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Abstract

We investigate modeling cost optimal delete-free STRIPS
Planning by Integer/Linear Programming (IP/LP). We intro-
duce two IP models and their LP relaxations based on a
recently formulated representation of relaxed plans, named
causal relaxed plan representation. The new models are pro-
duced by enforcing acyclicity in so-called causal relation
graphs using vertex elimination and time labeling methods.
We empirically show that while the vertex elimination based
method outperforms the time labeling based method and all
previously introduced domain independent methods for com-
puting the exact value of h+, the time labeling based LP
model is faster to solve compared to its vertex elimination
based alternative, making it more suitable for using as heuris-
tic function for optimal planning. We also theoretically an-
alyze the admissible heuristic functions obtained by solving
our LP models, and prove that the vertex elimination based
heuristic is at least as informative as the time labeling based
heuristic. Moreover, our empirical analysis shows that our
vertex elimination based heuristic, which is a novel admis-
sible estimation of h+, often has information complementary
to that of the LM-cut heuristic.

Introduction
The value of h+ for a given planning problem is the optimal
cost of the corresponding delete-relaxed planning problem,
obtained from the original problem by removing delete ef-
fects of all actions. The value of h+ is a lower bound of
the optimal cost of the original problem. It has been shown
that having h+ can significantly improve the efficiency of
optimal planning (Betz and Helmert 2009). Computing h+,
however, is NP-equivalent (Bylander 1994), and h+ is also
hard to approximate (Betz and Helmert 2009).

Computing h+ is important because many admissible
heuristics functions have been introduced to compute lower
bounds of h+ as admissible heuristics for cost optimal plan-
ning. Examples are the hmax heuristic (Bonet and Geffner
2001), the LM-cut heuristic (Helmert and Domshlak 2009),
set-additive heuristic (Keyder and Geffner 2008), and cost-
sharing approximations of hmax (Mirkis and Domshlak
2007). The value of h+ can be considered as a measure for
informativeness of such heuristic functions.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Moreover, methods for computing h+ can also output an
optimal plan for a given delete-free planning problem. Ef-
ficient solving of delete-free planning problems is impor-
tant by itself. That is because there exist delete-free planning
tasks that are of interest for the planning community. Exam-
ples are the minimal seed-set problem (Gefen and Brafman
2011), and the problem of determining join orders in rela-
tional database query plan generation (Robinson, McIlraith,
and Toman 2014).

Another reason for the importance of efficient computa-
tion of h+ is based on the fact that optimal plans for gen-
eral planning problems can be produced by iterative solving
and reformulating delete-free planning tasks (Haslum 2012).
This can be done by repeatedly finding optimal plans for a
delete-relaxed version of the original planning problem, and
reducing the relaxation by reformulating the problem when-
ever a plan has been found for the delete-relaxed that is not
a valid plan for the original problem.

The current efficient domain independent methods for
computing h+ are based on translating the delete-relaxed
version of a given problem into a set of constraints and us-
ing of-the-shelf efficient constraint satisfaction solvers. One
major approach of these methods is using Integer Program-
ming (IP) (Haslum, Slaney, and Thiébaux 2012; Imai and
Fukunaga 2015; Castro et al. 2020).

Another efficient approach for computing h+ is using
Boolean satisfiability (Rankooh and Rintanen 2022). In this
method the concept of causal partial functions are utilized to
translate the delete-relaxed version of a given problem into
a propositional formula with an underlying directed graph.
The vertex elimination method (Rose and Tarjan 1975) is
then used to produce SAT formulas that ensure acyclicity in
the mentioned underlying graph. By ensuring acyclicity in
the underlying graphs, it is guaranteed that any solution will
then be transformed to a causal relaxed plan representation,
an alternative representation for relaxed plans of the given
problem.

In this work we examine an IP adaptation of the method
used in (Rankooh and Rintanen 2022). One important reason
why an IP-based approach seems promising is that, unlike
in propositional satisfiability, encoding and reasoning about
action costs can be done very easily in it. Moreover, the Lin-
ear Programming (LP) relaxation of an IP model for optimal
delete-free planning is an admissible heuristic function for



the original problem. Unlike IP models, LP models can be
solved in polynomial time, making them appropriate candi-
dates for heuristic functions when search methods such as
A* are employed. We provide the proofs for the soundness
and completeness of this IP model, called IP-VE, and empir-
ically show that this approach is considerably more efficient
that all previously introduced methods of computing h+ for
conventional STRIPS planning problems.

We also investigate another IP model which improves the
model introduced in (Imai and Fukunaga 2015) by consid-
ering the notion of causal relaxed plan representations and
maintaining acyclicity in their underlying graphs. We call
this model which incorporates time labels for atomic propo-
sitions to enforce acyclicity in the underlying graphs, the IP-
TL model.

Furthermore, we consider LP-VE and LP-TL, the LP re-
laxations of our IP models. We prove that the admissible
heuristic function obtained from solving LP-VE dominates
the one obtained from solving LP-TL. We empirically show
that both these heuristic functions are considerably more in-
formative than the LM-cut heuristic function, but take more
time to compute. Our results also show that our heuristic
functions have information complementary to that of LM-
cut in many cases.

