
Planning
Introduction
Explicit State-Space Search

Symmetry reduction
Partial Order Reduction
Heuristics

Planning with SAT
Parallel plans
Plan search
SAT solving

Symbolic search
Algorithms
Operations
∃/∀-abstraction
Images
Normal forms

Planning System Implementations
Algorithm portfolios

Evaluation of Planners
Timed Systems

Models
Explicit state-space
Constraint-based methods
Continuous change

References
1 / 128

Search Methods for Classical and Temporal
Planning

Jussi Rintanen

Prague, ECAI 2014

2 / 128

Introduction

Planning
What to do to achieve your objectives?

I Which actions to take to achieve your objectives?
I Number of agents

I single agent, perfect information: s-t-reachability in succinct graphs
I + nondeterminism/adversary: and-or tree search
I + partial observability: and-or search in the space of beliefs

Time
I asynchronous or instantaneous actions (integer time, unit duration)
I rational/real time, concurrency

Objective
I Reach a goal state.
I Maximize probability of reaching a goal state.
I Maximize (expected) rewards.
I temporal goals (e.g. LTL)

3 / 128

Introduction

Hierarchy of Planning Problems

classical (PSPACE [GW83, Loz88, LB90, Byl94])

temporal (EXPSPACE [Rin07])

conditional/MDP (EXP [Lit97])

partially obs. (2-EXP [Rin04a])

POMDP (undecidable [MHC03])

temporal cond/MDP (≥EXPSPACE)

temp. partially obs. (≥ 2-EXP)

4 / 128

Introduction

Classical (Deterministic, Sequential) Planning

I states and actions expressed in terms of state variables
I single initial state, that is known
I all actions deterministic
I actions taken sequentially, one at a time
I a goal state (expressed as a formula) reached in the end

Deciding whether a plan exists is PSPACE-complete
[GW83, Loz88, LB90, Byl94].
With a polynomial bound on plan length, NP-complete [KS96].

5 / 128

Introduction

Domain-Independent Planning

What is domain-independent?

I general language for representing problems (e.g. PDDL)
I general algorithms to solve problems expressed in it

Advantages and disadvantages:
+ Representation of problems at a high level
+ Fast prototyping
+ Often easy to modify and extend
- Often very high performance penalty w.r.t. specialized algorithms
- Trade-off between generality and efficiency

6 / 128

Introduction

Domain-Specific Planning

What is domain-specific?

I application-specific representation
I application-specific constraints/propagators
I application-specific heuristics

There are some planning systems that have aspects of these, but mostly this
means: implement everything from scratch.

7 / 128

Introduction

Domain-Dependent vs. -Independent Planning
Procedure

Formalize in PDDL

Try off-the-shelf planners

Problem solved?

Done Go domain-specific

8 / 128

Introduction

Related Problems, Reductions
planning, diagnosis [SSL+95], model-checking (verification)

planning

model-checking

DES diagnosis

state-spaceSAT/CSP/IP symbolic BDD

9 / 128

Introduction

How to Represent Planning Problems?

planning

transition-
based

SMV Petri Nets

PDDL

constraint-
based

SAT

IP

CSP

ASP

Different strengths and weaknesses; No single “right” language. 10 / 128

Introduction

PDDL: Planning Domain Description Language

I Defined in 1998 [GHK+98], with several extensions later.
I Lisp-style syntax
I Widely used in the planning (competition) community.
I Most basic version with Boolean state variables only.
I Action sets expressed as schemata instantiated with objects.

(:action unload
:parameters (?obj - obj ?airplane - vehicle ?loc - location)
:precondition (and (in ?obj ?airplane) (at ?airplane ?loc))
:effect (and (not (in ?obj ?airplane))))

11 / 128

Introduction

States

States are valuations of state variables.

Example
State variables are
LOCATION: {0, . . . , 1000}

GEAR: {R, 1, 2, 3, 4, 5}
FUEL: {0, . . . , 60}

SPEED: {−20, . . . , 200}
DIRECTION: {0, . . . , 359}

One state is
LOCATION =312

GEAR = 4
FUEL = 58

SPEED =110
DIRECTION = 90

12 / 128

Introduction

State-space transition graphs
Blocks world with three blocks

13 / 128

Introduction

Actions
How values of state variables change

General form
precondition: A=1 ∧ C=1
effect: A := 0; B := 1; C := 0;

STRIPS representation

PRE: A, C
ADD: B
DEL: A, C

Petri net

A

C

B

action

14 / 128

Introduction

Weaknesses in Existing Languages

I High-level concepts not easily/efficiently expressible.
Examples: graph connectivity, transitive closure, inductive definitions.

I Limited or no facilities to express domain-specific information (control,
pruning, heuristics).

I The notion of classical planning is limited:
I Real world rarely a single run of the sense-plan-act cycle.
I Main issue often uncertainty, costs, or both.
I Often rational time and concurrency are critical.

15 / 128

Introduction

Formalization of Planning in This Tutorial

A problem instance in (classical) planning consists of the following.

I set X of state variables
I set A of actions 〈p, e〉 where

I p is the precondition (a set of literals over X)
I e is the effects (a set of literals over X)

I initial state I : X → {0, 1} (a valuation of X)
I goals G (a set of literals over X)

(We will later extend this with time and continuous change.)

16 / 128

Introduction

The planning problem

An action a = 〈p, e〉 is executable in state s iff s |= p.
The successor state s′ = execa(s) is defined by

I s′ |= e

I s(x) = s′(x) for all x ∈ X that don’t occur in e.

Problem
Find a1, . . . , an such that execan(execan−1(· · · execa2(execa1(I)) · · ·)) |= G?

17 / 128

Introduction

Development of state-space search methods

19
68

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

SAT-based search

symbolic search

explicit state-space
searchA∗

partial-order reduction
symmetry reduction

BDDs
Symbolic Model-Checking

DNNF
Saturation

Planning as SAT
SATPLAN

GRASP
SATZ
Bounded Model-Checking
Chaff

18 / 128

State-Space Search

Explicit State-Space Search

I The most basic search method for transition systems
I Very efficient for small state spaces (1 million states)
I Easy to implement
I Very well understood
I Also known as “forward search” (in contrast to “backward search” with

regression [Rin08])
I Pruning methods:

I symmetry reduction [Sta91, ES96]
I partial-order reduction [God91, Val91]
I lower-bounds / heuristics, for informed search [HNR68]

19 / 128

State-Space Search

State Representation

Every state represented explicitly⇒ compact state representation important

I Boolean (0, 1) state variables represented by one bit
I Inter-variable dependencies enable further compaction:

I ¬(at(A,L1)∧at(A,L2)) always true
I automatic recognition of invariants [BF97, Rin98, Rin08]
I n exclusive variables x1, . . . , xn represented by 1 + blog2(n− 1)c bits

(See [GV03] for references to representative works on compact
representations of state sets.)

20 / 128

State-Space Search

Search Algorithms

I uninformed/blind search: depth-first, breadth-first, ...
I informed search: “best first” search (always expand best state so far)
I informed search: local search algorithms such as simulated annealing,

tabu search and others [KGJV83, DS90, Glo89] (little used in planning)
I optimal algorithms: A∗ [HNR68], IDA∗ [Kor85]

21 / 128

State-Space Search Symmetry reduction

Symmetry Reduction [Sta91, ES96]

Idea

1. Define an equivalence relation ∼ on the set of all states: s1 ∼ s2 means
that state s1 is symmetric with s2.

2. Only one state sC in each equivalence class [sC] needs to be considered.
3. If state s ∈ [sC] with s 6= sC is encountered, replace it with sC .

Example

States P (A) ∧ ¬P (B) ∧ P (C) and ¬P (A) ∧ P (B) ∧ P (C) are symmetric
because of the permutation A 7→ B,B 7→ A,C 7→ C.

22 / 128

State-Space Search Symmetry reduction

Symmetry Reduction
Example: 11 states, 3 equivalence classes

23 / 128

State-Space Search Part. Order Red.

Partial Order Reduction
Stubborn sets and related methods

Idea [God91, Val91]
Independent actions unnecessary to consider in all orderings, e.g. A1, A2 and
A2, A1.

