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Chapter 1

Introduction

Planning in Artificial Intelligence isdecision makingabout theactionsto be taken.
Consider an intelligent robot. The robot is a computational mechanism that takes input through

its sensors that allow the robot toobserveits environment and to builda representationof its
immediate surroundings and parts of the world it has observed earlier. For a robot to be useful it
has to be able toact. A robot acts through itseffectorswhich are devices that allow the robot to
move itself and other objects in its immediate surroundings. A robot resembling a human being
has hands and feet, or their muscles, as effectors.

At an abstract level, a robot is a mechanism that maps its observations, which are obtained
through the sensors, to actions which are performed by means of the effectors. Planning is the
decision making needed in producing a sequence of actions given a sequence of observations. The
more complicated the environment and the tasks of the robot are, the more intelligent the robot
has to be. For genuine intelligence it is important that the robot is able to plan its actions also in
challenging situations.

No intelligent robots exist yet. The most intelligent existing robots carry out tasks that do not
require genuine intelligence, like transporting objects from one place to another in environments
that are predictable and known in advance. For more challenging tasks in which the working
environment of the robot is not exactly known in advance, the biggest challenges are currently in
interpreting the sensor data reliably and controlling the basic movements of the robot effectively.
Before these research problems have been solved adequately, the employment of robots for more
intelligent tasks is not feasible. When this stage will be reached some time in the future, powerful
techniques for knowledge representation and task planning will be needed to bring the intelligence
of the robots to a sufficiently high level.

Impediments for the success of AI in producing genuinely intelligent beings are related to per-
ceiving and representing knowledge concerning the world. The real world is very complicated in
all its physical and geometric as well as social aspects, and representing all the knowledge required
by an intelligent being may be too inflexible and complicated by the logical and symbolical means
almost exclusively used in artificial intelligence and in planning. This has been criticized by many
researchers[Brooks, 1991] and it is a topic of continuing scientific debate.

AI planning – like knowledge representation and learning techniques in AI in general – are
currently best applicable in restricted domains in which it is easy to identify what the atomic facts
are and to exactly describe how the world behaves. These properties are best fulfilled by systems
that are completely man-made, or systems in which planning can view the world at a sufficiently
abstract level.

1



2 CHAPTER 1. INTRODUCTION

world

sensors effectors

sensor interpretation:
vision, speech, . . .

motion planning

knowledge representation
learning

task planning

Figure 1.1: Software architecture of an intelligent robot

An example of a completely man-made system to which planning techniques have successfully
been applied include the control of autonomous spacecraft[Muscettolaet al., 1998]. The vacuum
of the outer space is a very simple environment without most of the uncertainties typically present
on the surface of the earth. Other current robotic applications like delivering mail in an office or
distributing medicine in a hospital, employ only very little from the potential of AI planning.

A simple real-world application in which abstracting away the details of the real world is possi-
ble is transportation planning: how to get from Freiburg to London by public transportation, trains,
airplanes and buses. If a robot were capable of finding its way between the couple of hundred of
meters between the various forms of transportation and recognize the trains and buses to board it
could easily travel all over the world. Planning what transportation to use is an easy problem in
this case.

1.1 Types of planning problems

The wordplanningis very general and denotes many different things. Even in the AI and robotics
context there are many types of planning.

Simply controlling the basic movement of robots is a very challenging problem.Path planning
is needed in finding a way for one location to another, andmotion planningis needed in moving
the hands and feet of the robot to produce meaningful behavior. and they are not discussed in
this lecture as they require specialized representations of the geometric properties of the world
and cannot usually be efficiently represented in the general state-based model we are interested in.
There is also the well established research area ofschedulingwhich is concerned with ordering
and choosing a schedule for executing a number of predefined actions.

The topic of this lecture is sometimes calledtask planningin order to distinguish it from the
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more concrete geometric and physical forms of planning which are used in controlling the move-
ments of robots and similar systems.

Even within task planning, there are many different types of planning problems, depending on
the assumptions concerning the properties of actions and the world that are made. Some of these
are the following.

