Planning

Explicit State-Space Search
Symmetry reduction
Partial Order Reduction
Heuristics
Planning with SAT
Parallel plans
Plan search
SAT solving
Symbolic search
Algorithms
Operations
\exists / \forall-abstraction
Images
Normal forms
Planning System Implementations
Algorithm portfolios
Evaluation of Planners
Timed Systems

Models

Explicit state-space
Constraint-based methods
Continuous change
References

Search Methods for Classical and Temporal Planning

Jussi Rintanen

Prague, ECAI 2014

Planning

What to do to achieve your objectives?

- Which actions to take to achieve your objectives?
- Number of agents
- single agent, perfect information: s-t-reachability in succinct graphs
+ nondeterminism/adversary: and-or tree search
- + partial observability: and-or search in the space of beliefs

Time

- asynchronous or instantaneous actions (integer time, unit duration)
- rational/real time, concurrency

Objective

- Reach a goal state.
- Maximize probability of reaching a goal state
- Maximize (expected) rewards.
- temporal goals (e.g. LTL)

Introduction
Hierarchy of Planning Problems

\rightarrow
classical (PSPACE [GW83, Loz88, LB90, Byl94])

Classical (Deterministic, Sequential) Planning

- states and actions expressed in terms of state variables
- single initial state, that is known
- all actions deterministic
- actions taken sequentially, one at a time
- a goal state (expressed as a formula) reached in the end

Deciding whether a plan exists is PSPACE-complete
[GW83, Loz88, LB90, Byl94].
With a polynomial bound on plan length, NP-complete [KS96].

Domain-Specific Planning

What is domain-specific?

- application-specific representation
- application-specific constraints/propagators
- application-specific heuristics

There are some planning systems that have aspects of these, but mostly this means: implement everything from scratch.

Domain-Independent Planning

What is domain-independent?

- general language for representing problems (e.g. PDDL)
- general algorithms to solve problems expressed in it

Advantages and disadvantages:

+ Representation of problems at a high level
+ Fast prototyping
+ Often easy to modify and extend
- Often very high performance penalty w.r.t. specialized algorithms
- Trade-off between generality and efficiency

Domain-Dependent vs. -Independent Planning Procedure

Related Problems, Reductions
planning, diagnosis [SSL ${ }^{+} 95$], model-checking (verification)

ntroduction

PDDL: Planning Domain Description Language

- Defined in 1998 [GHK ${ }^{+}$98], with several extensions later.
- Lisp-style syntax
- Widely used in the planning (competition) community.
- Most basic version with Boolean state variables only.
- Action sets expressed as schemata instantiated with objects.

[^0]
How to Represent Planning Problems?

Different strengths and weaknesses; No single "right" language.

States

States are valuations of state variables.

Example	
State variables are	One state is
LOCATION: $\{0, \ldots, 1000\}$	LOCATION $=312$
GEAR: $\{R, 1,2,3,4,5\}$	GEAR $=4$
FUEL: $\{0, \ldots, 60\}$	FUEL $=58$
SPEED: $\{-20, \ldots, 200\}$	SPEED $=110$
DIRECTION: $\{0, \ldots, 359\}$	DIRECTION $=90$

State-space transition graphs

Blocks world with three blocks

Introduction

Weaknesses in Existing Languages

- High-level concepts not easily/efficiently expressible. Examples: graph connectivity, transitive closure, inductive definitions.
- Limited or no facilities to express domain-specific information (control, pruning, heuristics).
- The notion of classical planning is limited:
- Real world rarely a single run of the sense-plan-act cycle.
- Main issue often uncertainty, costs, or both.
- Often rational time and concurrency are critical.

Actions

How values of state variables change

General form

precondition: $\mathrm{A}=1 \wedge \mathrm{C}=1$
effect: $A:=0 ; B:=1 ; C:=0$;

STRIPS representation

PRE: A, C
ADD: B
DEL: A, C

Formalization of Planning in This Tutorial

A problem instance in (classical) planning consists of the following.

- set X of state variables
- set A of actions $\langle p, e\rangle$ where
- p is the precondition (a set of literals over X)
- e is the effects (a set of literals over X)
- initial state $I: X \rightarrow\{0,1\}$ (a valuation of X)
- goals G (a set of literals over X)
(We will later extend this with time and continuous change.)

The planning problem

An action $a=\langle p, e\rangle$ is executable in state s iff $s \models p$.
The successor state $s^{\prime}=\operatorname{exec}_{a}(s)$ is defined by

- $s^{\prime} \models e$
- $s(x)=s^{\prime}(x)$ for all $x \in X$ that don't occur in e.

Problem

Find a_{1}, \ldots, a_{n} such that $\operatorname{exec}_{a_{n}}\left(\operatorname{exec}_{a_{n-1}}\left(\cdots \operatorname{exec}_{a_{2}}\left(\operatorname{exec}_{a_{1}}(I)\right) \cdots\right)\right) \models G$?

Explicit State-Space Search

- The most basic search method for transition systems
- Very efficient for small state spaces (1 million states)
- Easy to implement
- Very well understood
- Also known as "forward search" (in contrast to "backward search" with regression [Rin08])
- Pruning methods:
- symmetry reduction [Sta91, ES96]
- partial-order reduction [God91, Val91]
- lower-bounds / heuristics, for informed search [HNR68]

Development of state-space search methods

State Representation

Every state represented explicitly \Rightarrow compact state representation important

- Boolean $(0,1)$ state variables represented by one bit
- Inter-variable dependencies enable further compaction:
- $\neg(\operatorname{at}(A, L 1) \wedge$ at $(A, L 2))$ always true
- automatic recognition of invariants [BF97, Rin98, Rin08]
- n exclusive variables x_{1}, \ldots, x_{n} represented by $1+\left\lfloor\log _{2}(n-1)\right\rfloor$ bits
(See [GV03] for references to representative works on compact representations of state sets.)

Search Algorithms

State-Space Search
State-Space Search
Symmetry reduction

Symmetry Reduction [Sta91, ES96]

- uninformed/blind search: depth-first, breadth-first, ...
- informed search: "best first" search (always expand best state so far)
- informed search: local search algorithms such as simulated annealing, tabu search and others [KGJV83, DS90, Glo89] (little used in planning)
- optimal algorithms: A* [HNR68], IDA* [Kor85]

Idea

1. Define an equivalence relation \sim on the set of all states: $s_{1} \sim s_{2}$ means that state s_{1} is symmetric with s_{2}.
2. Only one state s_{C} in each equivalence class [s_{C}] needs to be considered.
3. If state $s \in\left[s_{C}\right]$ with $s \neq s_{C}$ is encountered, replace it with s_{C}.

Example

States $P(A) \wedge \neg P(B) \wedge P(C)$ and $\neg P(A) \wedge P(B) \wedge P(C)$ are symmetric because of the permutation $A \mapsto B, B \mapsto A, C \mapsto C$.

Partial Order Reduction

Stubborn sets and related methods

Idea [God91, Val91]

Independent actions unnecessary to consider in all orderings, e.g. A_{1}, A_{2} and A_{2}, A_{1}.

Example

Let there be lamps $1,2, \ldots, n$ which can be turned on. There are no other actions. One can restrict to plans in which lamps are turned on in the ascending order: switching lamp n after lamp $m>n$ unnecessary. ${ }^{1}$

The most basic heuristics used for non-optimal domain-independent planning: $h^{\max }$ $h^{m a}$
h^{+} [BG01, McD96
[BG01]
[HN01]

- Basic insight: estimate distances between possible state variable values, not states themselves.
- $g_{s}(l)=\left\{\begin{array}{l}0 \\ \min _{a} \text { with effect }{ }_{p}\left(1+g_{s}(\operatorname{prec}(a))\right)\end{array}\right.$
- h^{+}defines $g_{s}(L)=\sum_{l \in L} g_{s}(l)$ for sets S.
- $h^{\max }$ defines $g_{s}(L)=\max _{l \in L} g_{s}(l)$ for sets S.
- $h^{\text {relax }}$ counts the number of actions in computation of $h^{\max }$.

Computation of $h^{\text {max }}$
Tractor example

t	T 1	T 2	T3	A1	A2	A3	B 1	B 2	B 3
0	T	F	F	F	F	T	F	F	T
1	TF	TF	F	F	F	T	F	F	T
2	TF	TF	TF	F	F	T	F	F	T
3	TF	TF	TF	F	TF	TF	F	TF	TF
4	TF								

Distance of $A 1 \wedge B 1$ is 4 .

