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Abstract

There have been several proposals for expressing planning
problems with different forms of uncertainty, including non-
determinism and partial observability. In this paper we inves-
tigate two questions. First, the restriction to certain normal
forms of operators, for example, restricting to operators in
which nondeterministic choice must be outside conditional
effects, or vice versa. We show that some such restrictions
lead to an exponentially less succinct representation of prob-
lem instances. Second, we consider the problem of reducing
certain features of formalisms for planning problem to other,
more basic features. We show that compound observations
can be reduced to atomic observations, sensing uncertainty
can be reduced to effect uncertainty, dependence of observa-
tions on the operator last applied (special sensing actions) can
be reduced to the case in which same observations are always
possible. We show that these reductions are possible without
significantly affecting quantitative properties of problem in-
stances. One reduction doubles plan length, and the others do
not affect plan length and only increase problem instance size
slightly.

Introduction

There are many planning algorithms for partially observ-
able planning in which the problems discussed in this work
show up. These include policy construction algorithms
for POMDPs (Sondik 1978; Kaelblingt al. 1998) and
algorithms for conditional planning (Weldt al. 1998;
Bonet and Geffner 2000; Berto#t al. 2001; Rintanen
2002). These planners take input in differing input lan-
guages, and it has not in all cases been clear what is the ex-
act relation between the problems addressed by these works.
For example, Bertoli et al. (2001) address compound ob-
servations, that is observations the values of which are a

observable planning problems, but the reductions then cor-
respond to less natural transformations of the state space.
Early work on planning with partial observability and es-
pecially the algorithms for POMDPs have used explicit
(flat, enumerative) representations of state spaces. Another
class of succinct representations of state spaces for prob-
abilistic planning uses Bayesian networks (Littman 1997,
Boutilier et al. 1999).

In this framework we set out to investigate relations be-
tween observation models with different properties. For dif-
ferent advanced properties an observation model in planning
can have, we show that these properties can be reduced to a
basic model in which a fixed set of state variables are ob-
servable at all time points (assuming certain basic features
in the basic language, like conditional effects and arbitrary
formulae as preconditions.) Extensions to this basic model
like compound observations or observations dependent on
the last operator application do not bring additional expres-
sivity or complexity on top of the basic problem. Hence,
this work justifies once and for all the restriction to the ba-
sic model of partially observable planning with only atomic
observations and no sensory uncertainty. The existence of
this kind of reductions seems to be part of the folklore in
planning but they have not earlier been formalized in more
detail. The ideas underlying the reductions are simple, but
in some cases small technical problems necessitate a com-
plicated looking reduction.

The only problematic case is reduction of compound ob-
servations to atomic observations. Reducing it to the basic
model seems to require an increase in plan length when no
restrictions on nondeterministic effects are imposed.

We consider the following properties of formalisms for
planning.

Boolean combination of values of individual state variables, 1. Compound observations means that the value of a formula

whereas Rintanen (2002) does not but claims that compound
observations could be handled by an extension of the algo-
rithms he presents.

The present work addresses planning problems that are
expressed in terms of state variables and plan operators as
used in most of Al planning. Same problems also show up

with less succinct enumerative representations of partially 3
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can be observed without necessarily the possibility of ob-
serving the values of its subformulae.

By heterogeneous observability we mean that the observ-
ability of some state variables depends on the last action

that has been taken. For example, certain observations are
possible only after special sensing actions.

Sensing uncertainty means that an observation gives cor-
rect information only with a certain probability. Uncer-
tainty can be decreased by repeating the observation.



Also, we consider a number of normal forms of opera- The observations are used in the plans that are solutions
tors. For example, Kushmerick et al. (1995) and Smith and to the problem instances. After applying an operator, the
Weld (1998) restrict to operators with a single nondetermin- respective observations can be made. Based on the values
istic choice between deterministic effects. We show that this of observationg3, the plan determines the course of actions
is exponentially less succinct than the general form of non- to be taken. The probability associated with an observation
deterministic effects we considerOn the other hand, all indicates how likely is the observation going to be correct.
effects can be transformed in polynomial time into a normal Observation uncertainty in the POMDP context (Kaelbling
form in which several independent nondeterministic choices et al. 1998) has been defined as a conditional probability of
can be done in parallel. how likely a given observation is in a given state.

The results of the work can be used in different ways. Without loss of generality we assume that a plan always
First, on theoretical work on planning under uncertainty, starts with an operator application, and we therefore do not
the results justify considering just a basic problem defini- have to specify what is initially observable.
tion without all the bells and whistles, as the more general  Definition 1 without nondeterminism and observations
problem definitions can be reduced to the basic definition. corresponds to languages commonly used in describing
Second, on more practical level, planner implementations planning problems. A main difference is that languages like
can use the reductions to compile away more advanced fea- PDDL (Ghallabet al. 1998) allow the description of high
tures of the input language. numbers of operators by one schematic operator description.

