
Backward Plan Construction for Planning with Partial Observability

Jussi Rintanen
Albert-Ludwigs-Universiẗat Freiburg, Institut f̈ur Informatik

Georges-K̈ohler-Allee, 79110 Freiburg im Breisgau
Germany

Abstract

We present algorithms for partially observable planning that
iteratively compute belief states with an increasing distance
to the goal states. The algorithms handle nondeterministic
operators, but restrict to problem instances with a finite upper
bound on execution length, that is plans without loops. We
discuss an implementation of the algorithms which uses bi-
nary decision diagrams for representing belief states. It turns
out that generation of new belief states from existing ones,
corresponding to the use of conditional branches in the plans,
can very naturally be represented as standard operations on
binary decision diagrams. We also give a preliminary experi-
mental evaluation of the algorithms.

Introduction
For solving planning problems in which the exact sequence
of states encountered during plan execution cannot be pre-
dicted, for example because of nondeterminism, it is neces-
sary to produce plans that apply different actions depending
on how the plan execution has proceeded so far. Such plans
are called conditional plans.

Construction of conditional plans is particularly tricky
when there is no full observability; that is, when during plan
execution it is not possible to uniquely determine what the
current state of the world is. Planning problems having this
property are said to be partially observable, and their solu-
tion requires that the sets of possible current world states
– the belief states – are (implicitly) maintained during plan
execution and (implicitly) represented by a plan.

In this paper we address the partially observable condi-
tional planning problem. Partial observability is a notori-
ously difficult problem in AI planning and in policy con-
struction for partially observable Markov decision processes
(POMDPs) (Sondik 1978; Kaelblinget al. 1998). Recent
works for planning not directly based on traditional tech-
niques for solving POMDPs include (Weldet al. 1998;
Rintanen 1999; Bonet and Geffner 2000; Bertoliet al.
2001). Bonet and Geffner handle numeric probabilities, like
the POMDP model, the other works essentially handle three
qualitative probabilities,p = 1.0, p = 0.0 and1.0 > p >
0.0. There is also some work on an easier special case,
the unobservable (or conformant) planning problem, which
does not allow observations at all (Smith and Weld 1998;
Cimatti and Roveri 2000; Bonet and Geffner 2000).

We present two new algorithms for partially observable
planning that use backward search in the belief space, pro-
ducing belief states with an increasing distance to the goal
states, each corresponding to a plan with which the goals can
be reached from the belief state in question. The backward
steps in the construction correspond to operator applications
(the maximal possible predecessor belief state for reaching
a given belief state with an operator) and branching (belief
states obtained as combination of a number of belief states
that can be observationally distinguished from each other.)

An effective implementation of the algorithms is obtained
by using BDDs for representing the belief states. The size of
a BDD often does not grow proportionally to the number of
states in the belief state that is represented. Also, the back-
ward steps corresponding to branching allow a very effec-
tive handling of large number of potential ways of branching
as simple BDD operations, sometimes leading to big reduc-
tions in the amount of work needed.

In two special cases, planning with full observability and
with no observability, the algorithms function like some ex-
isting specialized algorithms for the problems in question.

If the problem instance is fully observable, the algorithms
essentially do breadth-first search backwards from the goal
states with the whole search tree traversed up to a certain
level represented as a single BDD, corresponding to one be-
lief state. This backward traversal of the state space is like
in BDD-based algorithms for model-checking in computer-
aided verification and in earlier algorithms for fully observ-
able planning that use BDDs.

If the problem instance is unobservable, the computa-
tional problem is to find a path from the initial belief state
to the goal belief state, like in classical planning, but at the
level of belief states instead of states. The symbolic breadth-
first traversal of the state space used in the fully observable
case is not possible, and the algorithms just produce belief
states with an increasing distance to the goal states.

Both of these two forms of plan search are realized within
the planning algorithms we propose. We generate belief
states backwards starting from the goal belief state. The be-
lief states can be combined (except in the unobservable spe-
cial case) to obtain bigger belief states (the behavior used
in the fully observable case without restrictions), and new
belief states can be obtained by computing the possible pre-
decessor belief states of a belief state with respect to an op-

erator application (which is the only behavior used in the
unobservable special case.)

The structure of the paper is as follows. The next section
describes the exact planning problem we are addressing, in-
cluding the type of observations we handle and the form of
plans. Then we describe the combination operator for be-
lief states which is the basis of the backward traversal algo-
rithms, and how how binary decision diagrams lead to a nat-
ural and efficient implementation of the combination opera-
tion. Two BDD-based algorithms based on the combination
operation are described, the first uses exhaustive generation
of belief states and the second uses a simple heuristic for se-
lecting which belief states to produce. In the implementation
section we describe the main insights obtained from imple-
menting the algorithms, and make runtime comparisons to
other planners. Finally, we conclude the paper by discussing
connections to earlier work.

Problem Definition
Observation Model
During plan execution, before deciding which action to take
next, it is often useful or necessary to try to determine what
is the current state. Of course, given that the last action was
taken in a certain belief state, it is possible to compute the set
of possible successor states, but in addition, it may be pos-
sible to obtain new information about the world that allows
distinguishing between the possible new current states.

The observation model we use is based on partitioning the
state spaceS into non-empty pairwise-disjoint observational
classesP = 〈C1, . . . , Cn〉 such thatS =

⋃
i∈{1,...,n} Ci.

Given the actual current states (which we in general do not
know), we observeCi for i ∈ {1, . . . , n} such thats ∈ Ci,
meaning that the actual current state is one of the states in
Ci, but no further distinctions between the states inCi can
be made. If we already knew that the current state is one of
the states inB, then we know thats is in B ∩ Ci.

This can easily be generalized to the case in which the
possible observations depend on the last action taken; that is,
we have different partitions for different operators, allowing
for example the expression of special observation actions.

We have problem representations with state variables and
implementation techniques that use BDDs in mind, so it is
most convenient to assume that partitionsC1, . . . , Cn are in-
duced by setsO of state variables that are observable. Then,
a componentCi of the partition is a setCi ⊆ S of states that
assign the same values to all of the variables inO. Notice
that when there aren observable Boolean state variables,
there can be2n components in the partition.

There are several extensions of the observation model that
can be implemented by reduction to the basic model we de-
scribed above. For example compound observations can be
reduced to atomic observations, assuming a sufficiently ex-
pressive language for describing operators. Within the BDD
framework, handling observability of compound formulae
φ directly is easy by having a state variableoφ observable,
and requiring thatoφ ↔ φ holds in every state. This can
be directly encoded to the BDD representation of transition
relations of operators.

