
Planning
Introduction

Explicit State-Space Search
Symmetry Reduction
Partial Order Reduction
Heuristics
Heuristics

Planning with SAT
Parallel Plans
Encodings
Plan Search
SAT Solving

Symbolic search
Operations
Normal Forms
∃/∀-Abstraction
Images
Algorithms

Planning System Implementations
Algorithm Portfolios

Evaluation of Planners

References

1 / 89

Algorithms for Classical Planning

Jussi Rintanen

Beijing, IJCAI 2013

2 / 89

Introduction

Planning
What to do to achieve your objectives?

I Which actions to take to achieve your objectives?
I Number of agents

I single agent, perfect information: s-t-reachability in succinct graphs
I + nondeterminism/adversary: and-or tree search
I + partial observability: and-or search in the space of beliefs

Time
I asynchronous or instantaneous actions (integer time, unit duration)
I rational/real time, concurrency

Objective
I Reach a goal state.
I Maximize probability of reaching a goal state.
I Maximize (expected) rewards.
I temporal goals (e.g. LTL)

3 / 89

Introduction

Hierarchy of Planning Problems

classical (PSPACE [GW83, Loz88, LB90, Byl94])

temporal (EXPSPACE [Rin07])conditional/MDP (EXP [Lit97])

partially observable (2-EXPTIME [Rin04a])

POMDP (undecidable [MHC03])

4 / 89

Introduction

Classical (Deterministic, Sequential) Planning

I states and actions expressed in terms of state variables
I single initial state, that is known
I all actions deterministic
I actions taken sequentially, one at a time
I a goal state (expressed as a formula) reached in the end

Deciding whether a plan exists is PSPACE-complete.
With a polynomial bound on plan length, NP-complete.

5 / 89

Introduction

Domain-Independent Planning

What is domain-independent?

I general language for representing problems (e.g. PDDL)
I general algorithms to solve problems expressed in it

Advantages and disadvantages:
+ Representation of problems at a high level
+ Fast prototyping
+ Often easy to modify and extend
- Potentially high performance penalty w.r.t. specialized algorithms
- Trade-off between generality and efficiency

6 / 89

Introduction

Domain-Specific Planning

What is domain-specific?

I application-specific representation
I application-specific constraints/propagators
I application-specific heuristics

There are some planning systems that have aspects of these, but mostly this
means: implement everything from scratch.

7 / 89

Introduction

Domain-Dependent vs. -Independent Planning
Procedure

Formalize in PDDL

Try off-the-shelf planners

Problem solved?

Go domain-specific Done

8 / 89

Introduction

Related Problems, Reductions
planning, diagnosis [SSL+95], model-checking (verification)

planning

model-checking

DES diagnosis

state-spaceSAT/CSP/IP symbolic BDD

9 / 89

Introduction

How to Represent Planning Problems?

planning

transition-
based

SMV Petri Nets

PDDL

constraint-
based

SAT

CSP

Answer-Set
Programs

Different strengths and advantages; No single “right” language.
10 / 89

Introduction

PDDL - Planning Domain Description Language

I Defined in 1998 [McD98], with several extensions later.
I Lisp-style syntax
I Widely used in the planning community.
I Most basic version with Boolean state variables only.
I Action sets expressed as schemata instantiated with objects.

(:action analyze-2
:parameters (?s1 ?s2 - segment ?c1 ?c2 - car)
:precondition (and (CYCLE-2-WITH-ANALYSIS ?s1 ?s2)

(on ?c1 ?s1))
:effect (and (not (on ?c1 ?s1))

(on ?c2 ?s1)
(analyzed ?c1)
(increase (total-cost) 3)))

11 / 89

Introduction

States

States are valuations of state variables.

Example
State variables are
LOCATION: {0, . . . , 1000}

GEAR: {R, 1, 2, 3, 4, 5}
FUEL: {0, . . . , 60}

SPEED: {−20, . . . , 200}
DIRECTION: {0, . . . , 359}

One state is
LOCATION =312

GEAR = 4
FUEL = 58

SPEED =110
DIRECTION = 90

12 / 89

Introduction

State-space transition graphs
Blocks world with three blocks

13 / 89

Introduction

Actions
How values of state variables change

General form
precondition: A=1 ∧ C=1
effect: A := 0; B := 1; C := 0;

STRIPS representation

PRE: A, C
ADD: B
DEL: A, C

Petri net

A

C

B

action

14 / 89

Introduction

Weaknesses in Existing Languages

I High-level concepts not easily/efficiently expressible.
Examples: graph connectivity, transitive closure.

I Limited or no facilities to express domain-specific information (control,
pruning, heuristics).

I The notion of classical planning is limited:
I Real world rarely a single run of the sense-plan-act cycle.
I Main issue often uncertainty, costs, or both.
I Often rational time and concurrency are critical.

15 / 89

Introduction

Formalization of Planning in This Tutorial

A problem instance in (classical) planning consists of the following.

I set X of state variables
I set A of actions 〈p, e〉 where

I p is the precondition (a set of literals over X)
I e is the effects (a set of literals over X)

I initial state I : X → {0, 1} (a valuation of X)
I goals G (a set of literals over X)

16 / 89

Introduction

The planning problem

An action a = 〈p, e〉 is applicable in state s iff s |= p.
The successor state s′ = execa(s) is defined by

I s′ |= e

I s(x) = s′(x) for all x ∈ X that don’t occur in e.

Problem
Find a1, . . . , an such that execan(execan−1(· · · execa2(execa1(I)) · · ·)) |= G?

17 / 89

Introduction

Development of state-space search methods

19
68

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

A∗
partial-order reduction

symmetry reduction

BDDs
Symbolic Model-Checking

DNNF

Planning as SAT
SATPLAN

GRASP
SATZ
Bounded Model-Checking
Chaff

18 / 89

Introduction

Symbolic Representations vs. Fwd and Bwd Search

symbolic data structures (BDD, DNNF, ...)