The structure of the paper is as follows. We first present The schematic description contains variables that are instan-
our formal framework which consists of the definition of tiated with constants to obtain operators like considered in
problem instances in planning with uncertainty. We dis- the present work. However, almost all planning algorithms
cuss a number of normal forms of nondeterministic opera- are defined in terms of nhon-schematic operators, and at this
tors. Then we describe two reductions of compound obser- level Definition 1 describes a language that is relevant for
vations to atomic observations, a reduction for making all most of planning research.
operators have the same observability properties, and finally ~We defineac,(e) as the sufficient and necessary condi-
a reduction of sensing uncertainty to effect uncertainty. We tion for the effecte to change (possibly, taking into account
conclude the paper by discussing related work and new re- nondeterminism) the truth-value of the state variablEor-

search directions. mally,
=T

The Formal Framework ag%ﬁzg - T
In this section we define the type of problem instances and a) = Lifa#d
planning problems we address in this paper. Although we aca(ﬁ N o= Llifa#d
explicitly consider so-called reachability goals only, the re- ( e) = chag(e)
sults also hold for more general types of plan quality criteria, ac,(ey A---ANey) = ac(e))V---Vacy(e,)
for example based on rewards. For relations between reach-  ac,(pie;|--- |pnen) = aci(e1)V---Vac,(e,)

ili Is and rewar work ndon (1992). .
ability goals and rewards see work by Condon (1992) Here | andT are respectively the constants false and true.

A related definition, that will be used later, is the follow-

Definition 1 Let A be a set of state variables. pgroblem . . X i
it S S vart S & ing. For a given effect define a seég(e) of state variables

instancen planning is(I, O, G) wherel is a formula over

A describing the initial states(? is a formula overA de- as follows.

scribing the goal states, and is a set of operatorsgc, e, b) aga) = {a}

wherec is a formula overA describing the preconditiom,is ag(—~a) = {a}

the set of observation®, 3) wherep is success probability ascr>e) = ase)

0 < p < 1andg is a formula overd, ande is an effect. aser A---Aen) = ager)U---Uas(e)

Effects are recursively defined as follows. as(pier| - |pnen) = asler)U---Uasen)

1. a and—a for state variables: € A are effects. This is the set of state variables possibly changed by the

2. e1/\---Aey isaneffectity, . . ., e, are effects (the special ~ effect, or in other words, the set of state variables occur-
case withn = 0 is the empty conjunctiom.) ring in the effect not in the antecedentof a conditional

3. ¢ > e is an effect ifc is a formula overd and e is an c > e. 2 We will also use this generalized to sets of effects
effect. aszﬁ({e'h 9 'tf’len}) n as('[elt) A i LtJ)IaS(tew)b imult I
. : owing the same state variable to be simultaneous
4. g}'f(gcl,t.s. ' “p;e(;’f('; ;Tieéfe{clt 'fe“ﬁ'} aﬁagr n = 21are affected l?y several parts of the effect leads to problemg.
Pi ’ i=1Pi = Clearly, effects: and—a taking place simultaneously is not
If the operator does not contajne; |- [pne, then the well-defined. One could allow the same effectin two
operator is deterministic. places, but this leads to technical complications that do not
justify the very small additional generality. From now on we

"Here we consider reducing one operator to another. If one op- assume that all operator effects have the following property.
erator may be replaced by several and plan Iength and structuredo—_
not have to be preserved, the exponential size increases discussed 2Notice thatas((a A —a) > b) = {b}, that is, there is no guar-
in the connection with the normal forms can be avoided. antee that the state variable indeed can be changed by the operator.



Property 2 Let & be the strongest invariant of a problem
instanceP = (I,0,G)3. Then the effect of an oper-
ator (c,e,b) € O has the following property. Assume a
state variablea € A occurs in two conjunctg’ and e”

of a conjunctive effect = e; A --- A e, occurring in

e. Letc be the conjunction of all the antecedents of
conditionalsc¢” > f so thate is a subeffect off. Then
® U {c, ¢ ac,(e'),ac,(e”)} must be inconsistent.

basic

Figure 1: Hierarchy of planning problems with partial ob-

This means that in no state of the problem instance can two gseryapility as a Hasse diagram.

occurrences of a state variable simultaneously contribute in

the determination of the successor state. Testing the satis-

faction of Property 2 is PSPACE-hdrdut there are simple
sufficient syntactic conditions that can be easily tested and
that guarantee its fulfillment. Further, the property can often
easily be satisfied by applying equivalences from Table 1.

Next we give a formal semantics for the application of an
operator. Each operator assigns a probability distribution to
the set of successor states of a state.

Definition 3 (Operator application) Let{c, e, b) be an op-
erator overA. Lets be a state, that is an assignment of truth
values toA. The operator is applicable inif s = c.

Recursively assign each effect set[e], of pairs (p, )
wherep is a probability0 < p < 1 and! is a set of literals
and-—a fora € A.

L. [a]s = {(1.0,{a})} and [-a]s
A

2. [ex A e Nenls = {{Iypi Uiy fi)l{pr, f1)
[61]57 B <]7n, fn> € [en}s}-
[ >els =lesifs = and[d > e]s = {(1.0,0)}
otherwise.
4. [prea] - |pnenls = {(p1 - p,e)[{p,e) € [er]s} U -+ U
{(pn - p, €)|(p,€) € [en]s}
Above in (4) the union of sets is defined so that for example
{(0.2,{a})} U {(0.2,{a})} = {(04,{a})}: same sets of
changes are combined by summing their probabilities.
The successor statesofinder the operator are ones that
are obtained frons by making the literals iry for (p, ) €
[e]s true and retaining the truth-values of state variables not

occurring in f. The probability of a successor state is the
sum of the probabilitiep for (p, f) € [e]; that lead to it.

