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Introduction

Planning
What to do to achieve your objectives?

I Which actions to take to achieve your objectives?
I Number of agents

I single agent, perfect information: s-t-reachability in succinct graphs
I + nondeterminism/adversary: and-or tree search
I + partial observability: and-or search in the space of beliefs

Time
I asynchronous or instantaneous actions (integer time, unit duration)
I rational/real time, concurrency

Objective
I Reach a goal state.
I Maximize probability of reaching a goal state.
I Maximize (expected) rewards.
I temporal goals (e.g. LTL)
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Introduction

Hierarchy of Planning Problems

classical (PSPACE [GW83, Loz88, LB90, Byl94])

temporal (EXPSPACE [Rin07])

conditional/MDP (EXP [Lit97])

partially obs. (2-EXP [Rin04a])

POMDP (undecidable [MHC03])

temporal cond/MDP (≥EXPSPACE)

temp. partially obs. (≥ 2-EXP)
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Introduction

Classical (Deterministic, Sequential) Planning

I states and actions expressed in terms of state variables
I single initial state, that is known
I all actions deterministic
I actions taken sequentially, one at a time
I a goal state (expressed as a formula) reached in the end

Deciding whether a plan exists is PSPACE-complete
[GW83, Loz88, LB90, Byl94].
With a polynomial bound on plan length, NP-complete [KS96].
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Introduction

Domain-Independent Planning

What is domain-independent?

I general language for representing problems (e.g. PDDL)
I general algorithms to solve problems expressed in it

Advantages and disadvantages:
+ Representation of problems at a high level
+ Fast prototyping
+ Often easy to modify and extend
- Often very high performance penalty w.r.t. specialized algorithms
- Trade-off between generality and efficiency
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Introduction

Domain-Specific Planning

What is domain-specific?

I application-specific representation
I application-specific constraints/propagators
I application-specific heuristics

There are some planning systems that have aspects of these, but mostly this
means: implement everything from scratch.
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Introduction

Domain-Dependent vs. -Independent Planning
Procedure

Formalize in PDDL

Try off-the-shelf planners

Problem solved?

Done Go domain-specific
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Introduction

Related Problems, Reductions
planning, diagnosis [SSL+95], model-checking (verification)

planning

model-checking

DES diagnosis

state-spaceSAT/CSP/IP symbolic BDD
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Introduction

How to Represent Planning Problems?

planning

transition-
based

SMV Petri Nets

PDDL

constraint-
based

SAT

IP

CSP

ASP

Different strengths and weaknesses; No single “right” language. 10 / 128

Introduction

PDDL: Planning Domain Description Language

I Defined in 1998 [GHK+98], with several extensions later.
I Lisp-style syntax
I Widely used in the planning (competition) community.
I Most basic version with Boolean state variables only.
I Action sets expressed as schemata instantiated with objects.

(:action unload
:parameters (?obj - obj ?airplane - vehicle ?loc - location)
:precondition (and (in ?obj ?airplane) (at ?airplane ?loc))
:effect (and (not (in ?obj ?airplane))))
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Introduction

States

States are valuations of state variables.

Example
State variables are
LOCATION: {0, . . . , 1000}

GEAR: {R, 1, 2, 3, 4, 5}
FUEL: {0, . . . , 60}

SPEED: {−20, . . . , 200}
DIRECTION: {0, . . . , 359}

One state is
LOCATION =312

GEAR = 4
FUEL = 58

SPEED =110
DIRECTION = 90
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Introduction

State-space transition graphs
Blocks world with three blocks
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Introduction

Actions
How values of state variables change

General form
precondition: A=1 ∧ C=1
effect: A := 0; B := 1; C := 0;

STRIPS representation

PRE: A, C
ADD: B
DEL: A, C

Petri net

A

C

B

action
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Introduction

Weaknesses in Existing Languages

I High-level concepts not easily/efficiently expressible.
Examples: graph connectivity, transitive closure, inductive definitions.

I Limited or no facilities to express domain-specific information (control,
pruning, heuristics).

I The notion of classical planning is limited:
I Real world rarely a single run of the sense-plan-act cycle.
I Main issue often uncertainty, costs, or both.
I Often rational time and concurrency are critical.
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Introduction

Formalization of Planning in This Tutorial

A problem instance in (classical) planning consists of the following.

I set X of state variables
I set A of actions 〈p, e〉 where

I p is the precondition (a set of literals over X)
I e is the effects (a set of literals over X)

I initial state I : X → {0, 1} (a valuation of X)
I goals G (a set of literals over X)

(We will later extend this with time and continuous change.)
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Introduction

The planning problem

An action a = 〈p, e〉 is executable in state s iff s |= p.
The successor state s′ = execa(s) is defined by

I s′ |= e

I s(x) = s′(x) for all x ∈ X that don’t occur in e.

Problem
Find a1, . . . , an such that execan(execan−1(· · · execa2(execa1(I)) · · ·)) |= G?

