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Abstract

We present algorithms for partially observable planning that
iteratively compute belief states with an increasing distance
to the goal states. The algorithms handle nondeterministic
operators, but restrict to problem instances with a finite upper
bound on execution length, that is plans without loops. We
discuss an implementation of the algorithms which uses bi-
nary decision diagrams for representing belief states. It turns
out that generation of new belief states from existing ones,
corresponding to the use of conditional branches in the plans,
can very naturally be represented as standard operations on
binary decision diagrams. We also give a preliminary experi-
mental evaluation of the algorithms.

Introduction
For solving planning problems in which the exact sequence

of states encountered during plan execution cannot be pre-

dicted, for example because of nondeterminism, it is neces-
sary to produce plans that apply different actions depending

We present two new algorithms for partially observable
planning that use backward search in the belief space, pro-
ducing belief states with an increasing distance to the goal
states, each corresponding to a plan with which the goals can
be reached from the belief state in question. The backward
steps in the construction correspond to operator applications
(the maximal possible predecessor belief state for reaching
a given belief state with an operator) and branching (belief
states obtained as combination of a number of belief states
that can be observationally distinguished from each other.)

An effective implementation of the algorithms is obtained
by using BDDs for representing the belief states. The size of
a BDD often does not grow proportionally to the number of
states in the belief state that is represented. Also, the back-
ward steps corresponding to branching allow a very effec-
tive handling of large number of potential ways of branching
as simple BDD operations, sometimes leading to big reduc-
tions in the amount of work needed.

In two special cases, planning with full observability and

are called conditional plans.

Construction of conditional plans is particularly tricky
when there is no full observability; that is, when during plan
execution it is not possible to uniquely determine what the
current state of the world is. Planning problems having this
property are said to be partially observable, and their solu-
tion requires that the sets of possible current world states
— the belief states — are (implicitly) maintained during plan
execution and (implicitly) represented by a plan.

In this paper we address the partially observable condi-
tional planning problem. Partial observability is a notori-
ously difficult problem in Al planning and in policy con-
struction for partially observable Markov decision processes
(POMDPs) (Sondik 1978; Kaelblingt al. 1998). Recent
works for planning not directly based on traditional tech-
niques for solving POMDPs include (Welet al. 1998;
Rintanen 1999; Bonet and Geffner 2000; Berteti al.
2001). Bonet and Geffner handle numeric probabilities, like
the POMDP model, the other works essentially handle three
qualitative probabilitiesp = 1.0, p = 0.0 and1.0 > p >
0.0. There is also some work on an easier special case,
the unobservable (or conformant) planning problem, which
does not allow observations at all (Smith and Weld 1998;
Cimatti and Roveri 2000; Bonet and Geffner 2000).

isting specialized algorithms for the problems in question.

If the problem instance is fully observable, the algorithms
essentially do breadth-first search backwards from the goal
states with the whole search tree traversed up to a certain
level represented as a single BDD, corresponding to one be-
lief state. This backward traversal of the state space is like
in BDD-based algorithms for model-checking in computer-
aided verification and in earlier algorithms for fully observ-
able planning that use BDDs.

If the problem instance is unobservable, the computa-
tional problem is to find a path from the initial belief state
to the goal belief state, like in classical planning, but at the
level of belief states instead of states. The symbolic breadth-
first traversal of the state space used in the fully observable
case is not possible, and the algorithms just produce belief
states with an increasing distance to the goal states.

Both of these two forms of plan search are realized within
the planning algorithms we propose. We generate belief
states backwards starting from the goal belief state. The be-
lief states can be combined (except in the unobservable spe-
cial case) to obtain bigger belief states (the behavior used
in the fully observable case without restrictions), and new
belief states can be obtained by computing the possible pre-
decessor belief states of a belief state with respect to an op-



erator application (which is the only behavior used in the Plans
unobservable special case.)

The structure of the paper is as follows. The next section
describes the exact planning problem we are addressing, in-
cluding the type of observations we handle and the form of
plans. Then we describe the combination operator for be-
lief states which is the basis of the backward traversal algo-
rithms, and how how binary decision diagrams lead to a nat-
ural and efficient implementation of the combination opera-
tion. Two BDD-based algorithms based on the combination
operation are described, the first uses exhaustive generation
of belief states and the second uses a simple heuristic for se-
lecting which belief states to produce. In the implementation
section we describe the main insights obtained from imple-
menting the algorithms, and make runtime comparisons to
other planners. Finally, we conclude the paper by discussing
connections to earlier work.

The plans our algorithms produce are directed acyclic
graphs. Terminal nodes correspond to goal belief states.
Nodes with exactly one successor node are labeled with
an operator, and they correspond to operator applications.
Nodes with more than one successor are branches: one of the
successor nodes is chosen based on what is observed. The
edges to the successor nodes are labeled with corresponding
sets of observations.

The algorithms in this paper do not produce plans with
loops. Loops are needed for finitely representing plans that
have no finite upper bound on execution length. Execution
length may be unbounded when some of the operators are
nondeterministic. For example, the number of times a dice
has to be thrown to get 6 is unbounded, and the plan needs a
loop (throw the dice until you get 6.) Loops are not needed
when all operators are deterministic. Many types of nonde-

Problem Definition terministic problems have solutions as plans without loops.