Example

Let there be lamps 1, 2, . . . , n which can be turned on. There are no other
actions. One can restrict to plans in which lamps are turned on in the
ascending order: switching lamp n after lamp m > n unnecessary.1

1The same example is trivialized also by symmetry reduction!
24 / 128

State-Space Search Heuristics

Heuristics for Classical Planning

The most basic heuristics used for non-optimal domain-independent planning:
hmax [BG01, McD96] best-known admissible heuristic
h+ [BG01] still state-of-the-art
hrelax [HN01] often more accurate but performs like h+

25 / 128

State-Space Search Heuristics

Definition of hmax, h+ and hrelax

I Basic insight: estimate distances between possible state variable values,
not states themselves.

I gs(l) =

{
0 if s |= l
min

a with effect p
(1 + gs(prec(a)))

I h+ defines gs(L) =
∑

l∈L gs(l) for sets S.
I hmax defines gs(L) = maxl∈L gs(l) for sets S.
I hrelax counts the number of actions in computation of hmax.

26 / 128

State-Space Search Heuristics

Computation of hmax
Tractor example

1. Tractor moves:
I from 1 to 2: T12 = 〈T1, {T2,¬T1}〉
I from 2 to 1: T21 = 〈T2, {T1,¬T2}〉
I from 2 to 3: T23 = 〈T2, {T3,¬T2}〉
I from 3 to 2: T32 = 〈T3, {T2,¬T3}〉

2. Tractor pushes A:
I from 2 to 1: A21 = 〈T2 ∧A2, {T1, A1,¬T2,¬A2}〉
I from 3 to 2: A32 = 〈T3 ∧A3, {T2, A2,¬T3,¬A3}〉

3. Tractor pushes B:
I from 2 to 1: B21 = 〈T2 ∧B2, {T1, B1,¬T2,¬B2}〉
I from 3 to 2: B32 = 〈T3 ∧B3, {T2, B2,¬T3,¬B3}〉

27 / 128

State-Space Search Heuristics

Computation of hmax
Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF TF TF TF TF TF TF

Distance of A1 ∧B1 is 4.

28 / 128

State-Space Search Heuristics

hmax Underestimates

Example

Estimate for lamp1on ∧ lamp2on ∧ lamp3on with

〈>, {lamp1on}〉
〈>, {lamp2on}〉
〈>, {lamp3on}〉

is 1. Actual shortest plan has length 3.
By definition, hmax(G1 ∧ · · · ∧Gn) is the maximum of hmax(G1), . . . , hmax(Gn).
If goals are independent, the sum of the estimates is more accurate.

29 / 128

State-Space Search Heuristics

Computation of h+

Tractor example

t T1 T2 T3 A1 A2 A3 B1 B2 B3
0 T F F F F T F F T
1 TF TF F F F T F F T
2 TF TF TF F F T F F T
3 TF TF TF F TF TF F TF TF
4 TF TF TF F TF TF F TF TF
5 TF TF TF TF TF TF TF TF TF

h+(T2 ∧A2) is 1+3.
h+(A1) is 1+3+1 = 5 (hmax gives 4.)

30 / 128

State-Space Search Heuristics

Comparison of the Heuristics

I For the Tractor example:
I actions in the shortest plan: 8
I hmax yields 4 (never overestimates).
I h+ yields 10 (may under or overestimate).

I The sum-heuristic and its various extensions, including relaxed plan
heuristics [HN01, KHH12, KHD13] are used in practice for non-optimal
planners.

31 / 128

State-Space Search Heuristics

Heuristic State-space Planners
Some planners representing the current state of the art

HSP [BLG97, BG01]

LAMA [RW10]YAHSP3 [Vid04, Vid11] PROBE [LG11]

I LAMA adds a preference for actions suggested by the computation of
heuristic as good “first actions” towards goals [Vid04, RH09].

I YAHSP2/YAHSP3 and PROBE do – from each encountered state with a
best-first search with h+ – incomplete local searches to find shortcuts
towards the goals.

32 / 128

State-Space Search Heuristics

Performance of State-Space Search Planners
Planning Competition Problems 2008-2011

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

STRIPS instances

ss

HSP

FF

LPG-td

LAMA08

YAHSP

33 / 128

State-Space Search Heuristics

Heuristics for Optimal Planning

Admissible heuristics are needed for finding optimal plans, e.g with A∗

[HNR68]. Scalability much poorer.

Pattern Databases [CS96, Ede00]
Abstract away many/most state variables, and use the length/cost of the
optimal solution to the remaining problem as an estimate.

Generalized Abstraction (compose and abstract) [DFP09]
A generalization of pattern databases, allowing more complex aggregation of
states (not just identification of ones agreeing on a subset of state variables.)
Planning people call it “merge and shrink”.

Landmark-cut [HD09] has worked well with standard benchmarks.

34 / 128

SAT

Planning with SAT
Background

I Proposed by Kautz and Selman [KS92].
I Idea as in Cook’s proof of NP-hardness of SAT [Coo71]: encode each

step of a plan as a propositional formula.
I Intertranslatability of NP-complete problems⇒ reductions to many other

problems possible, often simple.

Other NP-complete search frameworks
constraint satisfaction (CSP) [vBC99, DK01]
NM logic programs / answer-set programs [DNK97]
Mixed Integer Linear Programming (MILP) [DG02]

35 / 128

SAT

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111

36 / 128

SAT

Encoding of Actions as Formulas
for Sequential Plans

Actions as propositional formulas

New value of state variable xi is a function of the old values of x1, . . . , xn:
action j = conjunction of the precondition Pj@t and

xi@(t+ 1)↔ Fi(x1@t, . . . , xn@t)

for all i ∈ {1, . . . , n}. Denote this by Ej@t.

Example (move-from-X-to-Y)

precond︷ ︸︸ ︷
atX@t ∧

effects︷ ︸︸ ︷
(atX@(t+ 1)↔ ⊥) ∧ (atY@(t+ 1)↔ >)
∧(atZ@(t+ 1)↔ atZ@t) ∧ (atU@(t+ 1)↔ atU@t)

Choice between actions 1, . . . ,m expressed by the formula

R@t = E1@t ∨ · · · ∨ Em@t.
37 / 128

SAT

Finding a Plan with SAT solvers

Let
I I be a formula expressing the initial state, and
I G be a formula expressing the goal states.

Then a plan of length T exists iff

I@0 ∧
T−1∧

t=0

R@t ∧GT

is satisfiable.

Remark
Most SAT solvers require formulas to be in CNF. There are efficient
transformations to achieve this [Tse68, JS05, MV07].

38 / 128

SAT Parallel plans

Parallel Plans: Motivation

I Don’t represent all intermediate
states of a sequential plan.

I Don’t represent the relative
ordering of some consecutive
actions.

I Reduced number of explicitly
represented states⇒ smaller
formulas

state at t+ 1

state at t

39 / 128

SAT Parallel plans

Parallel plans (∀-step plans)
Blum and Furst [BF97], Kautz and Selman 1996 [KS96]

Allow actions a1 = 〈p1, e1〉 and a2 = 〈p2, e2〉 in parallel whenever they don’t
interfere, i.e.

I both p1 ∪ p2 and e1 ∪ e2 are consistent, and
I both e1 ∪ p2 and e2 ∪ p1 are consistent.

Theorem
If a1 = 〈p1, e1〉 and a2 = 〈p1, e1〉 don’t interfere and s is a state such that
s |= p1 and s |= p2, then execa1(execa2(s)) = execa2(execa1(s)).

40 / 128

SAT Parallel plans

∀-step plans: encoding

Define R∀@t as the conjunction of

x@(t+ 1)↔ ((x@t ∧ ¬a1@t ∧ · · · ∧ ¬ak@t) ∨ a′1@t ∨ · · · ∨ a′k′@t)

for all x ∈ X, where a1, . . . , ak are all actions making x false, and a′1, . . . , a′k′
are all actions making x true, and

a@t→ l@t for all l in the precondition of a,

and
¬(a@t ∧ a′@t) for all a and a′ that interfere.

This encoding is quadratic due to the interference clauses.

41 / 128

SAT Parallel plans

∀-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Action a with effect l disables all actions with precondition l, except a itself.
This is done in two parts: disable actions with higher index, disable actions
with lower index.

a1 a2 a3 a4 a5

v2 v4 v5

w1 w2 w4

This is needed for every literal.

42 / 128

SAT Parallel plans

∃-step plans
Dimopoulos et al. 1997 [DNK97]

Allow actions {a1, . . . , an} in parallel if they can be executed in at least one
order.

I
⋃n

i=1 pi is consistent.
I
⋃n

i=1 ei is consistent.
I There is a total ordering a1, . . . , an such that ei ∪ pj is consistent

whenever i ≤ j: disabling an action earlier in the ordering is allowed.

