
Incorporation of Temporal Logic Control
into Plan Operators

Jussi Rintanen1

Abstract. Domain-specific control information is often essential in
solving difficult planning problems efficiently. Temporal logics are
a declarative and expressive representation for such control informa-
tion. In this paper we investigate the integration of temporal logic
control information into plan operators. For a given control formula
Φ and operators O, we produce a new set OΦ of operators that works
like O under the control of Φ. We show that for a subclass of tem-
poral logic formulae the compilation causes only a low-polynomial
increase in the size of the operators, that the length of plans is not
affected, and that the speed-up obtained is competitive with what
is achieved with temporal logic control as formula progression. The
translation uses operators with conditional effects. An important ben-
efit of our approach is that the problem of using temporal logic for-
mulae as control information is solved once and for all: temporal
logic control can be implemented as a preprocessing step for all kinds
of planning algorithms.

1 INTRODUCTION
The applicability of automated planners in many applications is
highly dependent on the presence of control information that reli-
ably guides the planner in choosing which operators to apply. In the
past, the control information has been very procedural and dependent
on the planning algorithm being used. Bacchus and Kabanza propose
temporal logics as a language for expressing control information and
show that a simple forward-chaining planner that interprets those for-
mulae can be very efficient for planning problems that allow strong
control strategies [2]. The declarativeness of temporal logic makes it
possible to separate the control information from the implementation
techniques of a planner, which is a great benefit. For example Huang
et al. show how to use Bacchus and Kabanza’s temporal logic control
information in a very different kind of planner [7].

However, there are many different planning algorithms, and in-
corporating a temporal logic reasoner to each and every one may be
complicated or otherwise undesirable. Considering that both plan op-
erators and temporal logic have a high expressivity, there is a redun-
dancy in the input as both the operators and the control information
could be represented in either of the formalisms. Therefore there is
no compelling need for algorithms that take input of both types. This
idea suggests two non-hybrid approaches to planning with domain-
specific control information: deductive planning in the framework of
temporal logic, and (possibly non-deductive) planning based on al-
gorithms that operate on plan operators only with control embedded
in the operators. Both approaches are worth investigating, but in this
paper we take the second because of its direct usefulness for almost

1 Albert-Ludwigs-Universität Freiburg, Institut für Informatik, Georges-
Köhler-Allee, D-79110 Freiburg im Breisgau, Germany

any type of planning. Once the control information expressed as tem-
poral logic formulae is compiled into plan operators (a preprocessing
step), no planning algorithm needs to be aware of temporal logic.

In this paper we show how temporal logic control can often be
effectively compiled away by implicitly representing the formulae in
the plan operators. More precisely, for arbitrary sets of plan operators
and for formulae from a subclass of linear temporal logic, we show
how to produce sets of plan operators that work like the original sets
under the control of the formulae. We assume that plan operators can
represent conditional effects; that is, the sets of facts that change their
truth-values may depend on the truth-values of other facts. With con-
ditional effects we also represent disjunctive preconditions that also
appear to be necessary for encoding control information. This ap-
proach suggests that rather than addressing the problem of control
knowledge for every planning algorithm separately, it may be more
productive to develop efficient domain-independent planning algo-
rithms with more expressive input languages.

To demonstrate the feasibility of the approach we run a series of
problems on two planners, TLPlan [2] and IPP [10], that respectively
use forward and backward chaining. For the sample problems and
both planners we obtain a speed-up of two orders of magnitude.

2 CONTROL FORMULAE IN TEMPORAL
LOGIC

We consider finite models M = 〈v1, . . . , vn〉 of a linear temporal
logic [6] where vi are valuations vi : A → {T, F} that map propo-
sitional variables to truth values. The size of a model |M | is defined
as the number n of valuations. We define the truth of formulae at a
point i ∈ {1, . . . , |M |} of a model recursively as follows.

