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ABSTRACT. This paper investigates the problem of finding subclasses of non-
monotonic reasoning which can be implemented efficiently. The ability to “de-
fine” propositions using default assumptions about the same propositions is
identified as a major source of computational complexity in nonmonotonic rea-
soning. If such constructs are not allowed, i.e. stratified knowledge bases are
considered, a significant computational advantage is obtained. This is demon-
strated by developing an iterative algorithm for propositional stratified au-
toepistemic theories the complexity of which is dominated by required classical
reasoning. Thus efficient subclasses of stratified nonmonotonic reasoning can
be obtained by further restricting the form of sentences in a knowledge base.
As an example quadratic and linear time algorithms for specific subclasses of
stratified autoepistemic theories are derived. The results are shown to imply
efficient reasoning methods for stratified cases of default logic, logic programs,
truth maintenance systems, and nonmonotonic modal logics.

KEY WORDS: automated theorem proving, tractability, autoepistemic logic,
default logic, nonmonotonic modal logics, logic programs, truth maintenance
systems.

1. Introduction

Nonmonotonic reasoning is an important aspect of many knowledge rep-
resentation systems. Databases where the closed world assumption [REI 78]
is used, logic programming where the negation as failure rule [CLA 78] is ap-
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plied to implement a form of negation, inheritance hierarchies where properties
are inherited by default [MIN 81], reasoning about action where the frame
problem [MCC 69] and the qualification problem [MCC 77] have to be solved
as well as diagnosis [REI 87] are all examples of areas where nonmonotonic
reasoning is used. Nonmonotonic reasoning is applied because it is hoped
that knowledge representation and reasoning problems can be solved more ef-
fectively than using classical (monotonic) reasoning. Recent results suggest
that nonmonotonic reasoning is in fact computationally more complex than
corresponding classical reasoning [GOT 92, STI 92]. Furthermore, even very
restricted subclasses of nonmonotonic reasoning where required classical rea-
soning is easy turn out to be intractable. Examples of this are simple cases
of default logic [KAU 91, STI 90], autoepistemic logic [MAR 91b, MAR 91a],
truth maintenance systems [ELK 90], and logic programs [MAR 91b]. Thus
reducing the computational complexity of required classical reasoning does not
yield the expected efficiency in nonmonotonic reasoning. A typical aspect of the
subclasses of nonmonotonic reasoning with disappointing computational prop-
erties is that propositions can be “defined” in terms of default assumptions
about the same propositions. This seems to result in a situation where finding
the correct order of applying defaults (conflict resolution) is computationally
very complex.

In this paper we investigate the problem of finding tractable subclasses
of nonmonotonic reasoning. An interesting approach is to focus on strati-
fied knowledge bases where constructs “defining” propositions using default
assumptions about the same propositions are not allowed. The notion of strat-
ification has its origins in the logic programming community [CHA 85, APT 88,
VG88] and it has also been studied in the context of other forms of nonmono-
tonic reasoning such as default logic [BID 87, BID 91a, FRO 88, FRO 92] and
autoepistemic logic [GEL 87, MAR 91b]. A knowledge base is stratified if it
can be partitioned into a sequence of levels (strata) so that on every level de-
fault assumptions are made only about propositions which have already been
“defined” on preceding levels. As an example of a stratified knowledge base
consider the following logic program representing pieces of knowledge saying
that republicans not known to be pacifists are hawks, Rick is a republican and
Tom is a pacifist.

hawk(X)← republican(X),not pacifist(X). [1]
republican(rick). [2]
pacifist(tom). [3]

Consider the partition of the program into two levels where the first level
contains the facts 2 and 3 and the second level consists of the rule 1. This
partitioning satisfies the condition for stratifiedness as the default assumption
(negation as failure) in the rule 1 is made about the predicate pacifist defined
already on the first level. Hence the logic program is stratified.

This kind of restriction on the use of default assumptions limits expressivity



in the sense that it rules out multiple alternative sets of conclusions: a strat-
ified knowledge base has exactly one possible set of correct conclusions. For
example, in the case of logic programs with negation as failure stratification
implies a unique canonical model. There are several alternative approaches
to characterizing the canonical model of a stratified program [APT 88, VG88,
LIF 88, PRZ 88, BID 87, BID 91a, GEL 87, GEL 88b, VG91]. It seems, how-
ever, that there are natural situations where competing sets of correct con-
clusions/canonical models emerge. A typical example is inheritance hierarchies
with multiple inheritance. Consider a variant of the “Nixon diamond” [REI 81].
We extend the logic program 1–3 by two rules saying that quakers not known
to be hawks are pacifists and that Rick is a quaker.

pacifist(X)← quaker(X),not hawk(X). [4]
quaker(rick). [5]

The resulting program is no longer stratified. Since in the rule defining the
predicate pacifist (4) a default assumption is made about the predicate hawk,
the rule defining hawk (1) has to appear on some level lower than that defin-
ing pacifist (4). However, the rule 1 imposes the opposite constraint on the
appearance of rules on the levels. Hence there is no partitioning satisfying the
stratifiedness condition. The resulting logic program has two canonical (sta-
ble) models. In one Rick is a pacifist but not a hawk and in the other he is a
hawk and not a pacifist. The two models seem to capture the essence of the
situation: as preference is given to neither of the default assumptions, Rick’s
status as a pacifist or a hawk remains undetermined although it is known that
he is either a pacifist or a hawk. Disjunctive defaults [GEL 91] provide another
example where competing sets of correct conclusions seem to be needed and
which therefore appears to be outside the realm of stratified knowledge bases.
In the treatment of disjunctive defaults a difference is made between “p or q
is known” and “p is known or q is known”. This difference is captured by
using competing sets of extensions (correct conclusions) [GEL 91]. It should
be noted that stratification is not a necessary condition for the existence of
a single set of correct conclusions. For example, there are non-stratified logic
programs with a unique canonical model [GEL 88b, VG91].

We show that stratification offers an interesting trade-off between the ex-
pressivity of a knowledge representation language and the computational com-
plexity of reasoning: stratification reduces expressivity but it provides notable
computational benefits. In stratified knowledge bases the conflict resolution
task can be solved efficiently and the overall complexity of reasoning is domi-
nated by the complexity of the classical reasoning task.

Stratified propositional autoepistemic theories [MAR 91b] are chosen as the
basis of the research because autoepistemic logic offers a unified approach to
several other types of nonmonotonic reasoning (or at least substantial fragments
of these). It has been shown that autoepistemic logic is closely related to default
logic [KON 88, MAR 89], circumscription [KON 89], McDermott and Doyle



style nonmonotonic modal logics [SHV 90, MAR 93], stable model semantics of
logic programs [GEL 88b], nonmonotonic truth maintenance systems [ELK 90],
inheritance reasoning [GEL 90], and abduction [KAK 90]. Thus efficient deci-
sion methods developed for autoepistemic logic can be applied to other forms
of nonmonotonic reasoning.

We develop an iterative algorithm for reasoning in stratified autoepistemic
theories. This algorithm provides a general and quite simple iterative decision
method for stratified nonmonotonic reasoning including default logic, logic pro-
grams, truth maintenance systems, and nonmonotonic modal logics. The algo-
rithm is straightforward to implement and it needs only a decision procedure
for the underlying (propositional) reasoning as a subroutine. Furthermore, the
coupling of the algorithm and the subroutine is loose. No additional require-
ments are imposed on the theorem prover used as a subroutine, e.g. with respect
to the order in which subgoals are solved. So any decision procedure for the
underlying classical reasoning is applicable. We present a detailed analysis of
the computational resources needed by the algorithm. This analysis immedi-
ately leads to tractable subclasses of nonmonotonic reasoning. As an example
we present a quadratic time subclass. By exploiting carefully the logical prop-
erties of stratified knowledge bases we are able to devise a linear time decision
procedure for a restricted subclass of stratified nonmonotonic reasoning which
is still applicable in cases of practical relevance such as stratified logic programs
and truth maintenance systems. We are not aware of any decision procedure
covering such a large class of stratified knowledge bases that has been given a
detailed description and whose computational complexity has been analyzed.

Previous work on computational properties of stratified knowledge bases
has mainly addressed stratified logic programs. Kolaitis [KOL 91] has studied
the expressive power of stratified logic programs. Kautz and Selman [KAU 91]
provide a cubic time algorithm for computing the canonical model of a stratified
propositional logic program. Bidoit and Froidevaux [BID 91b] study the class of
effectively stratified programs which is a generalization of stratified programs.
They develop a method for computing the canonical model of an effectively
stratified propositional program which seems to lead to a quadratic algorithm.
We improve these results and present a linear time algorithm for computing the
canonical model of a stratified program. Lassez et al. [LAS 87] study stratifica-
tion and knowledge base management and provide various complexity results
and algorithms. For example, they present an algorithm for computing a strat-
ification of a stratified knowledge base, i.e. a partitioning of the knowledge base
fulfilling the condition for stratifiedness. Marek and Truszczyński [MAR 91b]
sketch a stratification algorithm for autoepistemic formulae. Using their ideas
we develop a detailed algorithm for deciding whether an autoepistemic set of
premises is stratified and for computing a stratification. We show that under
certain restrictions on the form of the premises the algorithm runs in linear
time.

The rest of the paper is organized as follows. In Section 2 autoepistemic
logic is briefly introduced. In Section 3 the notion of stratifiedness is presented



and an algorithm for computing a stratification, i.e. a sequence of layers sat-
isfying the stratifiedness condition, is described. In Section 4 an iterative de-
cision method for stratified autoepistemic reasoning is developed. In Section
5 the computational complexity of the decision method is analyzed. Based on
the complexity analysis quadratic and linear time algorithms are devised for
subclasses of stratified autoepistemic reasoning. Section 6 discusses an imple-
mentation of the decision method. Section 7 shows how the decision method
can be applied to other forms of nonmonotonic reasoning besides autoepistemic
logic and Section 8 contains the concluding remarks.

2. Autoepistemic logic

To obtain the language Lae of propositional autoepistemic logic we extend
the language L of the propositional calculus by a monadic operator L which
is read “is believed”. Autoepistemic logic models the beliefs of a fully intro-
spective ideally rational agent. The agent reasons according to a consequence
relation |= which is a simple extension of the propositional consequence relation
where the Lφ formulae are treated like atomic formulae in the propositional
calculus. Given a set of premises a set of correct autoepistemic conclusions is
defined as a set of beliefs of the agent with the premises as the initial assump-
tions of the agent. A set of beliefs is called a stable expansion of the premises
and it is defined by the following fixed point equation.

Definition 2.1 (Moore [MOO 85]) ∆ is a stable expansion of Σ iff

∆ = {φ | Σ ∪ L∆ ∪ ¬L∆ |= φ} [6]

where L∆ = {Lφ | φ ∈ ∆}, ¬∆ = {¬φ | φ ∈ ∆}, and ∆ = Lae − ∆. Thus
¬L∆ = {¬Lφ | φ ∈ Lae −∆}.

Example 2.1 Consider a premise Σ = {¬Lp → q}. For Σ there is a unique
solution to the fixed point equation 6, i.e. there is a unique stable expansion of
Σ. It contains, e.g., ¬Lp, q, Lq, LLq, L¬Lp,¬L¬Lq, . . .

Stable expansions are infinite sets of formulae. A finitary characterization is
needed for handling stable expansions computationally. Niemelä [NIE 90] has
presented a compact characterization of stable expansions using the notion of a
full set. The basic idea is to use the Lφ subformulae of the premises to charac-
terize the stable expansions. If the set of premises is finite, the corresponding
full sets are finite. In this case infinite stable expansions can be represented
finitely.

We use the following notations. For a formula φ, Sf L(φ) denotes the set of
subformulae of the form Lχ of φ and Sf qL(φ) is the set of Lχ quasi-subformulae
of φ. Quasi-subformulae are subformulae in the usual sense except that Lχ
formulae do not have any further quasi-subformulae. For a set of formu-
lae Σ, Sf L(Σ) =

⋃
φ∈Σ Sf L(φ) and similarly for Sf qL(Σ). For example, for



Σ = {Lp, q ∧ L¬L(Lp ∧ ¬q)}, Sf L(Σ) = {Lp,L¬L(Lp ∧ ¬q), L(Lp ∧ ¬q)} and
Sf qL(Σ) = {Lp,L¬L(Lp ∧ ¬q)}.

Definition 2.2 A set of formulae Λ is Σ-full if it satisfies the following condi-
tions.

1. Λ ⊆ Sf L(Σ) ∪ ¬Sf L(Σ).

2. Lφ ∈ Λ iff Σ ∪ Λ |= φ for all Lφ ∈ Sf L(Σ).

3. ¬Lφ ∈ Λ iff Σ ∪ Λ 6|= φ for all Lφ ∈ Sf L(Σ).