Example

Estimate for lamp1on \wedge lamp2on \wedge lamp3on with

$$
\begin{aligned}
& \langle T,\{\text { lamp1on }\}\rangle \\
& \langle T,\{\text { lamp2on }\}\rangle \\
& \langle T,\{\text { lamp3on }\}\rangle
\end{aligned}
$$

is 1 . Actual shortest plan has length 3 .
By definition, $h^{\max }\left(G_{1} \wedge \cdots \wedge G_{n}\right)$ is the maximum of $h^{\max }\left(G_{1}\right), \ldots, h^{\max }\left(G_{n}\right)$. If goals are independent, the sum of the estimates is more accurate.

Computation of h^{+}

Tractor example

t	T1	T2	T3	A1	A2	A3	B1	B2	B3
0	T	F	F	F	F	T	F	F	T
1	TF	TF	F	F	F	T	F	F	T
2	TF	TF	TF	F	F	T	F	F	T
3	TF	TF	TF	F	TF	TF	F	TF	TF
4	TF	TF	TF	F	TF	TF	F	TF	TF
5	TF								

$h^{+}(T 2 \wedge A 2)$ is $1+3$.
$h^{+}(A 1)$ is $1+3+1=5$ ($h^{\max }$ gives 4 .)

Comparison of the Heuristics

- For the Tractor example:
- actions in the shortest plan: 8
- $h^{\max }$ yields 4 (never overestimates).
- h^{+}yields 10 (may under or overestimate).
- The sum-heuristic and its various extensions, including relaxed plan heuristics [HN01, KHH12, KHD13] are used in practice for non-optimal planners.

Heuristic State-space Planners

Some planners representing the current state of the art

- LAMA adds a preference for actions suggested by the computation of heuristic as good "first actions" towards goals [Vid04, RH09].
- YAHSP2/YAHSP3 and PROBE do - from each encountered state with a best-first search with h^{+}- incomplete local searches to find shortcuts towards the goals.

Performance of State-Space Search Planners

Planning Competition Problems 2008-2011

SAT

Heuristics for Optimal Planning

Admissible heuristics are needed for finding optimal plans, e.g with A^{*} [HNR68]. Scalability much poorer.

Pattern Databases [CS96, Ede00]

Abstract away many/most state variables, and use the length/cost of the optimal solution to the remaining problem as an estimate.

Generalized Abstraction (compose and abstract) [DFP09]

A generalization of pattern databases, allowing more complex aggregation of states (not just identification of ones agreeing on a subset of state variables.) Planning people call it "merge and shrink".

Landmark-cut [HD09] has worked well with standard benchmarks.

33/128
/ 128

Transition relations in propositional logic

State variables are

$$
X=\{a, b, c\} .
$$

$$
\begin{aligned}
& \left(\neg a \wedge b \wedge c \wedge \neg a^{\prime} \wedge b^{\prime} \wedge \neg c^{\prime}\right) \vee \\
& \left(\neg a \wedge b \wedge \neg c \wedge a^{\prime} \wedge b^{\prime} \wedge \neg c^{\prime}\right) \vee \\
& \left(\neg a \wedge \neg b \wedge c \wedge a^{\prime} \wedge b^{\prime} \wedge c^{\prime}\right) \vee \\
& \left(a \wedge b \wedge c \wedge a^{\prime} \wedge b^{\prime} \wedge \neg c^{\prime}\right)
\end{aligned}
$$

The corresponding matrix is

	000	001	010	011	100	101	110	111
000	0	0	0	0	0	0	0	0
001	0	0	0	0	0	0	0	1
010	0	0	0	0	0	0	1	0
011	0	0	1	0	0	0	0	0
100	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	1	0

Planning with SAT

Background

- Proposed by Kautz and Selman [KS92].
- Idea as in Cook's proof of NP-hardness of SAT [Coo71]: encode each step of a plan as a propositional formula.
- Intertranslatability of NP-complete problems \Rightarrow reductions to many other problems possible, often simple.

Other NP-complete search frameworks
 constraint satisfaction (CSP)
 [vBC99, DK01]
 NM logic programs / answer-set programs
 [DNK97]
 Mixed Integer Linear Programming (MILP)
 [DG02]

Encoding of Actions as Formulas

for Sequential Plans

Actions as propositional formulas

New value of state variable x_{i} is a function of the old values of x_{1}, \ldots, x_{n} : action $j=$ conjunction of the precondition $P_{j} @ t$ and

$$
x_{i} @(t+1) \leftrightarrow F_{i}\left(x_{1} @ t, \ldots, x_{n} @ t\right)
$$

for all $i \in\{1, \ldots, n\}$. Denote this by $E_{j} @ t$.

Example (move-from-X-to-Y)

$$
\overbrace{a t X @ t}^{\text {precond }} \overbrace{\begin{array}{l}
(a t X @(t+1) \leftrightarrow \perp) \wedge(a t Y @(t+1) \leftrightarrow \top) \\
\wedge(a t Z @(t+1) \leftrightarrow a t Z @ t) \wedge(a t U @(t+1) \leftrightarrow a t U @ t)
\end{array}}^{\text {effects }}
$$

Choice between actions $1, \ldots, m$ expressed by the formula

$$
\mathcal{R} @ t=E_{1} @ t \vee \cdots \vee E_{m} @ t .
$$

SAT Parallel plans

Parallel Plans: Motivation

- Don't represent all intermediate states of a sequential plan.
- Don't represent the relative ordering of some consecutive actions.
- Reduced number of explicitly represented states \Rightarrow smaller formulas

Finding a Plan with SAT solvers

Let

- I be a formula expressing the initial state, and
- G be a formula expressing the goal states.

Then a plan of length T exists iff

$$
I @ 0 \wedge \bigwedge_{t=0}^{T-1} \mathcal{R} @ t \wedge G_{T}
$$

is satisfiable.

Remark

Most SAT solvers require formulas to be in CNF. There are efficient transformations to achieve this [Tse68, JS05, MV07].

Parallel plans (\forall-step plans)

Blum and Furst [BF97], Kautz and Selman 1996 [KS96]

Allow actions $a_{1}=\left\langle p_{1}, e_{1}\right\rangle$ and $a_{2}=\left\langle p_{2}, e_{2}\right\rangle$ in parallel whenever they don't interfere, i.e.

- both $p_{1} \cup p_{2}$ and $e_{1} \cup e_{2}$ are consistent, and
- both $e_{1} \cup p_{2}$ and $e_{2} \cup p_{1}$ are consistent.

Theorem

If $a_{1}=\left\langle p_{1}, e_{1}\right\rangle$ and $a_{2}=\left\langle p_{1}, e_{1}\right\rangle$ don't interfere and s is a state such that $s \models p_{1}$ and $s \models p_{2}$, then $\operatorname{exec}_{a_{1}}\left(\operatorname{exec}_{a_{2}}(s)\right)=\operatorname{exec}_{a_{2}}\left(\operatorname{exec}_{a_{1}}(s)\right)$.

\forall-step plans: encoding

Define $\mathcal{R}^{\forall} @ t$ as the conjunction of

$$
x @(t+1) \leftrightarrow\left(\left(x @ t \wedge \neg a_{1} @ t \wedge \cdots \wedge \neg a_{k} @ t\right) \vee a_{1}^{\prime} @ t \vee \cdots \vee a_{k^{\prime}}^{\prime} @ t\right)
$$

for all $x \in X$, where a_{1}, \ldots, a_{k} are all actions making x false, and $a_{1}^{\prime}, \ldots, a_{k^{\prime}}^{\prime}$ are all actions making x true, and

$$
a @ t \rightarrow l @ t \text { for all } l \text { in the precondition of } a,
$$

and

$$
\neg\left(a @ t \wedge a^{\prime} @ t\right) \text { for all } a \text { and } a^{\prime} \text { that interfere. }
$$

This encoding is quadratic due to the interference clauses.

> SAT Parallel plans

\exists-step plans

Dimopoulos et al. 1997 [DNK97]

Allow actions $\left\{a_{1}, \ldots, a_{n}\right\}$ in parallel if they can be executed in at least one order.