Several compact encodings exist [RHN06].
Fewer time steps are needed than with ∀-step plans. Sometimes only half as
many.

43 / 128

SAT Parallel plans

∃-step plans: linear encoding
Rintanen et al. 2006 [RHN06]

Choose an arbitrary fixed ordering of all actions a1, . . . , an.

Action a with effect l disables all later actions with precondition l.

a1 a2 a3 a4 a5

v2 v4 v5

This is needed for every literal.

44 / 128

SAT Parallel plans

Disabling graphs
Rintanen et al. 2006 [RHN06]

Define a disabling graph with actions as nodes and with an arc from a1 to a2

(a1 disables a2) if p1 ∪ p2 and e1 ∪ e2 are consistent and e1 ∪ p2 is inconsistent.

The test for valid execution orderings can be limited to strongly connected
components (SCC) of the disabling graph.

In many structured problems all SCCs are singleton sets.
=⇒ No tests for validity of orderings needed during SAT solving.

45 / 128

SAT Parallel plans

Summary of Notions of Plans

plan type reference comment
sequential [KS92] one action per time point
∀-parallel [BF97, KS96] parallel actions independent
∃-parallel [DNK97, RHN06] executable in at least one order

The last two expressible in terms of the relation disables restricted to applied
actions:

I ∀-parallel plans: the disables relation is empty.
I ∃-parallel plans: the disables relation is acyclic.

46 / 128

SAT Plan search

Search through Horizon Lengths

The planning problem is reduced to the satisfiability tests for

Φ0 = I@0 ∧G@0
Φ1 = I@0 ∧R@0 ∧G@1
Φ2 = I@0 ∧R@0 ∧R@1 ∧G@2
Φ3 = I@0 ∧R@0 ∧R@1 ∧R@2 ∧G@3
...
Φu = I@0 ∧R@0 ∧R@1 ∧ · · ·R@(u− 1) ∧G@u

where u is the maximum possible plan length.

Q: How to schedule these satisfiability tests?

47 / 128

SAT Plan search

Search through Horizon Lengths

algorithm reference comment
sequential [KS92, KS96] slow, guarantees min. horizon
binary search [SS07] prerequisite: “tight” length UB
n processes [Rin04b, Zar04] fast, more memory needed
geometric [Rin04b] fast, more memory needed

I sequential: first test Φ0, then Φ1, then Φ2, . . .
I This is breadth-first search / iterative deepening.
I Guarantees shortest horizon length, but is slow.

I parallel strategies: solve several horizon lengths simultaneously
I depth-first flavor
I usually much faster
I no guarantee of minimal horizon length

48 / 128

SAT Plan search

Some runtime profiles

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60

tim
e

in
 s

ec
s

time points

Evaluation times: gripper10

49 / 128

SAT Plan search

Geometric Evaluation

0

5

10

15

20

25

30

35

40

45

40 45 50 55 60 65 70 75 80 85 90

tim
e

in
 s

ec
s

time points

Finding a plan for blocks22 with Algorithm B

50 / 128

SAT SAT solving

Solving the SAT Problem

SAT problems obtained from planning are solved by
I generic SAT solvers

I Mostly based on Conflict-Driven Clause Learning (CDCL) [MMZ+01].
I Very good on hard combinatorial planning problems.
I Not designed for solving the extremely large but “easy” formulas (arising in

some types of benchmark problems).
I specialized SAT solvers [Rin10, Rin12]

I Replace standard CDCL heuristics with planning-specific ones.
I For certain problem classes substantial improvement
I New research topic: lots of unexploited potential

51 / 128

SAT SAT solving

Solving the SAT Problem
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

Problem solved almost without search:
I Formulas for lengths 1 to 4 shown unsatisfiable without any search.
I Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
I Plans have 5 to 7 operators, optimal plan has 5.

52 / 128

SAT SAT solving

Solving the SAT Problem
Example

0 1 2 3 4 5
clear(a) F F
clear(b) F F
clear(c) T T F F
clear(d) F T T F F F
clear(e) T T F F F F
on(a,b) F F F T
on(a,c) F F F F F F
on(a,d) F F F F F F
on(a,e) F F F F F F
on(b,a) T T F F
on(b,c) F F T T
on(b,d) F F F F F F
on(b,e) F F F F F F
on(c,a) F F F F F F
on(c,b) T F F F
on(c,d) F F F T T T
on(c,e) F F F F F F
on(d,a) F F F F F F
on(d,b) F F F F F F
on(d,c) F F F F F F
on(d,e) F F T T T T
on(e,a) F F F F F F
on(e,b) F F F F F F
on(e,c) F F F F F F
on(e,d) T F F F F F

ontable(a) T T T F
ontable(b) F F F F
ontable(c) F F F F
ontable(d) T T F F F F
ontable(e) F T T T T T

0 1 2 3 4 5
F F F T T
F F T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F F F
F F F F F
T T F F F F
F T T T T T

0 1 2 3 4 5
F F F T T T
F F T T T F
T T T T F F
F T T F F F
T T F F F F
F F F F F T
F F F F F F
F F F F F F
F F F F F F
T T T F F F
F F F F T T
F F F F F F
F F F F F F
F F F F F F
T T F F F F
F F F T T T
F F F F F F
F F F F F F
F F F F F F
F F F F F F
F F T T T T
F F F F F F
F F F F F F
F F F F F F
T F F F F F
T T T T T F
F F F T F F
F F T F F F
T T F F F F
F T T T T T

1. State variable values inferred
from initial values and goals.

2. Branch: ¬clear(b)1.
3. Branch: clear(a)3.
4. Plan found:

0 1 2 3 4
fromtable(a,b)FFFFT
fromtable(b,c)FFFTF
fromtable(c,d)FFTFF
fromtable(d,e)FTFFF

totable(b,a)FFTFF
totable(c,b)FTFFF
totable(e,d)TFFFF

53 / 128

SAT SAT solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2008

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

STRIPS instances

ss
HSP

FF
LPG-td

LAMA08
YAHSP

SATPLAN
M

Mp

54 / 128

SAT SAT solving

Performance of SAT-Based Planners
Planning Competition Problems 1998-2011 (revised)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.1 1 10 100 1000

n
u
m

b
e
r

o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

time in seconds

all domains 1998-2011

SATPLAN
M

Mp
MpC

LAMA08
LAMA11

FF
FF-1
FF-2

55 / 128

Symbolic search

Symbolic Search Methods
Motivation

I logical formulas as data structure for sets, relations
I state-space search (planning, model-checking, diagnosis, ...) in terms of

set & relational operations
I Algorithms that can handle very large state sets, bypassing inherent

limitations of enumerative methods.

56 / 128

Symbolic search

Symbolic Search Methods
Motivation

I SAT and explicit state-space search: primary use finding one path from
an initial state to a goal state

I “Symbolic” search methods can be used for more general problems:
I Finding set of all reachable states
I Distances/plans from the initial state to all states
I Distances/plans to goal states from all states

I Competitive for optimal planning and detecting unsolvability.
I BDDs are a representation of belief states [BCRT01, Rin05].
I Algebraic Decision Diagrams (ADD) [FMY97, BFG+97] can represent

value functions in probabilistic planning [HSAHB99].

57 / 128

Symbolic search

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111

58 / 128

Symbolic search

Image operations

The image of a set T of states w.r.t. action a is

imga(T) = {s′ ∈ S|s ∈ T, sas′}.

The pre-image of a set T of states w.r.t. action a is

preimga(T) = {s ∈ S|s′ ∈ T, sas′}.

These operations reduce to the relational join and projection operations with a
logic-representation of sets (unary relations) and binary relations.

(Pre-image corresponds to regression used with backward-search [Rin08].)

59 / 128

Symbolic search Algorithms

Finding All Plans with a Symbolic Algorithm
[BCL+94]

All reachable states with breadth-first search

S0 = {I}
Si+1 = Si ∪

⋃
a∈A imga(Si)

If Si = Si+1, then Sj = Si for all j ≥ i, and the computation can be terminated.

I Si, i ≥ 0 is the set of states with distance ≤ i from the initial state.
I Si\Si−1, i ≥ 1 is the set of states with distance i.
I If G ∩ Si for some i ≥ 0, then there is a plan.

Action sequence recovered from sets Si by a sequence of backward-chaining
steps (linear in plan length and number of state variables)
(Approximations of the above algorithm compute invariants [Rin08]).

