
Partial Implicit Unfolding in the Davis-Putnam
Procedure for Quantified Boolean Formulae

Jussi Rintanen

Albert-Ludwigs-Universität Freiburg, Institut für Informatik
Georges-Köhler-Allee, 79110 Freiburg im Breisgau

Germany

Abstract. Quantified Boolean formulae offer a means of representing
many propositional formula exponentially more compactly than propo-
sitional logic. Recent work on automating reasoning with QBF has con-
centrated on extending the Davis-Putnam procedure to handle QBF.
Although the resulting procedures make it possible to evaluate QBF
that could not be efficiently reduced to propositional logic (requiring
worst-case exponential space), its efficiency often lags much behind the
reductive approach when the reduction is possible. We attribute this in-
efficiency to the fact that many of the unit resolution steps possible in
the reduced (propositional logic) formula are not performed in the cor-
responding QBF. To combine the conciseness of the QBF representation
and the stronger inferences available in the unquantified representation,
we introduce a stronger propagation algorithm for QBF which could be
seen as partially unfolding the universal quantification. The algorithm
runs in worst-case exponential time, like the reduction of QBF to propo-
sitional logic, but needs only polynomial space. By restricting the al-
gorithm the exponential behavior can be avoided while still preserving
many of the useful inferences.

1 Introduction

Quantified Boolean formulae are a generalization of the satisfiability problem of
the propositional logic that allows a more concise representation of many classes
of formulae. The additional conciseness lifts the complexity of evaluating QBF
to PSPACE-complete, which is in strong contrast to the NP-completeness of
propositional satisfiability. However, the connection between the two problems
is close, and not surprisingly some of the recent procedures for evaluating QBF
[3, 20] are extensions of the Davis-Putnam procedure [4]. An alternative solution
technique is to reduce a QBF to an unquantified propositional formula, and to
test its truth by a conventional satisfiability algorithm. The drawback of this
reductive approach is that the size of the propositional formula is worst-case
exponential in the size of the QBF, which usually makes it impractical for all
but the simplest QBF.

A problem with the extensions of the Davis-Putnam procedure to QBF is
that many of the unit resolution steps that would be possible with the reduced

formula do not take place. For restricted types of QBF, when the number of
quantifier alternations is small, this problem has been partially overcome [20].

In this paper we attempt to provide a more general solution to this prob-
lem. The solution departs from earlier work on evaluating QBF in that the
binary search algorithm is combined with a propagation algorithm that runs in
exponential time in the size of the QBF. In general, algorithms for intractable
problems have a restricted number of sources of non-polynomial behavior, and
it is not a priori clear that using an exponential time subprocedure is sensible.
Therefore, we present techniques for avoiding the exponentiality of the propa-
gation algorithm to make the algorithm more practical. Our hypothesis is that
the exponential reduction in problem size, due to the use of QBF instead of
an equivalent unquantified formula, justifies a more expensive propagation algo-
rithm. We also believe that in some cases even an exponential time propagation
algorithm could be justified. The algorithm can be viewed as a conventional unit
propagation algorithm for a QBF representation of unquantified clause sets.

The structure of the paper is as follows. In Sect. 4 we discuss the computa-
tional problem in detail by giving practically motivated examples of QBF that
are very difficult for the current QBF algorithms. In Sect. 5 we outline the prop-
agation algorithm, and in Sect. 6 we propose improvements and give a restricted
variant of the algorithm that runs in polynomial time. Sect. 7 gives a preliminary
experimental analysis of the algorithm, and Sect. 8 discusses related work.

2 Preliminaries

Quantified Boolean formulae are of the form q1x1 · · · qnxnφ where φ is a proposi-
tional formula and the prefix consists of universal ∀ and existential ∃ quantifiers
qi and the propositional variables xi occurring in φ. Define φ[ψ/x] as the formula
obtained from φ by replacing occurrences1 of the propositional variable x by the
formula ψ. The truth of formulae is defined recursively as follows. The truth of
a formula that does not contain variables, that is, that consists of connectives
and the constants true > and false ⊥, is defined by the truth-tables for the
connectives. A formula ∃xφ is true if and only if φ[>/x] or φ[⊥/x] is true. A
formula ∀xφ is true if and only if φ[>/x] and φ[⊥/x] are true. Examples of true
formulae are ∀x∃y(x ↔ y) and ∃x∃y(x ∧ y). The formulae ∃x∀y(x ↔ y) and
∀x∀y(x∨y) are false. Changing the order of two consecutive variables quantified
by the same quantifier does not affect the truth-value of the formula. It is often
useful to ignore the ordering of consecutive variables and view each quantifier as
quantifying a set of formulae, for example ∃x1x2∀y1y2φ.

3 The Extension of the Davis-Putnam Procedure to QBF

We have designed and implemented an algorithm that determines the truth-
value of quantified Boolean formulae [20]. The Davis-Putnam procedure [4] is a

1 We assume that nested quantifiers do not quantify the same variable.

special case of the algorithm. The main differences are that instead of only or-
nodes, the search tree for quantified Boolean formulae contains also and-nodes
that correspond to universally quantified variables, and that the order of the
variables in the prefix constrains the order in which the variables generate a
search tree. The algorithm takes as input formulae in which all quantifiers are
in front of the formulae and the body is in conjunctive normal form.