{(1.0,{~a})} fora €

S

Each(p, f) means that with probability the literals that
become true are those ify and hence indicate the prob-
abilities of the possible successor statessof For any
le]ls = {{(p1, f1),---, (Pn, fn)} the sum of probabilities is
2 pi =10

Example 4 Consider the operatora, (0.1-a|0.9-b) A
—¢, () and a states with a, b and ¢ true. Now [e], =

3This means that for all valuationsof state variables i,

s = @ if and only if s can be reached from with a sequence of
operators fronO.

“This is because testing whether the strongest invariant is con-
sistent with a formula (even with an atomic formula) is PSPACE-
hard. This problem is equivalent to the plan existence problem of
deterministic full-information (classical) planning.

0.1, {—a, —~c}), (0.9,{-b, —~c})}, and the successor states
respectively satisf{—a, b, ~c} and{a, —b, —~c}. |

Properties of Observability and Sensing

The three advanced properties of sensing considered in this
work are formalized as follows.

Definition 5 A problem instancén planning(Z, O, G) has
the properties C, H, U respectively under the following con-
ditions.

e A problem instance hasompound observation@vhich
we denote by C) if there is operatde, e, b) € O with
(p,B) € band3 ¢ A, that is, one of the possible obser-
vations is not an atomic proposition.

e A problem instance hasheterogeneous observations
(which we denote by H) if there are operatdese, b) € O
and(c,e’,b') € O sothath # V.

e A problem instance hasensing uncertaintfyvhich we de-
note by U) if there is operatdfe, e, b) € O with (p, 5) € b
such thatp < 1.0.

The eight combinations of these properties are depicted
in Figure 1. We will call those problem instandessicthat
have none of the properties C, H or U. In the second part
of the paper we reduce problem instances CHU first to HU,
then further to H and finally to basic instances.

Normal Forms for Effects

We introduce three normal forms for effects. These normal
forms are either used for establishing the results on reduc-
tions between classes of problem instances, or they are in-
teresting on their own right. In earlier work on algorithms
for planning with uncertainty, different syntactic restrictions
have been used. We show how some of the restrictions lead
to an exponential blow-up in the size of operators.

Table 1 lists a number of equivalences on effects. Their
proofs of correctness with Definition 3 are straightforward.
An effecte is equivalent toT A e, and nondeterministic ef-
fects and conjunctions of effects can be arbitrarily reordered
while preserving equivalence. These trivial equivalences
will later be used without explicitly mentioning them, for
example in the definitions of the normal forms and when ap-
plying Equivalences 7, 8 and 9.



c>(e1 A+ Nep) (c>e)A--A(c> ey) Q)

e (d>e) = (end)>e (2)

ct> (piei] - [pren) = pr(cer)| - |palc > en) 3
(ci1>e)A(ca>e) = (aVe)e (4)

eN(c>e) = e (5)

e = Tp>e (6)

e (prei|---|pnen) = pi(eNer)| - [puleNen) (7)

pi(pier] - Ipnen)lp2eal - pnen = (p1ph)el] - |(prpn )en Ip2€2] - IPnen (8)
pi(e' A (e er))|paea| - [pren = (e (pr(ef Aer)lpaea] - |pnen)) A (me B (pre[p2ea] - [pren))  (9)

Table 1: Equivalences on effects

Example 6 An example of an effect with nesting of condi- The main application of the UC normal form is the def-
tionality and nondeterminism in different ways and indepen- inition of regression, that is, the computation of a formula
dent nondeterministic effects is the following. that represents the possible predecessor states of a given set
of states before applying a given operator. If atomic effect
(a > (0.30[0.7(c A f))) A (0-2(d A €)[0.8(b 1> €)) a occurs in conjuncts > a andd > —a of a deterministic
We use this effect for demonstrating the normal forms in €fféct in UC normal form, then V (a A ~d) is true before
Examples 8, 11 and 15. m applying the operator if and only if is true after applying

the operator.
Next we define the normal forms. . i
Conditionality (CO) Normal Form
Unary Conditionality (UC) Normal Form In the UC normal form conditionality is inside nondetermin-

The first normal form corresponds to moving the condition- 1SM. Itis also possible to move conditionality outside non-
als inside so that their consequents are atomic effects. This determinism.

normal form is very useful in some of the reductions we will
give later. This transformation causes only a polynomial in-
crease in the size of the effect.

Definition 10 An effecte is in conditionality (CO)normal
form if e does not contaip; (e; A (¢ > €))| -+ [pnen.

_— . . ) Example 11 The effect from Example 6 transformed into
Definition 7 A effecte is in unary conditionality (UChor- b P

. AR PR CO normal form is the following.
mal form if for all¢’ > €’ in e the effect’ is eithera or —a
for somea € A. (a > (0.3b]0.7(c A f))) A (b > (0.2(d A e)]0.8¢))
A(=b > (0.2(d N e)|0.8T))

Example 8 The effect from Example 6 transformed into n

UC normal form is the following.
g Theorem 12 For every effect there is an equivalent one in

(0.3(a > 0)[0.7((a > c)A(a > f))A(0.2(dNe)]|0.8(b > e)) CO normal form.