M |=i p if and only if vi(p) = T , where p ∈ A.
M |=i ¬φ if and only if M 6|=i φ.
M |=i φ ∨ φ′ if and only if M |=i φ or M |=i φ′.
M |=i ©φ if and only if M |=i+1 φ.
M |=i φUφ′ if and only if M |=j φ for all j ∈ {i, . . . , n} such

that M |=k φ′ for no k ∈ {i, . . . , j}.
We say that a model M satisfies a formula φ if and only if

M |=i φ for all i ∈ {1, . . . , |M |}. We define the operator always by
�φ ≡def φU⊥. The constants true and false are respectively > and
⊥. The above semantics for until U is only one of several possible
ones. In this paper a semantics for until that requires that φ′ eventu-
ally becomes true is also useful: M |=i φU2φ′ if and only if for some
j ∈ {i, . . . , n} M |=j φ′ and M |=k φ for all k ∈ {i, . . . , j − 1}.
We define the operator eventually by ♦φ ≡def >U2φ.

A main difference from the temporal logic used by Bacchus and
Kabanza [2] is that we do not have a goal modality. This would be
unnecessary because information concerning the goals can be repre-

sented as conventional facts. Another difference is that we assume
that all propositions in the control formulae occur in the operators;
that is, we do not have defined predicates. It is straightforward to re-
place the occurrences of defined predicates by their definitions. Of
course, this may increase the size of the formula.

3 COMPILATION OF CONTROL INTO PLAN
OPERATORS

It seems that representing complex control information in conven-
tional plan operators p ⇒ e, where p and e are sets (conjunctions)
of literals, is not in general feasible. A more expressive form of plan
operators allows conditional effects which means that the set of facts
changed by the application of an operator may depend on the current
truth-values of facts. An operator p ⇒ e with conditional effects may
have both literals and rules c � f in e. When p ⇒ e is applied, all
literals in e become true and literals in f for c � f ∈ e become true
if the literals in c were true.

There are a number of planners that support conditional effects
[10, 1, 2] and incorporating them in many others is easy. There are
many transition systems that can be represented exponentially more
concisely with conditional effects than without, and this seems to
be the case in encoding control information in plan operators. Notice
that we still assume the original sets of operators to be unconditional,
and the lifted version of the translation needs also universal and ex-
istential quantification over individuals.

For our translation we consider sets Φ of clauses κ ∨ (φUε),
κ ∨ (φU2ε), and κ ∨ ©θ, where φ, ε and θ are literals and κ is a
disjunction of literals.2 The modalities � and ♦ are reduced to U
and U2 like mentioned earlier. For literals l and sets s of literals we
write l and s for the complement of l and the set consisting of the
complements of literals in s, respectively.

Next we give the translation. It extends each operator so that it
cannot be applied if it violates the control formulae. If we commit
to the truth of φUε for κ ∨ (φUε) ∈ Φ at the current time point,
we have to guarantee that the future truth-values of φ and ε obey the
semantics of U . For this we use auxiliary facts Uκ

φ,ε that become true
when respective formulae κ become false, and they stay true until
κ is true and ε is true in the current or in the preceding time point.
The translation of U2 is like that of U (the only difference is in the
definition of the new goal), and the translation of © is simple and
does not require auxiliary variables.

Below, ⊥ is a fact that is false in initial and goal states and is not
made false by any operator: ⊥ may not be an effect of any operator
and c must be false for effects c � ⊥.

We incorporate Φ into P = 〈I, O, G〉, where I is an initial state,
O is a set of operators and G is a goal, as FΦ(P) = 〈IΦ, OΦ, GΦ〉
where OΦ = {o′|o ∈ O, o

Φ
=⇒ o′} and Φ

=⇒ is defined as follows.
Let p ⇒ e be an operator in O.