The main procedure of the algorithm sketched in Fig. 1 takes three parame-
ters.2 The variable e is true if the first quantifier in the prefix of the formula is
∃. The sequence 〈V1, . . . , Vn〉 represents the prefix. For example, if the prefix is
∃x1∃x2∀x3∃x4, then V1 = {x1, x2}, V2 = {x3} and V3 = {x4}. The set C consists
of clauses {l1, . . . , ln} where n ≥ 0 and li are literals. The empty clause ∅ is false.

PROCEDURE decide(e, 〈V1, V2, . . . , Vn〉, C)
BEGIN

C := unit(C);
IF ∅ ∈ C THEN RETURN false;
IF n = 0 THEN RETURN true;
remove from V1 all variables occurring in a unit clause in C;
IF V1 = ∅ THEN

RETURN decide(not e, 〈V2, . . . , Vn〉, C);
x := a member of V1;
V1 := V1\{x};
IF e THEN

IF decide(e, 〈V1, . . . , Vn〉, C ∪ {{x}})
THEN RETURN true;

ELSE
IF not decide(e, 〈V1, . . . , Vn〉, C ∪ {{x}})
THEN RETURN false;

RETURN decide(e, 〈V1, . . . , Vn〉, C ∪ {{¬x}})
END

Fig. 1. The extension of the Davis-Putnam procedure to QBF

The subprocedure unit performs simplification by unit resolution and unit
subsumption; unit(S) is defined as the fixpoint of F under a set S of clauses.

F (C) = {c\{l}|c ∈ C, {l} ∈ C, l ∈ c}
∪ {c ∈ C|l 6∈ c and l 6∈ c for all {l} ∈ C}
∪ {{l} ∈ C}

2 The algorithm is simplified because we just want to indicate what the main differ-
ences to the Davis-Putnam procedure are. For example, we do not require that the
variable x does not have a truth-value when it is branched on.

4 Motivating Examples

First we give simple examples illustrating which unit propagations are not per-
formed by the Davis-Putnam QBF procedure of Section 3, and then we show
a practical example of a class of formulae that are equivalent to exponentially
bigger propositional formulae, and for which the lack of unit propagations makes
even small formulae very difficult.

Example 1. Consider the QBF ∃x∀y∃z(y→ z, z→ x). By considering the case
when the universally quantified variable y gets the value true, one sees that also
x has to be true. That this kind of reasoning may speed up evaluation of QBF
considerably is shown by Rintanen [20].

The above line of reasoning often allows inferring some of the truth-values
of the outermost variables in the Davis-Putnam QBF procedure. For QBF with
prefix ∃∀∃, considering all valuations of the universal variables allows performing
all the desired unit propagation steps.3 However, when the prefix contains more
than one block of universal variables, this is not the case.

Example 2. Consider the QBF ∃a∀b∃x1x2∀y∃z1z2((y→z1) ∧ (z1→x1) ∧ ((¬y ∧
x1) → z2) ∧ (z2 → x2) ∧ ((x1 ∧ x2 ∧ b) → a)). Unlike in Example 1 where (re-
peatedly) choosing truth-values for all universal variables and then performing
unit propagation yielded all desired values for the outermost variables, in this
example the same strategy does not suffice. The problem is that two valuations,
respectively assigning b = >, y = > and b = >, y = ⊥, are needed, and neither of
these alone allows inferring a. First one uses the first assignment and infers x1,
exchanges y = > to y = ⊥, and only then can one infer a with x2. After using
the first assignment, one in general cannot preserve the values obtained for x1

and x2, because these could depend on the choice b = >, to which we have not
committed to.

The propagation pattern present in Example 2 could be made still more
intricate. In ∃T∀U∃X∀Y Φ we could be forced to repeatedly alternate between
valuations v1 and v2 of the universal variables Y in order to infer more and
more values for the existential variables X, keeping part of the valuation (for
the outermost universal variables U) fixed. The second example shows that the
hierarchical propagation structure could be vital for solving naturally occurring
QBF.

Example 3. Consider the following formula that represents the existence of tran-
sition sequences of length 2n between two states [21].

∃SS′(reachn(S, S′) ∧ I ∧G) (1)

Here I and G are the formulae describing the initial and goal states respectively
expressed in terms of variables from sets S and S′. Here reachi(S, S′) means that
3 Of course, performing this computation that is exponential in the number of universal

variables may in practise be too expensive to be useful.

a state represented in terms of variables from S′ can be reached with 2i steps
from a state represented in terms of variables from S. It is recursively defined
as follows.

reach0(S, S′)
def≡ R(S, S′)

reachi+1(S, S′)
def≡ ∃T∀c∃T1∃T2(reachi(T1, T2)
∧(c→(T1 = S ∧ T2 = T))
∧(¬c→(T1 = T ∧ T2 = S′)))

Here R is the one-step transition relation on two sets of variables that re-
spectively represent the state variables for the predecessor and the successor
states. The sets T and S consist of propositional variables, and S = T for
S = {s1, . . . , sn} and T = {t1, . . . , tn} means (s1 ↔ t1) ∧ · · · ∧ (sn ↔ tn). The
idea of the definition of reachi+1(S, S′) is that the variables T describe a state
halfway between S and S′, and the two values for the variable c correspond to
two reachability tests, one between S and T , and the other between T and S′.
This is very close to the PSPACE membership proof of s-t reachability of graphs
represented in terms of state variables [15, 14, 2].

