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Abstract

There have been several proposals for expressing planning
problems with different forms of uncertainty, including non-
determinism and partial observability. In this paper we inves-
tigate two questions. First, the restriction to certain normal
forms of operators, for example, restricting to operators in
which nondeterministic choice must be outside conditional
effects, or vice versa. We show that some such restrictions
lead to an exponentially less succinct representation of prob-
lem instances. Second, we consider the problem of reducing
certain features of formalisms for planning problem to other,
more basic features. We show that compound observations
can be reduced to atomic observations, sensing uncertainty
can be reduced to effect uncertainty, dependence of observa-
tions on the operator last applied (special sensing actions) can
be reduced to the case in which same observations are always
possible. We show that these reductions are possible without
significantly affecting quantitative properties of problem in-
stances. One reduction doubles plan length, and the others do
not affect plan length and only increase problem instance size
slightly.

Introduction
There are many planning algorithms for partially observ-
able planning in which the problems discussed in this work
show up. These include policy construction algorithms
for POMDPs (Sondik 1978; Kaelblinget al. 1998) and
algorithms for conditional planning (Weldet al. 1998;
Bonet and Geffner 2000; Bertoliet al. 2001; Rintanen
2002). These planners take input in differing input lan-
guages, and it has not in all cases been clear what is the ex-
act relation between the problems addressed by these works.
For example, Bertoli et al. (2001) address compound ob-
servations, that is observations the values of which are a
Boolean combination of values of individual state variables,
whereas Rintanen (2002) does not but claims that compound
observations could be handled by an extension of the algo-
rithms he presents.

The present work addresses planning problems that are
expressed in terms of state variables and plan operators as
used in most of AI planning. Same problems also show up
with less succinct enumerative representations of partially
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observable planning problems, but the reductions then cor-
respond to less natural transformations of the state space.
Early work on planning with partial observability and es-
pecially the algorithms for POMDPs have used explicit
(flat, enumerative) representations of state spaces. Another
class of succinct representations of state spaces for prob-
abilistic planning uses Bayesian networks (Littman 1997;
Boutilier et al. 1999).

In this framework we set out to investigate relations be-
tween observation models with different properties. For dif-
ferent advanced properties an observation model in planning
can have, we show that these properties can be reduced to a
basic model in which a fixed set of state variables are ob-
servable at all time points (assuming certain basic features
in the basic language, like conditional effects and arbitrary
formulae as preconditions.) Extensions to this basic model
like compound observations or observations dependent on
the last operator application do not bring additional expres-
sivity or complexity on top of the basic problem. Hence,
this work justifies once and for all the restriction to the ba-
sic model of partially observable planning with only atomic
observations and no sensory uncertainty. The existence of
this kind of reductions seems to be part of the folklore in
planning but they have not earlier been formalized in more
detail. The ideas underlying the reductions are simple, but
in some cases small technical problems necessitate a com-
plicated looking reduction.

The only problematic case is reduction of compound ob-
servations to atomic observations. Reducing it to the basic
model seems to require an increase in plan length when no
restrictions on nondeterministic effects are imposed.

We consider the following properties of formalisms for
planning.

1. Compound observations means that the value of a formula
can be observed without necessarily the possibility of ob-
serving the values of its subformulae.

2. By heterogeneous observability we mean that the observ-
ability of some state variables depends on the last action
that has been taken. For example, certain observations are
possible only after special sensing actions.

3. Sensing uncertainty means that an observation gives cor-
rect information only with a certain probability. Uncer-
tainty can be decreased by repeating the observation.



Also, we consider a number of normal forms of opera-
tors. For example, Kushmerick et al. (1995) and Smith and
Weld (1998) restrict to operators with a single nondetermin-
istic choice between deterministic effects. We show that this
is exponentially less succinct than the general form of non-
deterministic effects we consider.1 On the other hand, all
effects can be transformed in polynomial time into a normal
form in which several independent nondeterministic choices
can be done in parallel.

The results of the work can be used in different ways.
First, on theoretical work on planning under uncertainty,
the results justify considering just a basic problem defini-
tion without all the bells and whistles, as the more general
problem definitions can be reduced to the basic definition.
Second, on more practical level, planner implementations
can use the reductions to compile away more advanced fea-
tures of the input language.

The structure of the paper is as follows. We first present
our formal framework which consists of the definition of
problem instances in planning with uncertainty. We dis-
cuss a number of normal forms of nondeterministic opera-
tors. Then we describe two reductions of compound obser-
vations to atomic observations, a reduction for making all
operators have the same observability properties, and finally
a reduction of sensing uncertainty to effect uncertainty. We
conclude the paper by discussing related work and new re-
search directions.

The Formal Framework
In this section we define the type of problem instances and
planning problems we address in this paper. Although we
explicitly consider so-called reachability goals only, the re-
sults also hold for more general types of plan quality criteria,
for example based on rewards. For relations between reach-
ability goals and rewards see work by Condon (1992).

Definition 1 Let A be a set of state variables. Aproblem
instancein planning is〈I, O,G〉 whereI is a formula over
A describing the initial states,G is a formula overA de-
scribing the goal states, andO is a set of operators〈c, e, b〉
wherec is a formula overA describing the precondition,b is
the set of observations〈p, β〉 wherep is success probability
0 < p ≤ 1 and β is a formula overA, ande is an effect.
Effects are recursively defined as follows.

1. a and¬a for state variablesa ∈ A are effects.
2. e1∧· · ·∧en is an effect ife1, . . . , en are effects (the special

case withn = 0 is the empty conjunction>.)
3. c B e is an effect ifc is a formula overA and e is an

effect.
4. p1e1| · · · |pnen is an effect ife1, . . . , en for n ≥ 2 are

effects,pi > 0 for all i ∈ {1, . . . , n} and
∑n

i=1 pi = 1.

If the operator does not containp1e1| · · · |pnen then the
operator is deterministic.

