
Generalized 3-Valued Belief States in Conformant

Planning

Saurabh Fadnis[0000−0001−9307−281X] and Jussi Rintanen[0000−0001−5983−0074]

Aalto University, Department of Computer Science

Abstract. The high complexity of planning with partial observability
has motivated to �nd compact representations of belief state (sets of
states) that reduce their size exponentially, including the 3-valued literal-
based approximations by Baral et al. and tag-based approximations by
Palacios and Ge�ner.
We present a generalization of 3-valued literal-based approximations, and
an algorithm that analyzes a succinctly represented planning problem to
derive a set of formulas the truth of which accurately represents any
reachable belief state. This set is not limited to literals and can contain
arbitrary formulas. We demonstrate that a factored representation of
belief states based on this analysis enables fully automated reduction of
conformant planning problems to classical planning, bypassing some of
the limitations of earlier approaches.

1 Introduction

In comparison to classical planning, which has a single known initial state and
deterministic actions and thus a completely predictable and observable future,
more general forms of planning with multiple initial states and incomplete ob-
servability require considering sets of possible current states, leading to the no-
tion of belief states. In this setting, the knowledge state of an agent is initially
incomplete, consisting of multiple states (and not just one), and each action
maps the current belief state to a new one, consisting of the new possible cur-
rent states. This is the reason why limited observability increases the complexity
by an exponential in comparison to the fully observable case.

Earlier works have used propositional logic and related NP-complete lan-
guages for compact belief space representations in planning under partial ob-
servability [2, 19] and full observability [7]. The representations of state sets in
these works use sets of literals, that is propositional variables and negated propo-
sitional variables, which is equivalent to 3-valued valuations in which a state
variable can have the value true, false, or unknown. Sets of literals cannot rep-
resent arbitrary state sets. For example, the set {01, 10, 11} is not representable
as a set of literals, and, more generally, any set with dependencies between state
variables, which is the typical case, cannot be.

Our goal is to provide a method for determining cases in which all relevant
state sets can indeed be accurately represented as sets of literals, and when
this is not possible, to determine which type of more general representation

2 Saurabh Fadnis and Jussi Rintanen

is su�cient. Our representation is with sets T = {ϕ1, . . . , ϕn} of propositional
formulas so that any belief state B (state set) is characterized by some R ⊆ T
as B = {v|v |=

∧
R}. The component formulas ϕ1, . . . , ϕn could be limited to

clauses, but also unlimited propositional formulas can be used instead. The 3-
valued representations [2, 19] can be viewed as a special case, as we could choose
the set T to consist of literals x and ¬x for all state variables x.

Hence, belief states can be represented as vectors (b1, . . . , bn), indicating
which of the formulas in T = {ϕ1, . . . , ϕn} hold in the belief state. As this
is a bit-vector, di�erent actions are mappings from bit-vectors to bit-vectors,
and it is straightforward to turn the conformant planning problem to a standard
state-space search problem, solvable for example by classical planners.

The plan of this work is as follows. We will �rst introduce planning without
observability (often known as conformant planning), and a novel representation
of belief states in terms of subsets of a �xed set of formulas (that we call a base).
We show how actions can be understood as mappings from valuations of the base
to valuations to the base, and we give an algorithm for identifying a base for
an arbitrary conformant planning problem. Then we propose a reduction from
conformant planning to classical planning, in which each formula in the base is
identi�ed with a state variable in classical planning. Both �nding a base and de-
riving the classical planning problem involve worst-case exponential operations,
but we show that simple approximation schemes still allow solving many hard
conformant planning problems e�ciently. We conclude the paper by discussing
possible extensions of our work.

2 Preliminaries

De�ne a problem instance in conformant planning as a tuple ⟨X, I,A,G⟩ where

� X is a �nite set of state variables,
� I is a formula for the initial states,
� A is a �nite set of formulas over X ∪ {x′|x ∈ X} representing actions, and
� G is a formula for the goal states.

The action representation is the one well known from OBDD and SAT-based
planning methods [5], in which the relation between a state and its possible
successor states is represented as arbitrary Boolean functions over the state
variables X = {x1, . . . , xn} and the next state variables X ′ = {x′1, . . . , x′n}. This
is a general representation, to which deterministic and non-deterministic variants
of PDDL can be translated.

In Section 5.1 we will also use a representation of actions close to standard
modelling languages, in which actions are pairs (p, e) where p is a formula and e
(the e�ect) is a set of rules ϕ▷l, where the literals in l are made true conditional on
the formula ϕ being true. If ϕ = ⊤, then the literals become true unconditionally
(which is the case in the simplest so-called STRIPS actions.)

