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Introduction

Planning
What to do to achieve your objectives?

I Which actions to take to achieve your objectives?
I Number of agents

I single agent, perfect information: s-t-reachability in succinct graphs
I + nondeterminism/adversary: and-or tree search
I + partial observability: and-or search in the space of beliefs

Time
I asynchronous or instantaneous actions (integer time, unit duration)
I rational/real time, concurrency

Objective
I Reach a goal state.
I Maximize probability of reaching a goal state.
I Maximize (expected) rewards.
I temporal goals (e.g. LTL)
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Introduction

Hierarchy of Planning Problems

classical (PSPACE [GW83, Loz88, LB90, Byl94])

temporal (EXPSPACE [Rin07])conditional/MDP (EXP [Lit97])

partially observable (2-EXPTIME [Rin04a])

POMDP (undecidable [MHC03])
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Introduction

Classical (Deterministic, Sequential) Planning

I states and actions expressed in terms of state variables
I single initial state, that is known
I all actions deterministic
I actions taken sequentially, one at a time
I a goal state (expressed as a formula) reached in the end

Deciding whether a plan exists is PSPACE-complete.
With a polynomial bound on plan length, NP-complete.
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Introduction

Domain-Independent Planning

What is domain-independent?

I general language for representing problems (e.g. PDDL)
I general algorithms to solve problems expressed in it

Advantages and disadvantages:
+ Representation of problems at a high level
+ Fast prototyping
+ Often easy to modify and extend
- Potentially high performance penalty w.r.t. specialized algorithms
- Trade-off between generality and efficiency
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Introduction

Domain-Specific Planning

What is domain-specific?

I application-specific representation
I application-specific constraints/propagators
I application-specific heuristics

There are some planning systems that have aspects of these, but mostly this
means: implement everything from scratch.
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Introduction

Domain-Dependent vs. -Independent Planning
Procedure

Formalize in PDDL

Try off-the-shelf planners

Problem solved?

Go domain-specific Done
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Introduction

Related Problems, Reductions
planning, diagnosis [SSL+95], model-checking (verification)

planning

model-checking

DES diagnosis

state-spaceSAT/CSP/IP symbolic BDD
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Introduction

How to Represent Planning Problems?

planning

transition-
based

SMV Petri Nets

PDDL

constraint-
based

SAT

CSP

Answer-Set
Programs

Different strengths and advantages; No single “right” language.
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Introduction

PDDL - Planning Domain Description Language

I Defined in 1998 [McD98], with several extensions later.
I Lisp-style syntax
I Widely used in the planning community.
I Most basic version with Boolean state variables only.
I Action sets expressed as schemata instantiated with objects.

(:action analyze-2
:parameters (?s1 ?s2 - segment ?c1 ?c2 - car)
:precondition (and (CYCLE-2-WITH-ANALYSIS ?s1 ?s2)

(on ?c1 ?s1))
:effect (and (not (on ?c1 ?s1))

(on ?c2 ?s1)
(analyzed ?c1)
(increase (total-cost) 3)))
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Introduction

States

States are valuations of state variables.

Example
State variables are
LOCATION: {0, . . . , 1000}

GEAR: {R, 1, 2, 3, 4, 5}
FUEL: {0, . . . , 60}

SPEED: {−20, . . . , 200}
DIRECTION: {0, . . . , 359}

One state is
LOCATION =312

GEAR = 4
FUEL = 58

SPEED =110
DIRECTION = 90
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Introduction

State-space transition graphs
Blocks world with three blocks
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Introduction

Actions
How values of state variables change

General form
precondition: A=1 ∧ C=1
effect: A := 0; B := 1; C := 0;

STRIPS representation

PRE: A, C
ADD: B
DEL: A, C

Petri net

A

C

B

action
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Introduction

Weaknesses in Existing Languages

I High-level concepts not easily/efficiently expressible.
Examples: graph connectivity, transitive closure.

I Limited or no facilities to express domain-specific information (control,
pruning, heuristics).

I The notion of classical planning is limited:
I Real world rarely a single run of the sense-plan-act cycle.
I Main issue often uncertainty, costs, or both.
I Often rational time and concurrency are critical.
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Introduction

Formalization of Planning in This Tutorial

A problem instance in (classical) planning consists of the following.