Observation Model Distance Computation for Partially

During plan execution, before deciding which action to take Observable Planning

next, it is often useful or necessary to try to determine what

is the current state. Of course, given that the last action was Many of the earlier algorithms for fully observable planning

taken in a certain belief state, it is possible to compute the set are best understood as computing the distance/cost from ev-

of possible successor states, but in addition, it may be pos- ery state to a goal state. These distances can be understood

sible to obtain new information about the world that allows as a plan. The plan can be executed by always choosing an

distinguishing between the possible new current states. operator that reduces the distance of the current state by 1,
The observation model we use is based on partitioning the Or in nondeterministic planning, that makes the highest ex-

state spac§ into non-empty pairwise-disjoint observational ~ pected reduction in the distance/cost to a goal state.

classesP = (Ci,...,Cy) such thatS = U;cy, 0y Ci- In this paper we generalize this idea to the more compli-
Given the actual current statgwhich we in general do not  cated partially observable case. The passage from fully ob-
know), we observe’; for i € {1,...,n} such thats € C;, servable to partially observable planning requires employing
meaning that the actual current state is one of the states in the notion of belief states, that is sets of states, and comput-
C;, but no further distinctions between the state€jncan ing (an upper bound on) the distances between belief states
be made. If we already knew that the current state is one of and the goal belief state. As in the fully observable case, the
the states i3, then we know that is in B N C;. distance computation yields a plan as a byproduct.

This can easily be generalized to the case in which the  The first complication is that the number of belief states
possible observations depend on the last action taken; that is,is much higher than the number of states: fostate vari-
we have different partitions for different operators, allowing ables the maximum number of reachable statex*jsand
for example the expression of special observation actions.  this induces a belief space consisting28t belief states.

We have problem representations with state variables and The second complication is the definition of distances.
implementation techniques that use BDDs in mind, so it is We define the distance between a belief state and the goal

most convenient to assume that partitions. . . , C,, are in- belief state in terms of a plan implicitly associated with the
duced by set®) of state variables that are observable. Then, belief state. The plan determines the distance as the max-
a componen€; of the partition is a sef’; C S of states that imum number of actions the plan may need for reaching a
assign the same values to all of the variable®inNotice goal state. The computation of distances takes place in par-
that when there are observable Boolean state variables, allel with the computation of the belief states, and the plans
there can b&™ components in the partition. need not be explicitly constructed.

There are several extensions of the observation model that In fully observable planning with deterministic actions,
can be implemented by reduction to the basic model we de- the distance of a state is simply one plus the minimum of the
scribed above. For example compound observations can bedistances of the states that can be reached by one action. The
reduced to atomic observations, assuming a sufficiently ex- same holds in partially observable planning for belief states,
pressive language for describing operators. Within the BDD but there is also the additional possibility of determining the
framework, handling observability of compound formulae distance of a belief states in terms of the distances of other
¢ directly is easy by having a state variallg observable, belief states. This is because plans can have branches. If
and requiring thab, < ¢ holds in every state. This can  from B we can reach belief states having distadcey a
be directly encoded to the BDD representation of transition branch (observation) node in the plan, without taking any
relations of operators. actions, then the distance Bfis alsod.



So for the distance computation we need to take into ac- 8 observational classes
count the branch nodes, and this is a main difference be- S
tween fully observable and partially observable planning. In 2 pdlief states 9000 0 0 0 0
fully observable planning, if we know that plans for reach-

ing the goals exist for bot#; andB,, then we immediately ;900 (00 000

know that there is also a plan f@; U B,. In partially ob- ‘e -‘®. ® o\Ve o le ‘e
servable planning this is not the case: the existence of two
plans, one reaching the goals fraly and the other from e e e 0. 0 @ 060
B> does not mean that there is a plan &y U B,. This is I A P a
because iB; UBs we might not be able to choose the appro- .,-" 0. 0000190

priate subplan corresponding £ andB;, as we might not ‘e’ 0. ® ' ®© . ®©.©. 0.0
know whether the state we are in belong$3toor to B,. In 1 2 3 456 7 8
the next section we make this problem explicit, and explain

how plan branching is handled in the distance computation. - gjq, e 1: The intersections of two observational classes with
[For making the distance computation more feasible we he pelief states are not in the inclusion relation. The belief
will restrict to generation of set-inclusion maximal belief  giates can be combined in four different ways.

states. When we know that belief staBehas distance,
we do not need to separately represent belief states B

with distancen. This is because the same plan that reaches gyample 1 Consider the two belief statédy andB. in Fig-

the goals from will reach the goals also froms". ure 1. There are eight observational classes (components
o ) _ of the partition.) The problematic observational classes are
Combination Operation ® for Belief States those that intersect bot; and B, and the intersections are

not in the inclusion relation (like in the unobservable case
with only one observational class; in the fully observable
case non-empty intersections coincide because they are sin-

Belief statesB; and B, areobservationally distinguishable
if every s; € By ands, € By assign a different truth-value
long 1. different companents.of the partiion representing. JIE10N Sets:) These are the classesandC:. For allother
. g o i classe<’;, i € {1,2,3,6,7,8} eitherB;NC; C BoNC; or
observability (for allC; in the partition, eithe; N B; = 0 B.NC: C BiNC
or C; N B, = .) This means that after making the possible 2, , &= 1 '~
observations concerning the current state, one can exclude
one of the sets of statd$, and By as impossible.

Later in Definition 2 we introduce a combination operator
for belief states that is based on the following intuitions. If
plan existence for belief statd$, and B, has been shown
(that is, there is plar&Z; for By and planZ, for Bs, then
for B C B; and B, C B, such thatB] and B} are ob-
servationally distinguishable, there must also be a plan for
B’ = Bj U B}, that reaches the goal states. This means that
in belief stateB’ we can choose one df; and Z, on the

A belief state containing botB; NC; andBNC; for j €
{4, 5} is not (directly) backward reachable frafy and Bs,
because for none of the stateg B, NC;)U(B2NC;) can we
say whether we are i, or By, and hence the appropriate
plan associated witl; or B, cannot be chosen.

Therefore, any backward reachable belief stBtenust
fulfill either BN C; € BynCjorBNC; € By N (.
Because we are interested in maximal belief states, this is
eitherB N Cj =B N Cj orBnN Cj =By N Cj.