Example 1 (Sorting Networks). Consider a sorting network problem, in which
the initial belief state is the set of all possible states over the state variables

Generalized 3-Valued Belief States in Conformant Planning 3

x1, x2, x3, and the three actions are (⊤, (x1 ∧ ¬x2) ▷ (¬x1;x2)), (⊤, (x2 ∧ ¬x3) ▷
(¬x2;x3)), and (⊤, (x1 ∧ ¬x3) ▷ (¬x1;x3)), or equivalently, Φ12 = (x′1 ↔ (x1 ∧
x2))∧ (x′2 ↔ (x1∨x2))∧ (x′3 ↔ x3), Φ23 = (x′1 ↔ x1)∧ (x′2 ↔ (x2∧x3))∧ (x′3 ↔
(x2 ∨ x3)). and Φ13 = (x′1 ↔ (x1 ∧ x3)) ∧ (x′2 ↔ x2) ∧ (x′3 ↔ (x1 ∨ x3)). The
actions swap the values of two state variables if they are not in increasing order.

Since the initial state is not known and the actions just reorder the unknown
values of the state variables, the value of no state variable ever becomes known.
The only known thing is the orderings of some state variables.

3 Theory

Given actions and a formula for the initial belief state, our objective is to identify
T = {ϕ1, . . . , ϕn} so that every reachable belief state can be represented as a
conjunction of some R ⊆ T . We call such a set T a base. When a literal-based
approximation [2] is su�cient, T is a set of literals. More generally, T consists
of arbitrary formulas. For example, we will see that the 3-input sorting network
problem can be represented in terms of T = {x1 → x2, x1 → x3, x2 → x3}.

De�nition 1. Let X be the set of state variables. Then a transition relation
formula is any formula over X ∪X ′, where X ′ consists of �primed� versions x′

of state variables x ∈ X which represent the values of x in the successor state.

De�nition 2. A transition relation formula Φ is deterministic i� there is a
logically equivalent formula Φd = χ ∧

∧
x∈X x′ ↔ ϕx where χ is a propositional

formula over X and each ϕx, x ∈ X is a propositional formula over X.

As is known from BDD-based reachability [5], a formula representing the
successors of a given set of states with respect to a transition relation, when the
latter two are represented as formulas, can be obtained by using the existential
abstraction operation ∃ and renaming of variables in X ′ to the corresponding
ones in X, expressed as [X/X ′].

De�nition 3 (Successors). Given a transition relation formula Φ and a for-
mula ϕ, the successor of ϕ w.r.t. Φ (denoted by succΦ(ϕ)) is (∃X.(ϕ∧Φ))[X/X ′].
For sequences Φ1, . . . , Φm we de�ne succΦ1;··· ;Φm

(ϕ) = succΦm
(· · · succΦ1

(ϕ) · · ·).

If the number of formulas in the base T is n, then it would seem that we would
have to consider all 2n di�erent subsets when looking at the possible successor
belief states with respect to a given action. We can, however, incompletely and
with a complexity reduction from 2n to n, analyze possible successor belief states
for every member of T separately.

Theorem 1. succΦ(α∧β) |= succΦ(α)∧ succΦ(β) for any transition relation Φ.

Proof. We apply the following sequence of equivalences and consequences to each
of the variables in X in ∃X.(α ∧ β ∧ Φ), starting from the innermost one, and

4 Saurabh Fadnis and Jussi Rintanen

resulting in ∃X.(α ∧ Φ) ∧ ∃X.(β ∧ Φ).

∃x.(α ∧ β ∧ Φ) ≡ (α ∧ β ∧ Φ)[⊤/x] ∨ (α ∧ β ∧ Φ)[⊥/x]
≡ (α[⊤/x] ∧ β[⊤/x] ∧ Φ[⊤/x]) ∨ (α[⊥/x] ∧ β[⊥/x] ∧ Φ[⊥/x])
|= ((α[⊤/x] ∧ Φ[⊤/x]) ∨ (α[⊥/x] ∧ Φ[⊥/x]))

∧((β[⊤/x] ∧ Φ[⊤/x]) ∨ (β[⊥/x] ∧ Φ[⊥/x]))
≡ (∃x.(α ∧ Φ)) ∧ (∃x.(β ∧ Φ))

So considering every base formula separately gives correct information about
successor belief states. But not all information is obtained this way, as the con-
verse of the logical consequence in Theorem 1 does not hold.

Example 2. Consider ϕ1 that represents the set {s1} and ϕ2 that represents the
set {s2}, and Φ that represents the transition relation {(s1, s3), (s2, s3)}. Since
ϕ1 ∧ ϕ2 ≡ ⊥, also succΦ(ϕ1 ∧ ϕ2) ≡ ⊥. But succΦ(ϕ1) ∧ succΦ(ϕ2) represents s3.