17 / 128

Introduction

Development of state-space search methods
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State-Space Search

Explicit State-Space Search

I The most basic search method for transition systems
I Very efficient for small state spaces (1 million states)
I Easy to implement
I Very well understood
I Also known as “forward search” (in contrast to “backward search” with

regression [Rin08])
I Pruning methods:

I symmetry reduction [Sta91, ES96]
I partial-order reduction [God91, Val91]
I lower-bounds / heuristics, for informed search [HNR68]
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State-Space Search

State Representation

Every state represented explicitly⇒ compact state representation important

I Boolean (0, 1) state variables represented by one bit
I Inter-variable dependencies enable further compaction:

I ¬(at(A,L1)∧at(A,L2)) always true
I automatic recognition of invariants [BF97, Rin98, Rin08]
I n exclusive variables x1, . . . , xn represented by 1 + blog2(n− 1)c bits

(See [GV03] for references to representative works on compact
representations of state sets.)
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State-Space Search

Search Algorithms

I uninformed/blind search: depth-first, breadth-first, ...
I informed search: “best first” search (always expand best state so far)
I informed search: local search algorithms such as simulated annealing,

tabu search and others [KGJV83, DS90, Glo89] (little used in planning)
I optimal algorithms: A∗ [HNR68], IDA∗ [Kor85]
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State-Space Search Symmetry reduction

Symmetry Reduction [Sta91, ES96]

Idea

1. Define an equivalence relation ∼ on the set of all states: s1 ∼ s2 means
that state s1 is symmetric with s2.

2. Only one state sC in each equivalence class [sC ] needs to be considered.
3. If state s ∈ [sC ] with s 6= sC is encountered, replace it with sC .

Example

States P (A) ∧ ¬P (B) ∧ P (C) and ¬P (A) ∧ P (B) ∧ P (C) are symmetric
because of the permutation A 7→ B,B 7→ A,C 7→ C.
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State-Space Search Symmetry reduction

Symmetry Reduction
Example: 11 states, 3 equivalence classes
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State-Space Search Part. Order Red.

Partial Order Reduction
Stubborn sets and related methods

Idea [God91, Val91]
Independent actions unnecessary to consider in all orderings, e.g. A1, A2 and
A2, A1.

Example

Let there be lamps 1, 2, . . . , n which can be turned on. There are no other
actions. One can restrict to plans in which lamps are turned on in the
ascending order: switching lamp n after lamp m > n unnecessary.1

1The same example is trivialized also by symmetry reduction!
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State-Space Search Heuristics

Heuristics for Classical Planning

The most basic heuristics used for non-optimal domain-independent planning:
hmax [BG01, McD96] best-known admissible heuristic
h+ [BG01] still state-of-the-art
hrelax [HN01] often more accurate but performs like h+
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State-Space Search Heuristics

Definition of hmax, h+ and hrelax

I Basic insight: estimate distances between possible state variable values,
not states themselves.

I gs(l) =

{
0 if s |= l
min

a with effect p
(1 + gs(prec(a)))

I h+ defines gs(L) =
∑

l∈L gs(l) for sets S.
I hmax defines gs(L) = maxl∈L gs(l) for sets S.
I hrelax counts the number of actions in computation of hmax.
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State-Space Search Heuristics

Computation of hmax
Tractor example

1. Tractor moves:
I from 1 to 2: T12 = 〈T1, {T2,¬T1}〉
I from 2 to 1: T21 = 〈T2, {T1,¬T2}〉
I from 2 to 3: T23 = 〈T2, {T3,¬T2}〉
I from 3 to 2: T32 = 〈T3, {T2,¬T3}〉

2. Tractor pushes A:
I from 2 to 1: A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
I from 3 to 2: A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉

3. Tractor pushes B:
I from 2 to 1: B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
I from 3 to 2: B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉
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State-Space Search Heuristics

Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Distance of A1 ∧B1 is 4.
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State-Space Search Heuristics

hmax Underestimates

Example

Estimate for lamp1on ∧ lamp2on ∧ lamp3on with

〈>, {lamp1on}〉
〈>, {lamp2on}〉
〈>, {lamp3on}〉

is 1. Actual shortest plan has length 3.
By definition, hmax(G1 ∧ · · · ∧Gn) is the maximum of hmax(G1), . . . , hmax(Gn).
If goals are independent, the sum of the estimates is more accurate.
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State-Space Search Heuristics

Computation of h+

Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF F TF TF F TF TF
5 TF TF TF TF TF TF TF TF TF

h+(T2 ∧A2) is 1+3.
h+(A1) is 1+3+1 = 5 (hmax gives 4.)
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State-Space Search Heuristics

Comparison of the Heuristics

I For the Tractor example:
I actions in the shortest plan: 8
I hmax yields 4 (never overestimates).
I h+ yields 10 (may under or overestimate).