I set X of state variables
I set A of actions 〈p, e〉 where

I p is the precondition (a set of literals over X)
I e is the effects (a set of literals over X)

I initial state I : X → {0, 1} (a valuation of X)
I goals G (a set of literals over X)
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Introduction

The planning problem

An action a = 〈p, e〉 is applicable in state s iff s |= p.
The successor state s′ = execa(s) is defined by

I s′ |= e

I s(x) = s′(x) for all x ∈ X that don’t occur in e.

Problem
Find a1, . . . , an such that execan(execan−1(· · · execa2(execa1(I)) · · ·)) |= G?
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Introduction

Development of state-space search methods
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Planning as SAT
SATPLAN

GRASP
SATZ
Bounded Model-Checking
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Introduction

Symbolic Representations vs. Fwd and Bwd Search

symbolic data structures (BDD, DNNF, ...)

SAT

forward

backward

singleton backward

1. symbolic data structures
2. SAT
3. state-space search
4. others: partial-order planning [MR91] (until 1995)
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State-Space Search

Explicit State-Space Search

I The most basic search method for transition systems
I Very efficient for small state spaces (1 million states)
I Easy to implement
I Very well understood
I Pruning methods:

I symmetry reduction [Sta91, ES96]
I partial-order reduction [God91, Val91]
I lower-bounds / heuristics, for informed search [HNR68]
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State-Space Search

State Representation

Each state represented explicitly⇒ compact state representation important

I Boolean (0, 1) state variables represented by one bit
I Inter-variable dependencies enable further compaction:

I ¬(at(A,L1)∧at(A,L2)) always true
I automatic recognition of invariants [BF97, Rin98, Rin08]
I n exclusive variables x1, . . . , xn represented by 1 + blog2(n− 1)c bits
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State-Space Search

Search Algorithms

I uninformed/blind search: depth-first, breadth-first, ...
I informed search: “best first” search (always expand best state so far)
I informed search: local search algorithms such as simulated annealing,

tabu search and others [KGJV83, DS90, Glo89] (little used in planning)
I optimal algorithms: A∗ [HNR68], IDA∗ [Kor85]
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State-Space Search Symmetry Reduction

Symmetry Reduction [Sta91, ES96]

Idea

1. Define an equivalence relation ∼ on the set of all states: s1 ∼ s2 means
that state s1 is symmetric with s2.

2. Only one state sC in each equivalence class C needs to be considered.
3. If state s ∈ C with s 6= [sC ] is encountered, replace it with sC .

Example

States P (A) ∧ ¬P (B) ∧ P (C) and ¬P (A) ∧ P (B) ∧ P (C) are symmetric
because of the permutation A 7→ B,B 7→ A,C 7→ C.
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State-Space Search Symmetry Reduction

Symmetry Reduction
Example: 11 states, 3 equivalence classes
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State-Space Search Part. Order Red.

Partial Order Reduction
Stubborn sets and related methods

Idea [God91, Val91]
Independent actions unnecessary to consider in all orderings, e.g. both
A1, A2 and A2, A1.

Example

Let there be lamps 1, 2, . . . , n which can be turned on. There are no other
actions. One can restrict to plans in which lamps are turned on in the
ascending order: switching lamp n after lamp m > n needless.1

1The same example is trivialized also by symmetry reduction!
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State-Space Search Heuristics

Heuristics for Classical Planning

The most basic heuristics widely used for non-optimal planning:
hmax [BG01, McD96] best-known admissible heuristic
h+ [BG01] still state-of-the-art
hrelax [HN01] often more accurate, but performs like h+
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State-Space Search Heuristics

Definition of hmax, h+ and hrelax

I Basic insight: estimate distances between possible state variable values,
not states themselves.

