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Introduction

SAT and NP-complete problems in Artificial
Intelligence

I Earlier, NP-complete problems were considered practically unsolvable,
except in simplest instances.

I Breakthroughs in SAT solving from mid-1990’s on.
I Leading to breakthroughs in state space search (with applications in

construction of intelligent systems.)
I Starting to have impact in other areas, including probabilistic reasoning

and machine learning.
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Introduction

Why you needed to know about NP-hardness
Garey & Johnson, Computers and Intractability, 1979
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Introduction

NP-completeness has changed

I Earlier: “It is NP-complete, don’t bother trying to solve it.”
I Now: “It is NP-complete, you might well solve it.”
I SAT now has several industrial applications, and more are emerging.
I Extensions of SAT are a topic of intense research in automated

reasoning and AI.
I Many important problems in AI and CS are NP-complete:

I Combinatorics of the real world (too many options to do things).
I How to do something optimally?
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Introduction

Applications of SAT in Computer Science

I reachability problems
I model-checking in Computer Aided Verification [BCCZ99] of sequential

circuits and software
I planning in Artificial Intelligence [KS92, KS96]
I discrete event systems diagnosis [GARK07]

I integrated circuits
I automatic test pattern generation (ATPG) [Lar92]
I equivalence checking [KPKG02, CGL+10, WGMD09]
I logic synthesis [KKY04]
I fault diagnosis [SVFAV05]

I biology and language
I haplotype inference [LMS06]
I computing evolutionary tree measures [BSJ09]
I construction of phylogenetic trees [BEE+07]
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Introduction

Classification of Problems by Complexity

problem class search space
SAT find a solution NP trees
SMT find a solution NP
MAX-SAT find best solution FPNP

#SAT how many solutions? #P, PP
SSAT ∃ − ∀ −R alternation PSPACE and-or trees
QBF ∃ − ∀ alternation PSPACE
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Introduction

Differences in NP-hardness

Most scalable methods are for satisfiable instances of SAT (NP).
These can be solved because of good heuristics: solvers are successfully
guessing their way through an exponentially large search space.

Currently, the same does not (as often) hold for
I unsatisfiable instances: determining that no solutions exist
I optimization: finding best solutions
I problems involving counting models, e.g. probabilistic questions
I problems involving alternation ∼ and-or trees

Progress with these problems is good, but it has been slower.
NP substantially easier than co-NP, #P, FPNP, ...
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Introduction

Propositional logic
Syntax

Let X be a set of atomic propositions.
1. ⊥ and > are formulae.
2. x is a formula for all x ∈ X.
3. ¬φ is a formula if φ is.
4. φ ∨ φ′ and φ ∧ φ′ are formulae if φ and φ′ are.

φ→φ′ is an abbreviation for ¬φ ∨ φ′.
φ↔ φ′ is an abbreviation for (φ→φ′) ∧ (φ′→φ).

For literals l ∈ X ∪ {¬x|x ∈ X}, complement l is defined by x = ¬x and
¬x = x.

A clause is a disjunction of literals l1 ∨ · · · ∨ ln.
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Introduction

Propositional logic
Valuations and truth

Define truth with respect to a valuation v : X → {0, 1} :
1. v |= >
2. v 6|= ⊥
3. v |= x if and only if v(x) = 1, for all x ∈ X.
4. v |= ¬φ if and only if v 6|= φ.
5. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′.
6. v |= φ ∧ φ′ if and only if v |= φ and v |= φ′.

Define for sets C of formulas, v |= C iff v |= φ for all φ ∈ C.
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SAT

The SAT decision problem

SAT
Let X be a set of propositional variables. Let F be a set of clauses over X.
F ∈ SAT iff there is v : X → {0, 1} such that v |= F .

UNSAT
Let X be a set of propositional variables. Let F be a set of clauses over X.
F ∈ UNSAT iff v 6|= F for all v : X → {0, 1}.
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SAT NP-completeness

Complexity class NP

I NP = decision problems solvable by nondeterministic Turing Machines
with a polynomial bound on the number of computation steps.

I This is roughly: search problems with a search tree (OR tree) of
polynomial depth.

I SAT is in NP because
1. a valuation v of X can be guessed in |X| steps, and
2. testing v |= F is polynomial time in the size of F .
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SAT NP-completeness

NP-hardness of SAT
(Cook, The Complexity of Theorem Proving Procedures, 1971)

I Cook showed that the halting problem of any nondeterministic Turing
machine with a polynomial time bound can be reduced to SAT [Coo71].
Idea:

I TM configuration ∼ a valuation of propositional variables
I sequence of configurations ∼ sequence of valuations
I relations between consecutive configurations ∼ propositional formula
I initial and accepting configurations ∼ propositional formula
I accepting computation ∼ valuation that makes the formula true

I The proof is similar to the reduction from AI planning to SAT! We will
discuss the topic in detail later.
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SAT NP-completeness

Significance of NP-completeness

I No NP-complete problem is known to have a polynomial time algorithm.
I Best algorithms have a worst-case exponential runtime.