SAT

forward

backward

singleton backward

1. symbolic data structures
2. SAT
3. state-space search
4. others: partial-order planning [MR91] (until 1995)

19 / 89

State-Space Search

Explicit State-Space Search

I The most basic search method for transition systems
I Very efficient for small state spaces (1 million states)
I Easy to implement
I Very well understood
I Pruning methods:

I symmetry reduction [Sta91, ES96]
I partial-order reduction [God91, Val91]
I lower-bounds / heuristics, for informed search [HNR68]

20 / 89

State-Space Search

State Representation

Each state represented explicitly⇒ compact state representation important

I Boolean (0, 1) state variables represented by one bit
I Inter-variable dependencies enable further compaction:

I ¬(at(A,L1)∧at(A,L2)) always true
I automatic recognition of invariants [BF97, Rin98, Rin08]
I n exclusive variables x1, . . . , xn represented by 1 + blog2(n− 1)c bits

21 / 89

State-Space Search

Search Algorithms

I uninformed/blind search: depth-first, breadth-first, ...
I informed search: “best first” search (always expand best state so far)
I informed search: local search algorithms such as simulated annealing,

tabu search and others [KGJV83, DS90, Glo89] (little used in planning)
I optimal algorithms: A∗ [HNR68], IDA∗ [Kor85]

22 / 89

State-Space Search Symmetry Reduction

Symmetry Reduction [Sta91, ES96]

Idea

1. Define an equivalence relation ∼ on the set of all states: s1 ∼ s2 means
that state s1 is symmetric with s2.

2. Only one state sC in each equivalence class C needs to be considered.
3. If state s ∈ C with s 6= [sC] is encountered, replace it with sC .

Example

States P (A) ∧ ¬P (B) ∧ P (C) and ¬P (A) ∧ P (B) ∧ P (C) are symmetric
because of the permutation A 7→ B,B 7→ A,C 7→ C.

23 / 89

State-Space Search Symmetry Reduction

Symmetry Reduction
Example: 11 states, 3 equivalence classes

24 / 89

State-Space Search Part. Order Red.

Partial Order Reduction
Stubborn sets and related methods

Idea [God91, Val91]
Independent actions unnecessary to consider in all orderings, e.g. both
A1, A2 and A2, A1.

Example

Let there be lamps 1, 2, . . . , n which can be turned on. There are no other
actions. One can restrict to plans in which lamps are turned on in the
ascending order: switching lamp n after lamp m > n needless.1

1The same example is trivialized also by symmetry reduction!
25 / 89

State-Space Search Heuristics

Heuristics for Classical Planning

The most basic heuristics widely used for non-optimal planning:
hmax [BG01, McD96] best-known admissible heuristic
h+ [BG01] still state-of-the-art
hrelax [HN01] often more accurate, but performs like h+

26 / 89

State-Space Search Heuristics

Definition of hmax, h+ and hrelax

I Basic insight: estimate distances between possible state variable values,
not states themselves.

I gs(l) =

{
0 if s |= l
min

a with effect p
(1 + gs(prec(a)))

I h+ defines gs(L) =
∑

l∈L gs(l) for sets S.
I hmax defines gs(L) = maxl∈L gs(l) for sets S.
I hrelax counts the number of actions in computation of hmax.

27 / 89

State-Space Search Heuristics

Computation of hmax
Tractor example

1. Tractor moves:
I from 1 to 2: T12 = 〈T1, {T2,¬T1}〉
I from 2 to 1: T21 = 〈T2, {T1,¬T2}〉
I from 2 to 3: T23 = 〈T2, {T3,¬T2}〉
I from 3 to 2: T32 = 〈T3, {T2,¬T3}〉

2. Tractor pushes A:
I from 2 to 1: A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
I from 3 to 2: A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉

3. Tractor pushes B:
I from 2 to 1: B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
I from 3 to 2: B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉

28 / 89

State-Space Search Heuristics

Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Distance of A1 ∧B1 is 4.

29 / 89

State-Space Search Heuristics

hmax Underestimates

Example

Estimate for lamp1on ∧ lamp2on ∧ lamp3on with

〈>, {lamp1on}〉
〈>, {lamp2on}〉
〈>, {lamp3on}〉

is 1. Actual shortest plan has length 3.
By definition, hmax(G1 ∧ · · · ∧Gn) is the maximum of hmax(G1), . . . , hmax(Gn).
If goals are independent, the sum of the estimates is more accurate.

30 / 89

State-Space Search Heuristics

Computation of h+

Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF F TF TF F TF TF
5 TF TF TF TF TF TF TF TF TF

h+(T2 ∧A2) is 1+3.
h+(A1) is 1+3+1 = 5 (hmax gives 4.)

31 / 89

State-Space Search Heuristics

Computation of hrelax
Motivation

estimate for a ∧ b ∧ c
actions max sum actual
〈>, {a, b, c}〉 1 3 1
〈>, {a}〉, 〈>, {b}〉, 〈>, {c}〉 1 3 3

I Better estimates with hrelax (but: performance is similar to h+).
I Application: directing search with preferred actions [Vid04, RH09]

32 / 89

State-Space Search Heuristics

Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0 T12
1 T23
2 A32, B32
3 A21, B21

estimate = number of actions in relaxed plan = 6

33 / 89

State-Space Search Heuristics

Comparison of the Heuristics

I For the Tractor example:
I actions in the shortest plan: 8
I hmax yields 4 (never overestimates).
I h+ yields 10 (may under or overestimate).
I hrelax yield 6 (may under or overestimate).

I The sum-heuristic and the relaxed plan heuristic are used in practice for
non-optimal planners.

34 / 89

State-Space Search Heuristics

Preferred Actions

I h+ and hrelax boosted with preferred/helpful actions.
I Preferred actions on the first level t = 0 in a relaxed plan.
I Several possibilities:

I Always expand with a preferred action when possible [Vid04].
I A tie-breaker when the heuristic values agree [RH09].