Plans

The plans our algorithms produce are directed acyclic
graphs. Terminal nodes correspond to goal belief states.
Nodes with exactly one successor node are labeled with
an operator, and they correspond to operator applications.
Nodes with more than one successor are branches: one of the
successor nodes is chosen based on what is observed. The
edges to the successor nodes are labeled with corresponding
sets of observations.

The algorithms in this paper do not produce plans with
loops. Loops are needed for finitely representing plans that
have no finite upper bound on execution length. Execution
length may be unbounded when some of the operators are
nondeterministic. For example, the number of times a dice
has to be thrown to get 6 is unbounded, and the plan needs a
loop (throw the dice until you get 6.) Loops are not needed
when all operators are deterministic. Many types of nonde-
terministic problems have solutions as plans without loops.

Distance Computation for Partially
Observable Planning

Many of the earlier algorithms for fully observable planning
are best understood as computing the distance/cost from ev-
ery state to a goal state. These distances can be understood
as a plan. The plan can be executed by always choosing an
operator that reduces the distance of the current state by 1,
or in nondeterministic planning, that makes the highest ex-
pected reduction in the distance/cost to a goal state.

In this paper we generalize this idea to the more compli-
cated partially observable case. The passage from fully ob-
servable to partially observable planning requires employing
the notion of belief states, that is sets of states, and comput-
ing (an upper bound on) the distances between belief states
and the goal belief state. As in the fully observable case, the
distance computation yields a plan as a byproduct.

The first complication is that the number of belief states
is much higher than the number of states: forn state vari-
ables the maximum number of reachable states is2n, and
this induces a belief space consisting of22n

belief states.
The second complication is the definition of distances.

We define the distance between a belief state and the goal
belief state in terms of a plan implicitly associated with the
belief state. The plan determines the distance as the max-
imum number of actions the plan may need for reaching a
goal state. The computation of distances takes place in par-
allel with the computation of the belief states, and the plans
need not be explicitly constructed.

In fully observable planning with deterministic actions,
the distance of a state is simply one plus the minimum of the
distances of the states that can be reached by one action. The
same holds in partially observable planning for belief states,
but there is also the additional possibility of determining the
distance of a belief states in terms of the distances of other
belief states. This is because plans can have branches. If
from B we can reach belief states having distanced by a
branch (observation) node in the plan, without taking any
actions, then the distance ofB is alsod.

So for the distance computation we need to take into ac-
count the branch nodes, and this is a main difference be-
tween fully observable and partially observable planning. In
fully observable planning, if we know that plans for reach-
ing the goals exist for bothB1 andB2, then we immediately
know that there is also a plan forB1 ∪ B2. In partially ob-
servable planning this is not the case: the existence of two
plans, one reaching the goals fromB1 and the other from
B2 does not mean that there is a plan forB1 ∪ B2. This is
because inB1∪B2 we might not be able to choose the appro-
priate subplan corresponding toB1 andB2, as we might not
know whether the state we are in belongs toB1 or toB2. In
the next section we make this problem explicit, and explain
how plan branching is handled in the distance computation.

For making the distance computation more feasible we
will restrict to generation of set-inclusion maximal belief
states. When we know that belief stateB has distancen,
we do not need to separately represent belief statesB′ ⊂ B
with distancen. This is because the same plan that reaches
the goals fromB will reach the goals also fromB′.

Combination Operation ⊗ for Belief States
Belief statesB1 andB2 areobservationally distinguishable
if every s1 ∈ B1 ands2 ∈ B2 assign a different truth-value
to at least one observable state variable, and therefore be-
long to different components of the partition representing
observability (for allCi in the partition, eitherCi ∩B1 = ∅
or Ci ∩B2 = ∅.) This means that after making the possible
observations concerning the current state, one can exclude
one of the sets of statesB1 andB2 as impossible.

Later in Definition 2 we introduce a combination operator
for belief states that is based on the following intuitions. If
plan existence for belief statesB1 andB2 has been shown
(that is, there is planZ1 for B1 and planZ2 for B2, then
for B′

1 ⊆ B1 andB′
2 ⊆ B2 such thatB′

1 andB′
2 are ob-

servationally distinguishable, there must also be a plan for
B′ = B′

1 ∪ B′
2 that reaches the goal states. This means that

in belief stateB′ we can choose one ofZ1 andZ2 on the
basis of values of the observable state variables, and have a
guarantee that the goal states will be reached by the respec-
tive subplans. Hence a plan forB′ starts with a branch node
that selects one of the subplansZ1 andZ2.

Identifying setsB′
1 andB′

2 is easy in two special cases.
If nothing is observable (the partition has only one com-
ponent consisting of all states), the only possibilities are
B′

1 = B1, B
′
2 = ∅ andB′

1 = ∅, B′
2 = B2; that is, combin-

ing belief states does not produce new ones. If everything
is observable (the partition consists of singleton sets), we
chooseB′

1 = B1, B
′
2 = B2, which means that belief states

can always be combined by taking their union.
In these two special cases the number of new belief states

(1 or 2) is much smaller than in the general partially observ-
able case, which will be discussed next. This agrees with the
computational complexity results that say that the general
planning problem with partial observability is much more
difficult than either of these special cases, and that planning
without observability is more difficult than planning with
full observability (Mundhenket al. 2000).

1 2 3 4 5 6 7 8

8 observational classes

2 belief states

Figure 1: The intersections of two observational classes with
the belief states are not in the inclusion relation. The belief
states can be combined in four different ways.

Example 1 Consider the two belief statesB1 andB2 in Fig-
ure 1. There are eight observational classes (components
of the partition.) The problematic observational classes are
those that intersect bothB1 andB2 and the intersections are
not in the inclusion relation (like in the unobservable case
with only one observational class; in the fully observable
case non-empty intersections coincide because they are sin-
gleton sets.) These are the classesC4 andC5. For all other
classesCi, i ∈ {1, 2, 3, 6, 7, 8} eitherB1 ∩Ci ⊆ B2 ∩Ci or
B2 ∩ Ci ⊆ B1 ∩ Ci.

A belief state containing bothB1∩Cj andB2∩Cj for j ∈
{4, 5} is not (directly) backward reachable fromB1 andB2,
because for none of the states in(B1∩Cj)∪(B2∩Cj) can we
say whether we are inB1 or B2, and hence the appropriate
plan associated withB1 or B2 cannot be chosen.

