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Abstract
We introduce novel methods for encoding acyclicity and s-
t-reachability constraints for propositional formulas with un-
derlying directed graphs, based on vertex elimination graphs,
which makes them suitable for cases where the underlying
graph has a low directed elimination width. In contrast to
solvers with ad hoc constraint propagators for graph con-
straints such as GraphSAT, our methods encode these con-
straints as standard propositional clauses, making them di-
rectly applicable with any SAT solver. An empirical study
demonstrates that our methods do often outperform both ear-
lier encodings of these constraints as well as GraphSAT espe-
cially when underlying graphs have a low directed elimina-
tion width.

Introduction
Many AI approaches incorporate graphs to maintain con-
ceptual relations among their elements. Graphs introduce
structure to AI methods. Once such a structure has been as-
sumed, investigating the existence and exploitation of struc-
tural properties is only natural. Reachability and acyclicity
are two of the most important structural properties of graphs.

Graph constraints are important in knowledge representa-
tion languages. For example, acyclicity constraints are part
of reductions of Answer Set Programming to SAT (Lin
and Zhao 2004; Gebser, Janhunen, and Rintanen 2014a),
and implicit in fixpoint semantics of inductive definitions
(Denecker and Ternovska 2008). In AI planning, acyclic-
ity is needed for SAT encodings for classical planning that
use partial orders (Rintanen, Heljanko, and Niemelä 2006),
and for non-deterministic and partially observable planning
(Chatterjee, Chmelik, and Davies 2016; Pandey and Rinta-
nen 2018). Moreover, constraint-based methods for structure
learning of Bayesian networks need the acyclicity of the net-
works with graph constraints (Cussens 2008).

The above-mentioned approaches have motivated the de-
velopment of better encodings of acyclicity and other graph
constraints in the propositional logic, as well as the study of
specialized propagators for these constraints.

In this work we address the satisfiability of propositional
formulas with underlying directed graphs, under reachabil-
ity and acyclicity constraints. The motivation for our work is

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the difficult trade-off between size and propagation strength
in existing encodings of these constraints (Gebser, Janhunen,
and Rintanen 2020) on one hand, and the effort in imple-
menting specialized graph constraint propagators (Gebser,
Janhunen, and Rintanen 2014b), and adapting and embed-
ding them in SAT solvers, on the other.

Our goal is to develop encoding methods for graph con-
straints such as acyclicity and reachability, that are compet-
itive with specialized ad hoc graph constraint propagators,
and which suffer less from the large size of those traditional
clausal encodings that have good propagation properties. We
particularly address sparse graphs.

Our idea is to use vertex elimination graphs (Rose and
Tarjan 1975) as a structure that preserves reachability and
acyclicity properties of the underlying graph, and also al-
lows succinct encoding of graph constraints into propo-
sitional formulas, particularly when a related graph mea-
sure named directed elimination width (Hunter and Kreutzer
2007) is low in comparison to number of vertices. The
current state-of-the-art method for satisfying acyclicity and
reachability constraints in the SAT context is GraphSAT
(Gebser, Janhunen, and Rintanen 2014b). While GraphSAT
relies on a specialized algorithm for satisfying graph con-
straints, our methods explicitly encode the constraints into
propositional formulas, and therefore allow an easy reuse of
the method with any other state-of-the-art SAT solver with-
out additional implementation effort.

We provide theoretical arguments for correctness of our
methods, and also, deliver theoretical evidence of efficiency
of the methods by undertaking a parameterized complex-
ity analysis. Moreover, our empirical results show that by
employing an efficient SAT solver, our methods can outper-
form GraphSAT and other encoding methods when underly-
ing graphs have a low directed elimination width.

Preliminaries
In this section we provide formal definitions for proposi-
tional formulas with underlying directed graphs, encoding
of graph constraints, and vertex elimination graphs.

Propositional Formulas with Underlying Directed
Graphs
Assume that φ is a propositional formula over the set of
propositional variables X . Let G = (V,E) be a digraph and



f be a partial function fromX toE. Then we can consider φ
as a propositional formula with underlying digraph G with
respect to f . In this work, we avoid explicit definition of
f by denoting the proposition in φ that is mapped by f to
(u, v) ∈ E by eu,v . If there exists a modelM for φ, we con-
struct GM = (V,EM), the underlying graph ofM, where
EM = {(vi, vj)|M(ei,j) = true}.