- $\bigcup_{i=1}^{n} p_{i}$ is consistent.
- $\bigcup_{i=1}^{n} e_{i}$ is consistent.
- There is a total ordering a_{1}, \ldots, a_{n} such that $e_{i} \cup p_{j}$ is consistent whenever $i \leq j$: disabling an action earlier in the ordering is allowed.
Several compact encodings exist [RHNO6].
Fewer time steps are needed than with \forall-step plans. Sometimes only half as many.
\forall-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Action a with effect l disables all actions with precondition \bar{l}, except a itself. This is done in two parts: disable actions with higher index, disable actions with lower index.

This is needed for every literal.

\exists-step plans: linear encoding

Rintanen et al. 2006 [RHN06]

Choose an arbitrary fixed ordering of all actions a_{1}, \ldots, a_{n}.
Action a with effect l disables all later actions with precondition \bar{l}.

This is needed for every literal.

Disabling graphs

Rintanen et al. 2006 [RHN06]

Define a disabling graph with actions as nodes and with an arc from a_{1} to a_{2} (a_{1} disables a_{2}) if $p_{1} \cup p_{2}$ and $e_{1} \cup e_{2}$ are consistent and $e_{1} \cup p_{2}$ is inconsistent.
The test for valid execution orderings can be limited to strongly connected components (SCC) of the disabling graph.

In many structured problems all SCCs are singleton sets.
\Longrightarrow No tests for validity of orderings needed during SAT solving.

Summary of Notions of Plans

plan type	reference	comment
sequential	[KS92]	one action per time point
\forall-parallel	[BF97, KS96]	parallel actions independent
ق-parallel	[DNK97, RHN06]	executable in at least one order

The last two expressible in terms of the relation disables restricted to applied actions:

- \forall-parallel plans: the disables relation is empty.
- ヨ-parallel plans: the disables relation is acyclic.

Search through Horizon Lengths

The planning problem is reduced to the satisfiability tests for

$$
\begin{aligned}
& \Phi_{0}=I @ 0 \wedge G @ 0 \\
& \Phi_{1}=I @ 0 \wedge \mathcal{R} @ 0 \wedge G @ 1 \\
& \Phi_{2}=I @ 0 \wedge \mathcal{R} @ 0 \wedge \mathcal{R} @ 1 \wedge G @ 2 \\
& \Phi_{3}=I @ 0 \wedge \mathcal{R} @ 0 \wedge \mathcal{R} @ 1 \wedge \mathcal{R} @ 2 \wedge G @ 3 \\
& \vdots \\
& \Phi_{u}=I @ 0 \wedge \mathcal{R} @ 0 \wedge \mathcal{R} @ 1 \wedge \cdots \mathcal{R} @(u-1) \wedge G @ u
\end{aligned}
$$

where u is the maximum possible plan length.
Q: How to schedule these satisfiability tests?

Search through Horizon Lengths

algorithm	reference	comment
sequential	$[$ KS92, KS96]	slow, guarantees min. horizon
binary search	[SS07]	prerequisite: "tight" length UB
n processes	$[$ Rin04b, Zar04]	fast, more memory needed
geometric	$[$ Rin04b]	fast, more memory needed

- sequential: first test Φ_{0}, then Φ_{1}, then Φ_{2}, .
- This is breadth-first search / iterative deepening.
- Guarantees shortest horizon length, but is slow.
- parallel strategies: solve several horizon lengths simultaneously
- depth-first flavor
- usually much faster
- no guarantee of minimal horizon length

Some runtime profiles

SAT SAT solving

Solving the SAT Problem

SAT problems obtained from planning are solved by

- generic SAT solvers
- Mostly based on Conflict-Driven Clause Learning (CDCL) [MMZ $\left.{ }^{+} 01\right]$.
- Very good on hard combinatorial planning problems.
- Not designed for solving the extremely large but "easy" formulas (arising in some types of benchmark problems).
- specialized SAT solvers [Rin10, Rin12]
- Replace standard CDCL heuristics with planning-specific ones.
- For certain problem classes substantial improvement
- New research topic: lots of unexploited potential

Geometric Evaluation

Finding a plan for blocks22 with Algorithm B

Solving the SAT Problem

Example
initial state

Problem solved almost without search:

- Formulas for lengths 1 to 4 shown unsatisfiable without any search.
- Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
- Plans have 5 to 7 operators, optimal plan has 5.

Solving the SAT Problem

Example

012345	012345	012345
clear(a) FF	FFF TT	FFFTTT
clear(b) F	FF TTF	FFTTTF
clear(c) TT FF	TTTTFF	ttttaf
clear(d) FTTFFF	FTTFFF	fttfff
clear(e) TTFFFF	TTFFFF	TTFFFF
	FFFFFT	FFFFFFT
on($\left(,, c^{\prime}\right.$ FFFFFF	FFFFFF	FFFFFFF
on(a,d) FFFFFF	FFFFFF	FFFFFF
on(a, e) FFFFFF	FFFFFF	FFFFFF
on(b,a) TT FF	TTT FF	TTTFFF
on($(\mathrm{b}, \mathrm{c}) \mathrm{FF}$ TT	FFFFTT	FFFFTT
on(b,) FFFFFFF	FFFFFF	FFFFFF
on(b,e) FFFFFFF	FFFFFF	frffrf
on(c, a) FFFFFFF	FFFFFF	FFFFFFF
on(c, b) T FFF	TT FFF	TTFFFF
on(c, d) FFFTTT	FFFTTT	FFFTTT
on(c,e) FFFFFFF	FFFFFF	FFFFFF
on(d, a) FFFFFF	FFFFFF	FFFFFF
on(d, b) FFFFFF	FFFFFF	FFFFFF
on((d, c) FFFFFF	FFFFFF	FFFFFFF
on(d,e) FFTTTT	FFTTTT	FFTTTT
on(e,a) FFFFFF	FFFFFF	FFFFFF
on(e,,) FFFFFFF	FFFFFF	FFFFFF
on(e, ,) FFFFFF	FFFFFF	FFFFFF
on(e,d) TFFFFF	TFFFFF	TFFFFF
ontable(a) TTT	TTTTTF	TTTTTF
ontable(b) $F F$ FF	FFFFF	FFFTFF
ontable(c) F FFF	FF FFF	frtaff
ontable(d) TTFFFF	TTFFFF	ttaffr
ontable(e) FTTTTT	FTTTTT	FTTTTT

1. State variable values inferred from initial values and goals.
2. Branch: \neg clear $(b)^{1}$.
3. Branch: clear $(\mathrm{a})^{3}$.
4. Plan found:
fromtable (a,b) fromtable(a,b) FFFFT fromtable(b,c) FFFTF fromtable(c,d) FFTFF fromtable(d,e)FTFFF totable(b,a) FFTFF totable(c, b) FTFFF totable(e, d) TFFFF

Performance of SAT-Based Planners

Planning Competition Problems 1998-2011 (revised)

Performance of SAT-Based Planners

Planning Competition Problems 1998-2008
STRIPS instances

Symbolic search

Symbolic Search Methods

Motivation

- logical formulas as data structure for sets, relations
- state-space search (planning, model-checking, diagnosis, ...) in terms of set \& relational operations
- Algorithms that can handle very large state sets, bypassing inherent limitations of enumerative methods.

Symbolic Search Methods

Motivation

- SAT and explicit state-space search: primary use finding one path from an initial state to a goal state
- "Symbolic" search methods can be used for more general problems:
- Finding set of all reachable states
- Distances/plans from the initial state to all states
- Distances/plans to goal states from all states
- Competitive for optimal planning and detecting unsolvability.
- BDDs are a representation of belief states [BCRT01, Rin05].
- Algebraic Decision Diagrams (ADD) [FMY97, BFG+97] can represent value functions in probabilistic planning [HSAHB99].

Transition relations in propositional logic

State variables are

$$
X=\{a, b, c\} .
$$

$$
\begin{align*}
& \left(\neg a \wedge b \wedge c \wedge \neg a^{\prime} \wedge b^{\prime} \wedge \neg c^{\prime}\right) \vee \\
& \left(\neg a \wedge b \wedge \neg c \wedge a^{\prime} \wedge b^{\prime} \wedge \neg c^{\prime}\right) \vee \\
& \left(\neg a \wedge \neg b \wedge c \wedge a^{\prime} \wedge b^{\prime} \wedge c^{\prime}\right) \vee \\
& \left(a \wedge b \wedge c \wedge a^{\prime} \wedge b^{\prime} \wedge \neg c^{\prime}\right) \tag{100}
\end{align*}
$$

The corresponding matrix is

	000	001	010	011	100	101	110	111
000	0	0	0	0	0	0	0	0
001	0	0	0	0	0	0	0	1
010	0	0	0	0	0	0	1	0
011	0	0	1	0	0	0	0	0
100	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	1	0

Image operations

The image of a set T of states w.r.t. action a is

$$
\operatorname{img}_{a}(T)=\left\{s^{\prime} \in S \mid s \in T, s a s^{\prime}\right\}
$$

The pre-image of a set T of states w.r.t. action a is

$$
\operatorname{preimg}_{a}(T)=\left\{s \in S \mid s^{\prime} \in T, s a s^{\prime}\right\}
$$

These operations reduce to the relational join and projection operations with a logic-representation of sets (unary relations) and binary relations.
(Pre-image corresponds to regression used with backward-search [Rin08].)

