b2.(. . .∃bn.φ . . .))
∀B.φ = ∀b1.(∀b2.(. . .∀bn.φ . . .)).

In the resulting formulae there are no occurrences of variables in B.
Let φ be a formula over A. Then ∃A.φ is a formula that consists of the constants > and ⊥ and

the logical connectives only. The truth-value of this formula is independent of the valuation of A,
that is, its value is the same for all valuations.

The following lemma expresses the important properties of existential and universal abstraction.
When we write v ∪ v′ for a pair of valuations we view valuations v as binary relations, that is, sets
of pairs such that {(a, b), (a, c)} 6∈ v for any a, b and c such that b 6= c.

Lemma 5.10 Let φ be a formula over A ∪A′ and v′ a valuation of A′. Then

1. v′ |= ∃A.φ if and only if (v ∪ v′) |= φ for at least one valuation v of A, and

2. v′ |= ∀A.φ if and only if (v ∪ v′) |= φ for all valuations v of A.

Proof: We prove the statements by induction on the cardinality of A. We only give the proof for
∃. The proof for ∀ is analogous to that for ∃.

Base case |A| = 0: There is only one valuation v = ∅ of the empty set A = ∅. When there is
nothing to abstract we have ∃∅.φ = φ. Hence trivially v′ |= ∃∅.φ if and only if (v ∪ ∅) |= φ.

5.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 151

matrices formulas sets of states
vector V1×n formula over A set of states
matrix Mn×n formula over A ∪A′ transition relation
V1×n + V ′

1×n φ1 ∨ φ2 set union
φ1 ∧ φ2 set intersection

Mn×n ×Nn×n ∃A′.(τ nd
A (o) ∧ τ nd

A (o′)[A′′/A′, A′/A])[A′/A′′] sequential composition o ◦ o′
V1×n ×Mn×n (∃A.(φ ∧ τ nd

A (o)))[A/A′] imgo(T)
Mn×n × Vn×1 ∃A′.(τ nd

A (o) ∧ φ[A′/A]) preimgo(T)
∀A′.(τ nd

A (o)→φ[A′/A]) ∧ ∃A′.τ nd
A (o) spreimgo(T)

Table 5.1: Correspondence between matrix operations, Boolean operations and set-
theoretic/relational operations. Above T = {s ∈ S|s |= φ}, M is the matrix corresponding
to τ nd

A (o) and N is the matrix corresponding to o′.

Inductive case |A| ≥ 1: Take any a ∈ A. v′ |= ∃A.φ if and only if v′ |= ∃A\{a}.(φ[>/a] ∨
φ[⊥/a]) by the definition of ∃a.φ. By the induction hypothesis v′ |= ∃A\{a}.(φ[>/a]∨ φ[⊥/a])
if and only if (v0∪v′) |= φ[>/a]∨φ[⊥/a] for at least one valuation v0 ofA\{a}. Since the formula
φ[>/a] ∨ φ[⊥/a] represents both possible valuations of a in φ, the last statement is equivalent to
(v ∪ v′) |= φ for at least one valuation v of A. �

5.2.2 Images and preimages as formula manipulation

Let A = {a1, . . . , an}, A′ = {a′1, . . . , a′n} and A′′ = {a′′1, . . . , a′′n}. Let φ1 be a formula over
A ∪ A′ and φ2 be a formula over A′ ∪ A′′. The formulae can be viewed as representations of
2n × 2n matrices or as transition relations over a state space of size 2n.

The product matrix of φ1 and φ2 is represented by a the following formula over A ∪A′′.

∃A′.φ1 ∧ φ2

Example 5.11 Let φ1 = a ↔ ¬a′ and φ2 = a′ ↔ a′′ represent two actions, reversing the truth-
value of a and doing nothing. The sequential composition of these actions is

∃a′.φ1 ∧ φ2 = ((a↔ ¬>) ∧ (> ↔ a′′)) ∨ ((a↔ ¬⊥) ∧ (⊥ ↔ a′′))
≡ ((a↔ ⊥) ∧ (> ↔ a′′)) ∨ ((a↔ >) ∧ (⊥ ↔ a′′))
≡ a↔ ¬a′′.

�

This idea can be used for computing the images, preimages and strong preimages of operators
and sets of states in terms of formula manipulation by existential and universal abstraction. Table
5.1 outlines a number of connections between operations on vectors and matrices, on propositional
formulae, and on sets and relations. For transition relations we use valuations of A ∪ A′ for
representing pairs for states and for states we use valuations of A.

Lemma 5.12 Let φ be a formula over A and v a valuation of A. Then v |= φ if and only if
v[A′/A] |= φ[A′/A], and (φ[A′/A])[A/A′] = φ.

152 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

Definition 5.13 Let o be an operator and φ a formula. Define

imgo(φ) = (∃A.(φ ∧ τ nd
A (o)))[A/A′]

preimgo(φ) = ∃A′.(τ nd
A (o) ∧ φ[A′/A])

spreimgo(φ) = ∀A′.(τ nd
A (o)→φ[A′/A]) ∧ ∃A′.τ nd

A (o).

Theorem 5.14 Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= imgo(φ)} = {s ∈ S|s |=
(∃A.(φ ∧ τ nd

A (o)))[A/A′]} = imgo(T).

Proof: s′ |= (∃A.(φ ∧ τ nd
A (o)))[A/A′]

iff s′[A′/A] |= ∃A.(φ ∧ τ nd
A (o)) L5.12

iff there is valuation s of A such that (s ∪ s′[A′/A]) |= φ ∧ τ nd
A (o) L5.10

iff there is valuation s of A such that s |= φ and (s ∪ s′[A′/A]) |= τ nd
A (o)

iff there is s ∈ T such that (s ∪ s′[A′/A]) |= τ nd
A (o)

iff there is s ∈ T such that s′ ∈ imgo(s) L5.7
iff s′ ∈ imgo(T).

�

Theorem 5.15 Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= preimgo(φ)} = {s ∈ S|s |=
∃A′.(τ nd

A (o) ∧ φ[A′/A])} = preimgo(T).

Proof: s |= ∃A′.(τ nd
A (o) ∧ φ[A′/A])

iff there is s′0 : A′ → {0, 1} such that (s ∪ s′0) |= τ nd
A (o) ∧ φ[A′/A]

iff there is s′0 : A′ → {0, 1} such that s′0 |= φ[A′/A] and (s ∪ s′0) |= τ nd
A (o) L5.10

iff there is s′ : A→ {0, 1} such that s′ |= φ and (s ∪ s′0) |= τ nd
A (o) L5.12

iff there is s′ ∈ T such that (s ∪ s′[A′/A]) |= τ nd
A (o)

iff there is s′ ∈ T such that s′ ∈ imgo(s) L5.7
iff there is s′ ∈ T such that s ∈ preimgo(s′) (5) of L2.2
iff s ∈ preimgo(T).

Above we define s′ = s′0[A/A
′] (and hence s′0 = s′[A′/A].) �

Theorem 5.16 Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= spreimgo(φ)} = {s ∈ S|s |=
∀A′.(τ nd

A (o)→φ[A′/A]) ∧ ∃A′.τ nd
A (o)} = spreimgo(T).

Proof:
s |= ∀A′.(τ nd

A (o)→φ[A′/A]) ∧ ∃A′.τ nd
A (o)

iff s |= ∀A′.(τ nd
A (o)→φ[A′/A]) and s |= ∃A′.τ nd

A (o)
iff (s ∪ s′0) |= τ nd

A (o)→φ[A′/A] for all s′0 : A′ → {0, 1} and s |= ∃A′.τ nd
A (o) L5.10

iff (s ∪ s′0) 6|= τ nd
A (o) or s′0 |= φ[A′/A] for all s′0 : A′ → {0, 1} and s |= ∃A′.τ nd

A (o)
iff (s ∪ s′[A′/A]) 6|= τ nd

A (o) or s′ |= φ for all s′ : A→ {0, 1} and s |= ∃A′.τ nd
A (o) L5.12

iff s′ 6∈ imgo(s) or s′ |= φ for all s′ : A→ {0, 1} and s |= ∃A′.τ nd
A (o) L5.7

iff s′ ∈ imgo(s) implies s′ |= φ for all s′ : A→ {0, 1} and s |= ∃A′.τ nd
A (o)

iff imgo(s) ⊆ T and s |= ∃A′.τ nd
A (o)

iff imgo(s) ⊆ T and there is s′ : A→ {0, 1} with (s ∪ s′[A′/A]) |= τ nd
A (o) L5.10

iff imgo(s) ⊆ T and there is s′ : A→ {0, 1} with s′ ∈ imgo(s) L5.7
iff imgo(s) ⊆ T and there is s′ ∈ T with s′ ∈ imgo(s)
iff imgo(s) ⊆ T and there is s′ ∈ T with sos′

iff s ∈ spreimgo(T).

5.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 153

Above we define s′ = s′0[A/A
′] (and hence s′0 = s′[A′/A].) �

Corollary 5.17 Let o = 〈c, (e1| · · · |en)〉 be an operator such that all ei are deterministic. The
formula spreimgo(φ) is logically equivalent to regrnd

o (φ) as given in Definition 5.1.

Proof: By Theorems 5.2 and 5.16 {s ∈ S|s |= regro(φ)} = spreimgo({s ∈ S|s |= φ}) = {s ∈
S|s |= spreimgo(φ)}. �

Example 5.18 Let o = 〈c, a ∧ (a B b)〉. Then

regrnd
o (a ∧ b) = c ∧ (> ∧ (b ∨ a)) ≡ c ∧ (b ∨ a).

The transition relation of o is represented by

τ nd
A (o) = c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c↔ c′).

The preimage of a ∧ b with respect to o is represented by

∃a′b′c′.((a′ ∧ b′) ∧ τ nd
A (o)) ≡ ∃a′b′c′.((a′ ∧ b′) ∧ c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c↔ c′))

≡ ∃a′b′c′.(a′ ∧ b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃b′c′.(b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃c′.(c ∧ (b ∨ a) ∧ c′)
≡ c ∧ (b ∨ a)

�

Hence regression for nondeterministic operators (Definition 5.1) can be viewed as a specialized
method for computing preimages of sets of states represented as formulae.

Many algorithms include the computation of the union of images or preimages with respect
to all operators, for example

⋃
o∈O imgo(T), or in terms of formulae,

∨
o∈O imgo(φ) where T =

{s ∈ S|s |= φ}. A technique used by many implementations of such algorithms is the following.
Instead of computing the images or preimages one operator at a time, construct a combined tran-
sition relation for all operators. For an illustration of the technique, consider imgo1(φ)∨ imgo2(φ)
that represents the union of state sets represented by imgo1(φ) and imgo2(φ). By definition

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τ nd
A (o1)))[A/A′] ∨ (∃A.(φ ∧ τ nd

A (o2)))[A/A′].

Since substitution commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τ nd
A (o1))) ∨ (∃A.(φ ∧ τ nd

A (o2)))[A/A′].

Since existential abstraction commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.((φ ∧ τ nd
A (o1)) ∨ (φ ∧ τ nd

A (o2))))[A/A′].

By logical equivalence finally

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ (τ nd
A (o1) ∨ τ nd

A (o2))))[A/A′].

154 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

Hence an alternative way of computing the union of images
∨

o∈O imgo(φ) is to first form the
disjunction

∨
o∈O τ

nd
A (o) and then conjoin the formula with φ and only once existentially abstract

the propositional variables in A. This may reduce the amount of computation because existential
abstraction is in general expensive and it may be possible to simplify the formulae

∨
o∈O τ

nd
A (o)

before existential abstraction.
The definitions of preimgo(φ) and spreimgo(φ) allow using

∨
o∈O τ

nd
A (o) in the same way.

Note that defining progression for arbitrary formulae (sets of states) seems to require the explicit
use of existential abstraction with potential exponential increase in formula size. A simple syn-
tactic definition of progression similar to that of regression does not seem to be possible because
the value of a state variable in a given state cannot be stated in terms of the values of the state
variables in the successor state. This is because of the asymmetry of deterministic actions: the
current state and an operator determine the successor state uniquely but the successor state and the
operator do not determine the current state uniquely. In other words, the changes that take place
are a function of the current state, but not a function of the successor state. Taking an action erases
the information that determines which changes take place between two states. This information is
visible in the predecessor state but not in the successor state.

5.3 Planning without observability

In this section we present algorithmic techniques for planning with nondeterministic operators and
no observability.

The first approach, presented in Section 5.3.1, is a generalization of the planning by satisfia-
bility approach by Kautz and Selman [1992; 1996] to nondeterministic problems. Even under the
restriction to polynomially long plans the nondeterministic planning problem does not belong to
the complexity class NP. Therefore it cannot in general be practically translated into the satisfiabil-
ity problem of the classical propositional logic. Instead, we reduce the problem to the evaluation
of quantified Boolean formulae QBF.

The second approach applies heuristic search to search in the space of belief states. Our contri-
bution in Section 5.3.2 is the introduction of a family of distance heuristics. This work follows the
approach presented by Bonet and Geffner [2001] for the deterministic planning problem.