I gs(l) =

{
0 if s |= l
min

a with effect p
(1 + gs(prec(a)))

I h+ defines gs(L) =
∑

l∈L gs(l) for sets S.
I hmax defines gs(L) = maxl∈L gs(l) for sets S.
I hrelax counts the number of actions in computation of hmax.
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State-Space Search Heuristics

Computation of hmax
Tractor example

1. Tractor moves:
I from 1 to 2: T12 = 〈T1, {T2,¬T1}〉
I from 2 to 1: T21 = 〈T2, {T1,¬T2}〉
I from 2 to 3: T23 = 〈T2, {T3,¬T2}〉
I from 3 to 2: T32 = 〈T3, {T2,¬T3}〉

2. Tractor pushes A:
I from 2 to 1: A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
I from 3 to 2: A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉

3. Tractor pushes B:
I from 2 to 1: B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
I from 3 to 2: B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉
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State-Space Search Heuristics

Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Distance of A1 ∧B1 is 4.
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State-Space Search Heuristics

hmax Underestimates

Example

Estimate for lamp1on ∧ lamp2on ∧ lamp3on with

〈>, {lamp1on}〉
〈>, {lamp2on}〉
〈>, {lamp3on}〉

is 1. Actual shortest plan has length 3.
By definition, hmax(G1 ∧ · · · ∧Gn) is the maximum of hmax(G1), . . . , hmax(Gn).
If goals are independent, the sum of the estimates is more accurate.
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State-Space Search Heuristics

Computation of h+

Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF F TF TF F TF TF
5 TF TF TF TF TF TF TF TF TF

h+(T2 ∧A2) is 1+3.
h+(A1) is 1+3+1 = 5 (hmax gives 4.)
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State-Space Search Heuristics

Computation of hrelax
Motivation

estimate for a ∧ b ∧ c
actions max sum actual
〈>, {a, b, c}〉 1 3 1
〈>, {a}〉, 〈>, {b}〉, 〈>, {c}〉 1 3 3

I Better estimates with hrelax (but: performance is similar to h+).
I Application: directing search with preferred actions [Vid04, RH09]
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State-Space Search Heuristics

Computation of hrelax

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Estimate for A1 ∧B1 with relaxed plans:
t relaxed plan
0 T12
1 T23
2 A32, B32
3 A21, B21

estimate = number of actions in relaxed plan = 6

33 / 89

State-Space Search Heuristics

Comparison of the Heuristics

I For the Tractor example:
I actions in the shortest plan: 8
I hmax yields 4 (never overestimates).
I h+ yields 10 (may under or overestimate).
I hrelax yield 6 (may under or overestimate).

I The sum-heuristic and the relaxed plan heuristic are used in practice for
non-optimal planners.

34 / 89

State-Space Search Heuristics

Preferred Actions

I h+ and hrelax boosted with preferred/helpful actions.
I Preferred actions on the first level t = 0 in a relaxed plan.
I Several possibilities:

I Always expand with a preferred action when possible [Vid04].
I A tie-breaker when the heuristic values agree [RH09].

I Planners based on explicit state-space search use them: YAHSP, LAMA.
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State-Space Search Heuristics

Performance of State-Space Search Planners
Planning Competition Problems
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State-Space Search Heuristics

Heuristics for Optimal Planning

Admissible heuristics are needed for finding optimal plans, e.g with A∗

[HNR68]. Scalability much poorer.

Pattern Databases [CS96, Ede00]
Abstract away many/most state variables, and use the length/cost of the
optimal solution to the remaining problem as an estimate.

Generalized Abstraction (merge and shrink) [DFP09, HHH07]
A generalization of pattern databases, allowing more complex aggregation of
states (not just identification of ones agreeing on a subset of state variables.)

Landmark-cut [HD09] has been doing well with planning competition
problems.
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SAT

Planning with SAT
Background

I Proposed by Kautz and Selman [KS92].
I Idea as in Cook’s proof of NP-hardness of SAT [Coo71]: encode each

step of a plan as a propositional formula.
I Intertranslatability of NP-complete problems⇒ reductions to many other

problems possible.

Related solution methods
constraint satisfaction (CSP) [vBC99, DK01]
NM logic programs / answer-set programs [DNK97]

Translations from SAT into other formalisms often simple. In terms of
performance, SAT is usually the best choice.
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SAT

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111
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SAT

Encoding of Actions as Formulas
for Sequential Plans

An action j corresponds to the conjunction of the precondition Pj@t and

xi@(t+ 1)↔ Fi(x1@t, . . . , xn@t)

for all i ∈ {1, . . . , n}. Denote this by Ej@t.