Finding All Plans with a Symbolic Algorithm

 [BCL+94]
All reachable states with breadth-first search

$$
\begin{aligned}
S_{0} & =\{I\} \\
S_{i+1} & =S_{i} \cup \bigcup_{a \in A} \operatorname{img}_{a}\left(S_{i}\right)
\end{aligned}
$$

If $S_{i}=S_{i+1}$, then $S_{j}=S_{i}$ for all $j \geq i$, and the computation can be terminated.

- $S_{i}, i \geq 0$ is the set of states with distance $\leq i$ from the initial state.
- $S_{i} \backslash S_{i-1}, i \geq 1$ is the set of states with distance i.
- If $G \cap S_{i}$ for some $i \geq 0$, then there is a plan.

Action sequence recovered from sets S_{i} by a sequence of backward-chaining steps (linear in plan length and number of state variables)
(Approximations of the above algorithm compute invariants [Rin08]).

Symbolic State-Space Search Algorithms

- Symbolic Breadth-First [BCL+94]
- Symbolic (BDD) versions of A^{*} :
- BDDA* [ER98]
- SetA* [JVB08]
- ADDA* [HZFO2]
- The Saturation algorithm [CLS01, CLM07, YCL09] trades optimality (as obtained with breadth-first) to far better scalability: find all reachable states, without accurate distance information.

Sets (of states) as formulas

Formulas over X represent sets

$a \vee b$ over $X=\{a, b, c\}$
represents the set $\left\{\begin{array}{l}a b c \\ 010 \\ 0\end{array}, 011,100,101,110,111\right\}$.

Formulas over $X \cup X^{\prime}$ represent binary relations

$a \wedge a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)$ over $X \cup X^{\prime}$ where $X=\{a, b\}, X^{\prime}=\left\{a^{\prime}, b^{\prime}\right\}$
represents the binary relation $\left\{\left(\begin{array}{c}a b \\ 10 \\ a^{\prime} b^{\prime} \\ 10\end{array}\right),(11,11)\right\}$.
Valuations $\begin{gathered}a b a^{\prime} b^{\prime} \\ 1010\end{gathered}$ and 1111 of $X \cup X^{\prime}$ can be viewed respectively as pairs of valuations $\left(\begin{array}{c}a b \\ (10, \\ a^{\prime} b^{\prime} \\ 10\end{array}\right)$ and $(11,11)$ of X.

Representation of Sets as Formulas

state sets	formulas over X
those $\frac{2\|X\|}{2}$ states where x is true	$x \in X$
$\bar{E} \quad$ (complement)	$\neg E$
$E \cup F$	$E \vee F$
$E \cap F$	$E \wedge F$
$E \backslash F \quad$ (set difference)	$E \wedge \neg F$
the empty set \emptyset	
the universal set	\perp (constant false)
question about sets	
$E \subseteq F ?$	question about formulas
$E \subset F ?$	$E \models F ?$
$E=F ?$	$E \models F$ and $F \not \models E ?$
	$E \models F$ and $F \models E ?$

Relation Operations

relation operation	logical operation
projection	abstraction
join	conjunction

Existential and Universal Abstraction

Definition

Existential abstraction of a formula ϕ with respect to $x \in X$:

$$
\exists x \cdot \phi=\phi[\top / x] \vee \phi[\perp / x] .
$$

Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition

Universal abstraction of a formula ϕ with respect to $x \in X$:

$$
\forall x . \phi=\phi[\top / x] \wedge \phi[\perp / x] .
$$

Symbolic search $\quad \exists / \forall$-abstraction

\forall and \exists-Abstraction in Terms of Truth-Tables

$\forall c$ and $\exists c$ correspond to combining lines with the same valuation for variables other than c.

Example

$\exists c .(a \vee(b \wedge c)) \equiv a \vee b \quad \forall c \cdot(a \vee(b \wedge c)) \equiv a$

abc	$a \vee(b \wedge c)$	$a b$	$\exists c .(a \vee(b \wedge c))$	$\cdots \quad$ a	$\forall c .(a \vee(b \wedge c))$
000	0	00	0	00	0
001	0				
010	0	01	1	01	0
011	1				
100	1	10	1	10	1
101	1				
110	1	11	1	11	1
111	1				

ヨ-Abstraction

Example

$$
\begin{aligned}
& \exists b .((a \rightarrow b) \wedge(b \rightarrow c)) \\
& =((a \rightarrow \top) \wedge(\top \rightarrow c)) \vee((a \rightarrow \perp) \wedge(\perp \rightarrow c)) \\
& \equiv c \vee \neg a \\
& \equiv a \rightarrow c \\
& \exists a b .(a \vee b)=\exists b \cdot(\top \vee b) \vee(\perp \vee b) \\
& =((\top \vee \top) \vee(\perp \vee \top)) \vee((\top \vee \perp) \vee(\perp \vee \perp)) \\
& \equiv(\top \vee \top) \vee(\top \vee \perp) \equiv \top
\end{aligned}
$$

Encoding of Actions as Formulas

Let X be the set of all state variables. An action a corresponds to the conjunction of the precondition P_{j} and

$$
x^{\prime} \leftrightarrow F_{i}(X)
$$

for all $x \in X$. Denote this by $\tau_{X}(a)$.

Example (move-from-A-to-B)

$$
a t A \wedge\left(a t A^{\prime} \leftrightarrow \perp\right) \wedge\left(a t B^{\prime} \leftrightarrow \top\right) \wedge\left(a t C^{\prime} \leftrightarrow a t C\right) \wedge\left(a t D^{\prime} \leftrightarrow a t D\right)
$$

This is exactly the same as in the SAT case, except that we have x and x^{\prime} instead of $x @ t$ and $x @(t+1)$.

Images as Relational Operations

Computation of Successor States

Let

- $X=\left\{x_{1}, \ldots, x_{n}\right\}$,
- $X^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$,
- ϕ be a formula over X that represents a set T of states.

Image Operation

The image $\left\{s^{\prime} \in S \mid s \in T, s a s^{\prime}\right\}$ of T with respect to a is

$$
\operatorname{img}_{a}(\phi)=\left(\exists X .\left(\phi \wedge \tau_{X}(a)\right)\right)\left[X / X^{\prime}\right]
$$

The renaming is necessary to obtain a formula over X.

\section*{Normal Forms
 | normal form | reference | comment |
| :--- | :--- | :--- |
| NNF Negation Normal Form | | |
| DNF Disjunctive Normal Form | | |
| CNF Conjunctive Normal Form | | |
| BDD Binary Decision Diagram | $[B r y 92]$ | most popular |
| DNNF Decomposable NNF | [Dar01] | more compact |
| d-DNNF deterministic DNNF | [Dar02] | |}

Darwiche's terminology: knowledge compilation languages [DM02]

Trade-off

- more compact \mapsto less efficient operations
- But, "more efficient" is in the size of a correspondingly inflated formula. (Also more efficient in terms of wall clock?) BDD-SAT is $\mathcal{O}(1)$, but e.g. translation into BDDs is (usually) far less efficient than testing SAT directly.

Complexity of Operations

	V	\wedge	\checkmark	TAUT	SAT	$\phi \equiv \phi^{\prime} ?$	\#SAT
NNF	poly	poly	poly	co-NP	NP	Co-NP	\#P
DNF	poly	exp	exp	co-NP	P	co-NP	\#P
CNF	exp	poly	exp	P	NP	co-NP	\#P
BDD	exp	exp	poly	P	P	P	poly
DNNF	poly	exp	exp	co-NP	P	co-NP	\#P
d-DNNF	poly	exp	exp	co-NP		co-NP	poly

Remark

For BDDs one \vee / \wedge is polynomial time/size (size is doubled) but repeated \vee / \wedge lead to exponential size.