The main purpose for considering a propositional formula
with an underlying directed graph is to add semantics to the
formula by enforcing certain constraints on the underlying
graph of the models found for the formula. One way to do
this is producing the conjunction of original formula and ad-
ditional formulas.
Definition 1 (Encoding of Graph Constraints). Let φ be a
propositional formula with underlying graph G. The encod-
ing of graph constraint C for φ is a propositional formula φC
with completeness and soundness properties stated below:
• (Completeness) if φ is satisfied by model M such that

constraint C holds for GM, then φ ∧ φC is satisfiable.
• (Soundness) if φ∧ φC is satisfied by modelM, then con-

straint C holds for GM.
Encoding of acyclicity, s-t-reachability, s-t-

unreachability, and s-t-eventual-reachability constraints
are of particular interest in this work. We define these
constraints below, where we survey background research.

Vertex Elimination Graphs
The concept of vertex elimination graph has originally
been introduced in (Rose and Tarjan 1975). Let G =
(V,E) be a directed graph, G+ = (V,E+) be the tran-
sitive closure of G, and O = v1, ..., v|V | be any order-
ing of members of V . We construct a sequence of graphs
G0 = G, ..., G|V | by eliminating vertices of G accord-
ing to ordering O. For each i > 0, Gi is obtained
from Gi−1, by removing vi, and adding edges from all
its in-neighbors to all its out-neighbors. Formally, Gi =
(Vi, Ei) is constructed from Gi−1 = (Vi−1, Ei−1) so that
Vi = Vi−1\{vi}, and Ei = Ei−1\({(vj , vi)|(vj , vi) ∈
Ei−1} ∪ {(vi, vk)|(vi, vk) ∈ Ei−1})

⋃
Di, where Di =

{(vj , vk)|(vj , vi) ∈ Ei−1, (vi, vk) ∈ Ei−1, j 6= k}. The
vertex elimination graph of G according to elimination or-
dering O is G∗ = (V,E∗), where:

E∗ =

|V |⋃
i=0

Ei (1)

The directed elimination width (Hunter and Kreutzer
2007) of ordering O for graph G is defined by the maxi-
mum over number of neighbors of vi in Gi for i = 1, ...|V |.
The directed elimination width of G is the minimum width
over all directed elimination orderings for G.

We define ∆ as the set of all triangles produced by elim-
ination ordering O for graph G. Members of ∆ are all or-
dered triples (vi, vj , vk) such that (vi, vk) is a member of
Dj .

Clearly, for each i there is an edge (vj , vk) ∈ Ei only
if there is a path in Ei−1 with length at most 2 from vj to
vk. Therefore, if there is an edge (vj , vk) in E∗, there must
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Figure 1: (a) A simple directed cycle (b) The vertex elimi-
nation graph

exist a path in G from vi to vj . We can conclude that G∗
is a subgraph of G+. However, the difference between |E+|
and |E∗| depends both on the sparsity ofG, and the elimina-
tion ordering. It has been shown that the problem of finding
the optimal ordering, that is, the ordering that results in the
smallest number of edges in the vertex elimination graph, is
NP-complete (Rose and Tarjan 1975). Nevertheless, there
are effective heuristics for finding empirically usable order-
ings. An example is minimum fill-in heuristic, which chooses
vi so that elimination of vi adds the minimum number of
edges to Gi−1. Another example is minimum degree heuris-
tic, which chooses vi with the minimum degree from Gi−1.
Example 1 (Vertex elimination graphs). Consider G to be
the graph depicted in Figure 1(a). There are several elimina-
tion orderings that can result in a vertex elimination graph
depicted in Figure 1(b), among which one possible ordering
is 2,4,6,8,1,5,3,7. The elimination width of this order is 2.

Background
We now explain the methods that have already been intro-
duced for checking acyclicity and reachability when propo-
sitional formulas are considered.

Acyclicity
A digraph is acyclic iff there is no path in it from a vertex
to itself. Various methods have been introduced to encode
acyclicity for symbolic structures with underlying graphs.
Here, we review these methods.