[ Proof: By applications of Equivalence 9. O

. . . However, contrary to the UC normal form, transformation
Theorem 9 For every effect there is an equivalent one in  jn19 CO normal form may increase size exponentially. This

UC normal form. There is one that has a size thatis polyno- reqyces the usefulness of this normal form for planner input
mial in the size of the effect. languages.

Proof: By using Equivalences 1, 2 and 3 in Table 1 we can
transform any effect into UC normal form. Applying each
equivalence by replacing an instance of the left-hand-side by
the right-hand-side reduces the number of occurrences of
> and| afterc>. When the number is down to zero, the effect
is in UC normal form.

In this transformation the conditiorsn ¢ > e are copied

Example 13 Consider the effect-(a; > —a1)|5- (—ay >
ar)| -+ |5 (an > —an)|5=(—a, > a,). When the condi-
tional choices have to be done firat, different valuations

of ay,...,a, have to be considered, and for each a variable
to be reversed is chosen nondeterministically. Because the
variable to be reversed is not known when making the con-

in front of the atomic effects. Let: be the sum of the sizes ditional choices first, every val_uation of,..., An has to be.
of all the conditionse. and letn be the number of occur- considered separately. The size of the effect is proportional
i to the number of valuatior®. [ |

rences of atomic effects and —a in the effect. An upper
bound on size increase@(nm), which is polynomial. O SHeree; may beT, that is, it may be missing.



Unary Nondeterminism (1ND) Normal Form

Finally, some previous works on planning with nondeter-
minism, notably Kushmerick et al. (1995) and Smith and
Weld (1998), restrict to operator effects with a single non-
deterministic choice between deterministic effects. This is
strictly more restrictive than the UC normal form.

Definition 14 An effect(c, e, b) is in unary nondetermin-
ism (1IND) normal form ife is deterministic or of the form
pie1]| - - |pnen and everye; is deterministic.

Example 15 The effect from Example 6 transformed into
1ND normal form is the following.

(0.06((a>b)AdAe) | 0.24((ar>b) A(b>e))
| 0.14((ar> (cAf))ANdAe)
| 0.56((at> (cAf))A(b>e)))
|

Theorem 16 For every effect there is an equivalent one in
IND normal form.

Proof: By first translating into UC normal form and then
applying Equivalences 7 and 8. O

Like in the CO normal form, the size of the effect might

e [: N — (O x N)uU2c*Njs a function that assigns each
node an operator and a successor ndden) € O x N
or a set of conditions and successor nodesn).
The formulaep are Boolean combinations of formulae
such that(p, 3) is an observation for every operator that
may be the last one applied before reaching the branch
node.

The definition of plan execution should be intuitively
clear. When a successor node of a branch node is chosen,
the result is undefined if more than one condition is true.

Solutions to problem instancés, O, G) are evaluated in
terms of their probability of reaching a stateGinwhen start-
ing from a state inl.

Reduction of Compound Observations to
Atomic Observations

In the rest of the work we reduce more complex forms of
sensing to more basic ones. We start by eliminating com-
pound observations. A compound observation means ob-
serving the truth-value of a formula without (necessarily)
being able to observe the truth-values of its subformulae.
We show how compound observations can be reduced to
atomic observations, that is, observations of state variables
only. These reductions are based on modifying the operators
so that values of compound observations are copied to state

increase exponentially, and therefore one should not expect variables that are observable.

to be able to efficiently transform all nondeterministic ef-
fects into this normal form.

Example 17 Consider the effeet = (0.5a1]0.5—a1)A- - A
(0.5a,]0.5—a,,). An operator{c, e, b) produce™ succes-
sor states for any state. A single nondeterministic choice
producing the same successor states must Paadterna-
tives. |

Notice that exponential size increase can be avoided in
transformation into normal forms like 1ND if plan structure
does not have to be preserved. A conjunction like that in
Example 17 could be split ta operators the application of
which is enforced to take place sequentially, in each case
making a nondeterministic choice between two alternatives.

Definition of Plans

In this section we give a basic definition of conditional plans.
We will not extensively use this definition and it is only su-
perficially referred to in some of the proofs in the following
sections, and other reasonable definitions of plans could be
used just as well.

Plans are directed graphs with nodes of degree 1 labeled
with operators and edges from nodes of degre®labeled
with formulae.

Definition 18 Let (I, O, G) be a problem instance in plan-
ning. A planis a triple(N, r, [) where

e N is a finite set of nodes,

e r ¢ N is the initial node,

We give two reductions.

The first reduction preserves the size and the structure of
plans but it is restricted to the case in which two state vari-
ables occurring in the same compound observation may not
be affected by two nondeterministic effects that occur inde-
pendently. This restriction is imposed to have a polynomial-
size reduction.

Condition 19 For no two state variables € Aanda’ € A
occurring in a compound observatigh does the operator
effect contaire; A - - - A e, With occurrences of’e’| - - - and
p"e"| - - - respectively in conjuncts ande;, i # j such that
a occurs ine; anda’ oceurs ine;.

This condition is trivially fulfilled by deterministic oper-
ators and by operators in 1ND normal form, and we believe
that also almost all planning problems occurring in practice
fulfill it.

The next example suggests that operators that do not sat-
isfy this condition might be difficult to handle within one
operator.

