
Planning Via Petri Net Unfolding

Sarah Hickmott1, Jussi Rintanen2, Sylvie Thiébaux2, Lang White1

National ICT Australia
1School of Electrical & Electronic Engineering, The University of Adelaide, &

2Computer Sciences Laboratory, The Australian National University

Abstract
The factored state representation and concurrency
semantics of Petri nets are closely related to those
of concurrent planning domains, yet planning and
Petri net analysis have developed independently,
with minimal and usually unconvincing attempts at
cross-fertilisation. In this paper, we investigate and
exploit the relationship between the two areas, fo-
cusing on Petri net unfolding, which is an attractive
reachability analysis method as it naturally enables
the recognition and separate resolution of indepen-
dent subproblems. On the one hand, based on un-
folding, we develop a new forward search method
for cost-optimal partial-order planning which can
be exponentially more efficient than state space
search. On the other hand, inspired by well-known
planning heuristics, we investigate the automatic
generation of heuristics to guide unfolding, result-
ing in a more efficient, directed reachability analy-
sis tool for Petri nets.

1 Introduction
Petri nets are traditionally used for modelling and analysing
distributed systems [Murata, 1989]. They provide a compact
description of the state space in much the same way as plan-
ning operators do, but additionally represent independence
(concurrency) and causal relations between actions in a way
that enables the recognition and separate resolution of inde-
pendent subproblems. This confers, e.g., the ability to rea-
son about partially ordered sets of actions without having to
consider their interleavings. This was exploited early on by
Godefroid and Kabanza [1991] to synthesize reactive plans.

Nevertheless, it is fair to say that work since then has failed
to sufficiently develop and utilize the connections between
the two areas. A recent exception is Edelkamp and Jabbar’s
[2006] work on applying planning via heuristic search to de-
tecting deadlocks in Petri nets. The primary goal of our work,
by contrast, is to determine whether techniques developed for
Petri net analysis could be successfully applied to planning.

We focus on Petri net unfolding [McMillan, 1992; Esparza
et al., 2002], an exact reachability analysis technique which is
particularly attractive in that it preserves and exploits much of
the structure inherent in the Petri net. The unfolding process
generates, forward, a simpler type of net called an occurrence

net, which is acyclic and avoids certain conflicts. In Petri net
analysis, where the problem is often to prove the absence of
deadlocks, unfolding amounts to a breadth-first search which
stops when the generated occurrence net represents all mark-
ings reachable in the original net. The size of the unfolded
net is bounded below by and is typically exponentially larger
than the size of the original Petri net, but is bounded above
by and is typically exponentially smaller than the size of the
state space it represents. Hence searching in unfolding space
offers potential gains over state space search.

In Section 2, we provide the necessary background on Petri
nets and unfolding, pointing out the differences with the ap-
proximate reachability analysis performed by the planning
graph [Blum and Furst, 1997]. In Section 3, we give a trans-
lation from planning problems to 1-safe place transition nets,
low level nets to which off-the-shelf unfolding tools apply.

In Section 4, we describe our new planning method. A
rather costly option would be to first build the complete un-
folded net, and then extract from it the partially ordered plans
of interest in time linear in their size. To capitalise on the
approach for planning, we instead embed heuristic search
into the unfolding, resulting in a directed model-checker
[Edelkamp et al., 2001] for Petri nets. We show that mono-
tonic planning heuristics such as hm [Haslum and Geffner,
2000] can be directly computed from the original Petri net,
and guide the unfolding towards minimal cost plans without
loss of completeness.

Finally, in Section 5, we present and analyse experimen-
tal results obtained with benchmark problems from the Inter-
national Planning Competition and with a standard Petri net
benchmark. Proofs are omitted on grounds of space and are
available in the technical report [Hickmott et al., 2006].

2 Petri Nets and Unfolding
2.1 Place-Transition Net
We consider low level Petri nets called place-transition (PT)
nets. A PT-net (see left-hand side of Figure 1) consists of a
net N and its initial marking M0. The net is a directed, bipar-
tite graph. The two types of nodes are places and transitions,
which represent the state variables and the events of the un-
derlying system. Arcs, which capture the dynamics of the
system, are directed from places to transitions and vice versa.
The marking M of a PT-net represents the state of the system
it models. It assigns to each place 0 or more tokens.

Definition 1 A PT-net is a 4-tuple (P, T, F, M0) where P
and T are disjoint finite sets of places and transitions, re-
spectively, F : (P × T) ∪ (T × P) → {0, 1} is a flow re-
lation indicating the presence (1) or absence (0) of arcs, and
M0 : P → IN is the initial marking.

The preset •x of a node x in the net is the set
{y ∈ P ∪ T |F (y, x) = 1}. The postset x• of a node is the
set {y ∈ P ∪ T |F (x, y) = 1}. For simplicity, we assume that
every transition has non-empty preset and postset. A partic-
ular marking M enables a transition t if ∀p ∈ P F (p, t) ≤
M(p). The occurrence, or firing, of transition t absorbs a to-
ken from each of its preset places and produces a token in
each of its postset places, thus moving the net from M to the
new marking M ′(p) = M(p) − F (p, t) + F (t, p) ∀p ∈ P .
This corresponds to a state transition of the modelled system.
A set of transitions T ′ is concurrently enabled at the marking
M if it is possible for all t ∈ T ′ to occur simultaneously, viz.
∀p ∈ P

∑
t∈T ′ F (p, t) ≤ M(p). For instance, in the net of

Figure 1, transitions 1 and 3 are concurrently enabled for the
given marking, as are transitions 2 and 3. Conversely, transi-
tions 1 and 2 are in forward conflict, which means that, whilst
each is individually enabled, only one of them can fire. Firing
transitions 2 and 3 (in any order or concurrently) followed by
transition 5 results in one token each in places f and g. We say
that a PT-net is n-safe if the number of tokens in each place
can never exceed n. In this paper, we consider 1-safe nets.