Explicit Encodings Explicit encodings are those that pre-
vent cycles by adding specific formulas to the original for-
mula. An important advantage of this approach is that off-
the-shelf SAT solvers can be used to check acyclicity for
the output formula. Examples of explicit encodings are tran-
sitive closure (Brooks et al. 2007; Cussens 2008; Brewka,
Eiter, and Truszczynski 2011), topological sorting with in-
dices (Gebser, Janhunen, and Rintanen 2020), tree reduc-
tion (Corander et al. 2013; Tamura et al. 2009), and matrix
multiplication encoding (Janota, Grigore, and Manquinho
2017).

Of the methods that use explicit acyclicity encoding, tran-
sitive closure is known for better performance (Janota, Grig-
ore, and Manquinho 2017). Some of the other encodings
(which are not discussed further) have far smaller size but



also far poorer propagation properties and hence slower SAT
solving. Therefore, in this work we only make a comparison
to the transitive closure method.

Given a formula φ with underlying graph G = (V,E),
encoding of transitive closure as described in (Gebser, Jan-
hunen, and Rintanen 2014b) usesO(|V |2) variables and pro-
duces O(|V ||E|) clauses.

GraphSAT Another approach is to take acyclicity into ac-
count when checking the satisfiability of the given formula.
This approach, which does not require adding extra clauses
to the formula, has been used in GraphSAT (Gebser, Jan-
hunen, and Rintanen 2014b). GraphSAT is the current state-
of-the-art method for checking acyclicity for formulas with
underlying graphs.

Given a mapping of arcs to variables, GraphSAT employs
a specialized algorithm for detecting a cycle in the graph
induced by those arcs that map to true variables, and to in-
fer that a variable must be false to prevent a cycle emerging
in the graph. This algorithm is run together with the unit
propagation algorithm inside a standard CDCL implementa-
tion. GraphSAT has been shown to outperform explicit SAT
encodings for acyclicity as well as non-Boolean represen-
tations in terms of linear arithmetic constraints in the SAT
Modulo Theories framework (Gebser, Janhunen, and Rinta-
nen 2014b).

Encoding Acyclicity by Leveraging Graph Structure
Encoding acyclicity as SAT by leveraging low treewidth,
the undirected counterpart of ordered elimination width, has
previously been done in a number of works. Examples are
the SAT encoding for finding treewidth (Samer and Veith
2009) and hypertreewidth (Schidler and Szeider 2020), and
leveraging low treewidth for finding structure in Bayesian
Networks (Berg, Järvisalo, and Malone 2014; Ramaswamy
and Szeider 2021).

In all of these works, the main focus is to encode the
treewidth into SAT. In this work, however, we encode neither
directed elimination width nor the ordering that results in the
directed elimination width. Instead, the production of vertex
elimination graph is done in our work as a preprocessing
phase. We use vertex elimination graphs to produce encod-
ings that enable a more efficient propagation of acyclicity
constraints.

Reachability

Let G = (V,E) be a digraph, and s, t ∈ V . We say s-t-
reachability holds for G iff there is a path from s to t in G.
Checking s-t-reachability as SAT has been studied before.
Here we survey three main approaches: explicit encoding,
reachability via acyclicity, and implicit reachability check-
ing using GraphSAT.

Explicit Encoding Checking unreachability can be done
by adding additional formulas to φ (Chatterjee, Chmelik,
and Davies 2016; Pandey and Rintanen 2018). Let s = vs
and t = vt be members of V . Encoding of s-t-unreachability
for φ, denoted by φs-t-unreach, can be produced by conjunc-

tion of formulas (2) and (3).

rs,s ∧
∧

(vi,vj)∈E

(ei,j ∧ rs,i → rs,j) (2)

¬rs,t (3)

Checking reachability, on the other hand, is not as easy as
checking unreachability. Encoding of s-t-reachability for φ,
denoted by φexps-t-reach, can be produced by conjunction of
formulas (4) to (6).

r0
t,t ∧

∧
vi∈V \{t}

¬r0
i,t (4)

∧
n=1,...|V |−1

rni,t → rn−1
i,t ∨

∨
(vi,vj)∈E

(ei,j ∧ rn−1
j,t )

 (5)

r
|V |−1
s,t (6)

This encoding is derived from (Pandey and Rintanen 2018).
Setting the variable rni,t to true means that there is a path
with length at most n from vi to t. The encoding is based on
the observation that if t is reachable from s, it is reachable
by a path with length at most |V | − 1. Formula (4) ensures
that there is a path from vi to t with length zero iff vi = t.
Formula (5) guarantees that if there exists a path with length
at most n from to vi to t, then there must exist a path with
length at most n−1 from an out-neighbor of vi to t. Finally,
Formula (6) ensures that there is a path with length at most
|V | − 1 from s to t.

