
Diagnosis of Discrete-Event Systems Using Satisfiability Algorithms

Alban Grastien
NICTA &

Australian National University
Canberra, Australia

Anbulagan
NICTA &

Australian National University
Canberra, Australia

Jussi Rintanen
NICTA &

Australian National University
Canberra, Australia

Elena Kelareva
University of Melbourne

Melbourne, Australia

Abstract

The diagnosis of a discrete-event system is the problem of
computing possible behaviors of the system given observa-
tions of the actual behavior, and testing whether the behaviors
are normal or faulty. We show how the diagnosis problems
can be translated into the propositional satisfiability problem
(SAT) and solved by algorithms for SAT. Our experiments
demonstrate that current SAT algorithms can solve much big-
ger diagnosis problems than traditional diagnosis algorithms
can.

Introduction
Diagnosing a discrete-event system is determining if the be-
havior of the system is normal given observations about the
behavior. This reduces to the question of whether some of
the possible behaviors consistent with the observations are
normal or faulty. The main difficulty in this task is that the
behavior of the system is only partially observable.

Two types of approaches for solving this problem have
been presented. In the first approach the system model is
compiled off-line to an automaton, the diagnoser (Sampath
et al. 1995), which can be used on-line for efficiently detect-
ing whether an observation sequence corresponds to normal
or faulty behaviors. However, the size of the diagnoser can
be doubly exponential in the size of the system description
in the worst case (Rintanen 2007), which can make the di-
agnoser practically impossible to generate. The second ap-
proach is based on the computation of all behaviors and on
checking whether these behaviors are correct (Lamperti &
Zanella 2003; Cordier & Grastien 2007). Computing all
behaviors can be extremely expensive.

The diagnosis task is reducible to finding paths in a graph
that represents the possible executions of the system. Simi-
lar path finding problems, most notably AI planning (Kautz
& Selman 1996) and model-checking (Biereet al. 1999),
have been very successfully reduced to the propositional
satisfiability problem (SAT). Rintanen and Grastien (2007)
have shown how the non-diagnosability of a system can be
proved with this approach. Instead, in this paper we con-
sider the diagnosis problem of discrete-event systems and
show how it can be reduced to SAT and then efficiently

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

W O F

WW R FF

reboot?
reboot!

IReboot

IAmBack

rebooting

IAmBack

IReboot

reboot?

reboot? reboot?

Figure 1: The behavior of one component

solved by SAT solvers. Diagnosis of static systems has
earlier been viewed as a logical satisfiability (consistency)
problem and specifically as a SAT problem (Reiter 1987;
Veneris 2003). Williams and Nayak (1996) proposed the use
of propositional logic to determine the state of the system.

The structure of the paper is as follows. First we propose
a simple system that is for earlier approaches to diagnosis
too difficult because of the very high number of trajectories
and sets of possible current states. Then we present a for-
malization of the discrete event-system diagnosis problem
and its translation into SAT. In the experiments’ section we
present data about the computational properties of current
SAT solvers in solving the diagnosis problem and compare
the proposed method with existing diagnosis approaches.

Example
We consider a system of 20 identical components in a5 × 4
grid such that each component is connected to its 4 neigh-
bors. Corner and border components are neighbors to cor-
ner and border elements in the opposite sides. For example,
the component in position(0, 2) is connected to components
in positions(0, 1), (0, 3), (1, 2) and (4, 2). The behavior
of each component is represented by the automaton in Fig-
ure 1. All the components are initially in the stateO. When
a failure occurs in a component, its state changes toF and
the component sends the messagereboot! to its neighbors
which receive the messagereboot?, leading to stateW , FF
orR depending on their current state.

The goal is to monitor this system. The events IReboot
and IAmBack correspond to a component sending an alarm.

Given these observations, the monitoring system must deter-
mine what happened in the system. Sampath et al. (1995)
have proposed a method for solving this kind of problems.
The method consists of compiling the system description to
a finite state machine called a diagnoser which efficiently
maps a sequence of observations to abstract representations
of sets of possible current states. The main problem with
this approach is that the size of the diagnoser can be expo-
nential in the number of states, and for this reason it cannot
be computed for many systems with more than a couple of
hundred or thousands of states.

The method of Lamperti and Zanella (2003) involves
computing all the behaviors of the system description that
are consistent with the observations. However, for this ex-
ample the number of such behaviors is astronomically large.
We propose to solve the diagnosis problem by translating
it into a SAT problem and then using state-of-the-art SAT
solvers.