If we eliminate all universal variables from Formula 1, we see that it is essentially
a concise O(log t) space (t = 2n) representation of

I0 ∧R(S0, S1) ∧R(S1, S2) ∧ · · · ∧R(St−1, St) ∧Gt (2)

with only one occurrence of the transition relation R. Now, there are many
instances of Formula 2 (especially if the estimated transition sequence length
2i is “low”) in which unit propagation immediately yields many state variable
values [9, 18]. However, for the corresponding Formula 1 none of this takes place.
The Davis-Putnam QBF procedure performs an exhaustive search through the
valuations of all the variables but the innermost ones. This makes even small
reachability problems (a couple of dozen state variables and transition sequence
length 4) practically unsolvable on the Davis-Putnam QBF procedure, while
the corresponding Formula 2 would be solved immediately by any reasonable
satisfiability algorithm.

Example 4. When the transition relation R is the implication s0→s1, we obtain
the following formula for reachability of length 4.

∃ab
∃x1∀c1∃s1∃t1
∃x2∀c2∃s2∃t2 (a∧

c1→((a↔ s1) ∧ (x1 ↔ t1))∧
¬c1→((x1 ↔ s1) ∧ (b↔ t1))∧
c2→((s1 ↔ s2) ∧ (x2 ↔ t2))∧
¬c2→((x2 ↔ s2) ∧ (t1 ↔ t2))∧
(s2→ t2))

This formula is equivalent to (with respect to a and b)

a ∧ (a→s1) ∧ (s1→s2) ∧ (s2→s3) ∧ (s3→b),

and by unit resolution one can directly infer that b has to be true.

5 The New Unit Propagation Algorithm

Let u be the first universal variable in the prefix of a QBF Φ, and let x1, . . . , xn

be the existential variables in the prefix after u. Then u can be eliminated from
Φ by producing the QBF Φu = Φ[x′1/x1, . . . , x

′
n/xn,>/u]∧Φ[⊥/u]. If u1, . . . , um

are the universal variables in Φ, then Φ is true if and only if Φu1,...,um is true. This
latter formula is the one obtained by eliminating the universal variables from
Φ in the given order that agrees with their order in the prefix. Now Φu1,...,um

contains existential variables only, and it – when ignoring the quantifiers – can
be viewed as a normal satisfiability problem in the propositional logic. Because
Φu1,...,um

can have a size exponential in the size of Φ, this reduction is usually
not a practical way of evaluating QBF.

The algorithm we propose could be viewed as partially unfolding the QBF:
at any point of time only one of the 2m conjuncts of Φu1,...,um

is produced, call
it χ, which corresponds to a single valuation of all the universal variables. Such
formulae χ typically share (existential) variables, because existential variables
get renamed in the reduction only when they follow a universal variable in the
prefix. We would like to perform unit resolution on these formulae χ so that
truth-values obtained for shared variables would be propagated also to other
formulae χ′ obtained by partially unfolding Φ.

This idea leads to the hierarchical propagation algorithm in Fig. 2 that does
not explicitly produce the formulae Φu1,...,um . It takes the following parameters.

– Q = 〈V1, . . . , Vn〉 is a sequence of sets of variables that represents the quan-
tifiers of the QBF, where V2i+1 for i ≥ 0 are universally quantified and V2i

for i ≥ 1 are existentially quantified, and
– C is the body of the formula (a set of clauses).

PROCEDURE propagate(〈V1, V2, V3, . . . , Vn〉, C)
IF n = 0 THEN RETURN unit(C);
again:
FOR EACH valuation v of V1 DO

C′ := propagate(〈V3, . . . , Vn〉, C ∪ v);
IF {p} ∈ C′\C or {¬p} ∈ C′\C for some p ∈ P

where P = V \(V1 ∪ · · · ∪ Vn)
THEN

BEGIN
C := C ∪ (C′ ∩ ({{p}|p ∈ P} ∪ {{¬p}|p ∈ P}));
GOTO again;

END
END
RETURN C;

Fig. 2. The hierarchical unit propagation algorithm

Valuations v of V1 above are sets of unit clauses with exactly one occurrence
of every variable in V1. The set V consists of all variables occurring in the

QBF. The existential variables V2i in the prefix Q are used by the propagation
algorithm only as far as conventional unit propagation produces them.

The algorithm runs in exponential time on the size of the QBF because the
number of valuations may be exponential. However, it needs only polynomial
space. This is because at any given point of time only one valuation of the
universal variables and the values inferred for the existential variables need to
be stored explicitly.

6 Improvements

The algorithm can be improved by taking into account properties of the body C
of the formula, and by preventing the worst-case exponential running time. First,
we give stricter conditions on the selection of valuations v based on the possi-
bilities of performing unit resolution steps. This often leads to a big reduction
in the runtime but does not eliminate the exponential time worst-case behavior.
Second, in Sect. 6.1 we consider further restrictions that lead to a polynomial
runtime.