1. The operator may make the non-modal literals in a clause false
and therefore require the satisfaction of φUε (or be inapplicable if
neither φ nor ε is true.) Let

E1 = {r\e � ⊥|κ ∨ (φUε) ∈ Φ, r = κ ∪ {φ, ε},
e ∩ r 6= ∅, e ∩ r = ∅},

E2 = {κ\e � Uκ
φ,ε|κ ∨ (φUε) ∈ Φ,

e ∩ κ 6= ∅, e ∩ κ = ∅}.
2 We will often identify disjunctions or conjunctions of literals with corre-

sponding sets of literals so that union, intersection and set membership can
be used on them.

2. The operator may not be applied if it falsifies an active φUε by
making both φ and ε false. The conditions κ ∩ e = ∅ are needed
for the case in which κ becomes true and ε is true in the current or
in the preceding time point: then the new values of φ and ε do not
matter. Let

E3 = {Uκ
φ,ε, φ � ⊥|κ ∨ (φUε) ∈ Φ,

ε ∈ e, φ 6∈ e, κ ∩ e = ∅},
E4 = {Uκ

φ,ε, ε � ⊥|κ ∨ (φUε) ∈ Φ, φ ∈ e, ε 6∈ e},
E5 = {Uκ

φ,ε � ⊥|κ ∨ (φUε) ∈ Φ,

{φ, ε} ⊆ e, κ ∩ e = ∅}.

3. The operator may deactivate Uκ
φ,ε by reaching a state in which κ

is true and ε is true in the current or in the preceding state. Let

E6 = {¬Uκ
φ,ε|κ ∨ (φUε) ∈ Φ, ε ∈ e, κ ∩ e 6= ∅},

E7 = {l � ¬Uκ
φ,ε|κ ∨ (φUε) ∈ Φ, l ∈ κ, l 6∈ e, ε ∈ e},

E8 = {ε � ¬Uκ
φ,ε|κ ∨ (φUε) ∈ Φ, κ ∩ e 6= ∅}.

4. For the translation of formulae κ ∨©θ ∈ Φ, an operator may not
be applied if it makes θ false and κ was false at the preceding time
point, or if it does not make θ true when it and κ were false before.

E◦
1 = {κ � ⊥|κ ∨©θ ∈ Φ, θ ∈ e}

E◦
2 = {κ, θ � ⊥|κ ∨©θ ∈ Φ, θ 6∈ e}

A problem with E◦
2 is that for every κ ∨ ©θ ∈ Φ, every opera-

tor – even when they do not affect any of the literals in κ or θ –
potentially violates this formula by not making θ true when it was
false before. However, often θ ∈ κ and the antecedent of the effect
from E◦

2 is therefore inconsistent and the effect can be eliminated.

Now (p ⇒ e)
Φ

=⇒ (p ⇒ (e ∪
S8

i=1 Ei ∪
S2

i=1 E◦
i)).

An initial state I is extended with a valuation for auxiliary vari-
ables to obtain IΦ: for all κ ∨ (φUε) ∈ Φ, IΦ |= Uκ

φ,ε iff I |= ¬κ.
Similarly for U2. Of course, the control information contradicts the
initial state if I |= ¬(κ ∨ φ ∨ ε) for some κ ∨ (φUε) ∈ Φ, and then
there are no plans that satisfy Φ. For the modal operator U2 the goal
GΦ = G∪{¬Uκ

φ,ε|κ∨ (φU2ε) ∈ Φ} requires that ε for every φU2ε
eventually becomes true.

There is a polynomial upper bound on the size of the translation.

Theorem 1 The size of OΦ is O(n|O| + m) where n is the size of
Φ and m is the size of O.

Proof: For o ∈ O and φ ∈ Φ, the operator o′ with o
Φ

=⇒ o′ contains
at most k+7 new effects (from E1, . . . , E8, E

◦
1 , E◦

2), where k is the
number of literals in φ. The sizes of the effects from E1, E2, E◦

1 and
E◦

2 are proportional to the size of φ. The other effects are of constant
size. Hence the difference of the sizes of o′ and o is O(n). �

For a given plan s there is a temporal logic model 〈v1, . . . , v|s|+1〉
where v1 |= I and vi+1 is obtained from vi by executing the ith
operator in s. By |s| we denote the length of the plan. We say that
a plan s satisfies a formula Φ if the corresponding temporal logic
model satisfies Φ.

