
Complexity of Probabilistic Planning under Average Rewards

Jussi Rintanen
Albert-Ludwigs-Universität Freiburg, Institut für Informatik

Georges-Köhler-Allee, 79110 Freiburg im Breisgau
Germany

Abstract

A general and expressive model of sequential de-
cision making under uncertainty is provided by
the Markov decision processes (MDPs) framework.
Complex applications with very large state spaces
are best modelled implicitly (instead of explic-
itly by enumerating the state space), for example
as precondition-effect operators, the representation
used in AI planning. This kind of representations
are very powerful, and they make the construction
of policies/plans computationally very complex. In
many applications, average rewards over unit time
is the relevant rationality criterion, as opposed to
the more widely used discounted reward criterion,
and for providing a solid basis for the develop-
ment of efficient planning algorithms, the compu-
tational complexity of the decision problems re-
lated to average rewards has to be analyzed. We
investigate the complexity of the policy/plan exis-
tence problem for MDPs under the average reward
criterion, with MDPs represented in terms of con-
ditional probabilistic precondition-effect operators.
We consider policies with and without memory, and
with different degrees of sensing/observability. The
unrestricted policy existence problem for the par-
tially observable cases was earlier known to be un-
decidable. The results place the remaining com-
putational problems to the complexity classes EXP
and NEXP (deterministic and nondeterministic ex-
ponential time.)

1 Introduction
Markov decision processes (MDPs) formalize decision mak-
ing in controlling a nondeterministic transition system so that
given utility criteria are satisfied. An MDP consists of a set
of states, a set of actions, transition probabilities between the
states for every action, and rewards/costs associated with the
states and actions. A policy determines for every state which
action is to be taken. Policies are valued according to the
rewards obtained or costs incurred.

Applications for the kind of planning problems addressed
by this work include agent-based systems, including Internet

agents and autonomous robots, that have to repeatedly per-
form actions over an extended period of time in the presence
of uncertainty about the environment, and the actions have to
– in order to produce the desired results – follow a high-level
strategy, expressed as a plan.

Classical deterministic AI planning is the problem of find-
ing a path between the initial state and a goal state. For
explicit representations of state spaces as graphs this prob-
lem is solvable in polynomial time, and for implicit rep-
resentations of state spaces in terms of state variables and
precondition-effect operators, which sometimes allows an ex-
ponentially more concise representation of the problem in-
stances, the path existence problem is PSPACE-complete
[Bylander, 1994]. This result is closely related to the
PSPACE-completeness of the existence of paths in graphs
represented as circuits [Papadimitriou and Yannakakis, 1986;
Lozano and Balcázar, 1990]. Similarly, the complexity
of most other graph problems increases when a compact
graph representation is used [Galperin and Wigderson, 1983;
Papadimitriou and Yannakakis, 1986; Lozano and Balcázar,
1990; Balcázar, 1996; Feigenbaum et al., 1999].

MDPs and POMDPs can be viewed as an extension of the
graph-based deterministic planning framework with probabil-
ities: an action determines a successor state only with a cer-
tain probability. The objective is to visit valuable states with a
high probability. A policy (a plan) determines which actions
are chosen given the current state (or a set of possible current
states, possibly together with some information on the pos-
sible predecessor states.) For explicitly represented MDPs,
policy evaluation under average rewards reduces to the solu-
tion of sets of linear equations. Sets of linear equations can
be solved in polynomial time. Similarly, policies for many
types of explicitly represented MDPs can be constructed in
polynomial time by linear programming. Papadimitriou and
Tsitsiklis [1987] have shown that policy existence for explic-
itly represented MDPs is P-complete. Madani et al. [1999]
have shown the undecidability of policy existence for UMDPs
and POMDPs with all main rationality criteria.

Like in classical AI planning, MDPs/POMDPs can
be concisely represented in terms of state variables and
precondition-effect operators. The important question in this
setting is, what is the impact of concise representations on
the complexity of these problems. In related work [Mund-
henk et al., 2000; Littman, 1997; Littman et al., 1998], this

question has been investigated in the context of finite hori-
zons. Not surprisingly, there is in general an exponential in-
crease in problem complexity, for example from determinis-
tic polynomial time to deterministic exponential time. The
undecidability results for explicitly represented UMDPs and
POMDPs directly implies the undecidability of the respective
decision problems with concise representations.