1Here we consider reducing one operator to another. If one op-
erator may be replaced by several and plan length and structure do
not have to be preserved, the exponential size increases discussed
in the connection with the normal forms can be avoided.

The observations are used in the plans that are solutions
to the problem instances. After applying an operator, the
respective observations can be made. Based on the values
of observationsβ, the plan determines the course of actions
to be taken. The probability associated with an observation
indicates how likely is the observation going to be correct.
Observation uncertainty in the POMDP context (Kaelbling
et al. 1998) has been defined as a conditional probability of
how likely a given observation is in a given state.

Without loss of generality we assume that a plan always
starts with an operator application, and we therefore do not
have to specify what is initially observable.

Definition 1 without nondeterminism and observations
corresponds to languages commonly used in describing
planning problems. A main difference is that languages like
PDDL (Ghallabet al. 1998) allow the description of high
numbers of operators by one schematic operator description.
The schematic description contains variables that are instan-
tiated with constants to obtain operators like considered in
the present work. However, almost all planning algorithms
are defined in terms of non-schematic operators, and at this
level Definition 1 describes a language that is relevant for
most of planning research.

We defineaca(e) as the sufficient and necessary condi-
tion for the effecte to change (possibly, taking into account
nondeterminism) the truth-value of the state variablea. For-
mally,

aca(a) = >
aca(¬a) = >
aca(a′) = ⊥ if a 6= a′

aca(¬a′) = ⊥ if a 6= a′

aca(c B e) = c ∧ aca(e)
aca(e1 ∧ · · · ∧ en) = aca(e1) ∨ · · · ∨ aca(en)

aca(p1e1| · · · |pnen) = aca(e1) ∨ · · · ∨ aca(en)

Here⊥ and> are respectively the constants false and true.
A related definition, that will be used later, is the follow-

ing. For a given effecte define a setas(e) of state variables
as follows.

as(a) = {a}
as(¬a) = {a}

as(c B e) = as(e)
as(e1 ∧ · · · ∧ en) = as(e1) ∪ · · · ∪ as(en)

as(p1e1| · · · |pnen) = as(e1) ∪ · · · ∪ as(en)

This is the set of state variables possibly changed by the
effect, or in other words, the set of state variables occur-
ring in the effect not in the antecedentc of a conditional
c B e. 2 We will also use this generalized to sets of effects
asas({e1, . . . , en}) = as(e1) ∪ · · · ∪ as(en).

Allowing the same state variable to be simultaneously
affected by several parts of the effect leads to problems.
Clearly, effectsa and¬a taking place simultaneously is not
well-defined. One could allow the same effecta in two
places, but this leads to technical complications that do not
justify the very small additional generality. From now on we
assume that all operator effects have the following property.

2Notice thatas((a ∧ ¬a) B b) = {b}, that is, there is no guar-
antee that the state variable indeed can be changed by the operator.



Property 2 Let Φ be the strongest invariant of a problem
instanceP = 〈I,O,G〉3. Then the effecte of an oper-
ator 〈c, e, b〉 ∈ O has the following property. Assume a
state variablea ∈ A occurs in two conjunctse′ and e′′

of a conjunctive effectε = e1 ∧ · · · ∧ en occurring in
e. Let c′ be the conjunction of all the antecedentsc′′ of
conditionalsc′′ B f so that ε is a subeffect off . Then
Φ ∪ {c, c′, aca(e′), aca(e′′)} must be inconsistent.

This means that in no state of the problem instance can two
occurrences of a state variable simultaneously contribute in
the determination of the successor state. Testing the satis-
faction of Property 2 is PSPACE-hard4, but there are simple
sufficient syntactic conditions that can be easily tested and
that guarantee its fulfillment. Further, the property can often
easily be satisfied by applying equivalences from Table 1.

Next we give a formal semantics for the application of an
operator. Each operator assigns a probability distribution to
the set of successor states of a state.

Definition 3 (Operator application) Let 〈c, e, b〉 be an op-
erator overA. Lets be a state, that is an assignment of truth
values toA. The operator is applicable ins if s |= c.

Recursively assign each effecte a set[e]s of pairs 〈p, l〉
wherep is a probability0 < p ≤ 1 andl is a set of literalsa
and¬a for a ∈ A.

1. [a]s = {〈1.0, {a}〉} and [¬a]s = {〈1.0, {¬a}〉} for a ∈
A.

2. [e1 ∧ · · · ∧ en]s = {〈Πn
i=1pi,

⋃n
i=1 fi〉|〈p1, f1〉 ∈

[e1]s, . . . , 〈pn, fn〉 ∈ [en]s}.
3. [c′ B e]s = [e]s if s |= c′ and [c′ B e]s = {〈1.0, ∅〉}

otherwise.
4. [p1e1| · · · |pnen]s = {〈p1 · p, e〉|〈p, e〉 ∈ [e1]s} ∪ · · · ∪
{〈pn · p, e〉|〈p, e〉 ∈ [en]s}

Above in (4) the union of sets is defined so that for example
{〈0.2, {a}〉} ∪ {〈0.2, {a}〉} = {〈0.4, {a}〉}: same sets of
changes are combined by summing their probabilities.

The successor states ofs under the operator are ones that
are obtained froms by making the literals inf for 〈p, f〉 ∈
[e]s true and retaining the truth-values of state variables not
occurring in f . The probability of a successor state is the
sum of the probabilitiesp for 〈p, f〉 ∈ [e]s that lead to it.

Each〈p, f〉 means that with probabilityp the literals that
become true are those inf , and hence indicate the prob-
abilities of the possible successor states ofs. For any
[e]s = {〈p1, f1〉, . . . , 〈pn, fn〉} the sum of probabilities is∑n

i=1 pi = 1.0.

Example 4 Consider the operator〈a, (0.1¬a|0.9¬b) ∧
¬c, ∅〉 and a states with a, b and c true. Now [e]s =

3This means that for all valuationss of state variables inA,
s |= Φ if and only if s can be reached fromI with a sequence of
operators fromO.