Finally, we incorporate our heuristic functions into an
A* search method. We show that while the LP-TL model
demonstrates performance competitive with that of the LM-
cut heuristic function in this setting, the LP-VE model does
not scale as well, producing inferior results because of its
costly computation.

Preliminaries and Background
A STRIPS planning problem is a 5-tuple Π =
(P, I,A,G, cost) where P is a finite set of Boolean state
variables, also called atomic propositions. I , the initial state,
and G, the set of goal conditions, are subsets of P . A is
a finite set of actions. Each member a of A is a triple
(pre(a), add(a), del(a)), where pre(a), add(a) and del(a)
are sets of atomic propositions denoting the set of precon-
ditions, positive effects, and negative effects of a, which are
the atomic propositions that a requires, adds, and deletes, re-
spectively. The cost function cost maps every member of A
to a non-negative integer.

When states are represented as subsets of P , the suc-
cessor s′ = execa(s) of a state s with respect to
action a ∈ A is defined if pre(a) ⊆ s, and it
is s′ = (s\del(a)) ∪ add(a). An action sequence
a1, ..., an is executable (in state s) if execa1,...,an(s) =
execan(execan−1

(...execa2(execa1(s)))) is defined. A plan
for Π is a sequence π of actions from A such that G ⊆
execπ(I). The cost of plan π = 〈a1, ..., an〉 for Π, denoted
by cost(π), is defined by Σi=1,...,ncost(ai). An optimal plan
for Π is a plan with minimal cost for Π.

For a given STRIPS planning problem Π =
(P, I,A,G, cost), the delete relaxation (Bonet and Geffner
2001) Π+ = (P, I,A+, G, cost) is defined, where A+ is
produced from A by replacing the set of negative effects
of each member of A with the empty set. A plan for Π+

is called a relaxed plan for Π. The optimal cost of Π+ is

denoted by h+(Π). If there is no relaxed plan for Π, we set
h+(Π) to∞.

Causal Relaxed Plan Representations
For encoding h+(Π) in this work, we use an alternative rep-
resentation of relaxed plans, formulated in (Rankooh and
Rintanen 2022).
Definition 1 (Causal partial functions). For a STRIPS plan-
ning problem Π = (P, I,A,G, cost), we call a partial func-
tion f from P\I to A a causal partial function for Π iff the
following conditions hold: 1) if f(p) = a then a adds p; 2)
if f(p) = a then for every precondition q of a, either q ∈ I
or f is defined for q; 3) for every p ∈ G, either p ∈ I or f
is defined for p.

Definition 2 (Causal relation graphs). Any causal partial
function for Π induces a directed graph Gf = (P,Ef ),
called the causal relation graph of f , such that (q, p) is a
member of Ef iff for some a, f(p) = a and q is a precondi-
tion of a. Causal relation graph of Π isGΠ = (P,EΠ), such
that (q, p) is a member of Ef iff for some action a, q and p
is a precondition and effect of a, respectively.

It should be clear that for every causal partial function f
for Π, Gf is a subgraph of GΠ.
Definition 3 (Causal relaxed plan representations). Partial
function f is called a causal relaxed plan representation for
Π iff its causal relation graph is acyclic. The cost of f , de-
noted by cost(f), is defined by the total cost of all actions to
which some atomic proposition is mapped by f .

In Definition 1, for each atomic proposition p, f(p) is in-
tended to represent the action that causes p to become true.
Condition 1 of Definition 1 is thereby necessary. Condition 2
guarantees that if action a causes p to become true, then the
preconditions of a become true by some action. Condition 3
provides that all goals must become true. The acyclicity of
Gf is required to avoid causal cycles.

It has been shown that if Π is solvable, a causal relaxed
plan representation exists for Π, and the minimal cost of
causal relaxed plan representations equals to h+(Π). Also,
an optimal relaxed plan for Π can be extracted from a min-
imal cost causal relaxed plan representation in polynomial
time (Rankooh and Rintanen 2022).

Vertex Elimination Graphs
As it was mentioned above, for any given causal partial func-
tion f , the causal relation graph Gf is needed to be acyclicif
f is a causal relaxed plan representation. One efficient way
of ensuring acyclicity in directed graphs is using the concept
of vertex elimination graphs.

Vertex elimination graph has originally been introduced
in (Rose and Tarjan 1975). Let G = (V,E) be a di-
rected graph, G+ = (V,E+) be the transitive closure
of G, and O = v1, ..., v|V | be an arbitrary ordering
of members of V . According to ordering O, we pro-
duce a sequence of graphs G0 = G, ..., G|V | by elimi-
nating vertices of G. For each i > 0, Gi is produced
from Gi−1, by eliminating vi, and adding edges from all
its in-neighbors to all its out-neighbors. Formally, Gi =



(Vi, Ei) is produced from Gi−1 = (Vi−1, Ei−1) so that
Vi = Vi−1\{vi}, and Ei = Ei−1\({(vj , vi)|(vj , vi) ∈
Ei−1} ∪ {(vi, vk)|(vi, vk) ∈ Ei−1})

⋃
Di, where Di =

{(vj , vk)|(vj , vi) ∈ Ei−1, (vi, vk) ∈ Ei−1, j 6= k}. G∗ =
(V,E∗) is the vertex elimination graph of G according to
elimination ordering O, where E∗ =

⋃
i=1,...,|V |Ei. It

should be clear that G∗ is a subgraph of G+.
The directed elimination width (Hunter and Kreutzer

2007) of ordering O for graphG is defined by the maximum
over number of out-neighbors of vi in Gi for i = 1, ...|V |.
The directed elimination width of G is the minimum width
over all elimination orderings for G.