Therefore, any backward reachable belief stateB must
fulfill either B ∩ Cj ⊆ B1 ∩ Cj or B ∩ Cj ⊆ B2 ∩ Cj .
Because we are interested in maximal belief states, this is
eitherB ∩ Cj = B1 ∩ Cj or B ∩ Cj = B2 ∩ Cj .

Hence we reach backwards the following belief states.

B11 = Bs ∪ (B1 ∩ C4) ∪ (B1 ∩ C5)
B12 = Bs ∪ (B1 ∩ C4) ∪ (B2 ∩ C5)
B21 = Bs ∪ (B2 ∩ C4) ∪ (B1 ∩ C5)
B22 = Bs ∪ (B2 ∩ C4) ∪ (B2 ∩ C5)

HereBs = (B1∪B2)∩ (C1∪C2∪C3∪C6∪C7∪C8) is
the union of the intersections ofB1 andB2 with the unprob-
lematic classes (intersections are in the inclusion relation).
In these classes we can always safely choose the belief state
with the bigger intersection.

Clearly, the number of combined belief states is2n when
the number of non-inclusion observational classes isn. �

Notice that the number of observational classes may be
exponential on the number of state variables, which may
make the number of combinations extremely high.

Now we are ready to give the definition of the combina-
tion operator⊗ for belief statesB1 andB2 which identifies
maximal subsets ofB1 ∪ B2 from which eitherB1 andB2

can be chosen based on the observations that can be made.

Definition 2 Let P = 〈C1, . . . , Cn〉 be a partition of the
set of all states. LetB1 andB2 be two sets of states. Then
B1 ⊗B2 is defined as

B1 ⊗B2 = {I1 ∪ · · · ∪ In|
Ii ∈ {B1 ∩ Ci, B2 ∩ Ci},
Ii 6⊂ B1 ∩ Ci, Ii 6⊂ B2 ∩ Ci,
for all i ∈ {1, . . . , n}} .

The combination operator has many algebraic properties
that may be taken advantage of in improving algorithms. In
this section we point out the most important ones. We con-
sider the operator⊗ with an arbitrary (but fixed) partition of
the state space to observational classes.

Theorem 3 (Monotonicity) Let B, B1 and B2 be belief
states so thatB1 ⊆ B2. For all B′

1 ∈ B ⊗ B1, there is
B′

2 ∈ B ⊗B2 such thatB′
1 ⊆ B′

2.

Proof: Let B′
1 be any member ofB ⊗ B1. HenceB′

1 =⋃
1≤i≤n Ii for Ii such thatIi = B ∩ Ci or Ii = B1 ∩ Ci.
Now we can constructB′

2 as follows. The construction
for every component in the partition (for every observational
class) is independent of the other components. Choose any
i ∈ {1, . . . , n}. If B′

1∩Ci = B∩Ci andB∩Ci 6⊂ B2∩Ci,
we chooseB ∩ Ci for B′

2. Otherwise we chooseB2 ∩ Ci

for B′
2. In both cases the intersectionB′

1 ∩Ci is included in
B′

2 ∩ Ci. Because this holds for every componentCi of the
partition, we haveB′

1 ⊆ B′
2. �

Theorem 4 (Commutativity) For all belief statesB1 and
B2, B1 ⊗B2 = B2 ⊗B1.

Proof: Directly by the symmetry of the definition. �

We define for belief statesB and setsS of belief states

S ⊗B = B ⊗ S =
⋃
{B ⊗B′|B′ ∈ S}.

Theorem 5 (Associativity) For all belief statesB1, B2 and
B3, (B1 ⊗B2)⊗B3 = B1 ⊗ (B2 ⊗B3).

Proof: We show that every belief state in(B1 ⊗ B2) ⊗ B3

is also inB1⊗ (B2⊗B3). Because of the commutativity of
⊗, showing that belief states inB1 ⊗ (B2 ⊗ B3) = (B3 ⊗
B2) ⊗ B1 are also in(B1 ⊗ B2) ⊗ B3 = B3 ⊗ (B2 ⊗ B1)
is by exactly the same argument.

Take any belief stateB in (B1 ⊗ B2) ⊗ B3. Take any
componentCi of the partition (with1 ≤ i ≤ n.) NowB∩Ci

equals eitherB3 ∩ Ci or (B1 ⊗ B2) ∩ Ci. In the latter case
B ∩ Ci equals eitherB1 ∩ Ci or B2 ∩ Ci.

BecauseB was generated by cartesian products of inter-
sections ofB1, B2 andB3 with the observational classes,
the intersections ofB with the observational classes can be
considered independently one at a time.

If B ∩ Ci equalsB1 ∩ Ci, then we have a belief stateB′

in B1 ⊗ (B2 ⊗B3) with B′ ∩ Ci = B ∩ Ci.
If B ∩ Ci equalsB2 ∩ Ci (the caseB3 ∩ Ci is the same

because of commutativity), then there is a belief stateB′′ in
B2 ⊗B3 with B′′ ∩Ci = B ∩Ci, and further, a belief state
B′ in B1 ⊗ (B2 ⊗B3) with B′ ∩ Ci = B ∩ Ci. �

Because the operator is associative and commutative, it
unambiguously generalizes to sets of belief states as

⊗{B1, B2, . . . , Bn} = B1 ⊗B2 ⊗ · · · ⊗Bn.

This can be more directly expressed as

⊗{B1, . . . , Bm} = {I1 ∪ · · · ∪ In|
Ii ∈ {B1 ∩ Ci, . . . , Bm ∩ Ci},
Ii 6⊂ Bj ∩ Ci for j ∈ {1, . . . ,m}
for all i ∈ {1, . . . , n}}

for a partitionP = 〈C1, . . . , Cn〉 of the state space.
We use the generalized definition of the⊗ operation in

implementing the planning algorithms. This is how we avoid
the generation of a very high number of intermediate belief
states that would otherwise be obtained by pairwise combi-
nations of belief states.

Theorem 6 (Inclusion) For all B ∈ T there isB′ ∈ ⊗T
such thatB ⊆ B′.

Proof: We constructB′ =
⋃n

i=1 Ii by constructingIi and
showing thatB ∩ Ci ⊆ Ii for everyi.

ConsiderCi. If B ∩ Ci ⊂ B∗ ∩ Ci for no B∗ ∈ T ,
then we chooseIi = B ∩ Ci, and clearlyB ∩ Ci ⊆ Ii. If
B∩Ci ⊂ B∗∩Ci for someB∗ ∈ T , letB∗ be such a belief
state inT so thatB∗∩Ci is set-inclusion maximal. Now we
chooseIi = B∗ ∩ Ci, and clearlyB ∩ Ci ⊆ Ii.