4This is because testing whether the strongest invariant is con-
sistent with a formula (even with an atomic formula) is PSPACE-
hard. This problem is equivalent to the plan existence problem of
deterministic full-information (classical) planning.
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Figure 1: Hierarchy of planning problems with partial ob-
servability as a Hasse diagram.

{〈0.1, {¬a,¬c}〉, 〈0.9, {¬b,¬c}〉}, and the successor states
respectively satisfy{¬a, b,¬c} and{a,¬b,¬c}. �

Properties of Observability and Sensing
The three advanced properties of sensing considered in this
work are formalized as follows.

Definition 5 A problem instancein planning〈I, O,G〉 has
the properties C, H, U respectively under the following con-
ditions.

• A problem instance hascompound observations(which
we denote by C) if there is operator〈c, e, b〉 ∈ O with
〈p, β〉 ∈ b andβ 6∈ A, that is, one of the possible obser-
vations is not an atomic proposition.

• A problem instance hasheterogeneous observations
(which we denote by H) if there are operators〈c, e, b〉 ∈ O
and〈c′, e′, b′〉 ∈ O so thatb 6= b′.

• A problem instance hassensing uncertainty(which we de-
note by U) if there is operator〈c, e, b〉 ∈ O with 〈p, β〉 ∈ b
such thatp < 1.0.

The eight combinations of these properties are depicted
in Figure 1. We will call those problem instancesbasicthat
have none of the properties C, H or U. In the second part
of the paper we reduce problem instances CHU first to HU,
then further to H and finally to basic instances.

Normal Forms for Effects
We introduce three normal forms for effects. These normal
forms are either used for establishing the results on reduc-
tions between classes of problem instances, or they are in-
teresting on their own right. In earlier work on algorithms
for planning with uncertainty, different syntactic restrictions
have been used. We show how some of the restrictions lead
to an exponential blow-up in the size of operators.

Table 1 lists a number of equivalences on effects. Their
proofs of correctness with Definition 3 are straightforward.
An effecte is equivalent to> ∧ e, and nondeterministic ef-
fects and conjunctions of effects can be arbitrarily reordered
while preserving equivalence. These trivial equivalences
will later be used without explicitly mentioning them, for
example in the definitions of the normal forms and when ap-
plying Equivalences 7, 8 and 9.



c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c B (c′ B e) ≡ (c ∧ c′) B e (2)

c B (p1e1| · · · |pnen) ≡ p1(c B e1)| · · · |pn(c B en) (3)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (4)

e ∧ (c B e) ≡ e (5)

e ≡ > B e (6)

e ∧ (p1e1| · · · |pnen) ≡ p1(e ∧ e1)| · · · |pn(e ∧ en) (7)

p1(p′1e
′
1| · · · |p′n′e′n′)|p2e2| · · · |pnen ≡ (p1p

′
1)e

′
1| · · · |(p1p

′
n′)e′n′ |p2e2| · · · |pnen (8)

p1(e′ ∧ (c B e1))|p2e2| · · · |pnen ≡ (c B (p1(e′ ∧ e1)|p2e2| · · · |pnen)) ∧ (¬c B (p1e
′|p2e2| · · · |pnen)) (9)

Table 1: Equivalences on effects

Example 6 An example of an effect with nesting of condi-
tionality and nondeterminism in different ways and indepen-
dent nondeterministic effects is the following.

(a B (0.3b|0.7(c ∧ f))) ∧ (0.2(d ∧ e)|0.8(b B e))

We use this effect for demonstrating the normal forms in
Examples 8, 11 and 15. �

Next we define the normal forms.

Unary Conditionality (UC) Normal Form
The first normal form corresponds to moving the condition-
als inside so that their consequents are atomic effects. This
normal form is very useful in some of the reductions we will
give later. This transformation causes only a polynomial in-
crease in the size of the effect.

Definition 7 A effecte is in unary conditionality (UC)nor-
mal form if for all c′ B e′ in e the effecte′ is eithera or ¬a
for somea ∈ A.

Example 8 The effect from Example 6 transformed into
UC normal form is the following.

(0.3(a B b)|0.7((a B c)∧(a B f))∧(0.2(d∧e)|0.8(b B e))

�

Theorem 9 For every effect there is an equivalent one in
UC normal form. There is one that has a size that is polyno-
mial in the size of the effect.

Proof: By using Equivalences 1, 2 and 3 in Table 1 we can
transform any effect into UC normal form. Applying each
equivalence by replacing an instance of the left-hand-side by
the right-hand-side reduces the number of occurrences of∧,
B and| afterB. When the number is down to zero, the effect
is in UC normal form.

In this transformation the conditionsc in c B e are copied
in front of the atomic effects. Letm be the sum of the sizes
of all the conditionsc, and letn be the number of occur-
rences of atomic effectsa and¬a in the effect. An upper
bound on size increase isO(nm), which is polynomial. �

The main application of the UC normal form is the def-
inition of regression, that is, the computation of a formula
that represents the possible predecessor states of a given set
of states before applying a given operator. If atomic effect
a occurs in conjunctsc B a andd B ¬a of a deterministic
effect in UC normal form, thenc ∨ (a ∧ ¬d) is true before
applying the operator if and only ifa is true after applying
the operator.

Conditionality (CO) Normal Form
In the UC normal form conditionality is inside nondetermin-
ism. It is also possible to move conditionality outside non-
determinism.

Definition 10 An effecte is in conditionality (CO)normal
form if e does not contain5 p1(e1 ∧ (c B e′))| · · · |pnen.

Example 11 The effect from Example 6 transformed into
CO normal form is the following.

(a B (0.3b|0.7(c ∧ f))) ∧ (b B (0.2(d ∧ e)|0.8e))
∧(¬b B (0.2(d ∧ e)|0.8>))

�

Theorem 12 For every effect there is an equivalent one in
CO normal form.

Proof: By applications of Equivalence 9. �

However, contrary to the UC normal form, transformation
into CO normal form may increase size exponentially. This
reduces the usefulness of this normal form for planner input
languages.