20.30897m, 20.10299L [Hir00]
(2− 2

k+1 )n [DGH+02]

2
n(1− 1

ln m
n

+O(ln lnm)
)

[DHW05]
(m clauses of length ≤ k, n variables, size L).

I However, worst-case doesn’t always show up!
I Current SAT algorithms can solve (some, not all) problem instances with

millions of clauses and hundreds of thousands of variables in seconds.
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SAT Phase transitions

Phase transitions
phase transition from SAT to UNSAT in 3-SAT
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SAT Phase transitions

Phase transitions
Problem difficulty in the phase transition area
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SAT Phase transitions

Phase transitions
Problem difficulty separately for SAT and UNSAT

(diagram from Mitchell, Selman and Levesque, 1992)
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SAT Phase transitions

Meaning of phase transitions

Even though all known complete algorithms have an exponential runtime in
the worst case, their scalability on under-constrained and over-constrained
problem instances is often much much better.

Other hard problems have similar phase transitions: keep problem size
constant, and vary one of the parameters.

I scheduling: few..many tasks, a lot of..little time
I diagnosis: few..many observations
I planning, verification: many..few transitions
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SAT Phase transitions

Truth-tables

Truth table for
φ = (a↔ b) ∨ (c→d):

v v(φ)
a b c d

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1
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SAT Phase transitions

Truth-tables vs binary search trees
Binary search tree for φ = (a↔ b) ∨ (c→d):

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d ¬d d ¬d d ¬d d¬d d ¬d d ¬d d ¬d d
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SAT Resolution

The Resolution Rule

Resolution

l ∨ φ l ∨ φ′
φ ∨ φ′

One of l and l is false.
Hence at least one of φ and φ′ is true.

21 / 104

SAT Unit Propagation

Unit Resolution

I Unrestricted application of the resolution rule is too expensive.
I Unit resolution restricts one of the clauses to be a unit clause consisting

of only one literal.
I Performing all possible unit resolution steps on a clause set can be done

in linear time [DG84], and there are very efficient implementations
[MMZ+01].
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SAT Unit Propagation

Unit Propagation

Unit Resolution

l l ∨ φ
φ

Unit Propagation algorithm UNIT(F) for clause sets F

1. If there is a unit clause l ∈ F , then replace every l ∨ φ ∈ F by φ and
remove all clauses containing l from F .
As a special case the empty clause ⊥ may be obtained.

2. If F still contains a unit clause, repeat step 1.
3. Return F .

We sometimes write F `UP l if l ∈ UP (F).
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SAT DPLL

Binary search with unit resolution
The Davis-Putnam-Logemann-Loveland procedure DPLL [DLL62]

a ∨ d
b ∨ c

¬a a

¬b b ¬b b

¬c c ¬c c¬c c ¬c c

¬d d¬d d ¬d d¬d d¬d d¬d d ¬d d¬d d
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SAT DPLL

Davis-Putnam-Logemann-Loveland procedure
[DLL62]

1: PROCEDURE DPLL(C)
2: C := UNIT(C);
3: IF ⊥ ∈ C THEN RETURN false;
4: x := any variable such that {x,¬x} ∩ C = ∅;
5: IF no such variable exists THEN RETURN true;
6: IF DPLL(C ∪ {x}) = true THEN RETURN true;
7: RETURN DPLL(C ∪ {¬x});
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SAT DPLL

DPLL with backjumping

I The DPLL backtracking procedure often discovers the same conflicts
repeatedly.

I In a branch l1, l2, . . . , ln−1, ln, after ln and ln have led to conflicts
(derivation of ⊥), ln−1 is always tried next, even when it is irrelevant to the
conflicts with ln and ln.

I Backjumping [Gas77] can be adapted to DPLL to backtrack from ln to li
when li+1, . . . , ln−1 are all irrelevant.
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SAT DPLL

DPLL with backjumping

¬a ∨ b
¬b ∨ ¬d ∨ e
¬d ∨ ¬e
¬b ∨ d ∨ e
d ∨ ¬e
c ∨ f

Conflict set with d: {a, d}
Conflict set with ¬d: {a,¬d}

No use trying ¬c.
Directly go to ¬a.