2.2 Unfolding the Place-Transition Net
Unfolding is a method for reachability analysis which ex-
ploits and preserves concurrency information. In planning
terms, the unfolding approach allows searching for partially
ordered plans without considering unnecessary interactions
between actions. The unfolding of a PT-net produces an oc-
currence net whose nodes are called conditions and events.
These represent particular occurrences of the places and tran-
sitions, respectively, in possible runs of the original net from
the initial marking. The unfolding achieves this by eliminat-
ing cycles and backward conflicts. Two transitions that output
to the same place are in backward conflict; by eliminating this
we know exactly which transitions were fired to obtain a par-
ticular marking. In planning terms, the elimination of back-
ward conflicts achieves the property of post-uniqueness of the
action set [Backstrom and Nebel, 1995], which implies that
we know the exact set of actions that causes a state variable
to have a certain value at some point in the plan.

The unfolding of a PT-net N = (P, T, F, M0) is β =
(ON, ϕ), where ON = (B,E, F ′) is an occurrence net and
ϕ is a homomorphism from ON to N , a mapping from con-
ditions B and events E to places P and transitions T respec-
tively. The occurrence net starts with conditions representing
the places initially marked in the PT-net, that is, ϕ maps the
set B0 of conditions which have an empty preset one-one onto
the set of places p such that M0(p) ≥ 1.

The right-hand side of Figure 1 shows a prefix of the un-
folding of the PT-net example in the left-hand side. Notice the
multiple instances of place g for example, due to the different
paths through which it can be reached. Note also that tran-
sition 0 does not appear in the unfolding, as there exists no

path through the net in which the events in its causal history
are not in conflict.

2.3 Configurations
To understand how the unfolding is built, the most important
notions are that of a configuration and the local configuration
of an event. A configuration represents a possible partial run
of the net. It is any set of events C such that:

1. C is causally closed, that is if any event is in the con-
figuration, then so are all its ancestors in the occurrence
net: ∀e′ ≤ e, e ∈ C ⇒ e′ ∈ C.

2. C contains no forward conflict — this is motivated by
the fact that two events in forward conflict cannot both
occur (in any order or simultaneously) in the same run
of the net: ∀ e1, e2 ∈ C, e1 6= e2 ⇒ •e1 ∩ •e2 = ∅.

For instance, in the finite prefix in Figure 1, {e1, e3, e4, e5}
is a configuration. A configuration C can be associated with
a marking Mark(C) of the original net by identifying which
conditions will contain a token after the events in C are fired
from the initial marking: Mark(C) = ϕ((B0 ∪ C•)\•C),
where C• = {e•|e ∈ C} and •C = {•e|e ∈ C}. That is,
the marking of configuration C identifies the resultant state
of the original Petri net when (only) the events in C oc-
cur. For instance, in Figure 1, the marking of configuration
{e1, e3, e4, e5} is ϕ({c6, c8}) = {g, b}.

The local configuration of an event e, denoted [e], consists
of that event and all of its ancestors. It is the minimal config-
uration containing e. For example, [e5] = {e1, e3, e4, e5}. A
set of conditions can be simultaneously marked if the union of
the local configurations of their presets forms a configuration.
The unfolding process involves identifying which transitions
are enabled by those conditions, currently in the occurrence
net, that can be simultaneously marked. The identified tran-
sitions are referred to as the possible events. A new instance
of each is added to the occurrence net, as are instances of the
places in each of their postsets.

2.4 Finite Complete Prefix of Unfolded net
In most cases, the unfolding β of a Petri-net is infinite. For
this reason, we seek a complete finite prefix β′ of β, one
which contains as much information as β. Formally, the pre-
fix β′ of β is complete if for every reachable marking M ,
there exists a configuration C ∈ β′ such that

1. Mark(C) = M , and
2. for every transition t enabled by M there exists a con-

figuration C ∪ {e} such that e /∈ C and ϕ(e) = t.
The key to obtaining a complete finite prefix is to identify

those events at which we can cease unfolding without loss of
information. Such events are referred to as cut-off events and
are defined in terms of an adequate order on configurations
[McMillan, 1992; Esparza et al., 2002]. In the following,
C ⊕ E denotes a configuration that extends C with the finite
set of events E disjoint from C.
Definition 2 A partial order ≺ on finite configurations is ad-
equate if

1. ≺ is well founded,
2. C1 ⊂ C2 ⇒ C1 ≺ C2, and

b

a

1

2

3

c

d

e 4
f

g

6

7

5

0

b (c1) 3 (e3) e (c5)

a (c2)

2 (e2)

1 (e1)

d (c4)

c (c3) 4 (e4)
g (c6)

f (c7)

5 (e12)

g (c17)

f (c18)

7 (e6) a (c9)

6 (e5) b (c8) 3 (e9) e (c12)

2 (e8)

1 (e7)

d (c11)

c (c10)

4 (e11)

g (c15)

f (c16)

5 (e10)

g (c13)

f (c14)

Figure 1: Example PT-net (left). Finite Prefix of its Unfolding (right). Places=circles, transitions=squares and tokens=dots.