Example 20 Consider the effect0.5a1(0.5-a1) A --- A
(0.5a,]0.5—a,,) and an observatiors in which all of
ai,...,a, Occur. Evaluating the new value @imay require
knowing all of then nondeterministic outcomes, and this
seems possible only if this evaluation is performed within
one nondeterministic effect that determines values of all
ai,...,ay, (this requires the exponential blow-up in the size
of the effect) or within another operator that is applied after
the operator in question. |



The second reduction works for all operators but requires and the observationy = aAbAeandf; = cA—d. The de-
auxiliary operators for evaluating the compound observa- terministic conjunct is moved inside the nondeterministic
tions and copying their values into observable state vari- choice by using Equivalence 7.
ables, one for for every operator.

Both reductions are computable in polynomial time. The 0.5(a A (g > b) A e)[0-5((g > a) Ac)
first does not affect plan length, and the second increases  Considera A (g > b) A c. NoW = (a A L)V T =T,

plan length by a factor of 2. dp=0bA-L)Vg=bVg andp, = (bA-L)VT=T.
. . The regressed value @ is thereforeT A (bV g) A e, and
First Reduction the regressed value 6§ is T A —d.

Let P = (I,0,G) be a problem instance. We define Consider(g > a) Ae. Now¢p, = (aA-L)Vg=aVyg,
Cy(P) = (I,0',G) whereO' is defined by replacing ev- ¢, = (bA-L)V L =b,andp. = (cA-L)VT =T.The

ery operator irO with a modified one. regressed value of, is therefore(a VvV g) A b A e, and the
Let® = {f4, ..., 3.} be the formulas in the observations  regressed value g, is T A —~d. Finally, the new effect is
in the operators of the problem instance. We introduce new
auxiliary state variablede = {ag,,...,ag, }. 0.5 (aA(ge>b)Ac
We first transform the operators into UC normal form, N((bV g) Ae) B pgy) A (=d B> psy))
then apply Equivalence 7 to not have conjunctions of both 05 ((g>a)Ac
deterministic and nondeterministic effects, and further apply M@V g)AbAe) > ps) A(=d > pg,))
Equivalences 4 and 6 so that all conjuncts of conjunctions of ]

deterministic effects are conditionads>> [ and each such

¢ > —aforanya € A Then we replacec, e, b) by satisfies Condition 19. TheR has a solution plan of length
(c,fd(e), {(p,ap)|(p, B) € b}) where n if and only ifCy (P) has.
fd(prei| -~ |prex) = pifd(er)|- - |pxfd(er) Proof: We only give a brief proof sketch.
fdles Ao Aep) = fdle) A Afdler) Plans forP andC (P) can be mapped to each other sim-
if ¢; are nondeterministic ply by interchanging the operators with their counterparts in
fd(ex A New) = e A New Af({er, .. er}) P andC; (P). This is because the differences in the oper-
otherwise ators involve the new auxiliary state variables only. These

are referred to in the observations the plans use, and do not
affect the applicability or other effects of the operators.

That observing 3 can be replaced by observ-
ing pg is because under Condition 19, the formula

Heref(S) copies the values of the old compound observa-
tions to the new observable state variables. Condition 19 is
essential: it guarantees that on any application of the opera-
tor, if the value of a compound observation is changed by

o Bl¢a, /a1, -, Pa,, /am] in the definition offz(S) always
it is not changed by any other part of the operator effect. has the same futh-value & in the next time point,
f(S) = A{fs(9)|3 € ©,a € ag9), a occurs inG} assuming that those nondeterministic choices are made that
f3(S) = (Blpa, /a1, Pa,, /am] > ag)A lead that subeffect to take place.
(=B¢a, /a1, -, Pa,, [am] > —ag) Condition 19 guarantees that the new truth-valug o
affected only by one maximal deterministic subeffect of the
Here ¢, is the regressed value afe¢ A = {a1,...,am}, operator’s effect. O

that is, a formula whose value in the predecessor state equals
the value ofz in the successor state. It is defined as follows.

If a is not the consequent of any conjunct®fadd L > a Second Reduction

to S. If —a is not the consequent of any conjunct®fadd This reduction works for all problem instances and is sim-
1 > —ato S. Hence there is exactly one conjunct> a pler but doubles the length of operator sequences. Plan
and exactly one conjunet > —a in S. Now we define length increase may substantially decrease the efficiency of
some types of algorithms.
o = (aA=2)Vz Let P = (I,0,G) be a problem instance. Lgk, ..., 5,
be the formulas in the observations in the operator®in

The formula(a A —2') V z says that eithed was true before
and did not become false, or it became true, and hence it
expresses the value afafter applying the operator in terms
of its value before applying the operator.

In summary, we modify the effects to copy the new values
of the compound observations into the new observable state
variablesags.

We introduce new auxiliary state variableg , ..., ags,, z,
andz; for everyi € {1,...,m} wherem is the number of
operators ir0. State variables will have the same value as
the respective observatigh The state variables; control

the application of operators that evaluate the values of com-
pound observations. No@Ws(P) = (I Az A -z A=+ A
—zm, O’, G) whereO’ consists of

Example 21 Consider the effect (zAe,mz Az Ne, D)
(0.5(a A (g > b))[0.5(g > a)) Ac (2i,2 A=z Av, {(p, ag)|(p, B) € b})



for every operatofc, e, b) € O (operator’s index ig). The Reduction of Sensing Uncertainty to Effect
first operator replaces the old operator and the second eval- Uncertainty
uates the observations.

