
Technical Report 220

State-Space Traversal Techniques for Planning

Jussi Rintanen
Albert-Ludwigs-Universiẗat Freiburg, Institut f̈ur Informatik

Georges-K̈ohler-Allee, 79110 Freiburg im Breisgau
Germany

July 13, 2005

Foreword

These notes are based on the AI planning lectures at the Albert-Ludwigs-Universität Freiburg.
I would like to thank all the students who have participated in the planning course and given
comments, pointed out errors, and suggested other improvements, including Slawomir Grzonka,
Bernd Gutmann, Raimund Renner, Richard Schmidt, and Martin Wehrle. Also my teaching and
research assistants Marco Ragni and Dr. Markus Büttner have provided valuable feedback.

i

Contents

Foreword . i
Table of contents . ii

1 Introduction 1
1.1 Early research on AI planning . 1
1.2 Overview . 3

2 Background 5
2.1 Transition systems . 5

2.1.1 Deterministic transition systems .6
2.1.2 Incidence matrices . 7

2.2 Classical propositional logic . 8
2.2.1 Quantified Boolean formulae .10

2.3 Succinct transition systems .11
2.3.1 Deterministic succinct transition systems13
2.3.2 Extensions .14
2.3.3 Normal form for deterministic operators14
2.3.4 Normal forms for nondeterministic operators16

3 Deterministic planning 18
3.1 State-space search .18

3.1.1 Progression and forward search .19
3.1.2 Regression and backward search .19

3.2 Planning by heuristic search algorithms .25
3.3 Reachability .26

3.3.1 Distances .26
3.3.2 Invariants .27

3.4 Approximations of distances .28
3.4.1 Admissible max heuristic .29
3.4.2 Inadmissible additive heuristic .32
3.4.3 Relaxed plan heuristic .34

3.5 Algorithm for computing invariants .37
3.5.1 Applications of invariants in planning by regression and satisfiability . .40

3.6 Planning as satisfiability in the propositional logic41
3.6.1 Actions as propositional formulae .41
3.6.2 Translation of operators into propositional logic43

ii

CONTENTS iii

3.6.3 Finding plans by satisfiability algorithms44
3.6.4 Parallel application of operators .46
3.6.5 Partially-ordered plans .48

3.7 Literature .51

4 Extensions to nondeterministic planning 53
4.1 Nondeterministic operators .53

4.1.1 Regression for nondeterministic operators54
4.1.2 Translation of nondeterministic operators into propositional logic54

4.2 Computing with transition relations as formulae57
4.2.1 Existential and universal abstraction .57
4.2.2 Images and preimages as formula manipulation58
4.2.3 An algorithm for constructing acyclic plans61

4.3 Planning as satisfiability in the propositional logic and QBF62
4.3.1 Advanced translation of nondeterministic operators into propositional logic63
4.3.2 Finding plans by evaluation of QBF .65

4.4 Literature .68

Bibliography 68

Index 75

Chapter 1

Introduction

Planning in Artificial Intelligence is a formalization ofdecision makingabout theactionsto be
taken. Consider an intelligent robot. The robot is a computational mechanism that takes input
through its sensors that allow the robot toobserveits environment and to builda representationof
its immediate surroundings and parts of the world it has observed earlier. For a robot to be useful
it has to be able toact. A robot acts through itseffectorswhich are devices that allow the robot to
move itself and other objects in its immediate surroundings. A robot resembling a human being
has hands and feet, or their muscles, as effectors.

At an abstract level, a robot is a mechanism that maps its observations, which are obtained
through the sensors, to actions which are performed by means of the effectors. Planning is the
decision making needed in producing a sequence of actions given a sequence of observations. The
more complicated the environment and the tasks of the robot are, the more intelligent the robot
has to be. For genuine intelligence it is important that the robot is able to plan its actions also in
challenging situations.

To reason about actions, action sequences and plans it is necessary to model the dynamics of
the world. Depending on the form of planning different kinds of world models are used. For more
physical planning tasks, like path and motion planning, representing the quantitative geometric
and physical properties of the world is necessary.

For planning at a more abstract level, with the physical properties of the world abstracted
away, the world can be represented in terms of the individual facts that hold and are relevant for
the planning task at hand. In this lecture the smallest components of the world are modeled asstate
variables, and individual world states are modeled asvaluationsof state variables. An individual
state variable could for example indicate the location of an object, and for applications for which
only the locations of certain objects are relevant, a state would be unambiguously characterized by
the locations of all the objects.

As actions change the state of the world and the world is modeled in terms of state variables,
actions are most naturally modeled as objects that change the values of the state variables.

1.1 Early research on AI planning

Research that has lead to current AI planning started in the 1960’s in the form of programs that
tried to simulate problem solving abilities of human beings. One of the first programs of this kind
was the General Problem Solver (GPS) by Newell and Simon[Ernstet al., 1969]. GPS performed

1

2 CHAPTER 1. INTRODUCTION

world

sensors effectors

sensor interpretation:
vision, speech, . . .

motion planning

knowledge representation
learning

task planning

Figure 1.1: Software architecture of an intelligent robot

state space search guided by estimated differences between the current state and the goal states.
At the end of 1960’s Green proposed the use of theorem-provers for constructing plans[Green,

1969]. However, because of the immaturity of theorem-proving techniques at that time, this ap-
proach was soon mostly abandoned in favor of specialized planning algorithms. There was theo-
retically oriented work on deductive planning which used different kinds of modal and dynamic
logics[Rosenschein, 1981] but these works had little impact on the development of efficient plan-
ning algorithms. Deductive and logic-based approaches to planning gained popularity again only
at the end of the 1990’s as a consequence of the development of more sophisticated programs for
the satisfiability problem of the classical propositional logic[Kautz and Selman, 1996].

One of the most well known early planning systems is the STRIPS planner from the beginning
of the 1970’s[Fikes and Nilsson, 1971]. The states in STRIPS are sets of formulae, and the opera-
tors change these state descriptions by adding and deleting formulae in the sets. Heuristics similar
to the ones used in the GPS system were used in guiding the search. The definition of operators,
with a preconditionas well asadd anddeletelists, corresponding to the facts that respectively
become true and false, and the associated terminology, is still in common use, although restricted
to atomic facts, that is, the add list is simply the set of state variables that the action makes true,
and the delete list similarly consists of the state variables that become false.

Starting in the mid 1970’s the dominating approach to domain-independent planning was the
so-called partial-order, or causal link, or nonlinear planning[Sacerdoti, 1975; McAllester and
Rosenblitt, 1991], which remained popular until the mid-1990’s and the introduction of the Graph-
plan planner[Blum and Furst, 1997] which started the shift away from partial-order planning to
types of algorithms that had earlier been considered infeasible, even the then-notorious total-order
planners. The basic idea of partial-order planning is that a plan is incrementally constructed start-
ing from the initial state and the goals, by either adding an action to the plan so that one of the open
goals or operator preconditions is fulfilled, or adding an ordering constraint on operators already

1.2. OVERVIEW 3

in the plan in order to resolve a potential conflict between them. In contrast to the forward or back-
ward search strategies in Chapter 3 partial-order planners tried to avoid unnecessarily imposing
an ordering on operators. The main advantages of both partial-order planners and Graphplan are
present in the SAT/CSP approach to planning which is discussed in Section 3.6.

In parallel to partial-order planning, the notion of hierarchical planning emerged[Sacerdoti,
1974], and it has been deployed in many real-world applications. The idea in hierarchical plan-
ning is that the problem description imposes a structure on solutions and restricts the number of
choices the planning algorithm has to make. A hierarchical plan consists of a main task which
is decomposed to smaller tasks which are recursively solved. For each task there is a choice
between solution methods. The less choice there is, the more efficiently the problem is solved.
Furthermore, many hierarchical planners allow the embedding of problem-specific heuristics and
problem-solvers to further speed up planning.

A collection of articles on AI planning starting from the late 1960’s has been edited by Allen
et al. [1990]. Many of the papers are mainly of historical interest, and some of them outline ideas
that are still in use.

1.2 Overview

This lecture gives an overview of some of the main techniques currently used in AI planning for
finding action sequences. In the most basic planning problem with one initial state and determin-
istic actions, often calledclassical planning, an algorithm that finds a sequence of actions from
the unique initial state to a goal state solves the planning problem. For more general forms of
planning, for example with nondeterministic actions, the required algorithms are far more compli-
cated, but many of the techniques introduced for classical planning can be generalized and used as
an implementation technique for subprocedures in the planning algorithms.

Chapter 2 presents a framework for formalizing different kinds of planning problems. Section
2.1 introduces the basic transition system model and its restriction to classical/deterministic prob-
lems that are the topic of Chapter 3. Section 2.3 introduces a representation of transition systems
that is based on state variables and operators. This representation is used in Chapter 3 and it is
closely related to the representations used in most planning research. With state variables and
operators very big transition systems can be represented compactly.

In Chapter 3 the emphasis is on two main strands of research that have emerged during the last
ten years of research on classical planning.

In 1995 the Graphplan planner of Blum and Furst[1997] demonstrated the competitiveness of
a constraint-based approach to classical planning, earlier proposed by Kautz and Selman[1992] in
a slightly different framework. The idea is to pose planning as a form of a constraint satisfaction
problem: find a plan and a corresponding state sequence consisting ofn steps so that the first state
is the initial state, the last state is a goal state, and the changes in state variable values between two
consecutive time points correspond to the execution of some actions. The constraint-satisfaction
viewpoint together with powerful techniques for pruning search trees were a big improvement over
earlier planning algorithms.

Blum and Furst’s planner was based on ad hoc search algorithm with backward chaining. Soon
after the introduction of Graphplan Kautz and Selman[1996] showed that an equally efficient
planner could be obtained by a translation of the planning problem into the propositional logic
and using a general purpose satisfiability algorithm. Main benefits of this approach are the repre-

4 CHAPTER 1. INTRODUCTION

sentation of the planning problem as propositional formulae, which allows the use of many kinds
of declarative information during the planning process, and the very fast development of more
efficient satisfiability algorithms and their implementation in the last ten years, improving the
problem-solving capability of this approach tremendously.

An important development outside the artificial intelligence is the emergence of verification
techniques that generalize Kautz and Selman’s[1992; 1996] idea to temporal logic model-check-
ing [Biere et al., 1999], making satisfiability testing a leading logic-based technique in model-
checking and increasingly replacing techniques based on binary decision diagrams BDDs[Bryant,
1992; Burchet al., 1994; Clarkeet al., 1994].

A completely different approach to planning gained popularity after the 1998 planning compe-
tition and the GPT planner by Bonet and Geffner[2001]. It is based on the use of general-purpose
heuristic search algorithms combined with heuristics automatically derived from the descriptions
of planning problems. Planners based on heuristic state-space search have shown very good per-
formance in finding non-optimal solutions to the kind of problems considered in the planning
competitions. The main benefit of the approach is the simplicity of the basic approach which al-
lows a lot of flexibility in incorporating problem-specific heuristics and pruning techniques in the
heuristic search algorithm.

In Chapter 4 we present generalizations of some of the logic-based techniques to nondetermin-
istic planning, and give an overview of a general framework of reasoning about states, state sets
and actions in the propositional logic, as first used in connection of model-checking in computer-
aided verification since the early 1990’s[Burchet al., 1994; Clarkeet al., 1994] and recently as
an implementation technique of algorithms for nondeterministic planning. These representations
have been calledsymbolicin the verification community, in contrast to the more concrete enu-
merative representations used by model-checking algorithms that explicitly enumerate states in
the state space. Most often these techniques have been used in connection with binary decision
diagrams BDDs[Bryant, 1992] but the techniques are applicable to other classes of propositional
formulae just as well.

Chapter 2

Background

In this chapter we define the formal machinery needed in the rest of the lecture for describing
different planning problems and algorithms. We give the basic definitions related to the classical
propositional logic, and the definition of the transition system model that is the basis of most work
on planning and that are closely related to finite automata and transition systems in other areas of
computer science.

Section 2.1 defines transition systems and Section 2.1.1 their restriction to deterministic actions
and one initial state, which is used in classical/deterministic planning. The general transition
system definition is given a representation in terms of state variables and operators in Section 2.3,
and in Section 2.3.1 it is restricted to the classical/deterministic special case. This last definition
of transition systems is extensively used in Chapter 3.

2.1 Transition systems

We define transition systems in which states are atomic objects and actions are represented as
binary relations on the set of states.

Definition 2.1 A transition systemis a 5-tupleΠ = 〈S, I,O,G, P 〉 where

1. S is a finite set of states,

2. I ⊆ S is the set of initial states,

3. O is a finite set of actionso ⊆ S × S,

4. G ⊆ S is the set of goal states, and

5. P = (C1, . . . , Cn) is a partition ofS to non-empty classes of observationally indistin-
guishable states satisfying

⋃
{C1, . . . , Cn} = S andCi ∩ Cj = ∅ for all i, j such that

1 ≤ i < j ≤ n.

Making an observation tells which setCi the current state belongs to. Distinguishing states
within a givenCi is not possible by observations. If two states are observationally distinguishable
then plan execution can proceed differently for them.

The numbern of components in the partitionP determines different classes of planning prob-
lems with respect to observability restrictions. Ifn = |S| then every state is observationally

5

6 CHAPTER 2. BACKGROUND

distinguishable from every other state. This is calledfull observability. If n = 1 then no observa-
tions are possible and the transition system isunobservable. The general casen ∈ {1, . . . , |S|} is
calledpartial observability.

An actiono is applicablein states for which it associates at least one successor state. We define
imagesof states asimgo(s) = {s′ ∈ S|sos′} and (weak)preimagesof states aspreimgo(s′) =
{s ∈ S|sos′}. Generalization to sets of states isimgo(T) =

⋃
s∈T imgo(s) andpreimgo(T) =⋃

s∈T preimgo(s). For sequenceso1, . . . , on of actionsimgo1;...;on(T) = imgon(· · · imgo1(T) · · ·)
andpreimgo1;...;on(T) = preimgo1(· · ·preimgon(T) · · ·). Thestrong preimageof a setT of states
is the set of states for which all successor states are inT , defined asspreimgo(T) = {s ∈ S|s′ ∈
T, sos′, imgo(s) ⊆ T}.

Lemma 2.2 Images, strong preimages and weak preimages of sets of states are related to each
other as follows. Leto be any action andS andS′ any sets of states.

1. spreimgo(T) ⊆ preimgo(T)

2. imgo(spreimgo(T)) ⊆ T

3. If T ⊆ T ′ then imgo(T) ⊆ imgo(T ′).

4. preimgo(T ∪ T ′) = preimgo(T) ∪ preimgo(T ′).

5. s′ ∈ imgo(s) if and only ifs ∈ preimgo(s).

Proof:

1. spreimgo(T) = {s ∈ S|s′ ∈ T, sos′, imgo(s) ⊆ T} ⊆ {s ∈ S|s′ ∈ T, sos′} =
⋃

s′∈T {s ∈
S|sos′} =

⋃
s′∈T preimgo(s′) = preimgo(T).

2. Take anys′ ∈ imgo(spreimgo(T)). Hence there iss ∈ spreimgo(T) so thatsos′. As
s ∈ spreimgo(T), imgo(s) ⊆ T . Sinces′ ∈ imgo(s), s′ ∈ T .

3. AssumeT ⊆ T ′ ands′ ∈ imgo(T). Hencesos′ for somes ∈ T by definition of images.
Hencesos′ for somes ∈ T ′ becauseT ⊆ T ′. Hences′ ∈ imgo(T ′) by definition of images.

4. preimgo(T ∪T ′) =
⋃

s′∈T∪T ′{s ∈ S|sos′} =
⋃

s′∈T {s ∈ S|sos′}∪
⋃

s′∈T ′{s ∈ S|sos′} =
preimgo(T) ∪ preimgo(T ′)

5. s′ ∈ imgo(s) iff sos′ iff s ∈ preimgo(s).

�

2.1.1 Deterministic transition systems

Transition systems which we use in Chapter 3 have only one initial state and deterministic actions.
For this subclass observability is irrelevant because the state of the transition system after a given
sequence of actions can be predicted exactly. We use a simpler formalization of them.

Definition 2.3 A deterministic transition systemis a 4-tupleΠ = 〈S, I,O,G〉 where

2.1. TRANSITION SYSTEMS 7

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

1. S is a finite set of states,

2. I ∈ S is the initial state,

3. O is a finite set of actionso ⊆ S × S that are partial functions, and

4. G ⊆ S is the set of goal states.

That the actions are partial functions means that for anys ∈ S ando ∈ O there is at most one
states′ such thatsos′. We denote the unique successor states′ of a states in which operatoro
is applicable bys′ = appo(s). For sequenceso1; . . . ; on of operators we defineappo1;...;on(s) as
appon(· · ·appo1(s) · · ·).

2.1.2 Incidence matrices

Actions and other binary relations can be represented in terms of incidence matricesM (adjacency
matrices) in which the element in rowi and columnj indicates whether a transition from statei
to j is possible.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix.
The action can be seen to be deterministic because for every state there is at most one arrow going
out of it, and each row of the matrix contains at most one non-zero element.

For matricesM1, . . . ,Mn which represent the transition relations of actionsa1, . . . , an the
combined transition relation isM = M1 +M2 + · · · +Mn. The matrixM now tells whether a
state can be reached from another state by at least one of the actions.

Here+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined as0 + 0 = 0, andb + b′ = 1 if b = 1 or b′ = 1. Boolean addition is used because
in the presence of nondeterminism we could have 1 for both of two transitions from A to B and
from A to C. For probabilistic planning problems normal addition is used and matrix elements are
interpreted as probabilities of nondeterministic transitions.

The incidence matrix corresponding to first taking actiona1 and thena2 is M1M2. This is
illustrated by Figure 2.2 The inner product of two vectors in the definition of matrix product
corresponds to the reachability of a state from another state through all possible intermediate
states.

Now we can compute for all pairss, s′ of states whethers′ is reachable froms by a sequence
of actions. LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions.

8 CHAPTER 2. BACKGROUND

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

×

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 1 0 0 0 0 0
D 0 0 0 1 0 0
E 0 0 0 0 1 0
F 0 0 0 1 0 0

=

A B C D E F

A 0 0 0 0 0 1
B 0 0 0 1 0 0
C 1 0 0 0 0 0
D 1 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 1 0

Figure 2.2: Matrix product corresponds to sequential composition.

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.3: A transition graph and the corresponding matrixM

Then define
R0 = In×n

Ri = Ri−1 +MRi−1 for i ≥ 1.

Heren is the number of states andIn×n is the unit matrix of sizen. By Tarski’s fixpoint theorem
Ri = Rj for somei ≥ 0 and allj ≥ i because of the monotonicity property that every element
that is 1 for somei is 1 also for allj > i. MatrixRi = M0∪M1∪· · ·∪M i represents reachability
by i actions or less.

2.2 Classical propositional logic

LetA be a set of propositional variables (atomic propositions). We define the set of propositional
formulae inductively as follows.

1. For alla ∈ A, a is a propositional formula.

2. If φ is a propositional formula, then so is¬φ.

3. If φ andφ′ are propositional formulae, then so isφ ∨ φ′.

4. If φ andφ′ are propositional formulae, then so isφ ∧ φ′.

5. The symbols⊥ and>, respectively denoting truth-values false and true, are propositional
formulae.

2.2. CLASSICAL PROPOSITIONAL LOGIC 9

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 1
B 0 0 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 1
F 0 1 0 0 1 0

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrixM +M2

A

B C

D

EF

A B C D E F

A 0 1 0 0 1 1
B 0 1 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 1 1
F 0 1 0 0 1 1

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrixM +M2 +M3

The symbols∧,∨ and¬ areconnectivesrespectively denoting theconjunction, disjunctionand
negation. We define the implicationφ→ φ′ as an abbreviation for¬φ ∨ φ′, and the equivalence
φ↔ φ′ as an abbreviation for(φ→φ′) ∧ (φ′→φ).

A valuation ofA is a functionv : A → {0, 1} where 0 denotes false and 1 denotes true.
Valuations are also known asassignmentsor models. For propositional variablesa ∈ A we define
v |= a if and only if v(a) = 1. A valuation of the propositional variables inA can be extended to
a valuation of all propositional formulae overA as follows.

1. v |= ¬φ if and only if v 6|= φ

2. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

3. v |= φ ∧ φ′ if and only if v |= φ andv |= φ′

4. v |= >

5. v 6|= ⊥

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

10 CHAPTER 2. BACKGROUND

A propositional formulaφ is satisfiable(consistent) if there is at least one valuationv so that
v |= φ. Otherwise it isunsatisfiable(inconsistent). A finite setF of formulae is satisfiable if∧

φ∈F φ is. A propositional formulaφ is valid or a tautology if v |= φ for all valuationsv. We
denote this by|= φ. A propositional formulaφ is a logical consequenceof a propositional formula
φ′, writtenφ′ |= φ, if v |= φ for all valuationsv such thatv |= φ′. A propositional formula that
is a proposition variablea or a negated propositional variable¬a for somea ∈ A is a literal. A
formula that is a disjunction of literals isa clause.

A formula φ is in negation normal form(NNF) if all occurrences of negations are directly
in front of propositional variables. Any formula can be transformed to negation normal form by
applications of the De Morgan rules¬(φ∨φ′) ≡ ¬φ∧¬φ′ and¬(φ∧φ′) ≡ ¬φ∨¬φ′, the double
negation rule¬¬φ ≡ φ. A formulaφ is in conjunctive normal form(CNF) if it is a conjunction of
disjunctions of literals. A formulaφ is in disjunctive normal form(DNF) if it is a disjunction of
conjunctions of literals. Any formula in CNF or in DNF is also in NNF.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
with quantification over the truth-values of propositional variables.Quantified Boolean formulae
(QBF) are like propositional formulae but there are two new syntactic rules for the quantifiers.

6. If φ is a formula anda ∈ A, then∀aφ is a formula.

7. If φ is a formula anda ∈ A, then∃aφ is a formula.

Further, there is the requirement that every variable is quantified, that is, every occurrence of
a ∈ A in a QBF is in the scope of either∃a or ∀a.

Defineφ[ψ/x] as the formula obtained fromφ by replacing occurrences of the propositional
variablex byψ.

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
> and⊥. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean functions associated with the connectives∨, ∧ and¬.

Definition 2.4 (Truth of QBF) A formula∃xφ is true if and only ifφ[>/x] ∨ φ[⊥/x] is true.
(Equivalently, ifφ[>/x] is true orφ[⊥/x] is true.)

A formula∀xφ is true if and only ifφ[>/x] ∧ φ[⊥/x] is true. (Equivalently, ifφ[>/x] is true
andφ[⊥/x] is true.)

A formulaφ with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only ifφ is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.5 The formulae∀x∃y(x↔ y) and∃x∃y(x ∧ y) are true.
The formulae∃x∀y(x↔ y) and∀x∀y(x ∨ y) are false. �

Notice that a QBF with only existential quantifiers is true if and only if the formula without the
quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides with the
validity of the corresponding formulae without quantifiers.

2.3. SUCCINCT TRANSITION SYSTEMS 11

set formula
T ∪ U T ∨ U
T ∩ U T ∧ U
T ¬T
T\U T ∧ ¬U
∅ ⊥
the universal set >
question about setsquestion about formulae
T ⊆ U? |= T→U?
T ⊂ U? |= T→U and 6|= U→T?
T = U? |= T ↔ U?

Table 2.1: Correspondence between set-theoretical and logical operations

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases and to
view each quantifier as quantifying a set of formulae, for example∃x1x2∀y1y2φ.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
complete[Meyer and Stockmeyer, 1972], and many computational problems that presumably can-
not be translated into the satisfiability problem of the propositional logic in polynomial time (as-
suming that NP6=PSPACE) can be efficiently translated into QBF.

2.3 Succinct transition systems

It is often more natural to represent the states of a transition system as valuations of state variables
instead of enumeratively as in Section 2.1. The binary relations that correspond to actions can
often be represented compactly in terms of the changes the actions cause to the values of state
variables.

We represent states in terms of a setA of Boolean state variables which take the valuestrueor
false. Eachstateis a valuation ofA, that is, a functions : A→ {0, 1}.

Since we identify states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations and test relations between sets by inference in the propositional
logic as summarized in Table 2.1

The actions of a succinct transition system are described by operators. An operator has two
components. The precondition describes the set of states in which the action can be taken. The
effect describes the successor states of each state in terms of the changes made to the values of the
state variables.

Definition 2.6 LetA be a set of state variables. Anoperatoris a pair 〈c, e〉 wherec is a proposi-
tional formula overA (theprecondition), ande is aneffectoverA. Effects overA are recursively
defined as follows.

1. a and¬a for state variablesa ∈ A are effects overA.

2. e1 ∧ · · · ∧ en is an effect overA if e1, . . . , en are effects overA (the special case withn = 0
is the empty effect>.)

12 CHAPTER 2. BACKGROUND

3. c B e is an effect overA if c is a formula overA ande is an effect overA.

4. e1| · · · |en is an effect overA if e1, . . . , en for n ≥ 2 are effects overA.