For a formula φ with underlying graph G = (V,E), this
encoding uses O(|V |2) variables and produces O(|V ||E|)
clauses.

Reachability by Acyclicity This encoding of s-t-
reachability has been introduced by Pandey and Rintanen
(2018). In this approach, an acyclic subgraph G′ of G is
encoded to trace the reachability of t from vertices through
their out-neighbors. Propositional formulas are added to
ensure that 1) t is reachable from itself; 2) if t is reachable
from v 6= t, then t is reachable from an out-neighbor v′ of
v in G, and (v, v′) is an edge in G′; 3) t is reachable from
s; and 4) G′ is acyclic. The acyclicity of G′ is necessary
because otherwise vertices may obtain reachability from
one another in a cycle, without actually having a path to t.

This encoding uses O(|E|) variables and produces
O(|V |+ |E|) clauses plus the variables and clauses needed
for encoding acyclicity of G′. Note that with GraphSAT
there is no need to add extra variables and clauses for check-
ing the acyclicity of G′, as this property is guaranteed by
GraphSAT while solving the formula.

Reachability in GraphSAT As mentioned for the case of
acyclicity, GraphSAT receives a description of the underly-
ing graph as input. GraphSAT also admits reachability and
non-reachability constraints in its input. While searching for
a model, GraphSAT checks that the enabled edges conform
to these constraints.



Eventual Reachability Let G = (V,E) be a digraph, and
s, t ∈ V . We say s-t-eventual-reachability constraint holds
for G iff for every v ∈ V , if v is reachable from s, then t is
reachable from v.

Both explicit encoding of reachability and encoding of
reachability by acyclicity can be modified to produce encod-
ings for s-t-eventual-reachability. For example, the explicit
encoding of s-t-eventual-reachability, denoted by φexps-t-event,
can be produced by conjunction of formulas (2), (4), (5), and
(7). ∧

vi∈V
rs,i → r

|V |−1
i,t (7)

Encoding of s-t-eventual-reachability by acyclicity can be
produced in similar way (Pandey and Rintanen 2018). It can
easily be shown that size properties of the mentioned en-
codings for s-t-eventual-reachability are the same as their
s-t-reachability counterparts.

Encodings with Vertex Elimination Graphs
Assume that φ is a propositional formula over the set X of
variables, with underlying graph G = (V,E). Let O be an
elimination ordering for G, G∗ = (V,E∗) be the vertex
elimination graph of G according to O, δ be the directed
elimination width of O for G, and ∆ be the set of all tri-
angles produced for G by vertex elimination according to
O. Also, if modelM satisfies φ, let GM be the underlying
graph ofM, and G∗M = (V,E∗M) be the vertex elimination
graph of GM according to O.

Encoding of Acyclicity
The encoding of acyclicity for φ using vertex elimination ac-
cording to O, denoted by φveacycl, is produced by conjunction
of formulas (8) to (10):∧

(vi,vj)∈E

ei,j → e′i,j (8)

∧
(vi,vj)∈E∗,(vj ,vi)∈E∗,i<j

e′i,j → ¬e′j,i (9)

∧
(vi,vj ,vk)∈∆

(e′i,j ∧ e′j,k)→ e′i,k (10)

Theorem 1 (Completeness of φveacycl). If φ is satisfied by
any model M such that GM is acyclic, then φ ∧ φveacycl is
satisfiable.

Proof. ConsiderO′ to be a topological ordering of members
of V according to GM. We construct valuation functionM′
for φ ∧ φveacycl such that for each x ∈ X ,M′(x) = M(x),
and for each e′i,j , M′(e′i,j) = true iff vi precedes vj ac-
cording to O′. By definition, φ is trivially satisfied byM′.
Formula (8) is satisfied byM′ because ifM′(ei,j) = true,
vi precedes vj according to O′, thusM′(e′i,j) = true. For-
mula (9) is satisfied seeing that if M′(e′i,j) = true, then
vi precedes vj , and therefore, vj cannot precede vi accord-
ing to O′. Formula (10) is satisfied because if M′(e′i,j) =
M′(e′j,k) = true, then vi precedes vj and vj precedes vk.