Example 5. Consider a clause set C in which only the clause u1∨u2∨x contains
less than two existential variables, namely the variable x. The only possibility
of performing unit resolution is to assign both u1 and u2 false.

Therefore, only such values should be assigned to the universal values that
contribute to producing a unit clause. It would be possible to take the usefulness
criterion further. The new unit clause that is obtained should have a comple-
mentary occurrence in a clause with less than 3 literals: otherwise the unit clause
would be the only one that is produced, and therefore often not very useful.

6.1 Restrictions Leading to Polynomial Runtime

Producing unit clauses from two clauses u ∨ φ1 and ¬u ∨ φ2 is complementary.
This is the reason why the worst-case runtime of the algorithm is exponential:
otherwise it would suffice to choose one valuation for the universal variables so
that all possible unit clauses are produced.

Example 6. Consider a clause set that includes the clauses (u1 ∨ x1), (¬u1 ∨
x′1), (u2 ∨ x2), (¬u2 ∨ x′2), · · · , (un ∨ xn), (¬un ∨ x′n). One can obtain 2n different
sets of unit clauses by assigning 2n different combinations of truth-values to the
universal variables u1, . . . , un.

The exponential behavior of the propagation algorithm can be avoided by
refraining from trying out all valuations of the universal variables. A reasonable
strategy would be to try only enough valuations so that each unit clause (but not
necessarily every combination of unit clauses) is obtained once. Of course, this
restriction means that correspondence between the unit resolution steps available
in the unquantified propositional formula and in the corresponding QBF is lost.

Depending on the QBF in question, this could be a big loss or not. For the
O(log n) QBF encoding of the s-t reachability problem one may be forced to try
out an exponential number of combinations of unit clauses to obtain all inference
steps.

7 An Implementation of the Algorithm

We have implemented the propagation algorithm as a variant of the QBF solver
described by us earlier [20]. The new propagation algorithm replaces the less
general inversion and sampling techniques. The solver heavily uses a general
form of the failed literal rule for reducing the size of the search tree: see Li and
Anbulagan’s work on the sat00 implementation of the Davis-Putnam procedure
[12]. From the other techniques described by Rintanen [20] only the splitting of
the clause set to disjoint subsets with no shared variables is used.

The new propagation algorithm is used at every node of the search tree,
just like the standard unit propagation algorithm. The implementation consists
of two mutually recursive subprocedures, the first traversing through all the
valuations of a block of universal quantifiers, and the second keeping track of
the existential variables that have been inferred. The polynomial time behavior
described in Sect. 6.1 is achieved by labeling every clause that has been made a
unit clause, and refraining from trying a truth-value (true or false) for a universal
variable if it would not help producing a unit clause that has not already been
labeled. This way the number of valuations tried is at most as high as the number
of clauses with one existential literal and one or more universal literals.

7.1 Structured Formulae

We evaluated the algorithm on problems from AI planning that are encoded like
Example 3. They solve a small blocks’ world problem with 4 blocks, the Towers
of Hanoi with 3 disks, and the well-known bw-large.a and bw-large.b blocks
world problems. We list the runtimes on our implementations of the basic Davis-
Putnam QBF procedure, with the inversion/sampling techniques from [20], and
with the new propagation algorithm, in Table 1. The runs were on a 360MHz Sun
Sparc. We terminated each run that lasted for more than one hour. Even the best
runtimes presented here are worse than the runtimes of conventional satisfiability
algorithms on the reduced formulae. A bigger set of test runs is reported in Table
2. These QBF include ones representing planning under incomplete information
[19], some randomly generated problems, and the encoding of long chains of
implications as in Example 4. On some of the problems the stronger propagation
algorithms slow down QBF evaluation because only very few or no new literals
can be inferred, and running the algorithms is relatively expensive.

7.2 Random Formulae

Contrary to what was reported by us earlier for the less general unfolding tech-
niques [20], our implementation of the new propagation algorithm improves the

Table 1. Runtimes of the QBF algorithm on QBF from AI planning. The last QBF
for each problem is true, the preceding ones are false.

runtime in seconds
problem path length prefix vars clauses DP/QBF DP+inversion DP+new alg.

BLOCKS4 2 ∃∀∃ 149 1183 > 3600 0.03 0.04
BLOCKS4 4 ∃∀∃∀∃ 210 1505 > 3600 1527.55 3.20
BLOCKS4 8 ∃∀∃∀∃∀∃ 271 1827 > 3600 > 3600 4.22
HANOI3 2 ∃∀∃ 709 16599 > 3600 0.56 0.54
HANOI3 4 ∃∀∃∀∃ 962 17553 > 3600 > 3600 23.08
HANOI3 8 ∃∀∃∀∃∀∃ 1215 18507 > 3600 > 3600 > 3600
bw-large.a 2 ∃∀∃ 1099 62916 > 3600 0.89 1.13
bw-large.a 4 ∃∀∃∀∃ 1370 65688 > 3600 > 3600 256.75
bw-large.b 2 ∃∀∃ 1871 178890 > 3600 1.74 2.38
bw-large.b 4 ∃∀∃∀∃ 2268 183741 > 3600 > 3600 15.65
bw-large.b 8 ∃∀∃∀∃∀∃ 2665 188592 > 3600 > 3600 > 3600

Davis-Putnam QBF procedure runtimes on difficult randomly generated prob-
lems substantially. This is because of the stricter and more goal-directed criteria
for selecting truth-values for universal variables.