Engineering Efficient Planners

- Gap between Theory and Practice large: engineering details of implementation critical for performance in current planners.
- Few of the most efficient planners use textbook methods.
- Explanations for the observed differences between planners lacking: this is more art than science.

Planners Algorithm portfolios

Algorithm Portfolios

- Algorithm portfolio = combination of two or more algorithms
- Useful if there is no single "strongest" algorithm.

Algorithm Portfolios

Composition methods

Methods for composing a portfolio

selection choose one for current instance [XHHLB08]
parallel
sequential run components in parallel [GS97, HLH97] run consecutively, according to a schedule

Other variations of the above [$\mathrm{HDH}^{+} 00$].
Early uses in planning: BLACKBOX [KS99] (manual configuration), FF [HN01] and LPG [GS02] (fixed configuration)

Lots of works in the SAT area [XHHLB08], directly applicable to planning as the main methods are no specific to SAT or planning.

Algorithm Portfolios

An Illustration of Portfolios

FF $=$ FF-1 followed by FF-2 (\sim HSP)
LPG-td $=$ LPGT-td-1 followed by FF-2 $(\sim$ HSP $)$

Evaluation of Planners

Evaluation of planning systems is based on

- Hand-crafted problems (from the planning competitions)
- This is the most popular option.
+ Problems with (at least moderately) different structure.
- Real-world relevance mostly low.
- Instance generation uncontrolled: not known if easy or difficult.
- Many have a similar structure: objects moving in a network.
- Benchmark sets obtained by translation from other problems
- graph-theoretic problems: cliques, colorability, ... [PMB11]
- Instances sampled from all instances [Byl96, Rin04c].
+ Easy to control problem hardness.
- No direct real-world relevance (but: core of any "hard" problem)

Evaluation

Sampling from the Set of All Instances

Experiments with planners

Model A: Distribution of runtimes with SAT

Introduction to Temporal Planning

Motivation 1: How long does executing a plan take?

Minimization of the duration of the execution phase:

- Two short actions may be better than one long one.
- Actions can be taken in parallel.
- Connection to scheduling problems [SFJ00].

This is a core consideration in most mixed planning+scheduling problems. (Duration and especially concurrency ignored in classical planning and basic state-space search methods.)

Introduction to Temporal Planning

Motivation 2: Plans require concurrency

Inherent concurrency of actions

- Taking an action may require other concurrent actions.
- Some effects may only be achieved as joint effects of multiple actions.

Less important in practice: can often (always?) be avoided by modelling problem differently.

- Actions that must be used concurrently can be combined.
- Replace one complex action by several simpler ones: go to Paris = go to airport, board plane, fly, exit, take train to city

How to Represent Temporal Planning Problems?

Basic Modelling Concepts

Actions	Taken at a given time point t
Precondition	Must be satisfied at t.
Effects	Assignments $x:=v$ at time points $t^{\prime}>t$.
Dependencies	If action 1 taken at t, action 2 cannot be at $\left[t_{1}, t_{2}\right]$.

Action Dependencies through Resources

- n-ary resources

Simultaneous use of resource can be at most n units.
If each action needs 1 unit of the resource, no more than n actions can be using it simultaneously.
Example: n identical tools or machines

- state resources

A resource is in at most one state at a time.
Multiple actions can use the resource in the same state.
Example: generator that can produce $110 \mathrm{~V}, 60 \mathrm{~Hz}$ or $220 \mathrm{~V}, 50 \mathrm{~Hz}$

Timed Systems Models

Embedding of Scheduling in Temporal Planning

Representation of a simple job-shop scheduling problem in temporal planning.

1. For each job $j=$ a sequence of tasks $t_{1}^{j}, \ldots, t_{n_{j}}^{j}$, introduce state variable $p_{j}:\{1, \ldots, n+1\}$.
2. Each task is mapped to action a_{i}^{j} with

- precondition $p_{j}=i$,
- effect $p_{j}=i+1$ after the duration of t_{i}^{j},
- resource requirements as in the scheduling problem.

3. In the initial state $p_{j}=1$ for every job j.
4. In the goal we have $p_{j}=n_{j+1}$.

Tasks and their ordering inside the job are fixed. Remaining problem is scheduling the tasks/actions for different jobs relative to other jobs' tasks/actions and minimizing the makespan.
Solutions of the temporal planning problem are exactly the solutions to the job-shop scheduling problem.

Relation to scheduling

- Planning = action selection + scheduling.
- Scheduling = assignment of starting times to tasks/actions, respecting resource constraints
- Expressive languages for temporal planning include scheduling and hence support the representation of resources.
- Resources and ordering constraints are the mechanism for guaranteeing that plans are executable.

Complexity

Most important scheduling problems are NP-complete [GJ79]. Temporal planning complete for PSPACE or EXPSPACE [Rin07].
Action selection is the main difference between them.

- state = values of state variables + values of clocks
- Clocks induce a schedule of future events.
- Actions initialize clocks.
- Time progresses, affecting all clocks.
- Reaching a critical clock value triggers scheduled events:
- effects taking place later than the action's "starting" time point
- resources allocated and later freed

This is the model behind all search methods.
Seemingly simple route to temporal planning with explicit state-space search.

Updates to the timed state

Advancing time

Take action with precondition $x_{2}=1$ and effect $x_{5}:=0$ at time 3.

$$
\begin{aligned}
& x_{1}=10 \\
& x_{2}=1 \\
& x_{3}=0 \\
& x_{4}=0 \\
& x_{5}=10
\end{aligned}
$$

Separation of planning and scheduling

CPT planner [VG06]

- Separate two problems

1. selection of actions (only ordering, no timing)
2. scheduling of these actions
and interleave their solution.

- Action selection induces temporal constraints [DMP91]
- These temporal constraints can be solved separately.
- Completeness regained.

Completeness of Timed State-Space Search

- Since time is continuous, an action can be started at any of an infinite number of time points. \Longrightarrow search space and branching factor infinite
- Simplistic policies for advancing time lead to incompleteness [MW06]. Most early temporal planners are incomplete. Few temporal planners have been proved to be complete.
- region abstraction [AD94] abstracts an infinite number of timed states to finitely many behaviorally equivalent regions.

Systems for Temporal Planning

- Probably the most powerful verification tool based on explicit state-space search in the state-space induced by timed automata and their extension hybrid automata is UPPAAL [BLL+96].
UPPAAL has been used in modelling and solving planning scenarios for example in robotics [QBZ04] and autonomous embedded systems [AAG^{+}07, KMH01].
- CPT [VG06]
- Temporal Fast-Downward, based on the Fast-Downward planner for classical planning

Temporal Planning by Constraint Satisfaction

- Temporal planning can be encoded in
- SAT modulo Theories (SMT) [WW99, ABC ${ }^{+}$02].
- Constraint Programming [RvBW06]
- Mixed Integer Linear Programming [DG02]
(Similarly to scheduling [ABP+11].)
- The encoding methods for all are essentially the same. Differences in surface structure of the encoding, especially the types of constraints that can be encoded directly.
- In this tutorial we focus on SMT, due to its closeness to SAT.
- Differences in performance and pragmatic differences:
- CP: support for customized search (heuristics, propagators, ...)
- SMT: fully automatic, powerful handling of Boolean constraints.
- MILP: for problems with intensive linear optimization