Theorem 2 P = 〈I, O, G〉 has a plan that satisfies the formula Φ
if and only if PΦ = 〈IΦ, OΦ, GΦ〉 has a plan.

Proof: We have a detailed proof but it is 2 pages long and relatively
straightforward. The following are the facts we establish by induc-
tion. The first two are used in showing that plans for PΦ satisfy Φ

and hence there is a plan for P that satisfies Φ, and the third for
showing that if a plan for P satisfies Φ then there is a corresponding
plan for PΦ.

1. Given model MΦ of a plan for PΦ, for all i ∈ {1, . . . , |MΦ|} and
κ ∨ (φUε) ∈ Φ, MΦ |=i Uκ

φ,ε or MΦ |=i κ.
2. Given model MΦ of a plan for PΦ, for all i ∈ {1, . . . , |MΦ|} and

κ ∨ (φUε) ∈ Φ, if MΦ |=i Uκ
φ,ε then MΦ |=i φUε.

3. Given a sequence of operators from PΦ that was obtained from
a plan for P that satisfies Φ, for all i ∈ {1, . . . , |MΦ|} and κ ∨
(φUε) ∈ Φ, MΦ |=i Uκ

φ,ε if and only if MΦ 6|=i κ or there is
j ∈ {1, . . . , i− 1} such that MΦ 6|=j κ and for all k ∈ {j, . . . , i}
MΦ 6|=k ε. The antecedents of rules c � ⊥ in the effect of the
operator at step i are false.

The correctness of the translation for © is easy and for U2 it fol-
lows easily from the correctness of U . The proof also shows that
plan length is not affected. �

4 LIFTING THE TRANSLATION
The translation so far addresses ground operators only. In many ap-
plications operators can be represented more concisely as schemata
that correspond to sets of ground operators. In the next section we
give an example that illustrates how the translation can be lifted to
schematic operators.

5 REPRESENTING CONTROL INFORMATION
We show how control information is encoded and how the translation
of U works with the logistics domain and the control rules given by
Bacchus and Kabanza [2]. The goals are introduced in the initial state
as normal facts with the prefix G. We also use facts Gatcity(p, l) that
say that the goal location of package p is in the same city as location
l. The variables below are typed as follows: t is a truck, p a package,
a an airplane, and l a location. In the following formulae the variables
are universally quantified unless indicated otherwise.

The axioms below respectively state the following. A package
must be loaded in a truck if it is in a wrong city and not at an air-
port. A package must be loaded in a truck if it is in a wrong location
of the right city. A package must be loaded in an airplane if it is in a
wrong city.

C1 at(t, l) ∧ at(p, l) ∧ ¬Gatcity(p, l) ∧ ¬airport(l)
→at(t, l)U in(p, t)

C2 at(t, l) ∧ at(p, l) ∧ Gatcity(p, l) ∧ ¬Gat(p, l)
→at(t, l)U in(p, t)

C3 at(a, l) ∧ at(p, l) ∧ ¬Gatcity(p, l)→at(a, l)U¬at(p, l)

A package at the goal location may not be moved anywhere. A
package may not be loaded in a truck at the airport of a wrong city.
A package may not be loaded in an airplane if it is in the right city.

C10 at(p, l) ∧ Gat(p, l)→�at(p, l)
C11 at(p, l) ∧ ¬Gatcity(p, l) ∧ airport(l)

→at(p, l)U∃ain(p, a)
C12 at(p, l) ∧ Gatcity(p, l)→�¬in(p, a)

We have similar formulae that say when packages must be un-
loaded and must not be unloaded and that prevent unnecessary ve-
hicle movement. They express the same rules as Bacchus and Ka-
banza’s formulae [2]. There is no space to give them here. The formu-
lae that prevent unnecessary vehicle movement are more complicated

than the ones above. The same formulae were found problematic by
Huang et al. [7].