A relation R is injective if for all z, whenever xRz and yRz, x = y . This
means that an action and a successor state determine the predecessor state
uniquely. For injective relations the image of conjunction coincides with the
conjunction of the images.

Lemma 1. Let Φ be a transition relation formula that represents an injective
relation. Then succΦ(ϕ ∧ ϕ′) ≡ succΦ(ϕ) ∧ succΦ(ϕ

′),

Many actions in standard benchmark problems for classical planning are
injective as required in Lemma 1, when restricted to the part of the state space
reachable from the initial states, but partially observable problems typically are
not. Hence an important problem is the identi�cation of actions and formulas ϕ1
and ϕ2 that satisfy succΦ(ϕ∧ϕ′) ≡ succΦ(ϕ)∧ succΦ(ϕ′) even without the action
being injective. This is critical for being able to analyze problems e�ciently
without having to look at all possible combinations of component beliefs.

Nevertheless, in many interesting problems, reasoning about actions is pos-
sible even without exhaustive analysis of all combinations of component beliefs.

Example 3. Consider Sorting Networks with three inputs. The shortest plan does
compare&swaps for the input pairs (1, 3), (1, 2) and (2, 3), generating the belief
states (x3 → x1), (x2 → x1)∧(x3 → x1), and (x2 → x1)∧(x3 → x1)∧(x3 → x2).

Example 4. Consider Sorting Networks with four inputs. The shortest plan con-
sists of compare&swap operations for the input pairs (1, 3), (2, 4), (1, 2), (3, 4)
and (2, 3). The �rst two actions produce the belief state (x3 → x1)∧ (x4 → x2).
After that, the third action, swapping 1 and 2, turns the belief state to

(x3 → x1) ∧ (x2 → x1) ∧ (x4 → x1) ∧ ((x3 ∧ x4) → x2)

that contains ((x3 ∧ x4) → x2). This implication is only obtained as the image
of (x3 → x1) ∧ (x4 → x2), and is not obtained from any one xi → xj alone.

Generalized 3-Valued Belief States in Conformant Planning 5

More generally, for the sorting network problems, swap actions create new
beliefs from complex combinations of prior beliefs.

While relatively good plans can be found with these implications xi → xj
as the beliefs in a conjunctive belief representation, also for larger numbers of
inputs, the smallest plans require increasingly complex beliefs. For example,
the sorting network with 20 inputs that has the smallest number of layers has
(x3 ∧ x7 ∧ x10 ∧ x11) → (x8 ∨ x9 ∨ x12) as one of the intermediate beliefs.

Below we list the maximum clause lengths encountered in the best known
(smallest number of layers) sorting networks for up to 20 inputs. Here n is the
number of inputs and s is the length of the longest clause in the CNF beliefs.

n s n s n s n s n s n s n s n s n s
3 2 4 3 5 3 6 3 7 3 8 3 9 4 10 4 11 4
12 5 13 6 14 5 15 6 16 5 17 5 18 6 19 6 20 7

Many other problems have a far simpler belief space, and it is often enough
to look at the components of beliefs one at a time.

Example 5. Consider a rectangular grid, where a robot's position in the East-
West direction is indicated by state variables x0, . . . , x9, and the location in the
North-South direction by state variables y0, . . . , y9. The �move north� action is

9∧
i=0

(x′i ↔ xi) ∧
8∧

j=1

(y′j ↔ yj−1) ∧ (y′9 ↔ (y9 ∨ y8)) ∧ ¬y′0

with movement at the north wall having no e�ect. Moves to the other three
cardinal directions are analogous. There is a unique initial location for the robot.

(

9∨
i=0

xi) ∧ (

9∨
i=0

yi) ∧
8∧

i=0

9∧
j=i+1

¬(xi ∧ xj)
8∧

i=0

9∧
j=i+1

¬(yi ∧ yj)

The beliefs in this problem are the conjuncts of the formula for the initial belief
state, as well as all sub-intervals of [0, 9] for positions on both X and the Y axes.

{
k∨

i=j

xi|0 ≤ j ≤ k ≤ 9} ∪ {
k∨

i=j

yi|0 ≤ j ≤ k ≤ 9}

Reasoning about location can be done independently for X and Y coordinates,
one formula at a time.

4 Algorithm for Identifying a Base

We give an algorithm for �nding a base T for a conformant planning problem.

1. We start from the initial state description ϕ1 ∧ · · · ∧ ϕn, where the minimal
conjuncts ϕ1, . . . , ϕn are taken to be the tentative base T .