Each SMT instance fixes the number of steps i analogously to untimed (asynchoronous) state-space problems in SAT.

```
```

variables in SMT encoding

```
```

variables in SMT encoding
var type description
var type description
\Delta
\Delta
a@i bool Is action a taken at step i?
a@i bool Is action a taken at step i?
ca}@i\quad\mathrm{ real Value of clock for action }a\mathrm{ at step }
ca}@i\quad\mathrm{ real Value of clock for action }a\mathrm{ at step }
x@i bool Value of Boolean state variable at step i

```
```

 x@i bool Value of Boolean state variable at step i
    ```
```


Encodings of Timed Problems in SMT Variables

Encodings of Timed Problems in SMT

Formula ϕ with every variable x replaced by $x @ i$ is denoted by $\phi @ i$.
Action with precondition p :

$$
\begin{equation*}
a @ i \rightarrow p @ i \tag{5}
\end{equation*}
$$

If action is taken, its clock is initialized to 0 :

$$
\begin{equation*}
a @ i \rightarrow\left(c_{a} @ i=0\right) \tag{6}
\end{equation*}
$$

If action is not taken, its clock advances:

$$
\begin{equation*}
\neg a @ i \rightarrow\left(c_{a} @ i=c_{a} @(i-1)+\Delta_{i}\right) \tag{7}
\end{equation*}
$$

Additionally, if $\left[t_{1}, t_{1}^{\prime}\right]$ and $\left[t_{2}, t_{2}^{\prime}\right]$ overlap, we have

$$
\begin{equation*}
\neg a_{1} @ i \vee \neg a_{2} @ i \tag{4}
\end{equation*}
$$

Encodings of Timed Problems in SMT

An effect l scheduled at relative time t :

$$
\begin{equation*}
\left(c_{a} @ i=t\right) \rightarrow l @ i \tag{8}
\end{equation*}
$$

Encodings of Timed Problems in SMT

Frame axioms

Let $\left(a_{1}, t_{1}\right), \ldots,\left(a_{k}, t_{k}\right)$ be all actions and times such that action a_{i} makes x true at time t relative to its start.

$$
\begin{equation*}
(\neg x @(i-1) \wedge x @ i) \rightarrow\left(\left(c_{a_{1}} @ i=t_{1}\right) \vee \cdots \vee\left(c_{a_{k}} @ i=t_{k}\right)\right) \tag{11}
\end{equation*}
$$

The frame axiom for x becoming false is analogous.

Encodings of Timed Problems in SMT

Passage of time

Time may not pass a scheduled effect at relative time t :

$$
\begin{equation*}
c_{a} @(i-1)<t \rightarrow c_{a} @ i \leq t \tag{9}
\end{equation*}
$$

Time always passes by a non-zero amount:

$$
\begin{equation*}
\Delta_{i}>0 \tag{10}
\end{equation*}
$$

Encodings of Timed Problems in SMT

- Real variables in SMT incur a performance penalty.
- The encoding we gave is very general. In many practical cases (e.g. unit durations, small integer durations) more efficient encodings possible (SAT rather than SMT), similarly to scheduling problems.

Planning with Continuous Change

Hybrid systems = discrete change + continuous change

- Physical systems have continuous change.
- movement of physical objects, substances, liquids (velocity, acceleration)
- chemical and biological processes
- light, electromagnetic radiation
- electricity: voltage, charge, AC frequency, AC phase
- Discrete parts make the overall system piecewise continuous:
- Discrete changes triggered by continuous change.
- Continuous change controlled by discrete changes.
- Inherent issues with physical systems: lack of predictability, inaccuracy of control actions
- Problems primarily researched in control theory: Hybrid Systems Control, Model Predictive Control ("Planning" with continuous change not a separate research problem!)

Hybrid Systems Modeling

- Continuous change a function of time.
- Type of change determined by discrete parts of the system.
- Example: heater on, heater off, temperature $f\left(w_{0}, \Delta\right)$
- Example: object in free fall, on ground, altitude $f\left(h_{0}, \Delta\right)$
- Both actions and continuous values trigger discrete change.
- Example: Falling object reaches ground.
- Example: Container becomes full of liquid.

Planning with Continuous Change
 Example

actions: 2 east, 1 north, 1 east, $\frac{1}{2}$ east half speed

Hybrid Systems with SMT

- Basic framework exactly as in the discrete timed case.
- Value of continuous variables directly a function of Δ.

| law | explanation |
| :--- | :--- |
| $f(x, \Delta)=x+c \Delta$ | linear change proportional to Δ |
| $f(x, \Delta)=x \cdot r^{c \Delta}$ | exponential change |
| $f(x, \Delta)=c$ | new constant value |
| $f(x, \Delta)=x$ | no change, previous value |

- Other forms of change require a clock variable and an initial value. For example polynomials $c+x^{n}$.

Hybrid systems: computational properties

- Simple decision problems about hybrid systems undecidable [HKPV95, CL00, PC07]: complete algorithms only for narrow problem classes.
- decidable cases for reachability: rectangular automata [HKPV95], 2-d PCD [AMP95], planar multi-polynomial systems [ČV96]
- semi-decision procedures: no termination when plans don't exist.
- stability: sensitivity to small inaccuracies in control [YMH98]

Model Predictive Control

Inaccuracy of control, uncertainty, unpredictability

Model Predictive Control [GPM89] ("Dynamical Matrix Control", "Generalized Predictive Control", "Receding Horizon Control")

- Physical systems often not predictable enough for deterministic control.
- Continuous observation - prediction - control cycle.
- Predictions over a finite receding horizon
- Hybrid Model Predictive Control, integrating discrete variables.

Mixed Logical Dynamical (MLD) systems [BM99]

Hybrid systems: reasoning and analysis

- Main approaches generalize those for discrete timed systems.
- explicit state-space search (e.g. HyTech [HHWT97])
- SAT, constraints [SD05]
- Linear systems handled by efficient standard methods (MILP, linear arithmetics) in tools like MILP solvers and SAT modulo Theories solvers [SD05, ABCS05].
- Challenge: non-linear change
- non-linear programming a very wide subarea of mathematical optimization. mixed integer nonlinear programming solvers (MINLP):
- AIMMS
- MAPLE
- Mathematica
- MATLAB
- SMT solvers with non-linear arithmetic [JDM12, GKC13].

References I

Yasmina Abdeddaïm, Eugene Asarin, Matthieu Gallien, Félix Ingrand, Charles Lesire, Mihaela Sighireanu, et al.
Planning robust temporal plans: A comparison between CBTP and TGA approaches. In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling, pages 2-10. AAAI Press, 2007.
R- Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and Roberto Sebastiani. A SAT based approach for solving formulas over Boolean and linear mathematical propositions. In Andrei Voronkov, editor, Automated Deduction - CADE-18, 18th International Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002, Proceedings, number 2392 in Lecture Notes in Computer Science, pages 195-210. Springer-Verlag, 2002.
国 Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto Sebastiani. Verifying industrial hybrid systems with MathSAT. Electronic Notes in Theoretical Computer Science, 119(2):17-32, 2005.
囯 Carlos Ansótegui, Miquel Bofill, Miquel Palahı, Josep Suy, and Mateu Villaret. Satisfiability modulo theories: An efficient approach for the resource-constrained project scheduling problem.
In Proceedings of the 9th symposium on abstraction, reformulation and approximation (SARA 2011), pages 2-9, 2011.
Rajeev Alur and David L. Dill.
A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.

References II

Eugene Asarin，Oded Maler，and Amir Pnueli．
Reachability analysis of dynamical systems having piecewise－constant derivatives． Theoretical Computer Science，138（1）：35－65， 1995.
囯 Jerry R．Burch，Edmund M．Clarke，David E．Long，Kenneth L．MacMillan，and David L．Dill． Symbolic model checking for sequential circuit verification．
IEEE Transactions on Computer－Aided Design of Integrated Circuits and Systems，13（4）：401－424， 1994.
－Piergiorgio Bertoli，Alessandro Cimatti，Marco Roveri，and Paolo Traverso．
Planning in nondeterministic domains under partial observability via symbolic model checking
In Bernhard Nebel，editor，Proceedings of the 17th International Joint Conference on Artificial Intelligence，pages 473－478．Morgan Kaufmann Publishers， 2001.
國 Avrim L．Blum and Merrick L．Furst．
Fast planning through planning graph analysis．