Example 13 Consider the effect12n (a1 B ¬a1)| 1
2n (¬a1 B

a1)| · · · | 1
2n (an B ¬an)| 1

2n (¬an B an). When the condi-
tional choices have to be done first,2n different valuations
of a1, . . . , an have to be considered, and for each a variable
to be reversed is chosen nondeterministically. Because the
variable to be reversed is not known when making the con-
ditional choices first, every valuation ofa1, . . . , an has to be
considered separately. The size of the effect is proportional
to the number of valuations2n. �

5Heree1 may be>, that is, it may be missing.



Unary Nondeterminism (1ND) Normal Form
Finally, some previous works on planning with nondeter-
minism, notably Kushmerick et al. (1995) and Smith and
Weld (1998), restrict to operator effects with a single non-
deterministic choice between deterministic effects. This is
strictly more restrictive than the UC normal form.

Definition 14 An effect〈c, e, b〉 is in unary nondetermin-
ism (1ND) normal form ife is deterministic or of the form
p1e1| · · · |pnen and everyei is deterministic.

Example 15 The effect from Example 6 transformed into
1ND normal form is the following.

(0.06((a B b) ∧ d ∧ e) | 0.24((a B b) ∧ (b B e))
| 0.14((a B (c ∧ f)) ∧ d ∧ e)
| 0.56((a B (c ∧ f)) ∧ (b B e)))

�

Theorem 16 For every effect there is an equivalent one in
1ND normal form.

Proof: By first translating into UC normal form and then
applying Equivalences 7 and 8. �

Like in the CO normal form, the size of the effect might
increase exponentially, and therefore one should not expect
to be able to efficiently transform all nondeterministic ef-
fects into this normal form.

Example 17 Consider the effecte = (0.5a1|0.5¬a1)∧· · ·∧
(0.5an|0.5¬an). An operator〈c, e, b〉 produces2n succes-
sor states for any state. A single nondeterministic choice
producing the same successor states must have2n alterna-
tives. �

Notice that exponential size increase can be avoided in
transformation into normal forms like 1ND if plan structure
does not have to be preserved. A conjunction like that in
Example 17 could be split ton operators the application of
which is enforced to take place sequentially, in each case
making a nondeterministic choice between two alternatives.

Definition of Plans
In this section we give a basic definition of conditional plans.
We will not extensively use this definition and it is only su-
perficially referred to in some of the proofs in the following
sections, and other reasonable definitions of plans could be
used just as well.

Plans are directed graphs with nodes of degree 1 labeled
with operators and edges from nodes of degree≥ 2 labeled
with formulae.

Definition 18 Let 〈I,O,G〉 be a problem instance in plan-
ning. A plan is a triple〈N, r, l〉 where

• N is a finite set of nodes,
• r ∈ N is the initial node,

• l : N → (O×N)∪ 2L×N is a function that assigns each
node an operator and a successor node〈o, n〉 ∈ O × N
or a set of conditions and successor nodes〈φ, n〉.
The formulaeφ are Boolean combinations of formulaeβ
such that〈p, β〉 is an observation for every operator that
may be the last one applied before reaching the branch
node.

The definition of plan execution should be intuitively
clear. When a successor node of a branch node is chosen,
the result is undefined if more than one condition is true.

Solutions to problem instances〈I,O,G〉 are evaluated in
terms of their probability of reaching a state inG when start-
ing from a state inI.

Reduction of Compound Observations to
Atomic Observations

In the rest of the work we reduce more complex forms of
sensing to more basic ones. We start by eliminating com-
pound observations. A compound observation means ob-
serving the truth-value of a formula without (necessarily)
being able to observe the truth-values of its subformulae.
We show how compound observations can be reduced to
atomic observations, that is, observations of state variables
only. These reductions are based on modifying the operators
so that values of compound observations are copied to state
variables that are observable.

We give two reductions.
The first reduction preserves the size and the structure of

plans but it is restricted to the case in which two state vari-
ables occurring in the same compound observation may not
be affected by two nondeterministic effects that occur inde-
pendently. This restriction is imposed to have a polynomial-
size reduction.

Condition 19 For no two state variablesa ∈ A anda′ ∈ A
occurring in a compound observationβ does the operator
effect containe1 ∧ · · · ∧ en with occurrences ofp′e′| · · · and
p′′e′′| · · · respectively in conjunctsei andej , i 6= j such that
a occurs inei anda′ occurs inej .

This condition is trivially fulfilled by deterministic oper-
ators and by operators in 1ND normal form, and we believe
that also almost all planning problems occurring in practice
fulfill it.

The next example suggests that operators that do not sat-
isfy this condition might be difficult to handle within one
operator.

Example 20 Consider the effect(0.5a1|0.5¬a1) ∧ · · · ∧
(0.5an|0.5¬an) and an observationβ in which all of
a1, . . . , an occur. Evaluating the new value ofβ may require
knowing all of then nondeterministic outcomes, and this
seems possible only if this evaluation is performed within
one nondeterministic effect that determines values of all
a1, . . . , an (this requires the exponential blow-up in the size
of the effect) or within another operator that is applied after
the operator in question. �



The second reduction works for all operators but requires
auxiliary operators for evaluating the compound observa-
tions and copying their values into observable state vari-
ables, one for for every operator.

Both reductions are computable in polynomial time. The
first does not affect plan length, and the second increases
plan length by a factor of 2.

First Reduction
Let P = 〈I,O,G〉 be a problem instance. We define
C1(P ) = 〈I,O′, G〉 whereO′ is defined by replacing ev-
ery operator inO with a modified one.