In the present work we investigate the complexity of the
policy existence problems for MDPs and POMDPs under ex-
pected average rewards over an infinite horizon. For many
practically interesting problems from AI – for example au-
tonomous robots, Internet agents, and so on – the num-
ber of actions taken is high over a period time and lengths
of sequences of actions are unbounded. Therefore there is
typically no reasonable interpretation for discounts nor rea-
sonable upper bounds on the horizon length, and average
reward is the most relevant criterion. A main reason for
the restriction to bounded horizons and discounted rewards
in earlier work is that the structure of the algorithms in
these cases is considerably simpler, because considerations
on MDP structural properties, like recurrence and periodicity,
can be avoided. Also, for many applications of MDPs that
represent phenomena over extended periods of times (years
and decades), for example in economics, the discounts sim-
ply represent the unimportance of events in the distant future,
for example transcending the lifetimes of the decision mak-
ers. Boutilier and Puterman [1995] have advocated the use of
average-reward criteria in AI.

The structure of the paper is as follows. Section 2 describes
the planning problems addressed by the paper, and Section
3 introduces the required complexity-theoretic concepts. In
Section 4 we present the results on the complexity of test-
ing the existence of policies for MDPs under average reward
criteria, and Section 5 concludes the paper.

2 Probabilistic Planning with Average
Rewards

The computational problem we consider is the existence of
policies for MDPs (fully observable), UMDPs (unobservable)
and POMDPs (partially observable, generalizing both MDPs
and UMDPs) that are represented concisely; that is, states
are represented as valuations on state variables and transition
probabilities are given as operators that affect the state vari-
ables. The policies we consider may have an arbitrary size,
but we also briefly discuss complexity reduction obtained by
restricting to polynomial size policies.

As pointed out in Example 2.1, the average reward of a
policy sometimes cannot unambiguously be stated as a single
real number. The computational problem that we consider is
the following. Is the expected average reward greater than (or
equal to) some constant c. This amounts to identifying the
recurrent classes determined by the policy, and then taking a
weighted average of the rewards according to the probabilities
with which the classes are reached.

2.1 Definition of MDPs
MDPs can be represented explicitly as a set of states and a
transition relation that assigns a probability to transitions be-

r=1 r=1 r=2 r=2 r=3 r=3

Figure 1: A multichain MDP

tween states under all actions. We restrict to finite MDPs and
formally define them as follows.

Definition 1 A (partially observable) Markov decision pro-
cess is a tuple 〈S, A, T, I, R,B〉 where S is a set of states, A
is a set of actions, T : A × S × S → R gives the transition
probability between states (the transition probabilities from a
given state must sum to 1.0) for every action, I ∈ S is the ini-
tial state, R : S × A → R associates a reward for applying
an action in a given state, and B ⊆ 2S is a partition of S to
classes of states that cannot be distinguished.

Policies map the current and past observations to actions.

Definition 2 A policy P : (2S)+ → A is a mapping from
a sequence of observations to an action. A stationary policy
P : 2S → A is a mapping from the current observation to an
action.

For UMDPs the observation is always the same (S), for
MDPs the observations are singleton sets of states (they de-
termine the current state uniquely), and for POMDPs the ob-
servations are members of a partition of S to sets of states that
are indistinguishable from each other (the limiting cases are S
and singletons {si} for si ∈ S: POMDPs are a generalization
of both UMDPs and MDPs.)

The expected average reward of a policy is the limit

lim
N→∞

1
N

N∑
t≥0

∑
a∈A,s∈S

ra,spa,s,t

where ra,s is the reward of taking action a in state s and pa,s,t

is the probability of taking action a at time point t in state
s. There are policies for which the limit does not exist [Put-
erman, 1994, Example 8.1.1], but when the policy execution
has only a finite number of internal states (like stationary poli-
cies have), the limit always exists.

The recurrent classes of a POMDP under a given policy are
sets of states that will always stay reachable from each other
with probability 1.

Example 2.1 Consider a policy that induces the structure
shown in Figure 1 on a POMDP. The three recurrent classes
each consist of two states. The initial state does not belong
to any of the recurrent classes. The state reached by the first
transition determines the average reward, which will be 1, 2
or 3, depending on the recurrent class. �

2.2 Concise Representation of MDPs
An exponentially more concise representation of MDPs is
based on state variables. Each state is an assignment of truth-
values to the state variables, and transitions between states
are expressed as changes in the values of the state variables.

