
An Iterative Algorithm for Synthesizing Invariants

Jussi Rintanen
Albert-Ludwigs-Universität Freiburg, Institut für Informatik

Georges-Köhler-Allee, 79110 Freiburg im Breisgau
Germany

Abstract

We present a general algorithm for synthesizing state invari-
ants that speed up automated planners and have other appli-
cations in reasoning about change. Invariants are facts that
hold in all states that are reachable from an initial state by
the application of a number of operators. In contrast to ear-
lier work, we recognize the fact that establishing an invari-
ant may require considering other invariants, and this in turn
seems to require viewing synthesis of invariants as fixpoint
computation. Also, the algorithm is not inherently restricted
to invariants of particular syntactic forms.

Introduction
For a given transition system, for example expressed as an
initial state and a set of operators, invariants are facts that
hold in all of its reachable states, or more precisely, they
are true in the initial state, and their truth is preserved by
the application of every operator (which is why they are
called invariants.) Invariants can be applied in many kinds
of planning algorithms for speeding them up. In algorithms
based on backward chaining, like Graphplan (Blum and
Furst 1997) and earlier partial-order planners, invariants rule
out certain subgoals as unreachable. In algorithms that use
neither regression nor progression and represent plan execu-
tions explicitly – for example the satisfiability planning ap-
proach – invariants extend the incomplete state descriptions
and thereby reduce the amount of search needed (Kautz and
Selman 1998; Gerevini and Schubert 1998). Invariants are
useful also in many other kinds of planning algorithms that
operate on partially described states.

Algorithms for computing invariants for automated plan-
ning have earlier been given by Kelleher and Cohn (1992),
Rintanen (1998), Gerevini and Schubert (1998), and Fox and
Long (1998). Kelleher and Cohn as well as Gerevini and
Schubert verify that operators preserve the truth of an in-
variant on the basis of syntactic properties of the operators.
Rintanen sketches an algorithm that computes 2-literal in-
variants from the ground instances of operators. Fox and
Long obtain invariants as a byproduct of inferring types for
operators.

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper we introduce a new algorithm for computing
invariants. The algorithm is iterative like mutex computa-
tion in Graphplan (Blum and Furst 1997) and the algorithm
by Rintanen (1998) (both of which use a ground representa-
tion of operators), operates on a schematic representation of
operators, and generalizes earlier techniques. The algorithm
is motivated by an inductive definition of invariants as for-
mulae that are true in the initial state and are preserved by
the application of every operator. Less general (and in re-
stricted cases more efficient) algorithms can be obtained by
specializing the general algorithm.

For schemata that represent 2-literal ground invariants we
show that the algorithm is efficient. In this case – like with
universally quantified invariants in general – the algorithm
is strictly stronger than earlier algorithms combined. In-
variants with more than two literals are often useful, but the
conditions for inferring non-disjunctive facts (literals) from
n-literal invariants for high n are very strict because n − 1
atomic facts have to be inferred first, so short invariants seem
to be the most important ones. Extensions like existential
quantification and types can be handled within the algorithm
by supplying new subprocedures to the main procedure. No
changes in the main procedure are needed.

Operators
An operator p ⇒ e consists of a precondition p and a post-
condition e that are sets of atomic literals. An operator
can be applied if its preconditions are true, and as a result
its postconditions become true. Many planning algorithms
work with operators as described above but take input in
schematic form; that is, a set of operators can be given as
a schema from which each individual operator can be ob-
tained by replacing the variables by constants.

In an operator schema p ⇒ e, the sets p and e consist of
literals a or ¬a where a are of the form P (t1, . . . , tn), P is
a predicate, and the terms ti are constants or variables. We
sometimes write P (T) where T is a sequence of terms. The
ground literals represented by a literal schema are obtained
by replacing variables with constants in all possible ways.
For simplicity of presentation we assume that all variables
have the same type and that different variables are instanti-
ated with different constants. The latter assumption is rele-
vant only in the main procedure of the algorithm.

Form of Invariants
The invariant schemata we consider are of the form
(x1 6= x′1 ∧ · · · ∧ xn 6= x′n) → (L1 ∨ · · · ∨ Lm),
where Li are schematic literals Pi(x1,1, . . . , x1,n1

) or
¬Pi(x1,1, . . . , x1,n1

), and xi and x′i are variables. All vari-
ables and predicate symbols may be different.