Definitions
We consider discrete-event systems, i.e. systems whose
states can be represented by the assignment of a finite set
of variables in finite domains. In this paper we restrict to
two-valued (Boolean) state variables but in general variables
may have any number of different values. Hence a state
s : A → {0, 1} is a total function from the state vari-
ables to the constants1 (true) and 0 (false). A literal is
a state variable or its negation, and the set of all literals is
L = A ∪ {¬a | a ∈ A}. The languageL overA consists
of all formulae that can be formed fromA and the connec-
tives∨ and¬. We use the standard definitions of further
connectivesφ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ), φ → ψ ≡ ¬φ ∨ ψ and
φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ).

Definition 1. The model of the systemis a tuple SD=
〈A,Σu,Σo, δ, s0〉 whereA is a finite set ofstate variables,
Σu is a finite set ofunobservable events, Σo is a finite set
of observable events, δ ⊆ Σo ∪ Σu → 2L×2L

assigns each
event a set of pairs〈φ, c〉, ands0 is theinitial state.

An event instanceof the evente is a pair〈φ, c〉 ∈ δ(e)
which indicates that the evente can be associated with
changesc in states that satisfy the conditionφ. More for-
mally, an evente ∈ Σo ∪ Σu is possible in any states such
thats |= φ for some〈φ, c〉 ∈ δ(e). Whene takes place ins,
one of the pairs〈φ, c〉 ∈ δ(e) satisfyings |= φ is chosen and
the consequences of the event is that the literals inc become
true.

Let s be a state andc ⊂ L a consistent set of literals (i.e.
{a,¬a} * c for all a ∈ A). Then define the successor state
s′ = succ(s, c) of s by

• s′(a) = 1 for all a ∈ A such thata ∈ c,

• s′(a) = 0 for all a ∈ A such that¬a ∈ c, and

• s′(a) = s(a) for all a ∈ A that do not occur in c
({a,¬a} ∩ c = ∅).

The transition system is initially in the states0, and an
event sequencee0, . . . , en−1 takes the system through a se-
quences0, s1, . . . , sn of states such that∀i ∈ {0, . . . , n −

1}, ∃〈φ, c〉 ∈ δ(ei) : si |= φ ∧ si+1 = succ(si, c). Note
that a statesi and an eventei do not necessarily determine
the successor statesi+1 uniquely. The sequence of states
and events is called atrajectory.

This system description is very similar to the one used
in planning. An important factor of efficient SAT-based
planning (Kautz & Selman 1996) is the notion of parallel
or partially ordered plans which allows several independent
(non-interfering) actions to be taken simultaneously. This
approach has the advantage of making unnecessary to con-
sider alln! total orderings ofn independent events because
their mutual ordering does not matter. The pairs〈φ1, c1〉
and 〈φ2, c2〉 interfere if there is a ∈ A that occurs posi-
tively/negatively inc1 and negatively/positively inφ2 or in
c2, or positively/negatively inc2 and negatively/positively
in φ1. Eventse1, . . . , en can take place simultaneously with
o1 ∈ δ(e1), . . . , on ∈ δ(en) if o ando′ do not interfere for
any{o, o′} ⊆ {o1, . . . , on} such thato 6= o′.

We consider sequencesO0, . . . , On−1 of (possibly
empty) setsOi of event occurrences, corresponding to the
setsEi of events, such that all members ofOi are mutually
non-interfering. We define the successor states′ of s with
respect to a setO of non-interfering event occurrences by

s′ = succ(s,
⋃

〈φ,c〉∈O

c).

Observations
The event sequences in the system are partially observable.
The observable events in a system can be observed, but
there may be unobservable events between observed events.
There may also be uncertainty concerning the observations.
For example, the ordering in which observations are made
does not have to correspond to the order of the events that
caused the observations (Lamperti & Zanella 2003). We
formalize this form of observation uncertainty as a function
OBSthat maps a sequence of sets of eventsE to {true, false}
such thatOBS(E) is true iff E is consistent with the observa-
tions.

Diagnosis
Thediagnosis labelof a trajectory is eithernormalor faulty.
Generally, a sequence of sets of events is called faulty if
it contains an event from a predefined set of faulty events
Σf ⊆ Σu. Two trajectories aref-equivalentif they have the
same diagnosis label.