Artificial Intelligence，90（1－2）：281－300， 1997.
R．R．I．Bahar，E．A．Frohm，C．M．Gaona，G．D．Hachtel，E．Macii，A．Pardo，and F．Somenzi． Algebraic decision diagrams and their applications．
Formal Methods in System Design：An International Journal，10（2／3）：171－206， 1997
Blai Bonet and Héctor Geffner．
Planning as heuristic search．
Artificial Intelligence，129（1－2）：5－33， 2001

References III

冨 Blai Bonet，Gábor Loerincs，and Héctor Geffner．
A robust and fast action selection mechanism for planning．
In Proceedings of the 14th National Conference on Artificial Intelligence（AAA1－97）and 9th Innovative Applications of Artificial Intelligence Conference（IAAI－97），pages 714－719．AAAI Press， 1997.Johan Bengtsson，Kim Larsen，Fredrik Larsson，Paul Pettersson，and Wang Yi．
UPPAAL－a tool suite for automatic verification of real－time systems．
In Hybrid Systems III，volume 1066 of Lecture Notes in Computer Science，pages 232－243．
Springer－Verlag， 1996.Alberto Bemporad and Manfred Morari
Control of systems integrating logic，dynamics，and constraints．
Automatica，35（3）：407－427， 1999.
R．Bollobás．
Random graphs．
Academic Press， 1985
（ R．E．Bryant．
Symbolic Boolean manipulation with ordered binary decision diagrams． ACM Computing Surveys，24（3）：293－318，September 1992
嗇 Tom Bylander
The computational complexity of propositional STRIPS planning Artificial Intelligence，69（1－2）：165－204， 1994.

References V

Joseph C．Culberson and Jonathan Schaeffer．
Searching with pattern databases．
In Gordon I．McCalla，editor，Advances in Artificial Intelligence，11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence，AI＇96，Toronto，Ontario，Canada，May 21－24，1996， Proceedings，volume 1081 of Lecture Notes in Computer Science，pages 402－416．Springer－Verlag 1996.Karlis Cerāns and Juris Vīksna
Deciding reachability for planar multi－polynomial systems．
In Rajeev Alur，Thomas A．Henzinger，and Eduardo D．Sontag，editors，Hybrid Systems III，volume 1066
of Lecture Notes in Computer Science，pages 389－400．Springer－Verlag， 1996
車 Adnan Darwiche．
Decomposable negation normal form．
Journal of the ACM，48（4）：608－647， 2001.
A Adnan Darwiche．
A compiler for deterministic，decomposable negation normal form．
In Proceedings of the 18th National Conference on Artificial Intelligence（AAAI－2002）and the 14th Conference on Innovative Applications of Artificial Intelligence（IAAI－2002），pages 627－634， 2002.
Klaus Dräger，Bernd Finkbeiner，and Andreas Podelski．
Directed model checking with distance－preserving abstractions． International Journal on Software Tools for Technology Transfer，11（1）：27－37， 2009.

References VI

Yannis Dimopoulos and Alfonso Gerevini．Temporal planning through mixed integer programming：A preliminary report．
In Pascal Van Hentenryck，editor，Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming，volume 2470 of Lecture Notes in Computer Science，pages 47－62． Springer－Verlag， 2002
（ Minh Binh Do and Subbarao Kambhampati．
Planning as constraint satisfaction：Solving the planning graph by compiling it into CSP．
Artificial Intelligence，132（2）：151－182， 2001.
㡹 Adnan Darwiche and Pierre Marquis
A knowledge compilation map．
Journal of Artificial Intelligence Research，17：229－264， 2002.
Rina Dechter，Itay Meiri，and Judea Pearl．
Temporal constraint networks．
Artificial Intelligence，49（1）：61－95， 1991.
庫 Yannis Dimopoulos，Bernhard Nebel，and Jana Koehler Encoding planning problems in nonmonotonic logic programs．
In S．Steel and R．Alami，editors，Recent Advances in Al Planning．Fourth European Conference on Planning（ECP＇97），number 1348 in Lecture Notes in Computer Science，pages 169－181．
Springer－Verlag， 1997.

References VII

R．Dueck and T．Scheuer．
Threshold accepting：a general purpose optimization algorithm appearing superior to simulated annealing．
Journal of Computational Physics，90：161－175， 1990
Planning with pattern databases．
In Amedeo Cesta，editor，Recent Advances in Al Planning．Sixth European Conference on Planning （ECP＇01），pages 13－24．AAAI Press， 2000.
囯 Stefan Edelkamp and Frank Reffel．
OBDDs in heuristic search．
In KI－98：Advances in Artificial Intelligence，number 1504 in Lecture Notes in Computer Science，pages 81－92．Springer－Verlag， 1998.
E．Allen Emerson and A．Prasad Sistla
Symmetry and model－checking．
Formal Methods in System Design：An International Journal，9（1／2）：105－131， 1996
D M．Fujita，P．C．McGeer，and J．C．－Y．Yang
Multi－terminal binary decision diagrams：an efficient data structure for matrix representation．
Multi－terminal binary decision diagrams：an efficient data structure for matrix represe
Formal Methods in System Design：An International Journal，10（2／3）：149－169， 1997 ．
國 M．Ghallab，A．Howe，C．Knoblock，D．McDermott，A．Ram，M．Veloso，D．Weld，and D．Wilkins．
The Planning Domain Definition Language．
Technical Report CVC TR－98－003／DCS TR－1165，Yale Center for Computational Vision and Control，Yale University，October 1998.

References IX

Alfonso Gerevini and Ivan Serina．
LPG：a planner based on local search for planning graphs with action costs
In Malik Ghallab，Joachim Hertzberg，and Paolo Traverso，editors，Proceedings of the Sixth International Conference on Artificial Intelligence Planning Systems，April 23－27，2002，Toulouse，France，pages 13－22．AAAI Press， 2002.
Jaco Geldenhuys and Antti Valmari．
A nearly memory－optimal data structure for sets and mappings．
In Thomas Ball and Sriram K．Rajamani，editors，Model Checking Software，volume 2648 of Lecture
Notes in Computer Science，pages 136－150．Springer－Verlag， 2003.
E－Hana Galperin and Avi Wigderson．
Succinct representations of graphs．
Information and Control，56：183－198， 1983
See［Loz88］for a correction．
國 Malte Helmert and Carmel Domshlak．
Landmarks，critical paths and abstractions：What＇s the difference anyway．
In Alfonso Gerevini，Adele Howe，Amedeo Cesta，and Ioannis Refanidis，editors，ICAPS 2009.
Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling，pages 162－169．AAAI Press， 2009.
（R－1 Adele E．Howe，Eric Dahlman，Christopher Hansen，Michael Scheetz，and Anneliese von Mayrhauser． Exploiting competitive planner performance．
In Susanne Biundo and Maria Fox，editors，Recent Advances in AI Planning．5th European Conference on Planning，ECP＇99，Durham，UK，September 8－10，1999．Proceedings，volume 1809 of Lecture Notes in Computer Science，pages 62－72， 2000

References X

Thomas A．Henzinger，Pei－Hsin Ho，and Howard Wong－Toi． HYTECH：a model checker for hybrid systems．
International Journal on Software Tools for Technology Transfer（STTT），1：110－122， 1997.
Thomas A．Henzinger，Peter W．Kopke，Anuj Puri，and Pravin Varaiya
What＇s decidable about hybrid automata？
In Proceedings of the twenty－seventh annual ACM symposium on Theory of computing，pages 373－382， 1995.

Rernardo A．Huberman，Rajan M．Lukose，and Tad Hogg． An economics approach to hard computational problems． Science，275（5296）：51－54， 1997.
Jörg Hoffmann and Bernhard Nebel．
The FF planning system：fast plan generation through heuristic search Journal of Artificial Intelligence Research，14：253－302， 2001.
P．E．Hart，N．J．Nilsson，and B．Raphael．
A formal basis for the heuristic determination of minimum－cost paths．
IEEE Transactions on System Sciences and Cybernetics，SSC－4（2）：100－107， 1968.
Jesse Hoey，Robert St－Aubin，Alan Hu，and Craig Boutilier． SPUDD：Stochastic planning using decision diagrams．
In Kathryn B．Laskey and Henri Prade，editors，Uncertainty in Artificial Intelligence，Proceedings of the Fifteenth Conference（UAl－99），pages 279－288．Morgan Kaufmann Publishers， 1999.

References XII

Emil Ragip Keyder，Jörg Hoffmann，and Patrik Haslum Semi－relaxed plan heuristics．
In ICAPS 2012．Proceedings of the Twenty－Second International Conference on Automated Planning and Scheduling，pages 128－136．AAAI Press， 2012.
Lina Khatib，Nicola Muscettola，and Klaus Havelund
Mapping temporal planning constraints into timed automata．
In Temporal Representation and Reasoning，2001．TIME 2001．Proceedings．Eighth International Symposium on，pages 21－27．IEEE， 2001.
R．E．Kor
Depth－first iterative deepening：an optimal admissible tree search
Artificial Intelligence，27（1）：97－109， 1985.

冨

Henry Kautz and Bart Selman
Planning as satisfiability．