Hence we reach backwards the following belief states.

basis of values of the observable state variables, and have a Bi1 = B,U(B NCy)U (B NCs)
guarantee that the goal states will be reached by the respec- Biz = B,U(B,NCy)U(ByNCs)
tive subplans. Hence a plan f&¥ starts with a branch node Byi = B,U(BsNCy)U (B NCs)
that selects one of the subplafis and Z;. Byy = B,U (By N Cy) U (BN Cs)

Identifying setsB] and Bj, is easy in two special cases.
If nothing is observable (the partition has only one com- HereB, = (B1UB)N(C1UCUC3UCsUC;UCs) is
ponent consisting of all states), the only possibilities are the union of the intersections &f, and B, with the unprob-
B = By, Bj = () andBj = 0, B, = Bo; that is, combin- lematic classes (intersections are in the inclusion relation).
ing belief states does not produce new ones. If everything In these classes we can always safely choose the belief state
is observable (the partition consists of singleton sets), we with the bigger intersection.
chooseB] = By, B; = B, which means that belief states Clearly, the number of combined belief stateg’isvhen
can always be combined by taking their union. the number of non-inclusion observational classes is R

In these two special cases the number of new belief states
(1 or 2) is much smaller than in the general partially observ-  Notice that the number of observational classes may be
able case, which will be discussed next. This agrees with the exponential on the number of state variables, which may
computational complexity results that say that the general make the number of combinations extremely high.
planning problem with partial observability is much more Now we are ready to give the definition of the combina-
difficult than either of these special cases, and that planning tion operator for belief statesB; and B, which identifies
without observability is more difficult than planning with  maximal subsets oB; U B, from which eitherB; and B,
full observability (Mundhenlet al. 2000). can be chosen based on the observations that can be made.



Definition 2 Let P = (C4,...,C,) be a partition of the
set of all states. LeB; and B, be two sets of states. Then
B1 ® B, is defined as

B ® By {LU---UIL,|
I; € {BlﬂC’Z—,BgﬁCi},
I; ¢ BinNCy, I; ¢ Bo NG,
forallie {1,...,n}}.

The combination operator has many algebraic properties
that may be taken advantage of in improving algorithms. In
this section we point out the most important ones. We con-
sider the operatap with an arbitrary (but fixed) partition of
the state space to observational classes.

Theorem 3 (Monotonicity) Let B, B; and By be belief
states so thaBB; C By. For all Bf € B ® By, there is
B!, € B® Bs such thatB] C Bj.

Proof: Let B} be any member oB ® B;. HenceB) =
U1<i<n I; for I, such thatl, = BN C;orl; = BiNC;.

Now we can construcB) as follows. The construction
for every componentin the partition (for every observational

Because the operator is associative and commutative, it
unambiguously generalizes to sets of belief states as

®{B13B277BT!}:B1®BQ®®Bn
This can be more directly expressed as
®{Bla~--aBm} = {Ilu"'UIn‘
I; € {Bl ﬁC’Z,,BmﬂCl},

I, ¢ BinC;forje{l,...,m}
foralli e {1,...,n}}

for a partitionP = (C1, ..., C,) of the state space.

We use the generalized definition of tlkeoperation in
implementing the planning algorithms. This is how we avoid
the generation of a very high number of intermediate belief
states that would otherwise be obtained by pairwise combi-
nations of belief states.

Theorem 6 (Inclusion) For all B € T there isB’ € T
such thatB C B’.

Proof: We construct3’ = |J"_, I; by constructingl; and
showing thatB N C; C I, for everyi.

class) is independent of the other components. Choose any considerC;. If BN C; ¢ B* N C; for no B* € T,

1 E {1, e ,n}. If B{ﬂOi = BNC;andBNC; §Z BoNCy,
we chooseB N C; for B). Otherwise we choosB; N C;
for BS. In both cases the intersectid{ N C; is included in
B!, N C;. Because this holds for every componéhtof the
partition, we haveB| C Bj. O

Theorem 4 (Commutativity) For all belief statesB; and
B>, By ® By = B2 @ Bj.
O

We define for belief stateB and setsS of belief states
Se@B=B®S=|J{Bo BB €S}

Proof: Directly by the symmetry of the definition.

Theorem 5 (Associativity) For all belief statesB;, B, and
B3, (B1 ® B2) ® By = By ® (B2 ® B3).

Proof: We show that every belief state {{3; ® B2) ® Bs

is also inB; ® (B2 ® Bs). Because of the commutativity of
®, showing that belief states iB; ® (B: ® B;) = (B3 ®
Bg) ® B are also |r(Bl X Bg) ® B3 = B3 ® (B2 X Bl)

is by exactly the same argument.

Take any belief statd? in (B; ® By) ® B;. Take any
component’; of the partition (withl < i < n.) NowBNC;
equals eitheBs N C; or (B; ® By) N C;. In the latter case
B N C; equals eitheB; N C; or B, N C;.

Because3 was generated by cartesian products of inter-
sections ofB;, By and B3 with the observational classes,
the intersections oB with the observational classes can be
considered independently one at a time.

If BN C; equalsB; N C;, then we have a belief staf¢/
in B ® (BQ & B3) with B’ N C;=Bnda;.

If BN C;equalsBy; N C; (the caseB; N C; is the same
because of commutativity), then there is a belief sfaften
By ® B3 with B” N C; = B n C;, and further, a belief state
B’inB1®(B2®Bg)WithB’ﬂC§;:BﬁC’i. ]

then we choosé; = BN C;, and clearlyB N C; C I;. If
BNC; c B*NC,; forsomeB* € T, let B* be such a belief
state inI" so thatB* N C; is set-inclusion maximal. Now we
choosel; = B*N C;, and clearlyBN C; C I;.