Given a set of observations, the correctness of the behav-
ior cannot be determined with certainty, especially if the sys-
tem is notdiagnosable(Sampathet al. 1995; Rintanen &
Grastien 2007). Moreover, there is often a delay between
a fault and the observations that enable this fault to be di-
agnosed. Because of this uncertainty, observed behavior is
considered correct if there is at least one normal behavior
consistent with it.

Definition 2. Let SD be the model of the system, and let
OBS be the observations on the system. The behavior
of the system isnormal if there exists a sequenceE =
E0, . . . , En−1 of sets of events onSD consistent withOBS
such thatE is normal.

Diagnosis by SAT
Diagnosing a system requires finding out whether there ex-
ists a normal path in the model of the system that is consis-
tent with the observations. This test can be formulated as a
SAT problem, similarly to other path finding problems such
as AI planning (Kautz & Selman 1996).

We construct a formula such that its satisfiable valua-
tions correspond to sequences(s0, . . . , sn) of states and se-
quences(E0, . . . , En−1) of sets of events consistent with the
observations. The problem of determining the lengthn of
the sequences is discussed later in detail. The propositional
variables, with superscriptt corresponding to time stept, are

• at for all a ∈ A andt ∈ {0, . . . , n},

• et for all e ∈ Σu ∪ Σo andt ∈ {0, . . . , n− 1}, and

• et
o for all e ∈ Σu ∪Σo, o ∈ δ(e), andt ∈ {0, . . . , n− 1}.

Modeling the System
We define the formulaΦSD that represents the systemSD=
〈A,Σu,Σo, δ, s0〉. The formulaT (t, t + 1) for a givent
models the transition from time stept to time stept + 1.
When an event occurs, the event must be possible in the cur-
rent state (1) and it has some consequences (2). The value
of a state variable changes fromtrue to falseonly if there
is a reason for the change (frame axiom, 3). For the change
from falseto true the formulae are defined analogously. An
event can occur in only one way, and two events cannot be
simultaneous if they interfere (4). The occurrence of events
is represented by formula (5).

et
o → φt for everyo = 〈φ, c〉 ∈ δ(e) (1)

et
o →

∧

l∈c

lt+1 for everyo = 〈φ, c〉 ∈ δ(e) (2)

(at ∧ ¬at+1) → (et
1o1

∨ . . . et
kok

) (3)

for all a ∈ A whereo1 = 〈φ1, c1〉, . . . , ok = 〈φk, ck〉 are
all event occurrences with¬a ∈ ci ande1, . . . , ek are the
respective events withoi ∈ δ(ei).

¬(et
o ∧ e

t
o′) for all e ∈ Σo ∪ Σu and{o, o′} ⊆ δ(e)

such thato 6= o′

¬(et
o ∧ e

′t
o′) for all {e, e′} ⊆ Σo ∪ Σu ando ∈ δ(e)

ando′ ∈ δ(e′) such thato ando′ interfere.

(4)

(
∨

o∈δ(e)

et
o) ↔ et for all e ∈ Σu ∪ Σo (5)

The conjunction of all the above formulae for a givent is
denoted byT (t, t+ 1). A formula for the initial states0 is:

I0 =
∧

a∈A,s0(a)=1

a ∧
∧

a∈A,s0(a)=0

¬a. (6)

A formula that represents all possible behaviors overn + 1
time steps is

ΦSD = T (0, 1) ∧ · · · ∧ T (n− 1, n) ∧ I0. (7)

Modeling the Observations
We use formulaeΦOBS for representing sequences of sets of
eventsE such thatOBS(E).

In our experiments we consider three types of observation
uncertainty. In the simplest case, each observation has a time
tag and hence there is no uncertainty about the time point in
which the corresponding event takes place. This is timed
observations. In the more difficult cases the observations
are totally ordered but the time points of the corresponding
events are not known, or the observations are only partially
ordered.

We only describe the representation of the simplest form
of observations in detail. If the observations are reliableand
the time of occurrence of all observable events is known, the
observations can be represented as a setO of timed events
and the corresponding formula is simply

∧

〈e,t〉∈O

et ∧
∧

〈e,t〉/∈O

¬ et. (8)

An important issue is determining the number of time
stepsn. In some cases, the number of time steps can be
known, for example for timed observations. More generally,
we would have to consider the sequences of sets of events
of all lengths. However, Theorem 1 shows that we can re-
strict to the trajectories for somen because any trajectory of
lengthk 6= n has an f-equivalent trajectory of lengthn.