Example 2.2 Let Σ = {Lp→ p,¬Lp→ q}, where p and q are atomic. By the
conditions on full sets for each Lφ subformula of the premises either Lφ or its
negation belongs to a full set. Hence, there are two candidates for Σ-full sets:
Λ1 = {Lp} and Λ2 = {¬Lp}. Both are Σ-full. Λ1 is full as Σ ∪ Λ1 |= p and Λ2

is full as Σ ∪ Λ2 6|= p.

For a set of premises Σ, the Σ-full sets are in a one-to-one correspondence
with the stable expansions of Σ [NIE 90]. The unique stable expansion induced
by a full set can be characterized with the aid of the consequence relation |=L

which is defined recursively using the underlying consequence relation |=. The
new consequence relation determines the membership in a stable expansion of
Σ when the corresponding full set Λ is known (Definition 4.1 and Theorems
3.15 and 4.2 [NIE 90]):

Definition 2.3 For Σ ⊆ Lae and φ ∈ Lae,

Σ |=L φ iff Σ ∪ SBΣ(φ) |= φ

where SBΣ(φ) = {Lχ ∈ Sf qL(φ) | Σ |=L χ} ∪ {¬Lχ ∈ ¬Sf qL(φ) | Σ 6|=L χ}.

Theorem 2.4 Let Λ be a Σ-full set. Then SEΣ(Λ) = {φ | Σ ∪ Λ |=L φ} is the
unique stable expansion ∆ of Σ such that Λ ⊆ L∆ ∪ ¬L∆.

Example 2.3 The set of premises Σ in Example 2.2 has two full sets {Lp} and
{¬Lp}. So Σ has exactly two stable expansions SEΣ({Lp}) and SEΣ({¬Lp}).
The formula L¬Lq belongs to the former but not to the latter because Σ ∪
{Lp} |=L L¬Lq but Σ ∪ {¬Lp} 6|=L L¬Lq. For example, Σ ∪ {Lp} |=L L¬Lq
can be verified as follows. As SBΣ∪{Lp}(q) = ∅ and Σ∪{Lp} 6|= q, Σ∪{Lp} 6|=L

q. Thus SBΣ∪{Lp}(¬Lq) = {¬Lq}. So Σ ∪ {Lp} ∪ SBΣ∪{Lp}(¬Lq) |= ¬Lq
which implies Σ∪ {Lp} |=L ¬Lq. Hence SBΣ∪{Lp}(L¬Lq) = {L¬Lq} and thus
Σ ∪ {Lp} |=L L¬Lq.

3. Stratification



In this section, we first present the definition of stratification for autoepis-
temic logic as defined by [MAR 91b]. Then we give an algorithm that computes
a stratification for a stratified set of formulae or detects that a set is not strat-
ified.

Stratification in autoepistemic logic means that sets of formulae can be
partitioned into a number of strata, and beliefs on each stratum refer only to
propositional variables defined on strata below. The definition of stratification
was introduced to autoepistemic logic by [GEL 87]. In this paper we use a
more general definition which is due to Marek and Truszczyński.

Definition 3.1 ([MAR 91b]) A set of formulae Σ is stratified if

1. The formulae φ ∈ Σ are of the form a(φ)∧o(φ)→ c(φ), where subformulae
o(φ) and c(φ) do not contain the L operator and o(φ) may be missing,
and a(φ) is a formula of the form Lφ1 ∧ · · · ∧ Lφr ∧ ¬Lψ1 ∧ · · · ∧ ¬Lψs
where r, s ≥ 0.

2. The set {c(φ)|φ ∈ Σ} is satisfiable.

3. There exists a set of indices I = {1, . . . , n} or I = {1, . . .} and a partition
of Σ =

⋃
i∈I Σi such that for all j ∈ I the propositional variables occurring

in {c(φ)|φ ∈ Σj} do not occur in Σj in the scope of an L operator or in⋃j−1
i=1 Σi.

Example 3.1 An example of a formula that cannot occur in a stratified set is
L(Lr∨p)∧q → p. This is because of the occurrence of p both in the antecedent
inside a L operator and in the consequent. A logically equivalent formula that
can occur in a stratified set is L(Lr ∨ p) ∧ ¬p→ ¬q.

The reasoning methods developed in this paper use the stratifications, i.e.,
the partitions of the formulae in the stratified sets. In the general case the com-
putation of a stratification or testing whether a set of autoepistemic formulae
is stratified is computationally very expensive because of the satisfiability test-
ing of {c(φ)|φ ∈ Σ}. This problem is NP-complete; all known algorithms for
it take exponential time in the size of the formulae. In the polynomial time
classes developed in this paper, Condition 2 of stratification can be tested in
linear time. For testing Condition 3 efficiently Marek and Truszczyński define
the notion of a-stratifiedness which coincides with stratifiedness. A finite set
Σ is a-stratified if it satisfies conditions 1 and 2 of stratification and there is a
partition P1, . . . , Pn of the propositional variables in Σ that fulfills the following
condition. For each pair of variables p ∈ Pi, q ∈ Pj such that p occurs in a(φ)
and q in c(φ) for some φ ∈ Σ, i < j, and for each pair of variables p ∈ Pi, q ∈ Pj
such that p occurs in φ and q in c(φ) for some φ ∈ Σ, i ≤ j.

Theorem 3.2 ([MAR 91b]) A finite set of formulae Σ is stratified if and
only if Σ is a-stratified.



The test for the existence of the partition of propositional variables can
easily be reduced to the computation of the strong components of a graph. A
strong component is a maximal set of nodes of a graph such that there is a
path between any two nodes in the set. The strong components of a graph
can be computed in linear time in the size of the graph using Tarjan’s well-
known algorithm [AHO 74]. The characteristic graph of a set of formulae is a
graph representing the constraints imposed on the partition of the propositional
variables by the definition of a-stratifiedness. In the characteristic graph there
is an edge from the variable p to another variable q if for some φ ∈ Σ p occurs
in c(φ) and q anywhere in φ. The edge is an L-edge if the occurrence of q is in
a(φ).

Theorem 3.3 ([MAR 91b]) A finite set of formulae Σ is a-stratified if and
only if Σ satisfies Conditions 1 and 2, and no strong component of its charac-
teristic graph contains an L-edge.

Example 3.2 The set

r ∧ ¬Lp→ h
q ∧ ¬Lh→ p

p

h

q

r

LL

is not a-stratified and consequently not stratified. The characteristic graph
has three strong components. The variables r and q occupy singleton strong
components, and since there are edges both from h to p and from p to h, p
and h are in the same strong component. The set is not a-stratified – and
consequently not stratified – as the edges between p and h are L-edges.

Example 3.3 The set

L¬Lr ∧ p→ q
q → p
L(p↔ q)→ s

Lq

p

s r

L

L

is a-stratified. Variables p and q belong to the same strong component and
there are no L-edges between them, s and r both occupy a singleton strong
component.

Linear time complexity results in this paper, e.g. the linearity of our strat-
ification algorithm, rest on the following assumption.



Assumption 3.4 Each propositional variable is assigned a unique number so
that data structures with constant access time (arrays) can be used for storing
various data related to them.

The propositional variables occurring in Σ can be assigned unique numbers
in O(n log v) time, where n is the size of Σ and v is the number of distinct
propositional variables occurring in Σ.

For the tractable classes of autoepistemic logic investigated in this paper,
we present a linear time algorithm that computes a stratification if the set is
stratified, and for sets that are not, detects this fact. The algorithm is based on
Theorem 3.3. Marek and Truszczyński [MAR 91b] sketch a similar algorithm
for arbitrary sets of autoepistemic formulae that fulfill Condition 1. Another
algorithm for computing a stratification which is based on strong components
is presented in [LAS 87].

In the general case the size of the characteristic graph of a set Σ is quadratic
in the size of Σ, and consequently the traversal of the graph for finding the
strong components takes quadratic time. However, if the form of the subfor-
mulae c(φ), φ ∈ Σ is restricted the computation becomes linear time.

Proposition 3.5 Let Σ be a set of formulae that fulfills Condition 1 of strati-
fication, and for each φ ∈ Σ, there are occurrences of at most one propositional
variable in c(φ). Under Assumption 3.4 the computation of a stratification for
Σ or detecting that Σ is not stratified is O(|Σ|) time.

Proof: In this restricted case Condition 2 of the definition of a stratified set
can be tested in O(|Σ|) time. Because each c(φ), φ ∈ Σ contains occurrences
of only one propositional variable p, each c(φ) is equivalent to either p, ¬p, >,
or ⊥ as there are exactly four truth functions of one variable. The reduction
of all c(φ), φ ∈ Σ to one of these formulae is O(|Σ|) time because for each φ it
can be done in one traversal of the formula tree of c(φ). The satisfiability of
a set of formulae of the form p, ¬p, ⊥, and > can be tested in linear time in
the size of the set. By Theorem 3.3 testing Condition 3 of stratification can be
implemented as a computation of the strong components of the characteristic
graph together with detection of L-edges inside the strong components. For
this purpose we give a variant of Tarjan’s [TAR 72] well-known algorithm for
the strong components of a graph as presented in [AHO 74]. Tarjan’s algorithm
runs in O(n+ e) time where n is the number of nodes and e is the number of
edges, and it has the useful property that the strong components are produced
in an order that qualifies as a stratification, i.e., the first component the algo-
rithm emits consists of the variables in c(φ) for formulae φ ∈ Σ that can be
taken as the lowest stratum of a stratification Σ1, . . . ,Σn, and so on.

The size of the characteristic graph is linear in the size of Σ because for
each φ ∈ Σ there are occurrences of at most one propositional variable in c(φ)
and consequently there is at most one edge for each variable occurrence in
{a(φ) ∧ o(φ)|φ ∈ Σ}.



For the computation of the strata the following arrays and variables are
needed.

formulae[p] the list of formulae φ in which the variable p appears in c(φ).
This array can be initialized in linear time by traversing the formulae
once.

edges[p] the list of variables q that appear in a(φ) ∧ o(φ) for a formula φ in
which the variable p appears in c(φ). The initialization can be done in
linear time. First initialize the elements to empty lists. Then for each p
the list formulae[p] is traversed and for each occurrence of a variable q
an auxiliary array of flags is tested whether q already is in edges[p]. If
not, it is added in the head and the auxiliary array is updated.

l-edges[p] the list of variables q that appear in a(φ) for a formula φ in which
the variable p appears in c(φ). This array is initialized in a similar way
as the array edges.

ccount a counter for the strong components. Initialized to zero.

component[i] the list of formulae in stratum i.

stratum[p] the number of the stratum to which formulae φ having p in c(φ)
belong.

The following variables are part of the original strong components algorithm
(see [AHO 74] for details):

count a counter for numbering the nodes of the graph in the order of depth-
first traversal.

dfnumber[p] the number assigned to the node p during depth-first traversal.

lowlink[p] a number for the node p that is used in recognizing strong compo-
nents during the traversal.

Before running the algorithm, the above arrays and counters are initialized
as indicated above, and all propositional variables occurring in the set Σ are
marked new. After this, SEARCHC is called repeatedly for new variables until
all variables are marked old. If the error NOT STRATIFIED is signalled, then
Condition 3 cannot be fulfilled and the set is not stratified.

The first half of the procedure is responsible for the traversal of the charac-
teristic graph depth-first and maintenance of the data structures for detection
of the strong components. All our modifications are in the if statement that
forms the second half of the procedure. First, a new element is reserved in the
array components for the formulae in the newly found strong component. The
repeat loop assigns each variable in the strong component the number of the
component. Finally the while loop tests the component for the containment



procedure SEARCHC(v);
begin

mark v ”old”;
dfnumber[v] := count;
count := count + 1;
lowlink[v] := dfnumber[v];
push v on stack;
for each node w on edges[v] do

if w is marked ”new” then
SEARCHC(w);
lowlink[v] := min(lowlink[v],lowlink[w])

else
if dfnumber[w] < dfnumber[v] and w is on stack

then lowlink[v] := min(dfnumber[w],lowlink[v])
end if

end if
end for;
if lowlink[v] = dfnumber[v] then

ccount := ccount + 1;
components[ccount] := empty list;
initialize stack2 to empty;
repeat

pop x from top of stack;
push x to stack2;
stratum[x] := ccount

until x=v;
while stack2 not empty do

pop x from stack2;
for each y in l-edges[x] do

if stratum[x] = stratum[y]
then signal NOT STRATIFIED

end if
end for;
concatenate formulae[x] to components[ccount]

end while
end if

end

Figure 1. The main procedure of an algorithm for computing a stratification



of an L-edge using the numbers assigned to variables, and concatenates to the
array components the list of formulae belonging to the stratum.

We show that the running time of the algorithm is within bounds propor-
tional to the size of the set of formulae Σ. First note that everything that can
be done in O(n + e) time is within the bounds because the number of nodes,
i.e. propositional variables, is bounded by the size of the set of formulae and
so is the number of edges which is the number of variable occurrences in the
antecedents of formulae.