Therefore, vi precedes vk according to O′, andM′(e′i,k) =
true.

Lemma 1. If φ ∧ φveacycl is satisfied by modelM, then for
every (vi, vj) ∈ E∗M, we haveM(e′i,j) = true.

Proof. By formula (8) ifM(ei,j) = true thenM(e′i,j) =
true. Let ∆M be the set of all triangles produced for GM
by vertex elimination according to O. Since E∗M is a subset
of E∗, we conclude that ∆M is a subset of ∆. The proof is
complete by seeing thatM satisfies formula (10).

Lemma 2. Let G∗ = (V,E∗) be a vertex elimination graph
of an arbitrary graph G = (V,E) according to an arbitrary
elimination orderingO. IfG has a cycle then for some v and
v′, we have (v, v′) ∈ E∗ and (v′, v) ∈ E∗.

Proof. We give the proof by induction on the number of ver-
tices in the cycle. Base case: for a cycle of two vertices,
the conclusion clearly holds. Induction hypothesis: assume
that for k > 2 and the conclusion holds for any cycle with
k − 1 vertices. For a cycle with k vertices, the cycle has
the form v0, ..., vk−1, v0. Let vi be the first vertex in the
set {v0, ..., vk−1} that is eliminated according to ordering
O. The edges (v[i−1]k , vi) and (vi, v[i+1]k) must be present
prior to the elimination of vi. Therefore, (v[i−1]k , v[i+1]k) is
a member of E∗, constructing a cycle of length k − 1. The
proof is then complete by the induction hypothesis.

Theorem 2 (Soundness of φveacycl). If φ ∧ φveacycl is satisfied
by modelM, then GM is acyclic.

Proof. Assume that GM has a cycle. Since GM is a sub-
graph of G∗M, we conclude that G∗M has a cycle, too. Ac-
cording to Lemma 2, for some i and j, we have: (vi, vj) ∈
E∗M and (vj , vi) ∈ E∗M. Then, according to Lemma 1,
we have M(e′i,j) = true and M(e′j,i) = true, which
by considering formula (9) contradicts the assumption that
φ ∧ φveacycl is satisfied byM.

Theorem 1 and Theorem 2 show that φveacycl is an encoding
of acyclicity for φ.

Complexity Analysis For analyzing the size of φveacycl,
note that the number of variables in φveacycl is proportional
to number of edges in G∗, which is O(δ|V |) ⊆ O(|V |2).
This means that in the worst case our vertex elimination
based method uses the same asymptotic number of variables
as the transitive closure method. However, directed elimina-
tion width can be significantly smaller than |V |. By using
heuristic methods mentioned before, one can come up with
an ordering with directed elimination width close to that of
G.

The number of clauses in φveacycl is proportional to |∆| +
|E∗|, that is, the total number of triangles produced by elim-
inating all vertices plus the number of edges in the vertex
elimination graph. When eliminating v, the number of tri-
angles produced is at most δ2. By summing over all ver-
tices, we reach to O(δ2|V |) ⊆ O(|V |3). In graphs with low
ordered elimination widths, δ2 can be significantly smaller



than |E|, leading to a far smaller number of clauses than the
transitive closure method.

Encoding of s-t-Reachability
For encoding s-t-reachability by using vertex elimination ac-
cording to elimination ordering O, we add a restriction on
O. We demand that s = vs and t = vt are ordered after
all other vertices by O. Assuming this, the encoding of s-t-
reachability by using vertex elimination according to elim-
ination ordering O, denoted by φves-t-reach, is produced by
conjunction of formulas (11) to (13), where f(ei,j) is ei,j if
(vi, vj) ∈ E and false otherwise.

∧
(vi,vj)∈E∗

(e′i,j → f(ei,j) ∨
∨

(vi,vk,vj)∈∆

ti,k,j) (11)

∧
(vi,vk,vj)∈∆

ti,k,j → e′i,k ∧ e′k,j (12)

e′s,t (13)
Theorem 3 (Completeness of φves-t-reach). If φ is satisfied
by any model M such that GM has s-t-reachability, then
φ ∧ φves-t-reach is satisfiable.