3. ≺ is preserved by finite extensions: if C1 ≺ C2 and
Mark(C1) = Mark(C2), then for all finite extensions
C1⊕E1 and C2⊕E2 such that E1 and E2 are isomorphic,
we have C1 ⊕ E1 ≺ C2 ⊕ E2

Without loss of information, or in other terms, without threat
to completeness, we can cease unfolding from an event e, if e
takes the net to a marking which can be caused by some other
event e′ such that [e′] ≺ [e]. This is because the events (and
thus markings) which proceed from e will also proceed from
e′. Relevant proofs can be found in [Esparza et al., 2002]:

Definition 3 Let ≺ be an adequate partial order. An event e
is a cut-off event with respect to ≺ if the prefix contains some
event e′ such that Mark([e]) = Mark([e′]) and [e′] ≺ [e].

MOLE1 is a freeware program which unfolds 1-safe PT-
nets. It uses an adequate order ≺ on configurations which is
based on comparing their cardinality. This is refined by com-
parisons based on Parikh-vectors and the Foata normal form
to make the order strict and thus minimise the size of the gen-
erated prefix [Esparza et al., 2002]. The prefix on the right-
hand side of Figure 1 is the complete finite prefix that MOLE
generates for our example. The events e10, e11, and e12 are
all cut-off events. This is because each of their local config-
urations, firstly, has the same marking as the local configura-
tion of event e4, ie. {f, g}, and, secondly, is greater than the
local configuration of event e4 with respect to the adequate
partial order implemented by MOLE. Notice that the finite
prefix of the unfolding ceases at cut-off events, even though
resulting conditions could indeed enable other actions.

2.5 Unfolding Algorithm
MOLE builds the complete finite prefix following Algo-
rithm 1. The algorithm maintains a priority queue of possible
events in increasing order of ≺ wrt. their local configuration.
The expensive part of the algorithm is the computation of the
possible events which is exponential in the maximal size of
the presets of the transitions; see [Esparza et al., 2002] for
details. The size of the prefix obtained decreases with the
strength of the ordering and with the amount of concurrency
in the original net. When the ordering is strict, the size of
the unfolding is bounded above by that of the reachable state
space of the net (up to a small factor) and only equals that

1
http://www.fmi.uni-stuttgart.de/szs/tools/mole/

Algorithm 1 The MOLE Unfolding Algorithm
Add the conditions in B0 to the prefix
Initialise the priority queue with the events possible in B0

while the queue is not empty:
remove the first event in the queue
if it is not a cut-off

Add the event and its postset to the prefix
Identify the new possible events and
insert them in the queue

endif
endwhile
Add the postsets of all cut-off events to the prefix

bound if there is no concurrency at all [Esparza et al., 2002].
The presence of concurrency typically leads to prefixes expo-
nentially smaller. This is because the unfolding builds a space
of partially ordered sets of events and avoids the combinato-
rial interleavings of events that can be handled concurrently.

2.6 Unfolding vs Planning Graph

The reader might find it useful to view the unfolding as a
powerful planning graph [Blum and Furst, 1997], where con-
ditions and events play the role of the graph’s proposition
and action nodes, respectively. There are a number of impor-
tant differences, however. Firstly, whilst the planning graph
performs an approximate reachability analysis, the unfolding
computes reachability exactly: a by-product of the Petri net
semantics is that all mutexes (not just binary ones) are prop-
agated and accounted for when determining sets of possible
events. Secondly, the unfolding duplicates nodes as needed
to guarantee post-uniqueness, i.e., that conditions (proposi-
tion nodes) have a unique event (action node) as predecessor.
A consequence of these differences is that plans can be ex-
tracted from the unfolding in time linear in their length, while
plan extraction from the planning graph requires search. Fi-
nally, there is no global notion of level in the unfolding. In-
stead, there is an asynchronous vision of time which confers
on independent subproblems their own local levels. Conse-
quently, the unfolding lends itself more easily to the gener-
ation of partially-ordered plans with optimal cost, while the
graph is better suited to producing step-optimal parallel plans.

3 Translating Planning Problems into PT-Nets
To use an unfolding tool such as MOLE for planning, we need
to turn planning problems into 1-safe place-transition nets,
which these tools accept as an input. In fact, 1-safety rather
helps in representing propositional planning operators. When
reading the truth value of a boolean variable as the presence
or absence of a token, allowing multiple tokens in a place
would be meaningless. At best, it would require non-trivial
book-keeping, since multiple tokens in a place resulting from
repeatedly making a variable true would all need to be re-
moved to make this variable false.

Our translation operates in three steps. In the first step 1-
safety is established by replacing every planning operator by
several 1-safe ones (the concept of 1-safe operator is defined
below). In the second step, we eliminate negative precon-
ditions which are lacking in PT-nets. In the third step, the
resulting problem is finally mapped onto a PT-net. We prove
that our translation is correct. We also characterise the extent
to which the notion of concurrency in the PT-net we obtain
matches the independence-based notion of concurrency com-
monly used in planning.