1. Determinism versus nondeterminism.

In the simplest form of planning the state of the world at any moment is unambiguously
determined by the initial state of the world and the sequence of actions that have been taken.
Hence the world is completely deterministic.

The assumption of a deterministic world holds in many simple planning problems. However,
when the world is modeled in more detail and more realistically, the assumption does not
hold any more: the plans have to take into account events that take place independently of
the actions and also the possibility that the effects of an action are not the same every time
the action is taken, even when the world appears to be the same.

Nondeterminism comes from two different sources.

First, any feasible model of the world is very incomplete, and events that are possible as far
as our beliefs are concerned can be viewed as nondeterministic: we do not know whether
somebody is going to phone or visit us, and the visit or phone call can be modeled as a
nondeterministic event that may or may not take place.

Second, many actions themselves are by their nature nondeterministic, either intentionally
or unintentionally. Throwing two dice and summing the result has 11 possible outcomes
that cannot be predicted. Throwing an object to a garbage bin from a distance may or may
not succeed.

Note that there is still the possibility that the physical universe is completely deterministic,
but as long as we do not know the exact causes of events, we might just as well consider
them nondeterministic.

2. Observability.

For deterministic planning problems with one initial state the world is completely pre-
dictable. As the state of the world after taking certain actions can be completely predicted,
there is no need to use observations. Hence a plan, if one exists, is simply a sequence of
actions.

When the actions or the environment can be nondeterministic, or when the initial state is not
exactly known, it is not in general possible to reach the goals by using one fixed sequence
of actions. The actions have to depend on the observations.

There are two possibilities. First, planning could be interleaved with plan execution: only
one action is chosen at a time, it is executed, and based on the observations the next action
is chosen, and so on. Second, a complete plan is generated, covering all possible events
that can happen, and it is executed, without further planning during execution. This kind of
plans could be formalized as programs with conditionals (if-then-else) and loops.

These two approaches are computationally very close, but the first approach does not require
explicitly representing all the action sequences that might be needed, it only has to find a
guarantee that such action sequences exist.
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The possible observations have a strong impact on how exactly the actual state of the world
can be determined: the more facts can be observed, the more precisely the current state of
the world can be determined, and the better the most appropriate action can be chosen. If
there is a lot of uncertainty concerning the current state of the world it may be impossible to
choose an appropriate action.

If the current state can always be determined uniquely we havefull observability. If the
current state cannot be determined uniquely we havepartial observability, and planning
algorithms are forced to consider sets of possible current states.

3. Time.

Most work on planning uses discrete (integer) time and actions of unit duration. This means
that all changes caused by an action at time pointt are visible at time pointt+1. So changes
in the world take only one unit of time, and what happens between two time points is not
analyzed further.

More complicated models of time and change are possible, but in this lecture we consider
only discrete time. Most types of problems can be analyzed in terms of discrete time by
making the unit duration sufficiently small. Rational and real time cause conceptual dif-
ficulties. Effects of actions that are not immediate can be reduced to the basic case by
encoding the delayed effects in the state description.

4. Control information and plan structure.

In the basic planning problem a plan is to be synthesized based on a generic description of
how the actions affect the world.

There may be, however, further control information that may affect the planning process and
the plans that are produced. In hierarchical planning, for example, information on the struc-
ture of the possible plans is given in the form of a hierarchical task network, and the plans
that are produced must conform to this structure. This kind of structural information may
substantially improve the efficiency of planning. Another way of restricting the structure of
plans, for efficiency or other reasons, is by using temporal logics[Bacchus and Kabanza,
2000].

5. Plan quality.

The purpose of a plan is often just to reach one of the predefined goal states, and plans
are judged only with respect to the satisfaction of this property. However, actions may have
differing costs and durations, and plans could be assessed in terms of their time consumption
or cost.

As different executions of a plan in a nondeterministic world produce different sequences
of actions, plans can be valued in terms of their expected costs, best-case costs, worst-case
costs, and probability of eventually reaching the goals.