Theorem 1. The diagnosis is correct when only consider-
ing the sequences of sets of events of lengthn if ∀k ∈ N,
∀Ek = E0, . . . , Ek−1 such that OBS(Ek) is true, there exists
a sequence of sets of eventsEn = E0, . . . , En−1 which is
f-equivalent toEk and OBS(En) is true.

Let E = E0, . . . , Ek−1 be a sequence of sets of events of
lengthk in the system. Another sequence of sets of events of
lengthk+1 in the system isE0, . . . , Ei−1, ∅, Ei, . . . , Ek−1.
The latter is f-equivalent to the former. This means that if
there exists a normal/faulty trajectory of lengthk, there also
exists a normal/faulty trajectory of lengthk + 1. Thus it is
sufficient to use an upper bound as the number of events. For
instance, if the maximum number of unobservable events be-
tween two observations isx and the number of observations
isp, then an upper bound of the number of events is(x+1)p.

Such an upper bound may be too large but in some
cases the valuex can be tightened. For instance, non-
interfering unobservable events occurring between two ob-
servable events can be considered to have been occurred si-
multaneously, lowering the value ofx.

Modeling the Diagnosis Query
The basic query that can be answered by a call to a SAT
solver is whether behaviors satisfying a given property ex-
ist. Typically such a query would be about thefault leveli
of possible behaviors: is the observed behavior compatible
with at mosti faults occurring. For example, one would be
interested in knowing whether the observations are compat-
ible with fault-free behavior, corresponding to fault level 0.

So a basic question in SAT-based diagnosis is to identify
diagnoses with a given fault leveli. Such diagnoses cor-
respond to satisfying assignments ofΦSD ∧ ΦOBS in which

exactlyi (or at mosti) propositional variables representing
a failure event are true.

Bailleux and Boufkhad have shown how to encode this
kind of cardinality constraints efficiently as a propositional
formula (Bailleux & Boufkhad 2003). We denote the for-
mula with a cardinality constrainti corresponding to fault
level i asΦFLi

. Cardinality of diagnoses has been con-
sidered by logic-based methods earlier in the OBDD setting
(Torta & Torasso 2004).

Finding a Diagnosis
DefineΦ∆i

= ΦSD ∧ ΦOBS∧ ΦFLi
. This formula is satis-

fiable if there exists a sequence of sets of events with fault
leveli consistent with the observations. For instance, ifΦ∆0

is satisfiable, the system behavior is normal. To diagnose the
system, the satisfiability ofΦ∆i

is tested for increasing val-
ues ofi starting fromi = 0. Since we are interested in the
diagnosis of minimal level, the algorithm is stopped when
Φ∆i

is satisfiable.
Let i be the smallest value such thatΦ∆i

is satisfiable.
One event sequence of fault leveli can be extracted from the
satisfying assignment the SAT solver has found. Since this
may not be the only behavior of fault leveli that explains the
observations, further behaviors can be obtained by calling
the SAT solver with an extended formula which excludes
the behaviors already found. Note that this is equivalent to
the problem of finding all the satisfying assignments of the
formulaΦ∆i

.

Empirical Evaluation
We consider the system presented at the beginning of the
paper. We solved 360 diagnosis problems with the follow-
ing parameters: length of the problem, difficulty level of
the problem, observability, and whether there is a solution.
The lengthof the problem varies fromm = 1 to m = 20
faults: the number of faults determines the number of ob-
servations which is about8m. The difficulty level, easy,
mediumor hard, is a parameter used to generate the sce-
nario and indicates whether the scenario can be easily re-
constructed from the observations. The observability ranges
from timed observations(the time step when the observable
event occurred is known) andtotally ordered observations
(the order of emission between observable events is known)
to partially ordered observations. Here theith observation
is known to have been emitted before thei′th observation iff
i < i′ − 5. For the non-timed observations in this system,
an upper bound on the number of unobservable events be-
tween two observable events isx = 1. The SAT problem is
either satisfiable ifk = m faults occurred, or unsatisfiable if
m > k faults occurred. Here we usek = m− 1.