I The sum-heuristic and its various extensions, including relaxed plan
heuristics [HN01, KHH12, KHD13] are used in practice for non-optimal
planners.
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State-Space Search Heuristics

Heuristic State-space Planners
Some planners representing the current state of the art

HSP [BLG97, BG01]

LAMA [RW10]YAHSP3 [Vid04, Vid11] PROBE [LG11]

I LAMA adds a preference for actions suggested by the computation of
heuristic as good “first actions” towards goals [Vid04, RH09].

I YAHSP2/YAHSP3 and PROBE do – from each encountered state with a
best-first search with h+ – incomplete local searches to find shortcuts
towards the goals.
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State-Space Search Heuristics

Performance of State-Space Search Planners
Planning Competition Problems 2008-2011
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State-Space Search Heuristics

Heuristics for Optimal Planning

Admissible heuristics are needed for finding optimal plans, e.g with A∗

[HNR68]. Scalability much poorer.

Pattern Databases [CS96, Ede00]
Abstract away many/most state variables, and use the length/cost of the
optimal solution to the remaining problem as an estimate.

Generalized Abstraction (compose and abstract) [DFP09]
A generalization of pattern databases, allowing more complex aggregation of
states (not just identification of ones agreeing on a subset of state variables.)
Planning people call it “merge and shrink”.

Landmark-cut [HD09] has worked well with standard benchmarks.
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SAT

Planning with SAT
Background

I Proposed by Kautz and Selman [KS92].
I Idea as in Cook’s proof of NP-hardness of SAT [Coo71]: encode each

step of a plan as a propositional formula.
I Intertranslatability of NP-complete problems⇒ reductions to many other

problems possible, often simple.

Other NP-complete search frameworks
constraint satisfaction (CSP) [vBC99, DK01]
NM logic programs / answer-set programs [DNK97]
Mixed Integer Linear Programming (MILP) [DG02]
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SAT

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111
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SAT

Encoding of Actions as Formulas
for Sequential Plans

Actions as propositional formulas

New value of state variable xi is a function of the old values of x1, . . . , xn:
action j = conjunction of the precondition Pj@t and

xi@(t+ 1)↔ Fi(x1@t, . . . , xn@t)

for all i ∈ {1, . . . , n}. Denote this by Ej@t.

Example (move-from-X-to-Y)

precond︷ ︸︸ ︷
atX@t ∧

effects︷ ︸︸ ︷
(atX@(t+ 1)↔ ⊥) ∧ (atY@(t+ 1)↔ >)
∧(atZ@(t+ 1)↔ atZ@t) ∧ (atU@(t+ 1)↔ atU@t)

Choice between actions 1, . . . ,m expressed by the formula

R@t = E1@t ∨ · · · ∨ Em@t.
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SAT

Finding a Plan with SAT solvers

Let
I I be a formula expressing the initial state, and
I G be a formula expressing the goal states.

Then a plan of length T exists iff

I@0 ∧
T−1∧

t=0

R@t ∧GT

is satisfiable.

Remark
Most SAT solvers require formulas to be in CNF. There are efficient
transformations to achieve this [Tse68, JS05, MV07].
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SAT Parallel plans

Parallel Plans: Motivation

I Don’t represent all intermediate
states of a sequential plan.

I Don’t represent the relative
ordering of some consecutive
actions.

I Reduced number of explicitly
represented states⇒ smaller
formulas

state at t+ 1

state at t
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SAT Parallel plans

Parallel plans (∀-step plans)
Blum and Furst [BF97], Kautz and Selman 1996 [KS96]

Allow actions a1 = 〈p1, e1〉 and a2 = 〈p2, e2〉 in parallel whenever they don’t
interfere, i.e.

I both p1 ∪ p2 and e1 ∪ e2 are consistent, and
I both e1 ∪ p2 and e2 ∪ p1 are consistent.

Theorem
If a1 = 〈p1, e1〉 and a2 = 〈p1, e1〉 don’t interfere and s is a state such that
s |= p1 and s |= p2, then execa1(execa2(s)) = execa2(execa1(s)).
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SAT Parallel plans

∀-step plans: encoding

Define R∀@t as the conjunction of

x@(t+ 1)↔ ((x@t ∧ ¬a1@t ∧ · · · ∧ ¬ak@t) ∨ a′1@t ∨ · · · ∨ a′k′@t)

for all x ∈ X, where a1, . . . , ak are all actions making x false, and a′1, . . . , a′k′
are all actions making x true, and

a@t→ l@t for all l in the precondition of a,

and
¬(a@t ∧ a′@t) for all a and a′ that interfere.

This encoding is quadratic due to the interference clauses.
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SAT Parallel plans

∀-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Action a with effect l disables all actions with precondition l, except a itself.
This is done in two parts: disable actions with higher index, disable actions
with lower index.

a1 a2 a3 a4 a5

v2 v4 v5

w1 w2 w4

This is needed for every literal.
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SAT Parallel plans

∃-step plans
Dimopoulos et al. 1997 [DNK97]

Allow actions {a1, . . . , an} in parallel if they can be executed in at least one
order.