Example (move-from-X-to-Y)

precond︷ ︸︸ ︷
atX@t ∧

effects︷ ︸︸ ︷
(atX@(t+ 1)↔ ⊥) ∧ (atY@(t+ 1)↔ >)
∧(atZ@(t+ 1)↔ atZ@t) ∧ (atU@(t+ 1)↔ atU@t)

Choice between actions 1, . . . ,m expressed by the formula

R@t = E1@t ∨ · · · ∨ Em@t.
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SAT

Finding a Plan with SAT

Let
I I be a formula expressing the initial state, and
I G be a formula expressing the goal states.

Then a plan of length T exists iff

I@0 ∧
T−1∧

t=0

R@t ∧GT

is satisfiable.

Remark
Most SAT solvers require formulas to be in CNF. There are efficient
transformations to achieve this [Tse62, JS05, MV07].
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SAT Parallel Plans

Parallel Plans: Motivation

I Don’t represent all intermediate
states of a sequential plan.

I Ignore relative ordering of
consecutive actions.

I Reduced number of explicitly
represented states⇒ smaller
formulas

state at t+ 1

state at t
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SAT Parallel Plans

Parallel plans (∀-step plans)
Kautz and Selman 1996

Allow actions a1 = 〈p1, e1〉 and a2 = 〈p2, e2〉 in parallel whenever they don’t
interfere, i.e.

I both p1 ∪ p2 and e1 ∪ e2 are consistent, and
I both e1 ∪ p2 and e2 ∪ p1 are consistent.

Theorem
If a1 = 〈p1, e1〉 and a2 = 〈p1, e1〉 don’t interfere and s is a state such that
s |= p1 and s |= p2, then execa1

(execa2
(s)) = execa2

(execa1
(s)).
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SAT Parallel Plans

∀-step plans: encoding

Define R∀@t as the conjunction of

x@(t+ 1)↔ ((x@t ∧ ¬a1@t ∧ · · · ∧ ¬ak@t) ∨ a′1@t ∨ · · · ∨ a′k′@t)

for all x ∈ X, where a1, . . . , ak are all actions making x false, and a′1, . . . , a′k′
are all actions making x true, and

a@t→ l@t for all l in the precondition of a,

and
¬(a@t ∧ a′@t) for all a and a′ that interfere.

This encoding is quadratic due to the interference clauses.
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SAT Parallel Plans

∀-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Action a with effect l disables all actions with precondition l, except a itself.
This is done in two parts: disable actions with higher index, disable actions
with lower index.

a1 a2 a3 a4 a5

v2 v4 v5

w1 w2 w4

This is needed for every literal.
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SAT Parallel Plans

∃-step plans
Dimopoulos et al. 1997 [DNK97]

Allow actions {a1, . . . , an} in parallel if they can be executed in at least one
order.

I
⋃n

i=1 pi is consistent.
I
⋃n

i=1 ei is consistent.
I There is a total ordering a1, . . . , an such that ei ∪ pj is consistent

whenever i ≤ j: disabling an action earlier in the ordering is allowed.

Several compact encodings exist [RHN06].
Fewer time steps are needed than with ∀-step plans. Sometimes only half as
many.
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SAT Parallel Plans

∃-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Choose an arbitrary fixed ordering of all actions a1, . . . , an.

Action a with effect l disables all later actions with precondition l.

a1 a2 a3 a4 a5

v2 v4 v5

This is needed for every literal.
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SAT Parallel Plans

Disabling graphs
Rintanen et al. 2006 [RHN06]

Define a disabling graph with actions as nodes and with an arc from a1 to a2
(a1 disables a2) if p1 ∪ p2 and e1 ∪ e2 are consistent and e1 ∪ p2 is inconsistent.

The test for valid execution orderings can be limited to strongly connected
components (SCC) of the disabling graph.