6 Saurabh Fadnis and Jussi Rintanen

2. Pick some action a and a consistent subset P ⊆ T , and do the following.
(a) Compute σ = succΦa

(
∧

ϕ∈P ϕ).
(b) Make the minimal conjuncts of σ explicit as σ = ψ1 ∧ · · · ∧ ψm.
(c) Add ψ1, · · · , ψm to T , while eliminating duplicates modulo equivalence.

3. Repeat the previous step until T does not change.

Here we need the existential abstraction operation and the logical equivalence
test. In our implementation � which is discussed later � we have used Ordered Bi-
nary Decision Diagrams (OBDD) [4]. Other representations of Boolean functions
could be used instead, with di�erent trade-o�s between e�ciency and size.

The mapping of images σ to conjuncts determines the formulas in the base.
The most general solution is to take the conjuncts to be all the prime implicates
of σ, that is, the minimal clauses logically entailed by σ, but as we will see,
something far simpler often works very well in practice.

The number of subsets P of T is exponential in |T |, and therefore this com-
putation is in general not feasible. This is exactly as expected, as not all parts of
a reduction from the EXPSPACE-complete conformant planning [8, 12] to the
PSPACE-complete classical planning [6] can be polynomial time.

However, it turns out that it is often su�cient to limit to subsets P ⊆ T
of small cardinality. Often |P | ≤ 1 is su�cient, so only the empty set and all
1-element subsets of T need to be considered.

The next theorem shows that the general form of our base construction is
su�cient to identify a conjunctive decompositions of the belief space in the sense
that no matter which action sequence is taken starting in the initial belief state,
any reachable belief state can be represented as a conjunction of some subset of
formulas in the base.

Theorem 2. For a formula I and a sequence Φ1, . . . , Φm of transition relation
formulas, succΦ1,...,Φm

(I) ≡
∧
B for some B ⊆ T .

Proof. The proof is by induction on the length of the action sequence m, with
the claim of the theorem as the induction hypothesis.

Base case m = 0: The initial value of T is the conjuncts of the initial state
formula, exactly corresponding to the only belief state reachable by not taking
any action at all. Hence succϵ(I) for the empty sequence ϵ is representable in
terms of T .

Inductive case i ≥ 1: By the induction hypothesis, succΦ1;··· ;Φi−1
(I) ≡

∧
B

for some B ⊆ T . The algorithm goes through all actions, including one with
transition relation formula Φi, and through all subsets of T , including B. Hence
it will compute σ = succ∧B(Φi), and the conjuncts of σ, however they are
identi�ed, will be included in T . Hence succΦ1;··· ;Φi

(I) ≡
∧
B for some B ⊆ T .

Interestingly, the proof shows that � from the completeness point of view
� it is not important how the formula σ is split into conjuncts at step (2b) of
the algorithm for �nding a base. Essentially, splitting σ to a single conjunct as
σ = ϕ1 would simply mean that we enumerate all possible beliefs (formulas)
reachable from the initial belief state. In this light, Theorem 2 is not surprising.

Generalized 3-Valued Belief States in Conformant Planning 7

The important thing in the algorithm � from the scalability point of view
� is the splitting of σ to small conjuncts, so that not every belief state needs
to be generated explicitly. Instead, the space of all belief states is conjunctively
decomposed to smaller formulas, contained in T , so that any belief state can be
represented by some subset B ⊆ T . The base T may therefore be exponentially
smaller than the set of all belief states reachable from the initial belief state.

Finally, we point out that the algorithm does in general not determine reacha-
bility of belief states exactly: actions are considered in belief states (conjunctions
of subsets of T) that are not actually reachable from the initial belief state. Hence
T may contain formulas that could never be true in a reachable state. This is an
obvious source of ine�ciency. We comment more on this in Section 6.1.

5 Reduction from Conformant to Classical Planning

We will represent the conformant planning problem as a full-information classical
planning problem, with each formula ϕ ∈ T represented by a single state variable
xϕ. When solving the full-information planning problem, a state s represents the
belief state that corresponds to the formula

∧
{ϕ ∈ T |s |= xϕ}. The set of state

variables in the classical planning problem is XT = {xϕ|ϕ ∈ T}.
Additionally, we de�ne the actions, the initial state, and the goal formula.
For every action a of the original (conformant) problem, we de�ne a new

action a′ that changes the belief state encoded with the state variables in XT in
a way that corresponds to how a changes the belief state.

5.1 E�ects

We de�ne causesϕ1,...ϕn
a (ϕ) as holding if ϕ is one of the conjuncts in succΦa

(ϕ1 ∧
· · · ∧ ϕn). We de�ne minCausesϕ1,...ϕn

a (ϕ) as holding if

� ϕ is one of the conjuncts in succΦa
(ϕ1 ∧ · · · ∧ ϕn), and

� ϕ is not a conjunct of succΦa
(ϕi1 ∧· · ·∧ϕij) for any {i1, . . . , ij} ⊂ {1, . . . , n}.