Each invariant schema corresponds to a set of ground in-
variants that are obtained by replacing the variables by con-
stants without violating the inequalities.

Synthesis of Invariants
We present an iterative algorithm for computing invariants
from schematic representations of operators. The algo-
rithm produces a sequence Σ0,Σ1, . . . ,Σn,Σn+1 of sets of
schemata such that Σn = Σn+1, Σ0 is satisfied by the initial
state, and each Σi is obtained from Σi−1 by identifying can-
didate invariants that may be falsified by operators that are
applicable in states that satisfy Σi−1, and replacing them by
weaker candidate invariants. The set Σn that is preserved by
all operator applications consists of invariants.

Because exact descriptions Σi of states reachable with i
steps or fewer may be of exponential size and computing
invariants is PSPACE-hard (σ is an invariant iff there is no
plan that achieves ¬σ), syntactic restrictions on Σi have to
be considered. We do not allow constant symbols in the in-
variants and have an upper bound on clause length. As a
consequence, the sets Σi are only an upper bound on the
reachable states. These restrictions also guarantee a polyno-
mial upper bound on the runtime.

The main procedure of the algorithm is given in Figure 1.
The functions extend(p,Σ), update(p, e), preserves(e, u, σ)
and weaken(σ) are described in the following sections. The
algorithm first identifies candidate invariants Σ0, the ground
instances of which are true in the initial state. The compu-
tation starts from all the atomic schemata with predicates Pi

that occur in the problem instance. Here Xi are sequences
of distinct variables. Then the algorithm goes through stages
i = 1, 2, . . ., considering each operator o ∈ O at each stage.
The ground operator p ⇒ e is obtained from o by replacing
variables occurring in o by new distinct constant symbols.
The function call extend(p,Σi−1) extends the grounded pre-
condition by using the candidate invariants Σi−1 identified
at the previous stage. If an inconsistent set is obtained (con-
taining the empty clause), the precondition was not consis-
tent with Σi−1 and the operator is not applicable. For ap-
plicable operators a description of the possible successor
states is obtained with the function call update(p′, e), and
the preservation of each candidate invariant is tested against
it. If a candidate invariant cannot be shown to be preserved
by an operator, it is replaced by weaker candidate invariants.

In the following sections we describe the auxiliary func-
tions of the algorithm. A familiarity with notions like unifi-
cation, substitutions and so on is assumed. When we write
about unifiers, we mean most general unifiers. Because the
algorithm is for efficiency reasons incomplete, there is a cer-
tain freedom in implementing the auxiliary functions. We
describe the requirements the functions have to satisfy for

INPUT: an initial state I , a set O of operators
OUTPUT: a set of invariants for I,O

Σ0 := {P1(X1),¬P1(X1), P2(X2), . . .}
WHILE there is σ ∈ Σ0 that is false in I DO

Σ0 := (Σ0\{σ}) ∪ weaken(σ);
i := 0;
REPEAT
i := i+ 1;
Σi := Σi−1;
FOR EACH o ∈ O DO

let p⇒ e be a ground instance of o;
p′ := extend(p,Σi−1);
IF p′ is consistent
THEN
u := update(p′, e);
WHILE not preserves(e, u, σ) for some σ ∈ Σi

DO Σi := (Σi\{σ}) ∪ weaken(σ);
UNTIL Σi = Σi−1;
RETURN Σi;

Figure 1: The main procedure of the algorithm

the algorithm to be correct, and outline one possible imple-
mentation.

The Function extend(p,Σ)

To see which facts are true after an operator is applied, we
need to know which facts are true before the operator is ap-
plied. Obviously, the preconditions p of the operator are
true, but assuming that certain facts Σ hold, we can in-
fer the truth of several other facts as well. The function
extend(p,Σ) performs these inferences.

For the correctness of the algorithm the function has to
satisfy p ∪ Σ |= extend(p,Σ).

The function extends a set of ground literals p by applying
the resolution rule between clauses from Σ and p. Resolving
clauses in Σ with each other would produce clauses already
in Σ or (for clauses with 3 or more literals) longer clauses
that would often violate the upper bound on clause length.
Notice that not doing all possible inferences does not sacri-
fice the correctness of the algorithm.