Because the inclusioB N C; C I; holds for all compo-
nents of the partition3 C |J_, I, = B'. O

Implementation of ® with BDDs

Instead of representing individual states and belief states as
lists of and lists of lists of atomic propositions, for many
types of planning it is more efficient to represents sets of
states implicitly as formulae. A computationally effective
representation of propositional formulae and Boolean func-
tions is binary decision diagrams (BDDs) (Bryant 1992).
BDDs allow equivalence testing in constant time and many
operations on Boolean functions in polynomial time. They
have been widely applied in model-checking in computer-
aided verification, and in the last years also in Al planning,
especially in planning under uncertainty.

In this section we show how any two belief stafésand
B, represented as BDDs can be combinedtio® By by
using standard operations on BDDs. Especially interesting
is the use of the existential quantification operation of BDDs
in handling partial observability. This BDD implementation
of ® is the basis of our planning algorithm implementation.

The implementation of with BDDs is often much more
efficient than a more direct implementation for two reasons.
First, not all of the states in the belief states have to be rep-
resented separately. This is in general the main benefit of
BDDs. Second, they operation can be performed with-
out iterating over every observational class (component of
the partition), because BDDs very effectively allow handling
those observational classes that intersect the belief states so
that the intersections are in the set-inclusion relation.

The computation proceeds as follows.



1. Compute the observational classes that intersect both be-
lief states so that the intersections are not in inclusion re-
lation. This is by the following BDD computation.

X =3U(By A—B3) AJU(Bz A —Bq)

HereU is the set of unobservable state variables, and
denotes the existential abstraction operation on BDDs that
is defined for one variable as

J0® £ 3[0/2] v ®[1/2].

In the fully observable cas¥ is the empty set, and in the
unobservable cask is the universal set (if neither of the
belief states subsumes the other.)

. For those observational classes that intersect the belief
states and the intersections are in the inclusion relation
we can always choose the bigger intersection. The set of
all those observational classes can directly be identified
by simple BDD operations, and the explicit generation of
these observational classes is avoided. The part of the
state space that intersects both belief states so that the in-
tersections are in the inclusion relation is simply

B = (B, UBy)\X.

. For identifying the no-inclusion observational classes we
iterate over thecubesof X, which are the disjuncts of
a DNF of X. For every cube we assign the observable
variables not occurring in the cube truth-values in all pos-
sible ways, in each case obtaining one observational class.
The benefit of iterating over the cubesXfinstead of us-
ing all the valuations of the observable variables is ffiat
may include only a fraction of all observational classes.
There are procedures for efficiently doing iteration over
the cubes for example in the CUDD BDD package.

. For every observational clags in X compute Bi
B1NC; andB§ = By, N C;.

. Produce thé™ belief states as
BUB;} UB; U
where thei; are assigned or 2 in all 2 possible ways.

...B"

in

Planning Algorithms

In this section we propose two algorithms for planning with
partial observability that use tlte operation. The first algo-
rithm — given in Figure 2 — exhaustively computes sbts
for + > 0 that contain all maximal belief states at distance
to the goal belief state.

In the algorithm description preimgB) computes the
strong preimage of a sé of states with respect to an op-
eratoro (Cimatti et al. 1998). The strong preimage is the
maximal set of states from which a state ihis always
reached by applying. For deterministic operators this coin-
cides with the standard (weak) preimage computation used
in model-checking and other applications of BDDs (Burch
et al. 1994). Both preimage computations can easily be im-
plemented with the standard operations on BDDs.

The variabled andG are respectively the initial and the
goal belief states, and the gBtconsists of the operators in

PROCEDUREexhaustive()

i:=0;

Dy ={G};

WHILEI C BfornoB € D; andD; # D;_;
D;t1:=®({preimg,(B)|B € D;,0 € O} U D;);
=14 1;

END;

IF I C BforsomeB € D; THENplan has been found;

Figure 2: Algorithm that systematically generates the belief
space

PROCEDURHeuristic()

i:=0;

Dy = {G};

A = Do;

WHILEI C BfornoB € D; andA # 0
B := an element ofd of maximum cardinality;
A= A\{B};
D;11 :=®({preimg,(B)|o € O} U D;);
A=AU (D2+1\D2),
=1+ 1,

END;

IF I C BforsomeB € D; THENplan has been found;

Figure 3: Algorithm that heuristically selects which belief
states to expand

the problem. This algorithm description assumes a uniform
observability at all points of time so that only one operator
® that uses one partition of the state space to observational
classes is needed. For the case in which the current observa-
tional classes depend on the operator last applied, we have to
consider different functions), and to compute the preimage

of a belief state only with respect to an operator that corre-
sponds to the observability assumption with which the belief
state was obtained hy.

The second algorithm — given in Figure 3 — uses a heuris-
tic for selecting one belief state at a time for preimage com-
putation. Because the belief space is not traversed system-
atically, the correspondence between the setand the be-
lief states at distanceis lost, and therefore distance infor-
mation for the generated belief states has to be maintained
separately. The heuristic tried with this second algorithm
simply uses the cardinality of a belief state as the usefulness
measure. On more complicated problems this is likely not
to yield as good results as on the problems considered in the
experiments described later in the paper.

After the initial belief state has been reached by using this
backward computation, a branching plan can be extracted,
as will be discussed in the next section.

We show the correctness of the exhaustive algorithm next.
It is obvious that the heuristic algorithm is also correct, be-
cause all belief states are used at some point of time: the
most promising ones are used early, and others later.

Theorem 7 Whenever there exists a finite acyclic plan for a
problem instance, the algorithm in Figure 2 returns it.



Proof: So assume there is an acyclic plan for a problem in-
stance. Let all noded’ of the plan be annotated with sets
S of states possible during execution of the plan.

We show by induction omthat if the distance from node
N to a terminal node of the plan igcounting all edges on
the path), then at théh iteration of the algorithm a belief
stateB such thatSy C B has been produced, i.65 C B
for a belief stateB € D,. Notice that the steps in construct-
ing the setsD; often correspond to two edges in the plan:
one operator edge and one edge from a branch node.