I
⋃n

i=1 pi is consistent.
I
⋃n

i=1 ei is consistent.
I There is a total ordering a1, . . . , an such that ei ∪ pj is consistent

whenever i ≤ j: disabling an action earlier in the ordering is allowed.

Several compact encodings exist [RHN06].
Fewer time steps are needed than with ∀-step plans. Sometimes only half as
many.
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SAT Parallel plans

∃-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Choose an arbitrary fixed ordering of all actions a1, . . . , an.

Action a with effect l disables all later actions with precondition l.

a1 a2 a3 a4 a5

v2 v4 v5

This is needed for every literal.
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SAT Parallel plans

Disabling graphs
Rintanen et al. 2006 [RHN06]

Define a disabling graph with actions as nodes and with an arc from a1 to a2

(a1 disables a2) if p1 ∪ p2 and e1 ∪ e2 are consistent and e1 ∪ p2 is inconsistent.

The test for valid execution orderings can be limited to strongly connected
components (SCC) of the disabling graph.

In many structured problems all SCCs are singleton sets.
=⇒ No tests for validity of orderings needed during SAT solving.
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SAT Parallel plans

Summary of Notions of Plans

plan type reference comment
sequential [KS92] one action per time point
∀-parallel [BF97, KS96] parallel actions independent
∃-parallel [DNK97, RHN06] executable in at least one order

The last two expressible in terms of the relation disables restricted to applied
actions:

I ∀-parallel plans: the disables relation is empty.
I ∃-parallel plans: the disables relation is acyclic.
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SAT Plan search

Search through Horizon Lengths

The planning problem is reduced to the satisfiability tests for

Φ0 = I@0 ∧G@0
Φ1 = I@0 ∧R@0 ∧G@1
Φ2 = I@0 ∧R@0 ∧R@1 ∧G@2
Φ3 = I@0 ∧R@0 ∧R@1 ∧R@2 ∧G@3
...
Φu = I@0 ∧R@0 ∧R@1 ∧ · · ·R@(u− 1) ∧G@u

where u is the maximum possible plan length.

Q: How to schedule these satisfiability tests?
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SAT Plan search

Search through Horizon Lengths

algorithm reference comment
sequential [KS92, KS96] slow, guarantees min. horizon
binary search [SS07] prerequisite: “tight” length UB
n processes [Rin04b, Zar04] fast, more memory needed
geometric [Rin04b] fast, more memory needed

I sequential: first test Φ0, then Φ1, then Φ2, . . .
I This is breadth-first search / iterative deepening.
I Guarantees shortest horizon length, but is slow.

I parallel strategies: solve several horizon lengths simultaneously
I depth-first flavor
I usually much faster
I no guarantee of minimal horizon length
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SAT Plan search

Some runtime profiles
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SAT Plan search

Geometric Evaluation
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SAT SAT solving

Solving the SAT Problem

SAT problems obtained from planning are solved by
I generic SAT solvers

I Mostly based on Conflict-Driven Clause Learning (CDCL) [MMZ+01].
I Very good on hard combinatorial planning problems.
I Not designed for solving the extremely large but “easy” formulas (arising in

some types of benchmark problems).
I specialized SAT solvers [Rin10, Rin12]

I Replace standard CDCL heuristics with planning-specific ones.
I For certain problem classes substantial improvement
I New research topic: lots of unexploited potential
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SAT SAT solving

Solving the SAT Problem
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

Problem solved almost without search:
I Formulas for lengths 1 to 4 shown unsatisfiable without any search.
I Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
I Plans have 5 to 7 operators, optimal plan has 5.
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SAT SAT solving

Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1. State variable values inferred
from initial values and goals.

2. Branch: ¬clear(b)1.
3. Branch: clear(a)3.
4. Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF
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SAT SAT solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2008
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SAT SAT solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2011 (revised)
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Symbolic search

Symbolic Search Methods
Motivation

I logical formulas as data structure for sets, relations
I state-space search (planning, model-checking, diagnosis, ...) in terms of

set & relational operations
I Algorithms that can handle very large state sets, bypassing inherent

limitations of enumerative methods.
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Symbolic search

Symbolic Search Methods
Motivation

I SAT and explicit state-space search: primary use finding one path from
an initial state to a goal state

I “Symbolic” search methods can be used for more general problems:
I Finding set of all reachable states
I Distances/plans from the initial state to all states
I Distances/plans to goal states from all states

I Competitive for optimal planning and detecting unsolvability.
I BDDs are a representation of belief states [BCRT01, Rin05].
I Algebraic Decision Diagrams (ADD) [FMY97, BFG+97] can represent

value functions in probabilistic planning [HSAHB99].
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Symbolic search

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111
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Symbolic search

Image operations

The image of a set T of states w.r.t. action a is

imga(T ) = {s′ ∈ S|s ∈ T, sas′}.

The pre-image of a set T of states w.r.t. action a is

preimga(T ) = {s ∈ S|s′ ∈ T, sas′}.

These operations reduce to the relational join and projection operations with a
logic-representation of sets (unary relations) and binary relations.