So for E → (A1 ∨ · · · ∨ Am) ∈ Σ choose n ∈ {m −
1,m}, {l1, . . . , ln} ⊆ p, and L1 = {Ai1 , . . . , Ain} ⊆ L2 =
{A1, . . . , Am}. Then for every j ∈ {1, . . . , n} unify lj with
Aij to obtain a unifier θ (inequalitiesE may not be violated.)
Now the clause (E→L)θ for L = L2\L1 can be inferred.
If n = m we get the empty clause.

Example 1 Consider an operator that moves a block from
the top of a block on top of another block. This op-
erator has a ground instance with the precondition p =
{on(A,B), clear(A), clear(C)}. Let

Σ = {x 6= y→(¬on(x, z) ∨ ¬on(y, z)),
x 6= y→(¬on(z, x) ∨ ¬on(z, y)),
¬clear(x) ∨ ¬on(y, x)}.

Now

extend(p,Σ) = {on(A,B), clear(A), clear(C),
x 6= A→¬on(x,B),
x 6= B→¬on(A, x),
A 6= y→¬on(y,B),
B 6= y→¬on(A, y),
¬on(x,A),¬on(x,C),¬clear(B)}.

This is because for example the literal on(y, z) in the clause
x 6= y→(¬on(x, z)∨¬on(y, z)) unifies with on(A,B) and
hence produces x 6= A→¬on(x,B). �

The Function update(p, e)

Given an incomplete description p of a state in which a
ground operator with the postcondition e is applied, the
function update(p, e) computes an incomplete description of
the resulting state. This involves modifying members of p
according to the ground literals in e that become true. The
set p consists of schemata σ = E→φ whereE is a conjunc-
tion of inequalities x 6= y and φ is a disjunction of literals. E
may be the empty conjunction, which is defined to be true.

For the correctness of the algorithm the function must sat-
isfy the following. If an operator making the atomic literals
e true is applied in a state satisfying p, then the successor
state satisfies update(p, e).

Updating members of p according to the literals in e can
be done one at a time, and separately with respect to ev-
ery member of e. Positive and negative literals are treated
symmetrically, so we consider only positive ground literals
P (c1, . . . , cn) ∈ e. We consider every member σ of p in
turn, and show how it has to be modified to reflect the up-
date according to P (c1, . . . , cn).

1. If P does not occur in σ, σ is left intact.

2. If φ consists of more than one literal, delete σ.1

3. If σ is ¬P (c1, . . . , cn), delete σ.

4. If σ is E → ¬P (t1, . . . , tn), then unify P (c1, . . . , cn)
with P (t1, . . . , tn). If unification succeeds with the uni-
fier θ and the inequalities Eθ are satisfied, the follow-
ing changes are made. Let ci1/xi1 , . . . , cim/xim be the
unifier. Now σ is replaced by m candidate invariants
(cij 6= xij ∧ E)→¬P (t1, . . . , tn) for j ∈ {1, . . . ,m}.
In many cases, like in the example below, at most one
variable unifies with a constant and hence m = 1.

5. If σ is E→P (t1, . . . , tn) and P (c1, . . . , cn) unifies with
P (t1, . . . , tn) producing a one-element unifier θ = c/x
and x is the only variable occurring in σ, remove c 6= x
from E (if it is in it).2

1The function would be stronger if it retained σ when none of
the literals in the ground instances of σ are affected. However, our
implementation of extend produces clauses with one literal only,
and hence the change would not make a difference.

2A stronger implementation of this case – or alternatively of
the function preserves – may sometimes be necessary for obtaining
more invariants. Now there is no means for combining schemata
that get split in (4). The splitting is essentially a way of handling
disjunctive antecedents.

6. If in the resulting set no literal unifies with P (c1, . . . , cn),
P (c1, . . . , cn) is added to the set.

Example 2 Let

p = {on(A,B), clear(A), clear(C),
x 6= A→¬on(x,B),
x 6= B→¬on(A, x),
¬on(x,A),¬on(x,C),¬clear(B)}.

We make the following ground literals true in p.

e = {on(A,C),¬on(A,B), clear(B),¬clear(C)}

The result is the following.

update(p, e) = {clear(A),¬clear(C),¬on(x,B),
x 6= C→¬on(A, x),
x 6= A→¬on(x,C),
¬on(x,A), on(A,C), clear(B)}

For example, x 6= B → ¬on(A, x) is transformed to x 6=
C∧x 6= B→¬on(A, x) by on(A,C), and then to x 6= C→
¬on(A, x) by ¬on(A,B). �

The Function preserves(e, u, σ)

When making the ground literals e true in some state so that
a state described by u is reached, we check whether the truth
of the instances of σ is preserved.