The effectr evaluates the observatiofigzhat are possible
after applying{c, e, b) and assigns the values to the corre-
sponding state variables;:

The POMDP model of probabilistic planning is often de-
fined to allow sensing uncertainty (Kaelblireg al. 1998)

so that making an observation in a given state can have any
probability between 0 and 1. Sensing uncertainty may for
v = N(@Br>ag)A (=8> —ag)|(p,B) € b} example be caused by imperfections in sensors. In this sec-
tion we show how sensing uncertainty can be reduced to
nondeterminism in action effects. So, in the presence of
nondeterminism no additional expressivity is obtained by in-
cluding sensing uncertainty to the input language.

The reduction uses nondeterministic effects to copy sense
data into observable state variables. The observations are
reliable but copying introduces uncertainty about sense data.

We assume that all observations/hare atomic, as jus-

The state variable indicates that any operator can be ap-
plied, z; indicates that operatarhas been applied and the
corresponding observations are to be evaluated.

Example 23 Below we have a simple problem instance
with compound observations and its translation to a prob-
lem instance with atomic observations only.

P = {(a,{{a,b>c,{{0.5,aV b))}, c) tified by the reductions in the previous section, and that the
Cy(P) = (a Az —zy, effects are in UC normal form.
{{zNa,~z Az A (b > c),0), Let P = (I,0,G) be a problem instance. We define
(z1,2 A=z1 A ((a VD) > agvp) U(P) = (I,0',G) where
A(=(aV b) > —aavs),
{(0.5,a0vs) 1)}, O = {{c,e' A f(b),{(1,a")(p, a) € b})|{c,e,b) € O}.
c) Hered' for every observable € A is a new state variable to
[ | which we copy the current value af Copying takes place

correctly with probabilityp and incorrectly with probability
Theorem 24 Let P be a problem instance. Theh has a 1-p

solution plan if and only iiCy(P) has, and for every plan Next we definef ande’. The functionf handles observa-
for P of lengthn, there is a plan foiCsy (P) of length2n. tions that are not changed byand the rest of the observa-
) ] tions are handled in'.
Proof: We only give a brief proof sketch. o Let N = {a1,...,a,} be the state variables that are ob-
The reduction guarantees that the valuezgfcoincides servable with some of the operators. IBt= {d},...,d,}.
with the value ofg after an operator with observatighhas Define
been applied. mdi(a) = a
Translations from plans faP to plans forC, (P) and vice md(—a) = -a
versa do not require changing the structure of the plans, only md,(a) = pa|(l—p)-a
one operator is interchanged with a sequence of two opera- rnd ( a) = p-a|(l-pa

tors, or vice versa.

Plans forP can be translated into plans 6% (P) simply
by replacing observations gfby observations ofz and re-
placing every operator with the corresponding two new op-
erators.

Plans forCy(P) can be transformed into plans fé&r by
replacing observationss by 5 and making the converse re-
placement of operators. The two operato€i{ P) obtained
from one operator inP always appear together, and plans
cannot branch between them because the first operator does
not have anything observable. O

for state variables € A and real numbers,0 < p < 1.
Hencernd, (1) sets literal true by probabilityp and false by
probability1 — p

Now the old observable state variablesc A that are
not affected by the operator are simply copied to the new
observable state variables € B. We definef(b) as the
conjunction of(a > rnd,(a’)) A (—a > rnd,(—a’)) for all
(p,a) € bsuch thau ¢ ag(e).

The rest of this section describes how those observable
Sstate variables that may be affected by the operator are han-
dled ine’. The difficulty is that a state variable may occur in

Despite the increase in plan length, we believe that in several conjuncts in the effect, but copying may take place
many cases the reduction would be almost as practical as thein only one to avoid violating Property 2.
first one. First, many types of algorithms do not suffer from Clearly, copying whenever the state variable changes is
the plan size increase because the new pairs of operators thanot a problem because change may take place in only part of
double plan length always have to be applied together, and an effect at a time. The problem is to decide where to copy
therefore no increase in the size of the search space wouldwhen none of the possible changes, for example by effects
follow for example in algorithms that construct plans in a ¢ > «, takes place. There could be several places in the
strict forward or backward direction. Second, the operators effect where a state variable potentially changes.
evaluating observations could be restricted to cases in which  The solution to this difficulty is as follows. For every
a problematic compound observation might have been af- conjunctione; A --- A e, we perform copying in the no-
fected, and non-problematic observations could be handled change case only ie;. When change takes place, copying
like in the reductiorC; . is done wherever the state variable changes. In the following



we parenthesize all conjunctiong A e Aez A--- A ey t0
erN(ea A(es A+ Ney)).