The smallest problem instance contains 7860 variables,
32560 clauses, and 71840 literals while the largest problem
instance contains 366284 variables, 1770145 clauses, and
4124906 literals.

The SAT Solvers
We exploit the power of the state-of-the-art SAT algorithms,
based on either systematic search or stochastic local search

(SLS), for solving the diagnosis problems. The best sys-
tematic solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) procedure (Davis, Logemann, & Love-
land 1962). We ran the following solvers in our study1:

• March dl: lookahead (LA) enhanced DPLL solver which
is one of the best solvers for solving crafted and industrial
SAT problems;

• M INI SAT v1.14, Siege v42 and zChaff v151104: conflict-
driven clause learning (CDCL) enhanced DPLL solvers
which are the best for solving industrial problems. These
three solvers have different performance on some problem
domains depending on the decision heuristic and other
simplification techniques.

• R+AdaptNovelty+: resolution-enhanced random walk
based SLS solver which is the best contemporary solver
in the WalkSAT family;

• R+RSAPS: resolution-enhanced clause weighting based
SLS solver which is one of the best SLS solvers for deal-
ing with structured problems;

Results

The experiments were conducted on a cluster of 16 AMD
Athlon 64 processors running at 2 GHz with 2 GB of RAM.

Figure 2 presents the performance on selected diagnosis
problems for various solvers. We do not present the results
of R+AdaptNovelty+ as the SLS solver cannot solve any
satisfiable problem instance in 20 minutes.

Figures 2a-2c present the results of one SLS, one LA, and
one CDCL SAT solvers for the different classes of satisfi-
able problems, sorted by runtime (to make the curves grow
monotonically.) As expected, the runtimes increase with
the complexity of the diagnosis problem and the uncertainty
about the observations. The runtimes for timed observations
and totally ordered observations are similar. The main draw-
back of totally and partially ordered observations in compar-
ison to the timed case is that the upper bounds for the num-
ber of time steps are less tight. Most of the problems were
solved by Siege in less than 10 minutes, outperforming the
SLS and LA based solvers.

Figure 2d presents the runtimes for the unsatisfiable prob-
lems when the observations are totally ordered (other unsat-
isfiable problems show the same tendency). As expected for
unsatisfiable problems, the runtimes are much higher. For
hard problems, Siege is able to prove that the number of
faults is notm − 1 only for m ≤ 11. We believe that the
difficulty comes from the high value ofm and not from the
number of observations. Thus, we don’t consider this a se-
rious limitation as the number of faults in typical diagnosis
problems is usually much smaller than11.

Figures 2e and 2f show that the runtimes generally in-
crease when the number of observations increases but the
curves are not very smooth because of the high variation

1All SAT solvers used in our empirical study can be down-
loaded from www.satcompetition.org website.

2www.cs.sfu.ca/∼cl/software/siege/

1 20 1 20 1 20
10

−2

10
−1

10
0

10
1

10
2

10
3

easy medium hard

ru
nt

im
e

in
 s

ec
on

ds

r+rsaps
march_dl
siege

1 20 1 20 1 20
10

−2

10
−1

10
0

10
1

10
2

10
3

easy medium hard

ru
nt

im
e

in
 s

ec
on

ds

r+rsaps
march_dl
siege

1 20 1 20 1 20
10

−2

10
−1

10
0

10
1

10
2

10
3

easy medium hard

ru
nt

im
e

in
 s

ec
on

ds

r+rsaps
march_dl
siege

a. Sorted timed problem (SAT) b. Sorted total problem (SAT) c. Sorted partial problem (SAT)

1 20 1 20 1 20

10
−2

10
−1

10
0

10
1

10
2

10
3

easy medium hard

ru
nt

im
e

in
 s

ec
on

ds

march_dl
zChaff
MiniSat114
siege

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

10
3

medium

ru
nt

im
e

in
 s

ec
on

ds

r+rsaps
march_dl
zChaff
MiniSat114
siege

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

10
1

10
2

10
3

medium

ru
nt

im
e

in
 s

ec
on

ds

r+rsaps
march_dl
zChaff
MiniSat114
siege

d. Sorted total problem (UNSAT) e. Unsorted total problem (SAT) f. Unsorted partial problem (SAT)

Figure 2: SAT solvers’ performance on selected diagnosis problems

of SAT algorithm runtimes, especially for satisfiable formu-
lae (Gomeset al. 2000). Here we focus on the totally or-
dered and the partially ordered observations for problems
with medium difficulty level.