I Planners based on explicit state-space search use them: YAHSP, LAMA.

35 / 89

State-Space Search Heuristics

Performance of State-Space Search Planners
Planning Competition Problems

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

STRIPS instances

ss

HSP

FF

LPG-td

LAMA08

YAHSP

36 / 89

State-Space Search Heuristics

Heuristics for Optimal Planning

Admissible heuristics are needed for finding optimal plans, e.g with A∗

[HNR68]. Scalability much poorer.

Pattern Databases [CS96, Ede00]
Abstract away many/most state variables, and use the length/cost of the
optimal solution to the remaining problem as an estimate.

Generalized Abstraction (merge and shrink) [DFP09, HHH07]
A generalization of pattern databases, allowing more complex aggregation of
states (not just identification of ones agreeing on a subset of state variables.)

Landmark-cut [HD09] has been doing well with planning competition
problems.

37 / 89

SAT

Planning with SAT
Background

I Proposed by Kautz and Selman [KS92].
I Idea as in Cook’s proof of NP-hardness of SAT [Coo71]: encode each

step of a plan as a propositional formula.
I Intertranslatability of NP-complete problems⇒ reductions to many other

problems possible.

Related solution methods
constraint satisfaction (CSP) [vBC99, DK01]
NM logic programs / answer-set programs [DNK97]

Translations from SAT into other formalisms often simple. In terms of
performance, SAT is usually the best choice.

38 / 89

SAT

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111

39 / 89

SAT

Encoding of Actions as Formulas
for Sequential Plans

An action j corresponds to the conjunction of the precondition Pj@t and

xi@(t+ 1)↔ Fi(x1@t, . . . , xn@t)

for all i ∈ {1, . . . , n}. Denote this by Ej@t.

Example (move-from-X-to-Y)

precond︷ ︸︸ ︷
atX@t ∧

effects︷ ︸︸ ︷
(atX@(t+ 1)↔ ⊥) ∧ (atY@(t+ 1)↔ >)
∧(atZ@(t+ 1)↔ atZ@t) ∧ (atU@(t+ 1)↔ atU@t)

Choice between actions 1, . . . ,m expressed by the formula

R@t = E1@t ∨ · · · ∨ Em@t.

40 / 89

SAT

Finding a Plan with SAT

Let
I I be a formula expressing the initial state, and
I G be a formula expressing the goal states.

Then a plan of length T exists iff

I@0 ∧
T−1∧

t=0

R@t ∧GT

is satisfiable.

Remark
Most SAT solvers require formulas to be in CNF. There are efficient
transformations to achieve this [Tse62, JS05, MV07].

41 / 89

SAT Parallel Plans

Parallel Plans: Motivation

I Don’t represent all intermediate
states of a sequential plan.

I Ignore relative ordering of
consecutive actions.

I Reduced number of explicitly
represented states⇒ smaller
formulas

state at t+ 1

state at t

42 / 89

SAT Parallel Plans

Parallel plans (∀-step plans)
Kautz and Selman 1996

Allow actions a1 = 〈p1, e1〉 and a2 = 〈p2, e2〉 in parallel whenever they don’t
interfere, i.e.

I both p1 ∪ p2 and e1 ∪ e2 are consistent, and
I both e1 ∪ p2 and e2 ∪ p1 are consistent.

Theorem
If a1 = 〈p1, e1〉 and a2 = 〈p1, e1〉 don’t interfere and s is a state such that
s |= p1 and s |= p2, then execa1

(execa2
(s)) = execa2

(execa1
(s)).

43 / 89

SAT Parallel Plans

∀-step plans: encoding

Define R∀@t as the conjunction of

x@(t+ 1)↔ ((x@t ∧ ¬a1@t ∧ · · · ∧ ¬ak@t) ∨ a′1@t ∨ · · · ∨ a′k′@t)

for all x ∈ X, where a1, . . . , ak are all actions making x false, and a′1, . . . , a′k′
are all actions making x true, and

a@t→ l@t for all l in the precondition of a,

and
¬(a@t ∧ a′@t) for all a and a′ that interfere.

This encoding is quadratic due to the interference clauses.

44 / 89

SAT Parallel Plans

∀-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Action a with effect l disables all actions with precondition l, except a itself.
This is done in two parts: disable actions with higher index, disable actions
with lower index.

a1 a2 a3 a4 a5

v2 v4 v5

w1 w2 w4

This is needed for every literal.

45 / 89

SAT Parallel Plans

∃-step plans
Dimopoulos et al. 1997 [DNK97]

Allow actions {a1, . . . , an} in parallel if they can be executed in at least one
order.

I
⋃n

i=1 pi is consistent.
I
⋃n

i=1 ei is consistent.
I There is a total ordering a1, . . . , an such that ei ∪ pj is consistent

whenever i ≤ j: disabling an action earlier in the ordering is allowed.

Several compact encodings exist [RHN06].
Fewer time steps are needed than with ∀-step plans. Sometimes only half as
many.

46 / 89

SAT Parallel Plans

∃-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Choose an arbitrary fixed ordering of all actions a1, . . . , an.

Action a with effect l disables all later actions with precondition l.

a1 a2 a3 a4 a5

v2 v4 v5

This is needed for every literal.

47 / 89

SAT Parallel Plans

Disabling graphs
Rintanen et al. 2006 [RHN06]

Define a disabling graph with actions as nodes and with an arc from a1 to a2
(a1 disables a2) if p1 ∪ p2 and e1 ∪ e2 are consistent and e1 ∪ p2 is inconsistent.

The test for valid execution orderings can be limited to strongly connected
components (SCC) of the disabling graph.

In many structured problems all SCCs are singleton sets.
=⇒ No tests for validity of orderings needed during SAT solving.