60 / 128

Symbolic search Algorithms

Symbolic State-Space Search Algorithms

I Symbolic Breadth-First [BCL+94]
I Symbolic (BDD) versions of A∗:

I BDDA∗ [ER98]
I SetA∗ [JVB08]
I ADDA∗ [HZF02]

I The Saturation algorithm [CLS01, CLM07, YCL09] trades optimality (as
obtained with breadth-first) to far better scalability: find all reachable
states, without accurate distance information.

61 / 128

Symbolic search Operations

Representation of Sets as Formulas

state sets formulas over X
those 2|X|

2 states where x is true x ∈ X
E (complement) ¬E
E ∪ F E ∨ F
E ∩ F E ∧ F
E\F (set difference) E ∧ ¬F

the empty set ∅ ⊥ (constant false)
the universal set > (constant true)

question about sets question about formulas
E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?

62 / 128

Symbolic search Operations

Sets (of states) as formulas

Formulas over X represent sets

a ∨ b over X = {a, b, c}
represents the set {a0

b
1
c
0, 011, 100, 101, 110, 111}.

Formulas over X ∪X ′ represent binary relations

a ∧ a′ ∧ (b↔ b′) over X ∪X ′ where X = {a, b}, X ′ = {a′, b′}
represents the binary relation {(a1

b
0,

a′

1
b′

0), (11, 11)}.
Valuations

a
1
b
0
a′

1
b′

0 and 1111 of X ∪X ′ can be viewed respectively as pairs of

valuations (
a
1
b
0,

a′

1
b′

0) and (11, 11) of X.

63 / 128

Symbolic search Operations

Relation Operations

relation operation logical operation
projection abstraction
join conjunction

64 / 128

Symbolic search ∃/∀-abstraction

Existential and Universal Abstraction

Definition
Existential abstraction of a formula φ with respect to x ∈ X:

∃x.φ = φ[>/x] ∨ φ[⊥/x].

Universal abstraction is defined analogously by using conjunction instead of
disjunction.

Definition
Universal abstraction of a formula φ with respect to x ∈ X:

∀x.φ = φ[>/x] ∧ φ[⊥/x].

65 / 128

Symbolic search ∃/∀-abstraction

∃-Abstraction

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
≡ (> ∨>) ∨ (> ∨⊥) ≡ >

66 / 128

Symbolic search ∃/∀-abstraction

∀ and ∃-Abstraction in Terms of Truth-Tables

∀c and ∃c correspond to combining lines with the same valuation for variables
other than c.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a
a b c a ∨ (b ∧ c)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))

0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c.(a ∨ (b ∧ c))

0 0 0

0 1 0

1 0 1

1 1 1

67 / 128

Symbolic search Images

Encoding of Actions as Formulas

Let X be the set of all state variables. An action a corresponds to the
conjunction of the precondition Pj and

x′ ↔ Fi(X)

for all x ∈ X. Denote this by τX(a).

Example (move-from-A-to-B)

atA ∧ (atA′ ↔ ⊥) ∧ (atB′ ↔ >) ∧ (atC ′ ↔ atC) ∧ (atD′ ↔ atD)

This is exactly the same as in the SAT case, except that we have x and x′

instead of x@t and x@(t+ 1).

68 / 128

Symbolic search Images

Images as Relational Operations

s000
s210

./

s0s100 01
s0s200 10
s1s001 00
s1s201 10
s2s010 00

=
s0s100 01
s0s200 10
s2s010 00

x0x1

00 1
01 0
10 1
11 0

./

x0x1x
′
0x
′
1

0000 0
0001 1
0010 1
0011 0
0100 1
0101 0
0110 1
0111 0
1000 1
1001 0
1010 0
1011 0
1100 0
1101 0
1110 0
1111 0

=

x0x1x
′
0x
′
1

0001 1
0010 1
1000 1

69 / 128

Symbolic search Images

Computation of Successor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Image Operation

The image {s′ ∈ S|s ∈ T, sas′} of T with respect to a is

imga(φ) = (∃X.(φ ∧ τX(a)))[X/X ′].

The renaming is necessary to obtain a formula over X.

70 / 128

Symbolic search Images

Computation of Predecessor States

Let
I X = {x1, . . . , xn},
I X ′ = {x′1, . . . , x′n},
I φ be a formula over X that represents a set T of states.

Preimage Operation

The pre-image {s ∈ S|s′ ∈ T, sas′} of T with respect to a is

preimga(φ) = (∃X ′.(φ[X ′/X] ∧ τX(a))).

The renaming of φ is necessary so that we can start with a formula over X.

71 / 128

Symbolic search Normal forms

Normal Forms
normal form reference comment
NNF Negation Normal Form
DNF Disjunctive Normal Form
CNF Conjunctive Normal Form
BDD Binary Decision Diagram [Bry92] most popular
DNNF Decomposable NNF [Dar01] more compact
d-DNNF deterministic DNNF [Dar02]

Darwiche’s terminology: knowledge compilation languages [DM02]

Trade-off

I more compact 7→ less efficient operations
I But, “more efficient” is in the size of a correspondingly inflated formula.

(Also more efficient in terms of wall clock?)
BDD-SAT is O(1), but e.g. translation into BDDs is (usually) far less
efficient than testing SAT directly.

72 / 128

Symbolic search Normal forms

Complexity of Operations

∨ ∧ ¬ TAUT SAT φ ≡ φ′? #SAT
NNF poly poly poly co-NP NP co-NP #P
DNF poly exp exp co-NP P co-NP #P
CNF exp poly exp P NP co-NP #P
BDD exp exp poly P P P poly
DNNF poly exp exp co-NP P co-NP #P
d-DNNF poly exp exp co-NP P co-NP poly

Remark
For BDDs one ∨/∧ is polynomial time/size (size is doubled) but repeated ∨/∧ lead to
exponential size.

73 / 128

Planners

Engineering Efficient Planners

I Gap between Theory and Practice large: engineering details of
implementation critical for performance in current planners.

I Few of the most efficient planners use textbook methods.
I Explanations for the observed differences between planners lacking: this

is more art than science.

74 / 128

Planners Algorithm portfolios

Algorithm Portfolios

I Algorithm portfolio = combination of two or more algorithms
I Useful if there is no single “strongest” algorithm.

algorithm 1

algorithm 2

algorithm 3

75 / 128

Planners Algorithm portfolios

Algorithm Portfolios
Composition methods

Methods for composing a portfolio
selection choose one for current instance [XHHLB08]
parallel run components in parallel [GS97, HLH97]
sequential run consecutively, according to a schedule

Other variations of the above [HDH+00].

Early uses in planning: BLACKBOX [KS99] (manual configuration), FF [HN01]
and LPG [GS02] (fixed configuration)

Lots of works in the SAT area [XHHLB08], directly applicable to planning as
the main methods are no specific to SAT or planning.

76 / 128

Planners Algorithm portfolios

Algorithm Portfolios
An Illustration of Portfolios

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

n
u

m
b
e

r
o

f
s
o

lv
e

d
 i
n
s
ta

n
c
e
s

time in seconds

STRIPS instances

HSP

FF-1

FF-2

FF

LPG-td-1

LPG-td

LAMA08

YAHSP

FF = FF-1 followed by FF-2 (∼ HSP)
LPG-td = LPGT-td-1 followed by FF-2 (∼ HSP)

77 / 128

Evaluation

Evaluation of Planners

Evaluation of planning systems is based on

I Hand-crafted problems (from the planning competitions)
I This is the most popular option.
+ Problems with (at least moderately) different structure.
- Real-world relevance mostly low.
- Instance generation uncontrolled: not known if easy or difficult.
- Many have a similar structure: objects moving in a network.

I Benchmark sets obtained by translation from other problems
I graph-theoretic problems: cliques, colorability, ... [PMB11]

I Instances sampled from all instances [Byl96, Rin04c].
+ Easy to control problem hardness.
- No direct real-world relevance (but: core of any “hard” problem)

78 / 128

Evaluation

Sampling from the Set of All Instances
[Byl96, Rin04c]

I Generation:
1. Fix number N of state variables, number M of actions.
2. For each action, choose preconditions and effects randomly.

I Has a phase transition from unsolvable to solvable, similarly to SAT
[MSL92] and connectivity of random graphs [Bol85].

I Exhibits an easy-hard-easy pattern, for a fixed N and an increasing M ,
analogously to SAT [MSL92].

I Hard instances roughly at the 50 per cent solvability point.
I Hardest instances are very hard: 20 state variables (220 states) too

difficult for many planners.