(Pre-image corresponds to regression used with backward-search [Rin08].)
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Symbolic search Algorithms

Finding All Plans with a Symbolic Algorithm
[BCL+94]

All reachable states with breadth-first search

S0 = {I}
Si+1 = Si ∪

⋃
a∈A imga(Si)

If Si = Si+1, then Sj = Si for all j ≥ i, and the computation can be terminated.

I Si, i ≥ 0 is the set of states with distance ≤ i from the initial state.
I Si\Si−1, i ≥ 1 is the set of states with distance i.
I If G ∩ Si for some i ≥ 0, then there is a plan.

Action sequence recovered from sets Si by a sequence of backward-chaining
steps (linear in plan length and number of state variables)
(Approximations of the above algorithm compute invariants [Rin08]).
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Symbolic search Algorithms

Symbolic State-Space Search Algorithms

I Symbolic Breadth-First [BCL+94]
I Symbolic (BDD) versions of A∗:

I BDDA∗ [ER98]
I SetA∗ [JVB08]
I ADDA∗ [HZF02]

I The Saturation algorithm [CLS01, CLM07, YCL09] trades optimality (as
obtained with breadth-first) to far better scalability: find all reachable
states, without accurate distance information.
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Symbolic search Operations

Representation of Sets as Formulas

state sets formulas over X
those 2|X|

2 states where x is true x ∈ X
E (complement) ¬E
E ∪ F E ∨ F
E ∩ F E ∧ F
E\F (set difference) E ∧ ¬F

the empty set ∅ ⊥ (constant false)
the universal set > (constant true)

question about sets question about formulas
E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?
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Symbolic search Operations

Sets (of states) as formulas

Formulas over X represent sets

a ∨ b over X = {a, b, c}
represents the set {a0

b
1
c
0, 011, 100, 101, 110, 111}.

Formulas over X ∪X ′ represent binary relations

a ∧ a′ ∧ (b↔ b′) over X ∪X ′ where X = {a, b}, X ′ = {a′, b′}
represents the binary relation {(a1

b
0,

a′

1
b′

0), (11, 11)}.
Valuations

a
1
b
0
a′

1
b′

0 and 1111 of X ∪X ′ can be viewed respectively as pairs of

valuations (
a
1
b
0,

a′

1
b′

0) and (11, 11) of X.
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Symbolic search Operations

Relation Operations

relation operation logical operation
projection abstraction
join conjunction
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Symbolic search ∃/∀-abstraction

Existential and Universal Abstraction

Definition
Existential abstraction of a formula φ with respect to x ∈ X:

∃x.φ = φ[>/x] ∨ φ[⊥/x].

Universal abstraction is defined analogously by using conjunction instead of
disjunction.

Definition
Universal abstraction of a formula φ with respect to x ∈ X:

∀x.φ = φ[>/x] ∧ φ[⊥/x].
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Symbolic search ∃/∀-abstraction

∃-Abstraction

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
≡ (> ∨>) ∨ (> ∨⊥) ≡ >
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Symbolic search ∃/∀-abstraction

∀ and ∃-Abstraction in Terms of Truth-Tables

∀c and ∃c correspond to combining lines with the same valuation for variables
other than c.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a
a b c a ∨ (b ∧ c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))

0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c.(a ∨ (b ∧ c))

0 0 0

0 1 0

1 0 1

1 1 1
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Symbolic search Images

Encoding of Actions as Formulas

Let X be the set of all state variables. An action a corresponds to the
conjunction of the precondition Pj and

x′ ↔ Fi(X)

for all x ∈ X. Denote this by τX(a).

Example (move-from-A-to-B)

atA ∧ (atA′ ↔ ⊥) ∧ (atB′ ↔ >) ∧ (atC ′ ↔ atC) ∧ (atD′ ↔ atD)

This is exactly the same as in the SAT case, except that we have x and x′

instead of x@t and x@(t+ 1).
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Symbolic search Images

Images as Relational Operations

s000
s210

./

s0s100 01
s0s200 10
s1s001 00
s1s201 10
s2s010 00

=
s0s100 01
s0s200 10
s2s010 00

x0x1

00 1
01 0
10 1
11 0

./

x0x1x
′
0x
′
1

0000 0
0001 1
0010 1
0011 0
0100 1
0101 0
0110 1
0111 0
1000 1
1001 0
1010 0
1011 0
1100 0
1101 0
1110 0
1111 0

=

x0x1x
′
0x
′
1

0001 1
0010 1
1000 1
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Symbolic search Images

Computation of Successor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Image Operation

The image {s′ ∈ S|s ∈ T, sas′} of T with respect to a is

imga(φ) = (∃X.(φ ∧ τX(a)))[X/X ′].

The renaming is necessary to obtain a formula over X.
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Symbolic search Images

Computation of Predecessor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Preimage Operation

The pre-image {s ∈ S|s′ ∈ T, sas′} of T with respect to a is

preimga(φ) = (∃X ′.(φ[X ′/X] ∧ τX(a))).