Proof. Let ∆M be a subset of ∆ constructed similar to ∆
but only by considering edges that are inGM, that is, the un-
derlying graph of M. We construct valuation function M′
for φves-t-reach such that for each x ∈ X , M′(x) = M(x),
for each e′i,j , M′(e′i,j) = true iff (vi, vj) ∈ E∗M, and
M′(ti,k,j) = true iff (vi, vk, vj) ∈ ∆M.

Formula (11) is satisfied by M′ because for i and j
such that (vi, vj) ∈ E∗, if M′(e′i,j) = true and either
(vi, vj) /∈ E orM′(ei,j) = false, then for some k, (vi, vj)
has been added toG∗M when eliminating some vk, and there-
fore, M′(ti,k,j) = true. Formula (12) is trivially satisfied
byM′. Also, Formula (11) is satisfied by seeing that since
we have assumed that vs and vt are eliminated after all other
vertices, if there is a path in G∗M from vs to vt, then (vs, vt)
must be a member of E∗M.

Lemma 3. If the conjunction of φ, formula (11), and for-
mula (12) is satisfied by model M, and M(e′i,j) = true,
then there is a path in GM from vi to vj .

Proof. Without loss of generality assume that vertices are
indexed according to elimination ordering O. We give the
proof by strong induction on m = min(i, j). Base case:
for m = 1, since there are no (v1, vk, vj) or (vi, vk, v1) in
∆, from (11) we deduce that there is an edge in GM from
ei to ej . Induction hypothesis: assume that for all n such
that 1 ≤ n ≤ m and all i, j ≤ |V |, if n = min(i, j) and
M(e′i,j) = true, then there is a path in GM from ei to ej .
We prove that for any i and j such that min(i, j) = m + 1
andM(e′i,j) = true, there is a path in GM from ei to ej .
Consider formula (11). If ei,j ∈ E and M(ei,j) = true,
then conclusion obviously holds. If ei,j /∈ E orM(ei,j) =
false, then there must exist k such that (vi, vk, vj) ∈ ∆
andM(ti,k,j) = true. However, in this case since (vi, vj)
has been added when eliminating vk, k must be smaller than

both i and j. By formula (12), we must have: M(ei,k) =
true, andM(ek,j) = true. Therefore, by induction hypoth-
esis there must be paths from ei to ek, and from ek to ej in
GM. Thus, the conclusion holds.

Theorem 4 (Soundness of φves-t-reach). If φ ∧ φves-t-reach is
satisfied by modelM, then GM has s-t-reachability.

Proof. SinceM satisfies (13), by Lemma 3, there must be a
path from vs to vt in GM.

Complexity Analysis The number of variables used in
φves-t-reach is proportional to |∆| + |E∗|, which we showed
to be O(δ2|V |) ⊆ O(|V |3). The number of clauses is
also O(δ2|V |), making this encoding suitable for underly-
ing graphs with low ordered elimination widths.

Encoding of s-t-Eventual-Reachability
Without loss of generality assume that vertices are indexed
according to elimination ordering O. We also require t to be
ordered after all other vertices by O. Assuming these, the
encoding of s-t-eventual-reachability by using vertex elim-
ination according to elimination ordering O, denoted by
φves-t-event, is produced by conjunction of formulas (2), (11),
(12), and (14). ∧

vi∈V \{t}

(rs,i →
∨

(vi,vj)∈E∗,i<j

e′i,j) (14)

Theorem 5 (Completeness of φves-t-event). If φ is satisfied by
any model M such that GM has s-t-eventual-reachability,
then φ ∧ φves-t-event is satisfiable.

Proof. Let ∆M be constructed as it was in the proof of
Theorem 3. We construct valuation function M′ for φ ∧
φves-t-event such that for each x ∈ X , M′(x) = M(x),
M′(e′i,j) = true iff (vi, vj) ∈ E∗M,M′(ti,k,j) = true iff
(vi, vk, vj) ∈ ∆M, andM′(rs,i) = true iff vi is reachable
from vs in GM.