Plans with an infinite execution length can also be considered, and then plans may be valued
according to their average cost per unit time, or according to their geometrically discounted
costs.
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1.2 Related topics

Reasoning about action has emerged as a separate research area with the goal of making inferences
about actions and their effects[Ginsberg and Smith, 1988; Shoham, 1988; Sandewall, 1994a;
1994b; Stein and Morgenstern, 1994]. Important research topics include the qualification and
the ramification problems, which respectively involve deciding whether a certain action can be
performed to have its anticipated effects and what are the indirect effects of an action. These
problems are important because of their relation to the reasoning performed by human beings and
their importance in representing the world as required by intelligent systems employing planning.
In this lecture, however, we assume that a description of some actions is given, with all precon-
ditions and direct and indirect effects fully spelled out, and concentrate on what kind of planning
can be performed with these actions. The problems are also fully orthogonal, that is, the planning
algorithms do not need to depend on the solution to the ramification and qualification problems
that are used.

Markov decision processes[Puterman, 1994] in operations research is essentially a formal-
ization of planning. In contrast to AI planning, work in that area has used explicit enumerative
representations of transition systems, like those used in Section 2.1, and as a consequence the al-
gorithms have a different flavor than most planning algorithms do. However, most recent work on
probabilistic planning is based on Markov decision processes.

Discrete event systems (DES) in control engineering have been proposed as a model for synthe-
sizing controllers for systems like automated factories[Ramadge and Wonham, 1987; Wonham,
1988], and this topic is closely related to planning. Again, there are differences in the problem
formulation, with state spaces being represented enumeratively or more succinctly, for example as
Petri nets[Ichikawa and Hiraishi, 1988] or vector additions systems[Li and Wonham, 1993].

Synthesis of programs for reactive systems that work in nondeterministic and partially ob-
servable environments is similar to planning under same conditions. Program synthesis has been
considered for example from specifications of their input-output behavior in different types of
temporal logics[Vardi and Stockmeyer, 1985; Kupferman and Vardi, 1999].

1.3 Early research on AI planning

Research that has lead to current AI planning started in the 1960’s in the form of programs that
tried to simulate problem solving abilities of human beings. One of the first programs of this kind
was the General Problem Solver (GPS) by Newell and Simon[Ernstet al., 1969]. GPS performed
state space search guided by estimated differences between the current state and the goal states.

At the end of 1960’s Green proposed the use of theorem-provers for constructing plans[Green,
1969]. However, because of the immaturity of theorem-proving techniques at that time, this ap-
proach was soon mostly abandoned in favor of specialized planning algorithms. There was theo-
retically oriented work on deductive planning which used different kinds of modal and dynamic
logics[Rosenschein, 1981] but these works had little impact on the development of efficient plan-
ning algorithms. Deductive and logic-based approaches to planning gained popularity again only
at the end of the 1990’s as a consequence of the development of more sophisticated programs for
the satisfiability problem of the classical propositional logic[Kautz and Selman, 1996].

One of the most well known early planning systems is the STRIPS planner from the beginning
of the 1970’s[Fikes and Nilsson, 1971]. The states in STRIPS are sets of formulae, and the opera-
tors change these state descriptions by adding and deleting formulae in the sets. Heuristics similar
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to the ones used in the GPS system were used in guiding the search. The definition of operators,
with a preconditionas well asadd anddeletelists, corresponding to the facts that respectively
become true and false, and the associated terminology, is still in common use, although restricted
to atomic facts, that is, the add list is simply the set of state variables that the action makes true,
and the delete list similarly consists of the state variables that become false.