The compound effectse1 ∧ · · · ∧ en denote executing all the effectse1, . . . , en simultaneously.
In conditional effectsc B e the effecte is executed ifc is true in the current state. The effects
e1| · · · |en denote nondeterministic choice between the effectse1, . . . , en. Exactly one of these
effects is chosen randomly.

Operators describe a binary relation on the set of states as follows.

Definition 2.7 (Operator application) Let 〈c, e〉 be an operator overA. Lets be a state (a valu-
ation ofA). The operator isapplicable ins if s |= c and every setE ∈ [e]s is consistent. The set
[e]s is recursively defined as follows.

1. [a]s = {{a}} and[¬a]s = {{¬a}} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {
⋃n

i=1Ei|E1 ∈ [e1]s, . . . , En ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = {∅} otherwise.

4. [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s .

An operator〈c, e〉 induces a binary relationR〈c, e〉 on states as follows: statess ands′ are related
byR〈c, e〉 if s |= c and s′ is obtained froms by making the literals in someE ∈ [e]s true and
retaining the values of state variables not occurring inE.

We define images and preimages for operatorso in terms ofR(o), for instance bypreimgo(s) =
preimgR(o)(s).

Definition 2.8 A succinct transition systemis a 5-tupleΠ = 〈A, I,O,G, V 〉 where

1. A is a finite set of state variables,

2. I is a formula overA describing the initial states,

3. O is a finite set of operators overA,

4. G is a formula overA describing the goal states, and

5. V ⊆ A is the set of observable state variables.

Succinct transition systems withV = A arefully observable, and succinct transition systems
with V = ∅ are unobservable. Without restrictions onV the succinct transition systems are
partially observable.

We can associate a transition system with every succinct transition system.

Definition 2.9 Given a succinct transition systemΠ = 〈A, I,O,G, V 〉, construct the transition
systemF (Π) = 〈S, I ′, O′, G′, P 〉 where

1. S is the set of all Boolean valuations ofA,

2. I ′ = {s ∈ S|s |= I},

2.3. SUCCINCT TRANSITION SYSTEMS 13

3. O′ = {R(o)|o ∈ O},

4. G′ = {s ∈ S|s |= G}, and

5. P = (C1, . . . , Cn) wherev1, . . . , vn for n = 2|V | are all the Boolean valuations ofV and
Ci = {s ∈ S|s(a) = vi(a) for all a ∈ V } for all i ∈ {1, . . . , n}.

The transition system may have a size that is exponential in the size of the succinct transition
system. However, the construction takes only polynomial time in the size of the transition system.

2.3.1 Deterministic succinct transition systems

A deterministic operator has no occurrences of| in the effect. Further, in this special case the
definition of operator application is slightly simpler.

Definition 2.10 (Operator application) Let 〈c, e〉 be a deterministic operator overA. Lets be a
state (a valuation ofA). The operator isapplicable ins if s |= c and the set[e]det

s is consistent.
The set[e]det

s is recursively defined as follows.

1. [a]det
s = {a} and[¬a]det

s = {¬a} for a ∈ A.

2. [e1 ∧ · · · ∧ en]det
s =

⋃n
i=1[ei]

det
s .

3. [c′ B e]det
s = [e]det

s if s |= c′ and[c′ B e]det
s = ∅ otherwise.

A deterministic operator〈c, e〉 induces a partial functionR〈c, e〉 on states as follows: two states
s ands′ are related byR〈c, e〉 if s |= c ands′ is obtained froms by making the literals in[e]det

s

true and retaining the truth-values of state variables not occurring in[e]det
s .

We defineappo(s) = s′ by sR(o)s′ andappo1;...;on(s) = s′ by appon(. . .appo1(s) . . .), just
like for non-succinct transition systems.

We formally define deterministic succinct transition systems.

Definition 2.11 A deterministic succinct transition systemis a 4-tupleΠ = 〈A, I,O,G〉 where

1. A is a finite set of state variables,

2. I is an initial state,

3. O is a finite set of operators overA, and

4. G is a formula overA describing the goal states.

We can associate a deterministic transition system with every deterministic succinct transition
system.

Definition 2.12 Given a deterministic succinct transition systemΠ = 〈A, I,O,G〉, define the
deterministic transition systemF (Π) = 〈S, I,O′, G′〉 where

1. S is the set of all Boolean valuations ofA,

2. O′ = {R(o)|o ∈ O}, and

14 CHAPTER 2. BACKGROUND

3. G′ = {s ∈ S|s |= G}.

A subclass of operators considered in many early and recent works restrict toSTRIPSoperators.
An operator〈c, e〉 is a STRIPS operator ifc is a conjunction of state variables ande is a conjunction
of literals. STRIPS operators do not allow disjunctivity in formulae nor conditional effects. This
class of operators is sufficient in the sense that any transition system can be expressed in terms of
STRIPS operators only if the identities of operators are not important: when expressing a transition
system in terms of STRIPS operators only some operators correspond to an exponential number
of STRIPS operators.

Example 2.13 LetA = {a1, . . . , an} be the set of state variables. Leto = 〈>, e〉 where

e = (a1 B ¬a1) ∧ (¬a1 B a1) ∧ · · · ∧ (an B ¬an) ∧ (¬an B an)〉.

This operator reverses the values of all state variables. As its set of active effects[e]det
s is different

in every one of2n states, this operator corresponds to2n STRIPS operators.

o0 = 〈¬a1 ∧ ¬a2 ∧ · · · ∧ ¬an, a1 ∧ a2 ∧ · · · ∧ an〉
o1 = 〈a1 ∧ ¬a2 ∧ · · · ∧ ¬an,¬a1 ∧ a2 ∧ · · · ∧ an〉
o2 = 〈¬a1 ∧ a2 ∧ · · · ∧ ¬an, a1 ∧ ¬a2 ∧ · · · ∧ an〉
o3 = 〈a1 ∧ a2 ∧ · · · ∧ ¬an,¬a1 ∧ ¬a2 ∧ · · · ∧ an〉

...
o2n−1 = 〈a1 ∧ a2 ∧ · · · ∧ an,¬a1 ∧ ¬a2 · · · ∧ ¬an〉

�

2.3.2 Extensions

The basic language for effects could be extended with further constructs. A natural construct is
sequential compositionof effects. Ife ande′ are effects, then alsoe; e′ is an effect that corresponds
to first executinge and thene′. Definition 3.11 and Theorem 3.12 show how effects with sequential
composition can be reduced to effects without sequential composition.

2.3.3 Normal form for deterministic operators

Deterministic operators can be transformed to a particularly simple form without nesting of con-
ditionality B and with only atomic effectse as antecedents of conditionalsφ B e. Normal forms
are useful as they allow concentrating on a particularly simple form of effects.

Table 2.2 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.10 are straightforward. An effecte is equivalent to> ∧ e, and conjunctions of effects can be
arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving all occurrences ofB inside∧ so that the consequents
of B are atomic effects.

Definition 2.14 A deterministic effecte is in normal formif it is > or a conjunction of one or
more effectsc B a and c B ¬a with at most one occurrence of atomic effecta and¬a for any
a ∈ A. An operator〈c, e〉 is in normal form ife is in normal form.

2.3. SUCCINCT TRANSITION SYSTEMS 15

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (2.1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2.2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (2.3)

e ∧ (c B e) ≡ e (2.4)

e ≡ > B e (2.5)

e1 ∧ (e2 ∧ e3) ≡ (e1 ∧ e2) ∧ e3 (2.6)

e1 ∧ e2 ≡ e2 ∧ e1 (2.7)

c B > ≡ > (2.8)

e ∧ > ≡ e (2.9)

Table 2.2: Equivalences on effects

Theorem 2.15 For every deterministic operator there is an equivalent one in normal form. There
is one that has a size that is polynomial in the size of the operator.

Proof: We can transform any deterministic operator into normal form by using the equivalences
in Table 2.2. The proof is by structural induction on the effecte of the operator〈c, e〉.

Induction hypothesis: the effecte can be transformed to normal form.
Base case 1,e = >: This is already in normal form.
Base case 2,e = a or e = ¬a: An equivalent effect in normal form is> B e by Equivalence

2.5.
Inductive case 1,e = e1 ∧ e2: By the induction hypothesise1 ande2 can be transformed into

normal form, so assume that they already are. If one ofe1 ande2 is>, by Equivalence 2.9 we can
eliminate it.

Assumee1 containsc1 B l for some literall ande2 containsc2 B l. We can reordere1∧e2 with
Equivalences 2.6 and 2.7 so that one of the conjuncts is(c1 B l) ∧ (c2 B l). Then by Equivalence
2.3 it can be replaced by(c1 ∨ c2) B l. Since this can be done repeatedly for every literall, we
can transforme1 ∧ e2 into normal form.

Inductive case 2,e = z B e1: By the induction hypothesise1 can be transformed to normal
form, so assume that it already is.

If e1 is>, e can be replaced by> which is in normal form.
If e1 = z′ B e2 for somez′ ande2, thene can be replaced by the equivalent (by Equivalence

2.2) effect(z ∧ z′) B e2 in normal form.
Otherwise,e1 is a conjunction of effectsz B l. By Equivalence 2.1 we can movez inside the

conjunction. Applications of Equivalences 2.2 transform the effect into normal form.
In this transformation the conditionsc in c B e are copied into front of the atomic effects.

Let m be the sum of the sizes of all the conditionsc, and letn be the number of occurrences of
atomic effectsa and¬a in the effect. An upper bound on size of the new effect isO(nm) which
is polynomial in the size of the original effect. �

16 CHAPTER 2. BACKGROUND

c B (e1| · · · |en) ≡ (c B e1)| · · · |(c B en) (2.10)

e ∧ (e1| · · · |en) ≡ (e ∧ e1)| · · · |(e ∧ en) (2.11)

(e′1| · · · |e′n′)|e2| · · · |en ≡ e′1| · · · |e′n′ |e2| · · · |en (2.12)

(e′ ∧ (c B e1))|e2| · · · |en ≡ (c B ((e′ ∧ e1)|e2| · · · |en)) ∧ (¬c B (e′|e2| · · · |en)) (2.13)

Table 2.3: Equivalences on nondeterministic effects

2.3.4 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.3 to nondeterministic effects and opera-
tors. In the normal form nondeterministic choices and conjunctions are the outermost constructs,
and consequentse of conditional effectsc B e are atomic effects.

Definition 2.16 (Normal form for nondeterministic operators) A deterministic effect is in nor-
mal form if it is> or a conjunction of one or more effectsc B a and c B ¬a with at most one
occurrence ofa and¬a for anya ∈ A.

A nondeterministic effect is in normal form if it ise1| · · · |en or e1 ∧ · · · ∧ en for effectsei that
are in normal form.

A nondeterministic operator〈c, e〉 is in normal form ife is in normal form.

For showing that every nondeterministic effect can be transformed into normal form we use
further equivalences that are given in Table 2.3.

Theorem 2.17 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the former.

Proof: Transformation to normal form is like in the proof of Theorem 2.15. Additional equiva-
lences needed for nondeterministic choices are 2.10 and 2.11. �

Example 2.18 The effect

a B (b|(c ∧ f)) ∧ ((d ∧ e)|(b B e))

in normal form is

((a B b)|((a B c) ∧ (a B f))) ∧ (((> B d) ∧ (> B e))|(b B e)).

�

For some applications a still simpler form of operators is useful. In the second normal form
for nondeterministic operators nondeterminism may appear only at the outermost structure in the
effect.

Definition 2.19 (Normal form II for nondeterministic operators) A deterministic effect is in nor-
mal formal II if it is> or a conjunction of one or more effectsc B a andc B ¬a with at most one
occurrence ofa and¬a for anya ∈ A.

2.3. SUCCINCT TRANSITION SYSTEMS 17

A nondeterministic effect is in normal form II if it is of forme1| · · · |en whereei are determin-
istic effects in normal form II.

A nondeterministic operator〈c, e〉 is in normal form II ife is in normal form II.

Theorem 2.20 For every operator there is an equivalent one in normal form II.

Proof: By Theorem 2.17 there is an equivalent operator in normal form. The transformation
further into normal form II requires equivalences 2.11 and 2.12. �

Chapter 3

Deterministic planning

The simplest planning problems involves finding a sequence of actions that lead from a given initial
state to a goal state. Only deterministic actions are considered. Determinism and the uniqueness of
the initial state mean that the state of the transition system after executing any sequence of actions
starting in the initial state is exactly predictable. This is not the case if actions are nondeterministic
or there are several initial states. The problem instances in this chapter are deterministic succinct
transition systems as defined in Section 2.3.1.

3.1 State-space search

The simplest possible planning algorithm generates all states (valuations of the state variables),
constructs the transition graph, and then finds a path from the initial stateI to a goal stateg ∈ G
for example by a shortest-path algorithm. The plan is then simply the sequence of operators
corresponding to the edges on the shortest path from the initial state to a goal state. However,
this algorithm is not feasible when the number of state variables is higher than 20 or 30 because
the number of valuations is very high:220 = 1048576 ∼ 106 for 20 Boolean state variables and
230 = 1073741824 ∼ 109 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space ex-
plicitly and to produce only the successor or predecessor states of the states currently under con-
sideration. This form of plan search can be easiest viewed as the application of general-purpose
search algorithms that can be employed in solving a wide range of search problems. The best
knownheuristic search algorithmsare A∗, IDA∗ and their variants[Hartet al., 1968; Pearl, 1984;
Korf, 1985] which can be used in finding shortest plans or plans that are guaranteed to be close to
the shortest ones.

There are two main possibilities to find a path from the initial state to a goal state: traverse
the transition graph forwards starting from the initial state, or traverse it backwards starting from
the goal states. The main difference between these possibilities is that there may be several goal
states (and one state may have several predecessor states with respect to one operator) but only one
initial state: in forward traversal we repeatedly compute the unique successor state of the current
state, whereas with backward traversal we are forced to keep track of a possibly very high number
of possible predecessor states of the goal states. Backward search is slightly more complicated to
implement but it allows to simultaneously consider several paths leading to a goal state.

18

3.1. STATE-SPACE SEARCH 19

3.1.1 Progression and forward search

We have already definedprogressionfor single statess asappo(s). The simplest algorithm for the
deterministic planning problem does not require the explicit representation of the whole transition
graph. The search starts in the initial state. New states are generated by progression. As soon as a
states such thats |= G is found a plan is guaranteed to exist: it is the sequence of operators with
which the states is reached from the initial state.

A planner can use progression in connection with any of the standard search algorithms. Later
in this chapter we will discuss how heuristic search algorithms together with heuristics yield an
efficient planning method.

3.1.2 Regression and backward search

With backward search the starting point is a propositional formulaG that describes the set of goal
states. An operator is selected, the set of possible predecessor states is computed, and this set is
again described by a propositional formula. A plan has been found when a formula that is true
in the initial state is reached. The computation of a formula representing the predecessor states
of the states represented by another formula is calledregression. Regression is more powerful
than progression because it allows handling potentially very big sets of states, but it is also more
expensive.

Definition 3.1 We define the condition EPCl(e) of literal l made true when an operator with the
effecte is applied recursively as follows.

EPCl(>) = ⊥
EPCl(l) = >
EPCl(l′) = ⊥ whenl 6= l′ (for literals l′)

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = c ∧ EPCl(e)

The caseEPCl(e1∧· · ·∧en) = EPCl(e1)∨· · ·∨EPCl(en) is defined as a disjunction because
it is sufficient that at least one of the effects makesl true.

Definition 3.2 LetA be the set of state variables. We define the condition EPCl(o) of operator
o = 〈c, e〉 being applicable so that literall is made true asc ∧ EPCl(e) ∧

∧
a∈A ¬(EPCa(e) ∧

EPC¬a(e)).

For effectse the truth-value of the formulaEPCl(e) indicates in which statesl is a literal to
which the effecte assigns the value true. The connection to the earlier definition of[e]det

s is stated
in the following lemma.

Lemma 3.3 LetA be the set of state variables,s a state onA, l a literal onA, ando and operator
with effecte. Then

1. l ∈ [e]det
s if and only ifs |= EPCl(e), and

2. appo(s) is defined andl ∈ [e]det
s if and only ifs |= EPCl(o).

20 CHAPTER 3. DETERMINISTIC PLANNING

Proof: We first prove (1) by induction on the structure of the effecte.
Base case 1,e = >: By definition of [>]det

s we havel 6∈ [>]det
s = ∅, and by definition of

EPCl(>) we haves 6|= EPCl(>) = ⊥, so the equivalence holds.
Base case 2,e = l: l ∈ [l]det

s = {l} by definition, ands |= EPCl(l) = > by definition.
Base case 3,e = l′ for some literall′ 6= l: l 6∈ [l′]det

s = {l′} by definition, ands 6|= EPCl(l′) =
⊥ by definition.

Inductive case 1,e = e1 ∧ · · · ∧ en:
l ∈ [e]det

s if and only if l ∈ [e′]det
s for somee′ ∈ {e1, . . . , en}

if and only if s |= EPCl(e′) for somee′ ∈ {e1, . . . , en}
if and only if s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
if and only if s |= EPCl(e1 ∧ · · · ∧ en).

The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions ofEPCl(e) and[e]det

s as well as elementary facts about propositional formulae.
Inductive case 2,e = c B e′:
l ∈ [c B e′]det

s if and only if l ∈ [e′]det
s ands |= c

if and only if s |= EPCl(e′) ands |= c
if and only if s |= EPCl(c B e′).

The second equivalence is by the induction hypothesis. This completes the proof of (1).
(2) follows from the fact that the conjunctsc and

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) in EPCl(o)

exactly state the applicability conditions ofo. �

Notice that any operator〈c, e〉 can be expressed in normal form in terms ofEPCa(e) as〈
c,

∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

The formulaEPCa(e)∨ (a∧¬EPC¬a(e)) expresses the condition for the trutha ∈ A after the
effecte is executed in terms of truth-values of state variables before: eithera becomes true, ora
is true before and does not become false.

Lemma 3.4 Let a ∈ A be a state variable,o = 〈c, e〉 ∈ O an operator, ands ands′ = appo(s)
states. Thens |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only ifs′ |= a.

Proof: Assume thats |= EPCa(e)∨ (a∧¬EPC¬a(e)). We perform a case analysis and show that
s′ |= a holds in both cases.

Case 1: Assume thats |= EPCa(e). By Lemma 3.3a ∈ [e]det
s , and hences′ |= a.

Case 2: Assume thats |= a ∧ ¬EPC¬a(e). By Lemma 3.3¬a 6∈ [e]det
s . Hencea is true ins′.

For the other half of the equivalence, assume thats 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Hence
s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)).

Case 1: Assume thats |= a. Now s |= EPC¬a(e) becauses |= ¬a ∨ EPC¬a(e), and hence by
Lemma 3.3¬a ∈ [e]det

s and hences′ 6|= a.
Case 2: Assume thats 6|= a. Sinces |= ¬EPCa(e), by Lemma 3.3a 6∈ [e]det

s and hences′ 6|= a.
Therefores′ 6|= a in all cases. �

The formulaeEPCl(e) can be used in defining regression.

3.1. STATE-SPACE SEARCH 21

Definition 3.5 (Regression)Let φ be a propositional formula ando = 〈c, e〉 an operator. The
regressionofφwith respect too is regro(φ) = φr∧c∧χwhereχ =

∧
a∈A ¬(EPCa(e)∧EPC¬a(e))

andφr is obtained fromφ by replacing everya ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Define
regre(φ) = φr ∧ χ and use the notation regro1;...;on(φ) = regro1(· · · regron(φ) · · ·).

The conjuncts ofχ say that none of the state variables may simultaneously become true and
false. The operator is not applicable in states in whichχ is false.

Remark 3.6 Regression can be equivalently defined in terms of the conditions the state variables
stay or become false, that is, we could use the formula EPC¬a(e) ∨ (¬a ∧ ¬EPCa(e)) which tells
whena is false. The negation of this formula, which can be written as(EPCa(e)∧¬EPC¬a(e))∨
(a ∧ ¬EPC¬a(e)), is not equivalent to EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). However, if EPCa(e) and
EPC¬a(e) are not simultaneously true, we do get equivalence, that is,

¬(EPCa(e) ∧ EPC¬a(e)) |= ((EPCa(e) ∧ ¬EPC¬a(e)) ∨ (a ∧ ¬EPC¬a(e)))
↔ (EPCa(e) ∨ (a ∧ ¬EPC¬a(e)))

because¬(EPCa(e) ∧ EPC¬a(e)) |= (EPCa(e) ∧ ¬EPC¬a(e)) ↔ EPCa(e).

An upper bound on the size of the formula obtained by regression with operatorso1, . . . , on

starting fromφ is the product of the sizes ofφ, o1, . . . , on, which is exponential inn. However,
the formulae can often be simplified because there are many occurrences of> and⊥, for example
by using the equivalences>∧φ ≡ φ,⊥∧φ ≡ ⊥,>∨φ ≡ >,⊥∨φ ≡ φ,¬⊥ ≡ >, and¬> ≡ ⊥.
For unconditional operatorso1, . . . , on (with no occurrences ofB), an upper bound on the size of
the formula (after eliminating> and⊥) is the sum of the sizes ofo1, . . . , on andφ.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same does not seem to be possible for progression
because there is no known simple definition of successor states of aset of states expressed in
terms of a formula: simple syntactic progression is restricted to individual states only (see Section
4.2 for a general but expensive definition of progression for arbitrary formulae.)

The important property of regression is formalized in the following lemma.

Theorem 3.7 Let φ be a formula overA, o an operator overA, andS the set of all states i.e.
valuations ofA. Then{s ∈ S|s |= regro(φ)} = {s ∈ S|appo(s) |= φ}.

Proof: We show that for any states, s |= regro(φ) if and only if appo(s) is defined andappo(s) |=
φ. By definitionregro(φ) = φr∧c∧χ for o = 〈c, e〉whereφr is obtained fromφ by replacing every
state variablea ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) andχ =

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

First we show thats |= c ∧ χ if and only if appo(s) is defined.
s |= c ∧ χ iff s |= c and{a,¬a} 6⊆ [e]det

s for all a ∈ A by Lemma 3.3
iff appo(s) is defined by Definition 2.10.

Then we show thats |= φr if and only if appo(s) |= φ. This is by structural induction over
subformulaeφ′ of φ and formulaeφ′r obtained fromφ′ by replacinga ∈ A by EPCa(e) ∨ (a ∧
¬EPC¬a(e))

Induction hypothesis:s |= φ′r if and only if appo(s) |= φ′.
Base case 1,φ′ = >: Now φ′r = > and both are true in the respective states.
Base case 2,φ′ = ⊥: Now φ′r = ⊥ and both are false in the respective states.
Base case 3,φ′ = a for somea ∈ A: Now φ′r = EPCa(e)∨ (a∧¬EPC¬a(e)). By Lemma 3.4

s |= φ′r if and only if appo(s) |= φ′.

22 CHAPTER 3. DETERMINISTIC PLANNING

Inductive case 1,φ′ = ¬θ: By the induction hypothesiss |= θr iff appo(s) |= θ. Hences |= φ′r
iff appo(s) |= φ′ by the truth-definition of¬.

Inductive case 2,φ′ = θ ∨ θ′: By the induction hypothesiss |= θr iff appo(s) |= θ, ands |= θ′r
iff appo(s) |= θ′. Hences |= φ′r iff appo(s) |= φ′ by the truth-definition of∨.

Inductive case 3,φ′ = θ ∧ θ′: By the induction hypothesiss |= θr iff appo(s) |= θ, ands |= θ′r
iff appo(s) |= θ′. Hences |= φ′r iff appo(s) |= φ′ by the truth-definition of∧. �

Regression can be performed with any operator but not all applications of regression are useful.
First, regressing for example the formulaa with the effect¬a is not useful because the new unsat-
isfiable formula describes the empty set of states. Hence the sequence of operators of the previous
regressions steps do not lead to a goal from any state. Second, regressinga with the operator〈b, c〉
yieldsregr〈b,c〉(a) = a ∧ b. Finding a plan for reaching a state satisfyinga is easier than finding a
plan for reaching a state satisfyinga∧ b. Hence the regression step produced a subproblem that is
more difficult than the original problem, and it would therefore be better not to take this regression
step.

Lemma 3.8 Let there be a plano1, . . . , on for 〈A, I,O,G〉. If regrok;...;on(G) |= regrok+1;...;on(G)
for somek ∈ {1, . . . , n− 1}, then alsoo1, . . . , ok−1, ok+1, . . . , on is a plan for〈A, I,O,G〉.

Proof: By Theorem 3.7appok+1;...;on(s) |= G for any s such thats |= regrok+1;...;on(G). Since
appo1;...;ok−1

(I) |= regrok;...;on(G) andregrok;...;on(G) |= regrok+1;...;on(G) alsoappo1;...;ok−1
(I) |=

regrok+1;...;on(G). Henceappo1;...;ok−1;ok+1;...;on(I) |= G ando1; . . . ; ok−1; ok+1; . . . ; on is a plan
for 〈A, I,O,G〉. �

Therefore any regression step that makes the set of states smaller in the set-inclusion sense
is unnecessary. However, testing whether this is the case may be computationally expensive.
Although the following two problems are closely related to SAT, it could be possible that the
formulae obtained by reduction to SAT would fall in some polynomial-time subclass. We show
that this is not the case.