Base casé = 0: The goal belief state is reached from a
belief state by O steps only if the belief state is a subset of
the goal belief state.

Extraction of Plans

The backward computation of belief states with increasing
distances to the goal belief state is finished when a belief
state that includes the initial belief state has been found. The
assignment of distances to the belief states can be under-
stood as a plan, but it may be useful to extract a graph-like
plan that makes explicit the process of making observations
and determining the next belief states of the plan execution,
and identifies which belief states really are relevant parts of
the plan. So, plan construction proceeds as follows.

1. Letthe current belief statB be the initial belief state and

d the distance computed for it.

Inductive casé > 1: Now N is a node with distance 2. If the distance of the current belief statedis= 0, then
If it is an operator node, then a superg#t of the be- stop (B € G for the goal belief stat€r.)
lief state B obtained fromSy by applyingo (and associated 3. Identify operators, ... ,o, and a partitionBy, ..., B,

with the successor node) is by the induction hypothesis in
D;_4. The preimage oB’ with respect tw is one of the be-
lief states the are combined to obtd from D;_;. Hence

by Theorem 6 a superset 8y is in D;.

OtherwiseN is a branch node. Then by the induction hy-
pothesis supersets of the belief states corresponding to the
successor nodes are In; ;. We show that a superset of
the belief state for the node itself is ;. Let the belief
states corresponding to the successor nodes,be ., B,,.

Let the labels of edges to the successor statg be . ;| ¢,,.
These can be understood equivalently as propositional for-
mulae or as sets of states.

For the plan to be executable under the observatiity
(C,...,Cy), itmust be the case that for ioe {1,...,n}
and{¢,¢'} C {¢1,...,6m} suchthaty # ¢', p N C, # ()
and¢’ N Cy # 0. Otherwise during plan execution when
making observatior’;, it would not be possible to decide
whether to follow the edge labeledor the edge labeled’,
as the observation would be compatible with both.

The belief state$3,, . . ., B,,, associated with the succes-
sor nodes are subsets of the edge label€3;s& ¢, for all
k € {1,...,m}. Hence no two of these belief states inter-
sect the same observational class. Bgt..., B, be the
belief states iD;_; so thatB; C Bj fork € {1,...,m}.

Finally we show thatSy N Cy, for everyk € {1,...,n
is included in the intersection @) with some belief state
in D;_1, and thereforeSy is a subset of a belief state in
D;. So take anyt € {1,...,n} such thatSy N Cy is non-
empty. NowSy NCy, = B;NCy foronej € {1,...,m} by
the considerations above, and furtl$ey N C), C B} N Ck.
Now eitherB’ N C), = B” is set-inclusion maximal among
intersections of belief states i, _1, or there is a belief state
B"” in D;_; with an even bigger intersection with. In
either caseSy N Cy, C B" N C4.

Because this holds for all € {1,...,n}, one of the be-
lief states inD; includesSy by the definition of. O

The algorithm is more efficient when keeping only set-
inclusion maximal sets inD;. That this resriction does
not reduce the number of belief states that are computed is
shown by Theorem 3. Under the maximality condition, a
belief stateB has distance at mosif there is a belief state
B’ such thatB C B andB’ has distance at most

of B (n > 1) so that the belief states in the partition are
observationally distinguishable from each other, and from
B; a belief state with distance d — 1 is reached with;.

4. Recursively construct a plan for the distace 1 belief

statesB; by choosingB = B; and going to step 2.

Because the distance is reduced by at least one when go-
ing to a successor node, all execution paths in the plan are
finite, ending in a terminal node with distance 0 and associ-
ated with a subset of the goal states, and hence the process
terminates after a finite time.

Implementation of the Algorithms

We have implemented the algorithms in C. The planner takes
its input in an extension of PDDL (Ghalladt al. 1998) that
allows expressing observability restrictions and initial states
as belief states. We used the CUDD BDD package by Fabio
Somenzi of the University of Colorado.

During early experimentation with the idea of performing
backward search in the belief space we obtained many in-
sights that led to the implementation discussed in this paper.
These insights were vital in achieving the level of perfor-
mance our planner has.

1. The generalization ab to sets of belief states should be

used instead of the binary version®f

Application of® to all pairs of belief states produces most
belief states several times and directly leads to very high
runtimes. The only redundancy in a good implementation
of the generalizedk operator is that already existing be-
lief states (or belief states subsuming them) are generated
once more.

. Sometimes only a fraction of the preimages of the belief
states differ, because not all states in a compound belief
state can be reached by any single operator.

We have experimented with techniques that take this into
account. First we compute the intersections of the ob-
servational classes with all belief states, but we do not
blindly take their cartesian product. Instead, choosing

which combinations of the intersections to use in pro-

ducing new belief states is performed separately for ev-
ery operator. Only such intersections from each obser-
vational class are chosen that have a non-empty (weak)



preimage with respect to the operator under considera-
tion. Intersections having an empty preimage may be ig-
nored. On some problems this leads to astronomic reduc-
tions in the number of belief states that are produced. For
example in the partially observable 6 block blocks world
the reduction at some application of the operation is from
21760664753063325144711168 ~ 2.18 - 102 to 10000,
from which only 180 belief states we did not have already.
Under the above improvement, we must preserve the cor-
rectness of the planning algorithms by explicitly testing
whether the initial belief state can be obtained from the
intersections This is so if for every observational class
its intersection with the initial belief state is subsumed by
one of the intersections of the observational class with an
existing belief state. This test also makes it possible to
avoid the last phase of combinations of belief states which
would produce a belief state subsuming the initial belief
state (among with many useless belief states.)

On many problems the number of belief states is still ex-
tremely high, and we believe that the application of the com-
bination operator should be controlled far more, for example

through heuristics that select which belief states to generate.