Formulas (2) and (12) are trivially satisfied by M′. For-
mula (11) is satisfied byM′ by the same argument made in
the proof of Theorem 3. If vi ∈ V \{t} is reachable from
vs in GM, since GM has s-t-eventual-reachability property,
there must exist a path from vi to t. Not all vertices in such
a path can have indices less than i. That is because we have
assumed that O puts t after every other vertex. Assume that
we traverse the mentioned path until we visit the first vertex
vj such that i < j. Since according to O all vertices before
visiting vj are eliminated before eliminating vi and vj , we
conclude that (vi, vj) ∈ E∗M and thus, (vi, vj) ∈ E∗. Then
we have: M′(e′i,j) = true. We can conclude that (14) is
also satisfied byM′.

Theorem 6 (Soundness of φves-t-event). If φ∧φves-t-event is sat-
isfied by modelM, then GM has s-t-eventual-reachability.

Proof. From formula (2), we can conclude that if vi is reach-
able from s, then we have: M(rs,i) = true. By formula
(14), for some j such that i < j, we haveM(e′i,j) = true.
By Lemma 3, there must be a path from vi to vj in GM.
Therefore, vj is reachable from vs. We can repeat the same



Figure 2: Time (in seconds) needed to solve instances with
acyclicity constraints by the vertex elimination method ver-
sus GraphSAT

Figure 3: Time (in seconds) needed to solve instances with
acyclicity constraints by the vertex elimination method ver-
sus transitive closure

argument and find paths from s to vertices with increasing
indices. BecauseO puts t after every other vertex, such paths
must at some point reach t.

It is easy to see that size properties of the encoding of s-t-
eventual-reachability by using vertex elimination is asymp-
totically the same as those of the encoding of s-t-reachability
by using vertex eliminations.

Empirical Results and Discussion
For analyzing our methods empirically, we have used two
different problem sets. We have used randomly produced 3-
SAT formulas with various number of clauses and underly-
ing graphs with fixed number of vertices and different elim-
ination widths. Moreover, we have used planning problem
set of (Pandey and Rintanen 2018), which are solvable by
both acyclicity checking and eventual reachability checking
of their underlying graphs.

We implemented our vertex elimination encodings, as
well as the transitive closure method described in (Gebser,
Janhunen, and Rintanen 2014b). As the heuristic for elimi-
nation orderings of the vertex elimination methods, we have
used mindegree, that is, eliminating a vertex with minimal

Figure 4: Time (in seconds) needed to solve instances with
reachability constraints by the vertex elimination method
vesus GraphSAT

total number of incoming and outgoing edges in the graph
produced after the elimination of previously eliminated ver-
tices. We have solved all instances with GraphSAT, which
becomes the Glucose SAT solver (Audemard and Simon
2009) in the absence of special graph constraints. For the
planning benchmarks we have also used Kissat (Biere et al.
2020), which has won the first place in the main track of the
SAT Competition 2020. All experiments were run in a clus-
ter of Linux machines, with a 1800 second timeout limit per
instance, and a memory limit of 64 GB.

Results on Random Formulas with Underlying
Graphs
To test our methods on random formulas, we have used the
fixed size benchmark graphs of (Planken, de Weerdt, and
van der Krogt 2011) as the underlying graphs. This graph set
helps us observe the impact of elimination width measure on
the efficiency of our methods. All graphs in this benchmark
set have 200 vertices. For δ = 5, 10, ..., 195, 199, there are
10 different randomly generated instances in this set with
elimination width δ. For each graph we randomly gener-
ated 2000,4000,6000,8000, and 10000 3-SAT clauses with
propositions referring to edges of the graph, to produce in-
stances of varying size with underlying graphs. The total
number of instances used for comparison is therefore 2000.

For comparing the acyclicity checking methods, we re-
quire the underlying graph of the found model (if any), to
be acyclic. For testing the reachability methods on each in-
stance, we require that a randomly chosen vertex is reach-
able from all other vertices in the underlying graph of the
(possibly) found model. All instances have been solved us-
ing GraphSAT, which becomes the Glucose SAT solver for
vertex elimination and transitive closure encodings.

Figures 2 to 4 show the results of our vertex elimination
based methods versus that of GraphSAT and the transitive
closure method on all instances. Results for problems with
widths less than 50 (25 percent of the number of vertices)
are demonstrated by dots, while results of other instances
are distinguished by “*” symbols.