All the logistics control rules can be formalized with the operator
©. The consequents of the implications in C1-C3 and C10-C12 are
respectively replaced by ©at(t, l), ©at(t, l), ©at(a, l), ©at(p, l),
©¬in(p, t), and ©¬in(p, a).

Next we show how formulae C1-C3 and C10-C12 are incorporated
into the operator for loading a package into a truck.

(:action load-truck
:parameters (?o - obj ?t - truck ?l - location)
:precondition (and (at ?o ?l) (at ?t ?l))
:effect (and (in ?o ?t) (not (at ?o ?l))))

Many of the effects are redundant and can be eliminated by using
general-purpose simplification rules: for example rules c � e in op-
erators with preconditions p can be removed if p∪c∪I is inconsistent
(I is a set of invariants [13]). In the logistics example this happens to
all effects from E1.

From E6 and C1, C2 and C3 we obtain the following.

(not (untilC1 ?o ?t ?l))
(not (untilC2 ?o ?t ?l))
(forall (?p - airplane) (not (untilC3 ?o ?p ?l)))

The first two effects allow the movement of trucks after packages
have been loaded. The third effect is unnecessary.

The effects from E7 handle the situation in which κ has become
true again before ε becomes true. Many of these effects can be elim-
inated. For example, if κ contains a static fact l (that is not affected
by any operator), κ’s becoming true cannot be caused by l, and the
respective rule l � ¬Uκ

φ,ε is therefore unnecessary. Similarly, if
φ ∈ κ, φ cannot become true before ε because this would violate
φUε and is prevented by E4, and φ � ¬Uκ

φ,ε can therefore be re-
moved.

From E7 and C1, C2 and C3 we obtain the following.

(forall (?l2 - location)
(when (not (at ?o ?l2))

(not (untilC1 ?o ?t ?l2))))
(forall (?l2 - location)

(when (not (at ?o ?l2))
(not (untilC2 ?o ?t ?l2))))

(forall (?l2 - location ?p - airplane)
(when (not (at ?o ?l2))

(not (untilC3 ?o ?p ?l2))))

Also these effects are unnecessary, but we do not have a general-
purpose rule for eliminating them.

From E8 and C1-C3 and C10-C12 we obtain the following.

(forall (?t2 - truck)
(when (in ?o ?t)

(not (untilC1 ?o ?t ?l))))
(forall (?t2 - truck)

(when (in ?o ?t)
(not (untilC2 ?o ?t ?l))))

(forall (?p - airplane)
(when (not (at ?o ?l))

(not (untilC3 ?o ?p ?l))))
(when (false) (not (untilC10 ?o ?l)))
(when (exists (?p - airplane) (in ?o ?p))

(not (untilC11 ?o ?l)))
(when (false) (not (untilC12 ?o ?l)))

From E4 and C10 and C11 we obtain the following.

(when (and (untilC10 ?o ?l) (not (false))) (false))
(when (and (untilC11 ?o ?l)

(not (exists (?p - airplane) (in ?o ?p)))
(false))

These effects prevent loading if the package is in the goal location
or waiting for an airplane.

In the lifted version of the translation universal quantification in
the operators is often needed. For example, operators moving a truck
potentially affect C1 and C2 for every package. Sometimes quan-
tification can be avoided because of an invariant [13]. For example,
load-truck makes the antecedent of the control formula that prevents
unloading the package true. However, this formula prevents unload-
ing at all locations that are not airports or destination locations. An
invariant guarantees that the truck is at the current location only, and
quantification over other locations is unnecessary.