3.1 Establishing 1-safety
Let A be a set of state variables. The set of literals over
A is L = A ∪ {¬a|a ∈ A}. The complement l of a lit-
eral l ∈ L is defined by a = ¬a and ¬a = a for a ∈ A.
For sets e of literals, we define e = {l|l ∈ e}. A state
s : A → {0, 1} assigns values 0 or 1 to the state vari-
ables. A planning operator over A is a pair 〈p, e〉 such that
p ∪ e ⊆ L. A planning operator 〈p, e〉 has positive precon-
ditions if p ⊆ A. It is 1-safe if e ⊆ p, that is, if all effect
literals appear (negatively) in the preconditions. A planning
problem is a quadruple 〈A, I, O, G〉 where A is a set of state
variables, I : A → {0, 1} is an initial state, O is a set of
planning operators, and G is a set of goal literals.

We map every planning problem to an equivalent one with
the property that every operator has positive preconditions
and is 1-safe. We start by establishing 1-safety. An opera-
tor o = 〈p, e〉 is first replaced by 2|e\p| 1-safe operators as
follows. Let e′ ⊆ e \ p be a set of effect literals. We de-
fine a new operator that works like o when o changes exactly
the literals e′ (in addition to those literals in e ∩ p which o
clearly requires to change). A 1-safe operator that changes
exactly these literals and retains the values of other effects of
o is 〈p ∪ e′ ∪ (e\p)\e′, e′ ∪ e ∩ p〉.

Take e.g. p={a,¬b, c} and e={¬a, b, d,¬e}. The operator
o=〈p, e〉 is replaced with the four 1-safe operators oi =〈pi, ei〉
given below along with the respective values for e′.

p = {a,¬b, c} e = {¬a, b, d,¬e}
p1 = {a,¬b, c, d,¬e} e1 = {¬a, b} e′1 = {}
p2 = {a,¬b, c,¬d,¬e} e2 = {¬a, b, d} e′2 = {d}
p3 = {a,¬b, c, d, e} e3 = {¬a, b,¬e} e′3 = {¬e}
p4 = {a,¬b, c,¬d, e} e4 = {¬a, b, d,¬e} e′4 = {d,¬e}

3.2 Eliminating Negative Preconditions
For a given set A of state variables, we introduce the set Â =
{â|a ∈ A} of new state variables. The idea is that â is true
exactly when a is false.

a d

̂a
̂

d
̂

b

x
′

1 x
′

2

b

Figure 2: The PT-Net translation of operator x =
〈{a,¬b}, {¬a, d}〉 (after transformation into two 1-safe op-
erators with positive preconditions x′1 = 〈{a, b̂, d}, {¬a, â}〉
and x′2 = 〈{a, b̂, d̂}, {¬a â,¬d̂, d}〉).

In the second step of our translation, negative preconditions
¬a are eliminated in the usual way [Gazen and Knoblock,
1997], by replacing them by corresponding positive precon-
ditions â and forcing every state variable â to have the value
opposite to the value of a. An operator 〈p, e〉 over A is re-
placed by 〈p′, e′〉 over A∪Â where p′ = (p∩A)∪{â|¬a ∈ p},
and e′ = e ∪ {¬â|a ∈ e ∩A} ∪ {â|¬a ∈ e}.

For instance, the operator o1 = 〈{a,¬b, c, d,¬e}, {¬a, b}〉
above is replaced with o′1 = 〈{a, b̂, c, d, ê}, {¬a, b, â,¬b̂}〉.

3.3 Correctness
We define S(o) as the set of operators obtained from o by
performing the above two steps. Since a is an effect literal
iff ¬â is an effect literal, and ¬a is an effect literal iff â is an
effect literal, executing every operator in S(o) preserves the
property that for every state s and a ∈ A, s(a) + s(â) = 1.

Instead of executing the operator o, we can always execute
exactly one of the operators in S(o) with the same effects.
This operator depends on the current state and has the prop-
erty that every state variable mentioned in its effects actually
changes when the operator is executed, which is what the def-
inition of 1-safety requires.

The following theorem establishes the correctness of our
translation. The proof is based on the fact that in any operator
sequence any o′ ∈ S(o) can be replaced by o, and o can be
replaced by exactly one operator in S(o).

Theorem 1 Let R = 〈A, I, O, G〉 be any planning problem.
Let R′ = 〈A ∪ Â, I,∪o∈OS(o), G〉. Then for all states s :
A → {0, 1} and s′ : A∪Â → {0, 1} such that s′(a)+s′(â) =
1 and s(a) = s′(a) for all a ∈ A, s is a reachable state of R
if and only if s′ is a reachable state of R′.

3.4 Mapping to PT-Nets
Finally we map the resulting planning problem to a PT-net as
follows. Let R = 〈A, I, O, G〉 be a planning problem. We
define a PT-net pnet(R) = 〈P, T, F, M0〉 such that

• the places are P = A ∪ Â,
• the transitions are T = ∪o∈OS(o)
• the set F of arcs is obtained from t = 〈p, e〉 ∈ T as
{(a, t) | a ∈ p} ∪ {(t, a) | a ∈ e or a ∈ p and ¬a 6∈ e}

• for all a ∈ A, M0(a) = 1 iff I(a) = 1 and M0(â) = 1
iff I(a) = 0, and for all a ∈ A ∪ Â, M0(a) = 0 or
M0(a) = 1.

Figure 2 illustrates this mapping for a single operator.
For every reachable marking M and every place a ∈ P in

the resulting PT-net, M(a) ≤ 1. The proof of the following
theorem is by induction on the length of transition sequences
leading to M .
Theorem 2 Let R be a planning problem. Then the PT-net
pnet(R) is 1-safe.