We iterate over all subsets {ϕ1, . . . , ϕn} of T and all ϕ ∈ T , and add the
following e�ects to the action we are constructing.

� If minCausesϕ1,...,ϕn
a (ϕ) and ϕi ̸|= ϕ for all i ∈ {1, . . . , n} then a′ has e�ect

xϕ1 ∧ · · · ∧ xϕn ▷ xϕ.
� If not causesϕa(ϕ), then a

′ has e�ect (xϕ∧C)▷¬xϕ where C is the conjunction

of all ¬(ϕi1 ∧ · · · ∧ ϕik) such that minCauses
ϕi1 ,...,ϕik
a (ϕ).1

Again, this computation takes exponential time in the cardinality of T . And,
similarly to the computation of a base, this computation can be limited to �small�
subsets S of T . For the sorting network problems, for example, classical planning
instances that have non-optimal solutions can be produced with |S| ≤ 2, but for
higher number of inputs larger sets S are needed to �nd optimal solutions.

1 The left-hand side of this conditional e�ect can be simpli�ed by replacing all occur-
rences of ϕ by ⊤, as the e�ect does something only if ϕ is true when the action is
taken. This modi�cation is is needed to maximize Graphplan-style [3] parallelism.

8 Saurabh Fadnis and Jussi Rintanen

5.2 Preconditions

An action can be taken only if its precondition must be true. For this we need
all minimal consistent subsets of T from which the precondition follows.

De�nition 4. A set D ⊆ T is relevant for a formula χ, if D is consistent,
D |= χ, and there is no D′ such that D ⊂ D′, D′ is consistent, D′ |= χ.

Let a = ⟨χ,E⟩ be an action. Let P be all the sets D ⊆ T relevant for χ. Now
the precondition of a′ is

∨
p∈P (

∧
{xϕ|ϕ ∈ p}).

Clearly, for actions a with the trivial precondition ⊤, the precondition of a′

is similarly ⊤. More generally, there may be an exponential number of relevant
subsets D ⊆ T , so there is no guarantee that this computation is always feasible.

Relevant subsets of T for χ are closely related to minimal unsatis�able sets
(MUS) [10, 1]: a relevant subset for ϕ is a MUS of T ∪ {¬ϕ} that contains ¬ϕ.

Lemma 2. Assume ¬ϕ ̸∈ P . Then P ⊆ T is a relevant set for ϕ if and only if
P ∪ {¬ϕ} is a minimal unsatis�able set of T ∪ {¬ϕ}.

Proof. Since P ∪ {¬ϕ} is unsatis�able, P |= ϕ. Since P ∪ {¬ϕ} is minimal un-
satis�able, we have P0∪{¬ϕ} satis�able and hence P0 ̸|= ϕ for all P0 ⊂ P . Since
P ∪ {¬ϕ} is minimal unsatis�able, P is satis�able. Hence by the de�nition of
relevance, P is a relevant set for ϕ.

The computation of minimal inconsistent subsets is expensive, and as before,
can be limited to �small� subsets.

5.3 Goals

The goal formula is computed similarly to the preconditions as a disjunction of
conjunctions of minimal consistent subsets of T that logically entail the original
goal formula G. For goals of the form G = γ1 ∧ · · · ∧ γn we can determine the
entailing subsets of T separately for each γi.

6 Implementation

We have implemented all steps for translating conformant planning to classical
planning. The logical operations could be implemented with any class of formulas
that can represent any Boolean function, but we chose to use ordered binary
decision diagrams OBDDs for three reasons: simplicity, logical simpli�cations
provided by OBDDs canonicity, and constant time equivalence tests.

In our reduction from conformant planning to classical planning there are
the three exponential components, which we have approximated by not going
through all subsets of formulas, but instead only all �small� subsets of cardinality
≤ n for some small n. These three parameters, which limits the cardinalities of
these subsets, are used in

Generalized 3-Valued Belief States in Conformant Planning 9

1. identifying the base (Section 4),
2. synthesizing the e�ects of actions (Section 5.1), and
3. synthesizing the formulas for the preconditions and the goal (Section 5.2).

When we use the values 1, 2 and 1 for these three parameters, respectively,
we indicate this as the con�guration (1, 2, 1).

We �rst experimented with Sorting Networks, due to their di�culty for ex-
isting planners. They are parameterized by the number i of inputs, have i state
variables, and yield a base of quadratic size with con�guration (1, 2, 1), and a
base of cubic size with (2, 2, 1). With (1, 2, 1) we can �nd non-optimal and not
very good solutions until 20 inputs, and better non-optimal solutions not quite
as far. This problem is not solvable with the (1, 1, 1) con�guration.