It has been shown that finding the ordering that produces
the minimum width for a given digraph is NP-complete
(Rose and Tarjan 1975). However, there are ad-hoc meth-
ods for producing orderings with low directed elimination
widths in practice. An example is minimum degree heuris-
tic, which chooses vi with the minimum degree from Gi−1.

Related Works
Computing h+ has been investigated before using Inte-
ger Programming. Most notably, Haslum, Slaney, and
Thiébaux (2012) find the value of h+ by using set-inclusion
minimal disjunctive landmarks and solving the IP formula-
tion of a hitting set problem. Imai and Fukunaga (2015)
compute the value of h+ by solving a Mixed Integer and
Linear Programming (MILP) model of delete-free planning
problems. Another notable work is computing h+ by using
relaxed Decision Diagram based heuristics (Castro et al.
2020).

Methods other than Integer Programming have also been
used for finding the exact value of h+. One such method
is SAT encoding of delete-relaxed STRIPS problems done
in (Rankooh and Rintanen 2022). This work introduces
causal relaxed plan representations and proves that the cost
of an optimal plan for a given problem is equal to the cost of
an optimal causal relaxed plan representations for that prob-
lem.

LP encoding of h+ using has also been extensively stud-
ied. Examples are extracting information from abstraction
heuristics (van den Briel et al. 2007), using linear pro-
gramming to compute heuristic estimates from landmarks
for classical planning (Karpas and Domshlak 2009) and nu-
meric planning (Scala et al. 2017), the state-equation heuris-
tic (Bonet 2013), and post-hoc optimization heuristics (Pom-
merening, Röger, and Helmert 2013). A unified formula-
tion for using different LP approaches has also been intro-
duced (Pommerening et al. 2014).

IP Models for Causal Relaxed Plan
Representations

In this section, we present an IP model for causal relaxed
plan representations of Definition 3. We divide this into two
tasks: encoding of causal partial functions, and encoding of
acyclicity in induced causal relation graphs. For the second
task, we use two different methods, vertex elimination and
time labeling.

The objective of IP Models
For ensuring the optimality of the produced relaxed plan,
we need the cost of the produced causal relaxed plan repre-
sentation to be minimal. In order to do that, for each action
a ∈ A we use variable fa ∈ {0, 1} to indicate whether a has
been chosen to be included in the final relaxed plan. We now
introduce the objective of our IP models:

minimize
∑
a∈A

facost(a) (1)

Modeling Causal Partial Functions
Let Π = (P,A, I,G, cost) be a STRIPS planning problem.
Without loss of generality assume that all members of I have
been removed from P , preconditions and effects of all ac-
tions, and G. In order to encode causal partial function f we
use the following variables:
• for each p ∈ P , fp ∈ {0, 1} indicates whether f is de-

fined for p.
• for each a ∈ A and p ∈ add(a), fp,a ∈ {0, 1} represents

whether f(p) = a.
The following constraints model a causal partial function.

∀p ∈ P, fp =
∑

p∈add(a)

fp,a (2)

∀p, q ∈ P,

 ∑
q∈pre(a),p∈add(a)

fp,a

 ≤ fq (3)

∀p ∈ G, fp = 1 (4)
∀a ∈ A, p ∈ add(a) fp,a ≤ fa (5)

Formula (2) guarantees that f is a partial function. Formulas
(3) and (4) ensure conditions (2) and (3) of causal partial
functions, respectively. Constraint (5) is added to enforce the
semantics of fa variables.

Modeling Acyclicity in Causal Relation Graphs
For any given causal partial function f , the graph Gf is
needed to be acyclic if f is a relaxed plan representation.
We use two different ways for ensuring acyclicity in causal
relation graphs: vertex elimination and time labeling. The
vertex elimination method has previously been shown to be
quite efficient in encoding acyclicity as SAT in causal rela-
tion graphs (Rankooh and Rintanen 2022). The time labeling
method has also been previously employed for enforcing or-
der on actions and atomic propositions when modeling h+

as IP (Imai and Fukunaga 2015).

Modeling Acyclicity Using Vertex Elimination We
present an IP adaptation of the work done in (Rankooh and
Rintanen 2022) for encoding acyclicity in causal relation
graphs using vertex elimination. Let GΠ = (P,EΠ) be
the causal relation graph of the STRIPS planning problem
Π = (P,A, I,G, cost). Assume that P = {p1, ..., p|P |}. Let
O be an elimination ordering for GΠ, and G∗Π = (P,E∗Π)
be the vertex elimination graph of GΠ according to O. Let
∆ be the set of all triangles produced by elimination order-
ing O for graph G. Members of ∆ are all ordered triples



(pi, pj , pk) such that (pi, pk) is added to E∗Π by eliminating
pj . The IP model of acyclicity in the causal relation graph
Gf induced by the causal partial function f for Π using ver-
tex elimination according to O is produced by using con-
straints (6) to (8). Note that setting variable ei,j ∈ {0, 1}
to 0 indicates that there is no edge from pi to pj in G∗f , the
vertex elimination graph of Gf according to elimination or-
dering O.