79 / 128

Evaluation

Sampling from the Set of All Instances
Experiments with planners

 0.01

 0.1

 1

 10

 100

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

ratio operators / state variables

Model A: Distribution of runtimes with SAT

80 / 128

Timed Systems

Introduction to Temporal Planning
Motivation 1: How long does executing a plan take?

Minimization of the duration of the execution phase:
I Two short actions may be better than one long one.
I Actions can be taken in parallel.
I Connection to scheduling problems [SFJ00].

This is a core consideration in most mixed planning+scheduling problems.
(Duration and especially concurrency ignored in classical planning and basic
state-space search methods.)

81 / 128

Timed Systems

Introduction to Temporal Planning
Motivation 2: Plans require concurrency

Inherent concurrency of actions
I Taking an action may require other concurrent actions.
I Some effects may only be achieved as joint effects of multiple actions.

Less important in practice: can often (always?) be avoided by modelling
problem differently.

I Actions that must be used concurrently can be combined.
I Replace one complex action by several simpler ones: go to Paris = go to

airport, board plane, fly, exit, take train to city

82 / 128

Timed Systems Models

How to Represent Temporal Planning Problems?

temporal planning

transition-
based

timed
automata
(UPPAAL)

timed
Petri Nets

ANML
[SFC08]

timed
PDDL

constraint-
based

SMTCP

MILP

83 / 128

Timed Systems Models

Basic Modelling Concepts

Actions Taken at a given time point t
Precondition Must be satisfied at t.

Effects Assignments x := v at time points t′ > t.
Dependencies If action 1 taken at t, action 2 cannot be at [t1, t2].

84 / 128

Timed Systems Models

Action Dependencies through Resources

I n-ary resources
Simultaneous use of resource can be at most n units.
If each action needs 1 unit of the resource, no more than n actions can
be using it simultaneously.
Example: n identical tools or machines

I state resources
A resource is in at most one state at a time.
Multiple actions can use the resource in the same state.
Example: generator that can produce 110V,60Hz or 220V,50Hz

85 / 128

Timed Systems Models

Relation to scheduling

I Planning = action selection + scheduling.
I Scheduling = assignment of starting times to tasks/actions, respecting

resource constraints
I Expressive languages for temporal planning include scheduling and

hence support the representation of resources.
I Resources and ordering constraints are the mechanism for guaranteeing

that plans are executable.

Complexity

Most important scheduling problems are NP-complete [GJ79].
Temporal planning complete for PSPACE or EXPSPACE [Rin07].
Action selection is the main difference between them.

86 / 128

Timed Systems Models

Embedding of Scheduling in Temporal Planning

Representation of a simple job-shop scheduling problem in temporal planning.

1. For each job j = a sequence of tasks tj1, . . . , t
j
nj

, introduce state variable
pj : {1, . . . , n+ 1}.

2. Each task is mapped to action aji with
I precondition pj = i,
I effect pj = i+ 1 after the duration of tji ,
I resource requirements as in the scheduling problem.

3. In the initial state pj = 1 for every job j.
4. In the goal we have pj = nj+1.

Tasks and their ordering inside the job are fixed. Remaining problem is
scheduling the tasks/actions for different jobs relative to other jobs’
tasks/actions and minimizing the makespan.
Solutions of the temporal planning problem are exactly the solutions to the
job-shop scheduling problem.

87 / 128

Timed Systems Explicit state-space

Timed State-Space

I state = values of state variables + values of clocks
I Clocks induce a schedule of future events.
I Actions initialize clocks.
I Time progresses, affecting all clocks.
I Reaching a critical clock value triggers scheduled events:

I effects taking place later than the action’s “starting” time point
I resources allocated and later freed

This is the model behind all search methods.

Seemingly simple route to temporal planning with explicit state-space search.

88 / 128

Timed Systems Explicit state-space

Updates to the timed state
Advancing time

Take action with precondition x2 = 1 and effect x5 := 0 at time 3.

x1 = 10

x2 = 1

x3 = 0

x4 = 0

x5 = 10

2
x1 := 0;

5
x3 := 1;

4
x4 := 1;

3
x5 := 0;

89 / 128

Timed Systems Explicit state-space

Completeness of Timed State-Space Search

I Since time is continuous, an action can be started at any of an infinite
number of time points. =⇒ search space and branching factor infinite

I Simplistic policies for advancing time lead to incompleteness [MW06].
Most early temporal planners are incomplete. Few temporal planners
have been proved to be complete.

I region abstraction [AD94] abstracts an infinite number of timed states to
finitely many behaviorally equivalent regions.

90 / 128

Timed Systems Explicit state-space

Separation of planning and scheduling
CPT planner [VG06]

I Separate two problems
1. selection of actions (only ordering, no timing)
2. scheduling of these actions

and interleave their solution.
I Action selection induces temporal constraints [DMP91]
I These temporal constraints can be solved separately.
I Completeness regained.

91 / 128

Timed Systems Explicit state-space

Systems for Temporal Planning

I Probably the most powerful verification tool based on explicit state-space
search in the state-space induced by timed automata and their extension
hybrid automata is UPPAAL [BLL+96].
UPPAAL has been used in modelling and solving planning scenarios for
example in robotics [QBZ04] and autonomous embedded systems
[AAG+07, KMH01].

I CPT [VG06]
I Temporal Fast-Downward, based on the Fast-Downward planner for

classical planning

92 / 128

Timed Systems Constraint-based methods

Temporal Planning by Constraint Satisfaction

I Temporal planning can be encoded in
I SAT modulo Theories (SMT) [WW99, ABC+02].
I Constraint Programming [RvBW06]
I Mixed Integer Linear Programming [DG02]

(Similarly to scheduling [ABP+11].)
I The encoding methods for all are essentially the same. Differences in

surface structure of the encoding, especially the types of constraints that
can be encoded directly.

I In this tutorial we focus on SMT, due to its closeness to SAT.
I Differences in performance and pragmatic differences:

I CP: support for customized search (heuristics, propagators, ...)
I SMT: fully automatic, powerful handling of Boolean constraints.
I MILP: for problems with intensive linear optimization

93 / 128

Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Variables

Each SMT instance fixes the number of steps i analogously to untimed
(asynchoronous) state-space problems in SAT.

variables in SMT encoding
var type description
∆i real time between steps i− 1 and i
a@i bool Is action a taken at step i?
ca@i real Value of clock for action a at step i
x@i bool Value of Boolean state variable at step i

94 / 128

Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Executability of an action

Action cannot be taken if it is already active:

a@i→(ca@(i− 1) ≥ dur(a)) (1)

(dur(a) denotes the duration a).

If actions actions a1 and a2 use the same unary resource respectively at
[t1, t

′
1] and at [t2, t

′
2] then we have

t2 + t′2 − ca1
@i ≤ t1 (2)

t1 + t′1 ≤ t2 − ca1
(3)

Additionally, if [t1, t
′
1] and [t2, t

′
2] overlap, we have

¬a1@i ∨ ¬a2@i (4)

95 / 128

Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT

Formula φ with every variable x replaced by x@i is denoted by φ@i.

Action with precondition p:
a@i→p@i (5)

If action is taken, its clock is initialized to 0:

a@i→(ca@i = 0) (6)

If action is not taken, its clock advances:

¬a@i→(ca@i = ca@(i− 1) + ∆i) (7)

96 / 128

Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Effects of an action

An effect l scheduled at relative time t:

(ca@i = t)→ l@i (8)

97 / 128

Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Passage of time

Time may not pass a scheduled effect at relative time t:

ca@(i− 1) < t→ca@i ≤ t (9)

Time always passes by a non-zero amount:

∆i > 0 (10)

98 / 128

Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT
Frame axioms

Let (a1, t1), . . . , (ak, tk) be all actions and times such that action ai makes x
true at time t relative to its start.

(¬x@(i− 1) ∧ x@i)→((ca1
@i = t1) ∨ · · · ∨ (cak

@i = tk)) (11)

The frame axiom for x becoming false is analogous.

99 / 128

Timed Systems Constraint-based methods

Encodings of Timed Problems in SMT

I Real variables in SMT incur a performance penalty.
I The encoding we gave is very general. In many practical cases (e.g. unit

durations, small integer durations) more efficient encodings possible (SAT
rather than SMT), similarly to scheduling problems.

100 / 128

Timed Systems Continuous change

Planning with Continuous Change
Hybrid systems = discrete change + continuous change

I Physical systems have continuous change.
I movement of physical objects, substances, liquids (velocity, acceleration)
I chemical and biological processes
I light, electromagnetic radiation
I electricity: voltage, charge, AC frequency, AC phase

I Discrete parts make the overall system piecewise continuous:
I Discrete changes triggered by continuous change.
I Continuous change controlled by discrete changes.