3.5 Concurrency
We are interested in the notion of concurrent or partially-
ordered plans which allow the simultaneous execution of sev-
eral operators. The question arises if the notion of concur-
rency used in connection with the PT-nets obtained by our
translation coincides with the standard notion of concurrency
in AI planning. It turns out that this is not the case.

The standard notion of concurrency in planning is indepen-
dence: two operators 〈p1, e1〉 and 〈p2, e2〉 are independent iff
pi ∩ ej = ∅ and ei ∩ ej = ∅ for i, j ∈ {1, 2} and i 6= j. This
captures the intuition that they can be executed in any order,
yielding the same result in both cases.

Independence does not in general imply concurrency in
the PT-net sense. For instance, consider the two indepen-
dent planning operators 〈{a}, {b}〉 and 〈{a}, {c}〉. The cor-
responding Petri net transitions both take a token from a and
therefore cannot fire concurrently. This could be remedied by
considering Petri nets with read-arcs, but this complicates the
unfolding process, and is not supported by MOLE.

For PT-nets in general, the converse implication does not
hold either, ie. in some cases, transitions that could not take
place simultaneously in the planning context can be simul-
taneous. For instance, consider two Petri net transitions t
and t′ such that •t = {a}, t• = {b}, •t′ = {c}, and
t′
• = {a}. In markings in which places a and c contain

a token these two transitions can fire in any order and con-
currently. If these transitions are interpreted as planning op-
erators 〈{a}, {¬a, b}〉 and 〈{c}, {¬c, a}〉, no concurrency is
possible because the operators are dependent. However, un-
like in the general case, the concurrency relation arising out
of our translation is strictly stronger than independence:
Theorem 3 Let R = 〈A, I, O, G〉 be a planning problem, let
pnet(R) = 〈P, T, F, M0〉, and let o1 and o2 be operators in
O. If there are transitions t1, t2 ∈ T such that t1 ∈ S(o1),
t2 ∈ S(o2) and t1 and t2 can fire simultaneously, then o1 and
o2 are independent (and can be executed simultaneously).
This can be proven contrapositively, assuming that o1 and o2

are not independent, and showing that together with 1-safety
and the complementary role of places in A and Â, this implies
that to and to′ cannot fire simultaneously.

4 Directing Mole for Planning
Once the problem is translated to a PT-net, it is easy to let
MOLE produce a partially ordered plan for that problem. Al-
gorithm 1 can be slightly altered to stop whenever the event
taken out of the queue is labelled by a designated transition.

MOLE actually already supports this option. Therefore, it suf-
fices to augment the planning operator set with a dummy op-
erator whose precondition is the goal, and to require MOLE to
stop whenever an event labelled with the corresponding tran-
sition is dequeued. The local configuration of this event is a
partially ordered plan for the problem. Further, owing to the
fact that MOLE’s queue orders events by increasing local con-
figuration cardinality, this plan contains the fewest actions.

The cardinality-based ordering relation used by MOLE has
a serious drawback for planning however, as it leads MOLE to
perform a breadth-first search. A natural idea is to change the
ordering to provide better guidance towards the goal, while
generalising from the restricted notion of optimality currently
in place by considering arbitrary additive action costs.

It turns out that given an arbitrary monotonic heuristic, it is
possible to build an adequate order which implements A*, let-
ting the heuristic guide the unfolding towards optimal plans
(adequacy ensures that we are retaining completeness of the
prefix generated). This rejoins the work on directed model-
checking pioneered by Edelkamp et al. [Edelkamp et al.,
2001]. A heuristic h estimates the optimal cost of reaching
the goal from a given state and is such that h(s) = 0 at goal
states. Let cost(o) be the (positive) cost of operator o, and
res(o, s) be the result of applying o in state s; h is mono-
tonic iff h(s) ≤ h(res(o, s)) + cost(o) for all non-goal states
s and operators o applicable in s. These definitions easily
transfer to the PT-net case, by identifying each operator with
the corresponding transition and considering a set of places
as the state in which all and only the variables represented by
those places are true. Monotonic heuristics which, like hm

[Haslum and Geffner, 2000], can be automatically generated
from a planning problem description, are equally easily gen-
erated from PT-nets. We then define the following ordering
on configurations:

Definition 4 (≺h) Let h be a heuristic. For a configuration
C, define g(C) =

∑
e∈C cost(ϕ(e)), and f(C) = g(c) +

h(Mark(C)). Define C ≺h C ′ if and only if f(C) < f(C ′)
or f(C) = f(C ′) and |C| < |C ′|.
Theorem 4 If h is monotonic, the ordering ≺h is adequate.

The proof is a matter of checking the 3 conditions required
for adequacy. Only the 2nd condition is non-trivial to prove,
and makes use of the monotonicity of the heuristic.

When ordering MOLE’s queue with ≺h for some mono-
tonic heuristic h, we obtain a planner that generates partially
ordered plans with the smallest total action cost. In contrast,
most state of the art deterministic planners optimise parallel
plan length. Moreover, we are not aware of any partial-order
planner able to optimise the sum of arbitrary action costs.
Finally, our heuristic search in unfolding space substantially
differs from existing partial-order planning algorithms.