In AI planning, problems are represented by so-called
STRIPS operators that are pairs of sets of literals, the pre-
condition and the effects. For probabilistic planning, this can
be extended to probabilistic STRIPS operators (PSOs) (see
[Boutilier et al., 1999] for references and a discussion of
PSOs and other concise representations of transition systems
with probabilities.) In this paper, we further extend PSOs to
what we call extended PSOs (EPSOs). An EPSO can rep-
resent an exponential number of PSOs, and we use them be-
cause they are closely related to operators with conditional ef-
fects commonly used in AI planning. Apart from generating
the state space of a POMDP, the operators can conveniently
be taken to be the actions of the POMDP.

Definition 3 (Extended probabilistic STRIPS operators)
An extended probabilistic STRIPS operator is a pair 〈C,E〉,
where C is a Boolean circuit and E consists of pairs 〈c, f〉,
where c is a Boolean circuit and f is a set of pairs 〈p, e〉,
where p ∈]0..1] is a real number and e is a set of literals
such that for every f the sum of the probabilities p is 1.0.

For all 〈c1, f1〉 ∈ E and 〈c2, f2〉 ∈ E, if e1 contradicts
e2 for some 〈p1, e1〉 ∈ f1 and 〈p2, e2〉 ∈ f2, then c1 must
contradict c2.

This definition generalizes PSOs by not requiring that the
cs of members 〈c, F 〉 of E are logically disjoint and their
disjunction is a tautology. Hence in EPSOs the effects may
take place independently of each other. Some of the hardness
proofs given later would be more complicated – assuming that
they are possible – if we had to restrict to PSOs.

The application of an EPSO is defined iff the precondition
C is true in the current state. Then the following takes place
for every 〈c, f〉 ∈ E. If c is true, one of the 〈p, e〉 ∈ f is
chosen, each with probability p, and literals e are changed to
true.

Example 2.2 Let

o = 〈>, { 〈p1, {〈1.0, {¬p1}〉}〉,
〈¬p1, {〈1.0, {p1}〉}〉,
. . . ,
〈pn, {〈1.0, {¬pn}〉}〉,
〈¬pn, {〈1.0, {pn}〉}〉}〉.

Now o is an EPSO but not a PSO because the antecedents
p1,¬p1, p2,¬p2, . . . are not logically disjoint. A set of PSOs
corresponding to o has cardinality exponential on n. �

Rewards are associated with actions and states. When an
action is taken in an appropriate state, a reward is obtained.
For every action, the set of states that yields a given reward is
represented by a Boolean circuit.

Definition 4 (Concise POMDP) A concise POMDP over a
set P of state variables is a tuple 〈I, O, r,B〉 where I is an

initial state (assignment P → {>,⊥}), O is a set of EPSOs
representing the actions, and r : O → C × R associates a
Boolean circuit and a real-valued reward with every action,
and B ⊆ P is the set of observable state variables.

Having a set of variables observable – instead of arbitrary
circuits/formulae – is not a restriction. Assume that the values
of a circuit are observable (but the individual input gates are
not.) We could make every EPSO evaluate the value of this
circuit and set the value of an observable variable accordingly.

Definition 5 (Concise MDP) A concise MDP is a concise
POMDP with B = P .

Definition 6 (Concise UMDP) A concise UMDP is a con-
cise POMDP with B = ∅.

2.3 Concise Representation of Policies
We consider history/time-dependent and stationary policies,
and do not make a distinction between history and time-
dependent ones. Traditionally explicit (or flat) represen-
tations of policies have been considered in research on
MDPs/POMDPs: each state or belief state is explicitly as-
sociated with an action. In our setting, in which the number
of states can be very high, also policies have to be represented
concisely. Like with concise representations of POMDPs,
there is no direct connection between the size of a concisely
represented policy and the number of states of the POMDP.

A concise policy could, in the most general case, be a pro-
gram in a Turing-equivalent programming language. This
would, however, make many questions concerning policies
undecidable. Therefore less powerful representations of poli-
cies have to be used. A concise policy determines the current
action based on the current observation and the past history.
We divide this to two subtasks: keeping track of the history
(maintaining the internal state of the execution of the policy),
and mapping the current observation and the internal state of
the execution of the policy to an action. The computation
needed in applying one operator is essentially a state transi-
tion of a concisely represented finite automaton.