I Inherent issues with physical systems: lack of predictability, inaccuracy of
control actions

I Problems primarily researched in control theory: Hybrid Systems Control,
Model Predictive Control (“Planning” with continuous change not a
separate research problem!)

101 / 128

Timed Systems Continuous change

Planning with Continuous Change
Example

time

X coordinate
Y coordinate

actions: 2 east, 1 north, 1 east, 1
2 east half speed

102 / 128

Timed Systems Continuous change

Hybrid Systems Modeling

I Continuous change a function of time.
I Type of change determined by discrete parts of the system.
I Example: heater on, heater off, temperature f(w0,∆)

I Example: object in free fall, on ground, altitude f(h0,∆)

I Both actions and continuous values trigger discrete change.
I Example: Falling object reaches ground.
I Example: Container becomes full of liquid.

103 / 128

Timed Systems Continuous change

Hybrid Systems with SMT

I Basic framework exactly as in the discrete timed case.
I Value of continuous variables directly a function of ∆.

law explanation
f(x,∆) = x+ c∆ linear change proportional to ∆
f(x,∆) = x · rc∆ exponential change
f(x,∆) = c new constant value
f(x,∆) = x no change, previous value

I Other forms of change require a clock variable and an initial value. For
example polynomials c+ xn.

104 / 128

Timed Systems Continuous change

Hybrid systems: computational properties

I Simple decision problems about hybrid systems undecidable
[HKPV95, CL00, PC07]: complete algorithms only for narrow problem
classes.

I decidable cases for reachability: rectangular automata [HKPV95], 2-d
PCD [AMP95], planar multi-polynomial systems [ČV96]

I semi-decision procedures: no termination when plans don’t exist.
I stability: sensitivity to small inaccuracies in control [YMH98]

105 / 128

Timed Systems Continuous change

Hybrid systems: reasoning and analysis

I Main approaches generalize those for discrete timed systems.
I explicit state-space search (e.g. HyTech [HHWT97])
I SAT, constraints [SD05]

I Linear systems handled by efficient standard methods (MILP, linear
arithmetics) in tools like MILP solvers and SAT modulo Theories solvers
[SD05, ABCS05].

I Challenge: non-linear change
I non-linear programming a very wide subarea of mathematical optimization.

mixed integer nonlinear programming solvers (MINLP):
I AIMMS
I MAPLE
I Mathematica
I MATLAB

I SMT solvers with non-linear arithmetic [JDM12, GKC13].

106 / 128

Timed Systems Continuous change

Model Predictive Control
Inaccuracy of control, uncertainty, unpredictability

Model Predictive Control [GPM89] (“Dynamical Matrix Control”, “Generalized
Predictive Control”, “Receding Horizon Control”)

I Physical systems often not predictable enough for deterministic control.
I Continuous observation - prediction - control cycle.
I Predictions over a finite receding horizon
I Hybrid Model Predictive Control, integrating discrete variables.

Mixed Logical Dynamical (MLD) systems [BM99]

107 / 128

References

References I

Yasmina Abdeddaïm, Eugene Asarin, Matthieu Gallien, Félix Ingrand, Charles Lesire, Mihaela
Sighireanu, et al.
Planning robust temporal plans: A comparison between CBTP and TGA approaches.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pages 2–10. AAAI Press, 2007.

Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniłowicz, and Roberto Sebastiani.
A SAT based approach for solving formulas over Boolean and linear mathematical propositions.
In Andrei Voronkov, editor, Automated Deduction - CADE-18, 18th International Conference on
Automated Deduction, Copenhagen, Denmark, July 27-30, 2002, Proceedings, number 2392 in Lecture
Notes in Computer Science, pages 195–210. Springer-Verlag, 2002.

Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and Roberto Sebastiani.
Verifying industrial hybrid systems with MathSAT.
Electronic Notes in Theoretical Computer Science, 119(2):17–32, 2005.

Carlos Ansótegui, Miquel Bofill, Miquel Palahı, Josep Suy, and Mateu Villaret.
Satisfiability modulo theories: An efficient approach for the resource-constrained project scheduling
problem.
In Proceedings of the 9th symposium on abstraction, reformulation and approximation (SARA 2011),
pages 2–9, 2011.

Rajeev Alur and David L. Dill.
A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

108 / 128

References

References II

Eugene Asarin, Oded Maler, and Amir Pnueli.
Reachability analysis of dynamical systems having piecewise-constant derivatives.
Theoretical Computer Science, 138(1):35–65, 1995.

Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. MacMillan, and David L. Dill.
Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–424, 1994.

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso.
Planning in nondeterministic domains under partial observability via symbolic model checking.
In Bernhard Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial
Intelligence, pages 473–478. Morgan Kaufmann Publishers, 2001.

Avrim L. Blum and Merrick L. Furst.
Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications.
Formal Methods in System Design: An International Journal, 10(2/3):171–206, 1997.

Blai Bonet and Héctor Geffner.
Planning as heuristic search.
Artificial Intelligence, 129(1-2):5–33, 2001.

109 / 128

References

References III

Blai Bonet, Gábor Loerincs, and Héctor Geffner.
A robust and fast action selection mechanism for planning.
In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97) and 9th Innovative
Applications of Artificial Intelligence Conference (IAAI-97), pages 714–719. AAAI Press, 1997.

Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL - a tool suite for automatic verification of real-time systems.
In Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science, pages 232–243.
Springer-Verlag, 1996.

Alberto Bemporad and Manfred Morari.
Control of systems integrating logic, dynamics, and constraints.
Automatica, 35(3):407–427, 1999.

B. Bollobás.
Random graphs.
Academic Press, 1985.

R. E. Bryant.
Symbolic Boolean manipulation with ordered binary decision diagrams.
ACM Computing Surveys, 24(3):293–318, September 1992.

Tom Bylander.
The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

110 / 128

References

References IV

Tom Bylander.
A probabilistic analysis of propositional STRIPS planning.
Artificial Intelligence, 81(1-2):241–271, 1996.

Franck Cassez and Kim Larsen.
The impressive power of stopwatches.
In Catuscia Palamidessi, editor, CONCUR 2000 - Concurrency Theory, volume 1877 of Lecture Notes in
Computer Science, pages 138–152. Springer-Verlag, 2000.

Gianfranco Ciardo, Gerald Lüttgen, and Andrew S. Miner.
Exploiting interleaving semantics in symbolic state-space generation.
Formal Methods in System Design, 31(1):63–100, 2007.

Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu.
Saturation: An efficient iteration strategy for symbolic state-space generation.
In Tiziana Margaria and Wang Yi, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 of Lecture Notes in Computer Science, pages 328–342. Springer-Verlag, 2001.

Stephen A. Cook.
The complexity of theorem-proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

111 / 128

References

References V

Joseph C. Culberson and Jonathan Schaeffer.
Searching with pattern databases.
In Gordon I. McCalla, editor, Advances in Artificial Intelligence, 11th Biennial Conference of the Canadian
Society for Computational Studies of Intelligence, AI ’96, Toronto, Ontario, Canada, May 21-24, 1996,
Proceedings, volume 1081 of Lecture Notes in Computer Science, pages 402–416. Springer-Verlag,
1996.

Kārlis Čerāns and Juris Vı̄ksna.
Deciding reachability for planar multi-polynomial systems.
In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III, volume 1066
of Lecture Notes in Computer Science, pages 389–400. Springer-Verlag, 1996.

Adnan Darwiche.
Decomposable negation normal form.
Journal of the ACM, 48(4):608–647, 2001.

Adnan Darwiche.
A compiler for deterministic, decomposable negation normal form.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002) and the 14th
Conference on Innovative Applications of Artificial Intelligence (IAAI-2002), pages 627–634, 2002.

Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski.
Directed model checking with distance-preserving abstractions.
International Journal on Software Tools for Technology Transfer, 11(1):27–37, 2009.

112 / 128

References

References VI

Yannis Dimopoulos and Alfonso Gerevini.
Temporal planning through mixed integer programming: A preliminary report.
In Pascal Van Hentenryck, editor, Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming, volume 2470 of Lecture Notes in Computer Science, pages 47–62.
Springer-Verlag, 2002.

Minh Binh Do and Subbarao Kambhampati.
Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP.
Artificial Intelligence, 132(2):151–182, 2001.

Adnan Darwiche and Pierre Marquis.
A knowledge compilation map.
Journal of Artificial Intelligence Research, 17:229–264, 2002.