As it can be seen in Figure 2, our vertex elimination
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Figure 5: Time (in seconds) needed to solve planning in-
stances with acyclicity constraints using vertex elimination
versus (a) transitive closure, and (b) GraphSAT

method for guaranteeing acyclicity performs better than
GraphSAT in almost all problems that are solved by at least
one of the methods in more than one second. For the easier
instances, GraphSAT can outperform our method, and mar-
gin of outperformance of GraphSAT is wider for problems
with higher elimination widths. This is mainly due to the
fact that formulas produced by our method have greater sizes
compared to the original formulas given to GraphSAT. Also,
the computation of the vertex elimination graphs causes in-
curs a cost with our method. In total, our vertex elimination
method solves 1928 instances, 12 instances more than the
1916 instances solved by GraphSAT.

Figure 3 shows that our vertex elimination method almost
always outperforms the transitive closure method, and the
margin is greater for problems with low elimination widths.
In total, the transitive closure method solves 1881 instances,
47 instances less than the 1928 instances solved by our ver-
tex elimination method.

For formulas with reachability constraints, as it can be
seen in Figure 4, our vertex elimination method performs
better than GraphSAT for all instances, except for a few
instances that are quite easy to solve. The margin is visi-
bly wider for instances with lower elimination widths. Both
methods are able to solve all 2000 instances in 1800 seconds.

We do not show the results for the explicit reachability
encoding because it fails to solve even the smallest instances
in 1800 seconds.

Results on Planning Problems
To show that our methods have direct impact on current re-
search in AI, we have used the benchmark problem sets of
(Pandey and Rintanen 2018) that includes a total of 108 sat-
isfiable and unsatisfiable instances with underlying graphs.
These instances can be solved by both reachability and even-
tual acyclicity checking, and are accompanied with tools
that transform reachability constrained instances to equiv-
alent acyclicity constrained instances.

Figures 5 and 6 present the results of our vertex elimi-
nation based encodings versus the competing methods on
planning benchmark problems. Instances with elimination
widths greater than 25 percent of number of vertices are dis-
tinguish with “*” symbols in the figures. For comparison
with GraphSAT, we have used both Glucose (distinguished
with filled dots), and Kissat (distinguished with “o” sym-

(a) (b)

Figure 6: Time (in seconds) needed to solve planning in-
stances with reachability constraints using vertex elimina-
tion versus (a) the explicit encoding, and (b) GraphSAT

bols) solvers. For comparison with transitive closure (Geb-
ser, Janhunen, and Rintanen 2014b) and the explicit reacha-
bility encoding (φexps-t-event above), we have only used Kissat
solver, as it produces slightly better results for all comparing
methods.

Our vertex elimination based methods are considered to
be explicit in the sense that they incorporate graph con-
straints into the encoding. Therefore, it would be interest-
ing to see how these methods compare with other explicit
methods.

Figures 5a and 6a show that our vertex elimination meth-
ods outperform the explicit encodings both on acyclicity
constrained and reachability constrained instances, even for
instances with high elimination widths. The margin is wider
for reachability constrained instances. These results are sig-
nificant because explicit encodings allow using off-the-shelf
state-of-the-art SAT solvers without any necessity for modi-
fying the solver.

Figures 5b and 6b show that our vertex elimination meth-
ods generally outperform GraphSAT both on acyclicity con-
strained and reachability constrained instances, for instances
with low elimination widths. As in the case of the explicit
encodings, the margin is wider for reachability constrained
instances. GraphSAT, on the other hand, demonstrates clear
dominance for problems with high elimination widths.

Conclusion
We have addressed the problem of checking the satisfiabil-
ity of propositional formulas with underlying graphs, in the
presence of acyclicity and reachability constraints. Novel
methods that leverage low elimination width of the under-
lying graph in order to produce compact encodings for the
constraints were introduced. We proved soundness and com-
pleteness for each method, and also provided theoretical ev-
idence of efficiency of the methods by parameterized com-
plexity analysis based on the elimination width of the elimi-
nation orderings. Moreover, we empirically showed that our
new methods can outperform GraphSAT and other encod-
ing methods, especially when underlying graphs have low
elimination widths.
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