5 Experimental Results
We implemented Petrify, an extended version of our trans-
lation from planning operators to PT-nets. Petrify handles
most of the ADL fragment of PDDL. We modified MOLE
to implement a variety of search strategies and heuristics de-
fined by their respective ordering relations. All these order-

ings are complemented with comparisons based on Parikh-
vectors and the Foata normal form in case of equality [Es-
parza et al., 2002], so as to make the order strict. In our
experiments below we use the A* strategy, i.e., the ≺h order-
ing, with the following heuristics2 [Bonet and Geffner, 2001;
Haslum and Geffner, 2000]:

≺0 : uniform cost, i.e., ≺h with h(s) = 0
≺h1 : the h1 heuristic, i.e., ≺h with h(s) = h1(s,G)
≺h1

+
: the h1

+ heuristic, i.e. ≺h with h(s) = h1
+(s,G)

Unlike h1
+, the 0 and h1 heuristics are monotonic, which

guarantees not only optimality but also, by theorem 4, com-
pleteness. Nonetheless, ≺h1

+
works well in practice.

We call PUP (Planning via Unfolding of Petri nets), the
planner resulting from running our guided version of MOLE
on the Petri net encoding produced by Petrify.

All experiments were conducted on a Pentium M 1.7 GHz
with 1Gb of memory.

5.1 Artificial Benchmarks
Our first experiment illustrates the claim that planning via un-
folding can be exponentially more efficient than planning via
state-space search. Consider an artificially constructed prob-
lem in which the goal is a conjunction of n subgoals. The ith
subgoal is achievable by a sequence Ai of length i. The Ais
are disjoint. Each action ai,j in Ai has a unique precondition
ei,j−1 which it deletes, and one positive effect ei,j , which acts
as precondition of the next action ai,j+1 and so on. Proposi-
tion ei,0 is true in the initial state, ei,i is the ith subgoal, and
the ei,j are all different propositions. The degree c of con-
currency in the problem varies from 1 (sequential) to n (fully
concurrent) by making the ith subgoal, i = c . . . n− 1, a pre-
condition to the execution of the i + 1th sequence (i.e., ei,i is
a precondition of ai+1,1).

The left-hand graph of Figure 3 shows the number of nodes
expanded by forward state space search (sps) and unfolding
(unf), each using the 0 and h1 heuristics, for n = 3 . . . 10 and
c varying from 1 to n in each case. To ensure fairness, we
report the number of nodes expanded to prove optimality (to
prove that there is no solution of cost less than the optimal)
rather than to find the optimal solution. The figure clearly
shows that, as c increases, the performance of state-space
search degrades exponentially, while the number of nodes ex-
panded by the unfolding is constant (it equals n(n + 1)/2,
the number of actions in the plan). The h1 heuristic makes
no significant difference except in the purely sequential case
where it enables both techniques to prove optimality without
search. State space search fails to solve some of the problems
as early as n = 9, while unfolding solves all problems of size
n = 100 (not shown in the figure) in a couple of minutes
each, producing plans over 5000 actions long.

2For a set of literals g and an integer m ≥ 1, hm(s, g) ={
0 if s satisfies g
max{g′⊆g,|g′|=m} hm(s, g′) if |g| > m
min{o=〈p,e〉∈O|g∩e6=∅} cost(o) + hm(s, p) if |g| ≤ m

hm
+ is defined as above but using

∑
instead of max. This heuristic

quickly becomes non-informative for m > 1.

5.2 IPC Benchmarks
Next, we look at the gains we typically obtain with more re-
alistic problems taken from the International Planning Com-
petition. We start by comparing the performance of unfold-
ing vs state-space search and by demonstrating the effect of
the heuristics h1 and h1

+ on the unfolding. In Figure 3, we
present results for the first 21 IPC-4 AIRPORT instances, and
for OPENSTACKS instances Warwick 91-120 which feature
10 products, 10 orders and an increasing ratio r =3 to 5 of
products per order. We use the natural encoding of OPEN-
STACKS which allows several products to be produced in par-
allel. In contrast, the IPC-5 “propositional” version disables
concurrency.

In AIRPORT, the unfolding expands up to 3 orders of mag-
nitude fewer nodes than state-space search for the hardest in-
stances. h1 and h1

+ further reduce this by up to 2 orders of
magnitude, except for the easiest problems where h1

+ under-
performs. In OPENSTACKS, the gap between the unfolding
and state space search is less spectacular, and decreases with
r as the problems get easier. However, the benefits from us-
ing h1

+ are striking: it systematically expands 100±20 nodes
across all problems. This shows that our guided unfolding
is able to exploit the fact that non-optimal OPENSTACKS is
an easy problem, and solve much larger instances than were
previously within the reach of the unfolding technique.

We made similar observations in a range of domains
that allow some degree of concurrency, from ROVERS to
PIPESWORLD. In domains that fully disallow concurrency,
such as PSR, the number of nodes expanded by unfolding
and state space search is always identical for a given heuris-
tic, and so unfolding gives no advantage.

Next, we turn to run times. Generally, the run times we
obtain with the 0 heuristic are comparable, and in a num-
ber of cases better, than those obtained by the IPC-4 and
IPC-5 optimal planners. A fair comparison is delicate be-
cause most of these planners, including the IPC-5 optimal
track winner SATPLAN063, optimise the number of parallel
plan steps. Cost-optimal planning is usually considered more
challenging. Even in the simple case where actions have unit
cost, we might produce plans that contains fewer actions than
step-optimal parallel planners. To the exception of the HSP*
family of planners4, we are not aware of any IPC planner cur-
rently capable of optimising the sum of arbitrary action costs.