SEARCHC is called exactly once for each node in the graph and each call
(the recursive call to SEARCHC and the second half of the procedure excluded)
takes constant time plus time proportional to the number of edges leaving
from the node. For the whole run of the algorithm this is O(n + e). All
computation in the second half of the procedure during the whole computation
of the algorithm is bounded by the size of the set of formulae. The update of
ccount and initialization of the components[ccount] and the stack are constant
time operations and they are performed for each strong component found. In
one run of the algorithm exactly one iteration of the repeat loop is executed
for each node of the graph, and this is O(|Σ|). The tests for containment of L-
edges are also within the O(|Σ|) bound because for each propositional variable
p the presence of L-edges inside the stratum of p is tested exactly once, and the
number of elements in the lists of the array l-edges is linearly bounded by the
size of the set of formulae. Constructing the lists of the array components is
O(|Σ|) since each formula belongs to exactly one stratum and we restrict c(φ)
for each φ to contain occurrences of at most one propositional variable. �

Example 3.4 Our algorithm computes for the set in Example 3.3 the strat-
ification shown below. The first column contains the numbers of the strata,
the second contains the variables in the corresponding strong components of
the associated characteristic graph, and the third the strata, i.e., the sets of
formulae φ for which the variables of the respective strong component occur in
c(φ).

3 s L(p↔ q)→ s
2 p, q q → p, L¬Lr ∧ p→ q
1 r ∅

Because there are no formulae φ with r in c(φ), the lowest stratum is empty
and can be ignored.

4. A decision procedure for stratified theories

In this section we develop an iterative decision method for stratified sets of
premises. In autoepistemic reasoning the correct conclusions are given in terms
of stable expansions of a set of premises. Each stratified set of premises has
a unique stable expansion and thus the notion of correct conclusions is unam-



biguously defined: a formula is an autoepistemic conclusion from a stratified
set of premises if the formula belongs to the unique stable expansion of the
premises.

Theorem 2.4 implies the following approach to automating stratified au-
toepistemic reasoning. Given a stratified set of premises Σ compute first the
full set Λ for the unique expansion of Σ and then decide whether the given for-
mula belongs to the corresponding stable expansion SEΣ(Λ) by using the |=L

consequence relation. It turns out that the full set can be computed iteratively
using a stratification of the premises. First the Lφ subformulae appearing in
the lowest stratum in the stratification are considered, then the next stratum
and so on.

The next theorem gives the basic iterative algorithm for computing the
Σ-full set of an arbitrary stratified set Σ. After the correctness proof of the
algorithm we develop a more efficient version where the full set is not explicitly
constructed (Theorem 4.5).

Theorem 4.1 Let Σ =
⋃n
k=1 Σk be a stratified set. Then Λ = Λn defined by

Λ0 = ∅

Λi+1 = Λi ∪ {Lχ|Lχ ∈ Sf L(Σi+1)− Sf L(
i⋃

k=1

Σk),
i⋃

k=1

Σk ∪ Λi |=L χ} ∪

{¬Lχ|Lχ ∈ Sf L(Σi+1)− Sf L(
i⋃

k=1

Σk),
i⋃

k=1

Σk ∪ Λi 6|=L χ}, 0 ≤ i < n

is Σ-full and SEΣ(Λ) is the unique stable expansion of Σ.

For proving Theorem 4.1 the following lemma is essential. It is the most
important piece for the correctness of the algorithm in the theorem, since it
accounts for the monotonicity property that allows the conclusion of underiv-
ability of formulae, and hence an iterative instead of a backtracking algorithm.
From now on, we use the notation Σba for the union

⋃b
i=a Σi.

Lemma 4.2 Let Σ = Σn1 be stratified and Λi, i ∈ {1, . . . , n}, as in Theorem
4.1. Then for all i, 0 ≤ i < n and for all Lχ ∈ Sf L(Σi+1), Σi1 ∪ Λi |=L χ iff
Σj1 ∪ Λj |=L χ iff Σj1 ∪ Λj |= χ, where j > i and j ≤ n.

Proof: By induction on i.
(i = 0). The proof that for all Lχ ∈ Sf L(Σ1), Σ0

1∪Λ0 |=L χ iff Σj1∪Λj |=L χ,
and Σ0

1 ∪ Λ0 |=L χ iff Σj1 ∪ Λj |= χ is by induction on the L-depth s of χ. The
L-depth of a formula is the maximum nesting of L operators in it.

(s = 0). For all Lχ ∈ Sf L(Σ1) with L-depth 0,

Σ0
1 ∪ Λ0 |=L χ iff Σ0

1 ∪ Λ0 |= χ [7]
implies Σj1 ∪ Λj |= χ [8]

iff Σj1 ∪ Λj |=L χ. [9]



Equivalence 7 is because SB∆(χ) = ∅ for χ with no L operators, and conse-
quently |= coincides with |=L for χ. Implication 8 is because |= is monotonic
and Σ0

1 and Λ0 are empty by definition. Equivalence 9 is because |= coincides
with |=L for χ.

To establish the equivalence between Σ0
1∪Λ0 |= χ and Σj1∪Λj |= χ we have to

prove the converse of implication 8 above. This is proved by showing that ∅ 6|= χ
implies Σj1∪Λj 6|= χ. Assume ∅ 6|= χ, i.e., there is a modelM such thatM 6|= χ.
We show that then also Σj1 ∪ Λj 6|= χ holds by giving a model M′ such that
M′ |= Σj1∪Λj andM′ 6|= χ. The modelM′ can be obtained by modifyingM to
satisfy Σj1∪Λj . We show that this modification is possible and that it does not
make χ true inM′. The set Σj1 can be made true inM′ by making the formulae
{c(φ)|φ ∈ Σj1} true. This set of formulae is satisfiable by the second condition
of stratification. The truth-value of χ is not affected because by the third
condition of stratification the set of propositional variables in Lχ ∈ Sf L(Σ1) is
disjoint from the variables in {c(φ)|φ ∈ Σj1}. Making the formulae in Λj true
does not affect the valuation of χ or {c(φ)|φ ∈ Σj1} because the valuation of
formulae beginning with L is disjoint from propositional variables. The set Λj
is satisfiable because by construction it contains no formula and its negation.

(s ≥ 1). For all Lχ ∈ Sf L(Σ1) with L-depth s,

Σ0
1 ∪ Λ0 |=L χ iff Σ0

1 ∪ Λ0 ∪ SBΣ0
1∪Λ0

(χ) |= χ [10]

iff SBΣ0
1∪Λ0

(χ) |= χ [11]

iff SBΣj
1∪Λj

(χ) |= χ [12]

implies Σj1 ∪ Λj ∪ SBΣj
1∪Λj

(χ) |= χ [13]

iff Σj1 ∪ Λj |= χ [14]

iff Σj1 ∪ Λj |=L χ. [15]

Equivalence 10 is by the definition of |=L. Equivalence 11 is because by def-
inition Σ0

1 ∪ Λ0 is empty. Equivalence 12 is by Lemma A below. Implication
13 is by the monotonicity of |=. Equivalence 14 is because SBΣj

1∪Λj
(χ) =

SBΣ0
1∪Λ0

(χ) is contained in Λj as shown by Lemma B below. Equivalence 15
is by Lemma B and the definition of |=L.

Lemma A. For all j, 1 ≤ j < n, SBΣ0
1∪Λ0

(χ) = SBΣj
1∪Λj

(χ).
Formulae φ such that Lφ ∈ Sf qL(χ) are in Sf L(Σ1) because Lχ ∈ Sf L(Σ1), and
thus by the induction hypothesis on s we get Σ0

1 ∪ Λ0 |=L φ iff Σj1 ∪ Λj |=L φ,
for formulae Lφ ∈ Sf qL(χ). By the definition of SB the claim is immediate. 2

Lemma B. SBΣ0
1∪Λ0

(χ) ⊆ Λj .
Suppose Lφ ∈ SBΣ0

1∪Λ0
(χ), i.e. Lφ ∈ Sf qL(χ) and Σ0

1 ∪ Λ0 |=L φ. Because
Lχ ∈ Sf L(Σ1) also Lφ ∈ Sf L(Σ1). Now Lφ ∈ Λ1 ⊆ Λj , j ≥ 1 by the equations
of Theorem 4.5. Similarly with ¬Lφ. 2



To establish the equivalence between Σ0
1 ∪ Λ0 |=L χ and Σj1 ∪ Λj |=L χ

we have to prove the converse of implication 13 above. This is proved by
showing that SBΣj

1∪Λj
(χ) 6|= χ implies Σj1 ∪ Λj ∪ SBΣj

1∪Λj
(χ) 6|= χ. Assume

SBΣj
1∪Λj

(χ) 6|= χ, i.e., there is a model M such that M |= SBΣj
1∪Λj

(χ) and

M 6|= χ. We show that then also Σj1 ∪ Λj ∪ SBΣj
1∪Λj

(χ) 6|= χ holds by giving

a model M′ such that M′ |= Σj1 ∪ Λj ∪ SBΣj
1∪Λj

(χ) and M′ 6|= χ. The model

M′ can be obtained by modifying M to satisfy Σj1 ∪ Λj . We show that this
modification is possible and that it does not make χ true in M′. The set Σj1
can be made true in M′ by making the formulae {c(φ)|φ ∈ Σj1} true. This set
of formulae is satisfiable by the second condition of stratification. The truth-
value of χ is not affected because by the third condition of stratification the
set of propositional variables in Lχ ∈ Sf L(Σ1) is disjoint from the variables in
{c(φ)|φ ∈ Σj1}. Making the formulae in Λj true does not affect the valuation of
{c(φ)|φ ∈ Σj1} because the valuation of formulae beginning with L is disjoint
from propositional variables. The set Λj is satisfiable because by construction
it contains no formula and its negation. The valuation of Λj does not conflict
with the valuation of SBΣj

1∪Λj
(χ) = SBΣ0

1∪Λ0
(χ) because the latter is contained

in Λj as shown by Lemma B above. Consequently, because the valuation of
formulae Lψ ∈ Sf L(χ) does not change, the truth-value of χ is not affected.

(i ≥ 1). Proof is by induction on the L-depth s of χ.
(s = 0). For all Lχ ∈ Sf L(Σi+1) with L-depth 0,

Σi1 ∪ Λi |=L χ iff Σi1 ∪ Λi |= χ [16]
implies Σj1 ∪ Λj |= χ [17]

iff Σj1 ∪ Λj |=L χ. [18]

Equivalence 16 is because SB∆(χ) = ∅ for χ with no L operators, and conse-
quently |= coincides with |=L for χ. Implication 17 is because Λi ⊆ Λj ,Σi1 ⊆ Σj1
for i ≤ j, and |= is monotonic. Equivalence 18 is again because |= coincides
with |=L for χ.

To establish the equivalence between Σi1 ∪ Λi |=L χ and Σj1 ∪ Λj |=L χ we
have to prove the converse of implication 17 above. This is proved by showing
that Σi1 ∪ Λi 6|= χ implies Σj1 ∪ Λj 6|= χ. Assume Σi1 ∪ Λi 6|= χ, i.e., there is
a model M such that M |= Σi1 ∪ Λi and M 6|= χ. We show that then also
Σj1∪Λj 6|= χ holds by giving a modelM′ such thatM′ |= Σj1∪Λj andM′ 6|= χ.
The modelM′ can be obtained by modifyingM to satisfy Σji+1∪Λj . We show
that this modification is possible and that it does not make χ true inM′. The
set Σji+1 can be made true inM′ by making the formulae {c(φ)|φ ∈ Σji+1} true.
This set of formulae is satisfiable by the second condition of stratification. The
truth-value of χ is not affected because by the third condition of stratification
the set of propositional variables in Lχ ∈ Sf L(Σi) is disjoint from the variables
in {c(φ)|φ ∈ Σji+1}. Making the formulae in Λj − Λi true does not affect the
valuation of χ or {c(φ)|φ ∈ Σj1} because the valuation of formulae beginning



with L is disjoint from propositional variables. The set Λj − Λi is satisfiable
because by construction it contains no formula and its negation.

(s ≥ 1). For all Lχ ∈ Sf L(Σi+1),

Σi1 ∪ Λi |=L χ iff Σi1 ∪ Λi ∪ SBΣi
1∪Λi

(χ) |= χ [19]

iff Σi1 ∪ Λi ∪ SBΣj
1∪Λj

(χ) |= χ [20]

implies Σj1 ∪ Λj ∪ SBΣj
1∪Λj

(χ) |= χ [21]

iff Σj1 ∪ Λj |= χ [22]

iff Σj1 ∪ Λj |=L χ. [23]

Equivalence 19 is by the definition of |=L. Equivalence 20 is by Lemma C
below. Implication 21 is because Λi ⊆ Λj ,Σi1 ⊆ Σj1 for i ≤ j, and |= is
monotonic. Equivalence 22 is because SBΣi

1∪Λi
(χ) = SBΣj

1∪Λj
(χ) is contained

in Λj as shown by Lemmata C and D below. Equivalence 23 is by Lemma D
and the definition of |=L.