∀a ∈ A, pi ∈ pre(a), pj ∈ add(a) fpj ,a ≤ ei,j (6)

∀(pi, pj) ∈ E∗Π, ei,j + ej,i ≤ 1 (7)

∀(pi, pj , pk) ∈ ∆, ei,j + ej,k − 1 ≤ ei,k (8)

The number of variables used in this IP model of acyclic-
ity is O(δ|P |) ⊆ O(|P |2), and the number of constraints is
O(δ2|P |) ⊆ O(|P |3), where δ is the directed elimination
width of O for GΠ.

For a given STRIPS planning problem Π =
(P,A, I,G, cost) and order O on members of Π, we
use IP-VE(Π, O) to refer to the problem of reaching objec-
tive (1) subject to constraints (2) to (8). IP-VE(Π, O) is our
vertex elimination based IP model, using O as the vertex
elimination order.

Modeling Acyclicity Using Time Labels Using time la-
bels in the IP model of h+ has been used before in (Imai
and Fukunaga 2015) for ordering atomic propositions and
actions in the produced relaxed plan. Here, we use IP-IF to
denote the IP model of (Imai and Fukunaga 2015). We use
the same method for guaranteeing acyclicity in causal rela-
tion graphs. This method simply works by assigning time
labels to variables and ensuring that the time label of p is
greater than the time label of q by at least 1, if there is an
edge from q to p in the causal relation graph. To do so, we
use variables ti ∈ {1, ..., |P |} to indicate the time label of
pi for each pi ∈ P .

A standard approach in IP to encode (y = 1)→ (Ax ≤ b)
is to use Ax ≤ b+ u(1− y), where u is an upper bound on
Ax−b. In the case that y is equal to 0, the constraint becomes
Ax − b ≤ u, which is always true. In our time label based
model, for action a that requires pi and adds pj , we need to
encode (fpj ,a = 1) → (ti − tj ≤ −1). Therefore, we use
constraint (9) to encode acyclicity using time labels.

∀a ∈ A, pi ∈ pre(a), pj ∈ add(a),

ti − tj + 1 ≤ |P |(1− fpj ,a)
(9)

For a given STRIPS planning problem Π =
(P,A, I,G, cost), we use IP-TL(Π) to refer to the
problem of reaching objective (1) subject to constraints (2)
to (5), and (9). IP-TL(Π) is our time label based IP model.

The IP-TL model differs with IP-IF in three ways. First,
since we know that time labels are used to order atomic
propositions in causal relation graphs, we need to use no
more than |P | values for our labels, as no simple path of
length greater than |P | can exist in a graph with |P | vertices.
The upper bound used in constraint (9) is also |P | for the
same reason. In contrast, IP-IF uses variables with |A| + 1

values and an upper bound of |A| + 1 for producing con-
straints on time labels. However, for planning problems, |A|
is usually considerably greater than |P |. Greater numbers of
values for the same variables can mean a larger state space
for the solver, and as a result, a larger solving time. Also,
a simple investigation can show that using a greater upper
bound for producing constraints on time labels can loosen
the constraints in the LP relaxation of the IP model, result-
ing in less informative heuristics.

Second, IP-IF also incorporates time labels for actions,
which is redundant considering that acyclicity is needed to
be enforced on a graph whose vertices are atomic proposi-
tions of the given problem. These redundant variables can
also enlarge the search space of the IP solver.

Lastly, for every a ∈ A, p ∈ add(a), and q ∈ pre(a),
IP-IF enforces a constraint in the form of fq ≥ fp,a for
guaranteeing the truth of preconditions of an action, if the
action has been chosen to be included in the final relaxed
plan. In contrast we use constraint (3) for the same reason.
While these two constraints are equivalent for IP models,
constraint (3) can be tighter when considering the LP relax-
ation of the models. Example 1 shows how this can happen
for a simple and abstract problem.

Example 1. Let Π = (P,A, I,G, cost) be a planning prob-
lem, where P = {x, g}, A = {a, b, c}, I = ∅, G = {g},
pre(a) = ∅, pre(b) = pre(c) = {x}, add(a) = {x},
add(b) = add(c) = {g}, and cost(a) = cost(b) =
cost(c) = 1. Let us assume that the IP-IF model is exactly
the same as IP-TL, except for the difference in constraint (3)
explained above. The solution of both IP-IF and IP-TL mod-
els are forced to include a and exactly one of b and c in the
produced plan. Therefore, the optimal objective value will
be 2. However, a solution to the LP relaxation of IP-IF can
assign 0.5 to fa, fb, and fc, coming up with objective value
1.5. This cannot be true for a feasible solution of the LP re-
laxation of IP-TL. That is because assigning 0.5 to fb and fc,
enforces fx ≥ 1 according to constraint (3), which causes
fa = 1 according to constraints (2) and (5). A straightfor-
ward investigation of this example can show that the optimal
objective value for LP-TL is 2.