48 / 89

SAT Parallel Plans

Summary of Notions of Plans

plan type reference comment
sequential [KS92] one action per time point
∀-parallel [BF97, KS96] parallel actions independent
∃-parallel [DNK97, RHN06] executable in at least one order

The last two expressible in terms of the relation disables restricted to applied
actions:

I ∀-parallel plans: the disables relation is empty.
I ∃-parallel plans: the disables relation is acyclic.

49 / 89

SAT Plan Search

Search through Horizon Lengths

The planning problem is reduced to the satisfiability tests for

Φ0 = I@0 ∧G@0
Φ1 = I@0 ∧R@0 ∧G@1
Φ2 = I@0 ∧R@0 ∧R@1 ∧G@2
Φ3 = I@0 ∧R@0 ∧R@1 ∧R@2 ∧G@3
...
Φu = I@0 ∧R@0 ∧R@1 ∧ · · ·R@(u− 1) ∧G@u

where u is the maximum possible plan length.

Q: How to schedule these satisfiability tests?

50 / 89

SAT Plan Search

Search through Horizon Lengths

algorithm reference comment
sequential [KS92, KS96] slow, guarantees min. horizon
binary search [SS07] prerequisite: length UB
n processes [Rin04b, Zar04] fast, more memory needed
geometric [Rin04b] fast, more memory needed

I sequential: first test Φ0, then Φ1, then Φ2, . . .
I This is breadth-first search / iterative deepening.
I Guarantees shortest horizon length, but is slow.

I parallel strategies: solve several horizon lengths simultaneously
I depth-first flavor
I usually much faster
I no guarantee of minimal horizon length

51 / 89

SAT Plan Search

Some runtime profiles

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60

tim
e

in
 s

ec
s

time points

Evaluation times: gripper10

52 / 89

SAT Plan Search

Geometric Evaluation

0

5

10

15

20

25

30

35

40

45

40 45 50 55 60 65 70 75 80 85 90

tim
e

in
 s

ec
s

time points

Finding a plan for blocks22 with Algorithm B

53 / 89

SAT SAT Solving

Solving the SAT Problem

SAT problems obtained from planning are solved by
I generic SAT solvers

I Mostly based on Conflict-Driven Clause Learning (CDCL) [MMZ+01].
I Extremely good on hard combinatorial planning problems.
I Not designed for solving the extremely large but “easy” formulas (arising in

some types of benchmark problems).
I specialized SAT solvers [Rin10b, Rin10a]

I Replace standard CDCL heuristics with planning-specific ones.
I For certain problem classes substantial improvement
I New research topic: lots of unexploited potential

54 / 89

SAT SAT Solving

Solving the SAT Problem
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

Problem solved almost without search:
I Formulas for lengths 1 to 4 shown unsatisfiable without any search.
I Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
I Plans have 5 to 7 operators, optimal plan has 5.

55 / 89

SAT SAT Solving

Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1. State variable values inferred
from initial values and goals.

2. Branch: ¬clear(b)1.
3. Branch: clear(a)3.
4. Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF

56 / 89

SAT SAT Solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2008

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

STRIPS instances

ss
HSP

FF
LPG-td

LAMA08
YAHSP

SATPLAN
M

Mp

57 / 89

SAT SAT Solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2011 (revised)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.1 1 10 100 1000

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

all domains 1998-2011

SATPLAN
M

Mp
MpX

LAMA08
LAMA11

FF
FF-2

58 / 89

SAT SAT Solving

Extensions

MathSAT [BBC+05] and other SAT modulo Theories (SMT) solvers extend
SAT with numerical variables and equalities and inequalities.
Applications include:

I timed systems [ACKS02], temporal planning
I hybrid systems [GPB05, ABCS05], temporal planning + continuous

change

59 / 89

Symbolic search

Symbolic Search Methods
Motivation

I logical formulas as a data structure for sets, relations
I Planning (model-checking, diagnosis, ...) algorithms in terms of set &

relational operations.
I Algorithms that can handle very large state sets efficiently, bypassing

inherent limitations of explicit state-space search.
I Complementary to explicit (enumerative) representations of state sets:

strengths in different types of problems.

60 / 89

Symbolic search

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111

61 / 89

Symbolic search

Operations

The image of a set T of states w.r.t. action a is

imga(T) = {s′ ∈ S|s ∈ T, sas′}.

The pre-image of a set T of states w.r.t. action a is

preimga(T) = {s ∈ S|s′ ∈ T, sas′}.

These operations reduce to the relational join and projection operations with a
logic-representation of sets (unary relations) and binary relations.

62 / 89

Symbolic search Algorithms

Finding Plans with a Symbolic Algorithm

Computation of all reachable states

S0 = {I}
Si+1 = Si ∪

⋃
x∈X imgx(Si)

If Si = Si+1, then Sj = Si for all j ≥ i, and the computation can be terminated.

I Si, i ≥ 0 is the set of states with distance ≤ i from the initial state.
I Si\Si−1, i ≥ 1 is the set of states with distance i.
I If G ∩ Si for some i ≥ 0, then there is a plan.

Action sequence recovered from sets Si by a sequence of backward-chaining
steps.

63 / 89

Symbolic search Algorithms

Use in Connection with Heuristic Search Algorithms

Symbolic (BDD) versions of heuristic algorithms in the state-space search
context:

I SetA∗ [JVB08]
I BDDA∗ [ER98]
I ADDA∗ [HZF02]

64 / 89

Symbolic search Algorithms

Use in Connection with More General Problems

I BDDs and other normal forms standard representation in planning with
partial observability [BCRT01, Rin05]. Also, probabilistic planning
[HSAHB99] with value functions represented as Algebraic Decision
Diagrams (ADD) [FMY97, BFG+97].

I A belief state is a set of possible current states.
I These sets are often very large, best represented as formulas.