We definee’ = I{(T,a)|acaSe),(p,a)Eb} (6) WhererQ(e) is
recursively defined below. The sét consists of elements
(¢, a) that describe the conditionsunder which the state
variablea is copied toa'.

roer) = e A /\(c,a)eQ CPe, c(a)
if e1 is deterministic
rolet Ae2) = T{ca-ac,(es).a)l(c,a)e}(€1)A
Fqug (€2
whereg = {(c.a) € Qla € as(es)\as(e1)}
andg’ = {(L,a)la € aglez) Nas(er)}

plrQ(61)| T ‘pnrQ(en)

In the first case, when; is deterministic, the effeat; is
extended with copying the state variablesentioned iry.
The second case is the conjunction, the definition of which is
slightly complicated because of the need to avoid violating
Property 2. Anya may be copied in only one conjunct. If
a variable is shared by, ande,, then it is copied ire; if
it cannot change iRy (also when it does not changeadn),
and it is copied ire; exactly when it can change in it. In the
third case, nondeterministic choice, the same state variables
—as indicated by) — are copied in every alternative although
different state variables may change in them.

Copying of observable state variablesn cp. .(a) has
several cases because the value that is copietdepends
on how the value ofi is changed by.

CPe.c(a) pc.(a) &> rnd, (a’))A

pC.(—a) &> rnd,(—a’))A

(a A cA=pc.(—a) A —pc.(a)) > mdy(a’))A
(ma A e A=pe.(=a) A =pc.(a)) > rdy(—a’))
if (p,a)€b

{

Meanings of the above notations are summarized as follows.

ro(e) Effecte modified to copy the values of state variables
a € Ato the observable state variablésc B.

cp..(a) Copying the value of one observable state variable
a € Atod'. A prerequisite for copying is that the variable
cannot be affected anywhere outsidghe conditionc).
The four conjuncts describe the four possible cagésze-
comes trueq becomes false; does not change and was
true, anda does not change and was false. The prerequi-
sitecis needed in the no-change cases to guarantee’that
is indeed changed only in one part of an operator effect,
thus satisfying Property 2.

pc.(1) Condition for literall becoming true ire.

Now, whenever one of the old observable state variables
a with (p,a) € bis changed, its value is copied to the new
observable variable’ with probability p and negated with
probability 1 — p. If the state variable does not change, the
old value is copied similarly, and this copying takes place in
only one part of the effect to preserve Property 2.

rQ(plel‘ T |pnen,)

(
(
(
(

T
c
1

if e has conjunct
if e has conjunct > [
otherwise

pc. (1)

Example 25 Consider the following operator.

o= (T, (0.5(¢ > a)]0.5b) A (0.5(6 > a)|0.5¢),
{(0.9,a), (0.8,b), (0.8, ¢)})

Now we derive the new operatof corresponding t@ as
follows. We do not spell out the new effect completely be-
cause even in a simple case like this it would look rather
complicated.

Q
Q/
Q///
o

_‘97 CL>,

) (LB
/(6 & )|05rg (B))A
(0 & a)|0.5r g (c)),
{1y, (1), (1,6)})

Here for exampleg/ (¢ > a) yields the following.

ro (¢ > a)

(¢ > a) ACPpsa,Tr-0(a)
/\Cp¢l>a,T/\ﬂJ_(b) A Cp¢l>a,T/\ﬂT(C)
(¢ > a) A CPpsa,—o(a)

ACPg>a, T (D) A CPprsa,L(C)

(¢ > a)A

¢ > rndo'g(a’))/\

1> rndo.g(_'a/))/\

(a N=0A=L A=) > rmdyg(a’))A
(ma N—=0AN—LA=¢)>rndyg(—a’))
ACPsa, T (D) A CPga, 1 (C)

(65 a)A

(¢ > (0.94’|0.1=a’))A

((aN=0 A=¢) > (0.90']0.1-a’))A
((ma A =8 A =¢) > (0.9-a’]0.1a"))
/\Cp¢l>a,'|'(b) A Cp(bl>a,J_(c)

The effects obtained frompy. . TA-0(a) illustrate the main
technical difficulty in the reduction.

(¢ > (0.94/|0.1-a’))A
((a A =0 A =¢) 1> (0.9a']0.1-a’))A
((ma A =0 A —¢) > (0.9-a’]0.1a))

(
(
(
(

They show when the observable state variablgets a new
value in the first alternative of the first nondeterministic
choice in the effect. This is whefiis true anda becomes
true, or wheny is false andx cannot be affected by the sec-
ond nondeterministic choice in the operator effect becéuse
is false. [ ]

Theorem 26 Let P = (I,0,G) be a problem instance.
ThenP has a plan if and only it/ (P) has.

Proof: We only give a proof sketch.

The proof is based on lemmata that show that after ap-
plying an operator that makesobservable with probability
p, the truth-value of: is assigned ta’ with probability p



and otherwise the opposite truth-value is assigned tath
probability 1 — p. poola) = (

Mappings of plans fo to U (P) and back are modular: Pe.c o (
each operator is replaced by its counterpart. Plan structure (
is preserved because sets of observable state variables stay (
the same modulo replacementwlby o’ or vice versa. [

pc.(a) > a’)A

pc.(—a) > —a')A

(a A ¢ A=pe.(a) A =pe(a)) > a/)A
(ma A e A =pc(ma) A =pc.(a)) > —a’)

¢ if e has conjunct > [

T if e has conjunct
{J_ otherwise

Reduction of Heterogeneous Observability to pe(l) =
Homogeneous Observability

In this section we show how dependency of observations on Thaorem 27 Let P — (I,0,G) be a problem instance.
the last action taken, that is special sensing actions, is N0t ThanP has a plan if and 6n|3; it7(P) has.