LetΘ = {β1, . . . , βn} be the formulas in the observations
in the operators of the problem instance. We introduce new
auxiliary state variablesAΘ = {aβ1 , . . . , aβn

}.
We first transform the operators into UC normal form,

then apply Equivalence 7 to not have conjunctions of both
deterministic and nondeterministic effects, and further apply
Equivalences 4 and 6 so that all conjuncts of conjunctions of
deterministic effects are conditionalsc B l and each such
conjunction contains at most onec B a and at most one
c′ B ¬a for any a ∈ A. Then we replace〈c, e, b〉 by
〈c, fd(e), {〈p, aβ〉|〈p, β〉 ∈ b}〉 where

fd(p1e1| · · · |pkek) = p1fd(e1)| · · · |pkfd(ek)
fd(e1 ∧ · · · ∧ ek) = fd(e1) ∧ · · · ∧ fd(ek)

if ei are nondeterministic
fd(e1 ∧ · · · ∧ ek) = e1 ∧ · · · ∧ ek ∧ f({e1, . . . , ek})

otherwise

Here f(S) copies the values of the old compound observa-
tions to the new observable state variables. Condition 19 is
essential: it guarantees that on any application of the opera-
tor, if the value of a compound observation is changed byS,
it is not changed by any other part of the operator effect.

f(S) =
∧
{fβ(S)|β ∈ Θ, a ∈ as(S), a occurs inβ}

fβ(S) = (β[φa1/a1, . . . , φam
/am] B aβ)∧

(¬β[φa1/a1, . . . , φam/am] B ¬aβ)

Hereφa is the regressed value ofa ∈ A = {a1, . . . , am},
that is, a formula whose value in the predecessor state equals
the value ofa in the successor state. It is defined as follows.

If a is not the consequent of any conjunct ofS, add⊥ B a
to S. If ¬a is not the consequent of any conjunct ofS, add
⊥ B ¬a to S. Hence there is exactly one conjunctz B a
and exactly one conjunctz′ B ¬a in S. Now we define

φa = (a ∧ ¬z′) ∨ z.

The formula(a∧¬z′)∨ z says that eithera was true before
and did not become false, or it became true, and hence it
expresses the value ofa after applying the operator in terms
of its value before applying the operator.

In summary, we modify the effects to copy the new values
of the compound observations into the new observable state
variablesaβ .

Example 21 Consider the effect

(0.5(a ∧ (g B b))|0.5(g B a)) ∧ c

and the observationsβ1 = a∧b∧e andβ2 = c∧¬d. The de-
terministic conjunctc is moved inside the nondeterministic
choice by using Equivalence 7.

0.5(a ∧ (g B b) ∧ c)|0.5((g B a) ∧ c)

Considera∧ (g B b)∧ c. Nowφa = (a∧¬⊥)∨> ≡ >,
φb = (b ∧ ¬⊥) ∨ g ≡ b ∨ g, andφc = (b ∧ ¬⊥) ∨ > ≡ >.
The regressed value ofβ1 is therefore> ∧ (b ∨ g) ∧ e, and
the regressed value ofβ2 is> ∧ ¬d.

Consider(g B a) ∧ c. Now φa = (a ∧ ¬⊥) ∨ g ≡ a ∨ g,
φb = (b∧¬⊥)∨⊥ ≡ b, andφc = (c∧¬⊥)∨> ≡ >. The
regressed value ofβ1 is therefore(a ∨ g) ∧ b ∧ e, and the
regressed value ofβ2 is> ∧ ¬d. Finally, the new effect is

0.5 (a ∧ (g B b) ∧ c
∧(((b ∨ g) ∧ e) B pβ1) ∧ (¬d B pβ2))

|0.5 ((g B a) ∧ c
∧(((a ∨ g) ∧ b ∧ e) B pβ1) ∧ (¬d B pβ2))

�

Theorem 22 LetP = 〈I,O,G〉 be a problem instance that
satisfies Condition 19. ThenP has a solution plan of length
n if and only ifC1(P ) has.

Proof: We only give a brief proof sketch.
Plans forP andC1(P ) can be mapped to each other sim-

ply by interchanging the operators with their counterparts in
P andC1(P ). This is because the differences in the oper-
ators involve the new auxiliary state variables only. These
are referred to in the observations the plans use, and do not
affect the applicability or other effects of the operators.

That observing β can be replaced by observ-
ing pβ is because under Condition 19, the formula
β[φa1/a1, . . . , φam

/am] in the definition offβ(S) always
has the same truth-value asβ in the next time point,
assuming that those nondeterministic choices are made that
lead that subeffect to take place.

Condition 19 guarantees that the new truth-value ofβ is
affected only by one maximal deterministic subeffect of the
operator’s effect. �

Second Reduction
This reduction works for all problem instances and is sim-
pler but doubles the length of operator sequences. Plan
length increase may substantially decrease the efficiency of
some types of algorithms.

Let P = 〈I,O,G〉 be a problem instance. Letβ1, . . . , βn

be the formulas in the observations in the operators inO.
We introduce new auxiliary state variablesaβ1 , . . . , aβn , z,
andzi for everyi ∈ {1, . . . ,m} wherem is the number of
operators inO. State variableaβ will have the same value as
the respective observationβ. The state variableszi control
the application of operators that evaluate the values of com-
pound observations. NowC2(P ) = 〈I ∧ z ∧ ¬z1 ∧ · · · ∧
¬zm, O′, G〉 whereO′ consists of

〈z ∧ c,¬z ∧ zi ∧ e, ∅〉

〈zi, z ∧ ¬zi ∧ ν, {〈p, aβ〉|〈p, β〉 ∈ b}〉



for every operator〈c, e, b〉 ∈ O (operator’s index isi). The
first operator replaces the old operator and the second eval-
uates the observations.

The effectν evaluates the observationsβ that are possible
after applying〈c, e, b〉 and assigns the values to the corre-
sponding state variablesaβ :

ν =
∧
{(β B aβ) ∧ (¬β B ¬aβ)|〈p, β〉 ∈ b}

The state variablez indicates that any operator can be ap-
plied, zi indicates that operatori has been applied and the
corresponding observations are to be evaluated.

Example 23 Below we have a simple problem instance
with compound observations and its translation to a prob-
lem instance with atomic observations only.