Starting in the mid 1970’s the dominating approach to domain-independent planning was the
so-called partial-order, or causal link, or nonlinear planning[Sacerdoti, 1975; McAllester and
Rosenblitt, 1991], which remained popular until the mid-1990’s and the introduction of the Graph-
plan planner[Blum and Furst, 1997] which started the shift away from partial-order planning to
types of algorithms that had earlier been considered infeasible, even the then-notorious total-order
planners. The basic idea of partial-order planning is that a plan is incrementally constructed start-
ing from the initial state and the goals, by either adding an action to the plan so that one of the open
goals or operator preconditions is fulfilled, or adding an ordering constraint on operators already
in the plan in order to resolve a potential conflict between them. In contrast to the forward or back-
ward search strategies in Chapter 3 partial-order planners tried to avoid unnecessarily imposing
an ordering on operators. The main advantages of both partial-order planners and Graphplan are
present in the SAT/CSP approach to planning which is discussed in Section 3.6.

In parallel to partial-order planning, the notion of hierarchical planning emerged[Sacerdoti,
1974], and it has been deployed in many real-world applications. The idea in hierarchical plan-
ning is that the problem description imposes a structure on solutions and restricts the number of
choices the planning algorithm has to make. A hierarchical plan consists of a main task which
is decomposed to smaller tasks which are recursively solved. For each task there is a choice
between solution methods. The less choice there is, the more efficiently the problem is solved.
Furthermore, many hierarchical planners allow the embedding of problem-specific heuristics and
problem-solvers to further speed up planning.

A collection of articles on AI planning starting from the late 1960’s has been edited by Allen
et al. [1990]. Many of the papers are mainly of historical interest, and some of them outline ideas
that are still in use.

1.4 This book

My intention in writing these lecture notes was to cover planning problems of different generality
and some of the most important approaches to solving each type of problem. Of course, during
the last several decades of planning research a lot of work has been done that are not covered in
these notes.

Important differences to most textbooks and research papers on planning is that I use a unified
and rather expressive syntax for representing operators, including nondeterministic and condi-
tional effects. This has several implications on the material covered in this book. For example,
it may surprising that I do not use a concept viewed very central for deterministic planning by
some researchers,the planning graphsof Blum and Furst[1997]. This is a direct implication of
the general syntax for operators I use, as discussed in more detail in Section 3.8. It seems that
any useful graph-theoretic properties planning graphs have lose their meaning when a definition
of operators more general than STRIPS operators is used.

One of the messages of these notes is the importance of logic (propositional logic in our case)
for all forms of planning ranging from the simplest deterministic case to the most general types
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of planning with partial observability. As we will see, states, sets of states, belief states and
transition relations associated with operators are often most naturally represented as propositional
formulae. This representation shows up once and again in connection with different types of
planning algorithms, including backward search in classical/deterministic planning, planning as
satisfiability, and in implementations of nondeterministic planning algorithms by means of binary
decision diagrams and similar data structures.

In addition to generalizing many existing techniques to the more general definition of planning
problems, many of the algorithms are either new or have been developed further from earlier
algorithms. I cite the original sources in the literature sections in the end of every chapter. Some
of my contributions can be singled out rather precisely. They include the following.

1. The definition of regression for conditional and nondeterministic operators in Sections 3.1.2
and 4.1.1.

2. The algorithm for computing invariants in Section 3.5. The computation of mutexes in
Blum and Furst’s[1997] planning graphs can be viewed as a special case of my algorithm,
restricted to unconditional operators only.

3. The algorithm for planning with full observability in Section 4.4.2. This algorithm is based
on a similar but more complicated algorithm by Cimatti et al.[2003].

4. The representation of planning without observability as quantified Boolean formulae in Sec-
tion 4.6.

5. The framework for non-probabilistic planning with partial observability in Section 4.7.

6. The complexity results in Section 4.8.3, most importantly the 2-EXP-completeness result
for conditional planning with partial observability.



Chapter 2

Background

In this chapter we will define the formal machinery which is needed for describing different plan-
ning problems and algorithms. We will give the basic definitions related to the classical proposi-
tional logic and the transition system model which is the basis of most work on planning and which
is closely related to finite automata and transition systems in other areas of computer science.

2.1 Transition systems

We define transition systems in which states are atomic objects and actions are represented as
binary relations on the set of states.