In Bernd Neumann，editor，Proceedings of the 10th European Conference on Artificial Intelligence，pages 359－363．John Wiley \＆Sons， 1992.
Henry Kautz and Bart Selman．
Pushing the envelope：planning，propositional logic，and stochastic search．
In Proceedings of the 13th National Conference on Artificial Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference，pages 1194－1201．AAAI Press， 1996.

References XI

E．E．Hansen，R．Zhou，and Z．Feng
Symbolic heuristic search using decision diagrams．
In Abstraction，Reformulation，and Approximation，pages 83－98．Springer－Verlag， 2002.
Dejan Jovanović and Leonardo De Moura．
Solving non－linear arithmetic．
In Bernhard Gramlich，Dale Miller，and Uli Sattler，editors，Automated Reasoning，volume 7364 of Lectur Notes in Computer Science，pages 339－354．Springer－Verlag， 2012.
Paul Jackson and Daniel Sheridan．
Clause form conversions for Boolean circuits．
In Holger H．Hoos and David G．Mitchell，editors，Theory and Applications of Satisfiability Testing，7th
International Conference，SAT 2004，Vancouver，BC，Canada，May 10－13，2004，Revised Selected
Papers，volume 3542 of Lecture Notes in Computer Science，pages 183－198．Springer－Verlag， 2005,
R．R．M．Jensen，M．M．Veloso，and R．E．Bryant．
State－set branching：Leveraging BDDs for heuristic search．
Artificial Intelligence，172（2－3）：103－139， 2008.
S．Kirkpatrick，C．D．Gelatt Jr．，and M．P．Vecchi．
Optimization by simulated annealing．
Science，220（4598）：671－680，May 1983.
R Michael Katz，Jörg Hoffmann，and Carmel Domshlak．
Red－black relaxed plan heuristics．
In Proceedings of the 27th AAAI Conference on Artificial Intelligence（AAAI－13），pages 489－495．AAAI In Proceeding
Press， 2013.

References XIII

Henry Kautz and Bart Selman．
Unifying SAT－based and graph－based planning
In Thomas Dean，editor，Proceedings of the 16th International Joint Conference on Artificial Intelligence， pages 318－325．Morgan Kaufmann Publishers， 1999.
Antonio Lozano and José L．Balcázar．
The complexity of graph problems for succinctly represented graphs．
In Manfred Nagl，editor，Graph－Theoretic Concepts in Computer Science，15th International Workshop， WG’89，number 411 in Lecture Notes in Computer Science，pages 277－286．Springer－Verlag， 1990.
（R）Nir Lipovetzky and Hector Geffner．
Searching for plans with carefully designed probes．
In ICAPS 2011．Proceedings of the Twenty－First International Conference on Automated Planning and Scheduling，pages 154－161， 2011.
囯 Michael L．Littman
Probabilistic propositional planning：Representations and complexity．
In Proceedings of the 14th National Conference on Artificial Intelligence（AAAI－97）and 9th Innovative Applications of Artificial Intelligence Conference（IAAI－97），pages 748－754．AAAI Press， 1997.
目 Antonio Lozano
NP－hardness of succinct representations of graphs．
Bulletin of the European Association for Theoretical Computer Science，35：158－163，June 1988

References XIV

Drew McDermott．A heuristic estimator for means－ends analysis in planning．
In Brian Drabble，editor，Proceedings of the Third International Conference on Artificial Intelligence Planning Systems，pages 142－149．AAAI Press， 1996.
Omid Madani，Steve Hanks，and Anne Condon．
On the undecidability of probabilistic planning and related stochastic optimization problems．
Artificial Intelligence，147（1－2）：5－34， 2003.Matthew W．Moskewicz，Conor F．Madigan，Ying Zhao，Lintao Zhang，and Sharad Malik．
Chaff：engineering an efficient SAT solver．
In Proceedings of the 38th ACM／IIEEE Design Automation Conference（DAC＇01），pages 530－535．ACM Press， 2001.
David Mitchell，Bart Selman，and Hector Levesque．
Hard and easy distributions of SAT problems．
In William Swartout，editor，Proceedings of the 10th National Conference on Artificial Intelligence，pages 459－465．The MIT Press， 1992.
Panagiotis Manolios and Daron Vroon．
Efficient circuit to CNF conversion．
In Joao Marques－Silva and Karem A．Sakallah，editors，Proceedings of the 8th International Conference on Theory and Applications of Satisfiability Testing（SAT－2007），volume 4501 of Lecture Notes in Computer Science，pages 4－9．Springer－Verlag， 2007

References XVII

圊 Jussi Rintanen．
Conditional planning in the discrete belief space．
In Leslie Pack Kaelbling，editor，Proceedings of the 19th International Joint Conference on Artificial Intelligence，pages 1260－1265．Morgan Kaufmann Publishers， 2005.
Complexity of concurrent temporal planning
Complexity of concurrent temporal planning．
In ICAPS 2007．Proceedings of the Seventeenth International Conference on Automated Planning and In ICAPS 2007．Proceedings of the Seventeenth
Scheduling，pages 280－287．AAAI Press， 2007.
圊 Jussi Rintanen．
Regression for classical and nondeterministic planning
Regression for classical and nondeterministic planning．
In Malik Ghallab，Constantine D．Spyropoulos，and Nikos Fakotakis，editors，ECAI 2008．Proceedings of the 18th European Conference on Artificial Intelligence，pages 568－571．IOS Press， 2008.
圊 Jussi Rintanen．
Heuristics for planning with SAT．
In David Cohen，editor，Principles and Practice of Constraint Programming－CP 2010，16th International Conference，CP 2010，St．Andrews，Scotland，September 2010，Proceedings．，number 6308 in Lecture Notes in Computer Science，pages 414－428．Springer－Verlag， 2010.
國 Jussi Rintanen．
Planning as satisfiability：heuristics．
Artificial Intelligence，193：45－86， 2012.

References XVIII

Francesca Rossi，Peter van Beek，and Toby Walsh． Handbook of Constraint Programming．Elsevier Science Publishers， 2006.
Till Silvia Richter and Matthias Westphal．
The LAMA planner：guiding cost－based anytime planning with landmarks．
Journal of Artificial Intelligence Research，39：127－177， 2010.Ji－Ae Shin and Ernest Davis．
Processes and continuous change in a SAT－based planner．
Artificial Intelligence，166（1）：194－253， 2005.
David E．Smith，Jeremy Frank，and William Cushing．
The ANML language．
ICAPS－08 Workshop on Knowledge Engineering for Planning and Scheduling（KEPS）， 2008.
David Smith，Jeremy Frank，and Ari Jonsson．
Bridging the gap between planning and scheduling．
Knowledge Engineering Review，15（1）：47－83， 2000
（ Matthew Streeter and Stephen F．Smith．
Using decision procedures efficiently for optimization．
In ICAPS 2007．Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling，pages 312－319．AAAI Press， 2007.

References XIX

Meera Sampath，Raja Sengupta，Stéphane Lafortune，Kasim Sinnamohideen，and Demosthenis Teneketzis．
Diagnosability of discrete－event systems．
IEEE Transactions on Automatic Control，40（9）：1555－1575， 1995.
Reachability analysis of Petri nets using symmetries．
Journal of Mathematical Modelling and Simulation in Systems Analysis，8（4／5）：293－303， 1991.
园 G．S．Tseitin．
On the complexity of derivations in propositional calculus．
In A．O．Slisenko，editor，Studies in Constructive Mathematics and Mathematical Logic，Part II，pages
115－125．Consultants Bureau， 1968
夙 Antti Valmari．
Stubborn sets for reduced state space generation．
In Grzegorz Rozenberg，editor，Advances in Petri Nets 1990．10th International Conference on Applications and Theory of Petri Nets，Bonn，Germany，number 483 in Lecture Notes in Computer Science，pages 491－515．Springer－Verlag， 1991.
Peter van Beek and Xinguang Chen
CPlan：a constraint programming approach to planning．
In Proceedings of the 16th National Conference on Artificial Intelligence（AAAI－99）and the 11th Conference on Innovative Applications of Artificial Intelligence（IAAI－99），pages 585－590．AAAI Press， 1999.

References XXI

Hui Ye，Anthony N．Michel，and Ling Hou． Stability theory for hybrid dynamical systems． IEEE Transactions on Automatic Control，43（4）：461－474， 1998.贯 Emmanuel Zarpas
Simple yet efficient improvements of SAT based bounded model checking
In Alan J．Hu and Andrew K．Martin，editors，Formal Methods in Computer－Aided Design：5th International Conference，FMCAD 2004，Austin，Texas，USA，November 15－17，2004．Proceedings， number 3312 in Lecture Notes in Computer Science，pages 174－185．Springer－Verlag， 2004.

[^0]: (:action unload
 :parameters (?obj - obj ?airplane - vehicle ?loc - location) :precondition (and (in ?obj ?airplane) (at ?airplane ?loc))
 :effect (and (not (in ?obj ?airplane)))