Lemma 3.9 The problem of testing whether regro(φ) 6|= φ is NP-hard.

Proof: We give a reduction from SAT to the problem. Letφ be any formula. Leta be a state
variable not occurring inφ. Now regr〈¬φ→a,a〉(a) 6|= a if and only if (¬φ→ a) 6|= a, because
regr〈¬φ→a,a〉(a) = ¬φ→ a. (¬φ→ a) 6|= a is equivalent to6|= (¬φ→ a)→ a that is equivalent
to the satisfiability of¬((¬φ→ a) → a). Further,¬((¬φ→ a) → a) is logically equivalent to
¬(¬(φ ∨ a) ∨ a) and further to¬(¬φ ∨ a) andφ ∧ ¬a.

Satisfiability ofφ ∧ ¬a is equivalent to the satisfiability ofφ asa does not occur inφ: if φ is
satisfiable, there is a valuationv such thatv |= φ, we can seta false inv to obtainv′, and asa
does not occur inφ, we still havev′ |= φ, and furtherv′ |= φ ∧ ¬a. Clearly, ifφ is unsatisfiable
alsoφ ∧ ¬a is.

Henceregr〈¬φ→a,a〉(a) 6|= a if and only if φ is satisfiable. �

Also the problem of testing whether a regression step leads to an empty set of states is difficult.

Lemma 3.10 The problem of testing that regro(φ) is satisfiable is NP-hard.

3.1. STATE-SPACE SEARCH 23

Proof: Proof is a reduction from SAT. Letφ be a formula.regr〈φ,a〉(a) is satisfiable if and only if
φ is satisfiable becauseregr〈φ,a〉(a) ≡ φ.

The problem is NP-hard even if we restrict to operators that have a satisfiable precondition:φ
is satisfiable if and only if(φ∨¬a)∧a is satisfiable if and only ifregr〈φ∨¬a,b〉(a∧ b) is satisfiable.
Herea is a state variable that does not occur inφ. Clearly,φ ∨ ¬a is true whena is false, and
henceφ ∨ ¬a is satisfiable. �

Of course, testing thatregro(φ) 6|= φ or that regro(φ) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions
of state variables and to unconditional effects (STRIPS operators with only positive literals in
preconditions.) In this special case both goalsG and operator effectse can be viewed as sets of
literals, and the definition of regression is particularly simple: regressingG with respect to〈c, e〉
is (G\e) ∪ c. If there isa ∈ A such thata ∈ G and¬a ∈ e, then the result of regression is⊥, that
is, the empty set of states. We do not use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching. For example, the backward step from
g with operator〈a ∨ b, g〉 yieldsa ∨ b. This formula corresponds to two non-disjunctive goals,
a and b. For each of these new goals a separate subtree is produced. Disjunctivity caused by
conditional effects can similarly be handled by branching. However, this branching may lead to a
very high branching factor and thus to poor performance.

In addition to being the basis of backward search, regression has many other applications in
reasoning about actions. One of them is the composition of operators. The compositiono1 ◦ o2
of operatorso1 = 〈c1, e1〉 ando2 = 〈c2, e2〉 is an operator that behaves like applyingo1 followed
by o2. For a to be true aftero2 we can regressa with respect too2, obtainingEPCa(e2) ∨ (a ∧
¬EPC¬a(e2)). Condition for this formula to be true aftero1 is obtained by regressing withe1,
leading to

regre1(EPCa(e2) ∨ (a ∧ ¬EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ (regre1(a) ∧ ¬regre1(EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ ((EPCa(e1) ∨ (a ∧ ¬EPC¬a(e2))) ∧ ¬regre1(EPC¬a(e2))).

Since we want to define an effectφ B a of o1 ◦o2 so thata becomes true whenevero1 followed by
o2 would make it true, the formulaφ does not have to represent the case in whicha is true already
before the application ofo1 ◦ o2. Hence we can simplify the above formula to

regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

An analogous formula is needed for making¬a false. This leads to the following definition.

Definition 3.11 (Composition of operators)Let o1 = 〈c1, e1〉 ando2 = 〈c2, e2〉 be two opera-
tors onA. Then theircompositiono1 ◦ o2 is defined as〈

c,
∧
a∈A

(
((regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2)))) B a)∧
((regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2)))) B ¬a)

)〉

wherec = c1 ∧ regre1(c2) ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).

24 CHAPTER 3. DETERMINISTIC PLANNING

Notice that ino1 ◦ o2 first o1 is applied and theno2, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Let o1 ando2 be operators ands a state. Then appo1◦o2(s) is defined if and only
if appo1;o2(s) is defined, and appo1◦o2(s) = appo1;o2(s).

Proof: Let o1 = 〈c1, e1〉 ando2 = 〈c2, e2〉. Assumeappo1◦o2(s) is defined. Hences |= c1 ∧
regre1(c2)∧

∧
a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)), that is, the precondition ofo1 ◦o2 is true, ands 6|=

(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A, that is, the effects do not contradict each other.

Nowappo1(s) in appo1;o2(s) = appo2(appo1(s)) defined becauses |= c1∧
∧

a∈A ¬(EPCa(e1)∧
EPC¬a(e1)). Furtherappo1(s) |= c2 by Theorem 3.7 becauses |= regre1(c2). From s 6|=
(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A logically followss 6|= regre1(EPCa(e2))∧regre1(EPC¬a(e2))
for all a ∈ A. Hence by Theorem 3.7appo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) for all a ∈ A, and by
Lemma 3.3appo2(appo1(s)) is defined.

For the other direction, sinceappo1(s) is defined,s |= c1 ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).
Sinceappo2(appo1(s)) is defined,s |= regre1(c2) by Theorem 3.7.

It remains to show that the effects ofo1 ◦ o2 do not contradict. Sinceappo2(appo1(s)) is
definedappo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) ands 6|= EPCa(e1) ∧ EPC¬a(e1) for all a ∈ A.
Hence by Theorem 3.7s 6|= regre1(EPCa(e2)) ∧ regre1(EPC¬a(e2)) for all a ∈ A. Assume that
for somea ∈ A s |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))), that is,a ∈ [o1 ◦
o2]det

s . If s |= regre1(EPCa(e2)) thens 6|= regre1(EPC¬a(e2)) ∨ ¬regre1(EPCa(e2)). Otherwise
s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)) and hences 6|= EPC¬a(e1). Hence in both casess 6|=
regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))), that is,¬a 6∈ [o1 ◦ o2]det

s . Therefore
appo1◦o2(s) is defined.

We show that for anya ∈ A, appo1◦o2(s) |= a if and only if appo1(appo2(s)) |= a. Assume
appo1◦o2(s) |= a. Hence one of two cases hold.

1. Assumes |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

If s |= regre1(EPCa(e2)) then by Theorem 3.7 and Lemma 3.3a ∈ [e1]det
appo1 (s). Hence

appo1;o2(s) |= a.

Assumes |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)). Hence by Lemma 3.3a ∈ [e1]det
s and

appo1(s) |= a, andappo1(s) 6|= EPC¬a(e2) and¬a 6∈ [e2]det
appo1 (s). Henceappo1;o2(s) |= a.

2. Assumes |= a ands 6|= regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))).

Sinces 6|= regre1(EPC¬a(e2)) by Theorem 3.7appo1(s) 6|= EPC¬a(e2) and hence¬a 6∈
[e2]det

appo1 (s).

Sinces 6|= EPC¬a(e1) ∧ ¬regre1(EPCa(e2)) by Lemma 3.3¬a 6∈ [e1]det
s or appe1(s) |=

EPCa(e2) and hence by Theorem 3.7a ∈ [e2]det
appo1 (s).

Hence eithero1 does not makea false, or if it makes, makeso2 it true again so thatappo1;o2(s) |= a
in all cases.

Assumeappo1;o2(s) |= a. Hence one of the following three cases must hold.

1. If a ∈ [e2]det
appo1 (s) then by Lemma 3.3appo1(s) |= EPCa(e2). By Theorem 3.7s |=

regre1(EPCa(e2)).

3.2. PLANNING BY HEURISTIC SEARCH ALGORITHMS 25

2. If a ∈ [e1]det
s and¬a 6∈ [e2]det

appo1 (s) then by Lemma 3.3appo1(s) 6|= EPC¬a(e2). By

Theorem 3.7s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)).

3. If s |= a and¬a 6∈ [e2]det
appo1 (s) and¬a 6∈ [e1]det

s then by Lemma 3.3appo1(s) 6|= EPC¬a(e2).
By Theorem 3.7s 6|= regre1(EPC¬a(e2)).

By Lemma 3.3s 6|= EPC¬a(e1).

In the first two cases the antecedent of the first conditional in the definition ofo1 ◦ o2 is true,
meaning thatappo1◦o2(s) |= a, and in the third cases |= a and the antecedent of the second
conditional effect is false, also meaning thatappo1◦o2(s) |= a. �

The above construction can be used to eliminatesequential compositionfrom operator effects
(Section 2.3.2).

3.2 Planning by heuristic search algorithms

Search for plans can be performed forwards or backwards respectively with progression or regres-
sion as described in Sections 3.1.1 and 3.1.2. There are several algorithms that can be used for
the purpose, including depth-first search, breadth-first search, and iterative deepening, but without
informed selection of operators these algorithms perform poorly.

The use of additional information for guiding search is essential for achieving efficient plan-
ning with general-purpose search algorithms. Algorithms that use heuristic estimates on the values
of the nodes in the search space for guiding the search have been applied to planning very suc-
cessfully. Some of the more sophisticated search algorithms that can be used are A∗ [Hart et al.,
1968], WA∗ [Pearl, 1984], IDA∗ [Korf, 1985], and simulated annealing[Kirkpatrick et al., 1983].

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
The most important heuristics are estimates of distances between states. The distance is the min-
imum number of operators needed for reaching a state from another state. In Section 3.4 we will
present techniques for estimating the distances between states and sets of states. In this section we
will discuss how heuristic search algorithms are applied in planning.

When search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds backwards by
regression starting from the goal states, we estimate the distance between the initial state and the
current set of goal states as computed by regression.

All the systematic heuristic search algorithms can easily be implemented to keep track of the
search history which for planning equals the sequence of operators in the incomplete plan under
consideration. Therefore the algorithms are started from the initial stateI (forward search) or from
the goal formulaG (backward search) and then proceed forwards with progression or backwards
with regression. Whenever the search successfully finishes, the plan can be recovered from the
data structures maintained by the algorithm.

Local search algorithms do not keep track of the search history, and we have to define the
elements of the search space as prefixes or suffixes of plans. For forward search we use sequences
of operators (prefixes of plans)

o1; o2; . . . ; on.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the end of the plan or by deleting some of the last operators.

26 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.13 (Neighbors for local search with progression)Let〈A, I,O,G〉 be a succinct tran-
sition system. For forward search, the neighbors of an incomplete plano1; o2; . . . ; on are the
following.

1. o1; o2; . . . ; on; o for anyo ∈ O such that appo1;...;on;o(I) is defined
2. o1; o2; . . . ; oi for anyi < n

Whenappo1;o2;...;on(I) |= G theno1; . . . ; on is a plan.
Also for backward search the incomplete plans are sequence of operators (suffixes of plans)

on; . . . ; o1.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the beginning of the plan or by deleting some of the first operators.

Definition 3.14 (Neighbors for local search with regression)Let〈A, I,O,G〉 be a succinct tran-
sition system. For backward search, the children of an incomplete planon; . . . ; o1 are the follow-
ing.

1. o; on; . . . ; o1 for anyo ∈ O such that regro;on;...;o1(G) is defined

2. oi; . . . ; o1 for anyi < n

WhenI |= regron;...;o1(G) thenon; . . . ; o1 is a plan.
Backward search and forward search are not the only possibilities to define planning as a search

problem. In partial-order planning[McAllester and Rosenblitt, 1991] the search space consists of
incomplete plans which are partially ordered multisets of operators. The neighbors of an incom-
plete plan are those obtained by adding an operator or an ordering constraint. Incomplete plans can
also be formalized as fixed length sequences of operators in which zero or more of the operators
are missing. This leads to the constraint-based approaches to planning, including the planning as
satisfiability approach that is presented in Section 3.6.

3.3 Reachability

The notion of reachability is important in defining whether a planning problem is solvable and in
deriving techniques that speed up search for plans.

3.3.1 Distances

First we define the distances between states in a transition system in which all operators are deter-
ministic. Heuristics in Section 3.4 are approximations of distances.

Definition 3.15 Let I be an initial state andO a set of operators. Define theforward distance
setsDfwd

i for I,O that consist of those states that are reachable fromI by at mosti operator
applications as follows.

Dfwd
0 = {I}

Dfwd
i = Dfwd

i−1 ∪ {s|o ∈ O, s ∈ imgo(D
fwd
i−1)} for all i ≥ 1

3.3. REACHABILITY 27

Definition 3.16 Let I be a state,O a set of operators, andDfwd
0 , Dfwd

1 , . . . the forward distance
sets forI,O. Thenthe forward distanceof a states from I is

δfwd
I (s) =

{
0 if s = I

i if s ∈ Dfwd
i \Dfwd

i−1.

If s 6∈ Dfwd
i for all i ≥ 0 thenδfwd

I (s) = ∞. States that have a finite forward distance arereachable
(from I withO).

Distances can also be defined for formulae.

Definition 3.17 Let φ be a formula. Then theforward distanceδfwd
I (φ) of φ is i if there is state

s such thats |= φ andδfwd
I (s) = i and there is no states′ such thats′ |= φ andδfwd

I (s) < i. If

I |= φ thenδfwd
I (φ) = 0.

A formulaφ has a finite distance<∞ if and only if 〈A, I,O, φ〉 has a plan.
Reachability and distances are useful for implementing efficient planning systems. We mention

two applications.
First, if we know that no state satisfying a formulaφ is reachable from the initial states, then

we know that no operator〈φ, e〉 can be a part of a plan, and we can ignore any such operator.
Second, distances help in finding a plan. Consider a deterministic planning problem with goal

stateG. We can now produce a shortest plan by finding an operatoro so thatδfwd
I (regro(G)) <

δfwd
I (G), usingregro(G) as the new goal state and repeating the process until the initial stateI is

reached.
Of course, since computing distances is in the worst case just as difficult as planning (PSPACE-

complete) it is in general not useful to use subprocedures based on exact distances in a planning
algorithm. Instead, different kinds ofapproximationsof distances and reachability have to be used.
The most important approximations allow the computation of useful reachability and distance
information in polynomial time in the size of the succinct transition system. In Section 3.4 we will
consider some of them.

3.3.2 Invariants

An invariant is a formula that is true in the initial state and in every state that is reached by
applying an operator in a state in which it holds. Invariants are closely connected to reachability
and distances: a formulaφ is an invariant if and only if the distance of¬φ from the initial state is
∞. Invariants can be used for example to speed up algorithms based on regression.

Definition 3.18 Let I be a set of initial states andO a set of operators. An formulaφ is an
invariantof I,O if s |= φ for all statess that are reachable fromI by a sequence of 0 or more
operators inO.

An invariantφ is the strongest invariantif φ |= ψ for any invariantψ. The strongest invariant
exactly characterizes the set of all states that are reachable from the initial state: for every states,
s |= φ if and only if s is reachable from the initial state. We say “the strongest invariant” even
though there are actually several strongest invariants: ifφ satisfies the properties of the strongest
invariant, any other formula that is logically equivalent toφ, for exampleφ ∨ φ, also does. Hence
the uniqueness of the strongest invariant has to be understood up to logical equivalence.

28 CHAPTER 3. DETERMINISTIC PLANNING

Example 3.19 Consider a set of blocks that can be on the table or stacked on top of other blocks.
Every block can be on at most one block and on every block there can be one block at most. The
actions for moving the blocks can be described by the following schematic operators.

〈ontable(x) ∧ clear(x) ∧ clear(y),on(x, y) ∧ ¬clear(y) ∧ ¬ontable(x)〉
〈clear(x) ∧ on(x, y),ontable(x) ∧ clear(y) ∧ ¬on(x, y)〉
〈clear(x) ∧ on(x, y) ∧ clear(z),on(x, z) ∧ clear(y) ∧ ¬clear(z) ∧ ¬on(x, y)〉

We consider the operators obtained by instantiating the schemata with the objectsA,B andC. Let
all the blocks be initially on the table. Hence the initial state satisfies the formula

clear(A) ∧ clear(B) ∧ clear(C) ∧ ontable(A) ∧ ontable(B) ∧ ontable(C)∧
¬on(A,B) ∧ ¬on(A,C) ∧ ¬on(B,A) ∧ ¬on(B,C) ∧ ¬on(C,A) ∧ ¬on(C,B)

that determines the truth-values of all state variables uniquely. The strongest invariant of this
problem is the conjunction of the following formulae.

clear(A) ↔ (¬on(B,A) ∧ ¬on(C,A)) clear(B) ↔ (¬on(A,B) ∧ ¬on(C,B))
clear(C) ↔ (¬on(A,C) ∧ ¬on(B,C)) ontable(A) ↔ (¬on(A,B) ∧ ¬on(A,C))
ontable(B) ↔ (¬on(B,A) ∧ ¬on(B,C)) ontable(C) ↔ (¬on(C,A) ∧ ¬on(C,B))
¬on(A,B) ∨ ¬on(A,C) ¬on(B,A) ∨ ¬on(B,C)
¬on(C,A) ∨ ¬on(C,B)
¬on(B,A) ∨ ¬on(C,A) ¬on(A,B) ∨ ¬on(C,B)
¬on(A,C) ∨ ¬on(B,C)
¬(on(A,B) ∧ on(B,C) ∧ on(C,A)) ¬(on(A,C) ∧ on(C,B) ∧ on(B,A))

We can schematically give the invariants for any setX of blocks as follows.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x)
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y)
¬on(x, y) ∨ ¬on(x, z) wheny 6= z
¬on(y, x) ∨ ¬on(z, x) wheny 6= z
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1)) for all n ≥ 1, {x1, . . . , xn} ⊆ X

The last formula says that theon relation is acyclic. �

3.4 Approximations of distances

The approximations of distances are based on the following idea. Instead of considering the num-
ber of operators required to reach individual states, we approximately compute the number of
operators to reach a state in which a certain state variable has a certain value. So instead of using
distances of states, we use distances of literals.

The estimates are not accurate for two reasons. First, and more importantly, distance estimation
is done one state variable at a time and dependencies between state variables are ignored. Second,
to achieve polynomial-time computation, satisfiability tests for a formula and a set of literals to
test the applicability of an operator and to compute the distance estimate of a formula, have to
be performed by an inaccurate polynomial-time algorithm that approximates NP-hard satisfiabil-
ity testing. As we are interested in computing distance estimates efficiently the inaccuracy is a
necessary and acceptable compromise.

3.4. APPROXIMATIONS OF DISTANCES 29

3.4.1 Admissible max heuristic

We give a recursive procedure that computes a lower bound on the number of operator applications
that are needed for reaching from a stateI a state in which state variablesa ∈ A have certain
values. This is by computing a sequence of setsDmax

i of literals. The setDmax
i consists literals

that are true in all states that have distance≤ i from the stateI.
Recall Definition 3.2 ofEPCl(o) for literalsl and operatorso = 〈c, e〉:

EPCl(o) = c ∧ EPCl(e) ∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

Definition 3.20 LetL = A∪{¬a|a ∈ A} be the set of literals onA andI a state. Define the sets
Dmax

i for i ≥ 0 as follows.

Dmax
0 = {l ∈ L|I |= l}

Dmax
i = Dmax

i−1 \{l ∈ L|o ∈ O,Dmax
i−1 ∪ {EPCl(o)} is satisfiable}, for i ≥ 1

Since we consider only finite setsA of state variables and|Dmax
0 | = |A| andDmax

i+1 ⊆ Dmax
i

for all i ≥ 0, necessarilyDmax
i = Dmax

j for somei ≤ |A| and allj > i.
The above computation starts from the setDmax

0 of all literals that are true in the initial stateI.
This set of literals characterizes those states that have distance 0 from the initial state. The initial
state is the only such state.

Then we repeatedly compute sets of literals characterizing sets of states that are reachable with
1, 2 and more operators. Each setDmax

i is computed from the preceding setDmax
i−1 as follows. For

each operatoro it is tested whether it is applicable in one of the distancei−1 states and whether it
could make a literall false. This is by testing whetherEPCl(o) is true in one of the distancei− 1
states. If this is the case, the literall could be false, and it will not be included inDmax

i .
The sets of states in which the literalsDmax

i are true are an upper bound (set-inclusion) on the
set of states that have forward distancei.

Theorem 3.21 LetDfwd
i , i ≥ 0 be the forward distance sets andDmax

i the max-distance sets for

I andO. Then for alli ≥ 0,Dfwd
i ⊆ {s ∈ S|s |= Dmax

i } whereS is the set of all states.

Proof: By induction oni.
Base casei = 0: Dfwd

0 consists of the unique initial stateI andDmax
0 consists of exactly those

literals that are true inI, identifying it uniquely. HenceDfwd
i = {s ∈ S|s |= Dmax

i }.
Inductive casei ≥ 1: Let s be any state inDfwd

i . We show thats |= Dmax
i . Let l be any literal

in Dmax
i .

Assumes ∈ Dfwd
i−1. AsDmax

i ⊆ Dmax
i−1 alsol ∈ Dmax

i−1 . By the induction hypothesiss |= l.

Otherwises ∈ Dfwd
i \Dfwd

i−1. Hence there iso ∈ O ands0 ∈ Dfwd
i−1 with s = appo(s0). By

Dmax
i ⊆ Dmax

i−1 and the induction hypothesiss0 |= l. As l ∈ Dmax
i , by definition ofDmax

i the set

Dmax
i−1 ∪ {EPCl(o)} is not satisfiable. Bys0 ∈ Dfwd

i−1 and the induction hypothesiss0 |= Dmax
i−1 .

Hences0 6|= EPCl(o). By Lemma 3.3 applyingo in s0 does not makel false. Hences |= l. �

The setsDmax
i can be used for estimating the distances of formulae. The distance of a formula

is the minimum of the distances of states that satisfy the formula.

30 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.22 Letφ be a formula. Define

δmax
I (φ) =

{
0 iff Dmax

0 ∪ {φ} is satisfiable
d iff Dmax

d ∪ {φ} is satisfiable andDmax
d−1 ∪ {φ} is not satisfiable, for d ≥ 1.

Lemma 3.23 Let I be a state,O a set of operators, andDmax
0 , Dmax

1 , . . . the sets given in Defi-
nition 3.20 forI andO. Then appo1;...;on(I) |= Dmax

n for any operators{o1, . . . , on} ⊆ O.

Proof: By induction onn.
Base casen = 0: The length of the operator sequence is zero, and henceappε(I) = I. The set

Dmax
0 consists exactly of those literals that are true ins, and henceI |= Dmax

0 .
Inductive casen ≥ 1: By the induction hypothesisappo1;...;on−1(I) |= Dmax

n−1 .
Let l be any literal inDmax

n . We show it is true inappo1;...;on(I). Sincel ∈ Dmax
n and

Dmax
n ⊆ Dmax

n−1 , also l ∈ Dmax
n−1 , and hence by the induction hypothesisappo1;...;on−1(I) |= l.

Sincel ∈ Dmax
n it must be thatDmax

n−1 ∪ {EPCl(on)} is not satisfiable (definition ofDmax
n) and

further thatappo1;...;on−1(I) 6|= EPCl(on). Hence applyingon in appo1;...;on−1(I) does not makel
false, and consequentlyappo1;...;on(I) |= l.

�

The next theorem shows that the distance estimates given for formulae yield a lower bound on
the number of actions needed to reach a state satisfying the formula.

Theorem 3.24 Let I be a state,O a set of operators,φ a formula, andDmax
0 , Dmax

1 , . . . the sets
given in Definition 3.20 forI andO. If appo1;...;on(I) |= φ, thenDmax

n ∪ {φ} is satisfiable.

Proof: By Lemma 3.23appo1;...;on(I) |= Dmax
n . By assumptionappo1;...;on(I) |= φ. Hence

Dmax
n ∪ {φ} is satisfiable. �

Corollary 3.25 Let I be a state andφ a formula. Then for any sequenceo1, . . . , on of operators
such that appo1;...;on(I) |= φ, n ≥ δmax

I (φ).

The estimateδmax
s (φ) never overestimates the distance froms to φ and it is therefore an ad-

missible heuristic. It may severely underestimate the distance, as discussed in the end of this
section.

Distance estimation in polynomial time

The algorithm for computing the setsDmax
i runs in polynomial time except that the satisfiability

tests forD∪{φ} are instances of the NP-complete SAT problem. For polynomial time computation
we perform these tests by a polynomial-time approximation that has the property that ifD∪{φ} is
satisfiable then asat(D,φ) returns true, but not necessarily vice versa. A counterpart of Theorem
3.21 can be established when the satisfiability testsD ∪ {φ} are replaced by tests asat(D,φ).