Typically only a very small fraction of the combinations of
the belief states are needed in solving any given problem
instance. Currently, the heuristics just control which belief

states are used in preimage computations, and even when

only a small number of preimages are used, the number of
new belief states may be very high.

Experimentation with the Implementation

This section describes results of experiments on a first im-
plementation of our algorithms. These results do not con-
stitute a proof of the general applicability of the algorithmic

symbol | observable state variables

uo -
po CLEAR(X), ONTABLE(X)

pfo ON(X,Y)

fo ON(X,Y), CLEAR(X), ONTABLE(X)

Table 1: Degrees of observability for the blocks world

hand, could effectively compute these big belief states by the
combination operation.

It seems that our results do not confirm this hypothesis.
For example, the emptyroom problem, which is discussed
later, has goal reachability from big initial belief states, but
our algorithm implementation is still very much slower than
MBP. However, there is some evidence for supporting this
hypothesis, obtained from a partially observable variant of
the blocks world problem, but in general the question of the
strengths of the algorithms remains very much open.

To carry out experiments and make a preliminary com-
parison between the planners, we identified benchmarks that
could be used under different degrees of observability. The
most famous benchmark problem in Al planning, the blocks
world, serves this purpose well. This problem can be con-
sidered with different degrees of observability by having dif-
ferent state variables observable. The choices we used are
listed in Table 1. The fully observable case is denoted by
fo and the unobservable hyo. An interesting choice is to
have only the ON relation observablgd). This is not fully
observable in the sense that not all state variables are observ-
able, but it is still possible to differentiate between any two
states unambiguously. Another one is to have CLEAR(X)
and ONTABLE(x) observable, which would best correspond
to partially observable planning. Up to three blocks this

framework presented in the paper, but act as evidence that makes it possible to distinguish between any two states, but

the approach is on some kinds of problems very competitive
with other types of algorithms. Other planners used in the
comparisons were MBP by Bertoli et al. (2001) and GPT by
Bonet and Geffner (2000). Based on the runtime statistics in

for a higher number of blocks this is not so.

We formalized the actions so that problem instances with
all of the states as the initial belief state and a stack with
all blocks in it as the goal belief state is solvable. A suf-

the respective papers, these two planners in general seem tdficient condition for this is that the operator for moving a

be much faster than earlier planners for partially observable
non-probabilistic planning problems.

block onto the table is parameterized only with the block to
be moved and works for irrespective of on which block the

Our research hypothesis was that when the goal states canplock in question is, so it suffices to know that the block is

be reached from “big” belief states, backward search with clear when moving it onto the table. For the unobservable
belief state combination is more efficient than algorithms case we formalized moving a block onto the table so that the
that do forward search in the belief space, like the algorithm operator has not precondition, and the move succeeds if the
used in MBP. Big belief states in this context means that de- plock was clear and on something, and otherwise nothing
spite a high degree of uncertainty, sufficiently many obser- happens. To keep the initial state description small, we took
vations can be made to choose the right actions to reach theas initial states all the states with stacks of height at most 4.
goals. Forward search algorithms in this case face the prob- On a higher number of blocks this was still not a sufficient
lem of choosing between branching, which would reduce restriction, and starting from 8 blocks neither our planner
the uncertainty but simultaneously lead to very big plans, nor MBP could transform the initial state descriptions into
and going forward by performing an action, thereby poten- BDDs within 1 GB of memory. Also on the 6 and 7 block
tially losing a useful branching point in favor of keeping the  problems the BDD size starts being a problem. A more com-
plan size down. Backward search algorithms, on the other pact encoding of the problems with a smaller number of state

LIt could be that the initial belief state itself cannot be obtained variables would speed up the planners considerably.

by any single operator application from any set of states, and there- We generated problem instances with an increasing
fore the generation of a belief state subsuming the initial belief state number of blocks, and tested them on the planners (we
would not take place. decided to christen our planner Y. We ran GPT



problem S| runtime in seconds . tive to the number of variables that are observable, even
GPT MBP  YKA. YKA, when there is no difference in terms of distinguishing be-

bw2fo 3 2.84 0.06 0.02 0.05 tween two states, as indicated foyand pfo problems. On

bw3fo 13 451 3100 0.11 0.09  thepoproblems MBP fares better, and on the unobservable
bw4fo 73| >1200 > 1200 1.90 0.56  (conformant) problems the specialized conformant planning
bw5sfo 501 | >1200 > 1200 19.20 6.22  algorithm in MBP fares much better. We improved the prob-

bw6fo 4051 | >1200 >1200 >1200 129.57 |em representation for MBP by eliminating the unneces-
bw7fo | 37633| > 1200 >1200 > 1200 > 1200  sary state variables ON(X,X). Without this improvement the

bw2pfo 3 2.81 0.03 0.04 0.04  MBP runtime on the 3 block fully observable problem was
bw3pfo 13 4.08 0.13 0.10 0.07 1144 seconds instead of only 31.
bw4pfo 73| >1200  89.19 287 0.73 Our problem representation is not favorable to GPT. GPT

bwspfo 501 | >1200 >1200 44.69 10.75  seems to compute the initial states by straightforward itera-
bwépfo | 4051| > 1200 >1200 > 1200 365.55 tjon over the valuations of the state variables, and chooses
bw7pfo | 37633 | >1200 >1200 >1200 >1200 those that satisfy the initial state formula. For the 3 block

bw2po 3 2.66 0.02 0.04 0.06  problems this is still very feasible (12 state variables), but
bw3po 13 4.06 0.08 0.10 0.10  with 4 blocks it is not (20 state variables.) We believe GPT
bw4po 73 | > 1200 0.69 1.67 0.67  would solve at least the 4 and 5 block problems if the initial

bw5po 501 | >1200  13.37 > 1200 7.11  states were represented in a way that better observes the way
bw6po 4051 | > 1200 389.05 >1200 >1200  GPT works. However, we did not verify this.