¬aa

¬bb¬bb

¬cc¬cc ¬cc¬cc

¬dd¬dd¬dd¬dd ¬dd¬dd¬dd¬dd
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SAT CDCL

Conflict-Driven Clause Learning (CDCL)
Idea

I Assume a partial valuation (a path in the DPLL search tree from the root
to a leaf node) corresponding to literals l1, . . . , ln leads to a contradiction
(with unit resolution)

F ∪ {l1, . . . , ln} `UP ⊥
From this follows

F |= l1 ∨ · · · ∨ ln.
I Often not all of the literals l1, . . . , ln are needed for deriving the empty

clause ⊥, and a shorter clause can be derived.
I Other related clauses may be equally useful.
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SAT CDCL

Conflict-Driven Clause Learning (CDCL)
Marques-Silva & Sakallah [MSS96a]

The CDCL Algorithm

1: declevel := 0
2: Do unit propagation.
3: IF a clause became false THEN
4: IF declevel = 0 THEN RETURN UNSAT
5: Learn a new clause c.
6: Undo assignments until one literal in c unassigned.
7: Adjust declevel accordingly.
8: Add c in the clause database.
9: ELSE

10: IF all variables assigned THEN RETURN SAT
11: Assign a literal.
12: declevel := declevel+1
13: Go to line 2.
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SAT CDCL

Conflict-Driven Clause Learning (CDCL)
Example

level decision inferred
1 a
2 b1 b2, c, d

¬b1 ∨ b2
¬b2 ∨ c
¬b2 ∨ d
¬a ∨ ¬c ∨ ¬d

The Implication Graph [MSS96b]
a

b1 b2

c

d

¬d

Λ

Derivation of a new clause:
¬a ∨ ¬c ∨ ¬d ¬b2 ∨ d

¬a ∨ ¬c ∨ ¬b2 ¬b2 ∨ c

¬a ∨ ¬b2 ¬b1 ∨ b2

¬a ∨ ¬b1

1-UIP clause

Last-UIP clause
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SAT CDCL

Conflict-Driven Clause Learning (CDCL)
Clause learning schemes

First UIP (Unique Implication Point) Stop when only one literal of
current decision level left.

Last UIP Stop when at the current decision level only the decision
literal is left.

Decision Stop when only decision literals left.

First UIP is usually considered to be the most useful.
Some solvers learn multiple clauses.
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SAT CDCL

CDCL Search Trees

a

b1, b2, c, d ¬b2

¬b1 ∨ b2
¬b2 ∨ c
¬b2 ∨ d
¬a ∨ ¬c ∨ ¬d

1. decision a
2. decision b1, falsifying ¬a ∨ ¬c ∨ ¬d
3. undo b1, learn ¬a ∨ ¬b2
4. Instance shown satisfiable by assigning c or d false.
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SAT CDCL

Conflict-Driven Clause Learning (CDCL)
Forgetting/deleting clauses

I Unlike in DPLL, a main problem with CDCL is the high number of learned
clauses.

I To avoid memory filling up, large numbers of learned clauses are deleted
at regular intervals, typically based on clause length, last use, and other
criteria.

I One interesting strategy is to rank the clauses according to the number of
decision levels of literals in the clause [AS09].
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SAT CDCL

Heuristics for CDCL: VSIDS
Variable State Independent Decaying Sum, Moskewicz et al. [MMZ+01]

I Initially the score s(l) of literal l is its number of occurrences in F .
I When clause with l is learned, increase r(l).
I Periodically decay the scores:

s(l) := r(l) + 0.5s(l); r(l) := 0;

I Always choose unassigned literal l with maximum s(l).

Variations and extensions of VSIDS most popular in current solvers.
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SAT Restarts

Heavy-tailed runtime distributions

(Diagram from [CGS01]

On many NP-complete problems, heavy-tailed distributions characterize
I runtimes of a randomized algorithm on a single instance and
I runtimes of a deterministic algorithm on a class of instances.
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SAT Restarts

Heavy-tailed runtime distributions
The mean does not converge

Diagram from [GSCK00]
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SAT Restarts

Heavy-tailed runtime distributions
Cause

I A small number of wrong decisions lead to a part of the search tree not
containing any solutions.

I Backtrack-style search needs a long time to traverse the search tree.
I Many short paths from the root node to a success leaf node.
I High probability of reaching a huge subtree with no solutions.

These properties mean that
I average runtime is high,
I restarting the procedure after t seconds reduces the mean substantially,

if t is close to the mean of the original distribution.
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SAT Restarts

Restarts in SAT algorithms
Answer to heavy-tailedness

Restarts had been used in stochastic local search algorithms:
I Necessary for escaping local minima!

Gomes et al. [GSCK00] demonstrated the utility of restarts for systematic SAT
solvers:

I Small amount of randomness in branching variable selection.
I Restart the algorithm after a given number of seconds.
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SAT Restarts

Restarts with CDCL

I Learned clauses are retained when doing the restart.
I Problem: Optimal restart policy depends on the runtime distribution,

which is generally not known.
I Problem: Deletion of learned clauses and too early restarts may lead to

non-termination for unsatisfiable formulas. This can be avoided by
gradually increasing restart interval.