65 / 89

Symbolic search Algorithms

Significance of Symbolic Representations

I Much more powerful framework than SAT or explicit state-space search.
I Unlike other methods, allows exhaustive generation of reachable states.
I Problem 1: e.g. with BDDs, size of transition relation may explode.
I Problem 2: e.g. with BDDs, size of sets Si may explode.
I Important research topic: symbolic search with less restrictive normal

forms than BDD.

66 / 89

Symbolic search Algorithms

Images as Relational Operations

s000
s210

./

s0s100 01
s0s200 10
s1s001 00
s1s201 10
s2s010 00

=
s0s100 01
s0s200 10
s2s010 00

x0x1
00 1
01 0
10 1
11 0

./

x0x1x
′
0x
′
1

0000 0
0001 1
0010 1
0011 0
0100 1
0101 0
0110 1
0111 0
1000 1
1001 0
1010 0
1011 0
1100 0
1101 0
1110 0
1111 0

=

x0x1x
′
0x
′
1

0001 1
0010 1
1000 1

67 / 89

Symbolic search Operations

Representation of Sets as Formulas

state sets formulas over X
those 2|X|

2 states where x is true x ∈ X
E (complement) ¬E
E ∪ F E ∨ F
E ∩ F E ∧ F
E\F (set difference) E ∧ ¬F

the empty set ∅ ⊥ (constant false)
the universal set > (constant true)

question about sets question about formulas
E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?

68 / 89

Symbolic search Operations

Sets (of states) as formulas

Formulas over X represent sets

a ∨ b over X = {a, b, c}
represents the set {a0

b
1
c
0, 011, 100, 101, 110, 111}.

Formulas over X ∪X ′ represent binary relations

a ∧ a′ ∧ (b↔ b′) over X ∪X ′ where X = {a, b}, X ′ = {a′, b′}
represents the binary relation {(a1

b
0,

a′

1
b′

0), (11, 11)}.
Valuations

a
1
b
0
a′

1
b′

0 and 1111 of X ∪X ′ can be viewed respectively as pairs of

valuations (
a
1
b
0,

a′

1
b′

0) and (11, 11) of X.

69 / 89

Symbolic search Operations

Relation Operations

relation operation logical operation
projection abstraction
join conjunction

70 / 89

Symbolic search Normal Forms

Normal Forms
normal form reference comment
NNF Negation Normal Form
DNF Disjunctive Normal Form
CNF Conjunctive Normal Form
BDD Binary Decision Diagram [Bry92] most popular
DNNF Decomposable NNF [Dar01] more compact

Darwiche’s terminology: knowledge compilation languages [DM02]

Trade-off

I more compact 7→ less efficient operations
I But, “more efficient” is in the size of a correspondingly inflated formula.

(Also more efficient in terms of wall clock?)
BDD-SAT is O(1), but e.g. translation into BDDs is (usually) far less
efficient than testing SAT directly.

71 / 89

Symbolic search Normal Forms

Complexity of Operations

Operations offered e.g. by BDD packages:

∨ ∧ ¬ φ ∈TAUT? φ ∈SAT? φ ≡ φ′?
NNF poly poly poly co-NP-hard NP-hard co-NP-hard
DNF poly exp exp co-NP-hard in P co-NP-hard
CNF exp poly exp in P NP-hard co-NP-hard
BDD exp exp poly in P in P in P

Remark
For BDDs one ∨/∧ is polynomial time/size (size is doubled) but repeated ∨/∧ lead to
exponential size.

72 / 89

Symbolic search ∃/∀-Abstraction

Existential and Universal Abstraction

Definition
Existential abstraction of a formula φ with respect to x ∈ X:

∃x.φ = φ[>/x] ∨ φ[⊥/x].

Universal abstraction is defined analogously by using conjunction instead of
disjunction.

Definition
Universal abstraction of a formula φ with respect to x ∈ X:

∀x.φ = φ[>/x] ∧ φ[⊥/x].

73 / 89

Symbolic search ∃/∀-Abstraction

∃-Abstraction

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
≡ (> ∨>) ∨ (> ∨⊥) ≡ >

74 / 89

Symbolic search ∃/∀-Abstraction

∀ and ∃-Abstraction in Terms of Truth-Tables

∀c and ∃c correspond to combining lines with the same valuation for variables
other than c.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a
a b c a ∨ (b ∧ c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))

0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c.(a ∨ (b ∧ c))

0 0 0

0 1 0

1 0 1

1 1 1

75 / 89

Symbolic search Images

Encoding of Actions as Formulas

Let X be the set of all state variables. An action a corresponds to the
conjunction of the precondition Pj and

x′ ↔ Fi(X)

for all x ∈ X. Denote this by τX(a).

Example (move-from-A-to-B)

atA ∧ (atA′ ↔ ⊥) ∧ (atB′ ↔ >) ∧ (atC ′ ↔ atC) ∧ (atD′ ↔ atD)

This is exactly the same as in the SAT case, except that we have x and x′

instead of x@t and x@(t+ 1).

76 / 89

Symbolic search Images

Computation of Successor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Image Operation

The image {s′ ∈ S|s ∈ T, sas′} of T with respect to a is

imga(φ) = (∃X.(φ ∧ τX(a)))[X/X ′].

The renaming is necessary to obtain a formula over X.

77 / 89

Symbolic search Images

Computation of Predecessor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Preimage Operation

The pre-image {s ∈ S|s′ ∈ T, sas′} of T with respect to a is

preimga(φ) = (∃X ′.(φ[X ′/X] ∧ τX(a))).

The renaming of φ is necessary so that we can start with a formula over X.

78 / 89

Planners

Engineering Efficient Planners

I Gap between Theory and Practice large: engineering details of
implementation critical for performance in current planners.

I Few of the most efficient planners use textbook methods.
I Explanations for the observed differences between planners lacking: this

is more art than science.