A sensible restriction would be that computation of the ac-
tion to be taken and the new internal state of the policy ex-
ecution is polynomial time. An obvious choice is the use
of Boolean circuits, because the circuit value problem is P-
complete (one of the hardest problems in P.) Work on algo-
rithms for concise POMDPs and AI planning have not used
this general a policy representation, but for our purposes this
seems like a well-founded choice. Related definitions of
policies as finite-state controllers have been proposed earlier
[Hansen, 1998; Meuleau et al., 1999; Lusena et al., 1999].

Definition 7 (Concise policy) A concise policy for a concise
POMDP M = 〈I,O, r,B〉 is a tuple 〈T,C, v〉 where T is a
Boolean circuit with |B| + p input gates and p output gates,
C is a Boolean circuit with |B|+p input gates and dlog2 |O|e
output gates, and v is a mapping from {1, . . . , p} to {⊥,>}.

The circuit T encodes the change in execution state in
terms of the preceding state and the observable state variables

stationary history-dependent
UMDP PSPACE-hard, in EXP (L8,9) undecidable
MDP EXP (T11) EXP (C12)
POMDP NEXP (T13) undecidable

Table 1: Complexity of policy existence, with references to
the lemmata, theorems, and corollaries.

B. The circuit C encodes the action to be taken, and v gives
the initial state of the execution. The integer p is the num-
ber of bits for the representation of the internal state of the
execution. When p = 0 we have a stationary policy.

The complexity results do not deeply rely on the exact for-
mal definition of policies. An important property of the def-
inition is that one step of policy execution can be performed
in polynomial time.

3 Complexity Classes
The complexity class P consists of decision problems that are
solvable in polynomial time by a deterministic Turing ma-
chine. NP is the class of decision problems that are solvable
in polynomial time by a nondeterministic Turing machine.
CC2

1 denotes the class of problems that is defined like the
class C1 except that Turing machines with an oracle for a
problem in C2 are used instead of ordinary Turing machines.
Turing machines with an oracle for a problem B may perform
tests for membership in B for free. A problem L is C-hard
if all problems in the class C are polynomial time many-one
reducible to it; that is, for all problems L′ ∈ C there is a
function fL′ computable in polynomial time on the size of its
input and fL′(x) ∈ L if and only if x ∈ L′. A problem is
C-complete if it belongs to the class C and is C-hard.

PSPACE is the class of decision problems solvable in deter-
ministic polynomial space. EXP is the class of decision prob-
lems solvable in deterministic exponential time (O(2p(n))
where p(n) is a polynomial.) NEXP is the class of decision
problems solvable in nondeterministic exponential time. A
more detailed description of the complexity classes can be
found in standard textbooks on complexity theory, for exam-
ple by Balcazár et al. [1988].

4 Complexity Results
Table 1 summarizes the complexity of determining the
existence of stationary and history-dependent policies for
UMDPs, MDPs and POMDPs. In the average rewards case
the existence of history-dependent and stationary policies for
MDPs coincide. The undecidability of UMDP and POMDP
policy existence with history-dependent policies of unre-
stricted size was shown by Madani et al. [1999]. The result
is based on the emptiness problem of probabilistic finite au-
tomata [Paz, 1971; Condon and Lipton, 1989] that is closely
related to the unobservable plan existence problem.

The results do not completely determine the complexity of
the UMDP stationary policy existence problem, but as the sta-
tionary UMDP policies repeatedly apply one single operator,
the problem does not seem to have the power of EXP. It is
also not trivial to show membership in PSPACE.

The rest of the paper formally states the results summarized
in Table 1 and gives their proof outlines.

Lemma 8 Existence of a policy with average reward r ≥
c for UMDPs, MDPs and POMDPs with only one action is
PSPACE-hard.

Proof: It is straightforward to reduce any decision problem
in PSPACE to the problem. This is by constructing a concise
UMDP/MDP/POMDP with only one action that simulates a
polynomial-space deterministic Turing machine for the prob-
lem in question.