In many structured problems all SCCs are singleton sets.
=⇒ No tests for validity of orderings needed during SAT solving.
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SAT Parallel Plans

Summary of Notions of Plans

plan type reference comment
sequential [KS92] one action per time point
∀-parallel [BF97, KS96] parallel actions independent
∃-parallel [DNK97, RHN06] executable in at least one order

The last two expressible in terms of the relation disables restricted to applied
actions:

I ∀-parallel plans: the disables relation is empty.
I ∃-parallel plans: the disables relation is acyclic.
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SAT Plan Search

Search through Horizon Lengths

The planning problem is reduced to the satisfiability tests for

Φ0 = I@0 ∧G@0
Φ1 = I@0 ∧R@0 ∧G@1
Φ2 = I@0 ∧R@0 ∧R@1 ∧G@2
Φ3 = I@0 ∧R@0 ∧R@1 ∧R@2 ∧G@3
...
Φu = I@0 ∧R@0 ∧R@1 ∧ · · ·R@(u− 1) ∧G@u

where u is the maximum possible plan length.

Q: How to schedule these satisfiability tests?
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SAT Plan Search

Search through Horizon Lengths

algorithm reference comment
sequential [KS92, KS96] slow, guarantees min. horizon
binary search [SS07] prerequisite: length UB
n processes [Rin04b, Zar04] fast, more memory needed
geometric [Rin04b] fast, more memory needed

I sequential: first test Φ0, then Φ1, then Φ2, . . .
I This is breadth-first search / iterative deepening.
I Guarantees shortest horizon length, but is slow.

I parallel strategies: solve several horizon lengths simultaneously
I depth-first flavor
I usually much faster
I no guarantee of minimal horizon length
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SAT Plan Search

Some runtime profiles
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SAT Plan Search

Geometric Evaluation
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SAT SAT Solving

Solving the SAT Problem

SAT problems obtained from planning are solved by
I generic SAT solvers

I Mostly based on Conflict-Driven Clause Learning (CDCL) [MMZ+01].
I Extremely good on hard combinatorial planning problems.
I Not designed for solving the extremely large but “easy” formulas (arising in

some types of benchmark problems).
I specialized SAT solvers [Rin10b, Rin10a]

I Replace standard CDCL heuristics with planning-specific ones.
I For certain problem classes substantial improvement
I New research topic: lots of unexploited potential
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SAT SAT Solving

Solving the SAT Problem
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

Problem solved almost without search:
I Formulas for lengths 1 to 4 shown unsatisfiable without any search.
I Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
I Plans have 5 to 7 operators, optimal plan has 5.
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SAT SAT Solving

Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1. State variable values inferred
from initial values and goals.

2. Branch: ¬clear(b)1.
3. Branch: clear(a)3.
4. Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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SAT SAT Solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2008
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SAT SAT Solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2011 (revised)
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SAT SAT Solving

Extensions

MathSAT [BBC+05] and other SAT modulo Theories (SMT) solvers extend
SAT with numerical variables and equalities and inequalities.
Applications include:

I timed systems [ACKS02], temporal planning
I hybrid systems [GPB05, ABCS05], temporal planning + continuous

change
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Symbolic search

Symbolic Search Methods
Motivation

I logical formulas as a data structure for sets, relations
I Planning (model-checking, diagnosis, ...) algorithms in terms of set &

relational operations.
I Algorithms that can handle very large state sets efficiently, bypassing

inherent limitations of explicit state-space search.
I Complementary to explicit (enumerative) representations of state sets:

strengths in different types of problems.
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Symbolic search

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111
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Symbolic search

Operations

The image of a set T of states w.r.t. action a is

imga(T ) = {s′ ∈ S|s ∈ T, sas′}.

The pre-image of a set T of states w.r.t. action a is

preimga(T ) = {s ∈ S|s′ ∈ T, sas′}.

These operations reduce to the relational join and projection operations with a
logic-representation of sets (unary relations) and binary relations.
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Symbolic search Algorithms

Finding Plans with a Symbolic Algorithm

Computation of all reachable states

S0 = {I}
Si+1 = Si ∪

⋃
x∈X imgx(Si)

If Si = Si+1, then Sj = Si for all j ≥ i, and the computation can be terminated.

I Si, i ≥ 0 is the set of states with distance ≤ i from the initial state.
I Si\Si−1, i ≥ 1 is the set of states with distance i.
I If G ∩ Si for some i ≥ 0, then there is a plan.