79 / 89

Planners Algorithm Portfolios

Algorithm Portfolios

I Algorithm portfolio = combination of two or more algorithms
I Useful if there is no single “strongest” algorithm.

algorithm 1

algorithm 2

algorithm 3

80 / 89

Planners Algorithm Portfolios

Algorithm Portfolios
Composition methods

Composition methods:
I selection = choose one, for the instance in question
I parallel composition = run components in parallel
I sequential composition = run consecutively, according to a schedule

Examples: BLACKBOX [KS99], FF [HN01], LPG [GS02] (all use sequential
composition)

81 / 89

Planners Algorithm Portfolios

Algorithm Portfolios
An Illustration of Portfolios

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b

e
r

o
f

s
o

lv
e
d

 i
n

s
ta

n
c
e

s

time in seconds

STRIPS instances

HSP

FF-1

FF-2

FF

LPG-td-1

LPG-td

LAMA08

YAHSP

FF = FF-1 followed by FF-2
LPG-td = LPGT-td-1 followed by FF-2

82 / 89

Evaluation

Evaluation of Planners

Evaluation of planning systems is based on

I Hand-crafted problems (from the planning competitions)
I This is the most popular option.
+ Problems with (at least moderately) different structure.
- Real-world relevance mostly low.
- Instance generation uncontrolled: not known if easy or difficult.
- Many have a similar structure: objects moving in a network.

I Benchmark sets obtained by translation from other problems
I graph-theoretic problems: cliques, colorability, ... [PMB11]

I Instances sampled from all instances [?].
+ Easy to control problem hardness.
- No direct real-world relevance (but: core of any “hard” problem)

83 / 89

Evaluation

Sampling from the Set of All Instances
[?, Rin04c]

I Generation:
1. Fix number N of state variables, number M of actions.
2. For each action, choose preconditions and effects randomly.

I Has a phase transition from unsolvable to solvable, similarly to SAT
[MSL92] and connectivity of random graphs [Bol85].

I Exhibits an easy-hard-easy pattern, for a fixed N and an increasing M ,
analogously to SAT [MSL92].

I Hard instances roughly at the 50 per cent solvability point.
I Hardest instances are very hard: 20 state variables too difficult for many

planners, as their heuristics don’t help.

84 / 89

Evaluation

Sampling from the Set of All Instances
Experiments with planners

 0.01

 0.1

 1

 10

 100

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

ratio operators / state variables

Model A: Distribution of runtimes with SAT

85 / 89

References

References I
Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto Sebastiani.
Verifying industrial hybrid systems with MathSAT.
Electronic Notes in Theoretical Computer Science, 119(2):17–32, 2005.

Gilles Audemard, Alessandro Cimatti, Artur Korniłowicz, and Roberto Sebastiani.
Bounded model checking for timed systems.
In Formal Techniques for Networked and Distributed Systems - FORTE 2002, number 2529 in Lecture
Notes in Computer Science, pages 243–259. Springer-Verlag, 2002.

Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter van Rossum, Stephan
Schulz, and Roberto Sebastiani.
The MathSAT 3 system.
In Automated Deduction - CADE-20, volume 3632 of Lecture Notes in Computer Science, pages
315–321. Springer-Verlag, 2005.

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso.
Planning in nondeterministic domains under partial observability via symbolic model checking.
In Bernhard Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial
Intelligence, pages 473–478. Morgan Kaufmann Publishers, 2001.

Avrim L. Blum and Merrick L. Furst.
Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications.
Formal Methods in System Design: An International Journal, 10(2/3):171–206, 1997.

86 / 89

References

References II
Blai Bonet and Héctor Geffner.
Planning as heuristic search.
Artificial Intelligence, 129(1-2):5–33, 2001.

B. Bollobás.
Random graphs.
Academic Press, 1985.

R. E. Bryant.
Symbolic Boolean manipulation with ordered binary decision diagrams.
ACM Computing Surveys, 24(3):293–318, September 1992.

Tom Bylander.
The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

S. A. Cook.
The complexity of theorem proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

Joseph C. Culberson and Jonathan Schaeffer.
Searching with pattern databases.
In Gordon I. McCalla, editor, Advances in Artificial Intelligence, 11th Biennial Conference of the Canadian
Society for Computational Studies of Intelligence, AI ’96, Toronto, Ontario, Canada, May 21-24, 1996,
Proceedings, volume 1081 of Lecture Notes in Computer Science, pages 402–416. Springer-Verlag,
1996.

87 / 89

References

References III
Adnan Darwiche.
Decomposable negation normal form.
Journal of the ACM, 48(4):608–647, 2001.

Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski.
Directed model checking with distance-preserving abstractions.
International Journal on Software Tools for Technology Transfer, 11(1):27–37, 2009.

Minh Binh Do and Subbarao Kambhampati.
Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP.
Artificial Intelligence, 132(2):151–182, 2001.

Adnan Darwiche and Pierre Marquis.
A knowledge compilation map.
Journal of Artificial Intelligence Research, 17:229–264, 2002.

Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler.
Encoding planning problems in nonmonotonic logic programs.
In S. Steel and R. Alami, editors, Recent Advances in AI Planning. Fourth European Conference on
Planning (ECP’97), number 1348 in Lecture Notes in Computer Science, pages 169–181.
Springer-Verlag, 1997.

G. Dueck and T. Scheuer.
Threshold accepting: a general purpose optimization algorithm appearing superior to simulated
annealing.
Journal of Computational Physics, 90:161–175, 1990.

88 / 89

References

References IV
Stefan Edelkamp.
Planning with pattern databases.
In Proceedings of the 6th European Conference on Planning (ECP-01), pages 13–24, 2000.
Unpublished.

Stefan Edelkamp and Frank Reffel.
OBDDs in heuristic search.
In KI-98: Advances in Artificial Intelligence, number 1504 in Lecture Notes in Computer Science, pages
81–92. Springer-Verlag, 1998.

E. Allen Emerson and A. Prasad Sistla.
Symmetry and model-checking.
Formal Methods in System Design: An International Journal, 9(1/2):105–131, 1996.