5.3.1 Planning by evaluation of QBF

The techniques presented in Sections 3.6 and 3.8 can be extended to nondeterministic operators.
The notion of parallel application of operators and partially ordered plans can be generalized to
nondeterministic operators.

Let T be a set of operators and s a state such that s |= c for every 〈c, e〉 ∈ T and E1 ∪ · · · ∪
En is consistent for for any Ei ∈ [ei]s, i ∈ {1, . . . , n} and T = {〈c1, e1〉, . . . 〈cn, en〉}. Then
define imgT (s) as the set of states s′ that are obtained from s by making E1 ∪ · · · ∪ En true in s
where Ei ∈ [ei]s for every i ∈ {1, . . . , n}. We also use the notation sTs′ for s′ ∈ imgT (s) and
imgT (S) =

⋃
s∈S imgT (s).

In Section 5.1.2 we showed how nondeterministic operators can be translated into formulae in
the propositional logic. This translation is not sufficient for reasoning about actions and plans in
a setting with more than one agent. This is because the formulae τ nd

A (o1) ∨ · · · ∨ τ nd
A (on) do not

distinguish between the choice of operator in {o1, . . . , on} and the nondeterministic effects (the
opponent) of each operator, even though the former is controllable and the latter is not.

5.3. PLANNING WITHOUT OBSERVABILITY 155

In nondeterministic planning in general we have to treat the controllable and uncontrollable
choices differently. We cannot do this practically in the propositional logic but by using quantified
Boolean formulae (QBF) we can. For the QBF representation of nondeterministic operators
we universally quantify over all uncontrollable eventualities (nondeterminism) and existentially
quantify over controllable eventualities (the choice of operators).

We need to universally quantify over all the nondeterministic choices because for every choice
the remaining operators in the plan must lead to a goal state. This is achieved by associating with
every atomic effect a formula that is true if and only if that effect is executed, similarly to functions
EPCl(e) in Definition 3.1, so that for l to become true the universally quantified auxiliary variables
that represent nondeterminism have to have values corresponding to an effect that makes l true.

The operators are assumed to be in normal form. For simplicity of presentation we further trans-
form nondeterministic choices e1| · · · |en so that only binary choices exist. For example a|b|c|d is
replaced by (a|b)|(c|d). Each binary choice can be encoded in terms of one auxiliary variable.

The condition for the atomic effect l to be executed when e is executed is EPCnd
l (e, σ). The

sequence σ of integers is used for deriving unique names for auxiliary variables in EPCnd
l (e, σ).

The sequences correspond to paths in the tree formed by nested nondeterministic choices and
conjunctions.

EPCnd
l (e, σ) = EPCl(e) if e is deterministic

EPCnd
l (e1|e2, σ) = (xσ ∧ EPCnd

l (e1, σ1)) ∨ (¬xσ ∧ EPCnd
l (e2, σ1))

EPCnd
l (e1 ∧ · · · ∧ en, σ) = EPCnd

l (e1, σ1) ∨ · · · ∨ EPCnd
l (en, σn)

The translation of nondeterministic operators into the propositional logic is similar to the trans-
lation for deterministic operators given in Section 3.8. Nondeterminism is encoded by making
the effects conditional on the values of the auxiliary variables xσ. Different valuations of these
auxiliary variables correspond to different nondeterministic effects.

The following frame axioms express the conditions under which state variables a ∈ A may
change from true to false and from false to true. Let e1, . . . , en be the effects of o1, . . . , on respec-
tively. Each operator o ∈ O has a unique integer index Ω(o).

(a ∧ ¬a′)→((o1 ∧ EPCnd
¬a(e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd

¬a(en,Ω(on))))
(¬a ∧ a′)→((o1 ∧ EPCnd

a (e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd
a (en,Ω(on))))

For o = 〈c, e〉 ∈ O there is a formula for describing values of state variables in the predecessor
and successor states when the operator is applied.

(o→c)∧∧
a∈A(o ∧ EPCnd

a (e,Ω(o))→a′)∧∧
a∈A(o ∧ EPCnd

¬a(e,Ω(o))→¬a′)

Example 5.19 Consider o1 = 〈¬a, (b|(c B d)) ∧ (a|c)〉 and o2 = 〈¬b, (((d B b)|c)|a)〉. The

156 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

application of these operators is described by the following formulae.

¬(a ∧ ¬a′) (¬a ∧ a′)→((o1 ∧ x12) ∨ (o2 ∧ ¬x2))
¬(b ∧ ¬b′) (¬b ∧ b′)→((o1 ∧ x11) ∨ (o2 ∧ x2 ∧ x21 ∧ d))
¬(c ∧ ¬c′) (¬c ∧ c′)→((o1 ∧ ¬x12) ∨ (o2 ∧ x2 ∧ ¬x21))
¬(d ∧ ¬d′) (¬d ∧ d′)→(o1 ∧ ¬x11 ∧ c)
o1→¬a
(o1 ∧ x12)→a′ (o1 ∧ x11)→b′

(o1 ∧ ¬x12)→c′ (o1 ∧ ¬x11 ∧ c)→d′

o2→¬b
(o2 ∧ ¬x2)→a′ (o2 ∧ x2 ∧ x21 ∧ d)→b′

(o2 ∧ x2 ∧ ¬x21)→c′

�

Two operators o and o′ may be applied in parallel only if they do not interfere. Hence we use
formulae

¬(o ∧ o′)

for all operators o and o′ that interfere and o 6= o′.
Let X be the set of auxiliary variables xσ in all the above formulae. The conjunction of all the

above formulae is denoted by
R3(A,A′, O,X).

We use two lemmata for proving properties about these formulae and the translation of nonde-
terministic operators into the propositional logic.

Let Ξσ(e) be the set of propositional variables xσ′ in the translation of the effect e with a given
σ. This is equal to the set of variables xσ′ in formulae EPCnd

a (e, σ) and EPCnd
¬a(e, σ)) for all

a ∈ A.

Definition 5.20 Define the set of literals [e]σ,v
s which are the active effects of e when e is exe-

cuted in state s and nondeterministic choices are determined by the valuation v of propositional
variables in Ξσ(e) as follows.

[e]σ,v
s = [e]det

s if e is deterministic

[e1|e2]σ,v
s =

{
[e1]

σ1,v
s if v(xσ) = 1

[e2]
σ1,v
s if v(xσ) = 0

[e1 ∧ · · · ∧ en]σ,v
s = [e1]

σ1,v
s ∪ · · · ∪ [en]σn,v

s

Lemma 5.21 Let s be a state and {v1, . . . , vn} all valuations of Ξσ(e). Then
⋃

1≤i≤n[e]σ,vi
s =

[e]s.

Lemma 5.22 Let O and T ⊆ O be sets of operators, s and s′ states, vx a valuation of X =⋃
〈c,e〉∈O ΞΩ(〈c,e〉)(e), and vo a valuation of O such that vo(o) = 1 iff o ∈ T .
Then s ∪ s′[A′/A] ∪ vo ∪ vx |= R3(A,A′, O,X) if and only if

1. s |= a iff s′ |= a for all a ∈ A such that {a,¬a} ∩
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s = ∅,

5.3. PLANNING WITHOUT OBSERVABILITY 157

2. s′ |=
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s , and

3. s |= c for all 〈c, e〉 ∈ T .

The number of auxiliary variables xσ can be reduced when two operators o and o′ interfere.
Since they cannot be applied simultaneously the same auxiliary variables can control the nonde-
terminism in both operators. To share the variables rename the ones occurring in the formulae for
one of the operators so that the variables needed for o is a subset of those for o′ or vice versa.
Having as small a number of auxiliary variables as possible may be important for the efficiency
for algorithms evaluating QBF and testing propositional satisfiability.

The formulae R3(A,A′, O,X) can be used for plan search with algorithms that evaluate QBF
as well as for testing by a satisfiability algorithm whether a conditional plan (with full, partial or
no observability) that allows several operators simultaneously indeed is a valid plan.

In deterministic planning in propositional logic (Section 3.6) the problem is to find a sequence
of operators so that a goal state is reached when the operators are applied starting in the initial
state. When there are several initial states, the operators are nondeterministic and it is not possible
to use observations during plan execution for selecting operators, the problem is to find an operator
sequence so that a goal state is reached in all possible executions of the operator sequence. There
may be several executions because there may be several initial states and the operators may be
nondeterministic. Expressing the quantification over all possible executions cannot be concisely
expressed in the propositional logic. This is the reason why quantified Boolean formulae are used
instead.

The existence of an n-step partially-ordered plan that reaches a state satisfyingG from any state
satisfying the formula I can be tested by evaluating the QBF Φqpar

n defined as

∃Vplan∀Vnd∃Vexec

I0→(R3(A0, A1, O0, X0) ∧R3(A1, A2, O1, X1) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

Here Vplan = O0 ∪ · · · ∪On−1, Vnd = A0 ∪X0 ∪ · · · ∪Xn−1 and Vexec = A1 ∪ · · · ∪An. Define
ΦqparM

n = I0→(R3(A0, A1, O0, X0)∧R3(A1, A2, O1, X1)∧· · ·∧R3(An−1, An, On−1, Xn−1)∧
Gn). The valuation of Vplan corresponds to a sequence of sets of operators. For a given valuation
of Vplan any valuation of Vnd determines an execution of these operators. The valuation of Vexec is
uniquely determined by the valuation of Vplan ∪ Vnd.

The algorithms for evaluating QBF that extend the Davis-Putnam procedure traverse an and-or
tree in which the and-nodes correspond to universally quantified variables and or-nodes correspond
to existentially quantified variables. If the QBF is true then these algorithms return a valuation of
the outermost existential variables. For a true Φqpar

n this valuation of Vplan corresponds to a plan
that can be constructed like the plans in the deterministic case in Section 3.8.1.

158 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

Theorem 5.23 The QBF Φqpar
n has value true if and only if there is a sequence T0, . . . , Tn−1 of

sets of operators such that for every i ∈ {0, . . . , n} and every state sequence s0, . . . , si such that

1. s0 |= I and

2. s0T0s1T1s2 · · · si−1Ti−1si

Ti is applicable in si if i < n and si |= G if i = n.

Proof: We first prove the implication from left to right. Since Φqpar
n is true there is a valuation

vplan of Vplan = O0 ∪ · · · ∪On−1 such that for all valuations vnd of Vnd = A0 ∪X0 ∪ · · · ∪Xn−1

there is a valuation vexec of Vexec = A1 ∪ · · · ∪ An such that vplan ∪ vnd ∪ vexec |= I0 →
(R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

Let T0, . . . , Tn−1 be the sequence of sets of operators such that for all o ∈ O and i ∈ {0, . . . , n−
1}, o ∈ Ti if and only if vplan(oi) = 1. We prove the right hand side of the theorem by induction
on n.

Induction hypothesis: For every s0, . . . , si such that s0 |= I and s0T0s1T1s2 · · · si−1Ti−1si:

1. Ti is applicable in si if i < n.

2. si |= G if i = n.

Base case i = 0: Let s0 be any state sequence such that s0 |= I .

1. If 0 < n then we have to show that T0 is applicable in s0.

Let E = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and any Ej ∈ [ej]s0 , where e1, . . . , em
are respectively the effects of the operators o1, . . . , om in T0. Such sets E are the possible
active effects of T0.

We have to show that E is consistent and the preconditions of operators in T0 are true in s0.

By Lemma 5.21 there is a valuation v of X such that E =
⋃
〈c,e〉∈T0

[e]Ω(〈c,e〉),v
s0 .

Let vnd be any valuation of Vnd such that s0[A0/A] ⊆ vnd and v[X0/X] ⊆ vnd. Since Φqpar
n

is true there is a valuation of vexec such that vplan ∪ vnd ∪ vexec |= ΦqparM
n .

Since vnd |= I0 also vplan∪vnd∪vexec |= R3(A0, A1, O0, X0). Hence by Lemma 5.22 the
preconditions of operators in T0 are true in s0 and s1 |= E where s1 is the state such that
s1(a) = vexec(a1) for all a ∈ A. Since E was chosen arbitrarily from the sets of possible
sets of active effects of T0 and it is consistent, T0 is applicable in s0.

2. If n = 0 then Vplan = Vexec = ∅ and ∀Vnd(I0 → G0) is true, and vnd |= G0 for every
valuation vnd of Vnd such that vnd |= I0.

Inductive case i ≥ 1: Let s0, . . . , si be any sequence such that s0 |= I and s0T0s1 . . . si−1Ti−1si.

1. If i < n then we have to show that Ti is applicable in si.

Let E = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and any Ej ∈ [ej]si , where e1, . . . , em are
respectively the effects of the operators o1, . . . , om in Ti. Such sets E are the possible active
effects of Ti.

We have to show that E is consistent and the preconditions of operators in Ti are true in si.

5.3. PLANNING WITHOUT OBSERVABILITY 159

By Lemma 5.21 there is a valuation v of X such that E =
⋃
〈c,e〉∈Ti

[e]Ω(〈c,e〉),v
si .