The function asat(D,φ) tests whether there is a state in whichφ and the literalsD are true, or
equivalently, whetherD ∪ {φ} is satisfiable. This algorithm does not accurately test satisfiability,
and may claim thatD ∪ {φ} is satisfiable even when it is not. This, however, never leads to

3.4. APPROXIMATIONS OF DISTANCES 31

overestimating the distances, only underestimating. The algorithm runs in polynomial time and is
defined as follows.

asat(D,⊥) = false
asat(D,>) = true
asat(D, a) = true iff ¬a 6∈ D (for state variablesa ∈ A)

asat(D,¬a) = true iff a 6∈ D (for state variablesa ∈ A)
asat(D,¬¬φ) = asat(D,φ)

asat(D,φ1 ∨ φ2) = asat(D,φ1) or asat(D,φ2)
asat(D,φ1 ∧ φ2) = asat(D,φ1) and asat(D,φ2)

asat(D,¬(φ1 ∨ φ2)) = asat(D,¬φ1) and asat(D,¬φ2)
asat(D,¬(φ1 ∧ φ2)) = asat(D,¬φ1) or asat(D,¬φ2)

In this and other recursive definitions about formulae the cases for¬(φ1 ∧φ2) and¬(φ1 ∨φ2) are
obtained respectively from the cases forφ1 ∨ φ2 andφ1 ∧ φ2 by the De Morgan laws.

The reason why the satisfiability test is not accurate is that for formulaeφ ∧ ψ (respectively
¬(φ ∨ ψ)) we make recursively two satisfiability tests that do not require that the subformulaeφ
andψ (respectively¬φ and¬ψ) aresimultaneouslysatisfiable.

We give a lemma that states the connection between asat(D,φ) and the satisfiability ofD∪{φ}.

Lemma 3.26 Let φ be a formula andD a consistent set of literals (it contains at most one ofa
and¬a for everya ∈ A.) If D ∪ {φ} is satisfiable, then asat(D,φ) returns true.

Proof: The proof is by induction on the structure ofφ.
Base case 1,φ = ⊥: The setD ∪ {⊥} is not satisfiable, and hence the implication trivially

holds.
Base case 2,φ = >: asat(D,>) always returns true, and hence the implication trivially holds.
Base case 3,φ = a for somea ∈ A: If D ∪ {a} is satisfiable, then¬a 6∈ D, and hence

asat(D, a) returns true.
Base case 4,φ = ¬a for somea ∈ A: If D ∪ {¬a} is satisfiable, thena 6∈ D, and hence

asat(D,¬a) returns true.
Inductive case 1,φ = ¬¬φ′ for someφ′: The formulae are logically equivalent, and by the

induction hypothesis we directly establish the claim.
Inductive case 2,φ = φ1∨φ2: If D∪{φ1∨φ2} is satisfiable, then eitherD∪{φ1} orD∪{φ2}

is satisfiable and by the induction hypothesis at least one of asat(D,φ1) and asat(D,φ2) returns
true. Hence asat(D,φ1 ∨ φ2) returns true.

Inductive case 3,φ = φ1 ∧ φ2: If D ∪ {φ1 ∧ φ2} is satisfiable, then bothD ∪ {φ1} and
D ∪ {φ2} are satisfiable and by the induction hypothesis both asat(D,φ1) and asat(D,φ2) return
true. Hence asat(D,φ1 ∧ φ2) returns true.

Inductive cases 4 and 5,φ = ¬(φ1 ∨ φ2) andφ = ¬(φ1 ∧ φ2): Like cases 2 and 3 by logical
equivalence. �

The other direction of the implication does not hold because for example asat(∅, a∧¬a) returns
true even though the formula is not satisfiable. The procedure is a polynomial-time approximation
of the logical consequence test from a set of literals: asat(D,φ) always returns true ifD ∪ {φ} is
satisfiable, but it may return true also when the set is not satisfiable.

32 CHAPTER 3. DETERMINISTIC PLANNING

Informativeness of the max heuristic

The max heuristic often underestimates distances. Consider an initial state in which alln state
variables are false and a goal state in which all state variables are true and a set ofn operators each
of which is always applicable and makes one of the state variables true. The max heuristic assigns
the distance 1 to the goal state although the distance isn.

The problem is that assigning every state variable the desired value requires a different operator,
and taking the maximum number of operators for each state variable ignores this fact. In this case
the actual distance is obtained as thesumof the distances suggested by each of then state variables.
In other cases the max heuristic works well when the desired state variable values can be reached
with the same operators.

Next we will consider heuristics that are not admissible like the max heuristic but in many cases
provide a much better estimate of the distances.

3.4.2 Inadmissible additive heuristic

The max heuristic is very optimistic about the distances, and in many cases very seriously underes-
timates them. If two goal literals have to be made true, the maximum of the goal costs (distances)
is assumed to be the combined cost. This however is only accurate when the easier goal is achieved
for free while achieving the more difficult goal. Often the goals are independent and then a more
accurate estimate would be the sum of the individual costs. This suggests another heuristic, first
considered by Bonet and Geffner[2001] as a more practical variant of the max heuristic in the
previous section. Our formalization differs from the one given by Bonet and Geffner.

Definition 3.27 Let I be a state andL = A ∪ {¬a|a ∈ A} the set of literals. Define the setsD+
i

for i ≥ 0 as follows.

D+
0 = {l ∈ L|I |= l}

D+
i = D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i} for all i ≥ 1

We define cost(φ, i) by the following recursive definition.

cost(⊥, i) = ∞
cost(>, i) = 0
cost(a, i) = 0 if ¬a 6∈ D+

0 , for a ∈ A
cost(¬a, i) = 0 if a 6∈ D+

0 , for a ∈ A
cost(a, i) = j if ¬a ∈ D+

j−1\D
+
j for somej < i

cost(¬a, i) = j if a ∈ D+
j−1\D

+
j for somej < i

cost(a, i) = ∞ if ¬a ∈ D+
j for all j < i

cost(¬a, i) = ∞ if a ∈ D+
j for all j < i

cost(φ1 ∨ φ2, i) = min(cost(φ1, i), cost(φ2, i))
cost(φ1 ∧ φ2, i) = cost(φ1, i) + cost(φ2, i)

cost(¬¬φ, i) = cost(φ, i)
cost(¬(φ1 ∧ φ2), i) = min(cost(¬φ1, i), cost(¬φ2, i))
cost(¬(φ1 ∨ φ2), i) = cost(¬φ1, i) + cost(¬φ2, i)

Notice that a variant of the definition of the max heuristic could be obtained by replacing the
sum+ in the definition of costs of conjunctions bymax. The definition of cost(φ, i) approximates

3.4. APPROXIMATIONS OF DISTANCES 33

satisfiability tests similarly to the definition of asat(D,φ) by ignoring the dependencies between
propositions.

Similarly to max distances we can define distances of formulae.

Definition 3.28 Letφ be a formula. Define

δ+I (φ) = cost(φ, n)

wheren is the smallesti such thatD+
i = D+

i−1.

The following theorem shows that the distance estimates given by the sum heuristic for literals
are at least as high as those given by the max heuristic.

Theorem 3.29 LetDmax
i , i ≥ 0 be the sets defined in terms of the approximate satisfiability tests

asat(D,φ). ThenDmax
i ⊆ D+

i for all i ≥ 0.

Proof: The proof is by induction oni.
Base casei = 0: By definitionD+

0 = Dmax
0 .

Inductive casei ≥ 1: We have to show thatDmax
i−1 \{l ∈ L|o ∈ O,asat(Dmax

i−1 ,EPCl(o))} ⊆
D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i}. By the induction hypothesisDmax
i−1 ⊆ D+

i−1. It is
sufficient to show that cost(EPCl(o), i) < i implies asat(Dmax

i−1 ,EPCl(o)).
We show this by induction on the structure ofφ = EPCl(o).
Induction hypothesis: cost(φ, i) < i implies asat(Dmax

i−1 , φ)=true.
Base case 1,φ = ⊥: cost(⊥, i) = ∞ and asat(Dmax

i ,⊥)=false.
Base case 2,φ = >: cost(⊥, i) = 0 and asat(Dmax

i ,⊥)=true.
Base case 3,φ = a: If cost(a, i) < i then¬a 6∈ D+

j for somej < i or ¬a 6∈ D+
0 . Hence

¬a 6∈ D+
i−1. By the outer induction hypothesis¬a 6∈ Dmax

i−1 and consequently¬a 6∈ Dmax
i . Hence

asat(Dmax
i ,⊥)=true.

Base case 4,φ = ¬a: Analogous to the caseφ = a.
Inductive case 5,φ = φ1 ∨ φ2: Assume cost(φ1 ∨ φ2, i) < i. Since cost(φ1 ∨ φ2, i) =

min(cost(φ1, i), cost(φ2, i)), either cost(φ1, i) < i or cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence either

asat(Dmax
i−1 , φ1) or asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∨ φ2).

Inductive case 6,φ = φ1∧φ2: Assume cost(φ1∧φ2, i) < i. Sincei ≥ 1 and cost(φ1∨φ2, i) =
cost(φ1, i) + cost(φ2, i), both cost(φ1, i) < i and cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence both

asat(Dmax
i−1 , φ1) an asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∧ φ2).

Inductive case 7,φ = ¬¬φ1: By the induction hypothesis cost(φ1, i) < i implies asat(Dmax
i−1 , φ1).

By definition cost(¬¬φ1, i) = cost(φ1, i) and asat(D,¬¬φ) = asat(D,φ). By the induction hy-
pothesis cost(¬¬φ1, i) < i implies asat(Dmax

i−1 ,¬¬φ1).
Inductive case 8,φ = ¬(φ1 ∨ φ2): Analogous to the caseφ = φ1 ∧ φ2.
Inductive case 9,φ = ¬(φ1 ∧ φ2): Analogous to the caseφ = φ1 ∨ φ2. �

That the sum heuristic gives higher estimates than the max heuristic could in many cases be
viewed as an advantage because the estimates would be more accurate. However, in some cases
this leads to overestimating the actual distance, and therefore the sum distances are not an admis-
sible heuristic.

34 CHAPTER 3. DETERMINISTIC PLANNING

Example 3.30 Consider an initial state such thatI |= ¬a∧¬b∧¬c and the operator〈>, a∧b∧c〉.
A state satisfyinga ∧ b ∧ c is reached by this operator in one step butδ+I (a ∧ b ∧ c) = 3. �

3.4.3 Relaxed plan heuristic

The max heuristic and the additive heuristic represent two extremes. The first assumes that sets
of operators required for reaching the individual goal literals maximally overlap in the sense that
the operators needed for the most difficult goal literal include the operators needed for all the
remaining ones. The second assumes that the required operators are completely disjoint.

Usually, of course, the reality is somewhere in between and which notion is better depends on
the properties of the operators. This suggests yet another heuristic: we attempt to find a set of
operators that approximates, in a sense that will become clear later, the smallest set of operators
that are needed to reach a state from another state. This idea has been considered by Hoffman
and Nebel[2001]. If the approximation is exact, the cardinality of this set equals the actual dis-
tance between the states. The approximation may both overestimate and underestimate the actual
distance, and hence it is does not yield an admissible heuristic.

The idea of the heuristic is the following. We first choose a set of goal literals the truth of
which is sufficient for the truth ofG. These literals must be reachable in the sense of the sets
Dmax

i which we defined earlier. Then we identify those goal literals that were the last to become
reachable and a set of operators making them true. A new goal formula represents the conditions
under which these operator can make the literals true, and a new set of goal literals is produced by
a simplified form of regression from the new goal formula. The computation is repeated until we
have a set of goal literals that are true in the initial state.

The function goals(D,φ) recursively finds a setM of literals such thatM |= φ and each literal
in M is consistent withD. Notice thatM itself is not necessarily consistent, for example for
D = ∅ andφ = a ∧ ¬a we getM = {a,¬a}. If a setM is found goals(D,φ) = {M} and
otherwise goals(D,φ) = ∅.

Definition 3.31 LetD be a set of literals.

goals(D,⊥) = ∅
goals(D,>) = {∅}
goals(D, a) = {{a}} if ¬a 6∈ D
goals(D, a) = ∅ if ¬a ∈ D

goals(D,¬a) = {{¬a}} if a 6∈ D
goals(D,¬a) = ∅ if a ∈ D

goals(D,¬¬φ) = goals(D,φ)

goals(D,φ1 ∨ φ2) =
{

goals(D,φ1) if goals(D,φ1) 6= ∅
goals(D,φ2) otherwise

goals(D,φ1 ∧ φ2) =
{
{L1 ∪ L2} if goals(D,φ1) = {L1} and goals(D,φ2) = {L2}
∅ otherwise

goals(D,¬(φ1 ∧ φ2)) =
{

goals(D,¬φ1) if goals(D,¬φ1) 6= ∅
goals(D,¬φ2) otherwise

goals(D,¬(φ1 ∨ φ2)) =
{
{L1 ∪ L2} if goals(D,¬φ1) = {L1} and goals(D,¬φ2) = {L2}
∅ otherwise

Above in the case forφ1 ∨ φ2 if both φ1 andφ2 yield a set of goal literals the set forφ1 is
always chosen. A practically better implementation is to choose the smaller of the two sets.

3.4. APPROXIMATIONS OF DISTANCES 35

Lemma 3.32 LetD be a set of literals andφ a formula.

1. goals(D,φ) 6= ∅ if and only if asat(D,φ) = true.

2. If goals(D,φ) = {M} then{l|l ∈M} ∩D = ∅ and asat(D,
∧

l∈M l) = true.

Proof:

1. This is by an easy induction proof on the structure ofφ based on the definitions of asat(D,φ)
and goals(D,φ).

2. This is becausel 6∈ D for all l ∈M . This can be shown by a simple induction proof.

�

Lemma 3.33 LetD andD′ ⊆ D be sets of literals. If goals(D,φ) = ∅ and goals(D′, φ) = {M}
for someM , then there isl ∈M such thatl ∈ D\D′.

Proof: Proof is by induction in the structure of formulaeφ.
Induction hypothesis: If goals(D,φ) = ∅ and goals(D′, φ) = {M} for someM , then there is

l ∈M such thatl ∈ D\D′.
Base cases 1 & 2,φ = > and 2φ = ⊥: Trivial as the condition cannot hold.
Base case 3,φ = a: If goals(D, a) = ∅ and goals(D′, a) = M = {{a}}, then respectively

¬a ∈ D and¬a 6∈ D′. Hence there isa ∈M such thata ∈ D\D′.
Inductive case 1,φ = ¬¬φ′: By the induction hypothesis as goals(D,¬¬φ′) = goals(D,φ′).
Inductive case 2,φ = φ1∨φ2: Assume goals(D,φ1∨φ2) = ∅ and goals(D′, φ1∨φ2) = {M}

for someM . Hence goals(D,φ1) = ∅ and goals(D,φ2) = ∅, and goals(D′, φ1) = {M} or
goals(D′, φ2) = {M}. Hence by the induction hypothesis withφ1 or φ2 there isl ∈M such that
l ∈ D\D′.

Inductive case 3,φ = φ1∧φ2: Assume goals(D,φ1∧φ2) = ∅ and goals(D′, φ1∧φ2) = {M}
for someM . Hence goals(D,φ1) = ∅ or goals(D,φ2) = ∅, and goals(D′, φ1) = {L1} and
goals(D′, φ2) = {L2} for someL1 andL2 such thatM = L1 ∪ L2. Hence by the induction
hypothesis withφ1 or φ2 there is eitherl ∈ L1 or l ∈ L2 such thatl ∈ D\D′.

Inductive casesφ = ¬(φ1 ∧ φ2) andφ = ¬(φ1 ∨ φ2) are analogous to cases 2 and 3. �

Definition 3.34 Defineδrlx
I (φ) = relaxedplan(A, I,O, φ).

Like the sum heuristic, the relaxed plan heuristic gives higher distance estimates than the max
heuristic.

Theorem 3.35 Letφ be a formula andδmax
I (φ) the max-distance defined in terms of asat(D,φ).

Thenδrlx
I (φ) ≥ δmax

I (φ).

Proof: We have to show that for any formulaG the procedure callrelaxedplan(A,I,O,G) returns a
number≥ δmax

I (G).
First, the procedure returns∞ if and only if asat(Dmax

i , G) = false for alli ≥ 0. In this case
by definitionδmax

I (G) = ∞.

36 CHAPTER 3. DETERMINISTIC PLANNING

1: procedure relaxedplan(A,I,O,G);
2: L := A ∪ {¬a|a ∈ A}; (* All literals *)
3: compute setsDmax

i as in Definition 3.20;
4: if asat(Dmax

i , G) = false for alli ≥ 0 then return ∞; (* Goal not reachable *)
5: t := δmax

I (G);
6: LG

t+1 := ∅;
7: Nt+1 := ∅;
8: Gt :=G;
9: for i := t downto 1 do

10: begin
11: LG

i := (LG
i+1\Ni+1) ∪ {l ∈M |M ∈ goals(Dmax

i , Gi)}; (* The goal literals *)
12: Ni := {l ∈ LG

i |l ∈ Dmax
i−1 }; (* Goal literals that become true betweeni− 1 andi *)

13: Ti := a minimal subset ofO so thatNi ⊆ {l ∈ L|o ∈ Ti,asat(Dmax
i−1 ,EPCl(o))};

14: Gi−1 :=
∧

l∈Ni

∨
{EPCl(o)|o ∈ Ti}; (* New goal formula *)

15: end
16: return |T1|+ |T2|+ · · ·+ |Tt|;

Figure 3.1: Algorithm for finding a relaxed plan

Otherwiset = δmax
I (G). Now t = 0 if and only if asat(Dmax

0 , G) = true. In this case the
procedure returns 0 without iterating the loop starting on line 9.

We show that ift ≥ 1 then for everyi ∈ {1, . . . , t} the setTi is non-empty, entailing|T1| +
· · ·+ |Tt| ≥ t = δmax

I (G). This is by an induction proof fromt to 1.
We use the following auxiliary result. If asat(Dmax

i−1 , Gi) = false and asat(Dmax
i , Gi) = true

andl 6∈ Dmax
i for all l ∈ LG

i thenTi is well-defined andTi 6= ∅. The proof is as follows.

By Lemma 3.32 goals(Dmax
i−1 , Gi) = ∅ and goals(Dmax

i , Gi) = {M} for someM .
By Lemma 3.33 there isl ∈M such thatl ∈ Dmax

i−1 and henceNi 6= ∅. By definition
l ∈ Dmax

i−1 for all l ∈ Ni. By Ni ⊆ LG
i and the assumption aboutLG

i l 6∈ Dmax
i for

all l ∈ Ni. Hencel ∈ Dmax
i−1 \Dmax

i for all l ∈ Ni. Hence by definition ofDmax
i for

everyl ∈ Ni there iso ∈ O such that asat(Dmax
i−1 ,EPCl(o)). Hence there isTi ⊆ O

so thatNi ⊆ {l ∈ L|o ∈ Ti,asat(Dmax
i−1 ,EPCl(o))} and the value ofTi is defined. As

Ni 6= ∅ alsoTi 6= ∅.

In the induction proof we establish the assumptions of the auxiliary result and then invoke the
auxiliary result itself.

Induction hypothesis: For allj ∈ {i, . . . , t}

1. l 6∈ Dmax
j for all l ∈ LG

j ,

2. asat(Dmax
j , Gj) = true and asat(Dmax

j−1 , Gj) = false, and

3. Tj 6= ∅.

Base casei = t:

1. l 6∈ Dmax
t for all l ∈ LG

t by (2) of Lemma 3.32 becauseLG
t = {l ∈ goals(Dmax

t , Gt)}.

2. As t = δmax
I (Gt) by definition asat(Dmax

t−1 , Gt) = false and asat(Dmax
t , Gt) = true.

3.5. ALGORITHM FOR COMPUTING INVARIANTS 37

3. By the auxiliary result from the preceding case.

Inductive casei < t:

1. We havel 6∈ Dmax
i for all l ∈ LG

i becauseLG
i = (LG

i+1\Ni+1) ∪ {l ∈ goals(Dmax
i , Gi)}

and by the induction hypothesisl 6∈ Dmax
i+1 for all l ∈ LG

i+1 and by (2) of Lemma 3.32
l 6∈ Dmax

i for all l ∈M for M ∈ goals(Dmax
i , Gi).

2. By definition Gi =
∧

l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. By definition of Ti+1 for every

l ∈ Ni+1 there iso ∈ Ti+1 such that asat(Dmax
i ,EPCl(o)) = true. By definition of

asat(Dmax
i , φ1 ∨ φ2) and asat(Dmax

i , φ1 ∧ φ2) for φ1 andφ2 also asat(Dmax
i , Gi) = true.

Then we show that asat(Dmax
i−1 , Gi) = false. By definition ofDmax

i , asat(Dmax
i−1 ,EPCl(o)) =

false for alll ∈ Dmax
i ando ∈ O. Hence asat(Dmax

i−1 ,EPCl(o)) = false for alll ∈ Ni+1

ando ∈ O becausel ∈ Dmax
i . Hence asat(Dmax

i−1 ,EPCl(o)) = false for alll ∈ Ni+1 and
o ∈ Ti+1 becauseTi+1 ⊆ O. By definitionGi =

∧
l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. Hence

by definition of asat(D,φ) also asat(Dmax
i−1 , Gi) = false.

3. By the auxiliary result from the preceding case.

�

3.5 Algorithm for computing invariants

Planning with backward search and regression suffers from the following problem. Often only
a fraction of all valuations of state variables represent states that are reachable from the initial
state and represent possible world states. The goal formula and many of the formulae produced
by regression often represent many unreachable states. If the formulae represent only unreachable
states a planning algorithm may waste a lot of effort determining that a certain sequence of actions
is not the suffix of any plan1. Also planning with propositional logic (Section 3.6) suffers from the
same problem.

Planning can be made more efficient by restricting search to states that are reachable from
the initial state. However, determining whether a given state is reachable from the initial state
is PSPACE-complete. Consequently, exact information on the reachability of states could not be
used for speeding up the basic forward and backward search algorithms: solving the subproblem
would be just as complex as solving the problem itself.

In this section we will present a polynomial time algorithm for computing a class of invariants
that approximately characterize the set of reachable states. These invariants help in improving
the efficiency of planning algorithms based on backward search and on satisfiability testing in the
propositional logic (Section 3.6).

Our algorithm computes invariants that are clauses with at mostn literals, for some fixedn.
For representing the strongest invariant arbitrarily highn may be needed. Although the runtime
is polynomial for any fixedn, the runtimes grow quickly asn increases. However, for many
applications short invariants of lengthn = 2 are sufficient, and longer invariants are less important.

1A symmetric problem arises with forward search because with progression one may reach states from which goal
states are unreachable.

38 CHAPTER 3. DETERMINISTIC PLANNING

1: procedurepreserved(φ,C,o);
2: φ = l1 ∨ · · · ∨ ln for somel1, . . . , ln ando = 〈c, e〉 for somec ande;
3: for each l ∈ {l1, . . . , ln} do
4: if C ∪ {EPCl(o)} is unsatisfiablethen gotoOK; (* l cannot become false. *)
5: for each l′ ∈ {l1, . . . , ln}\{l} do (* Otherwise another literal inφ must be true. *)
6: if C ∪ {EPCl(o)} |= EPCl′(o) then gotoOK; (* l′ becomes true. *)
7: if C ∪ {EPCl(o)} |= l′ ∧ ¬EPCl′(o) then gotoOK; (* l′ was and stays true. *)
8: end do
9: return false; (* Truth of the clause could not be guaranteed. *)

10: OK:
11: end do
12: return true;

Figure 3.2: Algorithm that tests whethero may falsifyl1 ∨ · · · ∨ ln in a state satisfyingC

The algorithm first computes the set of all 1-literal clauses that are true in the initial state. This
set exactly characterizes the set of distance 0 states consisting of the initial state only. Then the
algorithm considers the application of every operator. If an operator is applicable it may make
some of the clauses false. These clauses are removed and replaced by weaker clauses which are
also tested against every operator. When no further clauses are falsified, we have a set of clauses
that are guaranteed to be true in all distance 1 states. This computation is repeated for distances
2, 3, and so on, until the clause set does not change. The resulting clauses are invariants because
they are true after any number of operator applications.

The flavor of the algorithm is similar to the distance estimation in Section 3.4: starting from
a description of what is possible in the initial state, inductively determine what is possible afteri
operator applications. In contrast to the distance estimation method in Section 3.4 the state sets
are characterized by sets of clauses instead of sets of literals.

LetCi be a set of clauses that characterizes those states that are reachable byi operator appli-
cations. Similarly to distance computation, we consider for each operator and for each clause in
Ci whether applying the operator may make the clause false. If it can, the clause could be false
afteri operator applications and therefore will not be in the setCi+1.

Figure 3.2 gives an algorithm that tests whether applying an operatoro ∈ O in some states
may make a formulal1 ∨ · · · ∨ ln false assuming thats |= C ∪ {l1 ∨ · · · ∨ ln}.

The algorithm performs a case analysis for every literal in the clause, testing in each case
whether the clause remains true: if a literal becomes false, either another literal becomes true
simultaneously or another literal was true before and does not become false.