Correctness Proofs
We here provide the proofs for soundness and completeness
of our encodings. Since considering the discussion above
about the relation between IP-TL and IP-IF, proofs for cor-
rectness of our IP-TL model can be given by applying mi-
nor modifications to proofs for Proposition 1 and 2 of (Imai
and Fukunaga 2015), we only give the proofs for the IP-VE
model.

Theorem 1. Let Π = (P,A, I,G, cost) be a STRIPS plan-
ning problem, andO be any order on members of |P |. If f is
a causal relaxed plan representation for Π with cost c, then
IP-VE(Π, O) has a feasible solution with objective value c.

Proof. From f , we produce a feasible solution with objec-
tive value c for IP-VE(Π, O). For every a ∈ A and p ∈ P , let
the value of variables fp, and fp,a be equal to 1 iff f is de-
fined on p and f(p) = a, respectively. Also, for every a ∈ A



let fa = 1 iff fp,a = 1 for some p ∈ P . It should be obvious
that with these assignments, constraints (2) to (5) are satis-
fied and the objective function in (1) equals to c. Assume
thatGf is the causal relation graph of f andG∗f is the vertex
elimination graph of Gf according to elimination ordering
O. Since f is a causal relaxed plan representation, Gf must
be acyclic. Since G∗f is a subgraph of the transitive closure
graph of Gf , it is also acyclic. Let O′ be a topological order
of |P | according to G∗f . For every i and j, we let the value
of variable ei,j be equal to 1 iff pi is ordered before pj ac-
cording to O′. Constraint 6 is satisfied because if fpj ,a = 1
and pi ∈ pre(a) then there is an edge in Gf from pi to pj ,
and therefore, pi must be ordered before pj according to O′.
Constraint 7 holds trivially. Constraint 8 is also satisfied be-
cause if pi is ordered before pj and pj is ordered before pk
according to O′, then pi must be ordered before pk.

Theorem 2. Let Π = (P,A, I,G, cost) be a STRIPS plan-
ning problem, and O be any order on members of |P |. If
IP-VE(Π, O) has a feasible solution with objective value c,
then there exists a causal relaxed plan representation for Π
with cost at most c.

Proof. Let S be a feasible solution for p. From S We pro-
duce a partial function f from P to A, and prove that f is a
causal relaxed plan representation for Π. For every p ∈ P ,
let f(p) = a iff S(fp,a) = 1. f is a well-defined partial
function because constraint (2) is satisfied by S, and there-
fore, for a′ 6= a at least one of fp,a and fp,a′ must equal zero.
Moreover, it should be clear from constraint (2) that f is de-
fined on p ∈ P iff S(fp) = 1. Consider conditions 1 to 3
of Definition 1. Condition 1 holds because IP-VE(Π, O) has
the variable fp,a iff a adds p. For every a ∈ A, p ∈ add(a),
and q ∈ pre(a), if f(p) = a, we have S(fq) = 1 because
S satisfies constraint (3). Therefore, since we have assumed
that all members of I have been removed from precondi-
tions of all actions before modeling the problem, condition
2 of Definition 1 holds. Condition 3 also holds because S
satisfies constraint (4). Thus, f is a causal partial function
for Π.

Consider Gf = (P,Ef ) of Definition 2. Let G∗f =

(P,E∗f ) be the vertex elimination graph of Gf produced ac-
cording to elimination orderingO. If (pi, pj) ∈ Ef , by Defi-
nition 2, for some a such that pi ∈ pre(a) and pj ∈ add(a),
we have: f(pj) = a, and by constraint (3), S(ei,j) = 1.
Now, because S satisfies (8), we can conclude that for every
(pl, pm) ∈ E∗f , we have S(el,m) = 1.

By induction on n, we show that G∗f cannot have any cy-
cle with length n, and therefore, Gf cannot have any cy-
cle with length n. Base case: for n = 2, the conclusion
holds because S satisfies constraint (7). Induction hypoth-
esis: assume that for k > 2 the conclusion holds for n = k.
Let p0, ..., pk+1 = p0 be a simple directed cycle in G∗f of
length k + 1. For the sake of simplicity, suppose that all
indices are modulo k + 1. Assume that pj is the first ver-
tex in this cycle eliminated according to order O. Therefore,
(pj−1, pj+1) ∈ E∗f , and p0, ..., pj−1, pj+1, ..., pk+1 = p0

must be a simple directed cycle in G∗f of length k, a contra-
diction.

We conclude that Gf is acyclic, hence f is a causal re-
laxed plan representation for Π. If f maps p to action a, then
according to constraint 5, fa ≥ fp,a = 1. Thus, cost(f) is
at most c.

LP Relaxation of the IP Models
An advantage of IP modeling of h+ is that admissible
heuristics can be obtained by solving LP relaxation of the
produced models. Given a STRIPS planning problem Π and
elimination order O on all atomic propositions of Π, let
LP-VE(Π, O) and LP-TL(Π) be respectively the LP relax-
ation of IP-VE(Π, O) and IP-TL(Π) explained above. Also,
let hV E(Π, O), and hTL(Π) be the value of the objective
function of the solution of LP-VE(Π, O) and LP-TL(Π), re-
spectively. Both hV E and hTL are admissible heuristics. In
this section, we theoretically investigate the relation between
these two heuristics. More specifically, we prove that hV E
is at least as informative as hTL.