M. Fujita, P. C. McGeer, and J. C.-Y. Yang.
Multi-terminal binary decision diagrams: an efficient data structure for matrix representation.
Formal Methods in System Design: An International Journal, 10(2/3):149–169, 1997.

Fred Glover.
Tabu search – part I.
ORSA Journal on Computing, 1(3):190–206, 1989.

P. Godefroid.
Using partial orders to improve automatic verification methods.
In Kim Guldstrand Larsen and Arne Skou, editors, Proceedings of the 2nd International Conference on
Computer-Aided Verification (CAV ’90), Rutgers, New Jersey, 1990, number 531 in Lecture Notes in
Computer Science, pages 176–185. Springer-Verlag, 1991.

89 / 89

References

References V
Nicolò Giorgetti, George J. Pappas, and Alberto Bemporad.
Bounded model checking of hybrid dynamical systems.
In Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control
Conference 2005, pages 672–677. IEEE, 2005.

Alfonso Gerevini and Ivan Serina.
LPG: a planner based on local search for planning graphs with action costs.
In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso, editors, Proceedings of the Sixth International
Conference on Artificial Intelligence Planning Systems, April 23-27, 2002, Toulouse, France, pages
13–22. AAAI Press, 2002.

Hana Galperin and Avi Wigderson.
Succinct representations of graphs.
Information and Control, 56:183–198, 1983.
See [Loz88] for a correction.

Malte Helmert and Carmel Domshlak.
Landmarks, critical paths and abstractions: What’s the difference anyway.
In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis, editors, ICAPS 2009.
Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling, pages
162–169. AAAI Press, 2009.

Malte Helmert, Patrik Haslum, and Joerg Hoffmann.
Flexible abstraction heuristics for optimal sequential planning.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pages 176–183. AAAI Press, 2007.

90 / 89

References

References VI
J. Hoffmann and B. Nebel.
The FF planning system: fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–302, 2001.

P. E. Hart, N. J. Nilsson, and B. Raphael.
A formal basis for the heuristic determination of minimum-cost paths.
IEEE Transactions on System Sciences and Cybernetics, SSC-4(2):100–107, 1968.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier.
SPUDD: Stochastic planning using decision diagrams.
In Kathryn B. Laskey and Henri Prade, editors, Uncertainty in Artificial Intelligence, Proceedings of the
Fifteenth Conference (UAI-99), pages 279–288. Morgan Kaufmann Publishers, 1999.

E. Hansen, R. Zhou, and Z. Feng.
Symbolic heuristic search using decision diagrams.
In Abstraction, Reformulation, and Approximation, pages 83–98. Springer-Verlag, 2002.

Paul Jackson and Daniel Sheridan.
Clause form conversions for Boolean circuits.
In Holger H. Hoos and David G. Mitchell, editors, Theory and Applications of Satisfiability Testing, 7th
International Conference, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004, Revised Selected
Papers, volume 3542 of Lecture Notes in Computer Science, pages 183–198. Springer-Verlag, 2005.

R. M. Jensen, M. M. Veloso, and R. E. Bryant.
State-set branching: Leveraging BDDs for heuristic search.
Artificial Intelligence, 172(2-3):103–139, 2008.

91 / 89

References

References VII
S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi.
Optimization by simulated annealing.
Science, 220(4598):671–680, May 1983.

Henry Kautz, David McAllester, and Bart Selman.
Encoding plans in propositional logic.
In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Fifth International Conference (KR ’96), pages 374–385. Morgan
Kaufmann Publishers, 1996.

R. E. Korf.
Depth-first iterative deepening: an optimal admissible tree search.
Artificial Intelligence, 27(1):97–109, 1985.

Henry Kautz and Bart Selman.
Planning as satisfiability.
In Bernd Neumann, editor, Proceedings of the 10th European Conference on Artificial Intelligence, pages
359–363. John Wiley & Sons, 1992.

Henry Kautz and Bart Selman.
Pushing the envelope: planning, propositional logic, and stochastic search.
In Proceedings of the 13th National Conference on Artificial Intelligence and the 8th Innovative
Applications of Artificial Intelligence Conference, pages 1194–1201. AAAI Press, 1996.

Henry Kautz and Bart Selman.
Unifying SAT-based and graph-based planning.
In Thomas Dean, editor, Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pages 318–325. Morgan Kaufmann Publishers, 1999.

92 / 89

References

References VIII
Antonio Lozano and José L. Balcázar.
The complexity of graph problems for succinctly represented graphs.
In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th International Workshop,
WG’89, number 411 in Lecture Notes in Computer Science, pages 277–286. Springer-Verlag, 1990.

Michael L. Littman.
Probabilistic propositional planning: Representations and complexity.
In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97) and 9th Innovative
Applications of Artificial Intelligence Conference (IAAI-97), pages 748–754. AAAI Press, 1997.

Antonio Lozano.
NP-hardness of succinct representations of graphs.
Bulletin of the European Association for Theoretical Computer Science, 35:158–163, June 1988.

Drew McDermott.
A heuristic estimator for means-ends analysis in planning.
In Brian Drabble, editor, Proceedings of the Third International Conference on Artificial Intelligence
Planning Systems, pages 142–149. AAAI Press, 1996.

Drew McDermott.
The Planning Domain Definition Language.
Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, Yale
University, October 1998.

Omid Madani, Steve Hanks, and Anne Condon.
On the undecidability of probabilistic planning and related stochastic optimization problems.
Artificial Intelligence, 147(1–2):5–34, 2003.

93 / 89

References

References IX

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient SAT solver.
In Proceedings of the 38th ACM/IEEE Design Automation Conference (DAC’01), pages 530–535. ACM
Press, 2001.

David A. McAllester and David Rosenblitt.
Systematic nonlinear planning.
In Proceedings of the 9th National Conference on Artificial Intelligence, volume 2, pages 634–639. AAAI
Press / The MIT Press, 1991.