There are state variables for representing the input, the
working tape, and the state of the Turing machine. The EPSO
that represents the only action is constructed to follow the
state transitions of the Turing machine. The size of the EPSO
is polynomial on the size of the input. When the machine ac-
cepts, it is restarted. A reward r ≥ c is obtained as long as
the machine has not rejected. If the machine rejects, all future
rewards will be 0. Therefore, if the Turing machine accepts
the average reward is r, and otherwise it is 0. �

There are two straightforward complexity upper bounds re-
spectively for polynomial size and stationary policies. Poly-
nomial size policies can maintain at most an exponential
number of different representations of the past history, and
hence an explicit representation of the product of the POMDP
and the possible histories has only exponential size, just like
the POMDP state space alone. Stationary policies, on the
other hand, do not maintain a history at all, and they therefore
encode at most an exponential number of different decision
situations, one for each (observable) state of a (PO)MDP. For
the unrestricted size partially observable non-stationary case
there is no similar exponential upper bound, and the problem
is not decidable.

Lemma 9 Let c be a real number. Testing the existence of a
poly-size MDP/UMDP/POMDP policy with average reward
r ≥ c is in EXP.

Proof: This computation has complexity NPEXP = EXP, that
corresponds to guessing a polynomial size policy (NP) fol-
lowed by the evaluation of the policy by an EXP oracle. Pol-
icy evaluation proceeds as follows. Produce the explicit rep-
resentation of the product of the POMDP and the state space
of the policy. They respectively have sizes 2p1(x) and 2p2(x)

for some polynomials p1(x) and p2(x). The product, which is
a Markov chain and represents the states the POMDP and the
policy execution can be in, is of exponential size 2p1(x)+p2(x).

From the explicit representation of the state space one can
identify the recurrent classes in polynomial time, for exam-
ple by Tarjan’s algorithm for strongly connected components.
The probabilities of reaching the recurrent classes can be
computed in polynomial time on the size of the explicit rep-
resentation of the state space. The steady state probabilities
associated with the states in the recurrent classes can be deter-
mined in polynomial time by solving a set of linear equations
[Nelson, 1995]. The average rewards can be obtained in poly-
nomial time by summing the products of the probability and
reward associated with each state. Hence all the computation

is polynomial time on the explicit representation of the prob-
lem, and therefore exponential time on the size of the concise
POMDP representation, and the problem is in EXP. �

Lemma 10 Let c be a real number. Testing the existence of a
stationary MDP/UMDP/POMDP policy with average reward
r ≥ c is in NEXP. The policy evaluation problem in this case
is in EXP.

Proof: First a stationary policy (potentially of exponential
size as every state may be assigned a different action) is
guessed, which is NEXP computation.

The rest of the proof is like in Lemma 9: the number of
states that have to be considered is exponential, and evaluat-
ing the value of the policy is EXP computation. Hence the
whole computation is in NEXP. �

Theorem 11 Let c be a real number. Testing the existence of
an arbitrary stationary policy with average reward r ≥ c for
a MDP is EXP-complete.

Proof: EXP-hardness is by reduction from testing the exis-
tence of winning strategies of the perfect-information (fully
observable) game G4 [Stockmeyer and Chandra, 1979]. This
game was used by Littman [1997] for showing that finite-
horizon planning with sequential effect trees is EXP-hard.

G4 is a game in which two players take turns in chang-
ing the truth-values of variables occurring in a DNF formula.
Each player can change his own variables only. Who first
makes the formula true has won. For 2n variables the game
is formalized by n EPSOs, each of which reverses the truth-
value of one variable (if it is the turn of player 1) or reverses
the truth-value of a randomly chosen variable (if it is the turn
of player 2.) Reward 1 is normally obtained, but if the DNF
formula evaluates to true after player 2 has made his move, all
subsequent rewards will be 0. This will eventually take place
if the policy does not represent a winning strategy for player
1, and the average reward will hence be 0. Therefore, the ex-
istence of a winning strategy for player 1 coincides with the
existence of a policy with average reward 1.

EXP membership is by producing the explicit exponential
size representation of the MDP, and then using standard so-
lution techniques based on linear programming [Puterman,
1994]. Linear programming is polynomial time. �

Corollary 12 Let c be a real number. Testing the existence
of an arbitrary history-dependent policy with average reward
r ≥ c for a MDP is EXP-complete.