Lemma C. For all j, i < j < n, SBΣi
1∪Λi

(χ) = SBΣj
1∪Λj

(χ).
Formulae φ such that Lφ ∈ Sf qL(χ) are in Sf L(Σi+1) as Lχ ∈ Sf L(Σi+1), and
thus by the induction hypothesis on s we get Σi1 ∪ Λi |=L φ iff Σj1 ∪ Λj |=L φ,
for formulae Lφ ∈ Sf qL(χ). By the definition of SB the claim is immediate. 2

Lemma D. For all j, i < j ≤ n, SBΣi
1∪Λi

(χ) ⊆ Λj .
Assume Lφ ∈ SBΣi

1∪Λi
(χ).

1. χ ∈ Sf L(Σi+1) assumption
2. Lφ ∈ SBΣi

1∪Λi
(χ) assumption

3. Lφ ∈ Sf qL(χ) 2 and definition of SB
4. Σi1 ∪ Λi |=L φ 2 and definition of SB
5. Lφ ∈ Sf L(Σi+1) 1 and 3
6. ∃k ≤ i, Lφ ∈ Sf L(Σk+1)− Sf L(Σk1) 5
7. Σk1 ∪ Λk |=L φ 4, 6, induction hypothesis on i
8. Lφ ∈ Λk+1 ⊆ Λj 7, equations of Theorem 4.5

Similarly with ¬Lφ. 2

To establish the equivalence between Σi1 ∪ Λi |=L χ and Σj1 ∪ Λj |=L χ we
have to prove the converse of implication 21 above. This is proved by showing
that Σi1 ∪ Λi ∪ SBΣj

1∪Λj
(χ) 6|= χ implies Σj1 ∪ Λj ∪ SBΣj

1∪Λj
(χ) 6|= χ. Assume

Σi1 ∪Λi ∪ SBΣj
1∪Λj

(χ) 6|= χ, i.e., there is a modelM such thatM |= Σi1 ∪Λi ∪
SBΣj

1∪Λj
(χ) and M 6|= χ. We show that then also Σj1 ∪ Λj ∪ SBΣj

1∪Λj
(χ) 6|=

χ holds by giving a model M′ such that M′ |= Σj1 ∪ Λj ∪ SBΣj
1∪Λj

(χ) and

M′ 6|= χ. The model M′ can be obtained by modifying M to satisfy Σji+1 ∪
Λj . We show that this modification is possible and that it does not make χ
true in M′. The set Σji+1 can be made true in M′ by making the formulae
{c(φ)|φ ∈ Σji+1} true. This set of formulae is satisfiable by the second condition



of stratification. The truth-value of χ is not affected because by the third
condition of stratification the set of propositional variables in Lχ ∈ Sf L(Σi) is
disjoint from the variables in {c(φ)|φ ∈ Σji+1}. Making the formulae in Λj −Λi
true does not affect the valuation of {c(φ)|φ ∈ Σj1} because the valuation of
formulae beginning with L is disjoint from propositional variables. The set
Λj is satisfiable because by construction it contains no formula together with
its negation. The valuation of Λj − Λi does not conflict with the valuation of
SBΣj

1∪Λj
(χ) = SBΣi

1∪Λi
(χ) because the latter set is contained in Λj as shown

by Lemma D above. Consequently, because the valuation of formulae Lψ ∈
Sf L(χ) does not change, the truth-value of χ is not affected. �

Proof of Theorem 4.1: Λ is Σ-full because it satisfies the conditions of Definition
2.2. Condition 1 is immediate, and Condition 3 is true if Condition 2 is,
since by construction for all Lχ ∈ Sf L(Σ) exactly one of Lχ or ¬Lχ is in
Λ. Condition 2 holds because Lχ ∈ Λ if and only if there is i < n for which
Lχ ∈ (Sf L(Σi+1)−Sf L(Σi1)) and Σi1∪Λi |=L χ. By Lemma 4.2 this is equivalent
to Σn1 ∪ Λ |= χ. By Theorem 2.4 SEΣ(Λ) is a stable expansion of the set of
premises Σ, and because Σ is stratified SEΣ(Λ) is the unique stable expansion
of Σ by Theorem 5.1 of [MAR 91b]. �

The following two lemmata are needed for Theorem 4.5 which shows how the
unique stable expansion of a stratified set Σ can be computed more efficiently
without explicitly constructing the Σ-full set Λ.

Lemma 4.3 Let Σ be a set of formulae of the form Lχ1∧· · ·∧Lχn∧¬Lχn+1∧
· · · ∧ ¬Lχn+m ∧ ψ → ψ′ where ψ,ψ′ ∈ L, and let Λ be a set of formulae of
the form Lφ,¬Lφ that contains exactly one of Lχ, ¬Lχ for each Lχ ∈ Sf L(Σ).
Define Red(Σ,Λ) = {ψ → ψ′|(φ ∧ ψ → ψ′) ∈ Σ, the conjuncts of φ are in Λ}.
Assume that for all Lφ,¬Lφ′ ∈ Λ, Σ ∪ Λ |=L φ and Σ ∪ Λ 6|=L φ

′. Then for all
χ ∈ Lae,

Red(Σ,Λ) |=L χ iff Σ ∪ Λ |=L χ.

Proof: The equivalence φ ∧ ψ → ψ′ ≡ φ → (ψ → ψ′) justifies proving the
lemma using Red(Σ,Λ) = {ψ|(φ→ ψ) ∈ Σ, the conjuncts of φ are in Λ}. The
proof is by induction on the L-depth s of χ.

(s = 0). For formulae with L-depth 0 there are no L subformulae and there-
fore |=L coincides with |=. (⇒). The implication Red(Σ,Λ) |=L χ implies Σ ∪
Λ |=L χ is shown by contraposition, i.e., Σ ∪ Λ 6|=L χ implies Red(Σ,Λ) 6|=L χ.
Suppose Σ ∪ Λ 6|= χ, i.e., there is a model M such that M |= Σ ∪ Λ and
M 6|= χ. We show that also M |= Red(Σ,Λ) and hence Red(Σ,Λ) 6|= χ. Sup-
pose (φ → ψ) ∈ Σ. If ψ ∈ Red(Σ,Λ), then the conjuncts of φ are in Λ and
consequently M |= φ. Because M |= φ → ψ also M |= ψ. This shows that
M |= Red(Σ,Λ), and Red(Σ,Λ) 6|= χ.

(⇐). Suppose Red(Σ,Λ) 6|= χ, i.e. there is a model M such that M |=
Red(Σ,Λ) and M 6|= χ. Let M′ be M modified to satisfy Λ. Because there



are no subformulae in Red(Σ,Λ) or in χ that begin with L, the formulae in
Λ can be made true without affecting truth-values of Red(Σ,Λ) or χ. Hence
M′ |= Λ and M′ 6|= χ. For showing that M′ |= Σ the analysis for formulae
(φ → ψ) ∈ Σ is divided to two cases. First, if all conjuncts of φ are in Λ then
ψ is in Red(Σ,Λ) and therefore M |= ψ, and further, M′ |= φ → ψ. Second,
if at least one conjunct of φ is not in Λ then φ is false in M′ (because then
the complement of the conjunct is in Λ) and again M′ |= φ → ψ. Therefore
Σ ∪ Λ 6|=L χ.

(s ≥ 1). (⇒) Suppose Σ ∪ Λ 6|=L χ, i.e., there is a model M such that
M |= Σ ∪ Λ ∪ SBΣ∪Λ(χ) and M 6|= χ. We show that also M |= Red(Σ,Λ) ∪
SBRed(Σ,Λ)(χ) and hence Red(Σ,Λ) 6|=L χ. By the induction hypothesis
SBRed(Σ,Λ)(χ) = SBΣ∪Λ(χ), and hence M |= SBRed(Σ,Λ)(χ). Suppose (φ →
ψ) ∈ Σ. If ψ ∈ Red(Σ,Λ), then the conjuncts of φ are in Λ and consequently
M |= φ. BecauseM |= φ→ ψ alsoM |= ψ. This shows thatM |= Red(Σ,Λ),
and finally Red(Σ,Λ) 6|= χ.

(⇐). Suppose Red(Σ,Λ) 6|=L χ, i.e. there is a model M such that M |=
Red(Σ,Λ) ∪ SBRed(Σ,Λ)(χ) and M 6|= χ. Let M′ be M modified to satisfy Λ.
This modification does not affect the truth-value of Red(Σ,Λ) because there are
no formulae beginning with L in Red(Σ,Λ). That SBRed(Σ,Λ)(χ) is true inM′

is seen from the following chain of equivalences. For φ such that Lφ ∈ Sf qL(χ)
and Lφ or ¬Lφ in Λ,

Lφ ∈ SBRed(Σ,Λ)(χ) iff Lφ ∈ SBΣ∪Λ(χ) [24]
iff Σ ∪ Λ |=L φ [25]
iff Lφ ∈ Λ [26]

and for both Lφ ∈ Sf qL(χ) and Λ the formula ¬Lφ is in the set exactly when
Lφ is not. Equivalence 24 is by the induction hypothesis. Equivalence 25 is by
the definition of SB. Equivalence 26 is by the assumption of the lemma.

The truth value of χ is the same inM′ andM because the truth-values of
propositional variables are the same in both of these models, and the subformu-
lae Sf qL(χ) of χ have the same truth values in both models as already shown
above by the argument concerning SBΣ∪Λ(χ). HenceM′ |= Λ∪SBΣ∪Λ(χ) and
M′ 6|= χ.

The argument forM′ |= Σ is the same as in the base case of the induction. �

Lemma 4.4 Let φ be of the form Lφ1 ∧ · · · ∧ Lφn ∧ ¬Lψ1 ∧ · · · ∧ ¬Lψm and
Σ ⊆ L. Then Σ |=L φ iff Σ |=L φi for all i, 1 ≤ i ≤ n and Σ 6|=L ψj for all
j, 1 ≤ j ≤ m.

Proof: (⇒) Suppose that for some i, Σ 6|=L φi, or for some j, Σ |=L ψj .
Then one of Lφi or ¬Lψj is not in SBΣ(φ) and Σ 6|=L φ. (⇐) Suppose that
the antecedent is true. Then SBΣ(φ) = {Lφ1, . . . , Lφn,¬Lψ1, . . . ,¬Lψm}, and
therefore Σ ∪ SBΣ(φ) |= φ and Σ |=L φ. �



Let Λ be the Σ-full set corresponding to the unique stable expansion SEΣ(Λ)
of a stratified set Σ. The following theorem gives an algorithm for comput-
ing directly the set Red(Σ,Λ) ⊆ L which characterizes the stable expansion
SEΣ(Λ).

Theorem 4.5 Let Σ = Σn1 be a stratified set, and define RedL(Σ, R) =
{o(φ)→ c(φ)|φ ∈ Σ, R |=L a(φ)}. Define R = Rn by

R0 = ∅
Ri+1 = Ri ∪ RedL(Σi+1, Ri), 0 ≤ i < n.

Then R = Red(Σ,Λ) and {φ|R |=L φ} = SEΣ(Λ) where Λ is Σ-full.

Proof: Let Λ be the set computed by the algorithm of Theorem 4.1 for a set Σ.
Because Λ is Σ-full it fulfills the conditions of Lemma 4.3, and hence the stable
expansion of Σ is SEΣ(Λ) = {φ|Red(Σ,Λ) |=L φ}. We show by induction that
for all i, 0 ≤ i ≤ n, Ri = Red(Σi1,Λi).

(i = 0) Immediate, as R0 = ∅ = Red(Σ0
1,Λ0).

(i ≥ 1).

Ri = Ri−1 ∪ RedL(Σi, Ri−1)
= Red(Σi−1

1 ,Λi−1) ∪ RedL(Σi, Ri−1)
= Red(Σi−1

1 ,Λi−1) ∪ Red(Σi,Λi)
= Red(Σi1,Λi)

The first equality is by the definition of Ri and the second by the induction
hypothesis. The fourth is because Λi−1 ⊆ Λi and for each Lφ ∈ Sf L(Σi−1

1 ) there
is either Lφ or ¬Lφ in Λi−1. The third equality is shown as follows. Let φ ∈ Σi.
Then by Lemma 4.4 o(φ) → c(φ) ∈ RedL(Σi, Ri−1) iff for all conjuncts Lχ in
a(φ), Ri−1 |=L χ, and for all conjuncts ¬Lχ in a(φ), Ri−1 6|=L χ. Consider
conjuncts Lχ in a(φ):

Ri−1 |=L χ iff Red(Σi−1
1 ,Λi−1) |=L χ

iff Σi−1
1 ∪ Λi−1 |=L χ

iff ∃k ≤ i, Lχ ∈ (Sf L(Σk)− Sf L(Σk−1
1 )),Σk−1

1 ∪ Λk−1 |=L χ

iff Lχ ∈ Λk ⊆ Λi.