necessary, and how such problem instances can be reduced

to the basic case in which observability is the same at all proof: We only give a proof sketch.

points of time. Plans of P can be transformed to plans &f(P) simply

Let P = (I,0,G) be a problem instance in planning.  py replacing the operators by their counterpart&/i) and
We assume that all the observations/mare atomic and by replacing observationsby a’.

have probability 1, which is justified by the reductions in The transformation from plans df(P) to P is similar,

the previous sections. Lgt,...,a,} C Abethose state ¢ there is the possibility that certain observauéis used
variables that are observable with some of the operators in |gier than when the copying frominto o’ last took place,
O. We introduce the seB = {a},...,a;} of new state  hat is; at a point of a plan which is not observable in
variables. Define a mapping from P to P. However, in those cases we can transform the plan by
n moving branching earlier to obtain a valid plan fBr We
H(P)= (A /\(ai —al),0,G) sketch a small example to illustrate the transformation. Let

the plan consist of operator applicationsando- followed

= by branching o) (corresponding to the observable vari-
so thatH (P) has homogeneous observability. The @éts ablea; in P). The problem might be that originally;
obtained fromO by modifying the operators to copy values  was not observable after the operator corresponding to
of old observable state variablesnto o’ if a was originally but only aftero,. The transformation involves moving the

observable after applying the operator in question. The op- branch earlier: apply;, branch on the value af;, in both
erator might also changeand then copying also has to take  branches first apply, and then continue with the subplans
place. Let that originally followed the branch. g

O = {{c,e' N f(b),{(1,d')|a" € B})|(c,e,b) € O} Note that this reduction could be easily combined with
the one for reducing sensing uncertainty to nondeterminism:

where simply have the seB observable for every operator in the
flb) = /\<1 b agas )(a > a') A (ma > —d). reduction in the previous section.
We assume that all the operators are in UC normal form Related Work

and Equivalences 4, 5 have been applied so that no conjunct
has more than one occurrence of atomic efteahd—a for
anya € A.

Similarly to handling observation uncertainty with non-
deterministic copying in the previous section, also here
we have the problem of satisfying Property 2 when copy-
ing the value ofa to o’ when a does not change. We
use the same construct already used in the previous sec-
tion. The only difference is the functioop. .(a) which
does not randomize when copying framto a’. Define
€' = I{(T.a).acasge),(1,p)eb} (€) Whererg(e) is defined as

Littman (1997) and Boutilier et al. (1999) show the equiv-

alence of different types of representations of nhondetermin-
istic actions. In this paper we have used only one defini-
tion of nondeterministic operators that is syntactically less
restricted than the definition of probabilistic STRIPS oper-

ators used by Boutilier et al. and by Littman. These def-
initions of operators are equally expressive when allowing
reductions in which one operator may be replaced with sev-
eral and in which plan length and structure do not have to
be preserved. Neither Littman nor Boutilier et al. address
planning with sensing and partial observability.

follows. Expressivity of different formalisms for deterministic
rolen) = el A /\<C.G>EQ CPe,.c(a) planning has earlier been investigated cBstbm (1995)
if e, is deterministic and Nebel (2000). The topics of interest in classical plan-
roler Aez) = Tien-ac,(es).a)(ca)eqt(€1)A ning have been the form of preconditions (positive literals

only, conjunctions of literals only, DNF, CNF, arbitrary for-

Mqugr (€2
whereq = {q<c?a> € Qla € aglesy)\as(e1)} mulae) and conditional effects. In contrast, in this work we
and¢ = {(L,a)la € agey)Nage;)} consider extended formalisms with the possibility to express
ro(piei] - pnen) = pirgler)| - |paro(en) nondeterminism and observability.



The reductions presented in this work can be defined as
Nebel's (2000) compilation schemes, and, with the excep-
tion of the more general reduction for compound observa-
tions which doubles the length of operator sequences, also
in the ESP reductions framework ofBkstbm (1995). Of
course, both of these works restrict to deterministic full in-
formation planning (classical planning), so the embeddabil-
ity we allude to here requires generalizations of ESP reduc-
tions and compilation schemes to conditional plans. Such
generalizations are straightforward.

Conclusions

We have presented three normal forms for plan operators
with conditional effects and nondeterminism, shown how ar-

bitrary effects can be transformed into these normal forms,
and discussed the size increase of these transformations.

We have also shown how three advanced features of plan-
ning with partial observability, compound observations and
sensing uncertainty and heterogeneous observability, can be
reduced to observability of the same set of atomic state vari-
ables at all time points. Thus no additional expressivity or
complexity is obtained by these advanced features.

All the reductions are modular, that is, they involve re-
placing one operator by another one with a closely related
behavior, or in some cases by two operators that must be
used together. The modularity goes so far that the structures
of the plans for the original problem instance and the ones
produced by the translation are the same.

The only difficulties in the reductions are caused by con-
junctions of nondeterministic effects: inside one operator,
there is no way of expressing anything about the com-
bined results of mutually independent nondeterministic ef-
fects (without the exponential size reduction of the indepen-
dent effects to one nondeterministic effect.) At the level of
the language for describing the operators all these problems
could easily be resolved by allowing a two (@rphase def-
inition of operator effects, that is, sequential composition of
effects. Extending planner input languages with sequential
composition might therefore be beneficial.
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