Since by the induction hypothesis sjTjsj+1 for all j ∈ {0, . . . , i − 1}, by Lemma 5.21 for
every j ∈ {0, . . . , i−1} there is a valuation vx

j of X such that sj [A/Aj]∪ sj+1[A′/Aj+1]∪
vo ∪ vx

j |= R3(A,A′, O,X) where vo assigns every o ∈ O value 1 iff o ∈ Tj .

Let vnd be any valuation of Vnd such that s0[A0/A] ⊆ vnd and v[Xi/X] ⊆ vnd and
vx
j [Xj/X] ⊆ vnd for all j ∈ {0, . . . , i− 1}.

Since Φqpar
n is true there is a valuation of vexec such that vplan ∪ vnd ∪ vexec |= ΦqparM

n .

Since vnd |= I0 also vplan ∪ vnd ∪ vexec |= R3(Ai, Ai+1, Oi, X i). Hence by Lemma 5.22
the preconditions of operators in Ti are true in si and si+1 |= E where si+1 is a state such
that si+1(a) = vexec(ai+1) for all a ∈ A. Since any E is consistent, Ti is applicable in si.

2. If i = n we have to show that sn |= G. Like in the proof for the previous case we construct
valuations vnd and vexec matching the execution s0, . . . , sn, and since vplan∪ vnd∪ vexec |=
I0→Gn we have sn |= G.

Then we prove the implication from right to left. So there is sequence T0, . . . , Tn−1 for which
all executions are defined and reach G.

We show that Φqpar
n is true: there is valuation vplan of Vplan = O0∪· · ·∪On−1 such that for every

valuation vnd of Vnd = A0 ∪X0 ∪ · · · ∪Xn−1 there is a valuation vexec of Vexec = A1 ∪ · · · ∪An

such that vplan ∪ vnd ∪ vexec |= ΦqparM
n .

We define the valuation vplan of Vplan by o ∈ Ti iff vplan(oi) = 1 for every o ∈ O and
i ∈ {0, . . . , n− 1}.

Take any valuation vnd of Vnd. Define the state s0 by s0(a) = 1 iff vnd(a0) = 1 for every
a ∈ A.

If s0 6|= I then vnd 6|= I0 and vplan ∪ vnd ∪ vexec |= ΦqparM
n for any valuation vexec of Vexec.

It remains to consider the case s0 |= I .
Define for every i ∈ {1, . . . , n} sets Ei and states si as follows.

1. Let vi
x be a valuation of X such that vi

x(x) = vnd(xi−1) for every x ∈ X .

2. Let Ei =
⋃
〈c,e〉∈Ti−1

[e]Ω(〈c,e〉),vi
x

si−1 .

We show below that this is the set of literals made true by Ti−1 in si−1.

3. Define si(a) = 1 iff a ∈ Ei or si−1(a) = 1 and ¬a 6∈ Ei, for every a ∈ A.

Let vexec = s1[A1/A] ∪ · · · ∪ sn[An/A].
Induction hypothesis: vplan ∪ vnd ∪ s1[A1/A] ∪ · · · ∪ si[Ai/A] |= I0 ∧R3(A0, A1, O0, X0) ∧

· · · ∧ R3(Ai−1, Ai, Oi−1, X i−1) and sjTjsj+1 for all j ∈ {0, . . . , i− 1}.
Base case i = 0: Trivial because vnd |= I0.
Inductive case i ≥ 1: Let vx ⊆ vnd be the valuation of Xi−1 determined by vnd and let

vo be the valuation of Oi−1 such that vo(o) = vplan(oi−1) for every o ∈ O. By Lemma 5.22
vplan ∪ vnd ∪ si−1[Ai−1/A] ∪ si[Ai/A] |= R3(Ai−1, Ai, Oi−1, X i−1). This together with the
claim of the induction hypothesis for i− 1 establishes the first part of the claim of the hypothesis
for i. By Lemma 5.21 the set Ei is one of the possible sets of active effects of Ti−1 in si−1. Hence
si−1Ti−1si. This finishes the induction proof.

160 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

Hence vplan ∪ vnd ∪ vexec |= I0 ∧ R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1),
and vexec |= Gn because sn |= G by assumption and sn[An/A] ⊆ vexec. �

5.3.2 Distance heuristics for the belief space

We present a general framework for studying heuristics for planning in the belief space. Earlier
work has focused on giving implementations of heuristics that work well on benchmarks, without
studying them at a more analytical level. Existing heuristics have evaluated belief states in terms of
their cardinality or have used distance heuristics directly based on the distances in the underlying
state space. Neither of these types of heuristics is very widely applicable: often goal belief state is
not approached through a sequence of belief states with a decreasing cardinality, and distances in
the state space ignore the main implications of partial observability.

To remedy these problems we present a family of admissible, increasingly accurate distance
heuristics for planning in the belief space, parameterized by an integer n. We show that the family
of heuristics is theoretically robust: it includes the simplest heuristic based on the state space as a
special case and as a limit the exact distances in the belief space.

Following the lead in classical planning [Bonet and Geffner, 2001], also restricted types of
planning in the belief space, most notably the planning problem without any observability at all
(sometimes known as conformant planning), has also been represented as a heuristic search prob-
lem [Bonet and Geffner, 2000]. However, the implementation of heuristic search in the belief
space is more complex than in classical planning because of the difficulty of deriving good heuris-
tics. First works on the topic have used distances in the state space [Bonet and Geffner, 2000] and
cardinalities of the belief states [Bertoli et al., 2001a]. On some types of problems these heuristics
work well, but not on all, and the two proposed approaches have orthogonal strengths.

Many problems cannot be solved by blindly taking actions that reduce the cardinality of the
current belief state: the cardinality of the belief state may stay the same or increase during plan
execution, and hence the decrease in cardinality is not characteristic to belief space planning in
general.

Similarly, distances in the state space completely ignore the most distinctive aspect of planning
with partial observability: the same action must be used in two states if the states are not obser-
vationally distinguishable. A given (optimal) plan for an unobservable problem may increase the
actual current state-space distance to the goal states (on a given execution) when the distance in
the belief-space monotonically decreases, and vice versa. Hence, the state space distances may
yield wildly misleading estimates of the distances in the corresponding belief space.

To achieve more efficient planning it is necessary to develop belief space heuristics that combine
the strengths of existing heuristics based on cardinalities and distances in the state space. In this
work we present such a family of heuristics, parameterized by a natural number n. The accuracy
of the distance estimates improves as n grows. As the special case n = 1 we have a heuristic
based on distances in the state space, similar to ones used in earlier work. When the cardinality of
the state space equals n, the distance estimates equal the actual distances in the belief space.

Belief states in the belief space are sets of states, that is, the belief space is the powerset of the
state space. An operator o maps a belief state B to the belief state

{s′ ∈ S|s ∈ B, sos′}

if o is applicable in every s ∈ B, equivalently, for every s ∈ B there is s′ ∈ S such that sos′,

5.3. PLANNING WITHOUT OBSERVABILITY 161

where S is the set of all states.
A labeled graph 〈2S , Rb

1, R
b
2, . . . , R

b
n〉 can be constructed to represent the transition system

associated with the belief space. The directed edges Rb
i are defined so that belief state B is related

to B′ by Rb
i (that is BRb

iB
′) if B is mapped to B′ by oi. Like in classical planning, these relations

Rb
i are partial functions, and similarly to classical planning, planning without observability is

finding a path from the initial belief state I to a belief state G′ such that G′ ⊆ G.
Planning in the belief space can be solved like a state-space search problem: start from the

initial belief state and repeatedly follow the directed edges in the belief space to reach new belief
states, until a belief state that is a subset of the goal states is reached.

When a heuristic search algorithm is used for avoiding the enumeration of all the belief states,
then it is important to use some informative heuristic for guiding the search.

The most obvious heuristic would be an estimate for the distance from the current belief state
B to the set of goal states G. First we discuss some admissible heuristics that are derived from
distances in the state space that underlies the belief space. These are the most obvious heuristics
one could use. Then we focus on more informative heuristics that are not directly derived from
the distances in the state space and take the observability restrictions into account.

Research on conformant planning so far has concentrated on distance heuristics derived from
the distances of individual states in the state space. The distance of a belief state is for example
the maximum length of a shortest path from a constituent state to a goal state.

Bonet and Geffner [2000] have used a related distance measure, the optimal expected number
of steps of reaching the goal in the corresponding probabilistic problem. Bryce and Kambhampati
[2004] have considered efficient approximations of state space distances.

The most obvious distance heuristics are based on the weak and strong distances in the state
space. 1. The weak distances of states are based on the following inductive definition. Sets Di

consist of those states from which a goal state is reachable in i steps or less.

D0 = G
Di+1 = Di ∪ {s ∈ S|o ∈ O, s′ ∈ Di, sos

′}

A state s has weak distance d ≥ 1 if s ∈ Dd\Dd−1 and distance 0 if s ∈ G. This means that
it is possible to reach one of the goal states starting from s by a sequence of d operators if the
nondeterministic alternatives play out favorably. Of course, nondeterministic actions may come
out unfavorably and a higher number of actions may be needed, or the goal may even become
unreachable, but if it is possible that the goals are reached in d steps then the weak distance is d.

Strong distances are based on a slightly different inductive definition. Now Di consists of those
states for which there is a guarantee of reaching a goal state in i steps or less.

D0 = G
Di+1 = Di ∪ {s ∈ S|o ∈ O, s′ ∈ Di, sos

′, sos′′ implies s′′ ∈ Di for all s′′}

A state s has strong distance d ≥ 1 if s ∈ Dd\Dd−1 and strong distance 0 if s ∈ G.
Next we derive distance heuristics for the belief space based on state space distances. Both weak

and strong distances yield an admissible distance heuristic for belief states, but strong distances
are (not always properly) higher than weak distances and therefore a more accurate estimate for
plan length.

1This terminology is inspired by Cimatti et al. [2003], where it was used for referring to the two ways of computing
sets of predecessor states.

162 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

Definition 5.24 (State space distance) The state space distance of a belief state B is d ≥ 1 when
B ⊆ Dd and B 6⊆ Dd−1, and it is 0 when B ⊆ D0 = G.

Even though computing the exact distances for a typical succinct representation of transition
systems, like STRIPS operators, is PSPACE-hard, the much higher complexity of planning prob-
lems with partial observability still often justifies it: this computation would in many cases be
an inexpensive preprocessing step, preceding the much more expensive solution of the partially
observable planning problem. Otherwise less expensive approximations can be used.

The essence of planning without observability is that the same sequence of actions has to lead
to a goal state for every state in the belief state. The distance heuristics from the strong distances
in the state space may assign distance 1 to both state s1 and state s2, but the distance from {s1, s2}
may be anywhere between 1 and infinite. The inaccuracy in estimating the distance of {s1, s2}
based on the distances of s1 and s2 is that the distances of s1 and s2 in the state space may be along
paths that have nothing to do with the path for {s1, s2} in the belief space. That is, the actions on
these three paths may be completely different.

This leads to a powerful idea. Instead of estimating the distance of B in terms of distances of
states s ∈ B in the state space S, let us estimate it in terms of distances of n-tuples of states in
the product state space Sn, in which there is a transition from 〈s1, . . . , sn〉 to 〈s′1, . . . , s′n〉 if and
only if there is an operator o that allows a transition from si to s′i for every i ∈ {1, . . . , n}. Here
the important point is that the transition between the tuples is by using the same operator for every
component state. This corresponds to the necessity of using the same operator for every state,
because observations cannot distinguish between them.

This leads to a generalization of strong distances. We define the distances of n-tuples of states
as follows.

D0 = Gn

Di+1 = Di ∪ {σ ∈ Sn|o ∈ O, σ′ ∈ Di, σR
n
oσ

′, σRn
oσ

′′ implies σ′′ ∈ Di for all σ′′}

Here Rn
o is defined by

〈s1, . . . , sn〉Rn
o 〈s′1, . . . , s′n〉 if sios

′
i for all i ∈ {1, . . . , n}.

Now we can define the n-distance of a belief state as follows.

Definition 5.25 (n-distance) Belief state B has n-distance d = 0 if for all {s1, . . . , sn} ⊆ B,
〈s1, . . . , sn〉 ∈ D0 (this is equivalent to B ⊆ G.) Belief state B has n-distance d ≥ 1 if for all
{s1, . . . , sn} ⊆ B, 〈s1, . . . , sn〉 ∈ Dd and for some {s1, . . . , sn} ⊆ B, 〈s1, . . . , sn〉 6∈ Dd−1. If
the distance d is not any natural number, then d = ∞.

So, we look at all the n-element subsets of B, see what their distance to goals is in the product
state space Sn, and take the maximum of those distances. Note that when we pick the elements
s1, . . . , sn from B, we do not and cannot assume that the elements s1, . . . , sn are distinct, for
example because B may have less than n states. Of course, the definition assumes that B has at
least one state. The 1-distance of a belief state coincides with the state space distance.

The motivation behind n-distances is that computing the actual distance of belief states is very
expensive (as complex as the planning problem itself) but we can use an informative notion of
distances for “small” belief states of size n.