Action sequence recovered from sets Si by a sequence of backward-chaining
steps.
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Symbolic search Algorithms

Use in Connection with Heuristic Search Algorithms

Symbolic (BDD) versions of heuristic algorithms in the state-space search
context:

I SetA∗ [JVB08]
I BDDA∗ [ER98]
I ADDA∗ [HZF02]
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Symbolic search Algorithms

Use in Connection with More General Problems

I BDDs and other normal forms standard representation in planning with
partial observability [BCRT01, Rin05]. Also, probabilistic planning
[HSAHB99] with value functions represented as Algebraic Decision
Diagrams (ADD) [FMY97, BFG+97].

I A belief state is a set of possible current states.
I These sets are often very large, best represented as formulas.
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Symbolic search Algorithms

Significance of Symbolic Representations

I Much more powerful framework than SAT or explicit state-space search.
I Unlike other methods, allows exhaustive generation of reachable states.
I Problem 1: e.g. with BDDs, size of transition relation may explode.
I Problem 2: e.g. with BDDs, size of sets Si may explode.
I Important research topic: symbolic search with less restrictive normal

forms than BDD.
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Symbolic search Algorithms

Images as Relational Operations

s000
s210

./

s0s100 01
s0s200 10
s1s001 00
s1s201 10
s2s010 00

=
s0s100 01
s0s200 10
s2s010 00

x0x1
00 1
01 0
10 1
11 0

./

x0x1x
′
0x
′
1

0000 0
0001 1
0010 1
0011 0
0100 1
0101 0
0110 1
0111 0
1000 1
1001 0
1010 0
1011 0
1100 0
1101 0
1110 0
1111 0

=

x0x1x
′
0x
′
1

0001 1
0010 1
1000 1
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Symbolic search Operations

Representation of Sets as Formulas

state sets formulas over X
those 2|X|

2 states where x is true x ∈ X
E (complement) ¬E
E ∪ F E ∨ F
E ∩ F E ∧ F
E\F (set difference) E ∧ ¬F

the empty set ∅ ⊥ (constant false)
the universal set > (constant true)

question about sets question about formulas
E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?
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Symbolic search Operations

Sets (of states) as formulas

Formulas over X represent sets

a ∨ b over X = {a, b, c}
represents the set {a0

b
1
c
0, 011, 100, 101, 110, 111}.

Formulas over X ∪X ′ represent binary relations

a ∧ a′ ∧ (b↔ b′) over X ∪X ′ where X = {a, b}, X ′ = {a′, b′}
represents the binary relation {(a1

b
0,

a′

1
b′

0), (11, 11)}.
Valuations

a
1
b
0
a′

1
b′

0 and 1111 of X ∪X ′ can be viewed respectively as pairs of

valuations (
a
1
b
0,

a′

1
b′

0) and (11, 11) of X.
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Symbolic search Operations

Relation Operations

relation operation logical operation
projection abstraction
join conjunction
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Symbolic search Normal Forms

Normal Forms
normal form reference comment
NNF Negation Normal Form
DNF Disjunctive Normal Form
CNF Conjunctive Normal Form
BDD Binary Decision Diagram [Bry92] most popular
DNNF Decomposable NNF [Dar01] more compact

Darwiche’s terminology: knowledge compilation languages [DM02]

Trade-off

I more compact 7→ less efficient operations
I But, “more efficient” is in the size of a correspondingly inflated formula.

(Also more efficient in terms of wall clock?)
BDD-SAT is O(1), but e.g. translation into BDDs is (usually) far less
efficient than testing SAT directly.
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Symbolic search Normal Forms

Complexity of Operations

Operations offered e.g. by BDD packages:

∨ ∧ ¬ φ ∈TAUT? φ ∈SAT? φ ≡ φ′?
NNF poly poly poly co-NP-hard NP-hard co-NP-hard
DNF poly exp exp co-NP-hard in P co-NP-hard
CNF exp poly exp in P NP-hard co-NP-hard
BDD exp exp poly in P in P in P

Remark
For BDDs one ∨/∧ is polynomial time/size (size is doubled) but repeated ∨/∧ lead to
exponential size.