6 EXPERIMENTS AND DISCUSSION
We have solved a number of logistics problems with TLPlan [2] and
IPP [10] and both versions of the control formulae, with the operator
U and with © only. These planners were chosen because their in-
put languages can express disjunctive preconditions and conditional
effects, and they do search in opposite directions. IPP is an imple-
mentation of the Graphplan algorithm [4]. The logistics problems
seemed interesting because implementations of the Graphplan algo-
rithm have not fared well in solving them, but control information
very effectively rules out useless operator sequences.

The control formulae were discussed in Section 5. We replaced
effects l1, . . . , ln � ⊥ by preconditions l1 ∨ · · · ∨ ln to allow IPP
to use them in planning graph construction, and simplified the oper-
ators as discussed in Section 5. These transformations can easily be
performed mechanically.

Table 1 gives runtimes of IPP and TLPlan and the formalization
with the operator © on a Sun Ultra with a 360 MHz sparcv9 proces-
sor. We used two or three versions of each problem instance: with-
out control information, with control formulae embedded in opera-
tors (/E), and interpreted with formula progression (/P). IPP does not
interpret temporal logic formulae, so we could make a comparison
between formula progression/regression and embedded control on
TLPlan only. The /P runtimes are for the formalization of the prob-
lems in the TLPlan software distribution.

Table 1. Runtimes of two planners in seconds.

planner log-a log-b log-c log-d
TLPlan > 1 h > 1 h > 1 h > 1 h
TLPlan/E 0.17 0.13 0.17 0.52
TLPlan/P 0.45 0.33 0.54 1.94
IPP 1547.51 649.69 > 22 h > 22 h
IPP/E 15.04 5.63 1010.55 30638.03

Without control TLPlan searches blindly and the chances of
quickly reaching a goal state in a search tree with a depth of dozens
of nodes are extremely small. TLPlan with embedded control is al-
most three times faster than TLPlan with control formulae interpreted
with formula progression. An explanation for this difference is that
formula progression and the use of defined predicates causes an over-
head on top of the underlying forward-chaining planning algorithm.
With embedded control this overhead disappears.

With TLPlan and the formalization with the operator U the run-
times are slightly higher (0.21, 0.14, 0.21, and 0.62 seconds) because
of a higher number of preconditions and effects. Surprisingly, the
corresponding IPP runtimes are higher than with no control at all
(none of the runs terminated in 2 hours.) Also on the formalization
with © IPP runtimes are high and it performs a lot of search (105

operator applications for logistics-b, down from 107 without control)
even though the formulae almost uniquely tell what actions to take.
Search cannot be completely avoided because an airplane may arrive
to a goal city from several locations: the rules allow flights A-B-C
and B-A-C if both A and B contain packages to be transported to C.
However, as TLPlan traverses search trees with only 50 to 80 nodes,
the difference is not explained by this.

A better explanation for IPP’s performance is the handling of dis-
junctive subgoals that are obtained from effects l1, . . . , ln � ⊥.
IPP reduces disjunctive subgoals to non-disjunctive subgoals: first all
minimal non-disjunctive subgoals that have at least one literal from
each disjunction are produced, and then separately for each minimal
non-disjunctive subgoal all sets of operators that produce it are tried
out. There are examples in which the number of possible sets of oper-
ators is small (constant) but the number of alternative non-disjunctive
subgoals is high (exponential), and removing disjunctivity before op-
erator selection – which is not necessary – therefore increases the
number of branches exponentially.3 The logistics control formulae
with U produce many more disjunctive subgoals than the formulae
with ©, and this would explain the IPP runtimes.

7 RELATED WORK
Bacchus and Kabanza [2] pointed out the possibility of efficiently
interpreting temporal logic formulae for pruning the search tree in a
forward-chaining planner. The formulae are interpreted starting from
the initial state. Assuming that the formulae are true at the current
time point, the truth and falsity of several other formulae can be in-
ferred for the next time point. These formulae restrict the possible
choices of the next operators. This process of formula progression
is not theorem-proving but a form of model-checking, and is com-
putationally inexpensive. Our encoding of temporal logic formulae
can be seen as an implicit way of doing progression. An important
difference is that our encoding works with all planning algorithms,
also ones that are not based on forward-chaining. The encoding can
be automated fully and it is fairly efficient.