Because the inclusionB ∩ Ci ⊆ Ii holds for all compo-
nents of the partition,B ⊆

⋃n
i=1 Ii = B′. �

Implementation of ⊗ with BDDs
Instead of representing individual states and belief states as
lists of and lists of lists of atomic propositions, for many
types of planning it is more efficient to represents sets of
states implicitly as formulae. A computationally effective
representation of propositional formulae and Boolean func-
tions is binary decision diagrams (BDDs) (Bryant 1992).
BDDs allow equivalence testing in constant time and many
operations on Boolean functions in polynomial time. They
have been widely applied in model-checking in computer-
aided verification, and in the last years also in AI planning,
especially in planning under uncertainty.

In this section we show how any two belief statesB1 and
B2 represented as BDDs can be combined toB1 ⊗ B2 by
using standard operations on BDDs. Especially interesting
is the use of the existential quantification operation of BDDs
in handling partial observability. This BDD implementation
of ⊗ is the basis of our planning algorithm implementation.

The implementation of⊗ with BDDs is often much more
efficient than a more direct implementation for two reasons.
First, not all of the states in the belief states have to be rep-
resented separately. This is in general the main benefit of
BDDs. Second, the⊗ operation can be performed with-
out iterating over every observational class (component of
the partition), because BDDs very effectively allow handling
those observational classes that intersect the belief states so
that the intersections are in the set-inclusion relation.

The computation proceeds as follows.

1. Compute the observational classes that intersect both be-
lief states so that the intersections are not in inclusion re-
lation. This is by the following BDD computation.

X = ∃U(B1 ∧ ¬B2) ∧ ∃U(B2 ∧ ¬B1)

HereU is the set of unobservable state variables, and∃
denotes the existential abstraction operation on BDDs that
is defined for one variablex as

∃xΦ
def≡ Φ[0/x] ∨ Φ[1/x].

In the fully observable caseX is the empty set, and in the
unobservable caseX is the universal set (if neither of the
belief states subsumes the other.)

2. For those observational classes that intersect the belief
states and the intersections are in the inclusion relation
we can always choose the bigger intersection. The set of
all those observational classes can directly be identified
by simple BDD operations, and the explicit generation of
these observational classes is avoided. The part of the
state space that intersects both belief states so that the in-
tersections are in the inclusion relation is simply

B = (B1 ∪B2)\X.

3. For identifying the no-inclusion observational classes we
iterate over thecubesof X, which are the disjuncts of
a DNF of X. For every cube we assign the observable
variables not occurring in the cube truth-values in all pos-
sible ways, in each case obtaining one observational class.
The benefit of iterating over the cubes ofX instead of us-
ing all the valuations of the observable variables is thatX
may include only a fraction of all observational classes.
There are procedures for efficiently doing iteration over
the cubes for example in the CUDD BDD package.

4. For every observational classCi in X computeBi
1 =

B1 ∩ Ci andBi
2 = B2 ∩ Ci.

5. Produce the2n belief states as

B ∪B1
i1 ∪B2

i2 ∪ · · ·B
n
in

where theij are assigned1 or 2 in all 2n possible ways.

Planning Algorithms
In this section we propose two algorithms for planning with
partial observability that use the⊗ operation. The first algo-
rithm – given in Figure 2 – exhaustively computes setsDi

for i ≥ 0 that contain all maximal belief states at distancei
to the goal belief state.

In the algorithm description preimgo(B) computes the
strong preimage of a setB of states with respect to an op-
eratoro (Cimatti et al. 1998). The strong preimage is the
maximal set of states from which a state inB is always
reached by applyingo. For deterministic operators this coin-
cides with the standard (weak) preimage computation used
in model-checking and other applications of BDDs (Burch
et al. 1994). Both preimage computations can easily be im-
plemented with the standard operations on BDDs.

The variablesI andG are respectively the initial and the
goal belief states, and the setO consists of the operators in

PROCEDUREexhaustive()
i := 0;
D0 = {G};
WHILE I ⊆ B for noB ∈ Di andDi 6= Di−1

Di+1 := ⊗({preimgo(B)|B ∈ Di, o ∈ O} ∪Di);
i := i + 1;

END;
IF I ⊆ B for someB ∈ Di THENplan has been found;

Figure 2: Algorithm that systematically generates the belief
space

PROCEDUREheuristic()
i := 0;
D0 = {G};
A = D0;
WHILE I ⊆ B for noB ∈ Di andA 6= ∅;

B := an element ofA of maximum cardinality;
A := A\{B};
Di+1 := ⊗({preimgo(B)|o ∈ O} ∪Di);
A := A ∪ (Di+1\Di);
i := i + 1;

END;
IF I ⊆ B for someB ∈ Di THENplan has been found;

Figure 3: Algorithm that heuristically selects which belief
states to expand

the problem. This algorithm description assumes a uniform
observability at all points of time so that only one operator
⊗ that uses one partition of the state space to observational
classes is needed. For the case in which the current observa-
tional classes depend on the operator last applied, we have to
consider different functions⊗, and to compute the preimage
of a belief state only with respect to an operator that corre-
sponds to the observability assumption with which the belief
state was obtained by⊗.

The second algorithm – given in Figure 3 – uses a heuris-
tic for selecting one belief state at a time for preimage com-
putation. Because the belief space is not traversed system-
atically, the correspondence between the setsDi and the be-
lief states at distancei is lost, and therefore distance infor-
mation for the generated belief states has to be maintained
separately. The heuristic tried with this second algorithm
simply uses the cardinality of a belief state as the usefulness
measure. On more complicated problems this is likely not
to yield as good results as on the problems considered in the
experiments described later in the paper.

After the initial belief state has been reached by using this
backward computation, a branching plan can be extracted,
as will be discussed in the next section.

We show the correctness of the exhaustive algorithm next.
It is obvious that the heuristic algorithm is also correct, be-
cause all belief states are used at some point of time: the
most promising ones are used early, and others later.

Theorem 7 Whenever there exists a finite acyclic plan for a
problem instance, the algorithm in Figure 2 returns it.

Proof: So assume there is an acyclic plan for a problem in-
stance. Let all nodesN of the plan be annotated with sets
SN of states possible during execution of the plan.

We show by induction oni that if the distance from node
N to a terminal node of the plan isi (counting all edges on
the path), then at theith iteration of the algorithm a belief
stateB such thatSN ⊆ B has been produced, i.e.SN ⊆ B
for a belief stateB ∈ Di. Notice that the steps in construct-
ing the setsDi often correspond to two edges in the plan:
one operator edge and one edge from a branch node.