I One effective restart strategy is based on the Luby series
n = 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ..., learning e.g. 30n clauses
between consecutive restarts [Hua07].

39 / 104

SAT Restarts

Conflict-Driven Clause Learning (CDCL)
Relations between Resolution, CDCL, DPLL

I Resolution rule is more powerful than DPLL: UNSAT proofs by DPLL may
be exponentially bigger than the smallest resolution proofs.

I An extension to DPLL, based on learned clauses, is similarly
exponentially more powerful than DPLL [BKS04].

I CDCL with restarts is equally powerful to resolution [PD09a].
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SAT SAT application: reachability

Application: Reachability

I finding a path from a state in I to a state in G in a succinctly/compactly
represented graph

I PSPACE-complete [GW83, Loz88, LB90, Byl94]
I in NP when restricted to paths of polynomial length
I Basis of efficient solutions to

I planning problem in AI [KS92, KS96]
I LTL model-checking problem [BCCZ99]
I DES diagnosis problem [GARK07]

I Often replacing traditional state-space search methods
I One of the first and most prominent applications of SAT
I Extensions to timed systems with SAT modulo Theories (SMT)
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SAT SAT application: reachability

State-space transition graphs
Blocks world with three blocks
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SAT SAT application: reachability

State-space search and satisfiability
Explicit state-space search; symbolic search with BDDs, SAT

19
68

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

A∗
partial-order reduction

symmetry reduction

BDDs
Symbolic Model-Checking

DNNF
Saturation

Planning as SAT
SATPLAN

GRASP
SATZ
Bounded Model-Checking
Chaff
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SAT SAT application: reachability

Transition relations in propositional logic
State variables are
X = {a, b, c}.

(¬a ∧ b ∧ c ∧ ¬a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ b ∧ ¬c ∧ a′ ∧ b′ ∧ ¬c′)∨
(¬a ∧ ¬b ∧ c ∧ a′ ∧ b′ ∧ c′)∨
(a ∧ b ∧ c ∧ a′ ∧ b′ ∧ ¬c′)

The corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111

44 / 104



SAT SAT application: reachability

Transition relations in propositional logic

Let X = {x1, . . . , xn} be the state variables.

I Any deterministic action/event corresponds to a partial function.
A partial function corresponds to the conjunction of a precondition
formula Π(x1, . . . , xn) and equivalences

x′i ↔ Fi(x1, . . . , xn)

for every xi ∈ X.
I Choice between actions/events α1, . . . , αk corresponds to

Φ = α1 ∨ · · · ∨ αk.
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SAT SAT application: reachability

Reachability as SAT

Let Φ(n) denote the formula obtained from Φ by replacing each x ∈ X by x@n
and each x′ by x@(n+ 1).

Satisfying valuations of

Φ(0) ∧ Φ(1) ∧ · · ·Φ(n− 1)

correspond 1-to-1 to paths of length n in the transition graph.

Testing whether a state satisfying G can be reached from a state satisfying I
in n steps reduces to testing the satisfiability of

I(0) ∧ Φ(0) ∧ Φ(1) ∧ · · ·Φ(n− 1) ∧G(n).
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SAT SAT application: reachability

Applications

Interpretations of SAT tests

I(0) ∧ Φ(0) ∧ Φ(1) ∧ · · ·Φ(n− 1) ∧G(n).

Planning Can goals G be reached from the initial state I [KS96]?
Model-checking Can the safety property ¬G be violated on executions that

start from I? (Extensions for LTL model-checking in [BCCZ99].)
DES Diagnosis Consider

Φ(0) ∧ Φ(1) ∧ · · ·Φ(n− 1) ∧ (o1@t1 ∧ · · · ∧ om@tm) ∧ F.

Are observations o1, . . . , om respectively at t1, . . . , tm compatible
with fault assumptions F [GARK07]?
F encodes e.g. “there are k faults between time points 0 and n.
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SAT SAT application: reachability

Improvements

The most basic encodings given above can often be improved.

I optimal (linear-size) encodings [LBHJ04, RHN06]
I multiple actions in parallel [RHN06]

Improvements to SAT solvers and to their use:

I search heuristics replacing VSIDS [Gan11, Rin10, Rin12b]
I reachability-specific implementation technology [Rin12a]
I scheduling the SAT tests for different path lengths [Rin04, Zar04] in

parallel
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MAXSAT

MAXSAT
Motivation

I Many AI problems involve optimization:
I Learn an explanation with the best match to data [Cus08].
I Find a least-cost plan [RGPS10].
I Select best drugs for cancer therapy [LK12].