The first equivalence is by the induction hypothesis. The second is by Lemma
4.3. The third is because either i = k and the equivalence is immediate, or k < i
and Lχ ∈ Sf L(Σk), and it follows by Lemma 4.2. The fourth equivalence is by
the definition of Λj . Similarly for conjuncts ¬Lχ in a(φ). By the definition of
Red and the equivalences above, φ ∈ RedL(Σi, Ri−1) iff φ ∈ Red(Σi,Λi). �



Example 4.1 The table below demonstrates the computation of the full set
Λ of the set Σ in Example 3.3 by the algorithm of Theorem 4.1, and the
computation of R = Red(Σ,Λ) by the algorithm of Theorem 4.5.

i Σi Λ R
2 L(p↔ q)→ s L(p↔ q) s
1 L¬Lr ∧ p→ q ¬Lr, L¬Lr p→ q

q → p q → p

5. Complexity results

For discussing the complexity of decision problems of autoepistemic logic we
briefly introduce some basic concepts from [GAR 79]. The polynomial hierar-
chy is an infinite hierarchy of complexity classes Σpi ,Π

p
i , and ∆p

i , i ≥ 0 defined
using oracle Turing machines in the following way.

Σp0 = P Πp
0 = P ∆p

0 = P

Σpn+1 = NPΣp
n Πp

n+1 = co-Σpn+1 ∆p
n+1 = PΣp

n

CC2
1 denotes the class of problems that belong to the class C1 if given an oracle

for a problem in C2, and co-C denotes the set of problems whose complements
are in the class C. Note that Σp1 =NP. A problem is C-hard if all members
of the class C can be transformed to it in polynomial time. A problem is
C-complete if it belongs to the class C and is C-hard.

In the most general cases, the decision problems of propositional autoepis-
temic logic lie on the second level of the polynomial hierarchy. Brave reasoning,
the membership of a formula in at least one stable expansion of a set of for-
mulae, is a Σp2-complete problem, and cautious reasoning, the membership of
a formula in all stable expansions of a set of formulae, is a Πp

2-complete prob-
lem [GOT 92]. In these cases there are two sources of complexity, the classical
propositional reasoning and the problem of finding stable expansions, both of
which bring the complexity up one level in the polynomial hierarchy. Marek
and Truszczyński [MAR 91a, MAR 91b] have investigated the complexity of
autoepistemic reasoning in restricted cases. They show that for sets of formu-
lae of the form Lp1 ∧ · · · ∧Lpn ∧¬Lq1 ∧ · · · ∧¬Lqm → r, where pi, qj and r are
propositional variables, the decision problems of brave and cautious reasoning
are NP-complete and co-NP-complete, respectively [MAR 91a]. Even for sets
of formulae as simple as ¬Lp → q the existence of stable expansions remains
NP-complete [MAR 91b].

The method developed in the previous section shows that when making the
restriction to stratified sets of formulae, there is only one source of complexity
that in practise requires exponential time computation, namely the classical
reasoning. This is established in Theorem 5.2 which gives bounds for the com-
plexity of stratified propositional autoepistemic logic in the general case. As a
basis of analyzing the complexity of stratified autoepistemic logic, we use the



algorithm in Theorem 4.5. The algorithm computes a set R ⊆ L that charac-
terizes the unique stable expansion of a stratified set. By the next lemma the
explicit construction of the sets SBΣ(χ) can be avoided in the |=L tests of the
algorithm. As a result, all consequence tests are for sets of formulae in which
no L operators occur.

Lemma 5.1 Let χ(Lφ) be a formula in which the formula Lφ possibly occurs
and χ(>) the same formula where all occurrences of Lφ have been replaced
by the constant true >. Let Σ ⊆ Lae be a set of formulae where Lφ does not
occur. Now Σ ∪ {Lφ} |= χ(Lφ) iff Σ |= χ(>), and Σ ∪ {¬Lφ} |= χ(Lφ) iff
Σ |= χ(⊥), where ⊥ = ¬>.

Proof: (⇐) Suppose Σ ∪ {Lφ} 6|= χ(Lφ), i.e., there is a model M such that
M |= Σ∪{Lφ} andM 6|= χ(Lφ). ClearlyM 6|= χ(>). (⇒) Suppose Σ 6|= χ(>),
i.e., M |= Σ and M 6|= χ(>). Since the truth value of Lφ is independent of
other formulae of the form Lψ and of propositional variables, > can be replaced
by Lφ in χ and therefore Σ ∪ {Lφ} 6|= χ(Lφ). Similarly for ¬Lφ and ⊥. �

Theorem 5.2 In propositional stratified autoepistemic logic, brave and cau-
tious reasoning are co-NP-hard and in ∆p

2.

Proof: Because of the uniqueness of stable expansions in stratified autoepis-
temic logic, the problems of brave and cautious reasoning coincide. A stratifica-
tion for a stratified set Σ can be found in polynomial time using the algorithm
given in the previous section. The algorithm given in Theorem 4.5 computes
for Σ a set R such that {φ ∈ Lae|R |=L φ} is the unique stable expansion of
Σ. In its computation, the algorithm tests the consequence Σ′ |=L a(φ) for
each member φ of Σ and some set Σ′ ⊆ L. Each such consequence test reduces
to tests for logical consequence in propositional logic, the number of which is
proportional to the length of a(φ). This is by the use of Lemma 5.1. Hence
the total number of logical consequence tests – which can be performed by
one call to an oracle for the satisfiability of propositional logic – is linear in
the size of Σ. The membership of a formula φ in the unique stable expansion
characterized by the set R can be tested by R |=L φ. This test reduces to a
linear number of calls to the NP oracle for propositional satisfiability. Hence
the decision problems are in ∆p

2. The co-NP-complete problem of propositional
validity can be reduced in polynomial time to the problem of membership in
the unique stable expansion of the stratified set ∅. Hence the decision problems
are co-NP-hard. �

In this section we analyze the complexity of our algorithm in cases where
the time complexity of the classical reasoning component is polynomial. The
proof of Theorem 5.2 indicates that restricting the classical reasoning to a sub-
class that can be decided in polynomial time brings the time complexity of



the decision problems of stratified propositional autoepistemic logic to polyno-
mial. The basis of the analysis is the algorithm given in Theorem 4.5. In this
algorithm all logical consequence tests are for objective formulae and can be
implemented as calls to a theorem prover for classical propositional logic. This
is very convenient from the point of view of implementing a theorem prover
for stratified autoepistemic logic because existing theorem provers for classical
logic can be employed as subroutines without modification.

The complexity analysis gives a formula for the amount of resources (time
or space) parameterized with the complexity R(x) of the theorem prover em-
ployed. The satisfiability of propositional Horn clauses can be tested in linear
time, and by assigning R(x) = ax + c for linear time, a quadratic time upper
bound is obtained for the membership testing in the stable expansions of a class
of stratified propositional autoepistemic theories based on Horn clauses. For a
more restricted class based on program clauses we observe a specific property
that allows membership tests in linear time.

We write |φ| for the length of a formula φ, |Σ| for the sum of lengths of the
formulae in a set Σ, and ‖Σ‖ for the cardinality of a set Σ.

Lemma 5.3 F (χ,Σ) in Equation 27 gives the amount of resources needed for
testing the |=L-consequence of an arbitrary formula χ from a set of formulae
Σ ⊆ L. R(x) is the amount of resources needed for performing a consequence
test of size x.

F (χ,Σ) = R(|χ|+ |Σ| −
∑

Lφ∈Sf qL(χ)

|φ|) +
∑

Lφ∈Sf qL(χ)

F (φ,Σ) [27]

and the equation with recursion removed is

F (χ,Σ) = R(|χ|+ |Σ| −
∑

Lφ∈Sf qL(χ)

|φ|)

+
∑

Lφ∈Sf L(χ)

R(|φ|+ |Σ| −
∑

Lψ∈Sf qL(φ)

|ψ|). [28]

Proof: The second summand of the right hand side of Equation 27 corresponds
to the computation of the members of SBΣ(χ) using |=L. The first summand
corresponds to the consequence test Σ |=L χ, or equivalently the consequence
test Σ ∪ SBΣ(χ) |= χ. By Lemma 5.1 the consequence test can be made by
replacing Lφ in χ by > for all Lφ ∈ SBΣ(χ), and by ⊥ for all ¬Lφ ∈ SBΣ(χ),
thus obtaining χ′ ∈ L and then testing the consequence Σ |= χ′. This is why∑
Lφ∈Sf qL(χ) |φ| is subtracted. �

Next we give an upper bound for the amount of resources needed for con-
sequence tests in the computation of the algorithm in Theorem 4.5. Let
Σ = Σn1 be a stratified set and let there be an enumeration of the formulae
φi ∈ Σ, 1 ≤ i ≤ r such that if the stratum of φi is lower than that of φj then



i < j. Let ni = |a(φi)| and mi = |o(φi) → c(φi)|. Ignoring the exact bound-
aries between the strata is an acceptable approximation since we are primarily
interested in analyzing the upper bounds of complexity. The size of a stratified
set is the sum of the sizes of its formulae

r∑
i=1

(ni +mi + 1). [29]

An upper bound for the resources needed for the consequence tests is

r∑
i=1

F (a(φi),
i−1⋃
j=1

{o(φj)→ c(φj)}). [30]

Tractable classes of stratified sets of autoepistemic formulae can be found
by restricting the syntactic form of the formulae in such a way that the classical
theorem proving task becomes tractable. As an example we present a tractable
class SHCae based on Horn clauses, i.e. disjunctions of literals of which at
most one is positive. The class is designed so that all |=L consequence tests in
the algorithm of Theorem 4.5 use only such |= consequence tests that reduce
to satisfiability testing of sets of Horn clauses. Satisfiability of propositional
Horn clauses can be tested in linear time by using the algorithm of Dowling
and Gallier [DOW 84]. Hence the algorithm in Theorem 4.5 runs in this case
in polynomial time.

Definition 5.4 A formula χ is in the class HFae if it is a disjunction of con-
junctions of formulae of the form p, ¬p, Lφ, and ¬Lφ with at most one ¬p in
each disjunct, where each p is a propositional variable and each φ is in HFae.

Definition 5.5 SHCae is the class of finite stratified sets of formulae φ of the
form a(φ) ∧ o(φ)→ c(φ) where a(φ) is a conjunction of zero or more formulae
of the form Lχ or ¬Lχ where χ is in HFae, o(φ) is a conjunction of zero or
more propositional variables, and c(φ) is a propositional variable or a negated
propositional variable.

The following are examples of formulae in sets in SHCae.

a ∧ b→ c

¬L(LLp ∨ q ∨ ¬r ∨ (t ∧ ¬u) ∨ (x ∧ y))→ ¬a

Theorem 5.6 For a set Σ in SHCae the set Red(Σ,Λ), where Λ is the unique
Σ-full set, can be computed in O(n2) time, where n = |Σ|.

Proof: By Proposition 3.5 a stratification can be determined in O(|Σ|) time.
The computation of R = Red(Σ,Λ) by the algorithm in Theorem 4.5 is dom-
inated by the consequence tests: in the computation of RedL(Σi+1, Ri) the
removal of whole formulae in Σi+1, the removal of the autoepistemic parts



a(φ), φ ∈ Σi+1, and the replacement of formulae Lφ by > or ⊥ during a |=L-
consequence test, are all constant time operations, and the number of these
operations is smaller than the size of Σi+1.

All consequence tests reduce to satisfiability tests for formulae in conjunctive
normal form with at most one positive literal in each conjunct, and hence the
linear time algorithm of [DOW 84] can be used. For logical consequence tests
in the computation of the algorithm in Theorem 4.5, instantiate R(x) = ax+ c
to the second equation of Lemma 5.3:

F (χ,Σ) = a(|χ|+ |Σ| −
∑

Lφ∈Sf qL(χ)

|φ|) + c

+
∑

Lφ∈Sf L(χ)

(a(|φ|+ |Σ| −
∑

Lψ∈Sf qL(φ)

|ψ|) + c).

By reordering the terms we obtain

F (χ,Σ) = a(|χ|+ |Σ|+
∑

Lφ∈Sf L(χ)

|Σ|) + (c+
∑

Lφ∈Sf L(χ)

c)

+ a(−
∑

Lφ∈Sf qL(χ)

|φ|+
∑

Lφ∈Sf L(χ)

|φ| −
∑

Lφ∈Sf L(χ)

∑
Lψ∈Sf qL(φ)

|ψ|).

The value of the third summand is zero since the length of each Lφ ∈ Sf L(χ)
is added and subtracted exactly once. From this we get the upper bound

a(|χ|+ |Σ|+ ‖Sf L(χ)‖ · |Σ|) + c(1 + ‖Sf L(χ)‖)
≤ a(|χ|+ |Σ| · (1 + ‖Sf L(χ)‖)) + c · |χ|)
≤ a(|χ|+ |Σ| · |χ|) + c · |χ|
< (a+ c)(|χ|+ |Σ| · |χ|)

for F (χ,Σ). Using this and Equation 30 (by the definition of O the constant
factor a+ c appearing in each term can be left out) we get

r∑
i=1

(ni + ni

i−1∑
j=1

mi) ≤ (
r∑
i=1

ni) + (
r∑
i=1

ni)(
r∑
i=1

mi)

≤ (
r∑
i=1

ni)2 + 2(
r∑
i=1

ni)(
r∑
i=1

mi) + (
r∑
i=1

mi)2

< (
r∑
i=1

(ni +mi + 1))2.