Base casei = 0: The goal belief state is reached from a
belief state by 0 steps only if the belief state is a subset of
the goal belief state.

Inductive casei ≥ 1: Now N is a node with distancei.
If it is an operator node, then a supersetB′ of the be-

lief stateB obtained fromSN by applyingo (and associated
with the successor node) is by the induction hypothesis in
Di−1. The preimage ofB′ with respect too is one of the be-
lief states the are combined to obtainDi from Di−1. Hence
by Theorem 6 a superset ofSN is in Di.

OtherwiseN is a branch node. Then by the induction hy-
pothesis supersets of the belief states corresponding to the
successor nodes are inDi−1. We show that a superset of
the belief state for the node itself is inDi. Let the belief
states corresponding to the successor nodes beB1, . . . , Bm.
Let the labels of edges to the successor state beφ1, . . . , φm.
These can be understood equivalently as propositional for-
mulae or as sets of states.

For the plan to be executable under the observabilityP =
〈C1, . . . , Cn〉, it must be the case that for nok ∈ {1, . . . , n}
and{φ, φ′} ⊆ {φ1, . . . , φm} such thatφ 6= φ′, φ ∩ Ck 6= ∅
andφ′ ∩ Ck 6= ∅. Otherwise during plan execution when
making observationCk it would not be possible to decide
whether to follow the edge labeledφ or the edge labeledφ′,
as the observation would be compatible with both.

The belief statesB1, . . . , Bm associated with the succes-
sor nodes are subsets of the edge labels, soBk ⊆ φk for all
k ∈ {1, . . . ,m}. Hence no two of these belief states inter-
sect the same observational class. LetB′

1, . . . , B
′
m be the

belief states inDi−1 so thatBi ⊆ B′
i for k ∈ {1, . . . ,m}.

Finally we show thatSN ∩ Ck for everyk ∈ {1, . . . , n}
is included in the intersection ofCk with some belief state
in Di−1, and thereforeSN is a subset of a belief state in
Di. So take anyk ∈ {1, . . . , n} such thatSN ∩ Ck is non-
empty. NowSN ∩Ck = Bj∩Ck for onej ∈ {1, . . . ,m} by
the considerations above, and furtherSN ∩ Ck ⊆ B′

j ∩ Ck.
Now eitherB′ ∩ Ck = B′′ is set-inclusion maximal among
intersections of belief states inDi−1, or there is a belief state
B′′ in Di−1 with an even bigger intersection withCk. In
either case,SN ∩ Ck ⊆ B′′ ∩ Ck.

Because this holds for allk ∈ {1, . . . , n}, one of the be-
lief states inDi includesSN by the definition of⊗. �

The algorithm is more efficient when keeping only set-
inclusion maximal sets inDi. That this resriction does
not reduce the number of belief states that are computed is
shown by Theorem 3. Under the maximality condition, a
belief stateB has distance at mosti if there is a belief state
B′ such thatB ⊆ B andB′ has distance at mosti.

Extraction of Plans
The backward computation of belief states with increasing
distances to the goal belief state is finished when a belief
state that includes the initial belief state has been found. The
assignment of distances to the belief states can be under-
stood as a plan, but it may be useful to extract a graph-like
plan that makes explicit the process of making observations
and determining the next belief states of the plan execution,
and identifies which belief states really are relevant parts of
the plan. So, plan construction proceeds as follows.

1. Let the current belief stateB be the initial belief state and
d the distance computed for it.

2. If the distance of the current belief state isd = 0, then
stop (B ⊆ G for the goal belief stateG.)

3. Identify operatorso1, . . . , on and a partitionB1, . . . , Bn

of B (n ≥ 1) so that the belief states in the partition are
observationally distinguishable from each other, and from
Bi a belief state with distance≤ d− 1 is reached withoi.

4. Recursively construct a plan for the distanced − 1 belief
statesBi by choosingB = Bi and going to step 2.

Because the distance is reduced by at least one when go-
ing to a successor node, all execution paths in the plan are
finite, ending in a terminal node with distance 0 and associ-
ated with a subset of the goal states, and hence the process
terminates after a finite time.

Implementation of the Algorithms
We have implemented the algorithms in C. The planner takes
its input in an extension of PDDL (Ghallabet al. 1998) that
allows expressing observability restrictions and initial states
as belief states. We used the CUDD BDD package by Fabio
Somenzi of the University of Colorado.

During early experimentation with the idea of performing
backward search in the belief space we obtained many in-
sights that led to the implementation discussed in this paper.
These insights were vital in achieving the level of perfor-
mance our planner has.

1. The generalization of⊗ to sets of belief states should be
used instead of the binary version of⊗.
Application of⊗ to all pairs of belief states produces most
belief states several times and directly leads to very high
runtimes. The only redundancy in a good implementation
of the generalized⊗ operator is that already existing be-
lief states (or belief states subsuming them) are generated
once more.

2. Sometimes only a fraction of the preimages of the belief
states differ, because not all states in a compound belief
state can be reached by any single operator.
We have experimented with techniques that take this into
account. First we compute the intersections of the ob-
servational classes with all belief states, but we do not
blindly take their cartesian product. Instead, choosing
which combinations of the intersections to use in pro-
ducing new belief states is performed separately for ev-
ery operator. Only such intersections from each obser-
vational class are chosen that have a non-empty (weak)

preimage with respect to the operator under considera-
tion. Intersections having an empty preimage may be ig-
nored. On some problems this leads to astronomic reduc-
tions in the number of belief states that are produced. For
example in the partially observable 6 block blocks world
the reduction at some application of the operation is from
21760664753063325144711168 ∼ 2.18 · 1025 to 10000,
from which only 180 belief states we did not have already.
Under the above improvement, we must preserve the cor-
rectness of the planning algorithms by explicitly testing
whether the initial belief state can be obtained from the
intersections1. This is so if for every observational class
its intersection with the initial belief state is subsumed by
one of the intersections of the observational class with an
existing belief state. This test also makes it possible to
avoid the last phase of combinations of belief states which
would produce a belief state subsuming the initial belief
state (among with many useless belief states.)

On many problems the number of belief states is still ex-
tremely high, and we believe that the application of the com-
bination operator should be controlled far more, for example
through heuristics that select which belief states to generate.
Typically only a very small fraction of the combinations of
the belief states are needed in solving any given problem
instance. Currently, the heuristics just control which belief
states are used in preimage computations, and even when
only a small number of preimages are used, the number of
new belief states may be very high.