Next we investigate the properties of n-distances. The first result shows that n-distances are at
least as good an estimate as m-distances when n > m. This result is based on a technical lemma

5.3. PLANNING WITHOUT OBSERVABILITY 163

that shows that m-tuples from the definition of m-distances are included in the n-tuples of the
definition of n-distances.

Lemma 5.26 (Embedding) Let n > m and let D0, D1, . . . be the sets in the definition of m-
distances, and D′

0, D
′
1, . . . the sets in the definition of n-distances.

Then for all i ≥ 0, all belief statesB and all {s1, . . . , sm} ⊆ B, if 〈s1, . . . , sm, s
′
m+1, . . . , s

′
n〉 ∈

D′
i where s′k = sm for all k ∈ {m+ 1, . . . , n}, then 〈s1, . . . , sm〉 ∈ Di.

Proof: By induction on i. Base i = 0: If {s1, . . . , sm} ⊆ B and 〈s1, . . . , sm, sm, . . . , sm〉 ∈ D′
0

(state sm is repeated so that the number of components in the tuple is n), then 〈s1, . . . , sm, sm, . . . , sm〉 ∈
Gn. Consequently, 〈s1, . . . , sm〉 ∈ D0 = Gm.

Inductive case i ≥ 1: We show that if 〈s1, . . . , sm, sm, . . . , sm〉 ∈ D′
i, then there is an operator

o ∈ O such that for any states s′1, . . . , s
′
m such that sios

′
i for all i ∈ {1, . . . ,m}, 〈s′1, . . . , s′m〉 ∈

Di−1, and hence 〈s1, . . . , sm〉 ∈ Di.
So assume 〈s1, . . . , sm, sm, . . . , sm〉 ∈ D′

i. Hence there is an operator o ∈ O such that for
all s′1, . . . , s

′
n such that sios

′
i for all i ∈ {1, . . . ,m} and smos

′
j for all j ∈ {m + 1, . . . , k},

the n-tuple 〈s′1, . . . , s′n〉 is in D′
i−1. Now 〈s′1, . . . , s′m, s′m, . . . , s′m〉 ∈ D′

i−1 because this tuple
is one of those reachable from 〈s1, . . . , sm, sm . . . , sm〉, and hence by the induction hypothesis
〈s′1, . . . , s′m〉 ∈ Di−1. Because this holds for all s′i reachable by o from the corresponding si, we
have 〈s1, . . . , sm〉 ∈ Di. �

The embedding of m-distances in n-distances as implies that n-distances are more accurate
than m-distances when n > m.

Theorem 5.27 Let dn be the n-distance for a belief state B and dm the m-distance for B. If
n > m, then dn ≥ dm.

Proof: So assume that the m-distance of B is dm. This implies that there is {s1, . . . , sm} ⊆
B such that 〈s1, . . . , sm〉 6∈ Ddm−1. Let σ = 〈s1, . . . , sm, sm, . . . , sm〉 where sm is repeated
n −m + 1 times. By Lemma 5.26 σ 6∈ D′

dm−1. Hence there is {s1, . . . , sm, sm, . . . , sm〉 ⊆ B
such that 〈s1, . . . , sm, sm, . . . , sm〉 6∈ D′

dm
. Hence the n-distance dn of B is greater than or equal

to dm. �

So, 2-distances are a better estimate for belief states than the estimate given by state space
distances, and 3-distances are a better estimate than 2-distances, and so on.

For the last result we need another lemma, which we give without a proof. The lemma states that
the components of the tuples in the setsDi may be reordered and replaced by existing components.

Lemma 5.28 LetD0, D1, . . . , be the sets in the definition of n-distances. Then if 〈s1, . . . , s, s′, . . . , sk〉
is inDi, then so is 〈s1, . . . , s′, s, . . . , sk〉, and if 〈s1, s2, s3, . . . , sk〉 is inDi, then so is 〈s1, s1, s3, . . . , sk〉.

Theorem 5.29 Let the belief space be 2S , where the cardinality of the state space is n = |S|.
Then the n-distance of B equals the distance of B in the belief space.

Proof: The proof is by course-of-values induction on the distance i. Let D0, D1, D2, . . . be the
sets in the definition of n-distances.

164 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

Induction hypothesis: Belief state B = {s1, . . . , sk} has distance i ≥ 1 if and only if σ =
〈s1, . . . , sk, sk, . . . , sk〉 ∈ Di\Di−1 (where sk is repeated so that σ is an n-tuple), and distance 0
if B ⊆ G.

Base case i = 0: Belief state B has distance 0 iff B ⊆ G iff σ ∈ Gn = D0, which trivially
holds.

Inductive case i ≥ 1: Belief state B has distance i
iff there is operator o ∈ O such that B′ = {s′1, . . . , s′k′} = {s′ ∈ S|s ∈ B, sos′} has distance
i− 1 and there is no o′ ∈ O such that B′′ = {s′′1, . . . , s′′k′′} = {s′′ ∈ S|s ∈ B, so′s′′} has distance
less than i− 1
iff there is o ∈ O such that for {s′1, . . . , s′k′} = {s′ ∈ S|s ∈ B, sos′}we have 〈s′1, . . . , s′k′ , s′k′ , . . . , s′k′〉 ∈
Di−1\Di−2 (to nicely handle the case i = 1 we define Di−2 = D1−2 = D−1 as D−1 = ∅) and
there is no o′ ∈ O such that for {s′′1, . . . , s′′k′′} = {s′′ ∈ S|s ∈ B, so′s′′} and any e ≥ 2 we would
have 〈s′′1, . . . , s′′k′′ , s′′k′′ , . . . , s′′k′′〉 ∈ Di−e iff 〈s1, . . . , sk, sk, . . . , sk〉 ∈ Di\Di−1.

The second “iff” is by two applications of the induction hypothesis, once for the first part with
operator o and i− 1 and once for the second part with operator o′′ and i− e, and the third/last iff
is established in the rest of the proof.

Because 〈s′1, . . . , s′k′ , s′k′ , . . . , s′k′〉 ∈ Di−1, by Lemma 5.28 all the n-tuples having the elements
of B′ = {s′1, . . . , s′k′} = {s′ ∈ S|s ∈ B, sos′} or a subset of them as its components are in Di−1.
These are all the successor tuples of 〈s1, . . . , sk, sk, . . . , sk〉 under Rn

o . Hence by definition of Di

〈s1, . . . , sk, sk, . . . , sk〉 is in Di.
Because there are no o′ ∈ O taking one of the tuples consisting of elements ofB = {s1, . . . , sk}

to a tuple in Di−e for e ≥ 2, we have 〈s1, . . . , sk, sk, . . . , sk〉 6∈ Di−1, which completes the
equivalence. �

In summary, the accuracy of the n-distances grows as n grows, and asymptotically when n
equals the number of states it is perfectly accurate.

In addition to including state space distances as a special case, the family of n-distances also
takes into account the cardinalities of belief states, although only in a restricted manner as deter-
mined by the magnitude of n. Consider the belief state B = {s1, s2}. Its 2-distance is determined
by the membership of the tuples σ1 = 〈s1, s2〉 (and symmetrically 〈s2, s1〉), σ2 = 〈s1, s1〉, and
σ3 = 〈s2, s2〉 in the setsDi. The distance of σ1 is at least as high as that of σ2 and σ3, because any
sequence of actions leading to goals that is applicable for {s1, s2} is also applicable for s1 alone
and for s2 alone, and there might be shorter action sequences applicable for s1 and s2 but not for
{s1, s2}. Therefore, any reduction in the size of a belief state, like from {s1, s2} to {s1} would
appropriately improve the n-distance estimate.

Accuracy of the heuristics

Preceding results show that the accuracy of n-distances increases as n grows, reaching perfect
accuracy when n equals the cardinality of the state space. To investigate the impact of more
accurate heuristics we have implemented a planner that does heuristic search in the belief space.
The planner implements three heuristics for guiding the search algorithms: the 1-distances, the
2-distances, and the cardinality of belief states. The first two heuristics are admissible, and can be
used in connection with optimal heuristic search algorithms like A∗. The third heuristic, size of
the belief states, does not directly yield an admissible heuristic, and we use it only in connection
with a search algorithm that does not rely on admissibility.

5.3. PLANNING WITHOUT OBSERVABILITY 165

The planner is implemented in C and represents belief states as BDDs with the CUDD system
from Colorado University. CUDD provides functions for computing the cardinality of a belief
state. Our current implementation does not support n-distances for n other than 1 and 2.

The search algorithms implemented in our planner include the optimal heuristic search algo-
rithm A∗, the suboptimal family of algorithms WA∗2, and suboptimal best-first search which first
expands those nodes that have the lowest estimated remaining distance to the goal states.

The main topic to be investigated is the relative accuracy of n-distances, and as a secondary
topic we briefly evaluate the effectiveness of different types of search algorithms and heuristics.
We use the following benchmarks. Regrettably there are few meaningful benchmarks; all the
interesting ones are for the more general problem of partially observable planning.

• Bonet and Geffner [2000] proposed one of the most interesting benchmarks for conformant
planning so far, sorting networks [Knuth, 1998]. A sorting network consists of an ordered
(or a partially ordered) set of gates acting on a number of input lines. Each gate combines
a comparator and a swapper: if first input is greater than the second, then swap the values.
The goal is to sort the input sequence. The sorting network always has to perform the
same operations irrespective of the input, and hence exactly corresponds to planning without
observability.

Our size parameter is the number of inputs.

• In the empty room benchmark a robot without any sensors moves in a room to north, south,
east and west and its goal is to get to the middle of the room. This is possible by going to
north or south and then west or east until the robot knows that it is in one of the corners.
Then it is easy to go to the goal position. The robot does not know its initial location.

Size n characterizes room size 2n × 2n.

• Our blocks world benchmark is the standard blocks world, but with several initial states and
modified so that from every initial state every goal state is reachable without observability
even when the initial state is not known. For this it is sufficient that the operator for moving
a block onto the table is always applicable but has not effect if there is another block on the
block. The initial belief state consists of all the possible configurations of the n blocks, and
the goal is to build a stack consisting of all the blocks in a fixed order.

• The ring of rooms benchmark involves a round building with a cycle of n rooms with a
window in each that can be closed and locked. Initially the state of the windows and the
location of the robot is unknown. The robot can move to the next room either in clockwise
or counterclockwise direction, and then close and lock the windows. Locking is possible
only if the window is closed. Locking an already locked window and closing an already
closed window does not have any effect.

The size parameter is the number of rooms.

There are other benchmarks considered in the literature, but their flavor is close to some of the
above, and many can be easily reformulated as planning with full observability.

Table 5.2 makes a comparison on the accuracy of 1-distances and 2-distances on a number of

2We parameterize WA∗ with W = 5, giving a 5 times higher value to the estimated remaining distance than to the
distance so far, yielding solutions with cost at most 5 times the optimal.

166 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

1-distance 2-distance exact
len % len % len

sort02 1 1.00 1 1.00 1
sort03 1 0.33 2 0.67 3
sort04 2 0.40 3 0.60 5
sort05 2 0.22 3 0.33 9
sort06 3 0.25 4 0.33 12
sort07 3 0.19 5 0.31 16
sort08 4 0.16 6 0.32 19
ring03 8 1.00 8 1.00 8
ring04 11 1.00 11 1.00 11
ring05 14 1.00 14 1.00 14
ring06 17 1.00 17 1.00 17
ring07 20 1.00 20 1.00 20
BW02 2 0.67 3 1.00 3
BW03 4 0.57 5 0.71 7
BW04 6 0.46 8 0.62 13
BW05 7 0.41 9 0.53 17
emptyroom01 2 1.00 2 1.00 2
emptyroom02 4 0.50 8 1.00 8
emptyroom03 8 0.40 20 1.00 20
emptyroom04 16 0.36 44 1.00 44
emptyroom05 32 0.35 92 1.00 92

Table 5.2: Accuracy of 1-distances and 2-distances on a number of problem instances

problem instances. For each heuristic we first give the distance estimate for the initial belief state,
followed by the percentage of the actual distance. The actual distance (= length of the shortest
plan) was determined by A∗ and is given in the last column.

As expected, on most of the problems 2-distances are strictly better estimates than 1-distances,
and surprisingly, on one of the problems, the empty room navigation problem, the 2-distances
equal the lengths of the shortest plans.

For the ring of room problems 1-distances and 2-distances are the same, and coincide with the
actual shortest plan length. This is because of the simple structure of the problem and its belief
space. It seems that 2-distances would also not provide an advantage over 1-distances on many
other problems in which there are no dependencies between state variables with unknown values.

The sorting network problem is the most difficult of the benchmarks in terms of the relation
between difficulty and number of state variables. Every initial state (combination of input values)
in this benchmark can be solved by a sorting network with a small number of gates (more precisely
bn

2 c), which makes the 1-distances small. Increasing n monotonically increases n-distances, but
the increase is slow because for a small number of input combinations the smallest network sorting
them all is still rather small, and as the number of input value combinations is exponential in the
number of inputs, only a tiny fraction of all combinations is covered.