Definition 2.1 A transition systemis a 5-tupleΠ = 〈S, I,O,G, P 〉 where

1. S is a finite set of states,

2. I ⊆ S is the set of initial states,

3. O is a finite set of actionso ⊆ S × S,

4. G ⊆ S is the set of goal states, and

5. P = (C1, . . . , Cn) is a partition ofS to non-empty classes of observationally indistin-
guishable states satisfying

⋃
{C1, . . . , Cn} = S andCi ∩ Cj = ∅ for all i, j such that

1 ≤ i < j ≤ n.

Making an observation tells which setCi the current state belongs to. Distinguishing states
within a givenCi is not possible by observations. If two states are observationally distinguishable
then plan execution can proceed differently for them.

The numbern of components in the partitionP determines different classes of planning prob-
lems with respect to observability restrictions. Ifn = |S| then every state is observationally
distinguishable from every other state. This is calledfull observability. If n = 1 then no observa-
tions are possible and the transition system isunobservable. The general casen ∈ {1, . . . , |S|} is
calledpartial observability.

An actiono is applicablein states for which it associates at least one successor state. We define
imagesof states asimgo(s) = {s′ ∈ S|sos′} and (weak)preimagesof states aspreimgo(s′) =
{s ∈ S|sos′}. Generalization to sets of states isimgo(T ) =

⋃
s∈T imgo(s) andpreimgo(T ) =

8
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⋃
s∈T preimgo(s). For sequenceso1, . . . , on of actionsimgo1;...;on(T ) = imgon(· · · imgo1(T ) · · ·)

andpreimgo1;...;on(T ) = preimgo1(· · ·preimgon(T ) · · ·). Thestrong preimageof a setT of states
is the set of states for which all successor states are inT , defined asspreimgo(T ) = {s ∈ S|s′ ∈
T, sos′, imgo(s) ⊆ T}.

Lemma 2.2 Images, strong preimages and weak preimages of sets of states are related to each
other as follows. Leto be any action andS andS′ any sets of states.

1. spreimgo(T ) ⊆ preimgo(T )

2. imgo(spreimgo(T )) ⊆ T

3. If T ⊆ T ′ then imgo(T ) ⊆ imgo(T ′).

4. preimgo(T ∪ T ′) = preimgo(T ) ∪ preimgo(T ′).

5. s′ ∈ imgo(s) if and only ifs ∈ preimgo(s).

Proof:

1. spreimgo(T ) = {s ∈ S|s′ ∈ T, sos′, imgo(s) ⊆ T} ⊆ {s ∈ S|s′ ∈ T, sos′} =
⋃

s′∈T {s ∈
S|sos′} =

⋃
s′∈T preimgo(s′) = preimgo(T ).

2. Take anys′ ∈ imgo(spreimgo(T )). Hence there iss ∈ spreimgo(T ) so thatsos′. As
s ∈ spreimgo(T ), imgo(s) ⊆ T . Sinces′ ∈ imgo(s), s′ ∈ T .

3. AssumeT ⊆ T ′ ands′ ∈ imgo(T ). Hencesos′ for somes ∈ T by definition of images.
Hencesos′ for somes ∈ T ′ becauseT ⊆ T ′. Hences′ ∈ imgo(T ′) by definition of images.

4. preimgo(T ∪T ′) =
⋃

s′∈T∪T ′{s ∈ S|sos′} =
⋃

s′∈T {s ∈ S|sos′}∪
⋃

s′∈T ′{s ∈ S|sos′} =
preimgo(T ) ∪ preimgo(T ′)

5. s′ ∈ imgo(s) iff sos′ iff s ∈ preimgo(s).

�

2.1.1 Deterministic transition systems

Transition systems which we use in Chapter 3 have only one initial state and deterministic actions.
For this subclass observability is irrelevant because the state of the transition system after a given
sequence of actions can be predicted exactly. We use a simpler formalization of them.