Experimentation with the Implementation
This section describes results of experiments on a first im-
plementation of our algorithms. These results do not con-
stitute a proof of the general applicability of the algorithmic
framework presented in the paper, but act as evidence that
the approach is on some kinds of problems very competitive
with other types of algorithms. Other planners used in the
comparisons were MBP by Bertoli et al. (2001) and GPT by
Bonet and Geffner (2000). Based on the runtime statistics in
the respective papers, these two planners in general seem to
be much faster than earlier planners for partially observable
non-probabilistic planning problems.

Our research hypothesis was that when the goal states can
be reached from “big” belief states, backward search with
belief state combination is more efficient than algorithms
that do forward search in the belief space, like the algorithm
used in MBP. Big belief states in this context means that de-
spite a high degree of uncertainty, sufficiently many obser-
vations can be made to choose the right actions to reach the
goals. Forward search algorithms in this case face the prob-
lem of choosing between branching, which would reduce
the uncertainty but simultaneously lead to very big plans,
and going forward by performing an action, thereby poten-
tially losing a useful branching point in favor of keeping the
plan size down. Backward search algorithms, on the other

1It could be that the initial belief state itself cannot be obtained
by any single operator application from any set of states, and there-
fore the generation of a belief state subsuming the initial belief state
would not take place.

symbol observable state variables
uo -
po CLEAR(X), ONTABLE(X)
pfo ON(X,Y)
fo ON(X,Y), CLEAR(X), ONTABLE(X)

Table 1: Degrees of observability for the blocks world

hand, could effectively compute these big belief states by the
combination operation.

It seems that our results do not confirm this hypothesis.
For example, the emptyroom problem, which is discussed
later, has goal reachability from big initial belief states, but
our algorithm implementation is still very much slower than
MBP. However, there is some evidence for supporting this
hypothesis, obtained from a partially observable variant of
the blocks world problem, but in general the question of the
strengths of the algorithms remains very much open.

To carry out experiments and make a preliminary com-
parison between the planners, we identified benchmarks that
could be used under different degrees of observability. The
most famous benchmark problem in AI planning, the blocks
world, serves this purpose well. This problem can be con-
sidered with different degrees of observability by having dif-
ferent state variables observable. The choices we used are
listed in Table 1. The fully observable case is denoted by
fo and the unobservable byuo. An interesting choice is to
have only the ON relation observable (pfo). This is not fully
observable in the sense that not all state variables are observ-
able, but it is still possible to differentiate between any two
states unambiguously. Another one is to have CLEAR(x)
and ONTABLE(x) observable, which would best correspond
to partially observable planning. Up to three blocks this
makes it possible to distinguish between any two states, but
for a higher number of blocks this is not so.

We formalized the actions so that problem instances with
all of the states as the initial belief state and a stack with
all blocks in it as the goal belief state is solvable. A suf-
ficient condition for this is that the operator for moving a
block onto the table is parameterized only with the block to
be moved and works for irrespective of on which block the
block in question is, so it suffices to know that the block is
clear when moving it onto the table. For the unobservable
case we formalized moving a block onto the table so that the
operator has not precondition, and the move succeeds if the
block was clear and on something, and otherwise nothing
happens. To keep the initial state description small, we took
as initial states all the states with stacks of height at most 4.
On a higher number of blocks this was still not a sufficient
restriction, and starting from 8 blocks neither our planner
nor MBP could transform the initial state descriptions into
BDDs within 1 GB of memory. Also on the 6 and 7 block
problems the BDD size starts being a problem. A more com-
pact encoding of the problems with a smaller number of state
variables would speed up the planners considerably.

We generated problem instances with an increasing
number of blocks, and tested them on the planners (we
decided to christen our planner YKÄ). We ran GPT

problem |S| runtime in seconds
GPT MBP YKÄe YKÄh

bw2fo 3 2.84 0.06 0.02 0.05
bw3fo 13 4.51 31.00 0.11 0.09
bw4fo 73 > 1200 > 1200 1.90 0.56
bw5fo 501 > 1200 > 1200 19.20 6.22
bw6fo 4051 > 1200 > 1200 > 1200 129.57
bw7fo 37633 > 1200 > 1200 > 1200 > 1200
bw2pfo 3 2.81 0.03 0.04 0.04
bw3pfo 13 4.08 0.13 0.10 0.07
bw4pfo 73 > 1200 89.19 2.87 0.73
bw5pfo 501 > 1200 > 1200 44.69 10.75
bw6pfo 4051 > 1200 > 1200 > 1200 365.55
bw7pfo 37633 > 1200 > 1200 > 1200 > 1200
bw2po 3 2.66 0.02 0.04 0.06
bw3po 13 4.06 0.08 0.10 0.10
bw4po 73 > 1200 0.69 1.67 0.67
bw5po 501 > 1200 13.37 > 1200 7.11
bw6po 4051 > 1200 389.05 > 1200 > 1200
bw7po 37633 > 1200 > 1200 > 1200 > 1200
bw2uo 3 2.70 0.02 0.02 0.03
bw3uo 13 3.77 0.08 0.28 0.20
bw4uo 73 > 1200 3.42 > 1200 385.43
bw5uo 501 > 1200 9.86 > 1200 > 1200
bw6uo 4051 > 1200 70.85 > 1200 > 1200
bw7uo 37633 > 1200 > 1200 > 1200 > 1200

Table 2: Runtimes of a number of benchmark problems on a
360 MHz Sun Sparcstation.|S| is the size of the state space.
The runtimes that were within 30 per cent or 50 milliseconds
from the best runtime are highlighted.

with the default setting except for the “set discretization-
levels off” setting as adviced by Bonet. We ran
MBP with the -v 0 -explicit_dfs_forward -
no_conformant_at_start options that were used by
Bertoli et al. (2001) on many of the runs reported there. For
unobservable problems the specialized algorithm for unob-
servable planning in MBP was used because MBP refuses to
apply the general algorithm to unobservable problems.

The runtimes we report are what GPT outputs for the pars-
ing, compilation and solution phases (which would appear to
be real time, not CPU time), what MBP outputs as “search-
ing and printing time” and “preprocessing time”, and for our
planner the total CPU time, including reading and parsing
the input file. GPT takes its input in its extension of the
PDDL language, MBP in the AR language, and our planner
in an extension of the PDDL language. We produced the
input files automatically from common PDDL source files
by a program that translates usual schematic PDDL descrip-
tions into AR and into the two versions of PDDL, with all
operators grounded (no schematic variables,for all andex-
istsquantification unfolded.)