bw7po | 37633| >1200 >1200 >1200 > 1200 The number of belief states our algorithms produce for
bw2uo 3 2.70 0.02 0.02 0.03  fully observable problems is small, and the efficiency of the
bw3uo 13 3.77 0.08 0.28 0.20  algorithms does not much lag behind specialized algorithms
bw4uo 73 | > 1200 3.42 >1200 385.43 for planning with full observability. The number of belief
bw5uo 501 | > 1200 9.86 >1200 >1200  states that are explicitly produced is linear on the maximum
bw6uo 4051 | > 1200 70.85 >1200 > 1200 length execution of the plan.

bw7uo | 37633| >1200 >1200 >1200 > 1200 We also ran the planners on problems that earlier were

) used by Bertoli et al. (2001) and Bonet and Geffner (2000)
Table 2: Runtimes of a number of benchmark problems on a 5 gemonstrate the capabilities of MBP and GPT. The run-
360 MHz Sun SparcstationS| is the size of the state space.  imes, which are rather bad on our planner, are shown in Ta-
The runtimes that were W|th_|n 3_0 per cent or 50 milliseconds ple 3. The formalizations of these problems are not exactly
from the best runtime are highlighted. like those used by Bertoli et al. and Bonet and Geffner, be-
cause we produced all the problem instances automatically
from a formalization of the problems in a version of PDDL.
with the default setting except for the “set discretization- Unlike the MBP and GPT input languages, our version of
levels off” setting as adviced by Bonet. =~ We ran PDDL does not directly support multi-valued state variables.
MBP with the -v 0 -explicit_dfs_forward - GPT is on some problems better and on some problems
no_conformant_at_start options that were used by ~ worse. The GPT implementation differs much from the
Bertoli et al. (2001) on many of the runs reported there. For other two planners, as it translates the problem instances to
unobservable problems the specialized algorithm for unob- C++ and compiles and runs them. This is the reason for the
servable planning in MBP was used because MBP refuses to h|gher runtimes on the easiest pr0b|ems_
apply the general algorithm to unobservable problems. The empty room problems represent rooms of varying
The runtimes we report are what GPT outputs for the pars- sizes ¢ timesn squares). The problem is to get from an
ing, compilation and solution phases (which would appearto arbitrary unknown location to the middle of the room by go-
be real time, not CPU time), what MBP outputs as “search- ing north, south, east or west. One can only observe whether
ing and printing time” and “preprocessing time”, and for our  one is immediately next to one of the walls.
planner the total CPU time, including reading and parsing  The ring problems have a number of rooms in which win-
the input file. GPT takes its input in its extension of the dows have to be closed and then locked. Initially the state of
PDDL language, MBP in the AR language, and our planner the windows is completely unknown.
in an extension of the PDDL language. We produced the  The medical problems are about performing two medical
input files automatica”y from common PDDL source files tests that together unambiguous|y determine any pbs-

by a program that translates usual schematic PDDL descrip- sible illnesses, and then giving oneminedications to the
tions into AR and into the two versions of PDDL, with all patient_ If wrong medication is used, the patient dies, oth-

operators grounded (no schematic variablesall andex- erwise she will recover. Again, our planner does not do so
ists quantification unfolded.) 3 well. The exhaustive algorithm has difficulties already solv-
The runtimes are shown in Table 2. Y refers to the ing the problem instance with 5 ilinesses. By starting from
algorithm that exhaustively produces all belief states, and the goal states it identifies the 5 belief states from which
YKA}, to the one with heuristic selection of belief states. the goals can be reached by taking the appropriate medica-

On the problems with full and almost full observability  tion, and a couple of others where the illness has already
our algorithm fares much better than MBP. MBP is sensi- been treated. But from here on the number of belief states



problem |S] runtime in seconds Related Work

GPT MBP YKA. YKA, , . . .
edicalo? 50 551007 011 0.09 Algorithms for computing optimal POMDP policies are re-

. lated to our algorithms, especially the POMDP value itera-
medical03 32 2.76 - 0.02 8.99 0.15 tion algorithms (Sondik 1978; Smallwood and Sondik 1973;

mgg:gg:gg jg gii 882 >31%38 iig Kaelblinget al. 1998). These algorithms implicitly do back-
medicalos 52 3'44 0'05 2 1200 328. 38 ward construction of branching plans, and for each such plan

. compute its value for each state in the state space. For be-
medical07 64 6.61 006 >1200 244.03 lief states the value of such a plan is obtained as a linear

g—?gg:;l% 63 22241{ 882 > 15%% > 1%085 combination of the values for the indiyidual states.

BTS03 10 258 002 0.06 0.05 Ouralgorithms, on the other hand, ignore exact costs and
BTS04 13 286 0.02 0.09 0.06 probab_llltles, and just consider whether a plan_ is acceptable
BTSO05 16 340 003 0.24 0.08 for a given state or a set of states, but are similarly based
BTSO06 19 450 0.06 0.87 0.17 °nan |mpI|C|t backward construction of branching plans. In
BTS07 22 727 006 399 0.32 our algont_hms each plan is represented by a set of states
BTS08 25 16.61 0.07 19.47 0.51 for which it is guaranteed to rgach t_he goals. And each of
BTS09 28| 4917 0.11 9573 0.95 the backup steps attempts to find bigger such sets, roughly
BTS10 31| 16591 013 518.15 1.75 corresponding to the backup steps in the POMDP value it-
BTS12 37| >1200 021 > 1200 3.g7 eration algorithms trying to.flnd mcreasmgly better approx-
BTS14 43| >1200 035 > 1200 g 77 Imations of the value function. Our algorithms do not find
BTS16 49 | > 1200 0.44 > 1200 19 7 Optimal plans for example because of the restriction to set-
BTCS02 47 391 0.03 0.09 0.11 inclusion _maX|maI belief states. '
BTCSO03 132 3.08 001 292 1.00 Exten_s|ons of BDDs h_ave recently_been used for im-
BTCS04 341 444 005 12832 13.06 plementing POMDP p(_)l|cy construction algorithms for
BTCS05 838| > 1200 0.09 > 1200 167.56 "OMDPs represented in a factored form. For example,
BTCS06 1991 | 188.78 0.18 > 1200 > 1200 algebraic decision diagrams (ADDs) (Fujigs al. 1997;

emptyroom05| 25 2155 005 > 1200 261 Baharet al. 1997) were used by Feng and Hansen (2000).