I SAT insufficient: answers a yes–no question
I MAXSAT extends SAT with a basic form of optimization.
I Other frameworks: Mixed Integer-Linear Programming (MILP/ILP/MIP),

constraint programming and optimization [DRGN10], SMT + optimization
[ST12]

I advantage over MILP: efficient Boolean reasoning
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MAXSAT

Introduction: (Weighted) (Partial) MAXSAT

plain MAXSAT Maximize the number of satisfied clauses
partial MAXSAT Maximize the number of satisfied soft clauses

Hard clauses must be satisfied
weighted MAXSATMaximize the sum of weights of satisfied

clauses

Decision problem “is there a valuation with weight ≥ n” NP-complete.

The FPNP optimization problem solvable by a polynomial number of SAT calls.

50 / 104

MAXSAT Algorithms

Algorithms for MAXSAT

I reduction to a sequence of SAT problems [FM06, ABL13, DB11]
I branch and bound [HLO08, LMMP10]
I Mixed Integer Linear Programming [DB13] (CPLEX)
I reduction to normal forms [RG07, PPC+08]

Some MAXSAT solvers
dfs + bounding MaxSatz, MiniMaxSat
SAT sat4j, wbo, wpm, pwbo, maxhs
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MAXSAT Algorithms

MAXSAT by a sequence of SAT queries

1. From a weighted partial MAXSAT instance, construct a clause set
[FM06, ABL13]:

I Hard clauses are taken as is.
I For each soft clause l1 ∨ · · · ∨ ln, have b ∨ l1 ∨ · · · ∨ ln, where b is a new

auxiliary variable.

2. If the clause set is unsatisfiable, the best valuation so far is the globally
best (And if this was the first time here, the hard clauses are
unsatisfiable.)

3. Otherwise, each true b variable corresponds to a (possibly) false soft
clause.

4. Calculate the sum F of the weights of true soft clauses.
5. Construct a new clause set, with cardinality constraints [BB03, Sin05]

requiring that weights of true soft clauses > F .
6. One can also add a clause requiring at least one previously false soft

clause to be true. (unsatisfiable cores [ABL13])
7. Continue from step 2.
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MAXSAT Algorithms

Other query strategies

Given clause sets saying “at most k soft clauses are false”, alternative query
strategies are possible.

I unsatisfiability based: try k = 0, then k = 1, and so on.
I satisfiability based: try k = kmax − 1, then k = kmax − 2, and so on.
I binary search: try half-way between 0 and kmax, and after tightening

either lower or upper bound, then again half-way.

Same question of SAT queries with different parameter values k arises also in
other applications, including planning and scheduling, with other algorithms
proposed [Rin04, SS07]. (Usefulness of these algorithms to MAXSAT is not
clear.)
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MAXSAT Algorithms

Maximization via reduction to normal forms

I Some normal forms allow polynomial-time optimization: dynamic
programming algorithm for finding a satisfying assignment with maximal
or minimal weight, working over the structure of the formula.

I These include: Ordered Binary Decision Diagrams (OBDD) [Bry92],
Deterministic Decomposable Negation Normal Form (d-DNNF) [Dar02].

I Overall not as good as specialized MAXSAT algorithms, but for some
classes of formulas very strong.

Can be used approximately as a bounding method in search based MAXSAT
solvers [RG07, PPC+08].
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MAXSAT Applications

Bayesian networks

I Compact representation of
probability distributions [Pea89]

I Makes probabilistic dependence
and independence explicit.

I lots of applications e.g. in
intelligent robotics, especially for
dynamic Bayesian networks

I Other graphical models: Markov
networks [Pea89]

season location

temperaturerain soil

plant growth
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MAXSAT Applications

Bayesian networks

I Probabilistic Inference (PI): calculate marginal probability of a variable
given evidence

I Most Probable Explanation (MPE): find a valuation for the variables with
the highest probability

I Maximum A Posteriori hypothesis (MAP) [PD04]: find hypotheses that
explain the observations best

I Structure Learning (SL): find Bayesian network that best matches given
data

problem complexity SAT variant
PI #P #SAT
MPE FPNP MAXSAT
MAP NPPP E-MAJSAT (SSAT)
SL FPNP MAXSAT
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MAXSAT Application: MPE

MPE: Most Probable Explanation

I Of all valuations of the variables, find one with the highest probability.
I Has the flavor of diagnosis problems (but see the MAP problem later!)
I Solution e.g. by reduction to MAXSAT [KD99, Par02]

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8
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MAXSAT Application: MPE

Reduction of MPE to MAXSAT

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

translates
into

¬A ∧ ¬B probability 0.6
¬A ∧B probability 0.4
A ∧ ¬B probability 0.8
A ∧B probability 0.2

I Problem 1: Probabilities must be multiplied to get the overall probability.
I Solution: Sum the logarithms of the probabilities.
I Problem 2: Probabilities 0 correspond to log 0 =∞.
I Solution: Use hard clauses.
I Negate the conjunctions to get clauses.