The runtimes are shown in Table 2. YKÄe refers to the
algorithm that exhaustively produces all belief states, and
YKÄh to the one with heuristic selection of belief states.

On the problems with full and almost full observability
our algorithm fares much better than MBP. MBP is sensi-

tive to the number of variables that are observable, even
when there is no difference in terms of distinguishing be-
tween two states, as indicated byfo andpfo problems. On
thepo problems MBP fares better, and on the unobservable
(conformant) problems the specialized conformant planning
algorithm in MBP fares much better. We improved the prob-
lem representation for MBP by eliminating the unneces-
sary state variables ON(X,X). Without this improvement the
MBP runtime on the 3 block fully observable problem was
1144 seconds instead of only 31.

Our problem representation is not favorable to GPT. GPT
seems to compute the initial states by straightforward itera-
tion over the valuations of the state variables, and chooses
those that satisfy the initial state formula. For the 3 block
problems this is still very feasible (12 state variables), but
with 4 blocks it is not (20 state variables.) We believe GPT
would solve at least the 4 and 5 block problems if the initial
states were represented in a way that better observes the way
GPT works. However, we did not verify this.

The number of belief states our algorithms produce for
fully observable problems is small, and the efficiency of the
algorithms does not much lag behind specialized algorithms
for planning with full observability. The number of belief
states that are explicitly produced is linear on the maximum
length execution of the plan.

We also ran the planners on problems that earlier were
used by Bertoli et al. (2001) and Bonet and Geffner (2000)
to demonstrate the capabilities of MBP and GPT. The run-
times, which are rather bad on our planner, are shown in Ta-
ble 3. The formalizations of these problems are not exactly
like those used by Bertoli et al. and Bonet and Geffner, be-
cause we produced all the problem instances automatically
from a formalization of the problems in a version of PDDL.
Unlike the MBP and GPT input languages, our version of
PDDL does not directly support multi-valued state variables.

GPT is on some problems better and on some problems
worse. The GPT implementation differs much from the
other two planners, as it translates the problem instances to
C++ and compiles and runs them. This is the reason for the
higher runtimes on the easiest problems.

The empty room problems represent rooms of varying
sizes (n timesn squares). The problem is to get from an
arbitrary unknown location to the middle of the room by go-
ing north, south, east or west. One can only observe whether
one is immediately next to one of the walls.

The ring problems have a number of rooms in which win-
dows have to be closed and then locked. Initially the state of
the windows is completely unknown.

The medical problems are about performing two medical
tests that together unambiguously determine any ofn pos-
sible illnesses, and then giving one ofn medications to the
patient. If wrong medication is used, the patient dies, oth-
erwise she will recover. Again, our planner does not do so
well. The exhaustive algorithm has difficulties already solv-
ing the problem instance with 5 illnesses. By starting from
the goal states it identifies the 5 belief states from which
the goals can be reached by taking the appropriate medica-
tion, and a couple of others where the illness has already
been treated. But from here on the number of belief states

problem |S| runtime in seconds
GPT MBP YKÄe YKÄh

medical02 20 2.51 0.02 0.11 0.09
medical03 32 2.76 0.02 8.99 0.15
medical04 36 2.82 0.03 36.46 3.33
medical05 48 3.41 0.08 > 1200 4.19
medical06 52 3.44 0.05 > 1200 328.38
medical07 64 6.61 0.06 > 1200 244.03
medical08 68 20.41 0.09 > 1200 > 1200
BTS02 7 2.44 0.03 0.02 0.05
BTS03 10 2.58 0.02 0.06 0.05
BTS04 13 2.86 0.02 0.09 0.06
BTS05 16 3.40 0.03 0.24 0.08
BTS06 19 4.50 0.06 0.87 0.17
BTS07 22 7.27 0.06 3.99 0.32
BTS08 25 16.61 0.07 19.47 0.51
BTS09 28 49.17 0.11 95.73 0.95
BTS10 31 165.91 0.13 518.15 1.75
BTS12 37 > 1200 0.21 > 1200 3.87
BTS14 43 > 1200 0.35 > 1200 8.77
BTS16 49 > 1200 0.44 > 1200 19.67
BTCS02 47 3.91 0.03 0.09 0.11
BTCS03 132 3.08 0.01 2.92 1.00
BTCS04 341 4.44 0.05 128.32 13.06
BTCS05 838 > 1200 0.09 > 1200 167.56
BTCS06 1991 188.78 0.18 > 1200 > 1200
emptyroom05 25 21.55 0.05 > 1200 2.61
emptyroom06 36 317.72 0.09 > 1200 26.22
emptyroom07 49 > 1200 0.12 > 1200 31.68
emptyroom08 64 > 1200 0.15 > 1200 77.60
emptyroom10 100 > 1200 0.19 > 1200 395.27
emptyroom15 225 > 1200 0.36 > 1200 > 1200
ring03 162 3.88 0.11 29.65 29.91
ring04 648 4.61 0.40 > 1200 > 1200

Table 3: Runtimes of a number of benchmark problems on a
360 MHz Sun Sparcstation.|S| is the size of the state space.

explodes because each of the 5 belief states includes the pos-
sibility that the first, or the second, or both, or none of the
test results are available. With 5 illnesses this means that
the number of combined belief states is a couple of thou-
sands (24 · 32 · 4 · 6 = 3456, to be exact), and only one
of them is relevant for producing a plan, the one with the
uncured illnesses and results of both tests. When the preim-
ages of this belief state with respect to the two test actions
have been computed, we have the initial belief state. For 8
illnesses the number of belief states at distance 1 to the goal
states is 58320, and the planner does not solve the problem
in a reasonable amount of time. The heuristic version of the
algorithm needs for the 8 illness problem about three hours.

BTS (Bertoliet al. 2001) and BTCS (Bonet and Geffner
2000) are partially observable versions of the notorious
bomb in the toilet problem, in which the goal is to disarm a
bomb, contained in one of a number of packages, by throw-
ing the packages into a toilet. In these problems one can
detect the bomb by a special sensing action, and take advan-
tage of this to produce smaller plans.

Related Work
Algorithms for computing optimal POMDP policies are re-
lated to our algorithms, especially the POMDP value itera-
tion algorithms (Sondik 1978; Smallwood and Sondik 1973;
Kaelblinget al. 1998). These algorithms implicitly do back-
ward construction of branching plans, and for each such plan
compute its value for each state in the state space. For be-
lief states the value of such a plan is obtained as a linear
combination of the values for the individual states.