Earlier work on partially observable planning with BDDs
emptyroom06| 36 | 317.72 0.09 1200 26.22 . : ; .
ethiroomO? 49 | >~ 1200 0.12 i 1200 31.68 Includes (Bertoliet al. 2001). Their algorithm uses BDDs
emptyroom08| 64 | > 1200 0'15 > 1200 77.60 for representing belief states. Plan search is by forward
emptyroom10| 100 | > 1200 019 <1200 39527 Search starting from the initial belief state. The planner

emptyroom15| 225| >1200 0.36 > 1200 > 1200 has two choices: either take a single action and reach an-
fing03 162 388 0:11 29 65 29 91 Other belief state, or make an observation (one observable

fing04 648 461 040 >1200 > 1200 State variable or several), which splits the belief state to sev-
' ' eral smaller ones, and continue plan construction recursively

Table 3: Runtimes of a number of benchmark problems on a from each. When this algorithm splits a belief state under

360 MHz Sun SparcstationS| is the size of the state space. 0bservable Boolean state variables, it g&tschild nodes.
The main difficulty in this approach is making informed de-

cisions on when to split and when not to split.

: . Our algorithms include the BDD-based backward search
explodes because each of the 5 belief states includes the pos- . .
sibility that the first, or the second, or both, or none of the algorithms for fully observable and unobservable planning

test results are available. With 5 illnesses this means that by Cimatti a}nﬂ Bertoli et all. (|1993; 20;)0) as speIC|aI pase;s,

the number of combined belief states is a couple of thou- concerning fu y observable planning the strong planning al-

sands 4 - 32 - 4.6 = 3456, to be exact), and only one gorithm, not the more powerful strong cyclic algorithm.

of them is relevant for producing a plan, the one with the h Clpsgly relatﬁd t?] thehPOMDF;] algorlthm?, byt bajsed on

uncured illnesses and results of both tests. When the preim- NeUristic search rather than on the MDP value iteration and
ages of this belief state with respect to the two test actions goel'f?z;:e(rzaégg) alggrl]tgr;]rsé '%LZ%%PT:%::ZT 33; %dest::rih
have been computed, we have the initial belief state. For 8 ' Y9 purp

illnesses the number of belief states at distance 1 to the goal f‘elgr?zgh;ns Ililckaeblree?!)tgnr?]Sgr?ivr?c;grprrgr?raen(])Tmr%bIer:]es S%Zn
states is 58320, and the planner does not solve the problemMBP angr())ur lanner 9 P
in a reasonable amount of time. The heuristic version of the P '
algorithm needs for the 8 illness problem about three hours. .

BTS (Bertoliet al. 2001) and BTCS (Bonet and Geffner Conclusions and Future Work
2000) are partially observable versions of the notorious In this paper we introduced a combination operator for be-
bomb in the toilet problem, in which the goal is to disarm a lief states and showed how it can be a basis of algorithms
bomb, contained in one of a number of packages, by throw- for planning with partial observability. The operator has
ing the packages into a toilet. In these problems one can not been considered before, most likely because algorithms
detect the bomb by a special sensing action, and take advan-explicitly generating belief states backwards starting from
tage of this to produce smaller plans. the goal belief state have not been introduced before. This




work acts as first evidence that there are possibilities in
making this kind of plan construction feasible, even though
the performance of the first implementation of this idea is
often inferior to other planners addressing the same non-
probabilistic planning problem.

Producing all combinations of even a small number of be-
lief states may be very impractical because of their very high
number, as indicated by the experimentation with our algo-
rithms. The combination of a set of belief states has a very

regular structure because it is essentially the cartesian prod-

uct of the intersections of the individual belief states with the
observational classes. We are currently experimenting with
a new type of algorithm that, instead of explicitly produc-
ing reachable belief states, maintains combinations of belief
states in the product form; that is, it explicitly represents
only the intersections of the observational classes and belief

bolic model checkingJournal of Artificial Intelligence Re-
search 13:305-338, 2000.

A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-
based generation of universal plans in non-deterministic
domains. InProceedings of the Fifteenth National Con-
ference on Atrtificial Intelligence (AAAI-98) and the Tenth
Conference on Innovative Applications of Atrtificial Intelli-
gence (IAAI-98)pages 875-881. AAAI Press, 1998.
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binary decision diagrams: an efficient data structure for
matrix representationfFormal Methods in System Design:
An International Journgl10(2/3):149-169, 1997.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL -
the Planning Domain Definition Language, draft 1.1. un-

states obtained as preimages of other belief states, and does Published, April 1998.

not take the cartesian product which leads to the immedi-
ate explosion in the number of explicitly represented belief
states. The main computational problem with this represen-
tation is to find an implicitly represented belief state (pos-
sibly intersecting several observational classes) from which
a new belief state can be obtained as the preimage with re-
spect to an operator. We consider this as one of the more
interesting topics for future research.

Also, our algorithms should be generalized to plans with
loops, which are needed when there is no finite upper bound
on execution length. Instead of just computing strong preim-

ages, we also have to use weak preimages, and handle the

larger belief states that can be reached from them.
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