Rina Dechter, Itay Meiri, and Judea Pearl.
Temporal constraint networks.
Artificial Intelligence, 49(1):61–95, 1991.

Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler.
Encoding planning problems in nonmonotonic logic programs.
In S. Steel and R. Alami, editors, Recent Advances in AI Planning. Fourth European Conference on
Planning (ECP’97), number 1348 in Lecture Notes in Computer Science, pages 169–181.
Springer-Verlag, 1997.

113 / 128

References

References VII
G. Dueck and T. Scheuer.
Threshold accepting: a general purpose optimization algorithm appearing superior to simulated
annealing.
Journal of Computational Physics, 90:161–175, 1990.

Stefan Edelkamp.
Planning with pattern databases.
In Amedeo Cesta, editor, Recent Advances in AI Planning. Sixth European Conference on Planning
(ECP’01), pages 13–24. AAAI Press, 2000.

Stefan Edelkamp and Frank Reffel.
OBDDs in heuristic search.
In KI-98: Advances in Artificial Intelligence, number 1504 in Lecture Notes in Computer Science, pages
81–92. Springer-Verlag, 1998.

E. Allen Emerson and A. Prasad Sistla.
Symmetry and model-checking.
Formal Methods in System Design: An International Journal, 9(1/2):105–131, 1996.

M. Fujita, P. C. McGeer, and J. C.-Y. Yang.
Multi-terminal binary decision diagrams: an efficient data structure for matrix representation.
Formal Methods in System Design: An International Journal, 10(2/3):149–169, 1997.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
The Planning Domain Definition Language.
Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, Yale
University, October 1998.

114 / 128

References

References VIII
M. R. Garey and D. S. Johnson.
Computers and Intractability.
W. H. Freeman and Company, San Francisco, 1979.

Sicun Gao, Soonho Kong, and Edmund M. Clarke.
dreal: An SMT solver for nonlinear theories over the reals.
In Maria Paola Bonacina, editor, Automated Deduction - CADE-24, volume 7898 of Lecture Notes in
Computer Science, pages 208–214. Springer-Verlag, 2013.

Fred Glover.
Tabu search – part I.
ORSA Journal on Computing, 1(3):190–206, 1989.

P. Godefroid.
Using partial orders to improve automatic verification methods.
In Kim Guldstrand Larsen and Arne Skou, editors, Proceedings of the 2nd International Conference on
Computer-Aided Verification (CAV ’90), Rutgers, New Jersey, 1990, number 531 in Lecture Notes in
Computer Science, pages 176–185. Springer-Verlag, 1991.

Carlos E. Garcìa, David M. Prett, and Manfred Morari.
Model predictive control: Theory and practice – a survey.
Automatica, 25(3):335–348, 1989.

Carla P. Gomes and Bart Selman.
Algorithm portfolio design: theory vs. practice.
In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97), pages
190–197. Morgan Kaufmann Publishers, 1997.

115 / 128

References

References IX
Alfonso Gerevini and Ivan Serina.
LPG: a planner based on local search for planning graphs with action costs.
In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso, editors, Proceedings of the Sixth International
Conference on Artificial Intelligence Planning Systems, April 23-27, 2002, Toulouse, France, pages
13–22. AAAI Press, 2002.

Jaco Geldenhuys and Antti Valmari.
A nearly memory-optimal data structure for sets and mappings.
In Thomas Ball and Sriram K. Rajamani, editors, Model Checking Software, volume 2648 of Lecture
Notes in Computer Science, pages 136–150. Springer-Verlag, 2003.

Hana Galperin and Avi Wigderson.
Succinct representations of graphs.
Information and Control, 56:183–198, 1983.
See [Loz88] for a correction.

Malte Helmert and Carmel Domshlak.
Landmarks, critical paths and abstractions: What’s the difference anyway.
In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis Refanidis, editors, ICAPS 2009.
Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling, pages
162–169. AAAI Press, 2009.

Adele E. Howe, Eric Dahlman, Christopher Hansen, Michael Scheetz, and Anneliese von Mayrhauser.
Exploiting competitive planner performance.
In Susanne Biundo and Maria Fox, editors, Recent Advances in AI Planning. 5th European Conference
on Planning, ECP’99, Durham, UK, September 8-10, 1999. Proceedings, volume 1809 of Lecture Notes
in Computer Science, pages 62–72, 2000.

116 / 128

References

References X

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: a model checker for hybrid systems.
International Journal on Software Tools for Technology Transfer (STTT), 1:110–122, 1997.

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata?
In Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pages 373–382,
1995.

Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg.
An economics approach to hard computational problems.
Science, 275(5296):51–54, 1997.

Jörg Hoffmann and Bernhard Nebel.
The FF planning system: fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–302, 2001.

P. E. Hart, N. J. Nilsson, and B. Raphael.
A formal basis for the heuristic determination of minimum-cost paths.
IEEE Transactions on System Sciences and Cybernetics, SSC-4(2):100–107, 1968.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier.
SPUDD: Stochastic planning using decision diagrams.
In Kathryn B. Laskey and Henri Prade, editors, Uncertainty in Artificial Intelligence, Proceedings of the
Fifteenth Conference (UAI-99), pages 279–288. Morgan Kaufmann Publishers, 1999.

117 / 128

References

References XI
E. Hansen, R. Zhou, and Z. Feng.
Symbolic heuristic search using decision diagrams.
In Abstraction, Reformulation, and Approximation, pages 83–98. Springer-Verlag, 2002.

Dejan Jovanović and Leonardo De Moura.
Solving non-linear arithmetic.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning, volume 7364 of Lecture
Notes in Computer Science, pages 339–354. Springer-Verlag, 2012.

Paul Jackson and Daniel Sheridan.
Clause form conversions for Boolean circuits.
In Holger H. Hoos and David G. Mitchell, editors, Theory and Applications of Satisfiability Testing, 7th
International Conference, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004, Revised Selected
Papers, volume 3542 of Lecture Notes in Computer Science, pages 183–198. Springer-Verlag, 2005.

R. M. Jensen, M. M. Veloso, and R. E. Bryant.
State-set branching: Leveraging BDDs for heuristic search.
Artificial Intelligence, 172(2-3):103–139, 2008.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi.
Optimization by simulated annealing.
Science, 220(4598):671–680, May 1983.

Michael Katz, Jörg Hoffmann, and Carmel Domshlak.
Red-black relaxed plan heuristics.
In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI-13), pages 489–495. AAAI
Press, 2013.

118 / 128

References

References XII

Emil Ragip Keyder, Jörg Hoffmann, and Patrik Haslum.
Semi-relaxed plan heuristics.
In ICAPS 2012. Proceedings of the Twenty-Second International Conference on Automated Planning and
Scheduling, pages 128–136. AAAI Press, 2012.

Lina Khatib, Nicola Muscettola, and Klaus Havelund.
Mapping temporal planning constraints into timed automata.
In Temporal Representation and Reasoning, 2001. TIME 2001. Proceedings. Eighth International
Symposium on, pages 21–27. IEEE, 2001.

R. E. Korf.
Depth-first iterative deepening: an optimal admissible tree search.
Artificial Intelligence, 27(1):97–109, 1985.

Henry Kautz and Bart Selman.
Planning as satisfiability.
In Bernd Neumann, editor, Proceedings of the 10th European Conference on Artificial Intelligence, pages
359–363. John Wiley & Sons, 1992.

Henry Kautz and Bart Selman.
Pushing the envelope: planning, propositional logic, and stochastic search.
In Proceedings of the 13th National Conference on Artificial Intelligence and the 8th Innovative
Applications of Artificial Intelligence Conference, pages 1194–1201. AAAI Press, 1996.

119 / 128

References

References XIII

Henry Kautz and Bart Selman.
Unifying SAT-based and graph-based planning.
In Thomas Dean, editor, Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pages 318–325. Morgan Kaufmann Publishers, 1999.

Antonio Lozano and José L. Balcázar.
The complexity of graph problems for succinctly represented graphs.
In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th International Workshop,
WG’89, number 411 in Lecture Notes in Computer Science, pages 277–286. Springer-Verlag, 1990.

Nir Lipovetzky and Hector Geffner.
Searching for plans with carefully designed probes.
In ICAPS 2011. Proceedings of the Twenty-First International Conference on Automated Planning and
Scheduling, pages 154–161, 2011.

Michael L. Littman.
Probabilistic propositional planning: Representations and complexity.
In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97) and 9th Innovative
Applications of Artificial Intelligence Conference (IAAI-97), pages 748–754. AAAI Press, 1997.