Definition 2.3 A deterministic transition systemis a 4-tupleΠ = 〈S, I,O,G〉 where

1. S is a finite set of states,

2. I ∈ S is the initial state,

3. O is a finite set of actionso ⊆ S × S that are partial functions, and

4. G ⊆ S is the set of goal states.
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A

B C

D

EF

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

That the actions are partial functions means that for anys ∈ S ando ∈ O there is at most one
states′ such thatsos′. We denote the unique successor states′ of a states in which operatoro
is applicable bys′ = appo(s). For sequenceso1; . . . ; on of operators we defineappo1;...;on(s) as
appon(· · ·appo1(s) · · ·).

2.1.2 Incidence matrices

Actions and other binary relations can be represented in terms of incidence matricesM (adjacency
matrices) in which the element in rowi and columnj indicates whether a transition from statei
to j is possible.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix.
The action can be seen to be deterministic because for every state there is at most one arrow going
out of it, and each row of the matrix contains at most one non-zero element.

For matricesM1, . . . ,Mn which represent the transition relations of actionsa1, . . . , an the
combined transition relation isM = M1 +M2 + · · · +Mn. The matrixM now tells whether a
state can be reached from another state by at least one of the actions.

Here+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined as0 + 0 = 0, andb + b′ = 1 if b = 1 or b′ = 1. Boolean addition is used because
in the presence of nondeterminism we could have 1 for both of two transitions from A to B and
from A to C. For probabilistic planning problems normal addition is used and matrix elements are
interpreted as probabilities of nondeterministic transitions.

The incidence matrix corresponding to first taking actiona1 and thena2 is M1M2. This is
illustrated by Figure 2.2 The inner product of two vectors in the definition of matrix product
corresponds to the reachability of a state from another state through all possible intermediate
states.

Now we can compute for all pairss, s′ of states whethers′ is reachable froms by a sequence
of actions. LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions.
Then define

R0 = In×n

Ri = Ri−1 +MRi−1 for i ≥ 1.

Heren is the number of states andIn×n is the unit matrix of sizen. By Tarski’s fixpoint theorem
Ri = Rj for somei ≥ 0 and allj ≥ i because of the monotonicity property that every element
that is 1 for somei is 1 also for allj > i. MatrixRi = M0∪M1∪· · ·∪M i represents reachability
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A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

×

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 1 0 0 0 0 0
D 0 0 0 1 0 0
E 0 0 0 0 1 0
F 0 0 0 1 0 0

=

A B C D E F

A 0 0 0 0 0 1
B 0 0 0 1 0 0
C 1 0 0 0 0 0
D 1 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 1 0

Figure 2.2: Matrix product corresponds to sequential composition.

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.3: A transition graph and the corresponding matrixM

by i actions or less.

2.2 Classical propositional logic

LetA be a set of propositional variables (atomic propositions). We define the set of propositional
formulae inductively as follows.

1. For alla ∈ A, a is a propositional formula.

2. If φ is a propositional formula, then so is¬φ.

3. If φ andφ′ are propositional formulae, then so isφ ∨ φ′.

4. If φ andφ′ are propositional formulae, then so isφ ∧ φ′.

5. The symbols⊥ and>, respectively denoting truth-values false and true, are propositional
formulae.

The symbols∧,∨ and¬ areconnectivesrespectively denoting theconjunction, disjunctionand
negation. We define the implicationφ→ φ′ as an abbreviation for¬φ ∨ φ′, and the equivalence
φ↔ φ′ as an abbreviation for(φ→φ′) ∧ (φ′→φ).

A valuation ofA is a functionv : A → {0, 1} where 0 denotes false and 1 denotes true.
Valuations are also known asassignmentsor models. For propositional variablesa ∈ A we define



12 CHAPTER 2. BACKGROUND

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 1
B 0 0 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 1
F 0 1 0 0 1 0

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrixM +M2

A

B C

D

EF

A B C D E F

A 0 1 0 0 1 1
B 0 1 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 1 1
F 0 1 0 0 1 1

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrixM +M2 +M3

v |= a if and only if v(a) = 1. A valuation of the propositional variables inA can be extended to
a valuation of all propositional formulae overA as follows.