This establishes the O(n2) upper bound for the logical consequence tests. �

Theorem 5.7 Given Red(Σ,Λ) where Σ ∈ SHCae and Λ is a Σ-full set, the
membership in the unique stable expansion {φ|Red(Σ,Λ) |=L φ} of Σ for for-
mulae φ in HFae can be decided in O(n2) time, where n = |Σ|+ |¬φ|.



Proof: By the second equation of Lemma 5.3 the amount of resources needed
is bounded by |Σ| · |¬φ|+ |¬φ| as shown in the proof of Theorem 5.6, and this
is O(n2). �

Theorem 5.8 Let Σ be in SHCae. The membership problem of the unique
stable expansion of Σ for formulae φ in HFae is solvable in O(n2) time, where
n = |Σ|+ |¬φ|.

The line taken in establishing the above result suggests further tractable
classes based on other subsets of propositional logic for which polynomial time
satisfiability tests are available, like those presented in [SCH 78, GAL 88]. Next
we investigate an even more restricted class for which the logical consequence
testing does not have to be done separately for each formula inside L.

Definition 5.9 A formula χ is in CFae if it is a conjunction of one or more
formulae of the form p, Lφ, and ¬Lφ where each p is a propositional variable
and each φ is in CFae.

Definition 5.10 SPCae is the class of finite stratified sets of formulae φ of the
form a(φ) ∧ o(φ)→ c(φ) where a(φ) is a conjunction of zero or more formulae
of the form Lχ or ¬Lχ and each χ is in CFae, o(φ) is a conjunction of zero or
more propositional variables, and c(φ) is a propositional variable.

The following formulae illustrate the form of formulae in sets in SPCae:

¬L(a ∧ b ∧ c ∧ ¬Ld)→ e

L(p ∧ Lq ∧ ¬Lr) ∧ ¬L(¬Ls) ∧ t→ u

The class SPCae is a proper subclass of SHCae. Formulae in SHCae are more
expressive than those in SPCae in the sense that in SHCae it is possible to use
a negative literal in the head of an implication and disjunctions and negative
literals are allowed inside L operators. For example, formulae

¬Lp→ ¬a
L(q ∨ r)→ b

L¬p→ c

L(¬t ∨ s) ∧ ¬L(LL¬p ∨ p ∨ ¬r ∨ (t ∧ ¬u) ∨ (x ∧ y))→ ¬d

could be used in a stratified set belonging to SHCae but not in a set in SPCae.
In [DOW 84] two linear time algorithms are given for testing the satisfiabil-

ity of a set of Horn clauses. We modify one of these to be used in linear time
tests for the membership in the unique stable expansions of sets in SPCae. By
Theorem 4.5 explicit construction of the sets Λi can be avoided and instead of
separately testing the logical consequence of each formula inside L in a(φ) the



whole set of consequences for one stratum of a stratification can be computed
by one run of the algorithm.

The function DG is the basis of the efficient algorithm for SPCae and can be
implemented as a variant of Algorithm 2 of [DOW 84]. Dowling and Gallier’s
algorithm works with arbitrary Horn clauses, but ours is restricted to program
clauses, i.e., disjunctions of literals exactly one of which is positive. Sometimes
program clauses are written as a1 ∧ · · · ∧ an → b instead of ¬a1 ∨ · · · ∨ ¬an ∨ b.

In our algorithm sets of propositional variables are represented by their
characteristic functions or equivalently arrays. For array indexing Assumption
3.4 is essential.

Proposition 5.11 Let Σ be a set of program clauses and v a set of proposi-
tional variables. Then

DG(Σ, v) = {p|p is a propositional variable, Σ ∪ v |= p}

can be computed in O(|Σ|) time.

Proof: The computation of DG for a set of program clauses Σ and a set of
propositional variables v uses the following arrays:

poslitlist Each element n is initialized to the propositional variable appearing
in the positive literal of the clause φn ∈ Σ. The initialization can be done
by one traversal of the set of formulae, which is linear time.

clauselist The element n is the list of clauses of Σ in which the variable in
the positive literal of φn appears in a negative literal. Initialization can
be done in linear time.

numargs The element n is initialized to the number of variables p in the
negative literals of φn for which v(p) = 0.

The function is computed by the procedure in Figure 2. Under Assumption
3.4 the computation is linear time in the size of Σ. The argument is the same
as for the linearity of Algorithm 2 of [DOW 84]. The initializations of the
procedure for a set of clauses Σ is O(|Σ|). Each clause n of Σ is pushed to the
queue at most once, i.e. in the initialization part of the procedure when it is
found that v(p) = 1 for all body variables p that appear negatively in n, or
inside the while loop when the value of v(poslitlist[n]) is changed from 0 to 1.
Each round of the while loop corresponds to the deletion of negative occurrences
of some propositional variable poslitlist[c], and for each propositional variable
there is at most one round of the loop. Hence the amount of computation
inside the while loop is proportional to the number of negative literals in Σ. �

Define RedP (Σ, v) = {φ→ φ′|(Lχi ∧ · · · ∧Lχn ∧¬Lχn+1 ∧ · · · ∧ ¬Lχn+m ∧
φ → φ′) ∈ Σ, v |=L χ1, . . . , v |=L χn, v 6|=L χn+1, . . . , v 6|=L χn+m}. The set
RedP (Σ, v) can be computed in linear time in |Σ| for members of SPCae. The



function DG(Σ, v : array of {0, 1}) : array of {0, 1};
begin

initialize poslitlist, clauselist, numargs;
initialize queue to the list of clauses n for which numargs[n] = 0;
for each c in queue do v(poslitlist[c]) := 1;
while queue is not empty do

clause1 := pop(queue);
for each clause2 in clauselist[clause1] do

numargs[clause2] := numargs[clause2] - 1;
if numargs[clause2] = 0 then

n := poslitlist[clause2];
if v(n) = 0 then

v(n) := 1;
queue := push(clause2,queue)

end if
end if

end for
end while;
return v

end

Figure 2. A version of Algorithm 2 of Dowling and Gallier

consequence tests v |=L χ, χ in CFae can be done in linear time in |χ| by using
the following algorithm.

v |=L χ iff for each conjunct φ of χ

 if φ is atomic then φ ∈ v
if φ = Lψ then v |=L ψ
if φ = ¬Lψ then v 6|=L ψ

The following two lemmata are needed for establishing Lemma 5.14 which
describes how to compute in O(|Σ|) time the set of propositional variables in
the unique stable expansion of a set Σ in SPCae.

Lemma 5.12 Let Σ ⊆ L, v = {p|p is a propositional variable,Σ |= p}, and χ
be in CFae. Then v |=L χ iff Σ |=L χ.

Proof: By induction on the L-depth s of χ. (s = 0). Suppose Σ 6|=L χ, i.e.,
there is a model M for which M |= Σ and M 6|= χ. Because v is the set of
propositional variables true in every model of Σ, also M |= v, and v 6|=L χ.
Suppose Σ |=L χ. Because χ is a conjunction of propositional variables each
of which is a logical consequence of Σ, obviously v |=L χ. (s ≥ 1). By the
induction hypothesis SBv(χ) = SBΣ(χ), and replacing members of SBv(χ)
(and SBΣ(χ)) according to Lemma 5.1 by > or ⊥, χ can be reduced to χ′ of
L-depth 0 for which v |= χ′ iff Σ |= χ′, which is shown as in the case s = 0. �



Lemma 5.13 Let Σ be a set of program clauses and Γ the set of propositional
variables p such that Σ |= p. Let ∆ be a set of program clauses such that the
propositional variables in the positive literals of ∆ do not occur in the negative
literals of Σ. Then for all propositional variables p, Σ ∪∆ |= p iff Γ ∪∆ |= p.

Proof: Suppose Σ ∪∆ 6|= p, i.e., for some model M, M |= Σ ∪∆ and M 6|= p.
Clearly M |= Γ ∪∆ and therefore Γ ∪∆ 6|= p. Suppose Γ ∪∆ 6|= p, i.e., there
is a model M, M |= Γ ∪ ∆, M 6|= p. M′ is M modified to satisfy Σ ∪ ∆ in
the following way. Formulae φ = ¬a1 ∨ · · · ∨ ¬an ∨ b, φ ∈ Σ can be false if
M |= a1 ∧ · · · ∧ an and M 6|= b. Now M′ can be modified to make φ true by
making one of ai, 1 ≤ i ≤ n false. This can be done without falsifying formulae
in Γ ∪ ∆ because i) not all ai, 1 ≤ i ≤ n can be logical consequences of Σ
and hence members of Γ. If they were, then b ∈ Γ. And ii) as propositional
variables in the positive literals of ∆ do not occur in the negative literals of
Σ, this modification falsifies no formula in ∆. Therefore M′ |= Σ ∪ ∆ and
Σ ∪∆ 6|= p. �

Lemma 5.14 For Σ = Σn1 in SPCae and a formula χ in CFae, vn |=L χ iff χ
belongs to the unique stable expansion of Σ, where vn is defined by

v0 = ∅
vi+1 = DG(RedP (Σi+1, vi), vi), 0 ≤ i < n.

Furthermore, vn, which is the set of propositional variables in the unique stable
expansion of Σ, can be computed in O(|Σ|) time.

Proof: We prove vi |=L χ iff Red(Σi1,Λi) |=L χ, where Λi as in Theorem 4.1,
by induction on i. (i = 0). Immediate as v0 = Red(Σ0

1,Λ0) = ∅. (i > 0). For
all propositional variables p,

vi |= p iff vi−1 ∪ RedP (Σi, vi−1) |= p

iff Red(Σi−1
1 ,Λi−1) ∪ RedP (Σi, vi−1) |= p

iff Red(Σi−1
1 ,Λi−1) ∪ Red(Σi,Λi) |= p

iff Red(Σi1,Λi) |= p.

The first equivalence is by the definition of vi, the second and the third re-
spectively by A and B below. The fourth equivalence is because Λi−1 ⊆ Λi
and for each Lφ ∈ Sf L(Σi−1

1 ) there is either Lφ or ¬Lφ in Λi−1. A. By the
induction hypothesis vi−1 |= p iff Red(Σi−1

1 ,Λi−1) |= p. We get the equivalence
by Lemma 5.13 taking ∆ = RedP (Σi, vi−1),Γ = vi−1,Σ = Red(Σi−1

1 ,Λi). B.
For φ, (ψ → φ) ∈ Σi, φ ∈ RedP (Σi, vi−1) iff for conjuncts Lχ of ψ,

vi−1 |=L χ iff Red(Σi−1
1 ,Λi−1) |=L χ [31]

iff Σi−1
1 ∪ Λi−1 |=L χ [32]

iff Lχ ∈ Λi [33]



and similarly for conjuncts ¬Lχ′ of ψ, which by the definition of Red is equiva-
lent to φ ∈ Red(Σi,Λi). Therefore RedP (Σi, vi−1) = Red(Σi,Λi). Equivalence
31 above is by the induction hypothesis. Equivalence 32 is by Lemma 4.3.
Equivalence 33 is by Lemma 4.2.

By Lemma 5.12 we get the induction step, i.e. for all χ in CFae, vi |= χ
iff Red(Σi1,Λi) |= χ. Thus vn |=L χ iff Red(Σn1 ,Λn) |=L χ iff (by Lemma 4.3)
Σn1 ∪ Λn |=L χ iff (by Theorem 2.4) χ is in the unique stable expansion of Σ.

By Proposition 3.5 stratification can be computed in linear time, and using
Assumption 3.4 the computation is O(|Σ|) time because by Proposition 5.11
computing RedP (Σi, vi−1) is linear in |Σi| and this is done exactly once for
each Σi ⊆ Σ, 1 ≤ i ≤ n. The size of RedP (Σi, vi−1) is smaller than or equal to
that of Σi. Hence the respective computation with DG is linear in |Σi|. �

Theorem 5.15 Let Σ be in SPCae and χ in CFae. The membership of χ in the
unique stable expansion of Σ can be decided in O(n) time, where n = |Σ|+ |χ|.

Proof: By Lemma 5.14 the computation of the set vn for Σ = Σn1 is O(|Σ|)
time. By Lemma 5.14 the membership in the unique stable expansion can be
tested by vn |=L χ, and this is O(|χ|) time. �

6. An implementation

We have implemented the general decision procedure for stratified proposi-
tional autoepistemic logic, as well as the decision procedures for the polynomial
time classes presented in this article. All implementations are in Prolog. To
get an idea about how practical the implementation is, we have tested it using
a solution to the Yale Shooting Problem of Hanks and McDermott [HAN 87].
The axioms for the shooting scenario are the following.

holds(alive,s0)
∀S holds(loaded, result(load,S))
∀S holds(loaded, S) → holds(dead,result(shoot,S))
∀S holds(loaded, S) → ab(alive,shoot,S)
∀P∀A∀S ¬ab(P,A,S) ∧ holds(P,S) → holds(P,result(A,S))

We are interested in the sequence of events load, wait, and shoot, and the final
situation result(shoot,result(wait,result(load,s0))). Gelfond [GEL 88a] shows
that autoepistemic logic gives the desired conclusions if the last formula of the
problem statement is modified to

∀P∀A∀S ¬Lab(P,A,S) ∧ holds(P,S) → holds(P,result(A,S)).