For the correctness of the algorithm the function
preserves(e, u, σ) may return true only if u |= σ or e does
not falsify any literal in any ground instance of σ.

The function first tests whether a literal in a ground in-
stance of σ is falsified when the literals in e become true. If
not, the function returns true. Otherwise, we unify comple-
ments of literals in e with literals in σ in all possible ways.
If σθ is true in u for all unifiers θ we return true. Otherwise
we return false.

The truth of σθ in u is tested by a function that tests
whether all ground instances of the first are entailed by
ground instances of the second. Note that the test does not
have to be complete for the whole algorithm to be correct,
and an incomplete test suffices. We implement it as testing
σ′ |= σθ for universally quantified first-order clauses (equiv-
alently: refutability of σ′ ∧ ¬σθ), where σ′ ∈ u. This is by
applications of unit resolution.

Example 3 Let

e = {on(A,C),¬on(A,B), clear(B),¬clear(C)},
u = {clear(A),¬clear(C),

x 6= C→¬on(A, x),
x 6= A→¬on(x,C),
¬on(x,A), on(A,C), clear(B)}, and

σ = y 6= z→(¬on(x, y) ∨ ¬on(x, z)).

The complement of the disjunct ¬on(x, y) in σ unifies with
on(A,C). The unifier θ assigns x = A and y = C. To
see whether the truth of σ is preserved when e is made true,
we have to check whether (y 6= z→¬on(x, z))θ = C 6=
z → ¬on(A, z) is included in u. It is, because x 6= C →
¬on(A, x) ∈ u has exactly the same ground instances. �

The Function weaken(σ)

When it cannot be shown that a candidate invariant is pre-
served by an operator, it is rejected. There may, however, be
closely related invariants that are true in all reachable states
and hence preserved by all operators. So when a candidate
invariant is rejected, we produce a number of new ones that
are weaker in the sense that they hold in more states.

For the termination of the algorithm the schemata σ′ ∈
weaken(σ) have to satisfy σ |= σ′ and σ′ 6|= σ.

We have three weakening operations: adding a disjunct to
the consequent, adding a conjunct x 6= y to the antecedent,
and identifying two variables by replacing occurrences of
one by the other. As discussed earlier, the computation of
arbitrarily complex invariants is not feasible. Hence falsi-
fied candidate invariants with a certain number of literals in
the consequent or in the antecedent are not weakened, but
completely ignored.

Example 4 Consider the schema σ = x 6= y→ P (x, y) ∨
Q(y, z). Let P and Q be the only predicates. By adding a
new literal we obtain the following four weaker schemata.

x 6= y→P (x, y) ∨Q(y, z) ∨ P (u, v)
x 6= y→P (x, y) ∨Q(y, z) ∨Q(u, v)
x 6= y→P (x, y) ∨Q(y, z) ∨ ¬P (u, v)
x 6= y→P (x, y) ∨Q(y, z) ∨ ¬Q(u, v)

By adding a new inequality we obtain the following.

x 6= y ∧ y 6= z→P (x, y) ∨Q(y, z)
x 6= y ∧ x 6= z→P (x, y) ∨Q(y, z)

By identifying two variables we obtain the following.

x 6= y→P (x, y) ∨Q(y, x)
x 6= y→P (x, y) ∨Q(y, y)

Now weaken(σ) consists of the above schemata. �

An Example
Consider the blocks world with blocks A, B and C, and
the initial state where A and B are on the table, and
C is on top of B. The algorithm starts with on(x,y),
ontable(x), clear(x), -on(x,y), -ontable(x),
and -clear(x) and weakens them with the initial state
until the following 2-literal schemata Σ0 are obtained.
1. (x!=z)=>(-on(z,u)|-on(x,u))

2. (y!=u)=>(-on(z,u)|-on(z,y))

3. -on(y,y)

4. -on(z,u)|-on(u,y)

5. -on(y,z)|-ontable(y)

6. -clear(z)|-on(x,z)

7. clear(z)|-on(z,y)

8. ontable(z)|-on(x,z)

9. ontable(y)|clear(y)

From -on(z,u)|-on(u,y) an invariant is later ob-
tained by identifying z and y. Also the last three are not
invariants. These schemata essentially say that all stacks of
blocks are of height 2.