The renaming of φ is necessary so that we can start with a formula over X.
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Symbolic search Normal forms

Normal Forms
normal form reference comment
NNF Negation Normal Form
DNF Disjunctive Normal Form
CNF Conjunctive Normal Form
BDD Binary Decision Diagram [Bry92] most popular
DNNF Decomposable NNF [Dar01] more compact
d-DNNF deterministic DNNF [Dar02]

Darwiche’s terminology: knowledge compilation languages [DM02]

Trade-off

I more compact 7→ less efficient operations
I But, “more efficient” is in the size of a correspondingly inflated formula.

(Also more efficient in terms of wall clock?)
BDD-SAT is O(1), but e.g. translation into BDDs is (usually) far less
efficient than testing SAT directly.
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Symbolic search Normal forms

Complexity of Operations

∨ ∧ ¬ TAUT SAT φ ≡ φ′? #SAT
NNF poly poly poly co-NP NP co-NP #P
DNF poly exp exp co-NP P co-NP #P
CNF exp poly exp P NP co-NP #P
BDD exp exp poly P P P poly
DNNF poly exp exp co-NP P co-NP #P
d-DNNF poly exp exp co-NP P co-NP poly

Remark
For BDDs one ∨/∧ is polynomial time/size (size is doubled) but repeated ∨/∧ lead to
exponential size.
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Planners

Engineering Efficient Planners

I Gap between Theory and Practice large: engineering details of
implementation critical for performance in current planners.

I Few of the most efficient planners use textbook methods.
I Explanations for the observed differences between planners lacking: this

is more art than science.
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Planners Algorithm portfolios

Algorithm Portfolios

I Algorithm portfolio = combination of two or more algorithms
I Useful if there is no single “strongest” algorithm.

algorithm 1

algorithm 2

algorithm 3
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Planners Algorithm portfolios

Algorithm Portfolios
Composition methods

Methods for composing a portfolio
selection choose one for current instance [XHHLB08]
parallel run components in parallel [GS97, HLH97]
sequential run consecutively, according to a schedule

Other variations of the above [HDH+00].

Early uses in planning: BLACKBOX [KS99] (manual configuration), FF [HN01]
and LPG [GS02] (fixed configuration)

Lots of works in the SAT area [XHHLB08], directly applicable to planning as
the main methods are no specific to SAT or planning.
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Planners Algorithm portfolios

Algorithm Portfolios
An Illustration of Portfolios
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Evaluation

Evaluation of Planners

Evaluation of planning systems is based on

I Hand-crafted problems (from the planning competitions)
I This is the most popular option.
+ Problems with (at least moderately) different structure.
- Real-world relevance mostly low.
- Instance generation uncontrolled: not known if easy or difficult.
- Many have a similar structure: objects moving in a network.

I Benchmark sets obtained by translation from other problems
I graph-theoretic problems: cliques, colorability, ... [PMB11]

I Instances sampled from all instances [Byl96, Rin04c].
+ Easy to control problem hardness.
- No direct real-world relevance (but: core of any “hard” problem)
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Evaluation

Sampling from the Set of All Instances
[Byl96, Rin04c]

I Generation:
1. Fix number N of state variables, number M of actions.
2. For each action, choose preconditions and effects randomly.

I Has a phase transition from unsolvable to solvable, similarly to SAT
[MSL92] and connectivity of random graphs [Bol85].

I Exhibits an easy-hard-easy pattern, for a fixed N and an increasing M ,
analogously to SAT [MSL92].

I Hard instances roughly at the 50 per cent solvability point.
I Hardest instances are very hard: 20 state variables (220 states) too

difficult for many planners.
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Evaluation

Sampling from the Set of All Instances
Experiments with planners
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Timed Systems

Introduction to Temporal Planning
Motivation 1: How long does executing a plan take?

Minimization of the duration of the execution phase:
I Two short actions may be better than one long one.
I Actions can be taken in parallel.
I Connection to scheduling problems [SFJ00].

This is a core consideration in most mixed planning+scheduling problems.
(Duration and especially concurrency ignored in classical planning and basic
state-space search methods.)
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Timed Systems

Introduction to Temporal Planning
Motivation 2: Plans require concurrency

Inherent concurrency of actions
I Taking an action may require other concurrent actions.
I Some effects may only be achieved as joint effects of multiple actions.

Less important in practice: can often (always?) be avoided by modelling
problem differently.

I Actions that must be used concurrently can be combined.
I Replace one complex action by several simpler ones: go to Paris = go to

airport, board plane, fly, exit, take train to city
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Timed Systems Models

How to Represent Temporal Planning Problems?

temporal planning

transition-
based

timed
automata
(UPPAAL)

timed
Petri Nets

ANML
[SFC08]

timed
PDDL

constraint-
based

SMTCP

MILP
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Timed Systems Models

Basic Modelling Concepts

Actions Taken at a given time point t
Precondition Must be satisfied at t.