The problem is stated in a quantificational version of autoepistemic logic, but
we can remove the quantifiers and instantiate the free variables to obtain a



problem variables formulae stratification (s) consequences (s)
YSP 75 49 0.39 0.12

1 723 481 1.33 0.41
2 2181 1453 4.51 1.33
3 6555 4369 14.5 4.34

Figure 3. Execution times for a number of examples

set of formulae the atomic sentences of which can be treated like proposi-
tional variables. The instantiation process means substituting the relevant
terms for the free variables occurring in the formulae. The relevant actions
over which variables A vary are load, wait, and shoot, the relevant situa-
tions for variables S are s0, result(load,s0), result(wait,result(load,s0)), and re-
sult(shoot,result(wait,result(load,s0))), and the relevant facts are loaded, dead,
and alive. The ground instantiation of the problem consists of 49 formulae in
which 75 distinct propositional variables occur. See Figure 4.

Although the original set of formulae is not stratified because the predicates
ab and holds are defined using each other through L, its ground instantiation
is. Furthermore, the formulae are of the simple form allowed in the linear
time class SPCae. The intuitive reason for the stratifiedness of the formulae
is that the consequents of the implications describe the state of affairs in a
later time than the antecedents, and because there are no cycles in the causal
chains the formulae whose consequents describe earlier situations are lower in
the stratification.

In Figure 3 execution times for four sample problems are shown. For each
example we have measured the time taken by computing a stratification for the
set of formulae, and the time taken by the computation of the propositional
variables in the stable expansion of the formulae. All times are for program
code compiled on Sun SPARC workstation in SICStus Prolog in native code
compilation mode. The times have been measured using an internal facility of
SICStus Prolog and are approximate. The first row identifies the problem, the
second gives the number of distinct propositional variables in the problem, the
third the number of formulae, the fourth the execution time of the algorithm
computing a stratification for the set of formulae, and the fifth column gives
the execution time of computing the propositional variables that belong to the
unique stable expansion of the set of formulae.

The first row named YSP gives the runtimes of the solution to the Yale
Shooting Problem described above. Rows 1,2,3 describe the execution of other
variants obtained from the formula scheme of the Yale Shooting Problem. In-
stead of considering only the four relevant situations, all sequences of the ac-
tions load, wait, shoot of certain length are considered. This way the number
of propositional variables and the number of formulae are significantly larger.
The times for these modified problems are shown in Figure 3 as rows 1–3. The
first example is for arbitrary sequences of three actions, the second for four



1 h(alive, s0)
2 h(loaded, s0) → h(dead, r(s, s0))

¬Lab(dead, s, s0) ∧ h(dead, s0) → h(dead, r(s, s0))
3 h(loaded, s0) → ab(alive, s, s0)
4 ¬Lab(alive, s, s0) ∧ h(alive, s0) → h(alive, r(s, s0))
5 ¬Lab(loaded, s, s0) ∧ h(loaded, s0) → h(loaded, r(s, s0))
6 ¬Lab(dead, w, s0) ∧ h(dead, s0) → h(dead, r(w, s0))
7 ¬Lab(alive, w, s0) ∧ h(alive, s0) → h(alive, r(w, s0))
8 ¬Lab(loaded, w, s0) ∧ h(loaded, s0) → h(loaded, r(w, s0))
9 ¬Lab(dead, l, s0) ∧ h(dead, s0) → h(dead, r(l, s0))
10 ¬Lab(alive, l, s0) ∧ h(alive, s0) → h(alive, r(l, s0))
11 h(loaded, r(l, s0))

¬Lab(loaded, l, s0) ∧ h(loaded, s0) → h(loaded, r(l, s0))
12 h(loaded, r(l, s0)) → h(dead, r(s, r(l, s0)))

¬Lab(dead, s, r(l, s0)) ∧ h(dead, r(l, s0)) → h(dead, r(s, r(l, s0)))
13 h(loaded, r(l, s0)) → ab(alive, s, r(l, s0))
14 ¬Lab(alive, s, r(l, s0)) ∧ h(alive, r(l, s0)) → h(alive, r(s, r(l, s0)))
15 ¬Lab(loaded, s, r(l, s0)) ∧ h(loaded, r(l, s0)) → h(loaded, r(s, r(l, s0)))
16 ¬Lab(dead, w, r(l, s0)) ∧ h(dead, r(l, s0)) → h(dead, r(w, r(l, s0)))
17 ¬Lab(alive, w, r(l, s0)) ∧ h(alive, r(l, s0)) → h(alive, r(w, r(l, s0)))
18 ¬Lab(loaded, w, r(l, s0)) ∧ h(loaded, r(l, s0)) → h(loaded, r(w, r(l, s0)))
19 ¬Lab(dead, l, r(l, s0)) ∧ h(dead, r(l, s0)) → h(dead, r(l, r(l, s0)))
20 ¬Lab(alive, l, r(l, s0)) ∧ h(alive, r(l, s0)) → h(alive, r(l, r(l, s0)))
21 h(loaded, r(l, r(l, s0)))

¬Lab(loaded, l, r(l, s0)) ∧ h(loaded, r(l, s0)) → h(loaded, r(l, r(l, s0)))
22 h(loaded, r(w, r(l, s0))) → h(dead, r(s, r(w, r(l, s0))))

¬Lab(dead, s, r(w, r(l, s0))) ∧ h(dead, r(w, r(l, s0))) → h(dead, r(s, r(w, r(l, s0))))
23 h(loaded, r(w, r(l, s0))) → ab(alive, s, r(w, r(l, s0)))
24 ¬Lab(alive, s, r(w, r(l, s0))) ∧ h(alive, r(w, r(l, s0))) → h(alive, r(s, r(w, r(l, s0))))
25 ¬Lab(loaded, s, r(w, r(l, s0))) ∧ h(loaded, r(w, r(l, s0))) → h(loaded, r(s, r(w, r(l, s0))))
26 ¬Lab(dead, w, r(w, r(l, s0))) ∧ h(dead, r(w, r(l, s0))) → h(dead, r(w, r(w, r(l, s0))))
27 ¬Lab(alive, w, r(w, r(l, s0))) ∧ h(alive, r(w, r(l, s0))) → h(alive, r(w, r(w, r(l, s0))))
28 ¬Lab(loaded, w, r(w, r(l, s0))) ∧ h(loaded, r(w, r(l, s0))) → h(loaded, r(w, r(w, r(l, s0))))
29 ¬Lab(dead, l, r(w, r(l, s0))) ∧ h(dead, r(w, r(l, s0))) → h(dead, r(l, r(w, r(l, s0))))
30 ¬Lab(alive, l, r(w, r(l, s0))) ∧ h(alive, r(w, r(l, s0))) → h(alive, r(l, r(w, r(l, s0))))
31 h(loaded, r(l, r(w, r(l, s0))))

¬Lab(loaded, l, r(w, r(l, s0))) ∧ h(loaded, r(w, r(l, s0))) → h(loaded, r(l, r(w, r(l, s0))))
32 h(loaded, r(s, r(w, r(l, s0)))) → h(dead, r(s, r(s, r(w, r(l, s0)))))

¬Lab(dead, s, r(s, r(w, r(l, s0)))) ∧ h(dead, r(s, r(w, r(l, s0)))) → h(dead, r(s, r(s, r(w, r(l, s0)))))
33 h(loaded, r(s, r(w, r(l, s0)))) → ab(alive, s, r(s, r(w, r(l, s0))))
34 ¬Lab(alive, s, r(s, r(w, r(l, s0)))) ∧ h(alive, r(s, r(w, r(l, s0)))) → h(alive, r(s, r(s, r(w, r(l, s0)))))
35 ¬Lab(loaded, s, r(s, r(w, r(l, s0)))) ∧ h(loaded, r(s, r(w, r(l, s0)))) → h(loaded, r(s, r(s, r(w, r(l, s0)))))
36 ¬Lab(dead, w, r(s, r(w, r(l, s0)))) ∧ h(dead, r(s, r(w, r(l, s0)))) → h(dead, r(w, r(s, r(w, r(l, s0)))))
37 ¬Lab(alive, w, r(s, r(w, r(l, s0)))) ∧ h(alive, r(s, r(w, r(l, s0)))) → h(alive, r(w, r(s, r(w, r(l, s0)))))
38 ¬Lab(loaded, w, r(s, r(w, r(l, s0)))) ∧ h(loaded, r(s, r(w, r(l, s0)))) → h(loaded, r(w, r(s, r(w, r(l, s0)))))
39 ¬Lab(dead, l, r(s, r(w, r(l, s0)))) ∧ h(dead, r(s, r(w, r(l, s0)))) → h(dead, r(l, r(s, r(w, r(l, s0)))))
40 ¬Lab(alive, l, r(s, r(w, r(l, s0)))) ∧ h(alive, r(s, r(w, r(l, s0)))) → h(alive, r(l, r(s, r(w, r(l, s0)))))
41 h(loaded, r(l, r(s, r(w, r(l, s0)))))

¬Lab(loaded, l, r(s, r(w, r(l, s0)))) ∧ h(loaded, r(s, r(w, r(l, s0)))) → h(loaded, r(l, r(s, r(w, r(l, s0)))))

Figure 4. A stratification of the Yale shooting problem



actions, and the third for five actions.
The complexity analysis of Section 5 is based on a machine model with

constant time array access. Because Prolog does not support such arrays, an
array implementation based on balanced trees with log n average access time
has been used instead. Hence the execution times do not grow linearly.

7. Applications

7.1. Nonmonotonic modal logics

McDermott and Doyle style modal nonmonotonic logics are closely related
to autoepistemic logic. Marek et al. [MAR 93] show that for a wide range
of modal nonmonotonic logics S, S-expansions of stratified sets coincide with
stable expansions. Thus all the methods and results obtained for stratified
autoepistemic logic are directly applicable to these logics.

Theorem 7.1 ([MAR 93]) Let Σ ⊆ Lae be stratified. Then for each logic S
such that N ⊆ S and S ⊆ KD45 or S ⊆ SW5 the unique stable expansion of
Σ is the unique S-expansion of Σ.

7.2. Default logic

A notion of stratification can be introduced to Reiter’s default logic in the
same way as in autoepistemic logic, and similar complexity results hold in
default logic as in autoepistemic logic. Konolige [KON 88] showed that under
a certain translation, each extension of a default theory is the objective part of
a stable expansion of a corresponding autoepistemic theory. In general there
are stable expansions that do not correspond to extensions this way, but for
stratified theories the correspondence is exact, as we will show below. The
definition of extensions of default theories is based on a fixed point equation
[REI 80] and for proofs it is more convenient to use a definition of extensions
that has a more constructive flavour.

Theorem 7.2 ([REI 80]) Let E ⊆ L be a set of well-formed formulae, and
let T = 〈D,W 〉 be a default theory. Define

E0 = W

Ei+1 = {φ|Ei |= φ} ∪ applD,E(Ei), i ≥ 0

where applD,E(Ei) = {w| α : β1, . . . , βn
w

∈ D,α ∈ Ei,¬β1, . . . ,¬βn 6∈ E}, and

|= is the classical logical consequence relation. Then E is an extension for T iff

E =
∞⋃
i=0

Ei.



The definition of stratification for autoepistemic logic (Definition 3.1) with
the translation of a class of default theories to autoepistemic logic of Theorem
7.4 below, suggests a similar definition of stratification for default theories.

Definition 7.3 A default theory 〈D,W 〉 is stratified if

1. Formulae φ ∈ W are implications of the form o(φ) → c(φ) and the rules
d ∈ D are of the form αd : βd1, . . . , βdm/γd.

2. The set {γd|d ∈ D} ∪ {c(φ)|φ ∈W} is satisfiable.

3. There exists a set of indices I = {1, . . . , n} or I = {1, . . .} and a partition
Σi, i ∈ I of Σ = D ∪W such that for all j ∈ I the propositional variables
occurring in {c(φ)|φ ∈ Σj} ∪ {γd|d ∈ Σj} do not occur in

⋃j−1
i=1 Σi, or in

a prerequisite or a justification of a default rule in Σj .

Theorem 7.4 Stratified default theories 〈D,W 〉 can be translated into strat-
ified autoepistemic theories by the following translation.

trdl(D,W ) = W ∪ {Lα ∧ ¬L¬β1 ∧ · · · ∧ ¬L¬βn → γ| α : β1, . . . , βn
γ

∈ D}

The set of extensions of 〈D,W 〉 is exactly the set of objective parts of the stable
expansions of trdl(D,W ).