Relation Between hV E and hTL

We show that for any elimination ordering O, given feasible
solution SV E for LP-VE(Π, O), feasible solution STL for
LP-TL(Π) with the same objective value can be produced.
All variables in the form of fp,a, fp, and fa are present in
both LP-VE and LP-TL models. Let STL be equal to SV E
for all those variables. We only need to provide values for
variables ti such that constraint (9) is satisfied.

The idea of our proof comes from the observation that IP-
TL guarantees acyclicity by enforcing arc consistency, while
IP-VE enforces path consistency for the same purpose. The
outline of the proof is as follows: given a model for LP-
VE, we construct a weighted graph named the VE-graph.
We prove an upper bound on the total weight of any sim-
ple cycle of this graph. We then construct another weighted
graph named the TL-graph from the VE-graph, and show
that the TL-graph, while possibly having edges with neg-
ative weights, cannot have any cycle with negative total
weight. We consider a dummy vertex which has outgoing
edges with weights zero to all other vertices of the TL-graph.
A shortest path must exist from this dummy vertex to ev-
ery other vertex. We set ti to the shortest distance from the
dummy vertex to pi, and show that these values satisfy con-
straint (9).

Definition 4 (Induced VE-graphs). Let Π =
(P,A, I,G, cost) be a STRIPS planning problem,
GΠ = (P,EΠ) be the causal relation graph of Π, O be any
ordering on members of P , G∗Π = (P,E∗Π) be the vertex
elimination graph of GΠ according to elimination order
O, and SV E be a feasible solution for LP-VE(Π, O). The
VE-graph induced by SV E , denoted by GV E = (P,E∗Π), is
a weighted directed graph with weight function w, such that
for all (pi, pj) ∈ E∗Π, w(pi, pj) = SV E(ei,j).

Lemma 1. If p0, ..., pn = p0 is a simple directed cycle in
GV E of length n, then

∑
i=0,...,n−1 w(pi, pi+1) ≤ n− 1.



Proof. We give the proof by induction on n. Base case: for
n = 2, the conclusion holds because SV E satisfies con-
straint (7). Induction hypothesis: assume that for k > 2
the conclusion holds for n = k. Let p0, ..., pk+1 = p0 be
a simple directed cycle in GV E of length k + 1. For the
sake of simplicity, suppose that all indices are modulo k+1.
Assume that pj is the first vertex in this cycle eliminated
according to order O. Then p0, ..., pj−1, pj+1, ..., pk+1 =
p0 must be a simple directed cycle in GV E of
length k. Therefore,

∑
i=0,...,j−2,j+1,,n−1 w(pi, pi+1) +

w(pj−1, pj+1) ≤ k − 1. However, since according
to constraint (8), w(pj−1, pj) + w(pj , pj+1) − 1 ≤
w(pj−1, pj+1), we have

∑
i=0,...,j−2,j+1,,k w(pi, pi+1) +

w(pj−1, pj) + w(pj , pj+1) − 1 ≤ k − 1, and therefore,∑
i=0,...,k w(pi, pi+1) ≤ k.

Definition 5 (Induced TL-graphs). Let Π =
(P,A, I,G, cost) be a STRIPS planning problem,
GΠ = (P,EΠ) be the causal relation graph of Π, O
be any elimination ordering on members of P , and SV E
be a feasible solution for LP-VE(Π, O). The TL-graph
induced by SV E , denoted by GTL = (P,EΠ), is a weighted
directed graph with weight function w′, such that for all
(pi, pj) ∈ EΠ, w′(pi, pj) = 1− 1 / |P | − w(pi, pj), where
w is the weight function of VE-graph induced by SV E .

Lemma 2. If p0, ..., pn = p0 is a simple directed cycle in
GTL of length n, then

∑
i=0,...,n−1 w

′(pi, pi+1) ≥ 0.

Proof. If p0, ..., pn is a simple directed cycle in GTL,
then it is also a simple directed cycle in GV E , and by
Lemma 1,

∑
i=0,...,n−1 w(pi, pi+1) ≤ n − 1. However,

we have:
∑
i=0,...,n−1 w

′(pi, pi+1) = n − n / |P | −∑
i=0,...,n−1 w(pi, pj). Thus,

∑
i=0,...,n−1 w

′(pi, pi+1) ≥
n − n / |P | − n + 1 = 1 − n / |P |. Since n / |P | ≤ 1,
we have

∑
i=0,...,n−1 w

′(pi, pi+1) ≥ 0.

Theorem 3. Let Π = (P,A, I,G, cost) be a STRIPS
planning problem and O be any order on members of P .
hV E(Π, O) ≥ hTL(Π).