The middle and right-hand graphs in Figure 4 give a feel
for the run time of PUP (run with the 0 heuristic), using the
same AIRPORT and OPENSTACKS instances as previously.
For reference, we also present the run times of the state of the
art cost-optimal planner HSP0 (run with the -seq and -bfs
options), and those of the state of the art step-optimal paral-
lel planner SATPLAN06 (run with the default options). Note
that SATPLAN06 is not able to solve any of the OPENSTACK
instances within our 30mn time limit.

5.3 Petri Net Benchmarks
Our final experiment demonstrates the benefits of guiding the
unfolding with planning heuristics, when analysing reacha-

3
http://www.cs.washington.edu/homes/kautz/satplan/

4
http://www.ida.liu.se/˜pahas/hsps/

1e6

1e5

1e4

1e3

100

10

1
109876543

N
U

M
B

E
R

 O
F

E
X

P
A

N
S

IO
N

S

n (c=1...n)

ARTIFICIAL

sps 0
sps h1

unf 0
unf h1

1e5

1e4

1e3

100

10

1
 1 3 5 7 9 11 13 15 17 19 21

competition instance ID

AIRPORT

sps 0
sps h1

unf 0
unf h1

unf h1+

12e4

10e4

8e4

6e4

4e4

2e4

100
119115111107103999591

Warwick instance ID

OPENSTACKS

sps 0
sps h1

unf 0
unf h1

unf h1+

Figure 3: Number of Expansions for ARTIFICIAL (left), AIRPORT (middle), and OPENSTACKS (right).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3002001005010510.10.01

%
 p

ro
bl

em
s

so
lv

ed

time limit (sec)

DARTES

original
guided

1e3

100

10

1

 1 3 5 7 9 11 13 15 17 19 21
IPC-4 instance ID

AIRPORT

hsp0
satplan06

pup

1800

1000

500

100
1

119115111107103999591

R
U

N
 T

IM
E

 (s
ec

)

Warwick instance ID

OPENSTACKS

hsp0
satplan06

pup

Figure 4: Reachability Coverage for DARTES (left). Run Times for AIRPORT (middle) and OPENSTACKS (right).

bility in Petri nets which have no connection to planning. As
before, we are interested in determining whether a given tran-
sition of the Petri net is reachable.

We obtained a set of standard Petri net benchmarks from
the developers of MOLE. Only one of them, DARTES [Cor-
bett, 1996], which models the communication skeleton of a
fairly complex Ada program, turned out to be challenging.
MOLE is unable to decide the reachability of certain DARTES
transitions in reasonable time, whereas for the other bench-
marks in the set, MOLE generates even the complete finite
prefix in a matter of seconds.

Figure 4 (left) compares the performance of the original
version of MOLE to the version guided by the h1

+ heuristic.
For each of the 253 DARTES transitions, we recorded the
time taken by each version to decide reachability; the graph
shows the percentage of problems solved within given com-
putation time limits ranging from 0.01 sec to 300 sec. The
original breadth-first version of MOLE is quickly able to solve
the simplest problems — 50% to 60% of the problems are
solved within 0.1 to 1 sec. For those problems, the overhead
in computing the heuristic outweighs the benefits. However,
if a problem cannot be solved by the original version within 5
secs, the heuristic does help. In total, within our overall 300
sec time limit, the original version solves 185 of the 253 prob-
lems (73%), whereas the guided version solves 232 of them
(92%). Only 4 of the problems that the original version could
solve were unsolved by the guided version. Unsurprisingly,
all the solved problems were positive decisions (the transi-

tions were reachable). For sanity, we checked that depth-first
search didn’t improve on the results obtained with h1

+. As it
turns out, depth-first achieves over 65% coverage extremely
quickly (solving the corresponding problems within 0.1 sec),
but only reaches 76% coverage overall.

6 Conclusion
This paper exploits the relationship between planning and
Petri net analysis to the advantage of both fields. On the one
hand, we have demonstrated that Petri net unfolding, a form
of partial order reduction [Godefroid, 1991], is a promis-
ing technique to recognise independent planning subprob-
lems and treat them separately. On the other hand, we have
shown that planning heuristics are able to effectively direct
unfolding-based reachability analysis. The first product of
our work is an original forward heuristic search algorithm
for minimal-cost partially-ordered planning. The second is
an enhanced reachability analysis tool which might be appli-
cable where existing methods [Esparza and Schröter, 2001]
suffer from having to generate a complete finite prefix.

We are not aware of any work that explores the potential of
current Petri net analysis techniques for planning, in the depth
given here. Meiller and Fabiani [2001] use colored Petri nets
to implement a multi-valued version of the planning graph,
merely obviating the need to explicitly consider certain types
of permanent mutexes. Silva et al. [2000] recast plan ex-
traction from the graph as a Petri net submarking reachability
problem, yet without demonstrating many benefits.

Our work lays the foundation for planning in unfolding
space. There are many possibilities for future work and im-
provement on our current approach. For instance, the reduc-
tion in number of nodes expanded by the h1 heuristic does
not always carry over to runtime, due to the cost of its recom-
putation at every node – this is a problem inherent to forward
search, see [Bonet and Geffner, 2001]. Remedying this is
critical to improving PUP’s run time. Possible ways forward
include switching to heuristics which only need to be com-
puted once, such as pattern databases heuristics [Edelkamp,
2002] or h2 for an inverted dynamics of the domain [Refani-
dis and Vlahavas, 2001]. Alternatively, we could investigate
whether an analogue of regression search would make sense
in the unfolding space.