Tables 3 and 4 show the runtimes of our QBF solver on random QBF (model
A of Gent and Walsh [6]) respectively without and with the new propagation
algorithm. The times reported are runtimes (in milliseconds) of 150 variable
∃∀∃ formulae with varying numbers of universal variables and clauses/variables
ratios. The runtimes are averages on 1000 formulae. The percentage of uni-
versal variables (rows in the tables) varies from 0 to 53.3, and the number of
existential variables before and after the universal variables is the same. The
clauses/variables ratio varies from 1 to 4 (the columns in the tables.) The prop-
agation algorithm produced each unit clause at least once, but did not produce
all combinations of unit clauses. The ratios of the runtimes with and without the
new propagation algorithm are shown in Table 5. In the phase transition region
on the most difficult QBF (see [20]) the new propagation algorithm speeds up the
evaluation by a factor of ten. On easier formulae, especially those containing a
high number of universal variables, the algorithm slows down the evaluation, up
to a factor of five. On bigger formulae and with more quantifiers the speed-ups
are much bigger.

8 Related Work

Early work on quantified Boolean formulae include the polynomial time algo-
rithm by Aspvall et al. [1] for quantified 2-literal clauses, and the polynomial
time decision algorithm for quantified Horn clauses by Kleine Büning et al. [10].
Kleine Büning et al. also define a resolution rule for QBF.

Cadoli et al. [3] extended the Davis-Putnam procedure to handle quantified
Boolean formulae. Their algorithm is similar to the one in Sect. 3, first defined
in [20], but is based on two mutually recursive procedures that respectively

Table 2. Comparison of the runtimes of the basic Davis-Putnam QBF procedure, the
same with the new propagation algorithm restricted to polynomial runtime, and the
unrestricted new propagation algorithm, on a number of QBF.

basic DP/QBF new algo. O(p(n)) new algo. O(2n)
problem runtime tree size runtime tree size runtime tree size
BLOCKS3i.4.4.qcnf > 10 min. - 0.20 0 0.17 0
BLOCKS3i.5.3.qcnf > 10 min. - 94.10 378 101.80 378
BLOCKS3i.5.4.qcnf > 10 min. - 9.19 50 9.80 50
BLOCKS3ii.4.3.qcnf 18.53 1015 0.15 0 0.11 0
BLOCKS3ii.5.2.qcnf 345.98 10021 0.19 0 0.18 0
BLOCKS3ii.5.3.qcnf > 10 min. - 1.49 29 1.44 29
BLOCKS3iii.4.qcnf 20.35 1728 0.05 0 0.03 0
BLOCKS3iii.5.qcnf > 10 min. - 0.73 26 0.70 26
BLOCKS4i.6.4.qcnf > 10 min. - 8.96 0 9.00 0
BLOCKS4i.7.3.qcnf > 10 min. - > 10 min. - > 10 min. -
BLOCKS4i.7.4.qcnf > 10 min. - > 10 min. - > 10 min. -
BLOCKS4ii.6.3.qcnf > 10 min. - 8.78 0 8.85 0
BLOCKS4ii.7.2.qcnf > 10 min. - 15.21 0 15.12 0
BLOCKS4ii.7.3.qcnf > 10 min. - 453.03 190 455.85 190
BLOCKS4iii.6.qcnf > 10 min. - 4.39 0 4.45 0
BLOCKS4iii.7.qcnf > 10 min. - 230.21 178 218.21 178
CHAIN12v.13.qcnf 0.25 36 0.43 12 73.67 12
CHAIN13v.14.qcnf 0.31 39 0.55 13 182.61 13
CHAIN14v.15.qcnf 0.38 42 0.74 14 449.17 14
CHAIN15v.16.qcnf 0.52 45 0.92 15 > 10 min. -
CHAIN16v.17.qcnf 0.64 48 1.13 16 > 10 min. -
CHAIN17v.18.qcnf 0.74 51 1.43 17 > 10 min. -
CHAIN18v.19.qcnf 0.91 54 1.74 18 > 10 min. -
CHAIN19v.20.qcnf 1.07 57 2.15 19 > 10 min. -
CHAIN20v.21.qcnf 1.23 60 2.68 20 > 10 min. -
CHAIN21v.22.qcnf 0.51 63 2.12 21 > 10 min. -
CHAIN22v.23.qcnf 0.71 66 2.57 22 > 10 min. -
CHAIN23v.24.qcnf 1.05 69 3.18 23 > 10 min. -
TOILET10.1.iv.19.qcnf > 10 min. - > 10 min. - > 10 min. -
TOILET10.1.iv.20.qcnf 1.54 19 5.84 18 5.83 18
TOILET16.1.iv.31.qcnf > 10 min. - > 10 min. - > 10 min. -
TOILET16.1.iv.32.qcnf 10.83 31 61.51 30 62.22 30
TOILET2.1.iv.3.qcnf 0.01 3 0.01 0 0.01 0
TOILET2.1.iv.4.qcnf 0.00 3 0.00 2 0.03 2
TOILET6.1.iv.11.qcnf 554.59 111102 46.63 1658 46.52 1658
TOILET6.1.iv.12.qcnf 0.20 11 0.51 10 0.53 10
TOILET7.1.iv.13.qcnf > 10 min. - 659.26 17851 > 10 min. -
TOILET7.1.iv.14.qcnf 0.42 13 1.58 12 1.61 12
R3CNF 150 3 15 2.50 0.T.qcnf 0.82 549 0.05 5 0.05 5
R3CNF 150 3 15 2.50 1.F.qcnf 5.75 3388 0.59 24 0.67 24
R3CNF 150 3 15 2.50 2.T.qcnf 1.54 859 0.13 9 0.15 9
R3CNF 150 3 15 2.50 3.T.qcnf 0.38 300 0.06 6 0.09 6
R3CNF 150 3 15 2.50 4.T.qcnf 2.26 1394 0.32 17 0.34 17
R3CNF 150 3 15 2.50 5.T.qcnf 0.69 522 0.18 9 0.23 11
R3CNF 150 3 15 2.50 6.F.qcnf 14.59 11165 0.92 31 1.14 22
R3CNF 150 3 15 2.50 7.F.qcnf 11.79 7460 1.58 51 1.96 41
R3CNF 150 3 15 2.50 8.F.qcnf 19.34 9865 0.87 34 0.88 33
R3CNF 150 3 15 2.50 9.T.qcnf 0.66 423 0.11 7 0.11 7
impl02.qcnf 0.01 11 0.01 1 0.00 0
impl04.qcnf 0.02 91 0.02 14 0.01 0
impl06.qcnf 0.12 563 0.09 117 0.01 0
impl08.qcnf 0.90 3249 0.96 713 0.05 0
impl10.qcnf 5.62 18435 13.21 4097 0.27 0
impl12.qcnf 25.92 104193 19.59 23223 1.32 0
impl14.qcnf 112.71 588383 118.66 131225 7.21 0
impl16.qcnf 595.66 3322021 650.82 740999 33.72 0
impl18.qcnf > 10 min. - > 10 min. - 126.96 0
impl20.qcnf > 10 min. - > 10 min. - 579.23 0