Antonio Lozano.
NP-hardness of succinct representations of graphs.
Bulletin of the European Association for Theoretical Computer Science, 35:158–163, June 1988.

120 / 128

References

References XIV

Drew McDermott.
A heuristic estimator for means-ends analysis in planning.
In Brian Drabble, editor, Proceedings of the Third International Conference on Artificial Intelligence
Planning Systems, pages 142–149. AAAI Press, 1996.

Omid Madani, Steve Hanks, and Anne Condon.
On the undecidability of probabilistic planning and related stochastic optimization problems.
Artificial Intelligence, 147(1–2):5–34, 2003.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient SAT solver.
In Proceedings of the 38th ACM/IEEE Design Automation Conference (DAC’01), pages 530–535. ACM
Press, 2001.

David Mitchell, Bart Selman, and Hector Levesque.
Hard and easy distributions of SAT problems.
In William Swartout, editor, Proceedings of the 10th National Conference on Artificial Intelligence, pages
459–465. The MIT Press, 1992.

Panagiotis Manolios and Daron Vroon.
Efficient circuit to CNF conversion.
In Joao Marques-Silva and Karem A. Sakallah, editors, Proceedings of the 8th International Conference
on Theory and Applications of Satisfiability Testing (SAT-2007), volume 4501 of Lecture Notes in
Computer Science, pages 4–9. Springer-Verlag, 2007.

121 / 128

References

References XV

Mausam and Daniel S. Weld.
Probabilistic temporal planning with uncertain durations.
In Proceedings of the 21th National Conference on Artificial Intelligence (AAAI-2006), pages 880–887.
AAAI Press, 2006.

André Platzer and Edmund M. Clarke.
The image computation problem in hybrid systems model checking.
In Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo, editors, Hybrid Systems: Computation and
Control, volume 4416 of Lecture Notes in Computer Science, pages 473–486. Springer-Verlag, 2007.

Aldo Porco, Alejandro Machado, and Blai Bonet.
Automatic polytime reductions of NP problems into a fragment of STRIPS.
In ICAPS 2011. Proceedings of the Twenty-First International Conference on Automated Planning and
Scheduling, pages 178–185. AAAI Press, 2011.

Michael Melholt Quottrup, Thomas Bak, and R. I. Zamanabadi.
Multi-robot planning: A timed automata approach.
In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04, volume 5,
pages 4417–4422. IEEE, 2004.

S. Richter and M. Helmert.
Preferred operators and deferred evaluation in satisficing planning.
In ICAPS 2009. Proceedings of the Nineteenth International Conference on Automated Planning and
Scheduling, pages 273–280, 2009.

122 / 128

References

References XVI
Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä.
Planning as satisfiability: parallel plans and algorithms for plan search.
Artificial Intelligence, 170(12-13):1031–1080, 2006.

Jussi Rintanen.
A planning algorithm not based on directional search.
In A. G. Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth International Conference (KR ’98), pages 617–624. Morgan
Kaufmann Publishers, 1998.

Jussi Rintanen.
Complexity of planning with partial observability.
In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS 2004. Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling, pages 345–354. AAAI
Press, 2004.

Jussi Rintanen.
Evaluation strategies for planning as satisfiability.
In Ramon López de Mántaras and Lorenza Saitta, editors, ECAI 2004. Proceedings of the 16th European
Conference on Artificial Intelligence, pages 682–687. IOS Press, 2004.

Jussi Rintanen.
Phase transitions in classical planning: an experimental study.
In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS 2004. Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling, pages 101–110. AAAI
Press, 2004.

123 / 128

References

References XVII

Jussi Rintanen.
Conditional planning in the discrete belief space.
In Leslie Pack Kaelbling, editor, Proceedings of the 19th International Joint Conference on Artificial
Intelligence, pages 1260–1265. Morgan Kaufmann Publishers, 2005.

Jussi Rintanen.
Complexity of concurrent temporal planning.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pages 280–287. AAAI Press, 2007.

Jussi Rintanen.
Regression for classical and nondeterministic planning.
In Malik Ghallab, Constantine D. Spyropoulos, and Nikos Fakotakis, editors, ECAI 2008. Proceedings of
the 18th European Conference on Artificial Intelligence, pages 568–571. IOS Press, 2008.

Jussi Rintanen.
Heuristics for planning with SAT.
In David Cohen, editor, Principles and Practice of Constraint Programming - CP 2010, 16th International
Conference, CP 2010, St. Andrews, Scotland, September 2010, Proceedings., number 6308 in Lecture
Notes in Computer Science, pages 414–428. Springer-Verlag, 2010.

Jussi Rintanen.
Planning as satisfiability: heuristics.
Artificial Intelligence, 193:45–86, 2012.

124 / 128

References

References XVIII

Francesca Rossi, Peter van Beek, and Toby Walsh.
Handbook of Constraint Programming.
Elsevier Science Publishers, 2006.

Silvia Richter and Matthias Westphal.
The LAMA planner: guiding cost-based anytime planning with landmarks.
Journal of Artificial Intelligence Research, 39:127–177, 2010.

Ji-Ae Shin and Ernest Davis.
Processes and continuous change in a SAT-based planner.
Artificial Intelligence, 166(1):194–253, 2005.

David E. Smith, Jeremy Frank, and William Cushing.
The ANML language.
ICAPS-08 Workshop on Knowledge Engineering for Planning and Scheduling (KEPS), 2008.

David Smith, Jeremy Frank, and Ari Jonsson.
Bridging the gap between planning and scheduling.
Knowledge Engineering Review, 15(1):47–83, 2000.

Matthew Streeter and Stephen F. Smith.
Using decision procedures efficiently for optimization.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and
Scheduling, pages 312–319. AAAI Press, 2007.

125 / 128

References

References XIX

Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamohideen, and Demosthenis
Teneketzis.
Diagnosability of discrete-event systems.
IEEE Transactions on Automatic Control, 40(9):1555–1575, 1995.

P. H. Starke.
Reachability analysis of Petri nets using symmetries.
Journal of Mathematical Modelling and Simulation in Systems Analysis, 8(4/5):293–303, 1991.

G. S. Tseitin.
On the complexity of derivations in propositional calculus.
In A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic, Part II, pages
115–125. Consultants Bureau, 1968.

Antti Valmari.
Stubborn sets for reduced state space generation.
In Grzegorz Rozenberg, editor, Advances in Petri Nets 1990. 10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, number 483 in Lecture Notes in Computer
Science, pages 491–515. Springer-Verlag, 1991.

Peter van Beek and Xinguang Chen.
CPlan: a constraint programming approach to planning.
In Proceedings of the 16th National Conference on Artificial Intelligence (AAAI-99) and the 11th
Conference on Innovative Applications of Artificial Intelligence (IAAI-99), pages 585–590. AAAI Press,
1999.

126 / 128

References

References XX
Vincent Vidal and Héctor Geffner.
Branching and pruning: an optimal temporal POCL planner based on constraint programming.
Artificial Intelligence, 170:298–335, 2006.

Vincent Vidal.
A lookahead strategy for heuristic search planning.
In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS 2004. Proceedings of the
Fourteenth International Conference on Automated Planning and Scheduling, pages 150–160. AAAI
Press, 2004.

Vincent Vidal.
YAHSP2: Keep it simple, stupid.
Notes for The 2011 International Planning Competition (unpublished), 2011.

Steven A. Wolfman and Daniel S. Weld.
The LPSAT engine & its application to resource planning.
In Thomas Dean, editor, Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pages 310–315. Morgan Kaufmann Publishers, 1999.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: portfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Research, 32:565–606, 2008.

Andy Jinqing Yu, Gianfranco Ciardo, and Gerald Lüttgen.
Decision-diagram-based techniques for bounded reachability checking of asynchronous systems.
International Journal on Software Tools for Technology Transfer, 11(2):117–131, 2009.

127 / 128

References

References XXI

Hui Ye, Anthony N. Michel, and Ling Hou.
Stability theory for hybrid dynamical systems.
IEEE Transactions on Automatic Control, 43(4):461–474, 1998.

Emmanuel Zarpas.
Simple yet efficient improvements of SAT based bounded model checking.
In Alan J. Hu and Andrew K. Martin, editors, Formal Methods in Computer-Aided Design: 5th
International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004. Proceedings,
number 3312 in Lecture Notes in Computer Science, pages 174–185. Springer-Verlag, 2004.

128 / 128