Proof: By Proposition 5.2 of [KON 88] every extension of 〈D,W 〉 coincides
with the objective part E = ∆ ∩ L of some stable expansion ∆ of trdl(D,W ).
The proof of the opposite direction, i.e., that objective parts E = ∆ ∩ L of
stable expansions of trdl(D,W ) are extensions of 〈D,W 〉, is by showing that
E =

⋃∞
i=0Ei where the sets Ei are as in Theorem 7.2. First we prove the

inclusion
⋃∞
i=0Ei ⊆ E by induction on i.

(i = 0). E0 = W ⊆ E simply because W ⊆ ∆. (i ≥ 1). Suppose
γd ∈ applD,E(Ei−1) for some d. Then αd ∈ Ei−1 and by the induction hy-
pothesis αd ∈ E ⊆ ∆. By the definition of stable expansions Lαd ∈ ∆.
¬βd 6∈ E and then ¬L¬βd ∈ ∆ because ∆ is a stable expansion. Because
stable expansions are closed under logical consequence also γd ∈ E. Therefore⋃
i≥0 applD,E(Ei) ⊆ E and W ⊆ E. Like

⋃∞
i=0Ei also E is closed under logical

consequence and therefore
⋃∞
i=0Ei ⊆ E.

Then we show the inclusion E ⊆
⋃∞
i=0Ei. This part of the proof rests

on the stratifiedness of Σ = trdl(D,W ). Let Σi, 1 ≤ i ≤ n be the strata
of Σ = trdl(D,W ), and Λi, 0 ≤ i ≤ n as in Theorem 4.1. By Theorem
2.4 and Lemma 4.3 the stable expansion of a stratified set Σ is SEΣ(Λn) =
{φ|Red(Σ,Λn) |=L φ}. By the definition of |=L the objective part E of SEΣ(Λn)
is {φ|Red(Σ,Λn) |= φ}. Because

⋃∞
i=0Ei is closed under logical consequence

it suffices to show that Red(Σ,Λn) ⊆
⋃∞
i=0Ei. This is proved by induction on

i, 0 ≤ i ≤ n.



(i = 0). Red(Σ0
1,Λ0) = ∅ ⊆

⋃∞
i=0Ei. (i ≥ 1). By definition W ⊆ E

is also contained in
⋃∞
i=0Ei. Suppose that for γ ∈ Red(Σi1,Λi) there is a

formula (Lα ∧ ¬L¬β1 ∧ · · · ∧ ¬L¬βs → γ) ∈ Σi. By Lemma 4.2 and the
definitions of Red and Λi this means that for Lα, Red(Σi−1

1 ,Λi−1) |= α and for
¬L¬βj , 1 ≤ j ≤ s, Red(Σi−1

1 ,Λi−1) 6|= ¬βj . By Lemma 4.2 Red(Σn1 ,Λn) 6|= ¬βj
and hence ¬βj 6∈ E, and because of the inclusion

⋃∞
i=0Ei ⊆ E shown above

finally ¬βj 6∈
⋃∞
i=0Ei. Because ¬βj 6∈

⋃∞
i=0 for j ∈ {1, . . . , n} and by the

induction hypothesis α ∈
⋃∞
i=0Ei, γ ∈

⋃∞
i=0Ei. �

Under the above translation stratified default theories map to stratified
autoepistemic theories, and the counterparts of the quadratic and linear time
classes of propositional autoepistemic logic in default logic are obtained. Define
SHCdl to be the class of default theories 〈D,W 〉 where W is a set of Horn
clauses, i.e., disjunctions of literals at most one of which is positive, and D a
set of default rules of the form

α : β1, . . . , βn
γ

where α is a disjunction of conjunctions of literals with at most one negative
literal in each conjunct, each βi is a conjunction of disjunctions of literals with
at most one positive literal in each disjunct, and γ is a literal. By noticing
that the translation of Theorem 7.4 is linear time we get by Theorems 5.8 and
7.4 the following result (|Σ| and |φ| denote of the sum of the lengths of the
formulae involved).

Theorem 7.5 For disjunctions of conjunctions of literals φ with at most one
negative literal in each conjunct, the membership in the unique extension of a
default theory T in SHCdl can be decided in O(n2) time, where n = |T |+ |¬φ|.

The class SPCdl is like SHCdl except that the formulae α are conjunctions
of propositional variables, and βj are disjunctions of negated propositional
variables, and W is a set of program clauses, i.e. disjunctions of literals, exactly
one of which is a positive literal. By Theorem 5.15 the following is immediate.

Theorem 7.6 For conjunctions of propositional variables φ the membership
in the unique extensions of default theories T in SPCdl can be decided in O(n)
time, where n = |T |+ |φ|.

Kautz and Selman [KAU 91] and Stillman [STI 90] have analyzed the com-
plexity of syntactically restricted classes of propositional default logic. In these
classes of default theories the underlying classical reasoning is very easy, and
the main result is that the restriction of the classical reasoning is not a suffi-
cient condition for the tractability of default reasoning. As was pointed out in
the beginning of Section 5, the classical reasoning is one of the two sources of
complexity. After making also the second source – finding extensions - easy,



we do reach polynomial time default reasoning. As expected, all intractable
classes of simple default theories of [KAU 91, STI 90] become tractable if a
stratification condition is imposed on them.

Because default rules in these classes are either normal or seminormal, de-
fault theories in these classes do not fulfill our stratification condition given
earlier. Normality and semi-normality (with orderedness), i.e. the occurrence
of the conclusion of a default rule in the justification, guarantee the existence
of extensions. Also stratification is a sufficient condition – although a more
restrictive one – for the existence of extensions. Thus the duplication of the
consequent in the justification is unnecessary and in showing that the stratified
counterparts of the simple default theories of [KAU 91, STI 90] are tractable,
we just omit those parts of the justifications.

To show that in the stratified case all classes analyzed by [KAU 91, STI 90]
are tractable, we show that the most general classes, i.e. the ones based on
disjunction-free default rules and Horn clauses and the ones based on disjunc-
tion-free default rules and 2-literal clauses, are tractable. The size of a default
theory 〈D,W 〉 can be defined as the sum of the sizes of the formulae in W and
in the prerequisites, justifications, and conclusions of the default rules in D.

Theorem 7.7 Let φ be a disjunction of conjunctions of literals with at most
one negative literal in each conjunct (resp. a disjunction of conjunctions of
2 literals). Deciding whether a formula φ belongs to the unique extension of
a stratified disjunction-free default theory 〈D,W 〉 where W is a set of Horn
clauses (resp. 2-literal clauses) is solvable in O(n2) time, where n is the sum
of the sizes of the theory and φ.

Proof: Theories with disjunction-free default rules are translated into autoepis-
temic logic using the translation

trdlsn〈D,W 〉 = {Lα1∧· · ·∧Lαn∧¬L¬β → γ| α1 ∧ · · · ∧ αn : β ∧ γ
γ

∈ D}∪W

and we define that a disjunction-free default theory is stratified if the set of
autoepistemic formulae obtained by the trdlsn translation is stratified. The
translation differs in two respects from the Konolige translation given in The-
orem 7.4. First, the translation ignores the normality part of the justification.
Second, we have replaced L(α1 ∧ · · · ∧ αn) by the equivalent (in autoepistemic
logic) formula Lα1 ∧ · · · ∧ Lαn.

We show that in the computation of the algorithm of Theorem 4.5 all |=L-
consequence tests reduce to satisfiability testing of Horn-clauses when W is
a set of Horn clauses, and to satisfiability testing of 2-literal clauses when
W is a set of 2-literal clauses. Satisfiability testing in these cases is O(n) time
[DOW 84, ASP 79]. The sets Ri (see Theorem 4.5) consist of formulae that are
in W and formulae that are consequences of default rules in D. Formulae in W
are Horn clauses (resp. 2-literal clauses) and the consequences of disjunction-
free default rules are conjunctions of literals γ1 ∧ · · · ∧ γn which are equivalent



to sets of literals {γ1, . . . , γn}. Single literals are a special case of Horn clauses
(resp. 2-literal clauses). Hence, the sets Ri consist of Horn clauses (resp.
2-literal clauses).

In the computation, the |=L-consequence of formulae inside L from a set
Ri is tested. These formulae are single literals α. By definition of |=L, testing
Ri |=L α reduces to Ri |= α, i.e., a classical logical consequence test of a
literal α from a set of formulae Ri of classical propositional logic. This logical
consequence test can be implemented as a satisfiability test of Ri∪{¬α}, which
is a set of Horn clauses (resp. 2-literal clauses).

Hence, by the complexity analysis given in Section 5 the computation of
the full set associated with the disjunction-free default theory 〈D,W 〉 is O(n2)
time, where n is the size of the default theory. The membership of formulae
φ the negations of which are logically equivalent to sets of Horn clauses (resp.
2-literal clauses) in the unique extension can be tested in O(m) time, where m
is the sum of the sizes of 〈D,W 〉 and φ. All this is O(m2) time. �

We conclude that as in stratified autoepistemic logic, also in stratified de-
fault logic the complexity of reasoning is determined by the complexity of the
underlying classical reasoning. The stratified counterparts of the intractable
restricted classes of default theories identified by [KAU 91, STI 90] are all
tractable, and the possibility of further identification of such classes is im-
mediate just like in autoepistemic logic.

7.3. Propositional logic programs

Gelfond and Lifschitz [GEL 88b] present a semantics for general logic pro-
grams called the stable model semantics. This semantics is essentially an au-
toepistemic one. Stratified logic programs translate into autoepistemic theories
through the translation below, and the propositional variables in the unique
stable expansion of the theory are exactly the ones in the unique stable model
of the stratified program.

trlp(P ) = {p1 ∧ · · · ∧ pn ∧ ¬Lq1 ∧ · · · ∧ ¬Lqm → r|
(r ← p1, . . . , pn,not q1, . . . ,not qm) ∈ P}

Stratified programs translate into sets of formulae in SPCae. Hence we
immediately get the following result.

Theorem 7.8 The unique stable model of stratified propositional logic pro-
grams P can be computed in time O(n), where n = |P |.

Proof: By Theorem 3 of [GEL 88b] the unique stable model of P is the set
of propositional variables in the stable expansion of trlp(P ). By our Theorem



5.14 this set can be computed in O(|P |) time. �

This results improves Kautz and Selman’s [KAU 91] O(n3) result which
is based on an algorithm that computes an extension for a restricted class of
ordered default theories and a translation of stratified logic program into this
class of theories. The algorithm is based on an ordering of literals given by the
orderedness condition.

Our linear time result contrasts with the complexity of propositional general
logic programs in the general case. For example, determining whether a propo-
sitional general logic program has a stable model is NP-complete [MAR 91b].

7.4. Truth-maintenance systems

Elkan [ELK 90] shows how sets of justifications of truth-maintenance sys-
tems of Doyle [DOY 79] can be seen as general propositional logic programs
and also as a subclass of propositional autoepistemic theories. The result that if
a set of justifications is stratified then the computation of the unique grounded
model is linear time, is immediate.

Theorem 7.9 The unique grounded model of a stratified set of justifications
Π can be computed in O(n) time, where n = |Π|.

Proof: By Theorem 4.9 of [ELK 90] M is a grounded model of Π iff M is the set
of propositional variables in some stable expansion of the autoepistemic theory
corresponding to Π. In the stratified case there is exactly one stable expansion,
and by Lemma 5.14 the set can be computed in linear time in the size of the
theory, i.e. the set of justifications. �

In the general case the problem of whether a set of justifications has a
grounded model is NP-complete [URB 88].

8. Conclusions

The attempts to find subclasses of nonmonotonic reasoning which can be
implemented efficiently by limiting the computational complexity of the re-
quired classical reasoning have produced very disappointing results [KAU 91,
ELK 90, MAR 91b]. In this paper we follow a different approach. We identify
the ability to “define” propositions using default assumptions about the same
propositions as a significant source of computational complexity in nonmono-
tonic reasoning. The complexity of nonmonotonic reasoning can be reduced by
disallowing such constructs, i.e., requiring the knowledge base to be stratified.
We demonstrate this by developing an iterative (non-backtracking) algorithm
for stratified autoepistemic theories the complexity of which is dominated by



the required classical reasoning. Thus efficient subclasses of stratified non-
monotonic reasoning can be obtained by restricting the form of sentences in
the knowledge base. As an example, we develop a quadratic and a linear time
algorithm for limited subclasses of stratified autoepistemic theories. The results
are shown to imply fast reasoning methods for stratified cases of default logic,
logic programs, truth maintenance systems and nonmonotonic modal logics.
The conclusion is that restriction to stratified knowledge bases gives a signifi-
cant computational advantage and can reduce the computational complexity of
nonmonotonic reasoning dramatically. For example, deciding whether a propo-
sitional logic program has a stable model is an NP-complete problem in the
general case but for the stratified case we give a linear time algorithm which
computes the unique stable model.
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