Table 3. Runtimes the basic QBF solver on 150 variable ∃∀∃ QBF. The columns
correspond to an increasing clauses-to-variables ratio, and the rows correspond to an
increasing percentage of universal variables.

1.00 1.50 2.00 2.50 3.00 3.50 4.00

0.0% 5.14 8.80 18.62 27.11 34.16 51.22 313.54
5.3% 5.19 9.43 152.52 1874.86 5679.83 4225.16 988.06

10.7% 5.29 10.97 847.85 6815.47 3922.47 1141.70 450.39
16.0% 5.60 16.67 1369.13 1985.74 869.00 402.73 232.92
21.3% 5.60 28.63 491.05 438.56 281.99 207.00 134.24
26.7% 5.84 43.45 149.33 140.81 120.16 98.20 86.07
32.0% 6.27 39.42 63.22 64.31 65.86 60.30 59.77
37.3% 7.09 23.06 33.59 36.49 40.14 43.78 47.44
42.7% 8.07 15.91 21.08 26.02 30.12 32.94 37.32
48.0% 8.70 15.52 20.65 21.10 25.49 27.60 29.01
53.3% 6.98 9.68 12.56 15.54 18.98 21.61 25.08

Table 4. Runtimes on 150 variable QBF with the new propagation algorithm

1.00 1.50 2.00 2.50 3.00 3.50 4.00

0.0% 5.20 9.06 19.20 28.35 36.26 54.76 392.60
5.3% 5.82 12.00 80.59 107.53 369.88 439.06 153.00

10.7% 5.97 14.26 80.64 382.74 240.94 122.04 84.91
16.0% 6.00 19.93 195.35 228.58 131.70 126.41 85.20
21.3% 6.86 34.37 181.10 173.56 140.23 95.50 88.40
26.7% 7.19 56.05 164.50 160.94 117.94 100.16 87.78
32.0% 7.87 74.94 199.48 141.58 106.85 97.14 96.59
37.3% 10.03 84.98 155.40 119.27 97.54 94.36 101.35
42.7% 12.81 75.78 109.68 94.22 84.99 88.74 118.92
48.0% 17.88 67.29 84.90 73.21 78.43 88.52 106.42
53.3% 14.18 39.02 51.43 62.12 67.55 82.78 100.19

Table 5. The ratio between the runtimes in Tables 4 and 3

1.00 1.50 2.00 2.50 3.00 3.50 4.00

0.0% 1.011 1.029 1.031 1.045 1.061 1.069 1.252
5.3% 1.121 1.272 0.528 0.057 0.065 0.103 0.154