Table 5.3 gives runtimes on all combinations of search algorithm and heuristic. We only report
the time spent in the search algorithm, ignoring a preprocessing phase during which BDDs repre-
senting 1-distances and 2-distances are computed. Computing 2-distances is more expensive than
computing 1-distances because there are twice as many variables in the BDDs and the efficiency

5.3. PLANNING WITHOUT OBSERVABILITY 167

instance A∗ WA∗ best first
1-distance 2-distance 1-distance 2-distance 1-distance 2-distance cardinality

time len time len time len time len time len time len time len
sort02 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1
sort03 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3
sort04 0.00 5 0.01 5 0.00 5 0.00 5 0.00 6 0.00 6 0.00 5
sort05 0.12 9 0.15 9 0.13 9 0.07 9 0.00 10 0.01 10 0.00 9
sort06 139.41 12 154.64 12 251.87 12 25.81 12 0.01 15 0.01 15 0.00 12
sort07 > 2h > 2h > 2h > 2h 0.01 21 0.01 20 0.01 16
sort08 > 2h > 2h > 2h > 2h 0.02 28 0.05 28 0.02 19
ring03 0.01 8 0.01 8 0.00 8 0.00 8 0.00 8 0.00 8 0.01 8
ring04 0.00 11 0.01 11 0.00 11 0.00 11 0.00 11 0.01 11 0.00 11
ring05 0.01 14 0.03 14 0.01 14 0.04 14 0.01 14 0.03 14 0.01 14
ring06 0.03 17 0.12 17 0.03 17 0.14 17 0.03 17 0.14 17 0.03 17
BW02 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3
BW03 0.01 7 0.00 7 0.00 7 0.01 7 0.00 7 0.01 7 0.00 7
BW04 0.71 13 0.93 13 0.04 13 0.06 14 0.02 14 0.04 14 0.03 14
BW05 180.47 17 307.62 17 1.26 17 2.87 17 0.40 22 1.41 21 0.36 34
emptyroom01 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 4
emptyroom02 0.00 8 0.00 8 0.00 8 0.00 8 0.00 12 0.00 8 0.00 12
emptyroom03 0.16 20 0.01 20 0.03 24 0.00 20 0.00 50 0.00 20 0.00 36
emptyroom04 37.28 44 0.07 44 10.59 52 0.06 44 0.09 222 0.06 44 0.01 106
emptyroom05 > 2h 0.92 92 > 2h 0.89 92 2.53 950 0.89 92 0.03 342

Table 5.3: Runtimes and plan sizes of a number of problem instances

of BDDs decreases as BDDs grow. The higher accuracy of 2-distances is often reflected in the
runtimes.

On the empty room problems, performance of A∗ and 1-distances quickly deteriorates as room
size grows, while with 2-distances A∗ immediately constructs optimal plans even for bigger rooms.
On sorting networks and WA∗ 2-distances lead to a better performance because of its advantage
over 1-distances in accuracy, but finding bigger optimal networks is still very much out of reach.

On all of the problems, best-first search is the fastest to find a plan, but plans were much longer
on the empty room and blocks world problems, and slightly worse on sorting networks. For
bigger sorting networks the cardinality heuristic combined with best-first is the best combination,
as runtimes with the other heuristics and with A∗ and WA∗ grow much faster. We believe that
our collection of benchmarks is too small to say conclusively anything general about the relative
merits of the heuristics.

Interestingly, our planner with best-first search and the cardinality heuristic produces optimal
sorting networks up to size 8 (Bonet and Geffner [2000] report producing networks until size 6
with an optimal algorithm), and for bigger networks the difference to known best networks is first
relatively small, but later grows; see Table 5.4.

Related work

Bonet and Geffner [2000] were one of the first to apply heuristic state-space search to planning in
the belief space. They used a variant of the state space distance heuristic considered by us, with
the difference that they were addressing probabilistic problems and considered expected distances

168 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

inputs 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
gates (best known) 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60
gates (our planner) 1 3 5 9 12 16 19 26 31 39 46 56 64 74 81

Table 5.4: Sizes of sorting networks found by best-first search and cardinality heuristic. Networks
up to 8 inputs are optimal. From 9 on optimal network sizes are not known. Total runtime for 16
inputs is 5.81 seconds on a 800 MHz Pentium.

of states under the optimal probabilistic plan, instead of the non-probabilistic weak or strong
distances.

Bryce and Kambhampati [2004] compute distances with Graphplan’s [Blum and Furst, 1997]
planning graphs, and recognize that the smallest of the weak distances of states in a belief state –
as is trivially obtained from planning graphs – is not very informative, and propose improvements
based on multiple planning graphs: for a formula χ1 ∨ χ2 ∨ · · · ∨ χn describing a belief state,
compute the estimate for each χi separately. Then an admissible estimate for the whole belief
state is bounded from above by maxn

i=1 mins∈σ(χi) δ(s) where σ(χi) is the set of states described
by χi, and δ(s) is the distance from state s to a goal state. This is below the state space distances
(1-distances) because minimization is used, not maximization. It may be difficult to do distance
maximization with planning graphs as they do not represent most dependencies between state
variables.

Smith and Weld’s [1998] multiple planning graphs and especially their induced mutexes are
related to our n-distances. They compute a kind of approximation of our n-distances, but as this
computation is based on distances of state variable values as in the work by Bryce and Kambham-
pati, the approximation is not very good. With the multiple planning graphs there do not appear
to be useful ways of controlling the accuracy parameter n, and Smith and Weld then essentially
consider n that equals the number of initial states for deterministic problems.

Haslum and Geffner [2000] have defined a family of increasingly accurate heuristics for clas-
sical deterministic planning. Their accuracy parameter n is the number of state variables analo-
gously to our parameter n of states. However, they give approximations of distances in the state
space (our 1-distances), not in the belief space, and many of the phenomena important for condi-
tional planning, like nondeterminism, do not show up in their framework.

5.4 Planning with partial observability

Planning with partial observability is much more complicated than its two special cases with full
and no observability. Like planning without observability, the notion of belief states becomes very
important. Like planning with full observability, formalization of plans as sequences of operators
is insufficient. However, plans also cannot be formalized as mappings from states to operators be-
cause partial observability implies that the current state is not necessarily unambiguously known.
Hence we will need the general definition of plans introduced in Section 4.1.2.

When executing operator o in belief state B the set of possible successor states is imgo(B), and
based on the observation that are made, this set is restricted to B′ = imgo(B) ∩ C where C is the
equivalence class of observationally indistinguishable states corresponding to the observation.

In planning with unobservability, a backward search algorithm starts from the goal belief state

5.4. PLANNING WITH PARTIAL OBSERVABILITY 169

and uses regression or strong preimages for finding predecessor belief states until a belief state
covering the initial belief state is found.

With partial observability, plans do not just contain operators but may also branch. With branch-
ing the sequence of operators may depend on the observations, and this makes it possible to reach
goals also when no fixed sequence of operators reaches the goals. Like strong preimages in back-
ward search correspond to images, the question arises what does branching correspond to in back-
ward search?

Example 5.30 Consider the blocks world with three blocks with the goal state in which all the
blocks are on the table. There are three operators, each of which picks up one block (if there is
nothing on top of it) and places it on the table. We can only observe which blocks are not below
another block. This splits the state space to seven observational classes, corresponding to the
valuations of the state variables clear-A, clear-B and clear-C in which at least one block is clear.

The plan construction steps are given in Figure 5.1. Starting from the top left, the first diagram
depicts the goal belief state. The second diagram depicts the belief states obtained by computing
the strong preimage of the goal belief state with respect to the move-A-onto-table action and
splitting the set of states to belief states corresponding to the observational classes. The next two
diagrams are similarly for strong preimages of move-B-onto-table and move-C-onto-table.

The fifth diagram depicts the computation of the strong preimage from the union of two existing
belief states in which the block A is on the table and C is on B or B is on C. In the resulting belief
state A is the topmost block in a stack containing all three blocks. The next two diagrams similarly
construct belief states in which respectively B and C are the topmost blocks.

The last three diagrams depict the most interesting cases, constructing belief states that subsume
two existing belief states in one observational class. The first diagram depicts the construction of
the belief state consisting of both states in which A and B are clear and C is under either A or B.
This belief state is obtained as the strong preimage of the union of two existing belief states, the
one in which all blocks are on the table and the one in which A is on the table and B is on top of
C. The action that moves A onto the table yields the belief state because if A is on C all blocks
will be on the table and if A is already on the table nothing will happen. Construction of the belief
states in which B and C are clear and A and C are clear is analogous and depicted in the last two
diagrams.

The resulting plan reaches the goal state from any state in the blocks world. The plan in the
program form is given in Figure 5.2 (order of construction is from the end to the beginning.)

�

We restrict to acyclic plans. Construction of cyclic plans requires looking at more global prop-
erties of transition graphs than what is needed for acyclic plans. Taking these local properties into
account is difficult because we want to avoid explicit enumeration of the belief states.

5.4.1 Problem representation

Now we introduce the representation for sets of state sets for which a plan for reaching goal states
exists.

In the following example states are viewed as valuations of state variables, and the observational
classes correspond to valuations of those state variables that are observable.

Example 5.31 Consider the blocks world with the state variables clear(X) observable, allowing

170 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
BC

A
B C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

A
B
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
B C

A
B
C

A

B
C

A
BC A

B
C

A
B
C A B

C
AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

CA B A
B C

B
A
C

A
BC

B

A
C

A
B

C

A
B
C A B

C
AB
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

CA B A
B C

C
B
A

C

B
AA

B
C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
AA

B
C

CA B

A
B
C

A
B
C

A
BC

A
BC

A B
C

AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
A

CA B A
BC

A
B
C A B

C
AB
C

AB
C

A
B

C

A
B
C

A
BC

A
B

C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

C

B
A

CA B A
B C

AB
C

A
B
C

AB
C

A
B
C

A
BC A

B
C

A
BC A

B
C

A B
C

A
B C

A B
C

Figure 5.1: Solution of a simple blocks world problem

to observe the topmost block of each stack. With three blocks there are 7 observational classes
because there are 7 valuations of {clear(A), clear(B), clear(C)} with at least one block clear.

Consider the problem of trying to reach the state in which all blocks are on the table. For each
block there is an action for moving it onto the table from wherever it was before. If a block cannot
be moved nothing happens. Initially we only have the empty plan for the goal states.

CA B

CA B

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

Then we compute the preimages of this set with actions that respectively put the blocks A, B
and C onto the table, and split the resulting sets to the different observational classes.

5.4. PLANNING WITH PARTIAL OBSERVABILITY 171

16:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 15
IF clear-B AND clear-C THEN GOTO 13
IF clear-A AND clear-B THEN GOTO 11
IF clear-A THEN GOTO 5
IF clear-B THEN GOTO 7
IF clear-C THEN GOTO 9

15:
move-C-onto-table

14:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 1

13:
move-B-onto-table

12:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-B AND clear-C THEN GOTO 3

11:
move-A-onto-table

10:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-B THEN GOTO 2

9:
move-C-onto-table

8:
IF clear-A AND clear-C THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 2

7:
move-B-onto-table

6:
IF clear-A AND clear-B THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 3

5:
move-A-onto-table

4:
IF clear-A AND clear-B THEN GOTO 2
IF clear-A AND clear-C THEN GOTO 3

3:
move-C-onto-table
GOTO end

2:
move-B-onto-table
GOTO end

1:
move-A-onto-table

end:

Figure 5.2: A plan for a partially observable blocks world problem

172 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B
C

A B
C

A
B C

AB
C

A
B

C

CA B

preimage of A−onto−table
preimage of B−onto−table
preimage of C−onto−table

Now for these 7 belief states we have a plan consisting of one or zero actions. But we also
have plans for sets of states that are only represented implicitly. These involve branching. For
example, we have a plan for the state set consisting of the four states in which respectively all
blocks are on the table, A is on C, A is on B, and B is on A. This plan first makes observations
and branches, and then executes the plan associated with the belief state obtained in each case.
Because 3 observational classes each have 2 belief states, there are 23 maximal state sets with a
branching plan. From each class only one belief state can be chosen because observations cannot
distinguish between belief states in the same class.

We can find more belief states that have plans by computing preimages of existing belief states.
Let us choose the belief states in which respectively all blocks are on the table, B is on C, C is on
B, and C is on A, and compute their union’s preimage with A-onto-table. The preimage intersected
with the observational classes yields new belief states: for the class with A and B clear there is a
new 2-state belief state covering both previous belief states in the class, and for the class with A
clear there is a new 2-state belief state.

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

A
B

C

A

B
C

CA B

A B
C

AB
C

A
B
C

A
BC

A
B
C

Computation of further preimages yields for each observational class a belief state covering all
the states in that class, and hence a plan for every belief state. �

Next we formalize the framework in detail.