P = 〈a, {〈a, b B c, {〈0.5, a ∨ b〉}〉}, c〉
C2(P ) = 〈a ∧ z ∧ ¬z1,

{〈z ∧ a,¬z ∧ z1 ∧ (b B c), ∅〉,
〈z1, z ∧ ¬z1 ∧ ((a ∨ b) B aa∨b)

∧(¬(a ∨ b) B ¬aa∨b),
{〈0.5, aa∨b〉}〉},

c〉
�

Theorem 24 Let P be a problem instance. ThenP has a
solution plan if and only ifC2(P ) has, and for every plan
for P of lengthn, there is a plan forC2(P ) of length2n.

Proof: We only give a brief proof sketch.
The reduction guarantees that the value ofaβ coincides

with the value ofβ after an operator with observationβ has
been applied.

Translations from plans forP to plans forC2(P ) and vice
versa do not require changing the structure of the plans, only
one operator is interchanged with a sequence of two opera-
tors, or vice versa.

Plans forP can be translated into plans forC2(P ) simply
by replacing observations ofβ by observations ofaβ and re-
placing every operator with the corresponding two new op-
erators.

Plans forC2(P ) can be transformed into plans forP by
replacing observationsaβ by β and making the converse re-
placement of operators. The two operator inC2(P ) obtained
from one operator inP always appear together, and plans
cannot branch between them because the first operator does
not have anything observable. �

Despite the increase in plan length, we believe that in
many cases the reduction would be almost as practical as the
first one. First, many types of algorithms do not suffer from
the plan size increase because the new pairs of operators that
double plan length always have to be applied together, and
therefore no increase in the size of the search space would
follow for example in algorithms that construct plans in a
strict forward or backward direction. Second, the operators
evaluating observations could be restricted to cases in which
a problematic compound observation might have been af-
fected, and non-problematic observations could be handled
like in the reductionC1.

Reduction of Sensing Uncertainty to Effect
Uncertainty

The POMDP model of probabilistic planning is often de-
fined to allow sensing uncertainty (Kaelblinget al. 1998)
so that making an observation in a given state can have any
probability between 0 and 1. Sensing uncertainty may for
example be caused by imperfections in sensors. In this sec-
tion we show how sensing uncertainty can be reduced to
nondeterminism in action effects. So, in the presence of
nondeterminism no additional expressivity is obtained by in-
cluding sensing uncertainty to the input language.

The reduction uses nondeterministic effects to copy sense
data into observable state variables. The observations are
reliable but copying introduces uncertainty about sense data.

We assume that all observations inP are atomic, as jus-
tified by the reductions in the previous section, and that the
effects are in UC normal form.

Let P = 〈I,O,G〉 be a problem instance. We define
U(P ) = 〈I,O′, G〉 where

O′ = {〈c, e′ ∧ f(b), {〈1, a′〉|〈p, a〉 ∈ b}〉|〈c, e, b〉 ∈ O} .

Herea′ for every observablea ∈ A is a new state variable to
which we copy the current value ofa. Copying takes place
correctly with probabilityp and incorrectly with probability
1− p.

Next we definef ande′. The functionf handles observa-
tions that are not changed bye, and the rest of the observa-
tions are handled ine′.

Let N = {a1, . . . , an} be the state variables that are ob-
servable with some of the operators. LetB = {a′1, . . . , a′n}.
Define

rnd1(a) = a
rnd1(¬a) = ¬a

rndp(a) = pa|(1− p)¬a
rndp(¬a) = p¬a|(1− p)a

for state variablesa ∈ A and real numbersp, 0 < p < 1.
Hencerndp(l) sets literall true by probabilityp and false by
probability1− p.

Now the old observable state variablesa ∈ A that are
not affected by the operator are simply copied to the new
observable state variablesa′ ∈ B. We definef(b) as the
conjunction of(a B rndp(a′)) ∧ (¬a B rndp(¬a′)) for all
〈p, a〉 ∈ b such thata 6∈ as(e).

The rest of this section describes how those observable
state variables that may be affected by the operator are han-
dled ine′. The difficulty is that a state variable may occur in
several conjuncts in the effect, but copying may take place
in only one to avoid violating Property 2.

Clearly, copying whenever the state variable changes is
not a problem because change may take place in only part of
an effect at a time. The problem is to decide where to copy
when none of the possible changes, for example by effects
c B a, takes place. There could be several places in the
effect where a state variable potentially changes.

The solution to this difficulty is as follows. For every
conjunctione1 ∧ · · · ∧ en we perform copying in the no-
change case only ine1. When change takes place, copying
is done wherever the state variable changes. In the following



we parenthesize all conjunctionse1 ∧ e2 ∧ e3 ∧ · · · ∧ en to
e1 ∧ (e2 ∧ (e3 ∧ · · · ∧ en)).

We definee′ = r{〈>,a〉|a∈as(e),〈p,a〉∈b}(e) whererQ(e) is
recursively defined below. The setQ consists of elements
〈c, a〉 that describe the conditionsc under which the state
variablea is copied toa′.

rQ(e1) = e1 ∧
∧
〈c,a〉∈Q cpe1,c(a)

if e1 is deterministic
rQ(e1 ∧ e2) = r{〈c∧¬aca(e2),a〉|〈c,a〉∈Q}(e1)∧

rq∪q′(e2)
whereq = {〈c, a〉 ∈ Q|a ∈ as(e2)\as(e1)}

andq′ = {〈⊥, a〉|a ∈ as(e2) ∩ as(e1)}
rQ(p1e1| · · · |pnen) = p1rQ(e1)| · · · |pnrQ(en)

In the first case, whene1 is deterministic, the effecte1 is
extended with copying the state variablesa mentioned inQ.
The second case is the conjunction, the definition of which is
slightly complicated because of the need to avoid violating
Property 2. Anya may be copied in only one conjunct. If
a variable is shared bye1 ande2, then it is copied ine1 if
it cannot change ine2 (also when it does not change ine1),
and it is copied ine2 exactly when it can change in it. In the
third case, nondeterministic choice, the same state variables
– as indicated byQ – are copied in every alternative although
different state variables may change in them.