Negate log p (with p ≤ 1) to get positive weights.
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MAXSAT Application: Structure Learning

Structure Learning for Bayesian networks

ABCD
0000
0101
1000
0101
0000
1101
0010
1000
0101
0100
...

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8
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MAXSAT Application: Structure Learning

Structure Learning for Bayesian networks
Mapping to Constraint Satisfaction, including MAXSAT

I The score of a network is the sum of all per-node scores [Cus08].
I The score of each node is determined by its parents: each alternative

parent set has a score.
I Constraint satisfaction formulation:

I Choose a parent set for each node. (E.g. max. 3 parents)
I The resulting graph must be acyclic.
I Objective: maximize the sum of the parent set scores.

I main challenge in encoding: acyclicity constraint
I transitive ancestor relation [Cus08]
I total ordering of nodes [Cus08]
I other options: recursively define distance from leaf 0, 1, 2, ...

[GJR14a, GJR14b]
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MAXSAT Application: Structure Learning

Structure Learning for Bayesian networks

I Finding optimal nets translatable into MAXSAT, MILP etc.
I Optimal solutions found for nets of up to some dozens of nodes.
I On many standard benchmarks, MAXSAT and MILP solvers comparable.
I Best methods enhance MILP with specialized heuristics [Cus11].
I Also: structure learning for Markov networks [CJR+13]

Methods used for approximate solutions are different!
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#SAT

Model-Counting (#SAT)

I How many valuations satisfy a given propositional formula?
I The problem is #P-complete [Val79].
I Interestingly, #SAT is #P-complete also in special cases where SAT is

poly-time: DNF-SAT, 2-SAT, Horn-SAT [Val79].
I #P harder than NP: φ ∈SAT if and only if model-count ≥ 1
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#SAT

Weighted Model-Counting

I Weighted Model-Counting assigns a weight to each literal.
I Weight of a valuation is the product of weights of true literals.
I Compute the sum of the weights of satisfying valuations.
I This generalization is useful e.g. for probabilistic reasoning.
I Coincides with unweighted MC when all weights are 1.

63 / 104

#SAT

Algorithms for Model-Counting

I exact algorithms
I extensions of DPLL and CDCL [BDP03, BDP09, SBB+04, SBK05a, GSS09]
I translation into normal forms that allow poly-time model-counting: Ordered

Binary Decision Diagrams (OBDD) [Bry92], decomposable DNNF [Dar02]

I approximate counting (upper bound)
I approximate counting (no guaranteed lower or upper bound) [KSS11]
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#SAT Algorithms

Algorithms for Model-Counting
extensions of DPLL and CDCL

I basic algorithm: DPLL-style tree search
I connected components [BP00]
I component caching [BDP03]
I combining clause-learning with component caching [SBB+04]
I heuristics [SBK05a]
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#SAT Algorithms

Basic model-counting DPLL algorithm

Consider a model-counting run of DPLL for a formula with propositional
variables X.

I Two branches {x} ∪ C and {¬x} ∪ C disjoint =⇒ Take the sum the
respective model counts.

I When DPLL detects that all clauses are satisfied with n variables
assigned, the count for the branch is

2|X|−n.
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#SAT Algorithms

Component analysis and component caching

Enhancements to the basic model-counting DPLL (e.g. in Cachet [SBB+04]):

I Component analysis: if C can be partitioned to (C1, . . . , Cn) so that
partitions don’t share variables, then count each Ci separately and take
the product of the counts [BP00]

I Component caching [BDP03]: record model-counts and recall them when
encountering a clause set again.
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#SAT Algorithms

Efficient model-counts for normal forms

I Model-counting for CNF (#SAT) is #P-complete [Val79].
I Some normal forms have polynomial time model-counting.