Definition 5.32 (Belief space) Let P = (C1, . . . , Cn) be a partition of the set of all states. Then
a belief space is an n-tuple 〈G1, . . . , Gn〉 where Gi ⊆ 2Ci for all i ∈ {1, . . . , n} and B 6⊂ B′ for
all i ∈ {1, . . . , n} and {B,B′} ⊆ Gi.

Note that in each component of a belief space we only have set-inclusion maximal belief states.
The simplest belief spaces are obtained from sets B of states as F(B) = 〈{C1 ∩ B}, . . . , {Cn ∩

5.4. PLANNING WITH PARTIAL OBSERVABILITY 173

B}〉. A belief space is extended as follows.

Definition 5.33 (Extension) LetP = (C1, . . . , Cn) be the partition of all states,G = 〈G1, . . . , Gn〉
a belief space, and T a set of states. DefineG⊕T as 〈G1d(T ∩C1), . . . , Gnd(T ∩Cn)〉 where the
operation d adds the latter set of states to the former set of sets of states and eliminates sets that
are not set-inclusion maximal, defined as U dV = {R ∈ U ∪{V }|R 6⊂ K for all K ∈ U ∪{V }}.

A belief space G = 〈G1, . . . , Gn〉 represents the set of sets of states flat(G) = {B1 ∪ · · · ∪
Bn|Bi ∈ Gi for all i ∈ {1, . . . , n}} and its cardinality is |G1| · |G2| · . . . · |Gn|.

5.4.2 Complexity of basic operations

The basic operations on belief spaces needed in planning algorithms are testing the membership
of a set of states in a belief space, and finding a set of states whose preimage with respect to an
action is not contained in the belief space. Next we analyze the complexity of these operations.

Theorem 5.34 For belief spaces G and state sets B, testing whether there is B′ ∈ flat(G) such
that B ⊆ B′, and computing G⊕B takes polynomial time.

Proof: Idea: A linear number of set-inclusion tests suffices. �

Our algorithm for extending belief spaces by computing the preimage of a set of states (Lemma 5.36)
uses exhaustive search and runs in worst-case exponential time. This asymptotic worst-case com-
plexity is very likely the best possible because the problem is NP-hard. Our proof for this fact
is a reduction from SAT: represent each clause as the set of literals that are not in it, and then a
satisfying assignment is a set of literals that is not included in any of the sets, corresponding to the
same question about belief spaces.

Theorem 5.35 Testing if for belief space G there is R ∈ flat(G) such that preimgo(R) 6⊆ R′ for
all R′ ∈ flat(G) is NP-complete. This holds even for deterministic actions o.

Proof: Membership is easy: For G = 〈G1, . . . , Gn〉 choose nondeterministically Ri ∈ Gi for
every i ∈ {1, . . . , n}, compute R = preimgo(R1 ∪ · · · ∪ Rn), and verify that R ∩ Ci 6⊆ B for
some i ∈ {1, . . . , n} and all B ∈ Gi. Each of these steps takes only polynomial time.

Let T = {c1, . . . , cm} be a set of clauses over propositions A = {a1, . . . , ak}. We define a
belief space based on states {a1, . . . , ak, â1, . . . , âk, z1, . . . , zk, ẑ1, . . . , ẑk}. The states â represent
negative literals. Define

c′i = (A\ci) ∪ {â|a ∈ A,¬a 6∈ ci} for i ∈ {1, . . . ,m},
G = 〈{c′1, . . . , c′m}, {{z1}, {ẑ1}}, . . . , {{zk}, {ẑk}}〉 ,
o = {〈ai, zi〉|1 ≤ i ≤ k} ∪ {〈âi, ẑi〉|1 ≤ i ≤ k}.

We claim that T is satisfiable if and only if there is B ∈ flat(G) such that preimgo(B) 6⊆ B′ for
all B′ ∈ flat(G).

Assume T is satisfiable, that is, there is M such that M |= T . Define M ′ = {zi|ai ∈ A,M |=
ai}∪{ẑi|ai ∈ A,M 6|= ai}. NowM ′ ⊆ B for someB ∈ flat(G) because from each class only one
of {zi} or {ẑi} is taken. Let M ′′ = preimgo(M ′) = {ai ∈ A|M |= ai} ∪ {âi|ai ∈ A,M 6|= ai}.
We show that M ′′ 6⊆ B for all B ∈ flat(G). Take any i ∈ {1, . . . ,m}. Because M |= ci, there is

174 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

1: procedure findnew(o,A,F ,H);
2: if F = 〈〉 and preimgo(A) 6⊆ B for all B ∈ flat(H)
3: then return A;
4: if F = 〈〉 then return ∅;
5: F is 〈{f1, . . . , fm}, F2, . . . , Fk〉 for some k ≥ 1;
6: for i := 1 to m do
7: B := findnew(o,A ∪ fi,〈F2, . . . , Fk〉,H);
8: if B 6= ∅ then return B;
9: end;

10: return ∅;

Figure 5.3: Algorithm for finding new belief states

aj ∈ ci ∩ A such that M |= aj (or ¬aj ∈ ci, for which the proof goes similarly.) Now zj ∈ M ′,
and therefore aj ∈ M ′′. Also, aj 6∈ c′j . As there is such an aj (or ¬aj) for every i ∈ {1, . . . ,m},
M ′′ is not a subset of any c′i, and hence M ′′ 6⊆ B for all B ∈ flat(G).

Assume there is B ∈ flat(G) such that D = preimgo(B) 6⊆ B′ for all B′ ∈ flat(G). Now D
is a subset of A ∪ {â|a ∈ A} with at most one of ai and âi for any i ∈ {1, . . . , k}. Define a
model M such that for all a ∈ A, M |= a if and only if a ∈ D. We show that M |= T . Take
any i ∈ {1, . . . ,m} (corresponding to a clause.) As D 6⊆ B for all B ∈ flat(G), D 6⊆ c′i. Hence
there is aj or âj in D\c′i. Consider the case with aj (âj goes similarly.) As aj 6∈ c′i, aj ∈ ci. By
definition of M , M |= aj and hence M |= ci. As this holds for all i ∈ {1, . . . ,m}, M |= T . �

5.4.3 Algorithms

Based on the problem representation in the preceding section, we devise a planning algorithm that
repeatedly identifies new belief states (and associated plans) until a plan covering the initial states
is found. The algorithm in Figure 5.4 tests for plan existence; further book-keeping is needed for
outputting a plan. The size of the plan is proportional to the number of iterations the algorithm
performs, and outputting the plan takes polynomial time in the size of the plan. The algorithm
uses the subprocedure findnew (Figure 5.3) for extending the belief space (this is the NP-hard
subproblem from Theorem 5.35). Our implementation of the subprocedure orders sets f1, . . . , fm

by cardinality in a decreasing order: bigger belief states are tried first. We also use a simple
pruning technique for deterministic actions o: If preimgo(fi) ⊆ preimgo(fj) for some i and j such
that i > j, then we may ignore fi.

Lemma 5.36 Let H be a belief space and o an action. The procedure call findnew(o,∅,F,H)
returns a set B′ of states such that B′ = preimgo(B) for some B ∈ flat(F) and B′ 6⊆ B′′ for all
B′′ ∈ flat(H), and if no such belief state exists it returns ∅.

Proof: Sketch: The procedure goes through the elements 〈B1, . . . , Bn〉 of F1× · · · ×Fn and tests
whether preimgo(B1 ∪ · · · ∪Bn) is in H . The sets B1 ∪ · · · ∪Bn are the elements of flat(F). The
traversal through F1 × · · · × Fn is by generating a search tree with elements of F1 as children of
the root node, elements of F2 as children of every child of the root node, and so on, and testing
whether the preimage is in H . The second parameter of the procedure represents the state set
constructed so far from the belief space, the third parameter is the remaining belief space, and the

5.4. PLANNING WITH PARTIAL OBSERVABILITY 175

1: procedure plan(I ,O,G);
2: H := F(G);
3: progress := true;
4: while progress and I 6⊆ I ′ for all I ′ ∈ flat(H) do
5: progress := false;
6: for each o ∈ O do
7: B := findnew(o,∅,H ,H);
8: if B 6= ∅ then
9: begin

10: H := H ⊕ preimgo(B);
11: progress := true;
12: end;
13: end;
14: end;
15: if I ⊆ I ′ for some I ′ ∈ flat(H) then return true
16: else return false;

Figure 5.4: Algorithm for planning with partial observability

last parameter is the belief space that is to be extended, that is, the new belief state may not belong
to it. �

The correctness proof of the procedure plan consists of the following lemma and theorems.
The first lemma simply says that extending a belief space H is monotonic in the sense that the
members of flat(H) can only become bigger.

Lemma 5.37 Assume T is any set of states and B ∈ flat(H). Then there is B′ ∈ flat(H ⊕ T) so
that B ⊆ B′.

The second lemma says that if we have belief states in different observational classes such that
each is included in a belief state of a belief space H , then there is a set in flat(H) that includes all
these belief states.

Lemma 5.38 Let B1, . . . , Bn be sets of states so that for every i ∈ {1, . . . , n} there is B′
i ∈

flat(H) such that Bi ⊆ B′
i, and there is no observational class C such that for some {i, j} ⊆

{1, . . . , n} both i 6= j and Bi ∩ C 6= ∅ and Bj ∩ C 6= ∅. Then there is B′ ∈ flat(H) such that
B1 ∪ · · · ∪Bn ⊆ B′.

The proof of the next theorem shows how the algorithm is capable of finding any plan by
constructing it bottom up starting from the leaf nodes. The construction is based on first assigning
a belief state to each node in the plan, and then showing that the algorithm reaches that belief state
from the goal states by repeated computation of preimages.

Theorem 5.39 Whenever there exists a finite acyclic plan for a problem instance, the algorithm
in Figure 5.4 returns true.

Proof: Assume that there is a plan 〈N, b, l〉 for a problem instance 〈S, I,O,G, P 〉. We assume that
states in S are valuations of a set of state variables. Label all nodes of the plan as follows. Each

176 CHAPTER 5. ALGORITHMS FOR NONDETERMINISTIC PLANNING

initial node ni for i ∈ {1, . . . ,m} with {〈φ1, n1〉, . . . , 〈φm, nm〉} we assign the label Z(ni) =
{s ∈ I|s |= φi}.

When all parent nodes n1, . . . , nm〉 of a node n have a label, we assign a label to n. Let l(ni) =
〈oi, {〈φi, n〉, . . .}〉 for all i ∈ {1, . . . ,m}. Then Z(n) =

⋃
i∈{1,...,n}{s ∈ imgoi(Z(ni))|s |= φi}.

If the above labeling does not assign anything to a node n, then assign Z(n) = ∅. Each node is
labeled with exactly those states that are possible in that node on some execution.

We show that if plans for Z(n1), . . . , Z(nk) exist, where n1, . . . , nk are children of a node n,
then the algorithm determines that a plan for Z(n) exists as well.

Induction hypothesis: for every plan node n such that all paths from it to a terminal node have
length i or less, B = Z(n) is a subset of some B′ ∈ flat(H) where H is the value of the program
variable H after the while loop exits and H could not be extended further.

Base case i = 0: Terminal nodes of the plan are labeled with subsets of G. By Lemma 5.37
there is G′ such that G ⊆ G′ and G′ ∈ flat(H) because initially H = F(G) and thereafter it was
repeatedly extended.

Inductive case i ≥ 1: Let n be a plan node with l(n) = (o, {〈φ1, n1〉, . . . , 〈φk, nk〉}.
We show that Z(n) ⊆ B for some B ∈ flat(H).
By the induction hypothesis Z(ni) ⊆ B for some B ∈ flat(H) for all i ∈ {1, . . . , k}.
For all i ∈ {1, . . . , k} {s ∈ imgo(Z(n))|s |= φi} ⊆ Z(ni).
Hence by Lemma 5.38 B =

⋃
i∈{1,...,k}{s ∈ imgo(Z(n))|s |= φi} ⊆ B′ for some B′ ∈

flat(H). Assume that there is no such B′′. But now by Lemma 5.36 findnew(o,∅,H ,H) would
return B′′′ such that preimgo(B′′′) 6⊆ B for all B ∈ flat(H), and the while loop could not have
exited with H , contrary to our assumption about H . �

Theorem 5.40 Let Π = 〈S, I,O,G, P 〉 be a problem instance. If plan(I ,O,G) returns true, then
Π has a solution plan.

Proof: Let H0,H1, . . . be the sequence of belief spaces H produced by the algorithm.
Induction hypothesis: For every B ∈ Hi,j for some j ∈ {1, . . . , n} and Hi = 〈Hi,1, . . . ,Hi,n〉

a plan reaching G exists.
Base case i = 0: Every component of H0 consists of a subset of G. The empty plan reaches G.
Inductive case i ≥ 1: Hi+1 is obtained as Hi ⊕ preimgo(B) where B = findnew(o,∅,Hi,Hi)

and o is an operator.
By Lemma 5.36 B ∈ flat(Hi). By the induction hypothesis there are plans πi for every B ∩

Ci, i ∈ {1, . . . , n}. The plan that executes o followed by πi on observation Ci reaches G from
preimgo(B).