10.7% 1.128 1.299 0.095 0.056 0.061 0.106 0.188
16.0% 1.071 1.195 0.142 0.115 0.151 0.313 0.365
21.3% 1.225 1.200 0.368 0.395 0.497 0.461 0.658
26.7% 1.231 1.289 1.101 1.142 0.981 1.019 1.019
32.0% 1.255 1.901 3.155 2.201 1.622 1.610 1.616
37.3% 1.414 3.685 4.626 3.268 2.429 2.155 2.136
42.7% 1.587 4.763 5.203 3.621 2.821 2.693 3.186
48.0% 2.055 4.335 4.111 3.469 3.076 3.207 3.668
53.3% 2.031 4.030 4.094 3.997 3.559 3.830 3.994

handle the existential and the universal variables. Cadoli et al. also give a pure
literal rule for universal variables, and propose a test that detects the truth of a
QBF by performing a satisfiability test of the QBF with the universal variables
ignored. Giunchiglia et al. [8] generalize backjumping [17] to QBF so that also
universal variables can be jumped over. Backjumping speeds up the evaluation of
some classes of randomly generated QBF substantially. Also Letz [11] discusses
backjumping, as well as other QBF extensions of techniques that have been used
in implementations of the Davis-Putnam procedure. The techniques discussed
by Cadoli et al., Giunchiglia et al. and Letz in general improve the runtimes,
backjumping on certain randomly generated problems substantially, but on the
kind of structured problems discussed in Sect. 7.1 the implementations of all
these algorithms have the same extremely high runtimes as our implementation
without the stronger propagation algorithm.

Plaisted et al. [16] have presented a decision procedure for QBF that is not
based on the Davis-Putnam procedure. The procedure recursively eliminates
variables from a formula by repeatedly replacing a subformulae by another that
allows same valuations for the variables that occur also outside the subformula
but does not contain the variables that occur only in the original subformula. No
comparison of the algorithm to other algorithms for evaluating QBF has been
carried out, because only an implementation of the algorithm for the unquantified
propositional case exists.

Work directly related to the new propagation algorithm has been presented
earlier by us and other authors. A restricted form of partial unfolding was first
considered by Rintanen [20]. The technique presented there is capable of obtain-
ing all unit resolution steps only when there is one group of universal variables;
that is, when the prefix is ∃∀∃. The technique is applicable to longer prefixes,
but in those cases it is incomplete. A variant of the technique was presented by
Feldmann et al. [5], but experiments by Giunchiglia et al. [8] suggest that it is
not a proper improvement over Rintanen’s original proposal.

The unit resolution problem is not restricted to the Davis-Putnam QBF
procedure: it is also present in algorithms for other problems, most notably
in algorithms for stochastic satisfiability [13]. The propagation algorithm could
be also applied in algorithms for QBF that are not in CNF. In this context an
important question is detecting – from the non-clausal formula – the possibilities
of performing inference steps corresponding to unit resolution. Once this question
is answered, application of the propagation algorithm with its improvements is
straightforward.

The new propagation algorithm for QBF could be contrasted to the work
by Ginsberg and Parkes [7] which generalizes the Davis-Putnam procedure to
schematically represented propositional formulae. Ginsberg and Parkes consider
quantification over constant symbols, and restrict to universal quantification.
Both algorithms process conventional propositional formulae that are repre-
sented compactly (exponential size reduction), and an intractable subproblem
emerges because of the exponential reduction in problem size. In Ginsberg and
Parkes’ algorithm clauses and propositional variables are represented schemati-

cally, for example p(a, b) where a and b are members of a fixed set of constants,
and the computational problem to be solved is to find out – given a partial val-
uation and a set of schematically represented clauses – whether there are unit
clauses with the literal p(a, b) or ¬p(a, b). Note that Ginsberg and Parkes repre-
sent only the clause set implicitly; all of the parametric propositional variables
are represented explicitly. In the QBF case, the clauses and existential variables
are parameterized by the universal variables that occur in the prefix before the
relevant existential variables. Our algorithm performs unit resolution with the
implicitly represented unquantified clause set. We do not represent the parame-
terized variables explicitly (there is an exponential number of them), and only
infer truth-values for the current outermost existential variables.

9 Conclusions

We have presented a propagation algorithm for QBF that takes advantage of the
possibility of partially unfolding the QBF, that is, making explicit part of the
propositional formula that would be obtained by eliminating the universal vari-
ables from the QBF. The algorithm tries to infer truth-values for the outermost
existential variables in the QBF, thereby reducing the need for exhaustive case-
analysis on those variables. The algorithm may need exponential time because
the fully unfolded propositional formula can have a size exponential in the size
of the QBF. We discussed improvements to the algorithm and restrictions that
make the algorithm run in polynomial time.

We investigated the behavior of the algorithm on a narrow class of formulae
that was part of the initial motivation for studying the problem, and on these for-
mulae the algorithm is a differentiating factor between practically unsolvable and
easily solvable QBFs. Whether the algorithm is useful on more general classes
of QBF remains to be seen. To investigate the topic further we would need QBF
with three or more alternations of quantifiers in the prefix. For QBF with prefix
∃∀∃ the algorithm works like a technique earlier proposed by us [20]. We believe
that on many QBF with a longer prefix the hierarchical propagation algorithm
substantially reduces the need for exhaustive search. However, the overhead of
the algorithm is relatively high, and when the reduction in search space does not
take place, the propagation algorithm slows down QBF evaluation.