Lemma 3.36 Let C be a set of clauses,φ = l1 ∨ · · · ∨ ln a clause, ando an operator. If
preserved(φ,C,o) returns true, then appo(s) |= φ for any states such thats |= C ∪ {φ} and
o is applicable ins. (It may under these conditions also returnfalse).

Proof: Assumes is a state such thats |= C ∧ φ, appo(s) is defined andappo(s) 6|= φ. We show
that the procedure returnsfalse.

Sinces |= φ andappo(s) 6|= φ at least one literal inφ is made false byo. Let {l⊥1 , . . . , l⊥m} ⊆
{l1, . . . , ln} be the set of all such literals. Hences |= l⊥1 ∧ · · · ∧ l⊥m and{l⊥1 , . . . , l⊥m} ⊆ [e]det

s .
The literals in{l1, . . . , ln}\{l⊥1 , . . . , l⊥m} are false ins ando does not make them true.

3.5. ALGORITHM FOR COMPUTING INVARIANTS 39

1: procedure invariants(A, I,O, n);
2: C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a}; (* Clauses true in the initial state *)
3: repeat
4: C ′ := C;
5: for eacho ∈ O and l1 ∨ · · · ∨ lm ∈ C such thatnot preserved(l1 ∨ · · · ∨ lm,C ′,o) do
6: C := C\{l1 ∨ · · · ∨ lm};
7: if m < n then (* Clause length within pre-defined limit. *)
8: begin (* Add weaker clauses. *)
9: C := C ∪ {l1 ∨ · · · ∨ lm ∨ a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};

10: C := C ∪ {l1 ∨ · · · ∨ lm ∨ ¬a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};
11: end
12: end do
13: until C = C ′;
14: return C;

Figure 3.3: Algorithm for computing a set of invariant clauses

Choose anyl ∈ {l⊥1 , . . . , l⊥m}. We show that when the outermostfor eachloop starting on line
3 considersl the procedure will returnfalse.

Sincel ∈ [e]det
s ando is applicable ins by Lemma 3.3s |= EPCl(o). Since by assumption

s |= C, the condition of theif statement on line 4 is not satisfied and the execution proceeds by
iteration of the innerfor eachloop.

Let l′ be any of the literals inφ exceptl. Sinceappo(s) 6|= φ, l′ 6∈ [e]det
s . Hence by Lemma

3.3 s 6|= EPCl′(o), and ass |= C ∪ {EPCl(o)} the condition of theif statement on line 6 is not
satisfied and the execution continues from line 7. Analyze two cases.

1. If l′ ∈ {l⊥1 , . . . , l⊥m} then by assumptionl′ ∈ [e]det
s and by Lemma 3.3s |= EPCl′(o). Hence

C ∪{EPCl(o)} 6|= ¬EPCl′(o) and the condition of theif statement on line 7 is not satisfied.

2. If l′ 6∈ {l⊥1 , . . . , l⊥m} thens 6|= l′. HenceC ∪ {EPCl(o)} 6|= l′ and the condition of theif
statement on line 7 is not satisfied.

Hence on none of the iterations of the innerfor eachloop is agoto OKexecuted, and as the
loop exits, the procedure returnsfalse. �

Figure 3.3 gives the algorithm for computing invariants consisting of at mostn literals. The
loop on line 5 is repeated until there are noo ∈ O and clausesφ in C such that preserved(φ,C ′,o)
returns false. This exit condition for the loop is critical for the correctness proof.

Theorem 3.37 LetA be a set of state variables,I a state,O a set of operators, andn ≥ 1 an
integer. Then the procedure call invariants(A, I,O, n) returns a setC of clauses with at mostn
literals so that for any sequenceo1; . . . ; om of operators fromO appo1;...;om(I) |= C.

Proof: Let C0 be the value first assigned to the variableC in the procedureinvariants, and
C1, C2, . . . be the values of the variable in the end of each iteration of the outermostrepeatloop.

Induction hypothesis: for every{o1, . . . , oi} ⊆ O andφ ∈ Ci, appo1;...;oi(I) |= φ.
Base casei = 0: appε(I) for the empty sequence is by definitionI itself, and by construction

C0 consists of only formulae that are true in the initial state.

40 CHAPTER 3. DETERMINISTIC PLANNING

Inductive casei ≥ 1: Take any{o1, . . . , oi} ⊆ O andφ ∈ Ci. First notice that preserved(φ,Ci,o)
returnstruebecause otherwiseφ could not be inCi. Analyze two cases.

1. If φ ∈ Ci−1, then by the induction hypothesisappo1;...;oi−1(I) |= φ. Sinceφ ∈ Ci

preserved(φ,Ci−1,o) returnstrue. Hence by Lemma 3.36appo1;...;oi(I) |= φ.

2. If φ 6∈ Ci−1, it must be because preserved(φ′,Ci−1,o′) returnsfalse for someo′ ∈ O and
φ′ ∈ Ci−1 such thatφ is obtained fromφ′ by conjoining some literals to it. Henceφ′ |= φ.

Sinceφ′ ∈ Ci−1 by the induction hypothesisappo1;...;oi−1(I) |= φ′. Sinceφ′ |= φ also
appo1;...;oi−1(I) |= φ. Since the function call preserved(φ,Ci,o) returnstrueby Lemma 3.36
appo1;...;oi(I) |= φ.

This finishes the induction proof. The iteration of the procedure stops whenCi = Ci−1, mean-
ing that the claim of the theorem holds for arbitrarily long sequenceso1; . . . ; om of operators. �

The algorithm does not find the strongest invariant for two reasons. First, only clauses until
some fixed length are considered. Expressing the strongest invariant may require clauses that are
longer. Second, the test performed bypreservedtries to prove for one of the literals in the clause
that it is true after an operator application. Consider the clausea∨b∨c and the operator〈b∨c,¬a〉.
We cannot show for any literal that it is true after applying the operator but we know that eitherb
or c is true. The test performed bypreservedcould be strengthened to handle cases like these, for
example by using the techniques discussed in Section 4.2, but this would make the computation
more expensive and eventually lead to intractability.

To make the algorithm run in polynomial time the satisfiability and logical consequence tests
should be performed by algorithms that approximate these tests in polynomial time. The procedure
asat(D,φ) is not suitable because it assumes thatD is a set of literals, whereas forpreservedthe
setC usually contain clauses with 2 or more literals. There are generalizations of the ideas behind
asat(D,φ) to this more general case but we do not discuss the topic further.

3.5.1 Applications of invariants in planning by regression and satisfiability

Invariants can be used to speed up backward search with regression. Consider the blocks world
with the goalAonB∧BonC. Regression with the operator that moves B onto C from the table yields
AonB∧ Bclear∧ Cclear∧ BonT. This formula does not correspond to an intended blocks world
state becauseAonB is incompatible withBclear, and indeed,¬AonB∨ ¬Bclear is an invariant
for the blocks world. Any regression step that leads to a formula that is incompatible with the
invariants can be ignored because that formula does not represent any state that is reachable from
the initial state, and hence no plan extending the current incomplete plan can reach the goals.

Another application of invariants and the intermediate setsCi produced by our invariant al-
gorithm is improving the heuristics in Section 3.4. UsingDmax

i for testing whether an operator
precondition, for examplea ∧ b, has distancei from the initial state, the distances ofa andb are
used separately. But even when it is possible to reach botha andb with i operator applications,
it might still not be possible to reach them both simultaneously withi operator applications. For
example, fori = 1 and an initial state in which botha andb are false, there might be no single op-
erator that makes them both true, but two operators, each of which makes only one of them true. If
¬a∨¬b ∈ Ci, we know that afteri operator applications one ofa or b must still be false, and then
we know that the operator in question is not applicable at time pointi. Therefore the invariants
and the setsCi produced during the invariant computation can improve distance estimates.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 41

3.6 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning was introduced in 1992 by Kautz and Selman
[1992; 1996]. In this approach the problem of reachability of a goal state from a given initial
state is translated into propositional formulaeφ0, φ1, φ2, . . . so that every valuation that satisfies
formulaφi corresponds to a plan of lengthi. Planning proceeds by first testing the satisfiability of
φ0. If φ0 is unsatisfiable, continue withφ1, φ2, and so on, until a satisfiable formulaφn is found.
From a valuation that satisfiesφn a plan of lengthn can be constructed.

3.6.1 Actions as propositional formulae

First we need a representation of actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variablesA = {a1, . . . , an}, one could describe an action directly as a
propositional formulaφ over propositional variablesA ∪ A′ whereA′ = {a′1, . . . , a′n}. Here the
variablesA represent the values of state variables in the states in which an action is taken, and
variablesA′ the values of state variables in a successor states′.

A pair of valuationss ands′ can be understood as a valuation ofA ∪ A′ (the states assigns a
value to variablesA ands′ to variablesA′), and a transition froms to s′ is possible if and only if
s, s′ |= φ.

Example 3.38 The action that reverses the values of state variablesa1 anda2 is described by
φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2). The following4× 4 incidence matrix represents this action.

a′1a
′
2 a

′
1a

′
2 a

′
1a

′
2 a

′
1a

′
2

a1a2 00 01 10 11
00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

42 CHAPTER 3. DETERMINISTIC PLANNING

The matrix can be equivalently represented as the following truth-table.

a1 a2 a
′
1 a

′
2 φ

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

�

Example 3.39 Let the set of state variables beA = {a1, a2, a3}. The formula(a1 ↔ a′2)∧(a2 ↔
a′3) ∧ (a3 ↔ a′1) represents the action that rotates the values of the state variablesa1, a2 anda3

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations ofA and the columns to valuations ofA′ = {a′1, a′2, a′3}.

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table with
one row for every valuation ofA ∪A′, a total of 64 rows. �

The action in Example 3.39 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for determinism is that the
formula is of the form(φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) ∧ ψ whereA = {a1, . . . , an} is the set of
all state variables,φi are formulae overA (without occurrences ofA′ = {a′1, . . . , a′n}). There are
no restrictions onψ. Formulae of this form uniquely determine the value of every state variable
in the successor state in terms of the values in the predecessor state. Therefore they represent
deterministic actions.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 43

3.6.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators is represented as disjunction.

Definition 3.40 The formulaτA(o) that represents operatoro = 〈c, e〉 is defined by

τA(e) =
∧

a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e))
τA(o) = c ∧ τA(e).

The formulaτA(e) expresses the value ofa in the successor state in terms of the values of
the state variables in the predecessor state and requires that executinge may not make any state
variable simultaneously true and false. This is like in the definition of regression in Section 3.1.2.
The formulaτA(o) additionally requires that the operator’s precondition is true.

Example 3.41 Consider operator〈a ∨ b, (b B a) ∧ (c B ¬a) ∧ (a B b)〉. The corresponding
propositional formula is

(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ (b ∧ ¬⊥)) ↔ b′)
∧((⊥ ∨ (c ∧ ¬⊥)) ↔ c′)
∧¬(b ∧ c) ∧ ¬(a ∧ ⊥) ∧ ¬(⊥ ∧⊥)

≡ (a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ b) ↔ b′)
∧(c↔ c′)
∧¬(b ∧ c).

�

Lemma 3.42 Let s ands′ be states ando an operator. Letv : A ∪ A′ → {0, 1} be a valuation
such that

1. for all a ∈ A, v(a) = s(a), and

2. for all a ∈ A, v(a′) = s′(a).

Thenv |= τA(o) if and only ifs′ = appo(s).

Proof: Assumev |= τA(o). Hences |= c ands |=
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)), and therefore
appo(s) is defined. Consider any state variablea ∈ A. By Lemma 3.4 and the assumption
v |= (EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′, the value of every state variable ins′ matches the
definition ofappo(s). Hences′ = appo(s).

Assumes′ = appo(s). Sinces′ is defined,v |= τA(o) andv |=
∧

a∈A ¬(EPCa(e)∧EPC¬a(e)).
By Lemma 3.4v |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a. �

Definition 3.43 DefineR1(A,A′) = τA(o1) ∨ · · · ∨ τA(on).

44 CHAPTER 3. DETERMINISTIC PLANNING

The valuations that satisfy this formula do not uniquely determine which operator was applied
because for a given state more than one operator may produce the same successor state. However,
in such cases it does not matter which operator is applied, and when constructing a plan from the
valuation any of the operators may be chosen arbitrarily.

It has been noticed that extendingR1(A,A′) by 2-literal invariants (see Section 3.5) reduces
runtimes of algorithms that test satisfiability. Notice that invariants do not affect the set of models
of a formula representing planning: any satisfying valuation of the original formula also satisfies
the invariants because the values of variables describing the values of state variables at any time
point corresponds to a state that is reachable from the initial state, and hence this valuation also
satisfies any invariant.

3.6.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating succinct transition systems〈A, I,O,G〉 into
propositional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.6.1 we showed how operators can be described by propositional formulae over
setsA andA′ of propositional variables, the setA describing the values of the state variables in
the state in which the operator is applied, and the setA′ describing the values of the state variables
in the successor state of that state.

For a fixed plan lengthn, we use setsA0, . . . , An of variables to represent the values of state
variables at different time points, with variablesAi representing the values at timei. In other
words, a valuation of these propositional variables represents a sequences0, . . . , sn of states. If
a ∈ A is a state variable, then we use the propositional variableai for representing the value ofa
at time pointi.

Then we construct a formula so that the states0 is determined byI, the statesn is determined
by G, and the changes of state variables between any two consecutive states corresponds to the
application of an operator.

Definition 3.44 Let 〈A, I,O,G〉 be a deterministic transition system. Defineι0 =
∧
{a0|a ∈

A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} for the initial state andGn as the formulaG with every
variablea ∈ A replaced byan. Define

Φseq
n = ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An) ∧Gn

whereAi = {ai|a ∈ A} for all i ∈ {0, . . . , n}.

A plan can be found by using the formulaeΦseq
i as follows. We start with plan lengthi = 0, test

the satisfiability ofΦseq
i , and depending on the result, either construct a plan (ifΦseq

i is satisfiable),
or increasei by one and repeat the previous steps, until a plan is found.

If there are no plans, it has to be somehow decided when to stop increasingi. An upper
bound on plan length is2|A| − 1 whereA is the set of state variables but this upper bound does
not provide a practical termination condition for this procedure. Some work on more practical
termination conditions are cited in Section 3.7.

The construction of a plan from a valuationv that satisfiesΦseq
i is straightforward. The plan

has exactlyi operators, and this plan is known to be the shortest one because the formulaΦseq
i−1

had already been determined to be unsatisfiable. First construct the executions0, . . . , si of the
plan fromv as follows. For allj ∈ {0, . . . , i} anda ∈ A, sj(a) = v(aj). The plan has the

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 45

form o1, . . . , oi. Operatoroj for j ∈ {1, . . . , i} is identified by testing for allo ∈ O whether
appo(sj−1) = sj . There may be several operators satisfying this condition, and any of them can
be chosen.

Example 3.45 LetA = {a, b}. Let the stateI satisfyI |= a ∧ b. LetG = (a ∧ ¬b) ∨ (¬a ∧ b)
ando1 = 〈>, (a B ¬a) ∧ (¬a B a)〉 ando2 = 〈>, (b B ¬b) ∧ (¬b B b)〉. The following formula
is satisfiable if and only if〈A, I, {o1, o2}, G〉 has a plan of length 3.

(a0 ∧ b0)
∧(((a0 ↔ a1) ∧ (b0 ↔ ¬b1)) ∨ ((a0 ↔ ¬a1) ∧ (b0 ↔ b1)))
∧(((a1 ↔ a2) ∧ (b1 ↔ ¬b2)) ∨ ((a1 ↔ ¬a2) ∧ (b1 ↔ b2)))
∧(((a2 ↔ a3) ∧ (b2 ↔ ¬b3)) ∨ ((a2 ↔ ¬a3) ∧ (b2 ↔ b3)))
∧((a3 ∧ ¬b3) ∨ (¬a3 ∧ b3))

One of the valuations that satisfy the formula is the following.

time i
0 1 2 3

ai 1 0 0 0
bi 1 1 0 1

This valuation corresponds to the plan that applies operatoro1 at time point 0,o2 at time point 1,
ando2 at time point 2. There are also other satisfying valuations. The shortest plans have length 1
and respectively consist of the operatorso1 ando2. �

Example 3.46 Consider the following problem. There are two operators, one for rotating the
values of bits abc one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(¬a2 ∧ ¬b2 ∧ c2)

Since the literals describing the initial and the goal state must be true, we can replace occurrences
of these state variables in the subformulae for operators by> and⊥.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((> ↔ b1) ∧ (⊥ ↔ c1) ∧ (⊥ ↔ a1)) ∨ ((¬> ↔ a1) ∧ (¬⊥ ↔ b1) ∧ (¬⊥ ↔ c1)))
∧(((a1 ↔ ⊥) ∧ (b1 ↔ >) ∧ (c1 ↔ ⊥)) ∨ ((¬a1 ↔ ⊥) ∧ (¬b1 ↔ ⊥) ∧ (¬c1 ↔ >)))
∧(¬a2 ∧ ¬b2 ∧ c2)

After simplifying we have the following.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1)
∧((¬a1 ∧ b1 ∧ ¬c1) ∨ (a1 ∧ b1 ∧ ¬c1))
∧(¬a2 ∧ ¬b2 ∧ c2)

46 CHAPTER 3. DETERMINISTIC PLANNING

The only way of satisfying this formula is to make the first disjuncts of both disjunctions true, that
is, b1 must be true anda1 andc1 must be false. The resulting valuation corresponds to taking the
rotation action twice.

Consider the same problem but now with the goal state 101.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(a2 ∧ ¬b2 ∧ c2)

We simplify again and get the following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1))
∧((¬a1 ∧ b1 ∧ c1) ∨ (¬a1 ∧ b1 ∧ ¬c1))
∧(a2 ∧ ¬b2 ∧ c2)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. �

3.6.4 Parallel application of operators

For statess and setsT of operators we defineappT (s) as the result of simultaneously applying all
operatorso ∈ T : the preconditions of all operators inT must be true ins and the stateappT (s) is
obtained froms by making the literals in

⋃
〈p,e〉∈T [e]det

s true. Analogously to sequential plans we
can defineappT1;T2;...;Tn(s) asappTn(· · ·appT2(appT1(s)) · · ·).

Next we show how the translation of deterministic operators into the propositional logic in
Section 3.6.2 can be extended to the simultaneous application of operators as inappT (s).

Consider the formulaτA(o) representing one operatoro = 〈c, e〉.

c ∧
∧
a∈A

((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

This formula can be rewritten to the following logically equivalent formula that separately says
which state variables are changed by the operator and which state variables retain their values.

c∧∧
a∈A(EPCa(e)→a′)∧∧
a∈A(EPC¬a(e)→¬a′)∧∧
a∈A((a ∧ ¬a′)→EPC¬a(e))∧∧
a∈A((¬a ∧ a′)→EPCa(e))

We use this formulation ofτA(o) as basis of obtaining encodings of planning that allowseveral
operators in parallel. Every operator applied at a given time point causes its effects to be true
and requires its precondition to be true. This is expressed by the first three conjuncts. The last
two conjuncts say that, assuming the operator that is applied is the only one, certain state variables
retain their value. These formulae have to be modified to accommodate the possibility of executing
several operators in parallel.

We introduce propositional variableso for denoting the execution of operatorso ∈ O.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 47

Definition 3.47 Let A be the set of state variables andO a set of operators. Let the formula
τA(O) denote the conjunction of formulae

(o→c)∧∧
a∈A(o ∧ EPCa(e)→a′)∧∧
a∈A(o ∧ EPC¬a(e)→¬a′)

for all 〈c, e〉 ∈ O and∧
a∈A((a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en))∧∧
a∈A((¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (on ∧ EPCa(en)))

whereO = {o1, . . . , on} ande1, . . . , en are the respective effects.

The difference to the definition ofτA(o) in Section 3.6.2 is that above the formulae do not
assume that there is only one operator explaining the changes that take place.

The formulaτA(O) matches the definition ofappT (s).

Lemma 3.48 Let s ands′ be states andO andT ⊆ O sets of operators. Letv : A ∪ A′ ∪ O →
{0, 1} be a valuation such that

1. for all o ∈ O, v(o) = 1 iff o ∈ T ,

2. for all a ∈ A, v(a) = s(a), and

3. for all a ∈ A, v(a′) = s′(a).

Thenv |= τA(O) if and only ifs′ = appT (s).

Proof: For the proof from right to left we assume thats′ = appT (s) and show thatv |= τA(O).
For the formulaeo→ c consider anyo = 〈c, e〉 ∈ O. If o 6∈ T thenv 6|= o andv |= o→ c.

So assumeo ∈ T . By assumptions is a state such thatappT (s) is defined. Hences |= c. Hence
v |= o→c.

For the formulaeo ∧ EPCa(e)→ a′ consider anyo = 〈c, e〉 ∈ O. If o 6∈ T thenv 6|= o and
v |= o ∧ EPCl(e)→ l for all literals l. So assumeo ∈ T . Now v |= o ∧ EPCl(e)→ l because
if s |= EPCl(e) then l ∈ [e]det

s by Lemma 3.3 ands′ |= l. Proof foro ∧ EPC¬a(e) → ¬a′ is
analogous.

For the formulae((a ∧ ¬a′) → ((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en)) consider any
a ∈ A. According to the definition ofs′ = appT (s), a can be true ins and false ins′ only if
¬a ∈ [o]det

s for someo ∈ T . By Lemma 3.3¬a ∈ [o]det
s if and only if s |= EPC¬a(o). So if the

antecedent of(a∧¬a′)→((o1 ∧EPC¬a(o1))∨ · · · ∨ (om ∧EPC¬a(om))) is true, then one of the
disjuncts of the consequent is true, whereO = {o1, . . . , om}. The proof for the change from false
to true is analogous.

For the proof from left to right we assumev |= τA(O) and show thats′ = appT (s).
The preconditionc of everyo ∈ T is true ins becausev |= o andv |= o→ c, ands′ |= [e]det

s

for everyo = 〈c, e〉 ∈ T becausev |= o andv |= o ∧ EPCl(e)→ l for every literall. This also
means that[T]det

s is consistent andappT (s) is defined.
For state variablesa not occurring in[T]det

s we have to show thats(a) = s′(a). Sincea does not
occur in[T]det

s , for everyo ∈ {o1, . . . , om} = O = {〈c1, e1〉, . . . , 〈cm, em〉} eithero 6∈ T or both

48 CHAPTER 3. DETERMINISTIC PLANNING

a 6∈ [e]det
s and¬a 6∈ [e]det

s . Hence eitherv 6|= o or (by Lemma 3.3)v |= ¬(EPCa(e))∧¬EPC¬a(e).
This together with the assumptions thatv |= (a ∧ ¬a′) → ((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (om ∧
EPC¬a(em))) andv |= (¬a ∧ a′)→ ((o1 ∧ EPCa(o1)) ∨ · · · ∨ (om ∧ EPCa(em))) impliesv |=
(a→a′)∧ (¬a→¬a′). Therefore everya ∈ A not occurring in[T]det

s remains unchanged. Hence
s′ = appT (s). �

Example 3.49 Let o1 = 〈¬LAMP1, LAMP1〉 ando2 = 〈¬LAMP2, LAMP2〉. The applica-
tion of none, one or both of these operators is described by the following formula.

(¬LAMP1 ∧ LAMP1′)→((o1 ∧ >) ∨ (o2 ∧ ⊥)
(LAMP1 ∧ ¬LAMP1′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
(¬LAMP2 ∧ LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ >)
(LAMP2 ∧ ¬LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
o1→LAMP1′

o1→¬LAMP1
o2→LAMP2′

o2→¬LAMP2

�

3.6.5 Partially-ordered plans

In this section we consider a more general notion of plans in which several operators can be applied
simultaneously. This kind of plans are formalized as sequences of sets of operators. In such a plan
the operators are partially ordered because there is no ordering on the operators taking place at the
same time point. This notion of plans is useful for two reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there aren such operators, there aren! plans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm shows that there is
no plan of lengthn consisting of these operators, it has to show that none of then! plans reaches
the goals. This may be combinatorially very difficult ifn is high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: partially-ordered plans require less
time points than the corresponding sequential plans. This reduces the number of propositional
variables that are needed for representing the planning problem, which may make testing the
satisfiability of these formulae much more efficient.

In Section 3.6.4 we have shown how to represent the parallel application of operators in the
propositional logic. However, this definition is too loose because it allows plans that cannot be
executed.

Example 3.50 The operators〈a,¬b〉 and〈b,¬a〉 may be executed simultaneously resulting in a
state satisfying¬a ∧ ¬b, although this state is not reachable by the two operators sequentially.�

A realistic way of interpreting parallelism in partially ordered plans is that any total ordering
of the simultaneous operators is executable and results in the same state in all cases. This is the
definition used in planning research so far.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 49

Definition 3.51 (Step plans)For a set of operatorsO and an initial stateI, a step plan forO
andI is a sequenceT = 〈T0, . . . , Tl−1〉 of sets of operators for somel ≥ 0 such that there is a
sequence of statess0, . . . , sl (the execution ofT) such that

1. s0 = I,

2. for all i ∈ {0, . . . , l−1} and every total orderingo1, . . . , on ofTi, appo1;...;on(si) is defined
and equalssi+1.