Let B′ ∈ Hi+1,j for Hi+1 = 〈Hi+1,1, . . . ,Hi+1,n〉 and some j ∈ {1, . . . , n}. We show that for
B′ there is a plan for reaching G.

If B′ ∈ Hi,j then by the induction hypothesis a plan exists.
Otherwise B′ ⊆ preimgo(B) and we can use the plan for preimgo(B) that first applies o and

then continues with a plan associated with one of the belief states in Hi. �

It would be easy to define an algorithm that systematically generates all belief states (plans)
breadth-first and therefore plans with optimal execution lengths, but this algorithm would in prac-
tice be much slower and plans would be bigger.

5.5. LITERATURE 177

Above we have used only one partition of the state space to observational classes. However, it
is straightforward to generalize the above definitions and algorithms to the case in which several
partitions are used, each for a different set of actions. This means that the possible observations
depend on the action that has last been taken.

5.5 Literature

There is a difficult trade-off between the two extreme approaches, producing a conditional plan
covering all situations that might be encountered, and planning only one action ahead. Schoppers
[1987] proposed universal plans as a solution to the high complexity of planning. Ginsberg [1989]
attacked Schopper’s idea. Schopper’s proposal was to have memoryless plans that map any given
observations to an action. He argued that plans have to be memoryless in order to be able to react
to all the unforeseeable situations that might be encountered during plan execution. Ginsberg
argued that plans that are able to react to all possible situations are necessarily much too big to
be practical. It seems to us that Schopper’s insistence on using plans without a memory is not
realistic nor necessary, and that most of Ginsberg’s argumentation on impracticality of universal
plans relies on the lack of any memory in the plan execution mechanism. Of course, we agree that
a conditional plan that can be executed efficiently can be much bigger than a plan or a planner that
has no restrictions on the amount of time consumed in deciding about the action to be taken. Plans
without such restrictions could have as high expressivity as Turing machines, for example, and
then a conditional plan does not have to be less succinct than the description of a general purpose
planning algorithm.

There is some early work on conditional planning that mostly restricts to the fully observable
case and is based on partial-order planning [Etzioni et al., 1992; Peot and Smith, 1992; Pryor and
Collins, 1996]. We have not discussed these algorithms because they have only been shown to
solve very small problem instances.

A variant of the algorithm for constructing plans for nondeterministic planning with full ob-
servability in Section 4.3.1 was first presented by Cimatti et al. [2003]. The algorithms by Cimatti
et al. construct mappings of states to actions whereas our presentation in Section 4.3.1 focuses
on the computation of distances of states, and plans are synthesized afterwards on the basis of the
distances. We believe that our algorithms are conceptually simpler. Cimatti et al. also presented
an algorithm for finding weak plans that may reach the goals but are not guaranteed to. However,
finding weak plans is polynomially equivalent to the deterministic planning problem of Chapter 3.

The nondeterministic planning problem with unobservability is not very interesting because
all robots and intelligent beings can sense their environment to at least some extent. However,
there are problems (outside AI) that are equivalent to the unobservable planning problem. Finding
homing/reset/synchronization sequences of circuits/automata is an example of such a problem
[Pixley et al., 1992].

Bertoli et al. have presented a forward search algorithm for finding conditional plans in the
general partially observable case [Bertoli et al., 2001b].

Bibliography

[Alur et al., 1997] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
Partial-order reduction in symbolic state space exploration. In Computer Aided Verification,
9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume
1254 of Lecture Notes in Computer Science, pages 340–351. Springer-Verlag, 1997.

[Anderson et al., 1998] C. Anderson, D. Smith, and D. Weld. Conditional effects in Graphplan.
In R. Simmons, M. Veloso, and S. Smith, editors, Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, pages 44–53. AAAI Press, 1998.

[Bäckström and Nebel, 1995] C. Bäckström and B. Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655, 1995.

[Balcázar et al., 1988] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. Springer-
Verlag, Berlin, 1988.

[Balcázar et al., 1990] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II. Springer-
Verlag, Berlin, 1990.

[Baral et al., 2000] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of plan-
ning and approximate planning in the presence of incompleteness. Artificial Intelligence,
122(1):241–267, 2000.

[Bensalem et al., 1996] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the
automatic generation of invariants. In R. Alur and T. A. Henzinger, editors, Proceedings of the
Eighth International Conference on Computer Aided Verification CAV, volume 1102 of Lecture
Notes in Computer Science, pages 323–335, New Brunswick, New Jersey, USA, July 1996.
Springer-Verlag.

[Bertoli et al., 2001a] P. Bertoli, A. Cimatti, and M. Roveri. Heuristic search + symbolic model
checking = efficient conformant planning. In Proceedings of the 17th International Joint Con-
ference on Artificial Intelligence, pages 467–472, 2001.

[Bertoli et al., 2001b] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeter-
ministic domains under partial observability via symbolic model checking. In B. Nebel, editor,
Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 473–
478. Morgan Kaufmann Publishers, 2001.

[Best and Devillers, 1987] E. Best and R. Devillers. Sequential and concurrent behavior in Petri
net theory. Theoretical Computer Science, 55(1):87–136, 1987.

178

BIBLIOGRAPHY 179

[Biere et al., 1999] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In W. R. Cleaveland, editor, Tools and Algorithms for the Construction and
Analysis of Systems, Proceedings of 5th International Conference, TACAS’99, volume 1579 of
Lecture Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.

[Blum and Furst, 1997] A. L. Blum and M. L. Furst. Fast planning through planning graph anal-
ysis. Artificial Intelligence, 90(1-2):281–300, 1997.

[Bonet and Geffner, 2000] B. Bonet and H. Geffner. Planning with incomplete information as
heuristic search in belief space. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors,
Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems,
pages 52–61. AAAI Press, 2000.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intel-
ligence, 129(1-2):5–33, 2001.

[Bryant, 1992] R. E. Bryant. Symbolic Boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys, 24(3):293–318, September 1992.

[Bryce and Kambhampati, 2004] D. Bryce and S. Kambhampati. Heuristic guidance measure for
conformant planning. In ICAPS 2004. Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling, pages 365–374. AAAI Press, 2004.

[Burch et al., 1994] J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(4):401–424, 1994.

[Bylander, 1994] T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[Bylander, 1996] T. Bylander. A probabilistic analysis of propositional STRIPS planning. Artifi-
cial Intelligence, 81(1-2):241–271, 1996.

[Calvanese et al., 2002] D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about actions
and planning in LTL action theories. In D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.-
A. Williams, editors, Principles of Knowledge Representation and Reasoning: Proceedings of
the Eighth International Conference (KR 2002), pages 593–602, 2002.

[Castellini et al., 2003] C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based planning in
complex domains: concurrency, constraints and nondeterminism. Artificial Intelligence, 147(1–
2):85–117, 2003.

[Chandra et al., 1981] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checking. Artificial Intelligence, 147(1–2):35–84, 2003.

[Cimatti, 2003] A. Cimatti, 2003. personal communication.

180 BIBLIOGRAPHY

[Clarke et al., 1994] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation
of counterexamples and witnesses in symbolic model checking. Technical Report CS-94-204,
Carnegie Mellon University, School of Computer Science, October 1994.

[de Bakker and de Roever, 1972] J. W. de Bakker and W. P. de Roever. A calculus of recursive
program schemes. In Proceedings of the First International Colloquium on Automata, Lan-
guages and Programming, pages 167–196. North-Holland, 1972.

[Diekert and Métivier, 1997] V. Diekert and Y. Métivier. Partial commutation and traces. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 457–
534. Springer-Verlag, 1997.

[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
New Jersey, 1976.

[Dimopoulos et al., 1997] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems
in nonmonotonic logic programs. In S. Steel and R. Alami, editors, Recent Advances in AI
Planning. Fourth European Conference on Planning (ECP’97), number 1348 in Lecture Notes
in Computer Science, pages 169–181. Springer-Verlag, 1997.

[Do and Kambhampati, 2001] M. B. Do and S. Kambhampati. Planning as constraint satisfaction:
Solving the planning graph by compiling it into CSP. Artificial Intelligence, 132(2):151–182,
2001.

[Efron and Tibshirani, 1986] B. Efron and R. Tibshirani. Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy. Statistical Science, 1:54–75,
1986.

[Efron and Tibshirani, 1993] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chap-
man and Hall, New York, 1993.

[Emerson and Sistla, 1996] E. A. Emerson and A. P. Sistla. Symmetry and model-checking. For-
mal Methods in System Design: An International Journal, 9(1/2):105–131, 1996.

[Ernst et al., 1997] M. Ernst, T. Millstein, and D. S. Weld. Automatic SAT-compilation of plan-
ning problems. In M. Pollack, editor, Proceedings of the 15th International Joint Conference
on Artificial Intelligence, pages 1169–1176. Morgan Kaufmann Publishers, 1997.

[Erol et al., 1995] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artificial Intelligence, 76(1–2):75–88,
1995.

[Etzioni et al., 1992] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An
approach to planning with incomplete information. In B. Nebel, C. Rich, and W. Swartout,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR ’92), pages 115–125. Morgan Kaufmann Publishers, October
1992.

[Fox and Long, 1999] M. Fox and D. Long. The detection and exploitation of symmetry in plan-
ning problems. In T. Dean, editor, Proceedings of the 16th International Joint Conference on
Artificial Intelligence, pages 956–961. Morgan Kaufmann Publishers, 1999.

BIBLIOGRAPHY 181

[Gerevini and Schubert, 1998] A. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. In Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98) and the 10th Conference on Innovative Applications of Artificial Intel-
ligence (IAAI-98), pages 905–912. AAAI Press, 1998.

[Ghallab et al., 1998] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL - the Planning Domain Definition Language, version 1.2.
Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and
Control, Yale University, October 1998.

[Giacomo and Vardi, 2000] G. D. Giacomo and M. Y. Vardi. Automata-theoretic approach to
planning for temporally extended goals. In S. Biundo and M. Fox, editors, Recent Advances in
AI Planning. Fifth European Conference on Planning (ECP’99), number 1809 in Lecture Notes
in Artificial Intelligence, pages 226–238. Springer-Verlag, 2000.

[Ginsberg, 1989] M. L. Ginsberg. Universal planning: An (almost) universally bad idea. AI Mag-
azine, 10(4):40–44, 1989.

[Godefroid, 1991] P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke, editor, Proceedings of the 2nd International Conference on Computer-Aided
Verification (CAV ’90), Rutgers, New Jersey, 1990, number 531 in Lecture Notes in Computer
Science, pages 176–185. Springer-Verlag, 1991.

[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum-cost paths. IEEE Transactions on System Sciences and Cybernetics,
SSC-4(2):100–107, 1968.

[Haslum and Geffner, 2000] P. Haslum and H. Geffner. Admissible heuristics for optimal plan-
ning. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors, Proceedings of the Fifth
International Conference on Artificial Intelligence Planning Systems, pages 140–149. AAAI
Press, 2000.

[Haslum and Jonsson, 2000] P. Haslum and P. Jonsson. Some results on the complexity of plan-
ning with incomplete information. In S. Biundo and M. Fox, editors, Recent Advances in AI
Planning. Fifth European Conference on Planning (ECP’99), number 1809 in Lecture Notes in
Artificial Intelligence, pages 308–318. Springer-Verlag, 2000.

[Heljanko, 2001] K. Heljanko. Bounded reachability checking with process semantics. In Pro-
ceedings of the 12th International Conference on Concurrency Theory (Concur’2001), volume
2154 of Lecture Notes in Computer Science, pages 218–232. Springer-Verlag, 2001.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[Howard, 1960] R. A. Howard. Dynamic programming and Markov decision processes. The MIT
Press, 1960.

[Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann,
editor, Proceedings of the 10th European Conference on Artificial Intelligence, pages 359–363.
John Wiley & Sons, 1992.

182 BIBLIOGRAPHY

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing the envelope: planning, proposi-
tional logic, and stochastic search. In Proceedings of the 13th National Conference on Ar-
tificial Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference,
pages 1194–1201. AAAI Press, August 1996.

[Kautz and Selman, 1999] H. Kautz and B. Selman. Unifying SAT-based and graph-based plan-
ning. In T. Dean, editor, Proceedings of the 16th International Joint Conference on Artificial
Intelligence, pages 318–325. Morgan Kaufmann Publishers, 1999.

[Kautz and Walser, 1999] H. Kautz and J. Walser. State-space planning by integer optimization.
In Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99) and the
11th Conference on Innovative Applications of Artificial Intelligence (IAAI-99), pages 526–
533. AAAI Press, 1999.

[Khomenko et al., 2005] A. Khomenko, Victor an Kondratyev, M. Koutny, and W. Vogler.
Merged processes - a new condensed representation of Petri net behaviour. Technical report
CS-TR 884, School of Computing Science, University of Newcastle upon Tyne, January 2005.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, May 1983.

[Knuth, 1998] D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley Publishing Company, 1998.

[Korf, 1985] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree search. Arti-
ficial Intelligence, 27(1):97–109, 1985.