For producing Σi for i ≥ 1 the operators are consid-
ered. If it cannot be shown that a candidate invariant is

preserved by the application of an operator, it must be re-
jected. This happens to schemata 4, 7, 8, 9. The last three
do not yield weaker invariants because of the restriction to
2-literal clauses. The first iteration produces the following
Σ1, and at the second iteration we see that Σ1 is the fixpoint
(Σ1 = Σ2.)

1. (x!=z)=>(-on(z,u)|-on(x,u))

2. (y!=u)=>(-on(z,u)|-on(z,y))

3. -on(y,y)

4. -on(z,u)|-on(u,z)

5. -on(y,z)|-ontable(y)

6. -clear(z)|-on(x,z)

Soundness
Proof of soundness of invariant computation is by induction
on the number of iterations. States that are reachable from
the initial state with i consecutive operations or less satisfy
all ground instances of Σi.

The base case is directly because the first step of the al-
gorithm ensures that schemata in Σ0 have only ground in-
stances that are true in the initial state.

For the inductive case we have to show that for a state s
reachable with i operations there are no candidate invariants
σ ∈ Σi that are false in s. So assume a candidate invariant
σ is false in a state that is reachable from the initial state by
i consecutive operations. Hence there is a ground instance
p ⇒ e of an operator that is applicable after i − 1 consecu-
tive operations from the initial state and that makes a ground
instance of σ false. By the induction hypothesis Σi−1 does
not falsify p. Therefore p′ = extend(p, e) is consistent. The
schemata in update(p′, e) are true in the state that is reached
by applying the operator. And preserves(e, update(p′, e), σ)
returns false. The last three facts are directly the correctness
criteria the functions satisfy. Therefore σ 6∈ Σi.

The algorithm terminates because the number of states
satisfying the candidate invariants increases at each itera-
tion, and as there are finitely many atomic facts, there is an
upper bound on the number of states.

Computational Complexity
Given a fixed upper bound on the number of literals in the
invariants, the number of candidate invariants is polynomial.
All the auxiliary functions run in polynomial time. The
number of iterations is bounded by the number of candidate
invariants. Hence the algorithm runs in polynomial time.

Interestingly, like shown in the outline of the soundness
proof above, the number of iterations is also bounded by the
longest of the shortest paths from the initial state to a reach-
able state. However, like shown by the experiments in the
next section, the number of iterations is much lower in prac-
tice. This is because the candidate invariants cannot exactly
describe all sets of states (assuming that there are no con-
stant symbols and clause length is bounded) and therefore
sets Σi often represent much larger sets of states than those
reachable with i steps. The iteration therefore terminates
much faster than what the theoretical upper bounds predict.

2-literal 3-literal
domain ops invars time invars time
bw-large.a/p 3 6 0.43 7 44.19
bw-large.d/p 3 6 1.18 7 105.76
logistics.a 6 4 1.28 4 160.09
logistics.d 6 4 1.68 4 183.92
hanoi.6 1 6 0.45 7 53.41
hanoi.15 1 6 1.15 7 259.82

Table 1: Runtimes of invariant synthesis in seconds. The
numbers of iterations when computing 2-literal invariants
for bw-large, logistics and hanoi were respectively 2, 6 and
1, and for 3-literal invariants respectively 3, 11 and 3.

Experiments
We have implemented the algorithm, including typed vari-
ables, and tried it on a number of benchmarks: the well-
known blocks world, logistics and towers of Hanoi.

Data from a number of runs are given in Table 1. The runs
were on a 360 MHz Sun Ultra workstation. The program is
compiled Standard ML. We give runtimes for the generation
of 2-literal invariants (the only important form in many ap-
plications) and for comparison also for 3-literal invariants.
Only one inequality was allowed in the antecedents. Most
of the time is spent in weakening the candidate invariants
with the initial state. Main sources of computational over-
head are the generation of many candidate invariants by the
function weaken, almost all of which are later rejected, and
the identification of redundancies by testing inclusion be-
tween candidate invariants. More sophisticated implementa-
tion techniques would reduce these overheads substantially,
especially in the 3-literal case.