Our algorithms, on the other hand, ignore exact costs and
probabilities, and just consider whether a plan is acceptable
for a given state or a set of states, but are similarly based
on an implicit backward construction of branching plans. In
our algorithms each plan is represented by a set of states
for which it is guaranteed to reach the goals. And each of
the backup steps attempts to find bigger such sets, roughly
corresponding to the backup steps in the POMDP value it-
eration algorithms trying to find increasingly better approx-
imations of the value function. Our algorithms do not find
optimal plans for example because of the restriction to set-
inclusion maximal belief states.

Extensions of BDDs have recently been used for im-
plementing POMDP policy construction algorithms for
POMDPs represented in a factored form. For example,
algebraic decision diagrams (ADDs) (Fujitaet al. 1997;
Baharet al. 1997) were used by Feng and Hansen (2000).

Earlier work on partially observable planning with BDDs
includes (Bertoliet al. 2001). Their algorithm uses BDDs
for representing belief states. Plan search is by forward
search starting from the initial belief state. The planner
has two choices: either take a single action and reach an-
other belief state, or make an observation (one observable
state variable or several), which splits the belief state to sev-
eral smaller ones, and continue plan construction recursively
from each. When this algorithm splits a belief state undern
observable Boolean state variables, it gets2n child nodes.
The main difficulty in this approach is making informed de-
cisions on when to split and when not to split.

Our algorithms include the BDD-based backward search
algorithms for fully observable and unobservable planning
by Cimatti and Bertoli et al. (1998; 2000) as special cases,
concerning fully observable planning the strong planning al-
gorithm, not the more powerful strong cyclic algorithm.

Closely related to the POMDP algorithms, but based on
heuristic search rather than on the MDP value iteration and
policy iteration algorithms, is the GPT system by Bonet and
Geffner (2000). Plans are found by general-purpose search
algorithms like real time dynamic programming. The sys-
tem is applicable to a much wider range of problems than
MBP and our planner.

Conclusions and Future Work
In this paper we introduced a combination operator for be-
lief states and showed how it can be a basis of algorithms
for planning with partial observability. The operator has
not been considered before, most likely because algorithms
explicitly generating belief states backwards starting from
the goal belief state have not been introduced before. This

work acts as first evidence that there are possibilities in
making this kind of plan construction feasible, even though
the performance of the first implementation of this idea is
often inferior to other planners addressing the same non-
probabilistic planning problem.

Producing all combinations of even a small number of be-
lief states may be very impractical because of their very high
number, as indicated by the experimentation with our algo-
rithms. The combination of a set of belief states has a very
regular structure because it is essentially the cartesian prod-
uct of the intersections of the individual belief states with the
observational classes. We are currently experimenting with
a new type of algorithm that, instead of explicitly produc-
ing reachable belief states, maintains combinations of belief
states in the product form; that is, it explicitly represents
only the intersections of the observational classes and belief
states obtained as preimages of other belief states, and does
not take the cartesian product which leads to the immedi-
ate explosion in the number of explicitly represented belief
states. The main computational problem with this represen-
tation is to find an implicitly represented belief state (pos-
sibly intersecting several observational classes) from which
a new belief state can be obtained as the preimage with re-
spect to an operator. We consider this as one of the more
interesting topics for future research.

Also, our algorithms should be generalized to plans with
loops, which are needed when there is no finite upper bound
on execution length. Instead of just computing strong preim-
ages, we also have to use weak preimages, and handle the
larger belief states that can be reached from them.

References
R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi. Algebraic decision
diagrams and their applications.Formal Methods in System
Design: An International Journal, 10(2/3):171–206, 1997.

P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning
in nondeterministic domains under partial observability via
symbolic model checking. In B. Nebel, editor,Proceedings
of the 17th International Joint Conference on Artificial In-
telligence, pages 473–478. Morgan Kaufmann Publishers,
2001.

B. Bonet and H. Geffner. Planning with incomplete in-
formation as heuristic search in belief space. In S. Chien,
S. Kambhampati, and C. A. Knoblock, editors,Proceed-
ings of the Fifth International Conference on Artificial In-
telligence Planning Systems, pages 52–61. AAAI Press,
2000.

R. E. Bryant. Symbolic Boolean manipulation with or-
dered binary decision diagrams.ACM Computing Surveys,
24(3):293–318, 1992.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan,
and D. L. Dill. Symbolic model checking for sequential
circuit verification.IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 13(4):401–424,
1994.

A. Cimatti and M. Roveri. Conformant planning via sym-

bolic model checking.Journal of Artificial Intelligence Re-
search, 13:305–338, 2000.
A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-
based generation of universal plans in non-deterministic
domains. InProceedings of the Fifteenth National Con-
ference on Artificial Intelligence (AAAI-98) and the Tenth
Conference on Innovative Applications of Artificial Intelli-
gence (IAAI-98), pages 875–881. AAAI Press, 1998.
M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal
binary decision diagrams: an efficient data structure for
matrix representation.Formal Methods in System Design:
An International Journal, 10(2/3):149–169, 1997.
M. Ghallab, A. Howe, C. Knoblock, D. McDermott,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL -
the Planning Domain Definition Language, draft 1.1. un-
published, April 1998.
E. Hansen and Z. Feng. Dynamic programming for
POMDPs using a factored state representation. InPro-
ceedings of the Fifth International Conference on Artificial
Intelligence Planning Systems, pages 130–139, 2000.
L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence, 101(1-2):99–134, 1998.
M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allen-
der. Complexity of finite-horizon Markov decision process
problems.Journal of the ACM, 47(4):681–720, 2000.
J. Rintanen. Constructing conditional plans by a theorem-
prover.Journal of Artificial Intelligence Research, 10:323–
352, 1999.
R. D. Smallwood and E. J. Sondik. The optimal control
of partially observable Markov processes over a finite hori-
zon. Operations Research, 21:1071–1088, 1973.
D. E. Smith and D. S. Weld. Conformant Graphplan. In
Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence (AAAI-98) and the Tenth Conference on
Innovative Applications of Artificial Intelligence (IAAI-98),
pages 889–896. AAAI Press, 1998.
E. J. Sondik. The optimal control of partially observable
Markov processes over the infinite horizon: discounted
costs.Operations Research, 26(2):282–304, 1978.
D. S. Weld, C. R. Anderson, and D. E. Smith. Extending
Graphplan to handle uncertainty and sensing actions. In
Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence (AAAI-98) and the Tenth Conference on
Innovative Applications of Artificial Intelligence (IAAI-98),
pages 897–904. AAAI Press, 1998.