Huang et al. [7] extend a planning algorithm with temporal logic
control. Many formulae can be handled during a preprocessing phase
by not producing some of the ground instances of the operators.
Other formulae require adding new clauses in the encoding of the
problem in the propositional logic.

Baioletti et al. [3] consider a generalized notion of goals that are
expressed as formulae with modal operators � and ♦ and others. The
formulae are encoded into plan operators like in our work. Baioletti
et al. do not use operators © or U that seem to be necessary for
formalizing control information.

Many forms of planning can be viewed as specialized problems of
program synthesis – classical planning for example is synthesis of se-
quential non-branching programs from atomic programs that consist
of assignment statements only – and hence the current work can be
compared to work in that area. Temporal logic has been proposed as
a framework for program synthesis [12], and it would be in principle
possible to do planning completely in the temporal logic framework.
Our approach is complementary: in this paper we are addressing ap-
proaches to planning that are not essentially based on reasoning in
temporal logics, and therefore reducing temporal logic to the basic
planning framework is beneficial.

The current work also has connections to specializing and trans-
forming programs [8]. Program specialization typically attempts to

3 For (a1 ∨ b1) ∧ · · · ∧ (an ∨ bn) and operators respectively with effects
a1 ∧ · · · ∧ an and b1 ∧ · · · ∧ bn the increase is from 3 to 2n.

make a given program more efficient by taking into account infor-
mation concerning the possible input values. Program specialization
has been performed for example by folding/unfolding transforma-
tions [5, 14, 11]. In our case, specialization is not based on restric-
tions on input values but on formulae that characterize the structure
of the desired programs. Also, we do not start from a program that
should be specialized. Instead, we transform a given program syn-
thesis problem to a different one that can hopefully be solved more
efficiently and from which a solution to the original problem can be
easily extracted.

8 CONCLUSION
We have shown how to encode a class of temporal logic control for-
mulae into plan operators so that explicit handling of formulae in
planning algorithms is avoided. The class of formulae and the trans-
lation are interesting: control rules can easily be represented, plan
size is not affected, and the sizes of operators increase relatively lit-
tle. Our experiments show that our technique speeds up a backward-
chaining planner substantially and can be competitive with formula
progression as proposed by Bacchus and Kabanza [2].

The translation has syntactic restrictions but they are not violated
for example by the formulae proposed by Bacchus and Kabanza (as-
suming a transformation to CNF.) A difference that may affect the
formalization of control rules is the lack of defined predicates. Ex-
tending the translation to defined predicates is possible, but we have
not pursued this question further in this work. Because of the com-
plete independence of our approach of any planning algorithm, it is
directly applicable to many kinds of algorithms. It may be possible
and desirable to extend the translation to cover more general classes
of formulae. It is not clear in what extent this is possible without sac-
rificing the good properties the current translation has. By inspecting
the translation it would seem possible to allow disjunctions of liter-
als in the subformulae of U , U2 and©. Furthermore, now there is an
asymmetry between the source and target languages the source op-
erators may not have conditional effects. Removing this asymmetry
would be desirable.

In addition to the problem of using temporal logic control formu-
lae, there is also the problem of automatically verifying that control
formulae preserve the existence of (shortest) plans, and more gener-
ally, the problem of synthesizing control formulae automatically. A
restricted but widely applicable type of control formulae is obtained
by recognizing symmetries in planning problems [9]. For control for-
mulae in general, already the problem of verifying whether a control
formula preserves existence of plans is computationally very com-
plex, PSPACE-hard in the propositional case, but it is likely that there
are useful incomplete polynomial time algorithms – like for invariant
synthesis [13], another PSPACE-hard problem – that may increase
the efficiency and applicability of automated planning substantially.