Effects Assignments x := v at time points t′ > t.
Dependencies If action 1 taken at t, action 2 cannot be at [t1, t2].
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Timed Systems Models

Action Dependencies through Resources

I n-ary resources
Simultaneous use of resource can be at most n units.
If each action needs 1 unit of the resource, no more than n actions can
be using it simultaneously.
Example: n identical tools or machines

I state resources
A resource is in at most one state at a time.
Multiple actions can use the resource in the same state.
Example: generator that can produce 110V,60Hz or 220V,50Hz
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Timed Systems Models

Relation to scheduling

I Planning = action selection + scheduling.
I Scheduling = assignment of starting times to tasks/actions, respecting

resource constraints
I Expressive languages for temporal planning include scheduling and

hence support the representation of resources.
I Resources and ordering constraints are the mechanism for guaranteeing

that plans are executable.

Complexity

Most important scheduling problems are NP-complete [GJ79].
Temporal planning complete for PSPACE or EXPSPACE [Rin07].
Action selection is the main difference between them.
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Timed Systems Models

Embedding of Scheduling in Temporal Planning

Representation of a simple job-shop scheduling problem in temporal planning.

1. For each job j = a sequence of tasks tj1, . . . , t
j
nj

, introduce state variable
pj : {1, . . . , n+ 1}.

2. Each task is mapped to action aji with
I precondition pj = i,
I effect pj = i+ 1 after the duration of tji ,
I resource requirements as in the scheduling problem.

3. In the initial state pj = 1 for every job j.
4. In the goal we have pj = nj+1.

Tasks and their ordering inside the job are fixed. Remaining problem is
scheduling the tasks/actions for different jobs relative to other jobs’
tasks/actions and minimizing the makespan.
Solutions of the temporal planning problem are exactly the solutions to the
job-shop scheduling problem.
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Timed Systems Explicit state-space

Timed State-Space

I state = values of state variables + values of clocks
I Clocks induce a schedule of future events.
I Actions initialize clocks.
I Time progresses, affecting all clocks.
I Reaching a critical clock value triggers scheduled events:

I effects taking place later than the action’s “starting” time point
I resources allocated and later freed

This is the model behind all search methods.

Seemingly simple route to temporal planning with explicit state-space search.
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Timed Systems Explicit state-space

Updates to the timed state
Advancing time

Take action with precondition x2 = 1 and effect x5 := 0 at time 3.

x1 = 10

x2 = 1

x3 = 0

x4 = 0

x5 = 10

2
x1 := 0;

5
x3 := 1;

4
x4 := 1;

3
x5 := 0;

89 / 128

Timed Systems Explicit state-space

Completeness of Timed State-Space Search

I Since time is continuous, an action can be started at any of an infinite
number of time points. =⇒ search space and branching factor infinite

I Simplistic policies for advancing time lead to incompleteness [MW06].
Most early temporal planners are incomplete. Few temporal planners
have been proved to be complete.

I region abstraction [AD94] abstracts an infinite number of timed states to
finitely many behaviorally equivalent regions.
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Timed Systems Explicit state-space

Separation of planning and scheduling
CPT planner [VG06]

I Separate two problems
1. selection of actions (only ordering, no timing)
2. scheduling of these actions

and interleave their solution.
I Action selection induces temporal constraints [DMP91]
I These temporal constraints can be solved separately.
I Completeness regained.
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Timed Systems Explicit state-space

Systems for Temporal Planning

I Probably the most powerful verification tool based on explicit state-space
search in the state-space induced by timed automata and their extension
hybrid automata is UPPAAL [BLL+96].
UPPAAL has been used in modelling and solving planning scenarios for
example in robotics [QBZ04] and autonomous embedded systems
[AAG+07, KMH01].

I CPT [VG06]
I Temporal Fast-Downward, based on the Fast-Downward planner for

classical planning
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Timed Systems Constraint-based methods

Temporal Planning by Constraint Satisfaction

I Temporal planning can be encoded in
I SAT modulo Theories (SMT) [WW99, ABC+02].
I Constraint Programming [RvBW06]
I Mixed Integer Linear Programming [DG02]

(Similarly to scheduling [ABP+11].)
I The encoding methods for all are essentially the same. Differences in

surface structure of the encoding, especially the types of constraints that
can be encoded directly.

I In this tutorial we focus on SMT, due to its closeness to SAT.
I Differences in performance and pragmatic differences:

I CP: support for customized search (heuristics, propagators, ...)
I SMT: fully automatic, powerful handling of Boolean constraints.
I MILP: for problems with intensive linear optimization
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Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Variables

Each SMT instance fixes the number of steps i analogously to untimed
(asynchoronous) state-space problems in SAT.

variables in SMT encoding
var type description
∆i real time between steps i− 1 and i
a@i bool Is action a taken at step i?
ca@i real Value of clock for action a at step i
x@i bool Value of Boolean state variable at step i
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Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Executability of an action

Action cannot be taken if it is already active:

a@i→(ca@(i− 1) ≥ dur(a)) (1)

(dur(a) denotes the duration a).