I Ordered Binary Decision Diagrams (BDD) [Bry92]
I deterministic Decomposable Negation Normal Form (d-DNNF) [Dar02]

I Competitive with search-based model-counters, often better.
I Reaching these normal forms can take exponential time, space.
I Some of the best translators for these normal forms [HD07] are similar to

the model-counting variants of the Davis-Putnam procedure, for example
in utilizing component analysis, sharing structure (caching).
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#SAT Application: Probabilistic Inference

MC Applications: Bayesian inference

I optimal distinguishing tests [HS09]
I Bayesian inference [BDP09, SBK05b, CD08], calculating marginal

probabilities of some variables given values of other variables of a
Bayesian network.
(There are interesting connections between specialized Bayesian
inference algorithms and model-counting algorithms. E.g., many can be
viewed as instances of algorithms for the SumProd problem [BDP09].)
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#SAT Application: Probabilistic Inference

Probabilistic Inference by Model-Counting
Marginal probability of given evidence

A

A B P (A|B)
0 0 0.6
1 0 0.4
0 1 0.8
1 1 0.2

B

B P (B)
0 0.5
1 0.5

C

C P (C)
0 0.9
1 0.1

D

D B P (D|B)
0 0 1.0
1 0 0.0
0 1 0.2
1 1 0.8

I Variable for each node A,B,C,D.
I Parentless nodes have the obvious

weights w(B) = w(¬B) = 0.5,
w(C) = 0.1, w(¬C) = 0.9.

I Chance variables cA|B and cA|¬B for
nodes with parents.
w(cA|B) = 0.2 w(¬cA|B) = 0.8
w(cA|¬B) = 0.4 w(¬cA|¬B) = 0.6

w(A) = 1 w(A) = 1

I B ∧ cA|B→A
B ∧ ¬cA|B→¬A
¬B ∧ cA|¬B→A
¬B ∧ ¬cA|¬B→¬A

I Conditioning with evidence B,¬C by
adding in the clause set.
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SSAT

Stochastic Satisfiability SSAT

I Stochastic satisfiability [Pap85] extends propositional logic with stochastic
AND-OR quantification. (An extension of Quantified Boolean formulas
(QBF) [Sto76]).

I Prefix consisting of variables quantified by ∃, ∀ and

Rr, followed by a
propositional formula.

In SSAT, the probability P (φ) associated with a formula φ is defined
recursively as follows.

I Base case: variable free (quantifier free) formulas containing only atomic
formulas ⊥ and > and Boolean connectives.
P (>) = 1.0
P (⊥) = 0.0

I P (∃xφ) = max(P (φ[>/x]), P (φ[⊥/x]))

I P (

Rrxφ) = r × P (φ[>/x]) + (1− r)× P (φ[⊥/x])

I P (∀xφ) = min(P (φ[>/x]), P (φ[⊥/x]))

Question: Is P (φ) ≥ R for some R ∈ [0, 1[?
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SSAT

Stochastic Satisfiability SSAT
Special cases

SSAT can be viewed as a generalization of

I SAT: quanfiers ∃ only
I TAUT: quanfiers ∀ only
I quantified Boolean formulas (QBF): quantifiers ∃, ∀ only [Sto76]
I E-MAJSAT: prefix ∃∃ · · · ∃ Rr1 Rr2 · · · Rrn [PD09b]
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SSAT Algorithms

Algorithms for E-MAJSAT and SSAT

I Basic approach [Lit99, LMP01]:
I DPLL-style tree search
I variables selected in quantification order
I prune subtrees if irrelevant for establishing the lb R (thresholding [ML03])
I component caching (as in model-counting #SAT)

I Implementations reported by Majercik, Littman, Boots [ML03, MB05].
I resolution rule [TF10] (following QBF resolution [KBKF95])
I SMT-style extension to cover the orthogonal problem of combining SAT

with linear arithmetics (SSMT [TEF11])
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SSAT SSAT applications

Applications

I Maximum A Posteriori Hypothesis (MAP) is NPPP-complete [PD04],
corresponding to E-MAJSAT (∃ · · · Rr · · · )

I MAP application: diagnosis
I Probabilistic verification of safety critical systems: what is the probability

that event x will take place? [TF11]
I probabilistic planning [ML03]
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SSAT SSAT applications

MAP: Maximum A Posteriori Hypothesis

I MPE finds a single most probable valuation of variables.
I The probability of this valuation is typically low, and it is often not

representative of the most likely fault e.g. in diagnosis.
I The Maximum A Posteriori Hypothesis (MAP) problem [PD04]:

Find a valuation to a subset of hypothesis variables H that maximizes the
probability of the given observations.

I Decision version of MAP is NPPP-complete: guess a valuation of H; then
verify that the probability of the observations is ≥ r for a given bound r.
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SSAT SSAT applications

MAP: Maximum A Posteriori Hypothesis
Encoding as E-MAJSAT

I Choosing hypotheses h1, . . . , hn to maximize the probability encoded
similarly to Probabilistic Inference with Model-Counting. Difference is
quantification:

∃h1∃h2 · · · ∃hn

Rw1x1 · · ·

RwmxmΦ

where x1, ..., xm are all the non-hypothesis variables with the same
weights w1, . . . , wm as in the Probabilistic Inference problem.
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SSAT SSAT applications

Probabilistic planning by SSAT
[ML98]

∃P RqC∃E
(
I0→

(
t−1∧

i=0

T (i, i+ 1) ∧Gt

))
(1)

1. 1st block: ∃-quantification over all action sequences
2. 2nd block:

R

-quantification over all contingencies
3. 3rd block: ∃-quantification over all executions of the plan
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SMT

SMT: Satisfiability Modulo Theories

I numbers needed in representing
I time
I space (distance, size, ...)
I resources (money, materials, ...)