REFERENCES
[1] C. Anderson, D. Smith, and D. Weld, ‘Conditional effects in Graph-

plan’, in Proceedings of the Fourth International Conference on Ar-
tificial Intelligence Planning Systems, eds., Reid Simmons, Manuela
Veloso, and Stephen Smith, pp. 44–53. AAAI Press, (1998).

[2] Fahiem Bacchus and Froduald Kabanza, ‘Using temporal logics to ex-
press search control knowledge for planning’, Artificial Intelligence,
116(1–2), 123–191, (2000).

[3] Marco Baioletti, Stefano Marcugini, and Alfredo Milani, ‘Encoding
planning constraints into partial order planning domains’, in Principles
of Knowledge Representation and Reasoning: Proceedings of the Sixth
International Conference (KR ’98), eds., A. G. Cohn, L. K. Schubert,
and S. C. Shapiro, pp. 608–616. Morgan Kaufmann Publishers, (1998).

[4] Avrim L. Blum and Merrick L. Furst, ‘Fast planning through planning
graph analysis’, Artificial Intelligence, 90(1-2), 281–300, (1997).

[5] R. M. Burstall and John Darlington, ‘A transformation system for devel-
oping recursive programs’, Journal of the ACM, 24(1), 44–67, (January
1977).

[6] E. Allen Emerson, ‘Temporal and modal logic’, in Handbook of Theo-
retical Computer Science, ed., J. Van Leeuwen, volume B, 995–1072,
Elsevier Science Publishers, (1990).

[7] Yi-Chen Huang, Bart Selman, and Henry Kautz, ‘Control knowledge in
planning: benefits and tradeoffs’, in Proceedings of the 16th National
Conference on Artificial Intelligence (AAAI-99) and the 11th Confer-
ence on Innovative Applications of Artificial Intelligence (IAAI-99), pp.
511–517. AAAI Press, (1999).

[8] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and Au-
tomatic Program Generation, Prentice Hall, 1993.

[9] David Joslin and Amitabha Roy, ‘Exploiting symmetry in lifted CSPs’,
in Proceedings of the 14th National Conference on Artificial Intelli-
gence (AAAI-97) and 9th Innovative Applications of Artificial Intelli-
gence Conference (IAAI-97), pp. 197–202, Menlo Park, (July 1997).
AAAI Press.

[10] Jana Koehler, Bernhard Nebel, Jörg Hoffmann, and Yannis Dimopou-
los, ‘Extending planning graphs to an ADL subset’, in Recent Advances
in AI Planning. Fourth European Conference on Planning (ECP’97),
eds., S. Steel and R. Alami, number 1348 in Lecture Notes in Com-
puter Science, pp. 273–285. Springer-Verlag, (1997).

[11] Alberto Pettorossi and Maurizio Proietti, ‘Program specialization via
algorithmic unfold/fold transformations’, ACM Computing Surveys,
30(3es), (September 1998).

[12] Amir Pnueli and Roni Rosner, ‘On the synthesis of an asynchronous
reactive module’, in Automata, Languages and Programming, 16th In-
ternational Colloquium, eds., Giorgio Ausiello, Mariangiola Dezani-
Ciancaglini, and Simona Ronchi Della Rocca, volume 372 of Lecture
Notes in Computer Science, pp. 652–671. Springer-Verlag, (July 1989).

[13] Jussi Rintanen, ‘An iterative algorithm for synthesizing invariants’, in
Proceedings of the 17th National Conference on Artificial Intelligence
(AAAI-2000) and the 12th Conference on Innovative Applications of
Artificial Intelligence (IAAI-2000), pp. 806–811. AAAI Press, (2000).

[14] Hisao Tamaki and Taisuke Sato, ‘Unfold/fold transformation of logic
programs’, in Proceedings of the Second International Logic Program-
ming Conference, ed., Sten-Åke Tärnlund, pp. 127–138, Uppsala, Swe-
den, (1984). Uppsala University.