Many other benchmark problems are harder than sorting networks in terms
of having a far higher number of state variables. However, in many cases this
is balanced by them being solvable (even optimally) with the easiest (1, 1, 1)
con�guration. The number of base formulas is in many cases several hundreds
or thousands, and brute force generation of the base in con�guration (2, 1, 1) as
well as synthesis of actions in con�guration (1, 2, 1) become infeasible.

An important part of future work is to utilize structural properties of the
problem instances to perform these computations far more e�ciently, without
having to blindly go through all or most N -element subsets of the base.

6.1 Use of Invariants to Reduce the Base

The use of invariants, formulas that hold in all reachable states of a transition
system, is common in planning methods that work with partial state representa-
tion. In the algorithm in Section 4, invariants help ignore those formulas that are
never true in any reachable state, or that are true in all reachable states. This
leads to a smaller base. We use a basic algorithm for �nding 2-literal invariant
clauses [13]. For instance, the formulas ¬(xi∧xj) in Example 5 are part of every
belief state, and therefore the possibility of them being false can be ignored.

7 Experiments

We have done experiments with a collection of standard benchmark problems.
Of special interest is Sorting Networks, with complex belief space and complex
interactions between beliefs. Results are given in Table 1. We list runtimes, the
numbers of actions as well as the number of state variables in the original con-
formant and in the classical instances. The latter number equals the number of
formulas in the base. Palacios & Ge�ner's [11] T0 planner uses the K1 trans-
lation by default, but in cases where it does not yield any solutions, we have
switched to the K0 translation, as indicated in the table. We have used the
FF [9] and Madagascar [14] planners to solve our PDDL instances. Madagascar
constructs parallel plans, and an optimality criterion for sorting networks is the
number of layers of the sorting network, with each layer containing one or more

10 Saurabh Fadnis and Jussi Rintanen

Table 1. Results for SORTNET. C: Con�guration; X: variables in the problem; Xc:
variables in the translated problem; A: actions; MpC: Madagascar runtime ; FF: FF
runtime ; PG: T0 runtime with FF ; OOM: out of memory

Instance C X Xc A MpC FF PG

sort4 (2,2,1) 4 17 6 0.00 0.00 0.07
sort5 (2,2,1) 5 68 10 0.12 0.02 0.53
sort6 (2,2,1) 6 239 15 7.64 2.57 5.73
sort7 (2,2,1) 7 790 21 3006.24 OOM 21.26

sort6 (1,2,1) 6 15 15 0.01 0.00 5.73
sort7 (1,2,1) 7 21 21 0.02 0.00 21.26
sort8 (1,2,1) 8 28 28 0.06 0.00 0.21(K0)
sort9 (1,2,1) 9 36 36 0.12 0.00 0.38(K0)
sort10 (1,2,1) 10 45 45 0.26 0.00 0.73(K0)
sort15 (1,2,1) 15 105 105 2.47 0.04 15.92(K0)
sort18 (1,2,1) 18 153 153 7.94 0.17 121.71(K0)

compare&swap actions so that each input is only sorted by at most one of the
actions. However, it turned out that although pairs of compare&swaps like on
(1, 3) and on (2, 4) do not interfere when the state variables are the input values,
the actions after our translation do interfere, as they impact and depend on the
same beliefs xi → xj , and hence Madagascar cannot bene�t from the parallelism.

All sorting network problems are solvable with the con�guration (1, 2, 1), by
looking at the joint images of pairs of beliefs of the form xi → xj , but this
is insu�cient to �nd optimal solutions (see Example 4). The generation of the
PDDL in these cases is fast, less than 10 seconds even for large instances. On
these problems we are quite competitive with T0. As pointed out earlier, optimal
solutions e.g. with 20 inputs seem to require the con�guration (7, 7, 1), which
leads to quite large PDDL representations.

With the con�guration (2, 2, 1) also formulas xi∧xj → xk are included in the
base, and this allows (in principle) optimal solutions to be found until at least 8
inputs, as discussed earlier. While our experiments did not use optimal planners,
the con�guration (2, 2, 1) still allows us to �nd better sub-optimal plans than
what can be found with con�guration (1, 2, 1). But, as the number of formulas
in the base is cubic in the number of inputs, and not quadratic, the PDDL
translation is far bigger, and the planners do not scale up as far as with the
(1, 2, 1) con�guration. Also, the runtimes for generating the PDDL grows very
quickly with the increasing number of inputs.