Not all domains have interesting n-literal invariants for
any given n. For the blocks world with n blocks there are
m-literal invariants (for m ≤ n) stating that the on relation
is acyclic. The only 3-literal invariant for the blocks world
(and towers of Hanoi) that is not a consequence of a 2-literal
invariant is -on(x,y)|-on(y,z)|-on(z,x). The lo-
gistics domain does not have any.

Invariants inferred by our algorithm for common planning
benchmarks are given next. The 2-literal invariants for the
blocks world were given earlier. For towers of Hanoi we get
the following invariants.

1. -on(x:DISK,x:DISK)

2. -on(y:DISK,z:DISK)|-on(z:DISK,y:DISK)

3. -on(x:DISK,y:DISK)|-free(y:DISK)

4. (x!=z)=>(-at(y:DISK,z:PEG)|-at(y:DISK,x:PEG))

5. (x!=z)=>(-on(y:DISK,z:DISK)|-on(y:DISK,x:DISK))

6. (x!=y)=>(-on(y:DISK,z:DISK)|-on(x:DISK,z:DISK))

And for the logistics domain the following.

1. (y!=u)=>(-at(z:{PACKAGE,TRUCK},u:{PORT,AIRPORT})

|-at(z:{PACKAGE,TRUCK},y:{PORT,AIRPORT}))

2. -at(z:PACKAGE,u:{PORT,AIRPORT})

|-transport(z:PACKAGE,y:{TRUCK,AIRPLANE})

3. (y!=u)=>(-at(z:{PACKAGE,AIRPLANE},u:AIRPORT)

|-at(z:{PACKAGE,AIRPLANE},y:AIRPORT))

4. (y!=u)=>(-transport(z:PACKAGE,u:{TRUCK,AIRPLANE})

|-transport(z:PACKAGE,y:{TRUCK,AIRPLANE}))

Invariants 1 and 3 overlap. This is because airplanes can-
not be at a port, and therefore objects at airports and objects
at airports or ports get handled separately.

Related Work
Derivation of invariants from first-order formalizations of
actions has been investigated by Zhang and Foo (1997).
They give a general rule that is based on inferring which flu-
ents are preserved by an action and that corresponds to the
computation performed by our function update. They also
give derivations of many blocks world invariants.

Gerevini and Schubert’s (1998) techniques for computing
invariants appear to be more general than those by Kelleher
and Cohn (1992). Their method for computing implicational
invariants is a special case of the computation performed by
our functions update and preserves: a disjunction is an in-
variant if for every operator, neither disjunct is falsified by
the operator, or one disjunct is made true, or one disjunct is
a precondition and it is not made false by the operator. For
inferring that in the blocks world there can be at most one
block on top of a block and that a block with another block
on top of it is not clear, Gerevini and Schubert propose tech-
niques that are special cases of our idea of strengthening op-
erator preconditions with candidate invariants. Gerevini and
Schubert say that for the blocks world they cannot infer that
a block is on top of at most one block or that two blocks
cannot simultaneously be on top of each other.

Fox and Long (1998) address the problem of inferring
types for objects on the basis of the operators and an ini-
tial state. Data obtained in that computation can be used in
inferring invariants that state that objects have exactly one of
several (positive) properties (or, in some cases, at most n if
the initial state had n.) Many invariants are not recognized
by Fox and Long, like our blocks world invariants 1, 3, 4
and 6, and the following.

Example 5 Consider the operators B(x) ⇒ ¬A(x),
A(x)⇒ ¬B(x),⇒ A(x), and⇒ B(x), and an initial state
in which for every x at least one of A(x) and B(x) is true.
Clearly A(x) ∨B(x) is an invariant. �

For example for the logistics domain Fox and Long in-
fer ∀x∃yat(x, y) for vehicles x. Our algorithm as described
above does not use existential variables, and hence does not
infer this invariant. However, Fox and Long’s algorithm is
strictly weaker than the obvious extension of our algorithm
to existential variables that is pointed out in the conclusions.

Invariants cannot in general be produced separately. In-
teraction between invariants is often essential in estab-
lishing them, and the invariants in the following exam-
ple cannot be identified with the techniques proposed ear-
lier (Kelleher and Cohn 1992; Gerevini and Schubert 1998;
Fox and Long 1998), but our algorithm finds them immedi-
ately.