Proof: For fully observable MDPs and policies of unre-
stricted size, the existence of arbitrary policies with a certain
value coincides with the existence of stationary policies with
the same value. �

Theorem 13 Let c be a real number. Testing the existence of
an arbitrary stationary policy with average reward r ≥ c for
a POMDP is NEXP-complete.

Proof: Membership in NEXP is by Lemma 10. For NEXP-
hardness we reduce the NEXP-complete succinct 3SAT [Pa-
padimitriou and Yannakakis, 1986] to concise POMDPs. The
reduction is similar to the reduction from the NP-complete
3SAT in [Mundhenk et al., 2000, Theorem 4.13]. Their The-
orem 4.25 claims a reduction of succinct 3SAT to stationary
policies of POMDPs represented as circuits.

The reduction works as follows. The POMDP randomly
chooses one of the clauses and makes the proposition of its
first literal observable (the state variables representing the
proposition together with two auxiliary variables are the only
observable state variables). The stationary policy observes
the proposition and assigns it a truth-value. If the literal be-
came true, evaluation proceeds with another clause, and oth-
erwise with the next literal in the clause. Because the policy is
stationary, the same truth-value will be selected for the vari-
able irrespective of the polarity of the literal and the clause.
If none of the literals in the clause is true, the reward which
had been 1 so far will on all subsequent time points be 0.

The succinct 3SAT problem is represented as circuits C
that map a clause number and a literal location (0, 1, 2) to
the literal occurring in the clause in the given position. The
POMDP uses the following EPSOs the application order of
which has been forced to the given order by means of aux-
iliary state variables. The first EPSO selects a clause by as-
signing truth-values to state variables representing the clause
number. The second EPSO copies the number of the propo-
sition in the current literal (first, second or third literal of the
clause) to observable variables, The third and fourth EPSO re-
spectively select the truth-value true and false (this is the only
place where the policy has a choice.) The fifth EPSO checks
whether the truth-value matches, and if it does not and the lit-
eral was the last one, the reward is turned to 0. If it does, the
execution continues from the first EPSO, and otherwise, the
literal was not the last one and execution continues from the
second EPSO and the next literal. �

5 Conclusions
We have analyzed the complexity of probabilistic planning
with average rewards, and placed the most important decid-
able decision problems in the complexity classes EXP and
NEXP. Earlier it had been shown that without full observabil-
ity the most general policy existence problems are not decid-
able. These results are not very surprising because the prob-
lems generalize computational problems that were already
known to be very complex (PSPACE-hard), like plan exis-
tence in classical deterministic AI planning. Also, these prob-
lems are closely related to several finite-horizon problems
that were earlier shown EXP-complete and NEXP-complete
[Mundhenk et al., 2000]. The results are helpful in devising
algorithms for average-reward planning as well as in identi-
fying further restrictions that allow more efficient planning.
As shown by Lemma 9, polynomial policy size brings the
complexity down to EXP, also in the otherwise undecidable
cases. There are likely to be useful structural restrictions on
POMDPs that could bring down the complexity further. Re-
stricted but useful problems in PSPACE would be of high in-
terest.

References
[Balcázar et al., 1988] José Luis Balcázar, Josep Dı́az, and

Joaquim Gabarró. Structural Complexity I. Springer-
Verlag, Berlin, 1988.

[Balcázar, 1996] José L. Balcázar. The complexity of search-
ing implicit graphs. Artificial Intelligence, 86(1):171–188,
1996.

[Boutilier and Puterman, 1995] Craig Boutilier and Mar-
tin L. Puterman. Process-oriented planning and average-
reward optimality. In C. S. Mellish, editor, Proceedings of
the 14th International Joint Conference on Artificial Intel-
ligence, pages 1096–1103. Morgan Kaufmann Publishers,
1995.

[Boutilier et al., 1999] Craig Boutilier, Thomas Dean, and
Steve Hanks. Planning under uncertainty: structural as-
sumptions and computational leverage. Journal of Artifi-
cial Intelligence Research, 11:1–94, 1999.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artificial In-
telligence, 69(1-2):165–204, 1994.

[Condon and Lipton, 1989] Anne Condon and Richard J.
Lipton. On the complexity of space bounded interactive
proofs (extended abstract). In Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science,
pages 462–467. IEEE, 1989.