[Kupferman and Vardi, 1997] O. Kupferman and M. Vardi. Synthesis with incomplete informa-
tion, 1997.

[Littman et al., 1998] M. L. Littman, J. Goldsmith, and M. Mundhenk. The computational com-
plexity of probabilistic planning. Journal of Artificial Intelligence Research, 9:1–36, 1998.

[Littman, 1997] M. L. Littman. Probabilistic propositional planning: Representations and com-
plexity. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97)
and 9th Innovative Applications of Artificial Intelligence Conference (IAAI-97), pages 748–754,
Menlo Park, July 1997. AAAI Press.

[Lozano and Balcázar, 1990] A. Lozano and J. L. Balcázar. The complexity of graph problems
for succinctly represented graphs. In M. Nagl, editor, Graph-Theoretic Concepts in Computer
Science, 15th International Workshop, WG’89, number 411 in Lecture Notes in Computer Sci-
ence, pages 277–286. Springer-Verlag, 1990.

[Madani et al., 2003] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelligence, 147(1–2):5–34,
2003.

[McAllester and Rosenblitt, 1991] D. A. McAllester and D. Rosenblitt. Systematic nonlinear
planning. In T. L. Dean and K. McKeown, editors, Proceedings of the 9th National Conference
on Artificial Intelligence, volume 2, pages 634–639. AAAI Press / The MIT Press, 1991.

BIBLIOGRAPHY 183

[McDermott, 1999] D. V. McDermott. Using regression-match graphs to control search in plan-
ning. Artificial Intelligence, 109(1–2):111–159, 1999.

[McMillan, 2003] K. L. McMillan. Interpolation and SAT-based model checking. In W. A.
Hunt Jr. and F. Somenzi, editors, Proceedings of the 15th International Conference on Com-
puter Aided Verification (CAV 2003), number 2725 in Lecture Notes in Computer Science,
pages 1–13, 2003.

[Meyer and Stockmeyer, 1972] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential time. In Proceedings of the 13th Annual
Symposium on Switching and Automata Theory, pages 125–129. IEEE Computer Society, 1972.

[Mneimneh and Sakallah, 2003] M. Mneimneh and K. Sakallah. Computing vertex eccentricity in
exponentially large graphs: QBF formulation and solution. In E. Giunchiglia and A. Tacchella,
editors, SAT 2003 - Theory and Applications of Satisfiability Testing, number 2919 in Lecture
Notes in Computer Science, pages 411–425, 2003.

[Mundhenk et al., 2000] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of
finite-horizon Markov decision process problems. Journal of the ACM, 47(4):681–720, 2000.

[Nguyen et al., 2002] X. Nguyen, S. Kambhampati, and R. S. Nigenda. Planning graph as the
basis for deriving heuristics for plan synthesis by state space and CSP search. Artificial Intelli-
gence, 135:73–123, 2002.

[Papadimitriou and Yannakakis, 1986] C. H. Papadimitriou and M. Yannakakis. A note on suc-
cinct representations of graphs. Information and Control, 71:181–185, 1986.

[Papadimitriou, 1994] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Pub-
lishing Company, 1994.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

[Peot and Smith, 1992] M. A. Peot and D. E. Smith. Conditional nonlinear planning. In
J. Hendler, editor, Proceedings of the First International Conference on Artificial Intelligence
Planning Systems, pages 189–197. Morgan Kaufmann Publishers, 1992.

[Pixley et al., 1992] C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchro-
nization sequences based on binary decision diagrams. In Proceedings of the 29th Design
Automation Conference, pages 620–623, 1992.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reac-
tive module. In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, Automata,
Languages and Programming, 16th International Colloquium, volume 372 of Lecture Notes in
Computer Science, pages 652–671. Springer-Verlag, July 1989.

[Pryor and Collins, 1996] L. Pryor and G. Collins. Planning for contingencies: A decision-based
approach. Journal of Artificial Intelligence Research, 4:287–339, 1996.

[Puterman, 1994] M. L. Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 1994.

184 BIBLIOGRAPHY

[Rintanen et al., 2005] J. Rintanen, K. Heljanko, and I. Niemelä. Planning as satisfiability: par-
allel plans and algorithms for plan search. Report 216, Albert-Ludwigs-Universität Freiburg,
Institut für Informatik, 2005.

[Rintanen, 1998] J. Rintanen. A planning algorithm not based on directional search. In A. G.
Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixth International Conference (KR ’98), pages 617–624.
Morgan Kaufmann Publishers, June 1998.

[Rintanen, 1999] J. Rintanen. Constructing conditional plans by a theorem-prover. Journal of
Artificial Intelligence Research, 10:323–352, 1999.

[Rintanen, 2004a] J. Rintanen. Complexity of planning with partial observability. In S. Zilber-
stein, J. Koehler, and S. Koenig, editors, ICAPS 2004. Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling, pages 345–354. AAAI Press, 2004.

[Rintanen, 2004b] J. Rintanen. Distance estimates for planning in the discrete belief space. In
Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-2004) and the
16th Conference on Innovative Applications of Artificial Intelligence (IAAI-2004), pages 525–
530. AAAI Press, 2004.

[Rintanen, 2004c] J. Rintanen. Evaluation strategies for planning as satisfiability. In R. López de
Mántaras and L. Saitta, editors, ECAI 2004: Proceedings of the 16th European Conference
on Artificial Intelligence, volume 110 of Frontiers in Artificial Intelligence and Applications,
pages 682–687. IOS Press, 2004.

[Rintanen, 2004d] J. Rintanen. Phase transitions in classical planning: an experimental study. In
D. Dubois, C. A. Welty, and M.-A. Williams, editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Ninth International Conference (KR 2004), pages 710–719.
AAAI Press, 2004.

[Rintanen, 2005] J. Rintanen. Conditional planning in the discrete belief space. In L. P. Kaelbling,
editor, Proceedings of the 19th International Joint Conference on Artificial Intelligence, pages
1260–1265. Morgan Kaufmann Publishers, 2005.

[Rosenschein, 1981] S. J. Rosenschein. Plan synthesis: A logical perspective. In P. J. Hayes,
editor, Proceedings of the 7th International Joint Conference on Artificial Intelligence, pages
331–337. William Kaufmann, August 1981.

[Sacerdoti, 1975] E. D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the 4th
International Joint Conference on Artificial Intelligence, pages 206–214, 1975.

[Schoppers, 1987] M. J. Schoppers. Universal plans for real-time robots in unpredictable envi-
ronments. In J. P. McDermott, editor, Proceedings of the 10th International Joint Conference
on Artificial Intelligence, pages 1039–1046. Morgan Kaufmann Publishers, 1987.

[Selman et al., 1996] B. Selman, D. G. Mitchell, and H. Levesque. Generating hard satisfiability
problems. Artificial Intelligence, 81(1-2):459–465, 1996.

BIBLIOGRAPHY 185

[Sheeran et al., 2000] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using
induction and a SAT-solver. In W. A. Hunt and S. D. Johnson, editors, Formal Methods in
Computer-Aided Design, Third International Conference, FMCAD 2000, Austin, Texas, USA,
November 1-3, 2000, Proceedings, volume 1954 of Lecture Notes in Computer Science, pages
108–125. Springer-Verlag, 2000.

[Smallwood and Sondik, 1973] R. D. Smallwood and E. J. Sondik. The optimal control of par-
tially observable Markov processes over a finite horizon. Operations Research, 21:1071–1088,
1973.

[Smith and Weld, 1998] D. E. Smith and D. S. Weld. Conformant Graphplan. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI-98) and the 10th Conference on
Innovative Applications of Artificial Intelligence (IAAI-98), pages 889–896. AAAI Press, 1998.

[Sondik, 1971] E. J. Sondik. The optimal control of partially observable Markov processes. PhD
thesis, Stanford University, 1971.

[Sondik, 1978] E. J. Sondik. The optimal control of partially observable Markov processes over
the infinite horizon: discounted costs. Operations Research, 26(2):282–304, 1978.

[Starke, 1991] P. H. Starke. Reachability analysis of Petri nets using symmetries. Journal of
Mathematical Modelling and Simulation in Systems Analysis, 8(4/5):293–303, 1991.

[Stockmeyer and Chandra, 1979] L. J. Stockmeyer and A. K. Chandra. Provably difficult combi-
natorial games. SIAM Journal on Computing, 8(2):151–174, 1979.

[Turner, 2002] H. Turner. Polynomial-length planning spans the polynomial hierarchy. In Logics
in Artificial Intelligence, European Conference, JELIA 2002, number 2424 in Lecture Notes in
Computer Science, pages 111–124. Springer-Verlag, 2002.

[Valmari, 1991] A. Valmari. Stubborn sets for reduced state space generation. In G. Rozenberg,
editor, Advances in Petri Nets 1990. 10th International Conference on Applications and Theory
of Petri Nets, Bonn, Germany, number 483 in Lecture Notes in Computer Science, pages 491–
515. Springer-Verlag, 1991.

[van Beek and Chen, 1999] P. van Beek and X. Chen. CPlan: A constraint programming approach
to planning. In Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-
99) and the 11th Conference on Innovative Applications of Artificial Intelligence (IAAI-99),
pages 585–590. AAAI Press, 1999.

[Vardi and Stockmeyer, 1985] M. Vardi and L. Stockmeyer. Improved upper and lower bounds
for modal logics of programs. In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, pages 240–251. Association for Computing Machinery, 1985.

[Vardi, 1995] M. Y. Vardi. An automata-theoretic approach to fair realizability and synthesis.
In P. Wolper, editor, Computer Aided Verification, Proceedings of the 7th International Con-
ference, volume 939 of Lecture Notes in Computer Science, pages 267–278. Springer-Verlag,
1995.

186 BIBLIOGRAPHY

[Wolfman and Weld, 1999] S. A. Wolfman and D. S. Weld. The LPSAT engine & its application
to resource planning. In T. Dean, editor, Proceedings of the 16th International Joint Conference
on Artificial Intelligence, volume I, pages 310–315. Morgan Kaufmann Publishers, 1999.

Index

[T]det
s , 14

[o]s, 12
appo1;...;on(s), 10, 14
appo(s), 10, 14
asat(D,φ), 34
[e]det

s , 13
[e]s, 12
R3(A,A′, O,X), 156
R1(A,A′), 47
δfwd
s (φ), 30
δmax
I (φ), 33, 105
δrlx
I (φ), 39, 105
δ+I (φ), 36, 105
EPCnd

l (e, σ), 155
EPCl(e), 23
EPCl(o), 23
imgT (s), 154
imgo(φ), 152
τ nd
A (o), 148

Ω(o), 155
τA(e), 46
τA(o), 46
preimgo(φ), 152
regrnd

o (φ), 147
regre(φ), 24
regro1;...;on(φ), 24
regro(φ), 24
s[A′/A], 148
spreimgo(φ), 152
2-EXP, 19

A∗, 29
action, 8
AEXPSPACE, 19
alternating Turing machine, 19
application, 8
APSPACE, 19
assignment, 10

bounded model-checking, 105

clause, 10
CNF, 11
completeness, 20
complexity, 106
composition of operators, 27
conjunction, 10
conjunctive normal form, 11
connective, 10
consistency, 10

deterministic operator, 13
deterministic succinct transition system, 14
deterministic transition system, 9
deterministic Turing machine, 19
disjunction, 10
disjunctive normal form, 11
distance (of a state), 30
DNF, 11

effect, 12
existential abstraction, 150
EXP, 19
EXPSPACE, 19

formula, 10
forward distance (of a state), 30

Graphplan, 106

hardness, 19

IDA∗, 29
image imgo(s), 8, 151
intractable, 20
invariant, 31, 41

literal, 10
logical consequence, 10

187

188 INDEX

many-one reduction, 19
max heuristic, 32
model, 10
model-checking, 105

negation, 10
negation normal form, 10
NEXP, 19
NNF, 10
nondeterministic Turing machine, 19
normal form II, nondeterministic operators, 17
normal form, deterministic operators, 15
normal form, nondeterministic operators, 16
NP, 19

observable state variable, 13
operator, 12
operator (p, e, c), 50
operator application, 8

P, 19
partial-order planning, 30, 177
partial-order reduction, 106
partially-ordered plans, 105
phase transitions, 106
planning graphs, 106
precondition, 12
preimage preimgo(s), 8
progression, for formulae, 154
progression, for states, 22
propositional formula, 10
propositional variable, 10
PSPACE, 19

QBF, 11, 155
quantified Boolean formula, 11, 155

reachability, 30
regression, 24, 147, 153
relaxed plan heuristic, 37

satisfiability, 10
sequential composition, 15, 28
simulated annealing, 29
state, 8, 12
state variable, 12
state variable, observable, 13
STRIPS operators, 14, 26

strong preimage spreimgo(T), 9, 151
strongest invariant, 31
succinct representation, 20
succinct transition system, 12
sum heuristic, 36
symmetry reduction, 106

tautology, 10
tractable, 20
transition system, 8, 9
Turing machine, 19

universal abstraction, 150

valid, 10
valuation, 10

WA∗, 29
weak preimage preimgo(s), 8, 151