An important observation from the results is that there is
no one SAT solver that is the best for all problems. Siege
performs well for most of the problems but MINI SAT and
zChaff sometimes outperform it, especially when the num-
ber of partially ordered observations is small. Thus, an in-
teresting open question is to determine diagnosis-specific
heuristics.

Finally, the SAT solvers scale up quite well for problems
with totally ordered observations while problems partially
ordered observations become difficult much earlier.

Table 1 shows the numbers of problem instances solved
by the SAT solvers. The columns Tmed and Tmean con-
tain the median and mean runtimes respectively, while #Sol
contains the numbers of instances solved by a given SAT
solver when it is allowed to use 1200 seconds per instance.
For R+RSAPS and unsatisfiable problems no data is given
as the solver cannot determine the unsatisfiability.

CDCL solvers can solve most of the problems: Siege
solves 71 per cent of the problems, MINI SAT 64 and zChaff
60, while the other solvers do not perform as well. More-
over, when the observations are timed or totally ordered,
Siege finds diagnosis in less than 30 seconds, zChaff sim-
ilarly performs quite well, but MINI SAT less so.

SAT Algorithm vs. Diagnosis Algorithms
Diagnosis with diagnosers (Sampathet al. 1995) can be very
efficient because processing an observation sequence can be

done in linear time in the length of the sequence. This is in
contrast to the SAT approach in which runtimes in the worst
case may grow exponentially in the length of the observa-
tion sequence. However, in this approach the off-line phase
preceding diagnosis, the construction of the diagnoser, may
be extremely expensive because the diagnoser may have a
size that is exponential in the number of states in the system.
In the SAT approach there is no similar direct dependency
between the runtimes and the number of states in the sys-
tem. These two approaches represent a different trade-off
between on-line and off-line computation and between de-
pendency of the number of states and the length of event
sequences.

The other traditional approach computes the set of all tra-
jectories and determines whether these trajectories are nor-
mal. A disadvantage of this approach is that the number
of trajectories is often extremely high and it is not practi-
cal to compute all of them. Obviously, for diagnosing one
given observation sequence most of the possible trajectories
are not needed (and this is taken advantage of in the SAT
approach) but, once the set of all trajectories has been com-
puted, it can be used several times for different diagnosis
queries. Recent works on this approach (Cordier & Grastien
2007) use decentralized or factored representations to repre-
sent the set of all trajectories more compactly without enu-
merating all of them.

Conclusion and Future Work
We have presented a translation of the diagnosis of discrete-
event systems into the SAT problem and then solved it by
using SAT algorithms. Empirical results show that SAT al-

Problem R+RSAPS March dl MINISAT Siege zChaff

#Sol Tmed Tmean #Sol Tmed Tmean #Sol Tmed Tmean #Sol Tmed Tmean #Sol Tmed Tmean

timed-easy-*-s 4 1200 973.68 19 8.93 70.85 20 0.37 0.44 20 0.32 0.47 20 1.16 1.18

timed-medium-*-s 5 1200 945.60 11 70.35 555.83 20 2.88 6.82 20 2.35 4.14 20 3.39 8.38

timed-hard-*-s 3 1200 1021.96 12 332.29 567.48 16 23.28 256.94 20 5.37 23.35 20 20.17 43.01

timed-easy-*-u – – – 15 7.11 305.20 16 3.65 242.97 17 3.67 198.35 15 14.64 309.93

timed-medium-*-u – – – 8 1200 735.09 13 130.15 462.98 13 79.26 443.75 8 1200 721.77

timed-hard-*-u – – – 4 1200 960.45 11 167.64 566.95 11 150.55 564.77 9 1200 727.74

total-easy-*-s 3 1200 1027.28 17 28.02 199.32 20 0.70 0.75 20 0.58 0.71 20 1.67 1.68

total-medium-*-s 3 1200 1026.15 8 1200 741.79 19 6.22 92.66 20 2.99 12.70 20 14.95 27.28

total-hard-*-s 3 1200 1026.47 7 1200 815.01 14 134.10 413.47 20 10.42 42.59 20 27.84 53.19

total-easy-*-u – – – 13 28.74 439.41 14 5.93 364.78 16 3.18 292.77 13 26.74 446.08

total-medium-*-u – – – 7 1200 796.83 11 157.21 562.30 11 115.18 555.89 8 1200 731.13