[Feigenbaum et al., 1999] Joan Feigenbaum, Sampath Kan-
nan, Moshe Y. Vardi, and Mahesh Viswanathan. Complex-
ity of problems on graphs represented as OBDDs. Chicago
Journal of Theoretical Computer Science, 5(5), 1999.

[Galperin and Wigderson, 1983] Hana Galperin and Avi
Wigderson. Succinct representations of graphs. Informa-
tion and Control, 56:183–198, 1983. See [?] for a correc-
tion.

[Hansen, 1998] Eric A. Hansen. Solving POMDPs by
searching in policy space. In Gregory F. Cooper and
Serafı́n Moral, editors, Proceedings of the 1998 Confer-
ence on Uncertainty in Artificial Intelligence (UAI-98),
pages 211–219. Morgan Kaufmann Publishers, 1998.

[Littman et al., 1998] M. L. Littman, J. Goldsmith, and
M. Mundhenk. The computational complexity of prob-
abilistic planning. Journal of Artificial Intelligence Re-
search, 9:1–36, 1998.

[Littman, 1997] Michael L. Littman. Probabilistic proposi-
tional planning: Representations and complexity. In Pro-
ceedings of the 14th National Conference on Artificial In-
telligence (AAAI-97) and 9th Innovative Applications of
Artificial Intelligence Conference (IAAI-97), pages 748–
754, Menlo Park, July 1997. AAAI Press.

[Lozano and Balcázar, 1990] Antonio Lozano and José L.
Balcázar. The complexity of graph problems for succinctly
represented graphs. In Manfred Nagl, editor, Graph-
Theoretic Concepts in Computer Science, 15th Interna-
tional Workshop, WG’89, number 411 in Lecture Notes
in Computer Science, pages 277–286. Springer-Verlag,
1990.

[Lusena et al., 1999] Christopher Lusena, Tong Li, Shelia
Sittinger, Chris Wells, and Judy Goldsmith. My brain is
full: When more memory helps. In Kathryn B. Laskey
and Henri Prade, editors, Uncertainty in Artificial Intelli-
gence, Proceedings of the Fifteenth Conference (UAI-99),
pages 374–381. Morgan Kaufmann Publishers, 1999.

[Madani et al., 1999] Omid Madani, Steve Hanks, and Anne
Condon. On the decidability of probabilistic planning
and infinite-horizon partially observable Markov decision
problems. In Proceedings of the 16th National Conference
on Artificial Intelligence (AAAI-99) and the 11th Confer-
ence on Innovative Applications of Artificial Intelligence
(IAAI-99), pages 541–548. AAAI Press, 1999.

[Meuleau et al., 1999] Nicolas Meuleau, Kee-Eung Kim,
Leslie Pack Kaelbling, and Anthony R. Cassandra. Solv-
ing POMDPs by searching the space of finite policies. In
Kathryn B. Laskey and Henri Prade, editors, Uncertainty
in Artificial Intelligence, Proceedings of the Fifteenth Con-
ference (UAI-99), pages 417–426. Morgan Kaufmann Pub-
lishers, 1999.

[Mundhenk et al., 2000] Martin Mundhenk, Judy Gold-
smith, Christopher Lusena, and Eric Allender. Complexity
of finite-horizon Markov decision process problems. Jour-
nal of the ACM, 47(4):681–720, 2000.

[Nelson, 1995] Randolph Nelson. Probability, stochastic
processes, and queueing theory: the mathematics of com-
puter performance modeling. Springer-Verlag, 1995.

[Papadimitriou and Tsitsiklis, 1987] Christos H. Papadim-
itriou and John N. Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research,
12(3):441–450, August 1987.

[Papadimitriou and Yannakakis, 1986] Christos H. Papadim-
itriou and Mihalis Yannakakis. A note on succinct repre-
sentations of graphs. Information and Control, 71:181–
185, 1986.

[Paz, 1971] Azaria Paz. Introduction to Probabilistic Au-
tomata. Academic Press, 1971.

[Puterman, 1994] M. L. Puterman. Markov decision pro-
cesses: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

[Stockmeyer and Chandra, 1979] Larry J. Stockmeyer and
Ashok K. Chandra. Provably difficult combinatorial
games. SIAM Journal on Computing, 8(2):151–174, 1979.