Proof. Let SV E be a feasible solution for LP-VE(Π, O). We
construct solution STL for LP-TL(Π). For every variable x
in form of fp, fp,a, and fa, let STL(x) = SV E(x). Consider
GV E to be the VE-graph induced by SV E with weight func-
tion w, and GTL to be the TL-graph induced by SV E with
weight function w′. We add a dummy vertex v to GTL and
an edge with weight zero from v to every vertex of GTL. By
Lemma 2, GTL does not have any cycle with negative total
weight. Therefore, a shortest distance from v to every vertex
pi of GTL, denoted by d(pi), exists. Let STL(ti) = −d(pi).
Since there exists an edge with weight zero from v to pi,
we have STL(ti) ≥ 0. On the other hand, since w′ is al-
ways greater than -1, we have STL(ti) ≤ |P |. We only
need to show that constraint (9) is satisfied. Let a ∈ A,
pi ∈ pre(a), and pj ∈ add(a). There must exist an edge
(pi, pj) in GTL with weight 1 − 1 / |P | − w(pi, pj) =
1 − 1 / |P | − SV E(ei,j). Since d(pi) and d(pj) are the
shortest distances from v to pi and pj , respectively, we

have: d(pj) ≤ d(pi) + 1 − 1 / |P | − SV E(ei,j). There-
fore, STL(ti) − STL(tj) ≤ 1 − 1 / |P | − SV E(ei,j). Be-
cause |P | ≥ 1, by multiplying the right-hand side by |P | we
have STL(ti) − STL(tj) ≤ |P | − 1 − SV E(ei,j)|P |, and
therefore, STL(ti) − STL(tj) + 1 ≤ |P |(1 − SV E(ei,j)).
Since SV E is a feasible solution for LP-VE(Π, O), it must
satisfy (6). Thus STL(fpj ,a) = SV E(fpj ,a) ≤ SV E(ei,j),
and STL(ti) − STL(tj) + 1 ≤ |P |(1 − STL(fpj ,a)). We
conclude that STL is a feasible solution for LP-TL(Π). Be-
cause the value of objective function for STL is equal to that
of SV E , we have: hV E(Π, O) ≥ hTL(Π).

Theorem 3 shows that hV E dominates hTL, no matter
what ordering has been used for variable elimination. it
can be shown that there are problems for which hV E is
strictly more informative. However, since concrete examples
of such problems are quite complicated, we show this using
our empirical analysis. In fact, our empirical results show
that hV E can be considerably more informative than hTL.

Empirical Results
We have implemented our IP and LP models inside the
HSP* planner (Haslum 2021). All experiments have been
run on a cluster of Linux machines, using a timeout of 1800
seconds per problem, and, if not stated otherwise, a memory
limit of 4 GB. In versions that vertex elimination is used,
for determining the order of vertex elimination, we have im-
plemented the minimum degree heuristic, i.e., eliminating a
vertex with minimal total number of incoming and outgoing
edges in the graph produced after the elimination of previ-
ously eliminated vertices. As the optimizer, we have used
IBM ILOG CPLEX Optimization Studio 20.11.

All models also use some of the preprocessing methods
presented in (Imai and Fukunaga 2015). These methods are
1) finding fact landmarks (Gefen and Brafman 2011) and
adding them to the goal conditions; 2) doing action rele-
vance analysis and removing non-relevant actions; and 3)
dominated action elimination. The implementation of these
methods was part of the base HSP* package.

As our benchmark problem set, we have used the STRIPS
planning problem sets found in the planning repository2.
From IPC domains, domains from both satisficing and op-
timal tracks have been considered. In total, 2212 problem
instances from 84 problem sets have been used for compar-
ison.

Computing the Exact Value of h+

Our IP-VE and IP-TL models can be solved to compute
the exact value of h+. Henceforth, We call our solvers
by their corresponding model name, IP-VE, and IP-TL.
To evaluate their efficiency, we have compared our solvers
with 1) SAT, the boolean satisfiability based encoding used
in (Rankooh and Rintanen 2022); 2) IF, the solver with IP
model introduced in (Imai and Fukunaga 2015); and 3) HST,
the minimum-cost hitting set based method introduced in

1https://www.ibm.com/products/ilog-cplex-optimization-
studio

2https://github.com/AI-Planning/classical-domains



Figure 1: Cumulative number of delete-relaxed problems
solved by the competing methods

(Haslum, Slaney, and Thiébaux 2012). Although the Deci-
sion Diagram based method (Castro et al. 2020) is more re-
cent than HST and IF, its results are strongly dominated by
other methods and therefore, not presented here. Since the
original implementation of IF is not publicly accessible, we
have used the implementation of IF that is included in HST
solver. For the SAT method we have used Kissat (Biere et al.
2020) as the SAT solver. Because the encodings of SAT need
large amount of memory in some cases, we have given this
solver 16GB of memory. All solvers have been run on the
delete-relaxed versions of the benchmark problems. Cumu-
lative number of problems solved by all methods are pre-
sented in Figure 1.

Out of the 2212 problems under study, the exact value of
h+ was computed in 1800 seconds for 1980, 1913, 1889,
1715, and 1669 problems by IP-VE, SAT, IP-TL, IF, and
HST, respectively. As it can be seen in Figure 1, IP-VE sig-
nificantly outperforms all of the other solvers. In fact, no
matter what the time limit is, IP-VE computes h+ for more
problems compared to any other solver. The IP-TL, despite
performing rather slowly in the beginning, outperforms IF
and HST, and is competitive with SAT when given enough
time.