David Mitchell, Bart Selman, and Hector Levesque.
Hard and easy distributions of SAT problems.
In William Swartout, editor, Proceedings of the 10th National Conference on Artificial Intelligence, pages
459–465. The MIT Press, 1992.

Panagiotis Manolios and Daron Vroon.
Efficient circuit to CNF conversion.
In Joao Marques-Silva and Karem A. Sakallah, editors, Proceedings of the 8th International Conference
on Theory and Applications of Satisfiability Testing (SAT-2007), volume 4501 of Lecture Notes in
Computer Science, pages 4–9. Springer-Verlag, 2007.

Aldo Porco, Alejandro Machado, and Blai Bonet.
Automatic polytime reductions of NP problems into a fragment of STRIPS.
In ICAPS 2011. Proceedings of the Twenty-First International Conference on Automated Planning and
Scheduling, pages 178–185. AAAI Press, 2011.

94 / 89

References

References X
Nathan Robinson, Charles Gretton, Duc-Nghia Pham, and Abdul Sattar.
SAT-based parallel planning using a split representation of actions.
In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis, editors, ICAPS 2009.
Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling, pages
281–288. AAAI Press, 2009.

S. Richter and M. Helmert.
Preferred operators and deferred evaluation in satisficing planning.
In ICAPS 2009. Proceedings of the Nineteenth International Conference on Automated Planning and
Scheduling, pages 273–280, 2009.

Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä.
Planning as satisfiability: parallel plans and algorithms for plan search.
Artificial Intelligence, 170(12-13):1031–1080, 2006.

Jussi Rintanen.
A planning algorithm not based on directional search.
In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth International Conference (KR ’98), pages 617–624. Morgan
Kaufmann Publishers, 1998.

Jussi Rintanen.
Complexity of planning with partial observability.
In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS 2004. Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling, pages 345–354. AAAI
Press, 2004.

95 / 89

References

References XI

Jussi Rintanen.
Evaluation strategies for planning as satisfiability.
In Ramon López de Mántaras and Lorenza Saitta, editors, ECAI 2004. Proceedings of the 16th European
Conference on Artificial Intelligence, pages 682–687. IOS Press, 2004.

Jussi Rintanen.
Phase transitions in classical planning: an experimental study.
In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS 2004. Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling, pages 101–110. AAAI
Press, 2004.

Jussi Rintanen.
Conditional planning in the discrete belief space.
In Leslie Pack Kaelbling, editor, Proceedings of the 19th International Joint Conference on Artificial
Intelligence, pages 1260–1265. Morgan Kaufmann Publishers, 2005.

Jussi Rintanen.
Compact representation of sets of binary constraints.
In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors, ECAI 2006. Proceedings
of the 17th European Conference on Artificial Intelligence, pages 143–147. IOS Press, 2006.

Jussi Rintanen.
Complexity of concurrent temporal planning.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pages 280–287. AAAI Press, 2007.

96 / 89

References

References XII
Jussi Rintanen.
Regression for classical and nondeterministic planning.
In Malik Ghallab, Constantine D. Spyropoulos, and Nikos Fakotakis, editors, ECAI 2008. Proceedings of
the 18th European Conference on Artificial Intelligence, pages 568–571. IOS Press, 2008.

Jussi Rintanen.
Heuristic planning with SAT: beyond uninformed depth-first search.
In Jiuyong Li, editor, AI 2010 : Advances in Artificial Intelligence: 23rd Australasian Joint Conference on
Artificial Intelligence, Adelaide, South Australia, December 7-10, 2010, Proceedings, number 6464 in
Lecture Notes in Computer Science, pages 415–424. Springer-Verlag, 2010.

Jussi Rintanen.
Heuristics for planning with SAT.
In David Cohen, editor, Principles and Practice of Constraint Programming - CP 2010, 16th International
Conference, CP 2010, St. Andrews, Scotland, September 2010, Proceedings., number 6308 in Lecture
Notes in Computer Science, pages 414–428. Springer-Verlag, 2010.

Andreas Sideris and Yannis Dimopoulos.
Constraint propagation in propositional planning.
In ICAPS 2010. Proceedings of the Twentieth International Conference on Automated Planning and
Scheduling, pages 153–160. AAAI Press, 2010.

Matthew Streeter and Stephen F. Smith.
Using decision procedures efficiently for optimization.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pages 312–319. AAAI Press, 2007.

97 / 89

References

References XIII

Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamohideen, and Demosthenis
Teneketzis.
Diagnosability of discrete-event systems.
IEEE Transactions on Automatic Control, 40(9):1555–1575, 1995.

P. H. Starke.
Reachability analysis of Petri nets using symmetries.
Journal of Mathematical Modelling and Simulation in Systems Analysis, 8(4/5):293–303, 1991.

G. S. Tseitin.
On the complexity of derivation in propositional calculus.
In A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic, Part 2, pages
115–125. Consultants Bureau, New York - London, 1962.

Antti Valmari.
Stubborn sets for reduced state space generation.
In Grzegorz Rozenberg, editor, Advances in Petri Nets 1990. 10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, number 483 in Lecture Notes in Computer
Science, pages 491–515. Springer-Verlag, 1991.

Peter van Beek and Xinguang Chen.
CPlan: a constraint programming approach to planning.
In Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99) and the 11th
Conference on Innovative Applications of Artificial Intelligence (IAAI-99), pages 585–590. AAAI Press,
1999.

98 / 89

References

References XIV

Vincent Vidal.
A lookahead strategy for heuristic search planning.
In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS 2004. Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling, pages 150–160. AAAI
Press, 2004.

Emmanuel Zarpas.
Simple yet efficient improvements of SAT based bounded model checking.
In Alan J. Hu and Andrew K. Martin, editors, Formal Methods in Computer-Aided Design: 5th
International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004. Proceedings,
number 3312 in Lecture Notes in Computer Science, pages 174–185. Springer-Verlag, 2004.

99 / 89