72 / 89



Symbolic search ∃/∀-Abstraction

Existential and Universal Abstraction

Definition
Existential abstraction of a formula φ with respect to x ∈ X:

∃x.φ = φ[>/x] ∨ φ[⊥/x].

Universal abstraction is defined analogously by using conjunction instead of
disjunction.

Definition
Universal abstraction of a formula φ with respect to x ∈ X:

∀x.φ = φ[>/x] ∧ φ[⊥/x].
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Symbolic search ∃/∀-Abstraction

∃-Abstraction

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
≡ (> ∨>) ∨ (> ∨⊥) ≡ >
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Symbolic search ∃/∀-Abstraction

∀ and ∃-Abstraction in Terms of Truth-Tables

∀c and ∃c correspond to combining lines with the same valuation for variables
other than c.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a
a b c a ∨ (b ∧ c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))

0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c.(a ∨ (b ∧ c))

0 0 0

0 1 0

1 0 1

1 1 1
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Symbolic search Images

Encoding of Actions as Formulas

Let X be the set of all state variables. An action a corresponds to the
conjunction of the precondition Pj and

x′ ↔ Fi(X)

for all x ∈ X. Denote this by τX(a).

Example (move-from-A-to-B)

atA ∧ (atA′ ↔ ⊥) ∧ (atB′ ↔ >) ∧ (atC ′ ↔ atC) ∧ (atD′ ↔ atD)

This is exactly the same as in the SAT case, except that we have x and x′

instead of x@t and x@(t+ 1).
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Symbolic search Images

Computation of Successor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Image Operation

The image {s′ ∈ S|s ∈ T, sas′} of T with respect to a is

imga(φ) = (∃X.(φ ∧ τX(a)))[X/X ′].

The renaming is necessary to obtain a formula over X.
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Symbolic search Images

Computation of Predecessor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Preimage Operation

The pre-image {s ∈ S|s′ ∈ T, sas′} of T with respect to a is

preimga(φ) = (∃X ′.(φ[X ′/X] ∧ τX(a))).

The renaming of φ is necessary so that we can start with a formula over X.
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Planners

Engineering Efficient Planners

I Gap between Theory and Practice large: engineering details of
implementation critical for performance in current planners.

I Few of the most efficient planners use textbook methods.
I Explanations for the observed differences between planners lacking: this

is more art than science.

79 / 89

Planners Algorithm Portfolios

Algorithm Portfolios

I Algorithm portfolio = combination of two or more algorithms
I Useful if there is no single “strongest” algorithm.

algorithm 1

algorithm 2

algorithm 3
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Planners Algorithm Portfolios

Algorithm Portfolios
Composition methods

Composition methods:
I selection = choose one, for the instance in question
I parallel composition = run components in parallel
I sequential composition = run consecutively, according to a schedule

Examples: BLACKBOX [KS99], FF [HN01], LPG [GS02] (all use sequential
composition)
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Planners Algorithm Portfolios

Algorithm Portfolios
An Illustration of Portfolios
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Evaluation

Evaluation of Planners

Evaluation of planning systems is based on

I Hand-crafted problems (from the planning competitions)
I This is the most popular option.
+ Problems with (at least moderately) different structure.
- Real-world relevance mostly low.
- Instance generation uncontrolled: not known if easy or difficult.
- Many have a similar structure: objects moving in a network.

I Benchmark sets obtained by translation from other problems
I graph-theoretic problems: cliques, colorability, ... [PMB11]

I Instances sampled from all instances [?].
+ Easy to control problem hardness.
- No direct real-world relevance (but: core of any “hard” problem)
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Evaluation

Sampling from the Set of All Instances
[?, Rin04c]

I Generation:
1. Fix number N of state variables, number M of actions.
2. For each action, choose preconditions and effects randomly.

I Has a phase transition from unsolvable to solvable, similarly to SAT
[MSL92] and connectivity of random graphs [Bol85].

I Exhibits an easy-hard-easy pattern, for a fixed N and an increasing M ,
analogously to SAT [MSL92].

I Hard instances roughly at the 50 per cent solvability point.
I Hardest instances are very hard: 20 state variables too difficult for many

planners, as their heuristics don’t help.
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Evaluation

Sampling from the Set of All Instances
Experiments with planners
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