The translation of planning operators into Petri nets is an-
other area where improvements are likely. We first experi-
mented with a translation linear in the number of proposi-
tions, but quadratic in the number of actions in the domain
as it requires “mutex” places to ensure 1-safety. Unfortu-
nately, we found that in many benchmarks, the number of
mutex places greatly dominates the size of the Petri net. This
motivated the need for the translation we give in the paper,
which is linear when the actions are 1-safe, but is exponential
in the number of operators effects in the worst case. Even
though Petrify experienced only a few problems with the IPC
benchmarks, it would be beneficial to extend it to combine
both translations as appropriate. More ambitious develop-
ments concern more compact translations into high-level nets
making use e.g. of first-order and multi-valued variables.

Finally, we believe that a more exhaustive analysis of the
connections between planning (or search) and Petri net un-
folding will be fruitful. This includes determining the precise
relationship between the size of the unfolding and properties
of the causal graph of the planning problem (such as tree-
width), and identifying weaker properties of heuristics and
orderings that guarantee completeness of the finite prefix.

Acknowledgements
Many thanks to Stefan Schwoon and Patrik Haslum for their
help with MOLE and the experiments, respectively. We
also thank Jonathan Billington, Blai Bonet, Javier Esparza,
Malte Helmert, Rao Kambhampati, Maurice Pagnucco, John
Slaney, David Smith, and the anonymous reviewers for inter-
esting discussions and comments. Thanks to National ICT
Australia (NICTA) and the Australian Defence Science &
Technology Organisation (DSTO) for their support, in par-
ticular via the DPOLP (Dynamic Planning, Optimisation &
Learning) project. NICTA is funded through the Australian
Government’s Backing Australia’s Ability initiative, in part
through the Australian National Research Council.

References
[Backstrom and Nebel, 1995] C. Backstrom and B. Nebel.

Complexity results for SAS+ planning. Computational In-
telligence, 11(4), 1995.

[Blum and Furst, 1997] A. Blum and M. L. Furst. Fast plan-
ning through planning graph analysis. Artificial Intelli-
gence, 90:281–300, 1997.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Plan-
ning as heuristic search. Artificial Intelligence, 129:5–33,
2001.

[Corbett, 1996] J. C. Corbett. Evaluating deadlock detection
methods for concurrent software. IEEE Trans. on Software
Engineering, 22(3), 1996.

[Edelkamp and Jabbar, 2006] S. Edelkamp and S. Jabbar.
Action planning for directed model checking of Petri nets.
Electr. Notes Theoretical Computer Science, 149(2), 2006.

[Edelkamp et al., 2001] S. Edelkamp, A. Lluch-Lafuente,
and S. Leue. Directed explicit model checking with HSF-
SPIN. In SPIN, pages 57–79, 2001.

[Edelkamp, 2002] S. Edelkamp. Symbolic pattern databases
in heuristic search planning. In AIPS, pages 274–283,
2002.

[Esparza and Schröter, 2001] J. Esparza and C. Schröter.
Unfolding based algorithms for the reachability problem.
Fundam. Inform., 47(3-4), 2001.

[Esparza et al., 2002] J. Esparza, S. Römer, and W. Vogler.
An improvement of McMillan’s unfolding algorithm. For-
mal Methods in System Design, 20(3), 2002.

[Gazen and Knoblock, 1997] C. Gazen and C. Knoblock.
Combining the expressivity of UCPOP with the efficiency
of Graphplan. In ECP, 1997.

[Godefroid and Kabanza, 1991] P. Godefroid and F. Ka-
banza. An efficient reactive planner for synthesizing re-
active plans. In AAAI, pages 640–645, 1991.

[Godefroid, 1991] P. Godefroid. Using partial orders to im-
prove automatic verification methods. In CAV, pages 176–
185, 1991.

[Haslum and Geffner, 2000] P. Haslum and H. Geffner. Ad-
missible heuristics for optimal planning. In AIPS, pages
140–149, 2000.

[Hickmott et al., 2006] S. Hickmott, J. Rintanen,
S. Thiébaux, and L. White. Planning via Petri net
unfolding. Technical report, National ICT Australia,
2006.

[McMillan, 1992] K. L. McMillan. Using unfoldings to
avoid the state explosion problem in the verification of
asynchronous circuits. In CAV, pages 164–177, 1992.

[Meiller and Fabiani, 2001] Y. Meiller and P. Fabiani. To-
kenplan: a planner for both satisfaction and optimization
problems. AI Magazine, 22(3), 2001.

[Murata, 1989] T. Murata. Petri nets: properties, analysis
and applications. Proceedings of the IEEE, 77(4), 1989.

[Refanidis and Vlahavas, 2001] I. Refanidis and I. Vlahavas.
The GRT planning system: Backward heuristic construc-
tion in forward state-space planning. Journal of Artificial
Intelligence Resesearch, 15:115–161, 2001.

[Silva et al., 2000] F. Silva, M. A. Castilho, and L. A.
Künzle. Petriplan: A new algorithm for plan generation
(preliminary report). In IBERAMIA-SBIA, pages 86–95,
2000.