Copying of observable state variablesa in cpe,c(a) has
several cases because the value that is copied toa′ depends
on how the value ofa is changed bye.

cpe,c(a) = (pce(a) B rndp(a′))∧
(pce(¬a) B rndp(¬a′))∧
((a ∧ c ∧ ¬pce(¬a) ∧ ¬pce(a)) B rndp(a′))∧
((¬a ∧ c ∧ ¬pce(¬a) ∧ ¬pce(a)) B rndp(¬a′))
if 〈p, a〉 ∈ b

pce(l) =

{ > if e has conjunctl
c if e has conjunctc B l
⊥ otherwise

Meanings of the above notations are summarized as follows.

rQ(e) Effecte modified to copy the values of state variables
a ∈ A to the observable state variablesa′ ∈ B.

cpe,c(a) Copying the value of one observable state variable
a ∈ A to a′. A prerequisite for copying is that the variable
cannot be affected anywhere outsidee (the conditionc).
The four conjuncts describe the four possible cases:a be-
comes true,a becomes false,a does not change and was
true, anda does not change and was false. The prerequi-
sitec is needed in the no-change cases to guarantee thata′

is indeed changed only in one part of an operator effect,
thus satisfying Property 2.

pce(l) Condition for literall becoming true ine.

Now, whenever one of the old observable state variables
a with 〈p, a〉 ∈ b is changed, its value is copied to the new
observable variablea′ with probability p and negated with
probability1 − p. If the state variable does not change, the
old value is copied similarly, and this copying takes place in
only one part of the effect to preserve Property 2.

Example 25 Consider the following operator.

o = 〈>, (0.5(φ B a)|0.5b) ∧ (0.5(θ B a)|0.5c),
{〈0.9, a〉, 〈0.8, b〉, 〈0.8, c〉}〉

Now we derive the new operatoro′ corresponding too as
follows. We do not spell out the new effect completely be-
cause even in a simple case like this it would look rather
complicated.

Q = {〈>, a〉, 〈>, b〉, 〈>, c〉}
Q′ = {〈> ∧ ¬θ, a〉, 〈> ∧ ¬⊥, b〉, 〈> ∧ ¬>, c〉}
Q′′ = {〈⊥, a〉, 〈>, c〉}
o′ = 〈>, rQ((0.5(φ B a)|0.5b)∧

(0.5(θ B a)|0.5c)),
{〈1, a′〉, 〈1, b′〉, 〈1, c′〉}〉

= 〈>, rQ′(0.5(φ B a)|0.5b)∧
rQ′′(0.5(θ B a)|0.5c),

{〈1, a′〉, 〈1, b′〉, 〈1, b′〉}〉
= 〈>, (0.5rQ′(φ B a)|0.5rQ′(b))∧

(0.5rQ′′(θ B a)|0.5rQ′′(c)),
{〈1, a′〉, 〈1, b′〉, 〈1, b′〉}〉

Here for examplerQ′(φ B a) yields the following.

rQ′(φ B a) = (φ B a) ∧ cpφBa,>∧¬θ(a)
∧cpφBa,>∧¬⊥(b) ∧ cpφBa,>∧¬>(c)

≡ (φ B a) ∧ cpφBa,¬θ(a)
∧cpφBa,>(b) ∧ cpφBa,⊥(c)

≡ (φ B a)∧
(φ B rnd0.9(a′))∧
(⊥ B rnd0.9(¬a′))∧
((a ∧ ¬θ ∧ ¬⊥ ∧ ¬φ) B rnd0.9(a′))∧
((¬a ∧ ¬θ ∧ ¬⊥ ∧ ¬φ) B rnd0.9(¬a′))
∧cpφBa,>(b) ∧ cpφBa,⊥(c)

≡ (φ B a)∧
(φ B (0.9a′|0.1¬a′))∧
((a ∧ ¬θ ∧ ¬φ) B (0.9a′|0.1¬a′))∧
((¬a ∧ ¬θ ∧ ¬φ) B (0.9¬a′|0.1a′))
∧cpφBa,>(b) ∧ cpφBa,⊥(c)

The effects obtained fromcpφBa,>∧¬θ(a) illustrate the main
technical difficulty in the reduction.

(φ B (0.9a′|0.1¬a′))∧
((a ∧ ¬θ ∧ ¬φ) B (0.9a′|0.1¬a′))∧
((¬a ∧ ¬θ ∧ ¬φ) B (0.9¬a′|0.1a′))

They show when the observable state variablea′ gets a new
value in the first alternative of the first nondeterministic
choice in the effect. This is whenφ is true anda becomes
true, or whenφ is false anda cannot be affected by the sec-
ond nondeterministic choice in the operator effect becauseθ
is false. �

Theorem 26 Let P = 〈I,O,G〉 be a problem instance.
ThenP has a plan if and only ifU(P ) has.

Proof: We only give a proof sketch.
The proof is based on lemmata that show that after ap-

plying an operator that makesa observable with probability
p, the truth-value ofa is assigned toa′ with probability p



and otherwise the opposite truth-value is assigned toa′ with
probability1− p.

Mappings of plans forP to U(P ) and back are modular:
each operator is replaced by its counterpart. Plan structure
is preserved because sets of observable state variables stay
the same modulo replacement ofa by a′ or vice versa. �

Reduction of Heterogeneous Observability to
Homogeneous Observability

In this section we show how dependency of observations on
the last action taken, that is special sensing actions, is not
necessary, and how such problem instances can be reduced
to the basic case in which observability is the same at all
points of time.