For the rest of the benchmark problems the situation is quite di�erent, as the
con�guration (1, 1, 1) is always su�cient. The scalability of our approach is only
limited by the size of the base, as we only have to look at each formula in the
base in isolation at each stage of the translation process. Data on a collection of
standard benchmarks similar to that used by Palacios and Ge�ner [11] are given
in Tables 2 and 3. Our runtimes in comparison to Palacios & Ge�ner's T0 [11]
are in some cases comparable, and in many cases clearly behind, for example in

Generalized 3-Valued Belief States in Conformant Planning 11

Table 2. Runtimes of a number of benchmark problems

Instance X Xc A MpC FF PG

corners-square-p40 80 1722 4 1.69 0.30 0.53
corners-square-p84 168 7310 4 51.67 5.60 11.71
corners-square-p100 200 10302 4 115.85 11.32 25.14
corners-square-p120 240 14762 4 283.96 27.06 57.05
corners-square-p140 280 29375 4 1492.39 159.50 90.33
corners-square-p200 400 40602 4 3285.06 380.47 485.10

corners-cube-p27 81 1218 6 0.70 0.13 3.80
corners-cube-p52 156 4293 6 13.11 2.31 147.62
corners-cube-p55 165 4788 6 17.37 2.71 226.28
corners-cube-p60 180 5673 6 27.00 4.82 366.48
corners-cube-p75 225 8778 6 75.20 15.01 1463.35

square-center-p24 48 1200 4 0.53 0.11 0.15
square-center-p92 184 17112 4 320.81 80.09 8.99

cube-center-p19 57 1140 6 0.47 0.09 0.15
cube-center-p63 189 12096 6 137.50 25.35 6.33
cube-center-p67 201 13668 6 193.58 38.12 8.01

ring, safe and blocksword. For the latter two producing the PDDL is slow due to
high number of actions and a large base. Notice that the listed runtimes do not
include the generation of the PDDL. This time is often substantial. For example,
bomb100-100 took 636.9 seconds (10100 actions), bomb20-20 took 0.65 seconds
(420 actions), while Sortnet with 9 inputs and con�guration (1,2,1) took 0.24
seconds (36 actions). The time is dominated by image computation, which we
believe can be substantially sped up, especially when actions are simple. Planner
by To et al. [18] is often comparable to that of Palacios and Ge�ner, but in many
cases scale up further in the benchmark series.

8 Related Work

Baral, Kreinovich and Trejo [2] investigate 3-valued belief state representations,
in which state variables are true, false, or unknown. This form of incompleteness
is equivalent to representing belief states as sets (conjunctions) of literals. Baral
et al. demonstrate how many types of interesting problems are e�ciently solvable
with this type of representation, and that the complexity is substantially reduced,
down to PSPACE, which is the same as with classical planning.

Palacios and Ge�ner [11] propose an approach to conformant planning that is
based on dependencies of state variable values on the initial values of some other
state variables. Their literals KL/t could be viewed as implications t→ KL, and
the merges, inferring KL from

∧
t∈T KL/t → KL as, as a form of logical deduc-

tion, analysis by cases. Their planner can in general solve more of the standard
benchmark problems on conformant planning than ours, but our planner out-
performs it with the sorting network problems, because Palacios and Ge�ner's

12 Saurabh Fadnis and Jussi Rintanen

Table 3. Results from a number of benchmark problems

Instance X Xc A MpC FF PG

comm-p10 69 314 59 0.11 0.00 0.05
comm-p15 99 454 84 0.26 0.00 0.05
comm-p20 245 1130 208 11.94 0.02 0.16

bomb20-20 40 60 420 0.00 0.00 0.05
bomb100-5 105 110 505 0.06 0.00 0.21
bomb100-60 160 220 6060 0.12 0.05 1.04
bomb100-100 200 300 10100 0.24 1.39 2.40

coins-p10 34 200 40 0.41 0.00 0.1
coins-p12 76 1866 88 10340.96 0.09 0.1
coins-p16 86 2020 110 TO 0.19 0.09
coins-p18 86 2020 110 TO 0.18 0.06
coins-p20 86 2020 110 TO 0.17 0.07

uts-p1 5 41 4 0.00 0.00 0.01
uts-p2 9 892 16 2.65 0.10 0.01
uts-p3 13 11354 36 5004.71 104.45 0.03

logistics-p2-2-2 20 48 30 0.00 0.00 0.02
logistics-p4-3-3 69 201 156 0.03 0.00 0.03

uts-l01 5 41 4 0.00 0.00 0.01
uts-l02 9 882 10 1.52 0.08 0.02

safe-p5 6 78 5 0.00 0.00 0.00
safe-p10 11 2102 10 29.09 0.70 0.01

method leads to exponentially large classical planning problems in this case. Fur-
ther, Palacios&Ge�ner limit to deterministic actions, whereas our work covers
arbitrary actions, including non-deterministic ones.