Informativeness of the LP-based Heuristics
To evaluate the informativeness of heuristics obtained by
solving our LP-VE and LP-TL methods, we have computed
their accuracy in estimating the value of h+. This can be
done by dividing the value of the heuristics to the exact value
of h+ obtained by our IP-VE solver. The accuracy of our
LP-based heuristics are compared with that of the LM-cut
heuristic (Helmert and Domshlak 2009), and also the LP re-
laxation of the IP model used in (Imai and Fukunaga 2015),
denoted by LP-IF. We have used the implementation of the
LM-cut heuristic which is a part of the HSP* planner.

Figure 2 shows the spread of obtained accuracies by sep-
arate box plots. For the sake of clarity, we have not included
the problems for which all mentioned heuristics were able

Figure 2: Informativeness of competing admissible heuris-
tics

to produce the exact value of h+. Each plot illustrates the
minimum, the maximum, the median, and the first and third
quartile of the accuracy of the corresponding heuristic func-
tion on the 1319 remaining problems.

As it can be seen in Figure 2, both our heuristics are quite
informative when compared to LM-cut and LP-IF. Our em-
pirical results also confirm the result of Theorem 3, showing
that hV E ≥ hTL in all cases. Furthermore, it can be deduced
from Figure 2 that hV E is strictly greater than hTL for some
problems. In fact, the median accuracy of hV E is 98.5 per-
cent for the problems under study, considerably higher than
median accuracy of hTL, which is 94.2 percent.

We have also investigated how complementary our heuris-
tics are to the LM-cut heuristic. For this purpose, we have
provided the box plots for the maximum of hV E and
hLM -cut, and also the maximum of hTL and hLM -cut in Fig-
ure 2. Our results show that in more than half of the prob-
lems for which not all heuristics under study can compute
the exact value of h+, max(hV E , hLM -cut) gives the ex-
act value. Moreover, in half of the problems under study,
max(hTL, hLM -cut) has an accuracy of 98.5 or more. These
results show that our heuristics can do quite a good job in
making up for the lack of information of the LM-cut heuris-
tic in relation to h+.

Using hV E and hTL for Optimal Planning
The informativeness of hV E and hTL comes at a price.
Computation of the LM-cut heuristic takes a time at most
quadratic in the size of the input planning problem (Helmert
and Domshlak 2009). Our LP-TL model, on the other hand,
uses a number of variables linear in size of the plan-
ning problem, which makes it impossible to be solved in
quadratic time using the current algorithms (Jiang et al.
2021). The situation for our LP-VE heuristic is even worse,
as it may use a quadratic number of variables in the size of
the input problem.

We have compared the time needed to compute hTL with
the time needed for computing hLM -cut (Figure 3), and hV E



Figure 3: Comparison of time (in seconds) needed to cop-
mute hTL and hLM -cut

Figure 4: Comparison of time (in seconds) needed to cop-
mute hTL and hV E

(Figure 4), for all benchmark problems. As it can be seen
hLM -cut is computed in many cases almost one order of
magnitude faster than hTL. Also, computing hTL is consid-
erably faster than computing hV E .

To see how hV E , hTL, and our IP based implementation
of h+ work as heuristic in state space search for cost optimal
planning, we have used these functions as the heuristic for
A* search provided inside the HSP* planner. The cumulative
numbers of problems solved by A* when using hLM -cut,
hV E , hTL, hIF (by solving LP relaxation of the IP model
introduced in (Imai and Fukunaga 2015)), h+

IP (by solving
our IP-VE model), and max(hTL, hLM -cut) are shown in
Figure 5. Note that out of the mentioned heuristic functions,
the time complexity of computing h+

IP is exponential.
It can be seen in Figure 5 that fast computation of hLM -cut

pays off. Using LM-cut, A* solves 822 problems, 39 prob-
lems more than the 783 problems solved when using hTL.
However, when using the maximum of hTL and hLM -cut,
813 problems are solved, which is quite close to the cov-
erage of hLM -cut, despite its costly heuristic computation.
Moreover, the number of problems solved when using hV E
and h+

IP is 709 and 717, respectively, considerably lower

Figure 5: Cumulative number of problems solved by A* us-
ing different heuristics

than when hTL is used.
Despite the observation of inefficiency of using hV E in

the mentioned setting, it cannot be concluded that hV E is
altogether without benefit. hV E could be helpful in the set-
tings where more effort is done when expanding a search
node. One obvious example of such settings would be when
a portfolio of many different heuristic functions is used for
evaluating a given search node, a prominent approach for
efficient optimal planning. We leave investigating such set-
tings to future research.

Conclusion
We introduced new IP/LP models for computing h+. The
new models, IP/LP-VE and IP/VE-TL, were based on en-
forcing acyclicity in causal relation graphs of causal relaxed
plan representations for given STRIPS planning problems,
using vertex elimination and time labeling methods. We pro-
vided proofs for correctness of our models, and proved that
the LP-VE based heuristic dominates the LP-TL based one.
Our empirical results show that while the IP-VE model com-
putes h+ faster than IP-TL and all previously introduced
methods, the LP-TL model is faster to solve compared to
LP-VE, and is more suitable for using as heuristic function
for optimal planning. Our results also show that the new ad-
missible heuristics are often more informative compared to
the LM-cut heuristic. Our LP-VE and LP-TL based heuris-
tics were also shown to be effective in compensating for the
lack of informativeness of the LM-cut heuristic.
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