Example 6 Consider the operators ¬C(x) ⇒ ¬A(x),
¬A(x)⇒ ¬C(x), andA(x)∧C(x)⇒ ¬B(x) and an initial
state that satisfies I = {A(x) ∨ B(x), B(x) ∨ C(x)}. The

formulae I are invariants for the initial state and the opera-
tors, but verifying that for exampleA(x)∨B(x) is preserved
by ¬C(x) ⇒ ¬A(x) requires extending the precondition
¬C(x) to B(x),¬C(x) by the invariant B(x) ∨ C(x). �

The problem of testing whether given formulae are in-
variants of a transition system has been extensively inves-
tigated in the context of computer-aided verification (Ben-
salem, Lakhnech, and Saidi 1996).

Conclusions
We have presented an algorithm for computing invariants for
automated planning. The main differences to earlier tech-
niques are that the algorithm is not restricted to invariants of
particular syntactic forms, it works uniformly for all invari-
ants, and it is formalized as the iterative computation of a fix-
point. Earlier techniques establish each invariant separately
and fail to produce invariants that our algorithm produces.
Fixpoint computation is needed because interdependencies
between invariants may be complex, and it is not in general
possible to infer some invariants first and then use them for
inferring others. Example 6 shows how two invariants can
depend on each other and have to be established in parallel.

We have been able to show that our algorithm can be im-
plemented efficiently for the practically most important case
of 2-literal invariants. Improved implementation techniques
may make it practical for n-literal invariants for n ≥ 3.

Our algorithm is not restricted to computing invariants for
only one initial state. Given a set S of initial states repre-
sented as Σ0 such that S |= Σ0, we start the computation
from this Σ0 instead of the schemata satisfied by I . Sim-
ilarly, the algorithm can be used for testing whether given
(non-automatically identified) schemata Σ0 are invariants.

This work can be extended to several directions. As an
alternative to the formula-based inexact representations of
reachable states used in the current paper, standard tech-
niques from symbolic model-checking (Burch et al. 1994)
that use binary decision diagrams could be used for per-
forming an exact reachability analysis. Extracting invariants
from the resulting binary decision diagrams is straightfor-
ward. The main problem in this approach is the size of the
binary decision diagrams on bigger problems. Also, only
ground invariants could be extracted.

In this paper we only consider schemata with univer-
sal variables that represent conjunctions of ground clauses.
Schemata with existential variables may represent arbi-
trarily long disjunctions of ground literals, for example
∀x(ontable(x)∨ ∃yon(x, y)) for the blocks world. For han-
dling existential variables one only needs to extend the four
auxiliary functions, which is straightforward. Another ex-
tension that is not described in the paper is typed variables.
Also this extension is an easy exercise.

Acknowledgements
We thank the reviewers for many valuable comments.

References
Bensalem, S.; Lakhnech, Y.; and Saidi, H. 1996. Pow-
erful techniques for the automatic generation of invariants.

In Alur, R., and Henzinger, T. A., eds., Proceedings of the
Eighth International Conference on Computer Aided Veri-
fication CAV, volume 1102 of Lecture Notes in Computer
Science, 323–335. New Brunswick, New Jersey, USA:
Springer-Verlag.
Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelligence
90(1-2):281–300.
Burch, J. R.; Clarke, E. M.; Long, D. E.; MacMillan,
K. L.; and Dill, D. L. 1994. Symbolic model checking
for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
13(4):401–424.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proceedings
of the 15th National Conference on Artificial Intelligence
(AAAI-98) and the 10th Conference on Innovative Applica-
tions of Artificial Intelligence (IAAI-98), 905–912. AAAI
Press.
Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability frame-
work. In Simmons, R.; Veloso, M.; and Smith, S., eds.,
Proceedings of the Fourth International Conference on Ar-
tificial Intelligence Planning Systems, 181–189.
Kelleher, G., and Cohn, A. G. 1992. Automatically syn-
thesising domain constraints from operator descriptions. In
Neumann, B., ed., Proceedings of the 10th European Con-
ference on Artificial Intelligence, 653–655. John Wiley &
Sons.
Rintanen, J. 1998. A planning algorithm not based on
directional search. In Cohn, A. G.; Schubert, L. K.; and
Shapiro, S. C., eds., Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Sixth International
Conference (KR ’98), 617–624. Morgan Kaufmann Pub-
lishers.
Zhang, Y., and Foo, N. Y. 1997. Deriving invariants and
constraints from action theories. Fundamenta Informaticae
30(1):109–123.