Theorem 3.52 Testing whether a sequence of sets of operators is a step plan is co-NP-hard.

Proof: The proof is by reduction from the co-NP-complete validity problem TAUT. Letφ be any
propositional formula. LetA = {a1, . . . , an} be the set of propositional variables occurring inφ.
Our set of state variables isA. Let oz = 〈φ,>〉 andO = {〈>, a1〉, . . . , 〈>, an〉, oz}. Let s ands′

be states such thats 6|= a ands′ |= a for all a ∈ A. We show thatφ is a tautology if and only if
T = 〈O〉 is a step plan forO ands.

Assumeφ is a tautology. Now for any total orderingo0, . . . , on of O the stateappo0;...;on(s)
is defined and equalss′ because all preconditions are true in all states and the set of effects of all
operators isA (the set is consistent and making the effects true ins yieldss′.) HenceT is a step
plan.

AssumeT is a step plan. Letv be any valuation. We show thatv |= φ. LetOv = {〈>, a〉|a ∈
A, v |= a}. The operatorsO can be ordered too0, . . . , on so that the operatorsOv = {o0, . . . , ok}
precedeoz andO\(Ov ∪ {oz}) follow oz. SinceT is a step plan,appo0;...;on(s) is defined. Since
alsoappo0;...;ok;oz(s) is defined, the preconditionφ of oz is true inv = appo0;...;ok

(s). Hence
v |= φ. Since this holds for any valuationv, φ is a tautology. �

To avoid intractability it is better to restrict to a class of step plans that are easy to recognize.
One such class is based on the notion ofinterference.

Definition 3.53 (Affect) LetA be a set of state variables ando = 〈c, e〉 ando′ = 〈c′, e′〉 opera-
tors overA. Theno affectso′ if there isa ∈ A such that

1. a is an atomic effect ine anda occurs in a formula ine′ or it occurs negatively inc′, or

2. ¬a is an atomic effect ine anda occurs in a formula ine′ or it occurs positively inc′.

Definition 3.54 (Interference) Operatorso ando′ interfereif o affectso′ or o′ affectso.

Testing for interference of two operators is easy polynomial time computation. Non-interference
not only guarantees that a set of operators is executable in any order, but it also guarantees that the
result equals to applying all the operators simultaneously.

Lemma 3.55 Let s be a state andT a set of operators so that appT (s) is defined and no two
operators interfere. Then appT (s) = appo1;...;on(s) for any total orderingo1, . . . , on of T .

Proof: Let o1, . . . , on be any total ordering ofT . We prove by induction on the length of a prefix
of o1, . . . , on the following statement for alli ∈ {0, . . . , n − 1} by induction oni: s |= a if and
only if appo1;...;oi(s) |= a for all state variablesa occurring in an antecedent of a conditional effect
or a precondition of operatorsoi+1, . . . , on.

50 CHAPTER 3. DETERMINISTIC PLANNING

Base casei = 0: Trivial.
Inductive casei ≥ 1: By the induction hypothesis the antecedents of conditional effects ofoi

have the same value ins and inappo1;...;oi−1(s), from which follows[oi]det
s = [oi]det

appo1;...;oi−1 (s).

Sinceoi does not interfere with operatorsoi+1, . . . , on, no state variable occurring in[oi]det
s occurs

in an antecedent of a conditional effect or in the precondition ofoi+1, . . . , on, that is, these state
variables do not change. Since[oi]det

s = [oi]det
appo1;...;oi−1 (s) this also holds whenoi is applied in

appo1;...;oi−1(s). This completes the induction proof.
SinceappT (s) is defined, the precondition of everyo ∈ T is true ins and[o]det

s is consistent.
By the fact we established above, the precondition of everyo ∈ T is true also inappo1;...;ok

(s)
and [o]det

appo1;...;ok
(s) is consistent for any{o1, . . . , ok} ⊆ T\{o}. Hence any total ordering of

the operators is executable. By the fact we established above,[o]det
s = [o]det

appo1;...;ok
(s) for every

{o1, . . . , ok} ⊆ T\{o}. Hence every operator causes the same changes no matter what the total
ordering is. SinceappT (s) is defined, no operator inT undoes the effects of another operator.
Hence the same states′ = appT (s) is reached in every case. �

For finding plans by using the translation of parallel actions from Section 3.6.4 it remains to
encode the condition that no two parallel actions are allowed to interfere.

Definition 3.56 Define

R2(A,A′, O) = τA(O) ∧
∧
{¬(o ∧ o′)|{o, o′} ⊆ O, o 6= o′, o ando′interfere}

Definition 3.57 Let 〈A, I,O,G〉 be a deterministic succinct transition system. Define

Φpar
n = ι0 ∧R2(A0, A1, O0) ∧R2(A1, A2, O1) ∧ · · · ∧ R2(An−1, An, On−1) ∧Gn

whereAi = {ai|a ∈ A} for all i ∈ {0, . . . , n} andOi = {oi|o ∈ O} for all i ∈ {1, . . . , n} and
ι0 =

∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} andGn isG with everya ∈ A replaced

byan.

If Φpar
n is satisfiable andv is a valuation such thatv |= Φpar

n , then defineTi = {o ∈ O|v |=
oi} for every i ∈ {1, . . . , n}. Then 〈T1, . . . , Tn〉 is a plan for the transition system, that is,
appT1;...;Tn(I) |= G.

It may be tempting to think that non-interference implies that the actions occurring in parallel
in a plan could always be executed simultaneously in the real world. This however is not the case.
For genuine temporal parallelism the formalization of problems as operators has to fulfill much
stronger criteria than when sequential execution is assumed.

Example 3.58 Consider the operators

transport-A-with-truck-1= 〈AinFreiburg,AinStuttgart∧ ¬AinFreiburg〉
transport-B-with-truck-1= 〈BinFreiburg,BinKarlsruhe∧ ¬BinFreiburg〉

which formalize the transportation of two objects with one vehicle. The operators do not interfere,
and our notion of plans allows the simultaneous execution of these operators. However, these
actions cannot really be simultaneous because the corresponding real world actions involve the
same vehicle going to different destinations. �

3.7. LITERATURE 51

3.7 Literature

Progression and regression were used early in planning research[Rosenschein, 1981]. Our defi-
nition of regression in Section 3.1.2 is related to the weakest precondition predicates for program
synthesis[de Bakker and de Roever, 1972; Dijkstra, 1976]. Instead of using the general definition
of regression we presented, earlier work on planning with regression and a definition of operators
that includes disjunctive preconditions and conditional effects has avoided all disjunctivity by pro-
ducing only goal formulae that are conjunctions of literals[Andersonet al., 1998]. Essentially,
these formulae are the disjuncts ofregro(φ) in DNF, although the formulaeregro(φ) are not gen-
erated. The search algorithm then produces a search tree with one branch for every disjunct of the
DNF formula. In comparison to the general definition, this approach often leads to a much higher
branching factor and an exponentially bigger search tree.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at the time[Kautz and Sel-
man, 1992; 1996]. In addition to Kautz and Selman[1996], parallel plans were used by Blum and
Furst in their Graphplan planner[Blum and Furst, 1997]. Parallelism in this context serves the
same purpose as partial-order reduction[Godefroid, 1991; Valmari, 1991], reducing the number
of orderings of independent actions to consider. There are also other notions of parallel plans
that may lead to much more efficient planning[Rintanenet al., 2005]. Ernst et al.[1997] have
considered translations of planning into the propositional that utilize the regular structure of sets
of operators obtained from schematic operators. Planning by satisfiability has been extended to
model-checking for testing whether a finite or infinite execution satisfying a given Linear Tem-
poral Logic (LTL) formula exists[Biereet al., 1999]. This approach to model-checking is called
bounded model-checking.

It is trickier to use a satisfiability algorithm for showing that no plans of any length exist than
for finding a plan of a given length. To show that no plans exist all plan lengths up to2n − 1
have to be considered when there aren state variables. In typical planning applicationsn is
often some hundreds or thousands, and generating and testing the satisfiability of all the required
formulae is practically impossible. That no plans of a given lengthn < 2|A| do not exist does not
directly imply anything about the existence of longer plans. Some other approaches for solving
this problem based on satisfiability algorithms have been recently proposed[McMillan, 2003;
Mneimneh and Sakallah, 2003].

The use of general-purpose heuristic search algorithms has recently got a lot of attention. The
class of heuristics currently in the focus of interest was first proposed by McDermott[1999] and
Bonet and Geffner[2001]. The distance estimatesδmax

I (φ) andδ+I (φ) in Section 3.4 are based on
the ones proposed by Bonet and Geffner[2001]. Many other distance estimates similar to Bonet
and Geffner’s exist[Haslum and Geffner, 2000; Hoffmann and Nebel, 2001; Nguyenet al., 2002].
Theδrlx

I (φ) estimate generalizes ideas proposed by Hoffmann and Nebel[2001].
Other techniques for speeding up planning with heuristic state-space search include symmetry

reduction[Starke, 1991; Emerson and Sistla, 1996] and partial-order reduction[Godefroid, 1991;
Valmari, 1991; Aluret al., 1997], both originally introduced outside planning in the context of
reachability analysis and model-checking in computer-aided verification. Both of these techni-
ques address the main problem in heuristic state-space search, high branching factor (number of
applicable operators) and high number of states.

The algorithm for invariant computation was originally presented for simple operators with-

52 CHAPTER 3. DETERMINISTIC PLANNING

out conditional effects[Rintanen, 1998]. The computation parallels the construction of planning
graphs in the Graphplan algorithm[Blum and Furst, 1997], and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of invariant
computation are useful for backward search algorithms: if a depth-bound ofn is imposed on the
search tree, then formulae obtained bym regression steps (suffixes of possible plans of length
m) that do not satisfy clausesCn−m cannot lead to a plan, and the search tree can be pruned. A
different approach to find invariants has been proposed by Gerevini and Schubert[1998].

Some researchers extensively use Graphplan’s planning graphs[Blum and Furst, 1997] for var-
ious purposes but we do not and have not discussed them in more detail for certain reasons. First,
the graph character of planning graphs becomes inconvenient when preconditions of operators are
arbitrary formulae and effects are conditional. As a result, the basic construction steps of planning
graphs become unintuitive. Second, even when the operators have the simple form, the practi-
cally and theoretically important properties of planning graphs are not graph-theoretic. We can
equivalently represent the contents of planning graphs as sequences of sets of literals and 2-literal
clauses, as we have done in Section 3.5. In general it seems that the graph representation does
not provide advantages over more conventional logic-based and set-based representations and is
primarily useful for visualization purposes.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving
big problem instances with a sufficiently simple structure. This often entails better runtimes than
in the SAT/CSP approach because of the high overheads with handling big formulae or constraint
nets in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach
but on which heuristic state-space search fails.

There are few empirical studies on the behavior of different algorithms on planning problems
in general or average. Bylander[1996] gives empirical results suggesting the existence of hard-
easy pattern and a phase transition behavior similar to those found in other NP-hard problems
like propositional satisfiability[Selmanet al., 1996]. Bylander also demonstrates that outside the
phase transition region plans can be found by a simple hill-climbing algorithm or the inexistence
of plans can be determined by using a simple syntactic test. Rintanen[2004c] complemented
Bylander’s work by analyzing the behavior of different types of planning algorithms on difficult
problems inside the phase transition region, suggesting that current planners based on heuristic
state space search are outperformed by satisfiability algorithms on difficult problems.

The PSPACE-completeness of the plan existence problem for deterministic planning is due to
Bylander[1994]. The same result for another succinct representation of graphs had been estab-
lished earlier by Lozano and Balcazar[1990].

Any computational problem that is NP-hard – not to mention PSPACE-hard – is considered too
difficult to be solved in general. As planning even in the deterministic case is PSPACE-hard there
has been interest in finding restricted special cases in which efficient (polynomial-time) planning
is always guaranteed. Syntactic restrictions have been investigated by several researchers[Bylan-
der, 1994; B̈ackstr̈om and Nebel, 1995] but the restrictions are so strict that very few interesting
problems can be represented.

Schematic operators increase the conciseness of the representations of some problem instances
exponentially and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-complete[Erol et al., 1995]. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible and the plan existence problem is
undecidable[Erol et al., 1995].

Chapter 4

Extensions to nondeterministic planning

The techniques discussed in Chapter 3 can be generalized to nondeterministic conditional planning
problems.

Deterministic planning is the problem of finding a path from the initial state to any of the
goal states. This problem is also implicitly a subproblem in more general nondeterministic plan-
ning problems[Howard, 1960; Puterman, 1994; Boutilieret al., 1999; Bonet and Geffner, 2000;
Cimatti et al., 2003; Smallwood and Sondik, 1973; Kaelblinget al., 1998; Madaniet al., 2003]
and the techniques in the previous chapter can be helpful in solving them as well. Nondeter-
ministic planning problems fundamentally differ from the basic deterministic planning problem,
for example by being provably exponentially more difficult[Rintanen, 2004a]. These techniques
should therefore only be viewed asimplementation techniques. Algorithms for the more general
problems fundamentally differ from those for deterministic planning.

Planning without observability can be viewed as a path existence problem similarly to the
classical deterministic planning problem. As there may be several initial states and one state may
have several successors, there may be several possible states at any step of plan execution. These
state sets are known asbelief states. For nondeterministic problems without observability planning
can be formalized as finding a path in the space of belief states. In this setting the problem of
computing the successor or the predecessors of a belief state with respect to an operator arises.
The techniques discussed in this chapter may be used for representing belief states and computing
their successors and predecessors, and can also be applied for conditional planning with partial
and full observability.

Some algorithms for conditional planning (with full or partial observability) involve testing
whether the current (incomplete) candidate plan can reach the goal states or whether it can also
reach states that are not goal states. This question can be answered by techniques that extend those
given for deterministic planning in Section 3.6.

4.1 Nondeterministic operators

In this section we will present a basic translation of nondeterministic operators into the proposi-
tional logic and a regression operation for nondeterministic operators. In the next sections we will
discuss a general framework for computing with nondeterministic operators and their transition
relations which are represented as propositional formulae. This framework provides techniques
for computing both regression and progression for sets of states that are represented as formulae.

53

54 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

4.1.1 Regression for nondeterministic operators

Regression for deterministic operators is given in Definition 3.5. It can be easily generalized to a
subclass of nondeterministic operators.

Definition 4.1 (Regression for nondeterministic operators)Let φ be a propositional formula
ando = 〈c, e1| · · · |en〉 an operator wheree1, . . . , en are deterministic. Define

regrnd
o (φ) = regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ).

Theorem 4.2 Letφ be a formula overA, o an operator overA, andS the set of all states overA.
Then{s ∈ S|s |= regrnd

o (φ)} = spreimgo({s ∈ S|s |= φ}).

Proof: Let o = 〈c, (e1| · · · |en)〉.
{s ∈ S|s |= regrnd

o (φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ), . . . , s |= regr〈c,en〉(φ)}
= {s ∈ S|app〈c,e1〉(s) |= φ, . . . ,app〈c,en〉(s) |= φ} T3.7
= {s ∈ S|s′ |= φ for all s′ ∈ imgo(s) and there iss′ |= φ with sos′}
= spreimgo({s ∈ S|s |= φ})

The second last equality is becauseimgo(s) = {app〈c,e1〉(s), . . . ,app〈c,en〉(s)}. �

Example 4.3 Let o = 〈d, (b|¬c)〉. Then

regrnd
o (b↔ c) = regr〈d,b〉(b↔ c) ∧ regr〈d,¬c〉(b↔ c)

= (d ∧ (> ↔ c)) ∧ (d ∧ (b↔ ⊥))
≡ d ∧ c ∧ ¬b.

�

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.6.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

We define for effectse the setschanges(e) of state variables that are possibly changed bye, or
in other words, the set of state variables occurring in an atomic effect ine.

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(e1| · · · |en) = changes(e1) ∪ · · · ∪ changes(en)

We make the following assumption to simplify the translation.

Assumption 4.4 Leta ∈ A be a state variable. Lete1∧· · ·∧en occur in the effect of an operator.
If e1, . . . , en are not all deterministic, thena or ¬a may occur as an atomic effect in at most one
of e1, . . . , en.

4.1. NONDETERMINISTIC OPERATORS 55

This assumption rules out effects like(a|b) ∧ (¬a|c) that may makea simultaneously true
and false. It also rules out effects like((d B a)|b) ∧ ((¬d B ¬a)|c) that are well-defined and
could be translated into the propositional logic. However, the additional complexity outweighs
the benefit of allowing them. Effects can often easily be transformed by the equivalences in Table
2.3 to satisfy Assumption 4.4:((d B a)|b) ∧ ((¬d B ¬a)|c) is equivalent to((d B a) ∧ (¬d B
¬a))|((d B a) ∧ c)|(b ∧ (¬d B ¬a))|(b ∧ c).

The problem in the translation that does not show up with deterministic operators is that for
nondeterministic choicese1| · · · |en the formula for eachei has to express the changes for exactly
the same set of state variables. This setB is given as a parameter to the translation function. The
setB has to include all state variables possibly changed by the effect.

τnd
B (e) = τB(e) whene is deterministic

τnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en)

τnd
B (e1 ∧ · · · ∧ en) = τnd

B\(B2∪···∪Bn)(e1) ∧ τ
nd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en)
whereBi = changes(ei) for all i ∈ {2, . . . , n}

The first part of the translationτnd
B (e) for deterministice is the translation of deterministic effects

we presented in Section 3.6.2 restricted to state variables inB. The other two parts cover all
nondeterministic effects in normal form. In the translation ofe1 ∧ · · · ∧ en all state variables that
are not changed are handled in the translation ofe1. Assumption 4.4 guarantees that for each
τnd
B (e) all state variables changed bye are inB.

Example 4.5 We translate the effect

e = (a|(d B a)) ∧ (c|d)

into a propositional formula. The set of state variables isA = {a, b, c, d}.

τnd
{a,b,c,d}(e) = τnd

{a,b}(a|(d B a)) ∧ τnd
{c,d}(c|d)

= (τnd
{a,b}(a) ∨ τ

nd
{a,b}(d B a)) ∧ (τnd

{c,d}(c) ∨ τ
nd
{c,d}(d))

= ((a′ ∧ (b↔ b′)) ∨ (((a ∨ d) ↔ a′) ∧ (b↔ b′)))∧
((c′ ∧ (d↔ d′)) ∨ ((c↔ c′) ∧ d′))

�

For expressing a state in terms ofA′ instead ofA, or vice versa, we need to map a valuation
of A to a corresponding valuation ofA′, or vice versa. for this purpose we defines[A′/A] =
{〈a′, s(a)〉|a ∈ A}.

Definition 4.6 LetA be a set of state variables. Leto = 〈c, e〉 be an operator overA in normal
form. Defineτnd

A (o) = c ∧ τnd
A (e).

Lemma 4.7 Leto be an operator over a setA of state variables. Then

{v|v is a valuation ofA ∪A′, v |= τnd
A (o)} = {s ∪ s′[A′/A]|s, s′ ∈ S, s′ ∈ imgo(s)}.

Proof: We show that there is a one-to-one match between valuations satisfyingτnd
A (o) and pairs of

states and their successor states.

56 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

For the proof from right to left assume thats ands′ are states such thats′ ∈ imgo(s). Hence
there isE ∈ [e]s such thats′ is obtained froms by making literals inE true. Letv = s∪s′[A′/A].
We show thatv |= τnd

A (o). Let o = 〈c, e〉. Sinceimgo(s) is non-empty,s |= c. It remains to show
thatv |= τnd

A (e).
Induction hypothesis: Lete be any effect over a setB of state variables, ands ands′ states

such for someE ∈ [e]s s′ |= E ands(a) = s′(a) for everya ∈ B such that{a,¬a} ∩ E = ∅.
Thens ∪ s′[A′/A] |= τnd

B (e).
Base case:e is a deterministic effect. There is only oneE ∈ [e]s. A proof similar to that of

Lemma 3.42 shows thats ∪ s′[A′/A] |= τnd
B (e).

Inductive case 1,e = e1 ∧ · · · ∧ en: By definitionτnd
B (e1 ∧ · · · ∧ en) = τnd

B\(B2∪···∪Bn)(e1) ∧
τnd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en) for Bi = changes(ei), i ∈ {2, . . . , n}. LetE be any member of[e]s and
s′ a state such thats′ |= E ands(a) = s′(a) for everya ∈ B such that{a,¬a} ∩ E = ∅. By
definition of [e]s we haveE = E1 ∪ · · · ∪ En for someEi ∈ [ei]s for everyi ∈ {1, . . . , n}. The
assumptions of the induction hypothesis hold for everyei andBi, i ∈ {2, . . . , n}:

1. s′ |= Ei becauseEi ⊆ E.

2. By Assumption 4.4s(a) = s′(a) for everya ∈ Bi such that{a,¬a} ∩ Ei = ∅.

Similarly for e1 andB\(B2 ∪ · · · ∪Bn). Hences∪ s′[A′/A] |= τnd
Bi

(ei) for all i ∈ {2, . . . , n} and
s ∪ s′[A′/A] |= τnd

B\(B2∪···∪Bn)(ei), and therefores ∪ s′[A′/A] |= τnd
B (e).

Inductive case 2,e = e1| · · · |en: By definitionτnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en). By

definition [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. HenceE ∈ [ei]s for somei ∈ {1, . . . , n}. Hence
the assumptions of the induction hypothesis hold for at least oneei, i ∈ {1, . . . , n} and we get
s∪ s′[A′/A] |= τnd

B (ei). As τnd
B (ei) is one of the disjuncts ofτnd

B (e) finally s∪ s′[A′/A] |= τnd
B (e).

For the proof from left to right assume thatv |= τnd
B (e) for v = s ∪ s′[A′/A]. We prove by

structural induction that the changes froms to s′ correspond to[e]s.
Induction hypothesis: Lete be any effect,B a set of state variables that includes those occurring

in e, ands ands′ states such thatv |= τnd
B (e) wherev = s∪ s′[A′/A]. Then there isE ∈ [e]s such

thats |= E ands(a) = s′(a) for all a ∈ B such that{a,¬a} ∩ E = ∅.
Base case:e is a deterministic effect. There is only oneE ∈ [e]s. A proof similar to that of

Lemma 3.42 shows that the changes betweens ands′ for a ∈ B correspond toE.
Inductive case 1,e = e1 ∧ · · · ∧ en: By definition[e]s = {E1 ∪ · · · ∪En|E1 ∈ [e1]s, . . . , En ∈

[en]s}, and by Assumption 4.4 sets of the state variables occurring ine1, . . . , en are disjoint.
By definition τnd

B (e1 ∧ · · · ∧ en) = τnd
B\(B2∪···∪Bn)(e1) ∧ τnd

B2
(e2) ∧ · · · ∧ τnd

Bn
(en) for Bi =

changes(ei), i ∈ {2, . . . , n}. The induction hypothesis fore and all a ∈ B is directly by
the induction hypothesis for alla ∈ B = (B\(B2 ∪ · · · ∪ Bn)) ∪ B2 ∪ · · · ∪ Bn because
v |= τnd

B\(B2∪···∪Bn)(e1) ∧ τ
nd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en).
Inductive case 2,e = e1| · · · |en: By definition[e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. By definition

τnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en). Becausev |= τnd

B (e1| · · · |en), v |= τnd
B (ei) for some

i ∈ {1, . . . , n}. By the induction hypothesis there isE ∈ [ei]s with the given property. We get the
induction hypothesis fore because[ei]s ⊆ [e]s and hence alsoE ∈ [e]s.

Therefores′ is obtained froms by making some literals inE ∈ [e]s true and retaining the
values of state variables not mentioned inE, ands′ ∈ imgo(s). �

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 57

4.2 Computing with transition relations as formulae

As discussed in Section 2.3, formulae are a representation of sets of states. In this section we show
how operations on transition relations have a counterpart as operations on formulae that represent
transition relations.

Most implementations of the techniques in this section are based on binary decision diagrams
(BDDs) [Bryant, 1992], a representation (essentially a normal form) of propositional formulae
with useful computational properties, but the techniques are applicable to other representations of
propositional formulae as well.

4.2.1 Existential and universal abstraction

The most important operations performed on transition relations represented as propositional for-
mulae are based onexistential abstractionanduniversal abstraction.

Definition 4.8 Existential abstractionof a formulaφ with respect to an atomic propositiona is
the formula

∃a.φ = φ[>/a] ∨ φ[⊥/a].

Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition 4.9 Universal abstractionof a formulaφ with respect to an atomic propositiona is the
formula

∀a.φ = φ[>/a] ∧ φ[⊥/a].

Existential and universal abstraction ofφ with respect to aset of atomic propositionsis defined
in the obvious way: forB = {b1, . . . , bn} such thatB is a subset of the propositional variables
occurring inφ define

∃B.φ = ∃b1.(∃b2.(. . .∃bn.φ . . .))
∀B.φ = ∀b1.(∀b2.(. . .∀bn.φ . . .)).

In the resulting formulae there are no occurrences of variables inB.
Let φ be a formula overA. Then∃A.φ is a formula that consists of the constants> and⊥ and

the logical connectives only. The truth-value of this formula is independent of the valuation ofA,
that is, its value is the same for all valuations.