total-hard-*-u – – – 6 1200 854.84 11 574.88 613.82 11 293.93 586.18 7 1200 800.26

partial-easy-*-s 3 1200 1021.97 6 1200 907.68 20 4.35 7.43 20 9.59 10.29 20 53.45 70.82

partial-medium-*-s 3 1200 1035.92 1 1200 1140.02 10 933.31 669.98 15 232.96 430.59 6 1200 893.23

partial-hard-*-s 3 1200 1053.20 1 1200 1140.03 6 1200 842.21 10 848.89 692.46 4 1200 971.05

partial-easy-*-u – – – 2 1200 1080.03 4 1200 973.01 4 1200 968.90 3 1200 1020.84

partial-medium-*-u – – – 2 1200 1080.03 4 1200 994.38 4 1200 973.41 3 1200 1021.36

partial-hard-*-u – – – 2 1200 1080.04 3 1200 1020.74 4 1200 987.59 3 1200 1021.15

Total #Sol 30/180 141/360 232/360 256/360 219/360

Table 1: Solvers performance on diagnosis problems.

gorithms outperform the current diagnosis algorithms. We
hope that the SAT algorithms can inspire the diagnostic com-
munity in developing more efficient algorithms.

From the point of view of SAT algorithms, our results
show that algorithms based on clause learning generally
outperform algorithms based on lookahead or on stochastic
search. An interesting question is that of incremental com-
putation: given new observations, how to efficiently reuse
the previous diagnosis in finding a diagnosis for the new
closely related problem.

Acknowledgements
This research was supported by NICTA in the framework
of the SuperCom and the G12 projects. NICTA is funded
through the Australian Government’sBacking Australia’s
Ability initiative, in part through the Australian National Re-
search Council.

References
Bailleux, O., and Boufkhad, Y. 2003. Efficient CNF encoding
of Boolean cardinality constraints. InNinth International Con-
ference on Principles and Practice of Constraint Programming
(CP’03), 108–122. Springer-Verlag.

Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999. Sym-
bolic model checking without BDDs. In Cleaveland, W. R.,
ed.,Fifth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS-99), 193–207.
Springer-Verlag.

Cordier, M.-O., and Grastien, A. 2007. Exploiting indepen-
dence in a decentralised and incremental approach of diagnosis.
In Veloso, M., ed.,Twentieth International Joint Conference on
Artificial Intelligence (IJCAI-07), 292–297. AAAI press.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A machine
program for theorem proving.Communication of ACM5:394–
397.

Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H. 2000. Heavy-
tailed phenomena in satisfiability and constraint satisfaction prob-
lems.Journal of Automated Reasoning24(1–2):67–100.

Kautz, H., and Selman, B. 1996. Pushing the envelope: plan-
ning, propositional logic, and stochastic search. InThirteenth
National Conference on Artificial Intelligence and the Eighth In-
novative Applications of Artificial Intelligence Conference, 1194–
1201. AAAI Press.

Lamperti, G., and Zanella, M. 2003.Diagnosis of Active Systems.
Kluwer Academic Publishers.

Reiter, R. 1987. A theory of diagnosis from first principles.Arti-
ficial Intelligence32:57–95.

Rintanen, J., and Grastien, A. 2007. Diagnosability testing with
satisfiability algorithms. In Veloso, M., ed.,Twentieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-07),
532–537. AAAI Press.

Rintanen, J. 2007. Diagnosers and diagnosability of succinct
transition systems. In Veloso, M., ed.,Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-07), 538–544.
AAAI Press.

Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.;
and Teneketzis, D. 1995. Diagnosability of discrete-eventsys-
tems.IEEE Transactions on Automatic Control40(9):1555–1575.

Torta, G., and Torasso, P. 2004. The role of OBDDs in con-
trolling the complexity of model based diagnosis. InFifteenth
international workshop on principles of diagnosis (DX’04).

Veneris, A. 2003. Fault diagnosis and logic debugging using
Boolean satisfiability. InFourth International Workshop on Mi-
croprocessor Test and Verification: Common Challenges and So-
lutions, 60–65.

Williams, B., and Nayak, P. 1996. A model-based approach to
reactive self-configuring systems. In Minker, J., ed.,Thirteenth
National Conference on Artificial Intelligence (AAAI-96), 971–
978. AAAI Press.