I SAT has no numeric variables: reduction to SAT is feasible only for small
integers

I SAT modulo Theories = SAT + specialized solvers for specific theories,
such as

I linear integer/rational/real arithmetic
I bitvectors
I graphs

I Similar to constraint programming frameworks.
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SMT

Basic ideas of SMT

I Not everything is compactly expressible and efficiently solvable if only
Boolean variables are used, for example real and rational arithmetics.

I SAT can be extended with non-Boolean theories. A clause has the form

l1 ∨ · · · ∨ ln ∨ E

where E is a set of quantifier-free inequations over some set V of
real/rational/other variables.

I The theories can be e.g.
I linear inequalities,
I mixed integer integer linear programs, or
I something completely different.

I Compare: mixed integer linear programming MILP
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SMT Algorithms

SMT: Algorithms
Implementation

Extension of DPLL to theories

1. Run DPLL ignoring the inequations in the clauses.
2. After all Boolean variables have been set (at a leaf of the DPLL search

tree), take the inequations E1, . . . , Em from all clauses that have no true
literal.

3. Test with a specialized solver if E1 ∪ · · · ∪Em is solvable. If it is, terminate.
4. Otherwise backtrack with the DPLL algorithm.

I The general idea can be directly implemented e.g. for linear arithmetic.
I Pruning of the search tree by by running the arithmetic solver before all

Boolean variables are set.
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SMT Application: Timed Systems

SMT applications

I Timed and hybrid systems analysis and verification [ACKS02, ABCS05]
I Planning in timed and hybrid systems [SD05]
I Timed and hybrid systems diagnosis:

I Representation of observations: absolute time points
I Representation of observations: temporal uncertainty
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SMT Application: Timed Systems

Timed systems reachability

I The most basic reachability problem (e.g. classical planning) is about
instantaneous/asynchronous changes of (discrete) state variables.

I In timed systems, change may have a duration or a delay.
I Multiple simultaneous overlapping changes
I Change of continuous state variables may be continuous.
I Lots of applications: model-checking/verification of timed systems,

temporal planning, temporal diagnosis, ...
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SMT Application: Timed Systems

SMT formalization of Timed Systems

Represent system state at
time points where something
non-continuous happens.

I Action is taken.
I Delayed effect of action

takes place.
I A continuously

changing variable
reaches a critical value.
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SMT Application: Timed Systems

SMT formalization of Timed Systems
Actions and counters

Variable ∆@t indicates duration between time points t− 1 and t.

Following is for actions a, state variables x, and counters C.
precondition of action a@t→φ@t
counter initialization a@t→(C@t = c)
counter update ¬a@t→(C@t = C@(t− 1)−∆t)
discrete change (C@t = 0)→x@t
discrete change (C@t = 0)→¬x@t
frame axiom (x@(t− 1) ∧ ¬x@t)→(C1@t = 0 ∨ · · ·

Additionally, we need formulas to prevent overlap of actions using same
resources.
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SMT Application: Timed Systems

SMT formalization of Timed Systems
Progress of time

Progress of time ∆@t between points t− 1 and t.
progress always positive ∆@t > 0
don’t pass a change Ck@(t− 1) > 0→∆@t ≤ Ck@(t− 1)
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Conclusion

Conclusion
Algorithms

I NP-complete problems have become more solvable since mid-1990ies.
I strength of algorithms such as CDCL over a wide range of SAT problems

and applications
I convergence of search methods in different areas:

I Probabilistic Inference for Bayesian networks vs. Model-Counting (#SAT)
I reachability in AI planning and Computer Aided Verification

I increasing connections to combinatorial optimization methods, e.g. Mixed
Integer Linear Programming
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Conclusion

Conclusion
Problems

mappings complexity class - SAT variant - AI problem for
reachability, planning, games:
NP SAT succinct reachability (poly-length paths)
NP SMT timed systems reachability (poly-length paths)
NPPP SSAT succinct stochastic reachability (poly-length paths)
PSPACE QBF (succinct) 2-player games winning strategies
PSPACE SSAT stochastic 2-player games optimal strategies

probabilistic reasoning:
FPNP MAXSAT Bayesian network MPE, SL
#P #SAT Bayesian network PI
NPPP E-MAJSAT Bayesian network MAP
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