The following lemma expresses the important properties of existential and universal abstrac-
tion. When we writev ∪ v′ for a pair of valuations we view valuationsv as binary relations, that
is, sets of pairs such that{(a, b), (a, c)} 6∈ v for anya, b andc such thatb 6= c.

Lemma 4.10 Letφ be a formula overA ∪A′ andv′ a valuation ofA′. Then

1. v′ |= ∃A.φ if and only if(v ∪ v′) |= φ for at least one valuationv ofA, and

2. v′ |= ∀A.φ if and only if(v ∪ v′) |= φ for all valuationsv ofA.

Proof: We prove the statements by induction on the cardinality ofA. We only give the proof for
∃. The proof for∀ is analogous to that for∃.

Base case|A| = 0: There is only one valuationv = ∅ of the empty setA = ∅. When there is
nothing to abstract we have∃∅.φ = φ. Hence triviallyv′ |= ∃∅.φ if and only if (v ∪ ∅) |= φ.

58 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

matrices formulas sets of states
vectorV1×n formula overA set of states
matrixMn×n formula overA ∪A′ transition relation
V1×n + V ′

1×n φ1 ∨ φ2 set union
φ1 ∧ φ2 set intersection

Mn×n ×Nn×n ∃A′.(τnd
A (o) ∧ τnd

A (o′)[A′′/A′, A′/A])[A′/A′′] sequential compositiono ◦ o′
V1×n ×Mn×n (∃A.(φ ∧ τnd

A (o)))[A/A′] imgo(T)
Mn×n × Vn×1 ∃A′.(τnd

A (o) ∧ φ[A′/A]) preimgo(T)
∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o) spreimgo(T)

Table 4.1: Correspondence between matrix operations, Boolean operations and set-
theoretic/relational operations. AboveT = {s ∈ S|s |= φ}, M is the matrix corresponding
to τnd

A (o) andN is the matrix corresponding too′.

Inductive case|A| ≥ 1: Take anya ∈ A. v′ |= ∃A.φ if and only if v′ |= ∃A\{a}.(φ[>/a] ∨
φ[⊥/a]) by the definition of∃a.φ. By the induction hypothesisv′ |= ∃A\{a}.(φ[>/a]∨ φ[⊥/a])
if and only if (v0∪v′) |= φ[>/a]∨φ[⊥/a] for at least one valuationv0 ofA\{a}. Since the formula
φ[>/a] ∨ φ[⊥/a] represents both possible valuations ofa in φ, the last statement is equivalent to
(v ∪ v′) |= φ for at least one valuationv of A. �

4.2.2 Images and preimages as formula manipulation

Let A = {a1, . . . , an}, A′ = {a′1, . . . , a′n} andA′′ = {a′′1, . . . , a′′n}. Let φ1 be a formula over
A ∪ A′ andφ2 be a formula overA′ ∪ A′′. The formulae can be viewed as representations of
2n × 2n matrices or as transition relations over a state space of size2n.

The product matrix ofφ1 andφ2 is represented by a the following formula overA ∪A′′.

∃A′.φ1 ∧ φ2

Example 4.11 Let φ1 = a ↔ ¬a′ andφ2 = a′ ↔ a′′ represent two actions, reversing the truth-
value ofa and doing nothing. The sequential composition of these actions is

∃a′.φ1 ∧ φ2 = ((a↔ ¬>) ∧ (> ↔ a′′)) ∨ ((a↔ ¬⊥) ∧ (⊥ ↔ a′′))
≡ ((a↔ ⊥) ∧ (> ↔ a′′)) ∨ ((a↔ >) ∧ (⊥ ↔ a′′))
≡ a↔ ¬a′′.

�

This idea can be used for computing the images, preimages and strong preimages of operators
and sets of states in terms of formula manipulation by existential and universal abstraction. Table
4.1 outlines a number of connections between operations on vectors and matrices, on propositional
formulae, and on sets and relations. For transition relations we use valuations ofA ∪ A′ for
representing pairs for states and for states we use valuations ofA.

Lemma 4.12 Let φ be a formula overA and v a valuation ofA. Thenv |= φ if and only if
v[A′/A] |= φ[A′/A], and(φ[A′/A])[A/A′] = φ.

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 59

Definition 4.13 Leto be an operator andφ a formula. Define

imgo(φ) = (∃A.(φ ∧ τnd
A (o)))[A/A′]

preimgo(φ) = ∃A′.(τnd
A (o) ∧ φ[A′/A])

spreimgo(φ) = ∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o).

Theorem 4.14 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= imgo(φ)} = {s ∈ S|s |=
(∃A.(φ ∧ τnd

A (o)))[A/A′]} = imgo(T).

Proof: s′ |= (∃A.(φ ∧ τnd
A (o)))[A/A′]

iff s′[A′/A] |= ∃A.(φ ∧ τnd
A (o)) L4.12

iff there is valuations of A such that(s ∪ s′[A′/A]) |= φ ∧ τnd
A (o) L4.10

iff there is valuations of A such thats |= φ and(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss ∈ T such that(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss ∈ T such thats′ ∈ imgo(s) L4.7
iff s′ ∈ imgo(T).

�

Theorem 4.15 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= preimgo(φ)} = {s ∈ S|s |=
∃A′.(τnd

A (o) ∧ φ[A′/A])} = preimgo(T).

Proof: s |= ∃A′.(τnd
A (o) ∧ φ[A′/A])

iff there iss′0 : A′ → {0, 1} such that(s ∪ s′0) |= τnd
A (o) ∧ φ[A′/A]

iff there iss′0 : A′ → {0, 1} such thats′0 |= φ[A′/A] and(s ∪ s′0) |= τnd
A (o) L4.10

iff there iss′ : A→ {0, 1} such thats′ |= φ and(s ∪ s′0) |= τnd
A (o) L4.12

iff there iss′ ∈ T such that(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss′ ∈ T such thats′ ∈ imgo(s) L4.7
iff there iss′ ∈ T such thats ∈ preimgo(s′) (5) of L2.2
iff s ∈ preimgo(T).

Above we defines′ = s′0[A/A
′] (and hences′0 = s′[A′/A].) �

Theorem 4.16 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= spreimgo(φ)} = {s ∈ S|s |=
∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o)} = spreimgo(T).

Proof:
s |= ∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o)

iff s |= ∀A′.(τnd
A (o)→φ[A′/A]) ands |= ∃A′.τnd

A (o)
iff (s ∪ s′0) |= τnd

A (o)→φ[A′/A] for all s′0 : A′ → {0, 1} ands |= ∃A′.τnd
A (o) L4.10

iff (s ∪ s′0) 6|= τnd
A (o) or s′0 |= φ[A′/A] for all s′0 : A′ → {0, 1} ands |= ∃A′.τnd

A (o)
iff (s ∪ s′[A′/A]) 6|= τnd

A (o) or s′ |= φ for all s′ : A→ {0, 1} ands |= ∃A′.τnd
A (o) L4.12

iff s′ 6∈ imgo(s) or s′ |= φ for all s′ : A→ {0, 1} ands |= ∃A′.τnd
A (o) L4.7

iff s′ ∈ imgo(s) impliess′ |= φ for all s′ : A→ {0, 1} ands |= ∃A′.τnd
A (o)

iff imgo(s) ⊆ T ands |= ∃A′.τnd
A (o)

iff imgo(s) ⊆ T and there iss′ : A→ {0, 1} with (s ∪ s′[A′/A]) |= τnd
A (o) L4.10

iff imgo(s) ⊆ T and there iss′ : A→ {0, 1} with s′ ∈ imgo(s) L4.7
iff imgo(s) ⊆ T and there iss′ ∈ T with s′ ∈ imgo(s)
iff imgo(s) ⊆ T and there iss′ ∈ T with sos′

iff s ∈ spreimgo(T).

60 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

Above we defines′ = s′0[A/A
′] (and hences′0 = s′[A′/A].) �

Corollary 4.17 Let o = 〈c, (e1| · · · |en)〉 be an operator such that allei are deterministic. The
formula spreimgo(φ) is logically equivalent to regrnd

o (φ) as given in Definition 4.1.

Proof: By Theorems 4.2 and 4.16{s ∈ S|s |= regro(φ)} = spreimgo({s ∈ S|s |= φ}) = {s ∈
S|s |= spreimgo(φ)}. �

Example 4.18 Let o = 〈c, a ∧ (a B b)〉. Then

regrnd
o (a ∧ b) = c ∧ (> ∧ (b ∨ a)) ≡ c ∧ (b ∨ a).

The transition relation ofo is represented by

τnd
A (o) = c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c↔ c′).

The preimage ofa ∧ b with respect too is represented by

∃a′b′c′.((a′ ∧ b′) ∧ τnd
A (o)) ≡ ∃a′b′c′.((a′ ∧ b′) ∧ c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c↔ c′))

≡ ∃a′b′c′.(a′ ∧ b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃b′c′.(b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃c′.(c ∧ (b ∨ a) ∧ c′)
≡ c ∧ (b ∨ a)

�

Hence regression for nondeterministic operators (Definition 4.1) can be viewed as a specialized
method for computing preimages of sets of states represented as formulae.

Many algorithms include the computation of the union of images or preimages with respect
to all operators, for example

⋃
o∈O imgo(T), or in terms of formulae,

∨
o∈O imgo(φ) whereT =

{s ∈ S|s |= φ}. A technique used by many implementations of such algorithms is the following.
Instead of computing the images or preimages one operator at a time, construct a combined tran-
sition relation for all operators. For an illustration of the technique, considerimgo1(φ)∨ imgo2(φ)
that represents the union of state sets represented byimgo1(φ) andimgo2(φ). By definition

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τnd
A (o1)))[A/A′] ∨ (∃A.(φ ∧ τnd

A (o2)))[A/A′].

Since substitution commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τnd
A (o1))) ∨ (∃A.(φ ∧ τnd

A (o2)))[A/A′].

Since existential abstraction commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.((φ ∧ τnd
A (o1)) ∨ (φ ∧ τnd

A (o2))))[A/A′].

By logical equivalence finally

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ (τnd
A (o1) ∨ τnd

A (o2))))[A/A′].

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 61

Hence an alternative way of computing the union of images
∨

o∈O imgo(φ) is to first form the
disjunction

∨
o∈O τ

nd
A (o) and then conjoin the formula withφ and only once existentially abstract

the propositional variables inA. This may reduce the amount of computation because existential
abstraction is in general expensive and it may be possible to simplify the formulae

∨
o∈O τ

nd
A (o)

before existential abstraction.
The definitions ofpreimgo(φ) andspreimgo(φ) allow using

∨
o∈O τ

nd
A (o) in the same way.

Notice that defining progression for arbitrary formulae (sets of states) seems to require the ex-
plicit use of existential abstraction with potential exponential increase in formula size. A simple
syntactic definition of progression similar to that of regression does not seem to be possible be-
cause the value of a state variable in a given state cannot be stated in terms of the values of the
state variables in the successor state. This is because of the asymmetry of deterministic actions:
the current state and an operator determine the successor state uniquely but the successor state
and the operator do not determine the current state uniquely. In other words, the changes that
take place are a function of the current state, but not a function of the successor state. Taking an
action erases the information that determines which changes take place between two states. This
information is visible in the predecessor state but not in the successor state.

4.2.3 An algorithm for constructing acyclic plans

Next we present an algorithm for constructing acyclic plans for nondeterministic problem with full
observability. Acyclicity means that during any execution of the plan no state is visited more than
once. Not all nondeterministic planning problems that have an intuitively acceptable solution have
a solution as an acyclic plan. For a more detailed discussion of this topic and related algorithms
see[Cimatti et al., 2003].

The basic algorithm is for transition systems as in Definition 2.1 but the techniques in Section
4.2 can be directly applied to obtain a logic-based algorithm for succinct transition systems (Def-
inition 2.8 in Section 2.3) that can be implemented easily by using any publicly available BDD
package.

In the first phase the algorithm computes distances of the states. In the second phase the
algorithm constructs a plan based on the distances.

Let G be a set of states andO a set of operators. Then we define thebackward distance sets
Dbwd

i for G,O that consist of those states for which there is a guarantee of reaching a state inG
with at mosti operator applications.

Dbwd
0 = G

Dbwd
i = Dbwd

i−1 ∪
⋃

o∈O spreimgo(Dbwd
i−1) for all i ≥ 1

Definition 4.19 LetG be as set of states andO a set of operators, and letDbwd
0 , Dbwd

1 , . . . be the
backward distance sets forG andO. Thenthe backward distanceof a states toG is

δbwd
G (s) =

{
0 if s ∈ G
i if s ∈ Dbwd

i \Dbwd
i−1

If s 6∈ Dbwd
i for all i ≥ 0 thenδbwd

G (s) = ∞.

Example 4.20 We illustrate the distance computation by the diagram in Figure 4.1. The set of
states with distance 0 is the set of goal statesG. States with distancei are those for which there

62 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

distance toG
∞ 3 2 1 0

G

Figure 4.1: Goal distances in a nondeterministic transition system

is an action that always leads to states with distancei − 1 or smaller. In this example the action
depicted by the solid arrow has this property for every state. The dashed arrows depict the second
action which for no state is guaranteed to get closer to the goal states. States for which there is no
finite upper bound on the number of actions for reaching a goal state have distance∞. �

Given the backward distance sets we can construct a plan covering all states having a finite
backward distance. LetS′ ⊆ S be those states having a finite backward distance. The planπ is
defined by assigning for everys ∈ S such thatδbwd

G (s) ≥ 1 π(s) any operatoro ∈ O such that
imgo(s) ⊆ Dbwd

i−1 wherei = δbwd
G (s).

The plan execution starts from one of the initial states. As we have full observability, we may
observe the current states and then execute the action corresponding to the operatorπ(s), reaching
one of the successor statess′ ∈ imgo(s). The plan execution proceeds by repeatedly observing the
new current states′ and executing the associated actionπ(s′) until the current state is a goal state.

Lemma 4.21 Let a states be inDj . Then there is a plan that reaches a goal state froms by at
mostj operator applications.

The algorithm can be implemented by using logic-based data structures and operations defined
in Section 4.2 by representing the set of goal states as a formula, using the logic-based operation
spreimgo(φ) instead of the set-based operationspreimgo(T) for computing the setsDbwd

i that
are also represented as formulae, and replacing all set-theoretic operations like∪ and∩ by the
respective logical operations∨ and∧.

4.3 Planning as satisfiability in the propositional logic and QBF

The techniques presented in Sections 3.6 and 3.6.5 can be extended to nondeterministic operators.
The notion of parallel application of operators and partially ordered plans can be generalized to
nondeterministic operators.

Let T be a set of operators ands a state such thats |= c for every〈c, e〉 ∈ T andE1 ∪ · · · ∪
En is consistent for for anyEi ∈ [ei]s, i ∈ {1, . . . , n} andT = {〈c1, e1〉, . . . 〈cn, en〉}. Then

4.3. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 63

defineimgT (s) as the set of statess′ that are obtained froms by makingE1 ∪ · · · ∪ En true ins
whereEi ∈ [ei]s for everyi ∈ {1, . . . , n}. We also use the notationsTs′ for s′ ∈ imgT (s) and
imgT (S) =

⋃
s∈S imgT (s).

4.3.1 Advanced translation of nondeterministic operators into propositional logic

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae in the
propositional logic. This translation is not sufficient for reasoning about actions and plans in a
setting with more than one agent. This is because the formulaeτnd

A (o1) ∨ · · · ∨ τnd
A (on) do not

distinguish between the choice of operator in{o1, . . . , on} and the nondeterministic effects (the
opponent) of each operator, even though the former is controllable and the latter is not.

In nondeterministic planning in general we have to treat the controllable and uncontrollable
choices differently. We cannot do this practically in the propositional logic but by using quantified
Boolean formulae (QBF) we can. For the QBF representation of nondeterministic operators
we universally quantify over all uncontrollable eventualities (nondeterminism) and existentially
quantify over controllable eventualities (the choice of operators).

We need to universally quantify over all the nondeterministic choices because for every choice
the remaining operators in the plan must lead to a goal state. This is achieved by associating with
every atomic effect a formula that is true if and only if that effect is executed, similarly to functions
EPCl(e) in Definition 3.1, so that forl to become true the universally quantified auxiliary variables
that represent nondeterminism have to have values corresponding to an effect that makesl true.

The operators are assumed to be in normal form. For simplicity of presentation we further
transform nondeterministic choicese1| · · · |en so that only binary choices exist. For example
a|b|c|d is replaced by(a|b)|(c|d). Each binary choice can be encoded in terms of one auxiliary
variable.

The condition for the atomic effectl to be executed whene is executed isEPCnd
l (e, σ). The

sequenceσ of integers is used for deriving unique names for auxiliary variables inEPCnd
l (e, σ).

The sequences correspond to paths in the tree formed by nested nondeterministic choices and
conjunctions.

EPCnd
l (e, σ) = EPCl(e) if e is deterministic

EPCnd
l (e1|e2, σ) = (xσ ∧ EPCnd

l (e1, σ1)) ∨ (¬xσ ∧ EPCnd
l (e2, σ1))

EPCnd
l (e1 ∧ · · · ∧ en, σ) = EPCnd

l (e1, σ1) ∨ · · · ∨ EPCnd
l (en, σn)

The translation of nondeterministic operators into the propositional logic is similar to the trans-
lation for deterministic operators given in Section 3.6.4. Nondeterminism is encoded by making
the effects conditional on the values of the auxiliary variablesxσ. Different valuations of these
auxiliary variables correspond to different nondeterministic effects.

The following frame axioms express the conditions under which state variablesa ∈ A may
change from true to false and from false to true. Lete1, . . . , en be the effects ofo1, . . . , on respec-
tively. Each operatoro ∈ O has a unique integer indexΩ(o).

(a ∧ ¬a′)→((o1 ∧ EPCnd
¬a(e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd

¬a(en,Ω(on))))
(¬a ∧ a′)→((o1 ∧ EPCnd

a (e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd
a (en,Ω(on))))

Foro = 〈c, e〉 ∈ O there is a formula for describing values of state variables in the predecessor

64 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

and successor states when the operator is applied.

(o→c)∧∧
a∈A(o ∧ EPCnd

a (e,Ω(o))→a′)∧∧
a∈A(o ∧ EPCnd

¬a(e,Ω(o))→¬a′)

Example 4.22 Considero1 = 〈¬a, (b|(c B d)) ∧ (a|c)〉 ando2 = 〈¬b, (((d B b)|c)|a)〉. The
application of these operators is described by the following formulae.

¬(a ∧ ¬a′) (¬a ∧ a′)→((o1 ∧ x12) ∨ (o2 ∧ ¬x2))
¬(b ∧ ¬b′) (¬b ∧ b′)→((o1 ∧ x11) ∨ (o2 ∧ x2 ∧ x21 ∧ d))
¬(c ∧ ¬c′) (¬c ∧ c′)→((o1 ∧ ¬x12) ∨ (o2 ∧ x2 ∧ ¬x21))
¬(d ∧ ¬d′) (¬d ∧ d′)→(o1 ∧ ¬x11 ∧ c)
o1→¬a
(o1 ∧ x12)→a′ (o1 ∧ x11)→b′

(o1 ∧ ¬x12)→c′ (o1 ∧ ¬x11 ∧ c)→d′

o2→¬b
(o2 ∧ ¬x2)→a′ (o2 ∧ x2 ∧ x21 ∧ d)→b′

(o2 ∧ x2 ∧ ¬x21)→c′

�

Two operatorso ando′ may be applied in parallel only if they do not interfere. Hence we use
formulae

¬(o ∧ o′)

for all operatorso ando′ that interfere ando 6= o′.
LetX be the set of auxiliary variablesxσ in all the above formulae. The conjunction of all the

above formulae is denoted by
R3(A,A′, O,X).

We use two lemmata for proving properties about these formulae and the translation of nonde-
terministic operators into the propositional logic.

Let Ξσ(e) be the set of propositional variablesxσ′ in the translation of the effecte with a given
σ. This is equal to the set of variablesxσ′ in formulaeEPCnd

a (e, σ) andEPCnd
¬a(e, σ)) for all

a ∈ A.

Definition 4.23 Define the set of literals[e]σ,v
s which are the active effects ofe whene is exe-

cuted in states and nondeterministic choices are determined by the valuationv of propositional
variables inΞσ(e) as follows.

[e]σ,v
s = [e]det

s if e is deterministic

[e1|e2]σ,v
s =

{
[e1]

σ1,v
s if v(xσ) = 1

[e2]
σ1,v
s if v(xσ) = 0

[e1 ∧ · · · ∧ en]σ,v
s = [e1]

σ1,v
s ∪ · · · ∪ [en]σn,v

s

Lemma 4.24 Let s be a state and{v1, . . . , vn} all valuations ofΞσ(e). Then
⋃

1≤i≤n[e]σ,vi
s =

[e]s.

4.3. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 65

Lemma 4.25 Let O and T ⊆ O be sets of operators,s and s′ states,vx a valuation ofX =⋃
〈c,e〉∈O ΞΩ(〈c,e〉)(e), andvo a valuation ofO such thatvo(o) = 1 iff o ∈ T .
Thens ∪ s′[A′/A] ∪ vo ∪ vx |= R3(A,A′, O,X) if and only if

1. s |= a iff s′ |= a for all a ∈ A such that{a,¬a} ∩
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s = ∅,

2. s′ |=
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s , and

3. s |= c for all 〈c, e〉 ∈ T .

The number of auxiliary variablesxσ can be reduced when two operatorso ando′ interfere.
Since they cannot be applied simultaneously the same auxiliary variables can control the nonde-
terminism in both operators. To share the variables rename the ones occurring in the formulae for
one of the operators so that the variables needed foro is a subset of those foro′ or vice versa.
Having as small a number of auxiliary variables as possible may be important for the efficiency
for algorithms evaluating QBF and testing propositional satisfiability.

The formulaeR3(A,A′, O,X) can be used for plan search with algorithms that evaluate QBF
(Section 4.3.2) as well as for testing by a satisfiability algorithm whether a conditional plan (with
full, partial or no observability) that allows several operators simultaneously indeed is a valid plan.

4.3.2 Finding plans by evaluation of QBF

In deterministic planning in propositional logic (Section 3.6) the problem is to find a sequence of
operators so that a goal state is reached when the operators are applied starting in the initial state.
When there are several initial states, the operators are nondeterministic and it is not possible to
use observations during plan execution for selecting operators, the problem is to find an operator
sequence so that a goal state is reached in all possible executions of the operator sequence. There
may be several executions because there may be several initial states and the operators may be
nondeterministic. Expressing the quantification over all possible executions cannot be concisely
expressed in the propositional logic. This is the reason why quantified Boolean formulae are used
instead.

The existence of ann-step partially-ordered plan that reaches a state satisfyingG from any
state satisfying the formulaI can be tested by evaluating the QBFΦqpar

n defined as

∃Vplan∀Vnd∃Vexec

I0→(R3(A0, A1, O0, X0) ∧R3(A1, A2, O1, X1) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

HereVplan = O0 ∪ · · · ∪On−1, Vnd = A0 ∪X0 ∪ · · · ∪Xn−1 andVexec= A1 ∪ · · · ∪An. Define
ΦqparM

n = I0→(R3(A0, A1, O0, X0)∧R3(A1, A2, O1, X1)∧· · ·∧R3(An−1, An, On−1, Xn−1)∧
Gn). The valuation ofVplan corresponds to a sequence of sets of operators. For a given valuation
of Vplan any valuation ofVnd determines an execution of these operators. The valuation ofVexecis
uniquely determined by the valuation ofVplan∪ Vnd.

The algorithms for evaluating QBF that extend the Davis-Putnam procedure traverse an and-or
tree in which the and-nodes correspond to universally quantified variables and or-nodes correspond
to existentially quantified variables. If the QBF istrue then these algorithms return a valuation of
the outermost existential variables. For a trueΦqpar

n this valuation ofVplan corresponds to a plan
that can be constructed like the plans in the deterministic case in Section 3.6.5.

66 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

Theorem 4.26 The QBFΦqpar
n has valuetrue if and only if there is a sequenceT0, . . . , Tn−1 of

sets of operators such that for everyi ∈ {0, . . . , n} and every state sequences0, . . . , si such that

1. s0 |= I and

2. s0T0s1T1s2 · · · si−1Ti−1si

Ti is applicable insi if i < n andsi |= G if i = n.

Proof: We first prove the implication from left to right. SinceΦqpar
n is true there is a valuation

vplan of Vplan = O0 ∪ · · · ∪On−1 such that for all valuationsvnd of Vnd = A0 ∪X0 ∪ · · · ∪Xn−1

there is a valuationvexec of Vexec = A1 ∪ · · · ∪ An such thatvplan ∪ vnd ∪ vexec |= I0 →
(R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

Let T0, . . . , Tn−1 be the sequence of sets of operators such that for allo ∈ O and i ∈
{0, . . . , n − 1}, o ∈ Ti if and only if vplan(oi) = 1. We prove the right hand side of the the-
orem by induction onn.