Let P = 〈I,O,G〉 be a problem instance in planning.
We assume that all the observations inP are atomic and
have probability 1, which is justified by the reductions in
the previous sections. Let{a1, . . . , an} ⊆ A be those state
variables that are observable with some of the operators in
O. We introduce the setB = {a′1, . . . , a′n} of new state
variables. Define a mappingH from P to

H(P ) = 〈I ∧
n∧

i=1

(ai ↔ a′i), O
′, G〉

so thatH(P ) has homogeneous observability. The setO′ is
obtained fromO by modifying the operators to copy values
of old observable state variablesa into a′ if a was originally
observable after applying the operator in question. The op-
erator might also changea and then copying also has to take
place. Let

O′ = {〈c, e′ ∧ f(b), {〈1, a′〉|a′ ∈ B}〉|〈c, e, b〉 ∈ O}

where

f(b) =
∧
〈1,a〉∈b,a6∈as(e)(a B a′) ∧ (¬a B ¬a′).

We assume that all the operators are in UC normal form
and Equivalences 4, 5 have been applied so that no conjunct
has more than one occurrence of atomic effecta and¬a for
anya ∈ A.

Similarly to handling observation uncertainty with non-
deterministic copying in the previous section, also here
we have the problem of satisfying Property 2 when copy-
ing the value ofa to a′ when a does not change. We
use the same construct already used in the previous sec-
tion. The only difference is the functioncpe,c(a) which
does not randomize when copying froma to a′. Define
e′ = r{〈>,a〉,a∈as(e),〈1,p〉∈b}(e) whererQ(e) is defined as
follows.

rQ(e1) = e1 ∧
∧
〈c,a〉∈Q cpe1,c(a)

if e1 is deterministic
rQ(e1 ∧ e2) = r{〈c∧¬aca(e2),a〉|〈c,a〉∈Q}(e1)∧

rq∪q′(e2)
whereq = {〈c, a〉 ∈ Q|a ∈ as(e2)\as(e1)}

andq′ = {〈⊥, a〉|a ∈ as(e2) ∩ as(e1)}
rQ(p1e1| · · · |pnen) = p1rQ(e1)| · · · |pnrQ(en)

cpe,c(a) = (pce(a) B a′)∧
(pce(¬a) B ¬a′)∧
((a ∧ c ∧ ¬pce(¬a) ∧ ¬pce(a)) B a′)∧
((¬a ∧ c ∧ ¬pce(¬a) ∧ ¬pce(a)) B ¬a′)

pce(l) =

{ > if e has conjunctl
c if e has conjunctc B l
⊥ otherwise

Theorem 27 Let P = 〈I,O,G〉 be a problem instance.
ThenP has a plan if and only ifH(P ) has.

Proof: We only give a proof sketch.
Plans ofP can be transformed to plans ofH(P ) simply

by replacing the operators by their counterparts inH(P ) and
by replacing observationsa by a′.

The transformation from plans ofH(P ) to P is similar,
but there is the possibility that certain observationa′ is used
later than when the copying froma into a′ last took place,
that is, at a point of a plan whicha is not observable in
P . However, in those cases we can transform the plan by
moving branching earlier to obtain a valid plan forP . We
sketch a small example to illustrate the transformation. Let
the plan consist of operator applicationso1 ando2 followed
by branching ona′1 (corresponding to the observable vari-
able a1 in P ). The problem might be that originallya1

was not observable after the operator corresponding too2,
but only aftero1. The transformation involves moving the
branch earlier: applyo1, branch on the value ofa′1, in both
branches first applyo2 and then continue with the subplans
that originally followed the branch. �

Note that this reduction could be easily combined with
the one for reducing sensing uncertainty to nondeterminism:
simply have the setB observable for every operator in the
reduction in the previous section.

Related Work
Littman (1997) and Boutilier et al. (1999) show the equiv-
alence of different types of representations of nondetermin-
istic actions. In this paper we have used only one defini-
tion of nondeterministic operators that is syntactically less
restricted than the definition of probabilistic STRIPS oper-
ators used by Boutilier et al. and by Littman. These def-
initions of operators are equally expressive when allowing
reductions in which one operator may be replaced with sev-
eral and in which plan length and structure do not have to
be preserved. Neither Littman nor Boutilier et al. address
planning with sensing and partial observability.

Expressivity of different formalisms for deterministic
planning has earlier been investigated by Bäckstr̈om (1995)
and Nebel (2000). The topics of interest in classical plan-
ning have been the form of preconditions (positive literals
only, conjunctions of literals only, DNF, CNF, arbitrary for-
mulae) and conditional effects. In contrast, in this work we
consider extended formalisms with the possibility to express
nondeterminism and observability.



The reductions presented in this work can be defined as
Nebel’s (2000) compilation schemes, and, with the excep-
tion of the more general reduction for compound observa-
tions which doubles the length of operator sequences, also
in the ESP reductions framework of Bäckstr̈om (1995). Of
course, both of these works restrict to deterministic full in-
formation planning (classical planning), so the embeddabil-
ity we allude to here requires generalizations of ESP reduc-
tions and compilation schemes to conditional plans. Such
generalizations are straightforward.

Conclusions
We have presented three normal forms for plan operators
with conditional effects and nondeterminism, shown how ar-
bitrary effects can be transformed into these normal forms,
and discussed the size increase of these transformations.

We have also shown how three advanced features of plan-
ning with partial observability, compound observations and
sensing uncertainty and heterogeneous observability, can be
reduced to observability of the same set of atomic state vari-
ables at all time points. Thus no additional expressivity or
complexity is obtained by these advanced features.

All the reductions are modular, that is, they involve re-
placing one operator by another one with a closely related
behavior, or in some cases by two operators that must be
used together. The modularity goes so far that the structures
of the plans for the original problem instance and the ones
produced by the translation are the same.

The only difficulties in the reductions are caused by con-
junctions of nondeterministic effects: inside one operator,
there is no way of expressing anything about the com-
bined results of mutually independent nondeterministic ef-
fects (without the exponential size reduction of the indepen-
dent effects to one nondeterministic effect.) At the level of
the language for describing the operators all these problems
could easily be resolved by allowing a two (orn) phase def-
inition of operator effects, that is, sequential composition of
effects. Extending planner input languages with sequential
composition might therefore be beneficial.
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