To et al. [15] used DNF as a belief state representation, then turned to prime
implicates [16] and CNF [17], demonstrating di�erent trade-o�s. In these works,
belief states are sets of formulas, not valuations of propositional variables like in
our work, and no reduction to the classical planning problem is considered.

9 Conclusion

We have investigated the representation of belief states as vectors of truth values.
This representation attempts to lower the complexity of belief space planning
by replacing the combinatorially far harder notion of formulas by much easier
states. We have shown our methods to be useful even when strict limits are im-
posed on how thoroughly an approximate belief space representation is created.
These limits risk losing completeness. An important topic for further research
is obtaining completeness guarantees even under these size limits. Future work
also includes generalizing the results to partial observability. Observations help
increase the accuracy of the beliefs. In this case we would expect to be able to
similarly often achieve an exponential complexity reduction.

Generalized 3-Valued Belief States in Conformant Planning 13

References

1. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatis�able subsets of constraints
using hitting set dualization. In: Practical Aspects of Declarative Languages; 7th
International Symposium, PADL 2005, Long Beach, CA, USA, January 10-11,
2005. Proceedings. pp. 174�186. No. 3360 in Lecture Notes in Computer Science,
Springer-Verlag (2005)

2. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and
approximate planning in the presence of incompleteness. Arti�cial Intelligence
122(1), 241�267 (2000)

3. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Arti�cial
Intelligence 90(1-2), 281�300 (1997)

4. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys 24(3), 293�318 (1992)

5. Burch, J.R., Clarke, E.M., Long, D.E., MacMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit veri�cation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 13(4), 401�424 (1994)

6. Bylander, T.: The computational complexity of propositional STRIPS planning.
Arti�cial Intelligence 69(1-2), 165�204 (1994)

7. Ge�ner, T., Ge�ner, H.: Compact policies for non-deterministic fully observable
planning as sat. In: ICAPS 2018. Proceedings of the Twenty-Eighth International
Conference on Automated Planning and Scheduling. pp. 88�96. AAAI Press (2018)

8. Haslum, P., Jonsson, P.: Some results on the complexity of planning with incom-
plete information. In: Recent Advances in AI Planning. 5th European Conference
on Planning, ECP'99, Durham, UK, September 8-10, 1999. Proceedings. pp. 308�
318. No. 1809 in Lecture Notes in Arti�cial Intelligence, Springer-Verlag (2000)

9. Ho�mann, J., Nebel, B.: The FF planning system: fast plan generation through
heuristic search. Journal of Arti�cial Intelligence Research 14, 253�302 (2001)

10. Li�ton, M.H., Sakallah, K.A.: On �nding all minimally unsatis�able subformulas.
In: Theory and Applications of Satis�ability Testing; 8th International Conference,
SAT 2005, St Andrews, UK, June 19-23, 2005. Proceedings. pp. 173�186. No. 3569
in Lecture Notes in Computer Science, Springer-Verlag (2005)

11. Palacios, H., Ge�ner, H.: Compiling uncertainty away in conformant planning prob-
lems with bounded width. Journal of Arti�cial Intelligence Research 35, 623�675
(2009)

12. Rintanen, J.: Complexity of planning with partial observability. In: ICAPS 2004.
Proceedings of the Fourteenth International Conference on Automated Planning
and Scheduling. pp. 345�354. AAAI Press (2004)

13. Rintanen, J.: Regression for classical and nondeterministic planning. In: ECAI
2008. Proceedings of the 18th European Conference on Arti�cial Intelligence. pp.
568�571. IOS Press (2008)

14. Rintanen, J.: Planning as satis�ability: heuristics. Arti�cial Intelligence 193, 45�86
(2012)

15. To, S., Pontelli, E., Son, T.: A conformant planner with explicit disjunctive repre-
sentation of belief states. In: Proceedings of the 19th International Conference on
Automated Planning and Scheduling. pp. 305�312. AAAI Press (2009)

16. To, S., Son, T., Pontelli, E.: On the use of prime implicates in conformant planning.
In: Proceedings of the AAAI Conference on Arti�cial Intelligence. pp. 1205�1210.
AAAI Press (2010)

14 Saurabh Fadnis and Jussi Rintanen

17. To, S.T., Son, T.C., Pontelli, E.: A new approach to conformant planning using
CNF. In: Proceedings of the 20th International Conference on Automated Planning
and Scheduling. pp. 169�176. AAAI Press (2010)

18. To, S.T., Son, T.C., Pontelli, E.: A generic approach to planning in the presence
of incomplete information: Theory and implementation. Arti�cial Intelligence 227,
1�51 (2015)

19. Tu, P.H., Son, T.C., Baral, C.: Reasoning and planning with sensing actions, incom-
plete information, and static causal laws using answer set programming. Theory
and Practice of Logic Programming 7, 1�74 (2006)