There are some areas in QBF implementations that potentially benefit from
observing the presence of the new propagation algorithm. For example, branch-
ing heuristics should prefer variables that increase the number of clauses that
contain only one existential variable (and possibly some universal variables.)
The branching heuristics of our current implementation just count the number
of new one and two literal clauses. However, for most of the QBF obtained by
translation from the planning problems discussed in this paper, this would not
appear to make a difference, because there are few clauses that contain universal
variables and more than one existential variable.

The ideas behind the paper point to possible improvements to the Davis-
Putnam QBF procedure. A general problem with the procedure is that branch-

ing variables have to be selected from the variables quantified by the outermost
quantifier, and therefore the choice of the variables is much less flexible than
in the unquantified case. The problem is that – at a given state of the search
process – none of the values chosen for the outermost variables might immedi-
ately constrain the values of the remaining variables, which leads to blind and
exhaustive search. The idea of viewing the QBF as explicitly standing for an
unquantified propositional formulae suggests that branching variables could be
inner variables when they are viewed as being parameterized by the values of the
preceding universal variables. It could be the case that assigning a truth-value
to some of the inner variables could constrain the other variables considerably,
which would reduce the search space. However, because the number of paramet-
ric variables can be exponential in the number of variables in the QBF, it is not
clear how and why this would lead to more efficient evaluation of QBF.

References

[1] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear time algo-
rithm for testing the truth of certain quantified Boolean formulas. Information
Processing Letters, 8(3):121–123, 1979. Erratum in 14(4):195, June 1982.

[2] Tom Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[3] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified
Boolean formulae. In Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence (AAAI-98) and the Tenth Conference on Innovative Applications
of Artificial Intelligence (IAAI-98), pages 262–267. AAAI Press, July 1998.

[4] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1962.

[5] Rainer Feldmann, Burkhard Monien, and Stefan Schamberger. A distributed algo-
rithm to evaluate quantified Boolean formulae. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-2000) and the Twelfth Con-
ference on Innovative Applications of Artificial Intelligence (IAAI-2000), pages
285–290. AAAI Press, 2000.

[6] Ian Gent and Toby Walsh. Beyond NP: the QSAT phase transition. In Proceedings
of the Sixteenth National Conference on Artificial Intelligence (AAAI-99) and the
Eleventh Conference on Innovative Applications of Artificial Intelligence (IAAI-
99), pages 648–653. AAAI Press / The MIT Press, 1999.

[7] Matthew L. Ginsberg and Andrew J. Parkes. Satisfiability algorithms and finite
quantification. In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, ed-
itors, Principles of Knowledge Representation and Reasoning: Proceedings of the
Seventh International Conference (KR2000), pages 690–701. Morgan Kaufmann
Publishers, 2000.

[8] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. An analysis of
backjumping and trivial truth in quantified Boolean formulas satisfiability. In
F. Esposito, editor, AI*AI 2001: Advances in Artificial Intelligence. 7th Congress
of the Italian Association for Artificial Intelligence, Proceedings, number 2175 in
Lecture Notes in Computer Science, pages 111–122. Springer-Verlag, 2001.

[9] Henry Kautz and Bart Selman. Pushing the envelope: planning, propositional
logic, and stochastic search. In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence and the Eighth Innovative Applications of Artificial

Intelligence Conference, pages 1194–1201, Menlo Park, California, August 1996.
AAAI Press.

[10] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quan-
tified Boolean formulas. Information and Computation, 117:12–18, 1995.

[11] Reinhold Letz. Advances in decision procedures for quantified Boolean formu-
las. working notes of the IJCAR 2001 workshop on Theory and Applications of
Quantified Boolean Formulas, 2001.

[12] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pages 366–371, Nagoya, Japan, August 1997.

[13] Michael L. Littman. Initial experiments in stochastic satisfiability. In Proceedings
of the Sixteenth National Conference on Artificial Intelligence (AAAI-99) and the
Eleventh Conference on Innovative Applications of Artificial Intelligence (IAAI-
99), pages 667–672. AAAI Press / The MIT Press, 1999.

[14] Antonio Lozano and José L. Balcázar. The complexity of graph problems for suc-
cinctly represented graphs. In Manfred Nagl, editor, Graph-Theoretic Concepts
in Computer Science, 15th International Workshop, WG’89, number 411 in Lec-
ture Notes in Computer Science, pages 277–286, Castle Rolduc, The Netherlands,
1990. Springer-Verlag.

[15] Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct represen-
tations of graphs. Information and Control, 71:181–185, 1986.

[16] David A. Plaisted, Armin Biere, and Yunshan Zhu. A satisfiability procedure for
quantified Boolean formulae, 2001. unpublished.

[17] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9(3):268–299, 1993.

[18] Jussi Rintanen. A planning algorithm not based on directional search. In A. G.
Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Sixth International Conference (KR
’98), pages 617–624. Morgan Kaufmann Publishers, June 1998.

[19] Jussi Rintanen. Constructing conditional plans by a theorem-prover. Journal of
Artificial Intelligence Research, 10:323–352, 1999.

[20] Jussi Rintanen. Improvements to the evaluation of quantified Boolean formulae.
In Thomas Dean, editor, Proceedings of the 16th International Joint Conference
on Artificial Intelligence, pages 1192–1197. Morgan Kaufmann Publishers, August
1999.

[21] Roberto Sebastiani. Personal communication, Breckenridge, Colorado, April 2000.