Induction hypothesis: For everys0, . . . , si such thats0 |= I ands0T0s1T1s2 · · · si−1Ti−1si:

1. Ti is applicable insi if i < n.

2. si |= G if i = n.

Base casei = 0: Let s0 be any state sequence such thats0 |= I.

1. If 0 < n then we have to show thatT0 is applicable ins0.

Let E = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and anyEj ∈ [ej]s0 , wheree1, . . . , em
are respectively the effects of the operatorso1, . . . , om in T0. Such setsE are the possible
active effects ofT0.

We have to show thatE is consistent and the preconditions of operators inT0 are true ins0.

By Lemma 4.24 there is a valuationv of X such thatE =
⋃
〈c,e〉∈T0

[e]Ω(〈c,e〉),v
s0 .

Let vnd be any valuation ofVnd such thats0[A0/A] ⊆ vnd andv[X0/X] ⊆ vnd. SinceΦqpar
n

is true there is a valuation ofvexec such thatvplan ∪ vnd ∪ vexec |= ΦqparM
n .

Sincevnd |= I0 alsovplan∪vnd∪vexec |= R3(A0, A1, O0, X0). Hence by Lemma 4.25 the
preconditions of operators inT0 are true ins0 ands1 |= E wheres1 is the state such that
s1(a) = vexec(a1) for all a ∈ A. SinceE was chosen arbitrarily from the sets of possible
sets of active effects ofT0 and it is consistent,T0 is applicable ins0.

2. If n = 0 thenVplan = Vexec = ∅ and∀Vnd(I0 → G0) is true, andvnd |= G0 for every
valuationvnd of Vnd such thatvnd |= I0.

Inductive casei ≥ 1: Lets0, . . . , si be any sequence such thats0 |= I ands0T0s1 . . . si−1Ti−1si.

1. If i < n then we have to show thatTi is applicable insi.

LetE = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and anyEj ∈ [ej]si , wheree1, . . . , em are
respectively the effects of the operatorso1, . . . , om in Ti. Such setsE are the possible active
effects ofTi.

We have to show thatE is consistent and the preconditions of operators inTi are true insi.

4.3. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 67

By Lemma 4.24 there is a valuationv of X such thatE =
⋃
〈c,e〉∈Ti

[e]Ω(〈c,e〉),v
si .

Since by the induction hypothesissjTjsj+1 for all j ∈ {0, . . . , i − 1}, by Lemma 4.24 for
everyj ∈ {0, . . . , i−1} there is a valuationvx

j ofX such thatsj [A/Aj]∪ sj+1[A′/Aj+1]∪
vo ∪ vx

j |= R3(A,A′, O,X) wherevo assigns everyo ∈ O value 1 iffo ∈ Tj .

Let vnd be any valuation ofVnd such thats0[A0/A] ⊆ vnd and v[Xi/X] ⊆ vnd and
vx
j [Xj/X] ⊆ vnd for all j ∈ {0, . . . , i− 1}.

SinceΦqpar
n is true there is a valuation ofvexec such thatvplan ∪ vnd ∪ vexec |= ΦqparM

n .

Sincevnd |= I0 alsovplan ∪ vnd ∪ vexec |= R3(Ai, Ai+1, Oi, X i). Hence by Lemma 4.25
the preconditions of operators inTi are true insi andsi+1 |= E wheresi+1 is a state such
thatsi+1(a) = vexec(ai+1) for all a ∈ A. Since anyE is consistent,Ti is applicable insi.

2. If i = n we have to show thatsn |= G. Like in the proof for the previous case we construct
valuationsvnd andvexec matching the executions0, . . . , sn, and sincevplan∪ vnd∪ vexec |=
I0→Gn we havesn |= G.

Then we prove the implication from right to left. So there is sequenceT0, . . . , Tn−1 for which
all executions are defined and reachG.

We show thatΦqpar
n is true: there is valuationvplan of Vplan = O0 ∪ · · · ∪ On−1 such that for

every valuationvnd of Vnd = A0∪X0∪· · ·∪Xn−1 there is a valuationvexec of Vexec= A1∪· · ·∪An

such thatvplan ∪ vnd ∪ vexec |= ΦqparM
n .

We define the valuationvplan of Vplan by o ∈ Ti iff vplan(oi) = 1 for every o ∈ O and
i ∈ {0, . . . , n− 1}.

Take any valuationvnd of Vnd. Define the states0 by s0(a) = 1 iff vnd(a0) = 1 for every
a ∈ A.

If s0 6|= I thenvnd 6|= I0 andvplan ∪ vnd ∪ vexec |= ΦqparM
n for any valuationvexec of Vexec.

It remains to consider the cases0 |= I.
Define for everyi ∈ {1, . . . , n} setsEi and statessi as follows.

1. Let vi
x be a valuation ofX such thatvi

x(x) = vnd(xi−1) for everyx ∈ X.

2. LetEi =
⋃
〈c,e〉∈Ti−1

[e]Ω(〈c,e〉),vi
x

si−1 .

We show below that this is the set of literals made true byTi−1 in si−1.

3. Definesi(a) = 1 iff a ∈ Ei or si−1(a) = 1 and¬a 6∈ Ei, for everya ∈ A.

Let vexec = s1[A1/A] ∪ · · · ∪ sn[An/A].
Induction hypothesis:vplan ∪ vnd ∪ s1[A1/A]∪ · · · ∪ si[Ai/A] |= I0 ∧R3(A0, A1, O0, X0)∧

· · · ∧ R3(Ai−1, Ai, Oi−1, X i−1) andsjTjsj+1 for all j ∈ {0, . . . , i− 1}.
Base casei = 0: Trivial becausevnd |= I0.
Inductive casei ≥ 1: Let vx ⊆ vnd be the valuation ofXi−1 determined byvnd and let

vo be the valuation ofOi−1 such thatvo(o) = vplan(oi−1) for everyo ∈ O. By Lemma 4.25
vplan ∪ vnd ∪ si−1[Ai−1/A] ∪ si[Ai/A] |= R3(Ai−1, Ai, Oi−1, X i−1). This together with the
claim of the induction hypothesis fori− 1 establishes the first part of the claim of the hypothesis
for i. By Lemma 4.24 the setEi is one of the possible sets of active effects ofTi−1 in si−1. Hence
si−1Ti−1si. This finishes the induction proof.

68 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

Hencevplan ∪ vnd ∪ vexec |= I0 ∧R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1),
andvexec |= Gn becausesn |= G by assumption andsn[An/A] ⊆ vexec. �

4.4 Literature

The state-space traversal techniques based on existential abstraction were first used in connection
with verification methods for model-checking[Burch et al., 1994; Clarkeet al., 1994] based on
ordered binary decision diagrams (BDDs)[Bryant, 1992]. The model-checking problem is closely
related to the deterministic planning problem and to the problem of testing whether a given condi-
tional plan (program, controller) satisfies its specification, for example, reaches the goal states.
Not surprisingly, these state-space traversal techniques have been used as an implementation
technique for many algorithms for conditional planning[Hoeyet al., 1999; Cimattiet al., 2003;
Bertoli et al., 2001; Rintanen, 2005]. When probabilities are involved, like when implementing
MDP algorithms, a generalization of BDDs called algebraic decision diagrams (ADDs) is used
[Fujitaet al., 1997; Baharet al., 1997].

The satisfiability planning approach of Kautz and Selman[1992; 1996] was first applied in
planning with nondeterministic actions and several initial states by Rintanen[1999]. The deter-
ministic planning problem restricted to polynomial size plans is NP-complete, which makes it
possible to reduce the problem efficiently to SAT. Nondeterministic planning under the same plan
size restriction does not appear to be in NP because the corresponding decisions problems are com-
plete forΣp

2 andΠp
2. Hence reduction to SAT is not in general feasible but reduction to QBF is.

Rintanen’s QBF have the prefix∃∀∃ corresponding to the structure of nondeterministic planning
problems:there isa plan such thatfor all eventualitiesthere isan execution leading to a goal state.
This idea is applicable to very general forms of conditional planning with partial observability. A
variant of Rintanen’s approach has been used in some later works by replacing the outermost∃
quantification by an ad hoc search algorithm that goes through candidate plans and tests whether
a candidate plan is a valid plan by a satisfiability test of an unquantified propositional formula
[Castelliniet al., 2003]. This satisfiability test is essentially the same as the one done inbounded
model-checking[Biere et al., 1999] for testing whether a given transition system (∼ transition
system controlled by a plan) can reach a state satisfying a given property.

The heuristics in Section 3.4 can be generalized to nondeterministic operators and used to solve
more general planning problems by heuristic search algorithms. The choice of algorithm depends
on the definition of plans which is determined by assumptions concerning observability.

Without observability plans are sequences of operators and can be found by standard heuristic
search algorithms like A∗ and IDA∗ by search in the belief space.

If observations are possible, plan search can be viewed as search in an and-or tree. Heuristic
search algorithms for and-or trees are for example AO∗ [Martelli and Montanari, 1973; 1978;
Nilsson, 1980] and LAO∗ [Hansen and Zilberstein, 2001]. Other applicable algorithms include
RTDP[Bartoet al., 1995] and LRTDP[Bonet and Geffner, 2003].

The most straightforward heuristics for these planning problems ignore nondeterminism and
observability by replacing each nondeterministic operator by a number of deterministic opera-
tors and assuming full observability. This can be justified by efficiency grounds. Other heuristics
attempt to improve the informativeness by taking observability and nondeterminism better into ac-
count. For more on the topic see for example[Bryce and Kambhampati, 2004; Rintanen, 2004b].

Bibliography

[Allen et al., 1990] J. Allen, J. A. Hendler, and A. Tate, editors.Readings in Planning. Morgan
Kaufmann Publishers, 1990.

[Alur et al., 1997] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
Partial-order reduction in symbolic state space exploration. InComputer Aided Verification,
9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume
1254 ofLecture Notes in Computer Science, pages 340–351. Springer-Verlag, 1997.

[Andersonet al., 1998] C. Anderson, D. Smith, and D. Weld. Conditional effects in Graphplan.
In R. Simmons, M. Veloso, and S. Smith, editors,Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, pages 44–53. AAAI Press, 1998.

[Bäckstr̈om and Nebel, 1995] C. Bäckstr̈om and B. Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655, 1995.

[Baharet al., 1997] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. Algebraic decision diagrams and their applications.Formal Methods in System
Design: An International Journal, 10(2/3):171–206, 1997.

[Bartoet al., 1995] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic
programming.Artificial Intelligence, 72:81–138, 1995.

[Bertoli et al., 2001] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeter-
ministic domains under partial observability via symbolic model checking. In B. Nebel, editor,
Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 473–
478. Morgan Kaufmann Publishers, 2001.

[Biereet al., 1999] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In W. R. Cleaveland, editor,Tools and Algorithms for the Construction and
Analysis of Systems, Proceedings of 5th International Conference, TACAS’99, volume 1579 of
Lecture Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.

[Blum and Furst, 1997] A. L. Blum and M. L. Furst. Fast planning through planning graph anal-
ysis. Artificial Intelligence, 90(1-2):281–300, 1997.

[Bonet and Geffner, 2000] B. Bonet and H. Geffner. Planning with incomplete information as
heuristic search in belief space. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors,
Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems,
pages 52–61. AAAI Press, 2000.

69

70 BIBLIOGRAPHY

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Planning as heuristic search.Artificial Intel-
ligence, 129(1-2):5–33, 2001.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. Labeled RTDP: Improving the convergence
of real-time dynamic programming. In E. Giunchiglia, N. Muscettola, and D. Nau, editors,Pro-
ceedings of the Thirteenth International Conference on Automated Planning and Scheduling,
pages 12–21, 2003.

[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks. Planning under uncertainty: structural
assumptions and computational leverage.Journal of Artificial Intelligence Research, 11:1–94,
1999.

[Bryant, 1992] R. E. Bryant. Symbolic Boolean manipulation with ordered binary decision dia-
grams.ACM Computing Surveys, 24(3):293–318, September 1992.

[Bryce and Kambhampati, 2004] D. Bryce and S. Kambhampati. Heuristic guidance measure for
conformant planning. InICAPS 2004. Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling, pages 365–374. AAAI Press, 2004.

[Burchet al., 1994] J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verification.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(4):401–424, 1994.

[Bylander, 1994] T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[Bylander, 1996] T. Bylander. A probabilistic analysis of propositional STRIPS planning.Artifi-
cial Intelligence, 81(1-2):241–271, 1996.

[Castelliniet al., 2003] C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based planning in
complex domains: concurrency, constraints and nondeterminism.Artificial Intelligence, 147(1–
2):85–117, 2003.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checking.Artificial Intelligence, 147(1–2):35–84, 2003.

[Clarkeet al., 1994] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation
of counterexamples and witnesses in symbolic model checking. Technical Report CS-94-204,
Carnegie Mellon University, School of Computer Science, October 1994.

[de Bakker and de Roever, 1972] J. W. de Bakker and W. P. de Roever. A calculus of recursive
program schemes. InProceedings of the First International Colloquium on Automata, Lan-
guages and Programming, pages 167–196. North-Holland, 1972.

[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
New Jersey, 1976.

[Emerson and Sistla, 1996] E. A. Emerson and A. P. Sistla. Symmetry and model-checking.For-
mal Methods in System Design: An International Journal, 9(1/2):105–131, 1996.

BIBLIOGRAPHY 71

[Ernstet al., 1969] G. Ernst, A. Newell, and H. Simon.GPS: A Case Study in Generality and
Problem Solving. Academic Press, 1969.

[Ernstet al., 1997] M. Ernst, T. Millstein, and D. S. Weld. Automatic SAT-compilation of plan-
ning problems. In M. Pollack, editor,Proceedings of the 15th International Joint Conference
on Artificial Intelligence, pages 1169–1176. Morgan Kaufmann Publishers, 1997.

[Erol et al., 1995] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning.Artificial Intelligence, 76(1–2):75–88,
1995.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the applica-
tion of theorem proving to problem solving.Artificial Intelligence, 2(2-3):189–208, 1971.

[Fujitaet al., 1997] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision
diagrams: an efficient data structure for matrix representation.Formal Methods in System
Design: An International Journal, 10(2/3):149–169, 1997.

[Gerevini and Schubert, 1998] A. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. InProceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98) and the 10th Conference on Innovative Applications of Artificial Intel-
ligence (IAAI-98), pages 905–912. AAAI Press, 1998.

[Godefroid, 1991] P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke, editor,Proceedings of the 2nd International Conference on Computer-Aided
Verification (CAV ’90), Rutgers, New Jersey, 1990, number 531 in Lecture Notes in Computer
Science, pages 176–185. Springer-Verlag, 1991.

[Green, 1969] C. Green. Application of theorem-proving to problem solving. In D. E. Walker
and L. M. Norton, editors,Proceedings of the 1st International Joint Conference on Artificial
Intelligence, pages 219–239. William Kaufmann, 1969.

[Hansen and Zilberstein, 2001] E. A. Hansen and S. Zilberstein. LAO∗: A heuristic search algo-
rithm that finds solutions with loops.Artificial Intelligence, 29(1-2):35–62, 2001.

[Hartet al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum-cost paths.IEEE Transactions on System Sciences and Cybernetics,
SSC-4(2):100–107, 1968.

[Haslum and Geffner, 2000] P. Haslum and H. Geffner. Admissible heuristics for optimal plan-
ning. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors,Proceedings of the Fifth
International Conference on Artificial Intelligence Planning Systems, pages 140–149. AAAI
Press, 2000.

[Hoeyet al., 1999] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning
using decision diagrams. In K. B. Laskey and H. Prade, editors,Uncertainty in Artificial Intel-
ligence, Proceedings of the Fifteenth Conference (UAI-99), pages 279–288. Morgan Kaufmann
Publishers, 1999.

72 BIBLIOGRAPHY

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic search.Journal of Artificial Intelligence Research, 14:253–302,
2001.

[Howard, 1960] R. A. Howard.Dynamic programming and Markov decision processes. The MIT
Press, 1960.

[Kaelblinget al., 1998] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting
in partially observable stochastic domains.Artificial Intelligence, 101(1-2):99–134, 1998.

[Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann,
editor,Proceedings of the 10th European Conference on Artificial Intelligence, pages 359–363.
John Wiley & Sons, 1992.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing the envelope: planning, proposi-
tional logic, and stochastic search. InProceedings of the 13th National Conference on Ar-
tificial Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference,
pages 1194–1201. AAAI Press, August 1996.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing.Science, 220(4598):671–680, May 1983.

[Korf, 1985] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree search.Arti-
ficial Intelligence, 27(1):97–109, 1985.

[Lozano and Balćazar, 1990] A. Lozano and J. L. Balćazar. The complexity of graph problems
for succinctly represented graphs. In M. Nagl, editor,Graph-Theoretic Concepts in Computer
Science, 15th International Workshop, WG’89, number 411 in Lecture Notes in Computer Sci-
ence, pages 277–286. Springer-Verlag, 1990.

[Madaniet al., 2003] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems.Artificial Intelligence, 147(1–2):5–34,
2003.

[Martelli and Montanari, 1973] A. Martelli and U. Montanari. Additive AND/OR graphs. In
Proceedings of the 3rd International Joint Conference on Artificial Intelligence, pages 1–11,
1973.

[Martelli and Montanari, 1978] A. Martelli and U. Montanari. Optimizing decision trees through
heuristically guided search.Communications of the ACM, 12(12):1025–1039, 1978.

[McAllester and Rosenblitt, 1991] D. A. McAllester and D. Rosenblitt. Systematic nonlinear
planning. In T. L. Dean and K. McKeown, editors,Proceedings of the 9th National Conference
on Artificial Intelligence, volume 2, pages 634–639. AAAI Press / The MIT Press, 1991.

[McDermott, 1999] D. V. McDermott. Using regression-match graphs to control search in plan-
ning. Artificial Intelligence, 109(1–2):111–159, 1999.

[McMillan, 2003] K. L. McMillan. Interpolation and SAT-based model checking. In W. A.
Hunt Jr. and F. Somenzi, editors,Proceedings of the 15th International Conference on Com-
puter Aided Verification (CAV 2003), number 2725 in Lecture Notes in Computer Science,
pages 1–13, 2003.

BIBLIOGRAPHY 73

[Meyer and Stockmeyer, 1972] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential time. InProceedings of the 13th Annual
Symposium on Switching and Automata Theory, pages 125–129. IEEE Computer Society, 1972.

[Mneimneh and Sakallah, 2003] M. Mneimneh and K. Sakallah. Computing vertex eccentricity in
exponentially large graphs: QBF formulation and solution. In E. Giunchiglia and A. Tacchella,
editors,SAT 2003 - Theory and Applications of Satisfiability Testing, number 2919 in Lecture
Notes in Computer Science, pages 411–425, 2003.

[Nguyenet al., 2002] X. Nguyen, S. Kambhampati, and R. S. Nigenda. Planning graph as the
basis for deriving heuristics for plan synthesis by state space and CSP search.Artificial Intelli-
gence, 135:73–123, 2002.

[Nilsson, 1980] N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company,
1980.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

[Puterman, 1994] M. L. Puterman.Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 1994.

[Rintanenet al., 2005] J. Rintanen, K. Heljanko, and I. Niemelä. Planning as satisfiability: par-
allel plans and algorithms for plan search. Report 216, Albert-Ludwigs-Universität Freiburg,
Institut für Informatik, 2005.

[Rintanen, 1998] J. Rintanen. A planning algorithm not based on directional search. In A. G.
Cohn, L. K. Schubert, and S. C. Shapiro, editors,Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixth International Conference (KR ’98), pages 617–624.
Morgan Kaufmann Publishers, June 1998.

[Rintanen, 1999] J. Rintanen. Constructing conditional plans by a theorem-prover.Journal of
Artificial Intelligence Research, 10:323–352, 1999.

[Rintanen, 2004a] J. Rintanen. Complexity of planning with partial observability. In S. Zilber-
stein, J. Koehler, and S. Koenig, editors,ICAPS 2004. Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling, pages 345–354. AAAI Press, 2004.

[Rintanen, 2004b] J. Rintanen. Distance estimates for planning in the discrete belief space. In
Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-2004) and the
16th Conference on Innovative Applications of Artificial Intelligence (IAAI-2004), pages 525–
530. AAAI Press, 2004.

[Rintanen, 2004c] J. Rintanen. Phase transitions in classical planning: an experimental study. In
D. Dubois, C. A. Welty, and M.-A. Williams, editors,Principles of Knowledge Representation
and Reasoning: Proceedings of the Ninth International Conference (KR 2004), pages 710–719.
AAAI Press, 2004.

[Rintanen, 2005] J. Rintanen. Conditional planning in the discrete belief space. In L. P. Kael-
bling, editor,Proceedings of the 19th International Joint Conference on Artificial Intelligence.
Morgan Kaufmann Publishers, 2005. to appear.

74 BIBLIOGRAPHY

[Rosenschein, 1981] S. J. Rosenschein. Plan synthesis: A logical perspective. In P. J. Hayes,
editor,Proceedings of the 7th International Joint Conference on Artificial Intelligence, pages
331–337. William Kaufmann, August 1981.

[Sacerdoti, 1974] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces.Artificial Intel-
ligence, 5:115–135, 1974.

[Sacerdoti, 1975] E. D. Sacerdoti. The nonlinear nature of plans. InProceedings of the 4th
International Joint Conference on Artificial Intelligence, pages 206–214, 1975.

[Selmanet al., 1996] B. Selman, D. G. Mitchell, and H. Levesque. Generating hard satisfiability
problems.Artificial Intelligence, 81(1-2):459–465, 1996.

[Smallwood and Sondik, 1973] R. D. Smallwood and E. J. Sondik. The optimal control of par-
tially observable Markov processes over a finite horizon.Operations Research, 21:1071–1088,
1973.

[Starke, 1991] P. H. Starke. Reachability analysis of Petri nets using symmetries.Journal of
Mathematical Modelling and Simulation in Systems Analysis, 8(4/5):293–303, 1991.

[Valmari, 1991] A. Valmari. Stubborn sets for reduced state space generation. In G. Rozenberg,
editor,Advances in Petri Nets 1990. 10th International Conference on Applications and Theory
of Petri Nets, Bonn, Germany, number 483 in Lecture Notes in Computer Science, pages 491–
515. Springer-Verlag, 1991.

Index

appT (s), 46
appo1;...;on(s), 7, 13
appo(s), 7, 13
asat(D,φ), 31
[e]det

s , 13
[e]s, 12
R3(A,A′, O,X), 64
R2(A,A′, O), 50
R1(A,A′), 43
δbwd
G (s), 61

δfwd
s (φ), 27
δmax
I (φ), 30, 51
δrlx
I (φ), 35, 51
δ+I (φ), 33, 51
EPCnd

l (e, σ), 63
EPCl(e), 19
EPCl(o), 19
imgT (s), 63
imgo(φ), 59
τnd
A (o), 55

Ω(o), 63
τA(O), 47
τA(e), 43
τA(o), 43
preimgo(φ), 59
regrnd

o (φ), 54
regre(φ), 21
regro1;...;on(φ), 21
regro(φ), 21
s[A′/A], 55
spreimgo(φ), 59

A∗, 25
action, 5
affect, 49
application, 6
assignment, 9

backward distance (of a state), 61

bounded model-checking, 51, 68

causal link planning, 2
clause, 10
CNF, 10
complexity, 52
composition of operators, 23
conjunction, 9
conjunctive normal form, 10
connective, 9
consistency, 10

deterministic operator, 13
deterministic succinct transition system, 13
deterministic transition system, 6
disjunction, 9
disjunctive normal form, 10
distance (of a state), 27, 61
DNF, 10

effect, 11
existential abstraction, 57

formula, 8
forward distance (of a state), 27

GPT, 4
Graphplan, 2, 3, 52

IDA∗, 25
imageimgo(s), 6, 58
interference, 49
invariant, 27, 37

literal, 10
logical consequence, 10

max heuristic, 29
model, 9
model-checking, 51, 68

75

76 INDEX

negation, 9
negation normal form, 10
NNF, 10
normal form II, nondeterministic operators,

16
normal form, deterministic operators, 14
normal form, nondeterministic operators, 16

observable state variable, 12
operator, 11
operator application, 6

partial-order planning, 2, 26
partial-order reduction, 51
partially-ordered plans, 48, 51
phase transitions, 52
planning graphs, 52
precondition, 11
preimagepreimgo(s), 6
progression, for formulae, 61
progression, for states, 19
propositional formula, 8
propositional variable, 8

QBF, 10, 63
quantified Boolean formula, 10, 63

reachability, 27, 61
regression, 20, 54, 60
relaxed plan heuristic, 34

satisfiability, 10
sequential composition, 14, 25
simulated annealing, 25
state, 5, 11
state variable, 11
state variable, observable, 12
step plan, 49
STRIPS, 2
STRIPS operators, 14, 23
strong preimagespreimgo(T), 6, 58, 61
strongest invariant, 27
succinct transition system, 12
sum heuristic, 32
symmetry reduction, 51

tautology, 10
transition system, 5, 6

universal abstraction, 57

valid, 10
valuation, 9

WA∗, 25
weak preimagepreimgo(s), 6, 58