If actions actions a1 and a2 use the same unary resource respectively at
[t1, t

′
1] and at [t2, t

′
2] then we have

t2 + t′2 − ca1
@i ≤ t1 (2)

t1 + t′1 ≤ t2 − ca1
(3)

Additionally, if [t1, t
′
1] and [t2, t

′
2] overlap, we have

¬a1@i ∨ ¬a2@i (4)
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Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT

Formula φ with every variable x replaced by x@i is denoted by φ@i.

Action with precondition p:
a@i→p@i (5)

If action is taken, its clock is initialized to 0:

a@i→(ca@i = 0) (6)

If action is not taken, its clock advances:

¬a@i→(ca@i = ca@(i− 1) + ∆i) (7)
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Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Effects of an action

An effect l scheduled at relative time t:

(ca@i = t)→ l@i (8)
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Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Passage of time

Time may not pass a scheduled effect at relative time t:

ca@(i− 1) < t→ca@i ≤ t (9)

Time always passes by a non-zero amount:

∆i > 0 (10)
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Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Frame axioms

Let (a1, t1), . . . , (ak, tk) be all actions and times such that action ai makes x
true at time t relative to its start.

(¬x@(i− 1) ∧ x@i)→((ca1
@i = t1) ∨ · · · ∨ (cak

@i = tk)) (11)

The frame axiom for x becoming false is analogous.
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Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT

I Real variables in SMT incur a performance penalty.
I The encoding we gave is very general. In many practical cases (e.g. unit

durations, small integer durations) more efficient encodings possible (SAT
rather than SMT), similarly to scheduling problems.

100 / 128



Timed Systems Continuous change

Planning with Continuous Change
Hybrid systems = discrete change + continuous change

I Physical systems have continuous change.
I movement of physical objects, substances, liquids (velocity, acceleration)
I chemical and biological processes
I light, electromagnetic radiation
I electricity: voltage, charge, AC frequency, AC phase

I Discrete parts make the overall system piecewise continuous:
I Discrete changes triggered by continuous change.
I Continuous change controlled by discrete changes.

I Inherent issues with physical systems: lack of predictability, inaccuracy of
control actions

I Problems primarily researched in control theory: Hybrid Systems Control,
Model Predictive Control (“Planning” with continuous change not a
separate research problem!)
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Timed Systems Continuous change

Planning with Continuous Change
Example

time

X coordinate
Y coordinate

actions: 2 east, 1 north, 1 east, 1
2 east half speed

102 / 128

Timed Systems Continuous change

Hybrid Systems Modeling

I Continuous change a function of time.
I Type of change determined by discrete parts of the system.
I Example: heater on, heater off, temperature f(w0,∆)

I Example: object in free fall, on ground, altitude f(h0,∆)

I Both actions and continuous values trigger discrete change.
I Example: Falling object reaches ground.
I Example: Container becomes full of liquid.
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Timed Systems Continuous change

Hybrid Systems with SMT

I Basic framework exactly as in the discrete timed case.
I Value of continuous variables directly a function of ∆.

law explanation
f(x,∆) = x+ c∆ linear change proportional to ∆
f(x,∆) = x · rc∆ exponential change
f(x,∆) = c new constant value
f(x,∆) = x no change, previous value

I Other forms of change require a clock variable and an initial value. For
example polynomials c+ xn.
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Timed Systems Continuous change

Hybrid systems: computational properties

I Simple decision problems about hybrid systems undecidable
[HKPV95, CL00, PC07]: complete algorithms only for narrow problem
classes.

I decidable cases for reachability: rectangular automata [HKPV95], 2-d
PCD [AMP95], planar multi-polynomial systems [ČV96]

I semi-decision procedures: no termination when plans don’t exist.
I stability: sensitivity to small inaccuracies in control [YMH98]
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Timed Systems Continuous change

Hybrid systems: reasoning and analysis

I Main approaches generalize those for discrete timed systems.
I explicit state-space search (e.g. HyTech [HHWT97])
I SAT, constraints [SD05]

I Linear systems handled by efficient standard methods (MILP, linear
arithmetics) in tools like MILP solvers and SAT modulo Theories solvers
[SD05, ABCS05].

I Challenge: non-linear change
I non-linear programming a very wide subarea of mathematical optimization.

mixed integer nonlinear programming solvers (MINLP):
I AIMMS
I MAPLE
I Mathematica
I MATLAB

I SMT solvers with non-linear arithmetic [JDM12, GKC13].
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Timed Systems Continuous change

Model Predictive Control
Inaccuracy of control, uncertainty, unpredictability

Model Predictive Control [GPM89] (“Dynamical Matrix Control”, “Generalized
Predictive Control”, “Receding Horizon Control”)

I Physical systems often not predictable enough for deterministic control.
I Continuous observation - prediction - control cycle.
I Predictions over a finite receding horizon
I Hybrid Model Predictive Control, integrating discrete variables.

Mixed Logical Dynamical (MLD) systems [BM99]
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