1. v |= ¬φ if and only if v 6|= φ

2. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

3. v |= φ ∧ φ′ if and only if v |= φ andv |= φ′

4. v |= >

5. v 6|= ⊥

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formulaφ is satisfiable(consistent) if there is at least one valuationv so that
v |= φ. Otherwise it isunsatisfiable(inconsistent). A finite setF of formulae is satisfiable if∧

φ∈F φ is. A propositional formulaφ is valid or a tautology if v |= φ for all valuationsv. We
denote this by|= φ. A propositional formulaφ is a logical consequenceof a propositional formula
φ′, writtenφ′ |= φ, if v |= φ for all valuationsv such thatv |= φ′. A propositional formula that
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is a proposition variablea or a negated propositional variable¬a for somea ∈ A is a literal. A
formula that is a disjunction of literals isa clause.

A formula φ is in negation normal form(NNF) if all occurrences of negations are directly
in front of propositional variables. Any formula can be transformed to negation normal form by
applications of the De Morgan rules¬(φ∨φ′) ≡ ¬φ∧¬φ′ and¬(φ∧φ′) ≡ ¬φ∨¬φ′, the double
negation rule¬¬φ ≡ φ. A formulaφ is in conjunctive normal form(CNF) if it is a conjunction of
disjunctions of literals. A formulaφ is in disjunctive normal form(DNF) if it is a disjunction of
conjunctions of literals. Any formula in CNF or in DNF is also in NNF.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
with quantification over the truth-values of propositional variables.Quantified Boolean formulae
(QBF) are like propositional formulae but there are two new syntactic rules for the quantifiers.

6. If φ is a formula anda ∈ A, then∀aφ is a formula.

7. If φ is a formula anda ∈ A, then∃aφ is a formula.

Further, there is the requirement that every variable is quantified, that is, every occurrence of
a ∈ A in a QBF is in the scope of either∃a or ∀a.

Defineφ[ψ/x] as the formula obtained fromφ by replacing occurrences of the propositional
variablex byψ.

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
> and⊥. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean functions associated with the connectives∨, ∧ and¬.

Definition 2.4 (Truth of QBF) A formula∃xφ is true if and only ifφ[>/x] ∨ φ[⊥/x] is true.
(Equivalently, ifφ[>/x] is true orφ[⊥/x] is true.)

A formula∀xφ is true if and only ifφ[>/x] ∧ φ[⊥/x] is true. (Equivalently, ifφ[>/x] is true
andφ[⊥/x] is true.)

A formulaφ with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only ifφ is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.5 The formulae∀x∃y(x↔ y) and∃x∃y(x ∧ y) are true.
The formulae∃x∀y(x↔ y) and∀x∀y(x ∨ y) are false. �

Note that a QBF with only existential quantifiers is true if and only if the formula without the
quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides with the
validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases and to
view each quantifier as quantifying a set of formulae, for example∃x1x2∀y1y2φ.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
complete[Meyer and Stockmeyer, 1972], and many computational problems that presumably can-
not be translated into the satisfiability problem of the propositional logic in polynomial time (as-
suming that NP6=PSPACE) can be efficiently translated into QBF.
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2.2.2 Binary decision diagrams

Propositional formulae can be transformed to different normal forms. The most well-known nor-
mal forms are the conjunctive normal form (CNF) and the disjunctive normal form (DNF). For-
mulae in conjunctive normal form are conjunctions of disjunctions of literals, and in disjunctive
normal form they are disjunctions of conjunctions of literals. For every propositional formula
there is a logically equivalent one in both of these normal forms. However, the formula in normal
form may be exponentially bigger.

Normal forms are useful for at least two reasons. First, certain types of algorithms are easier to
describe when assumptions of the syntactic form of the formulae can be made. For example, the
resolution rule which is the basis of many theorem-proving algorithms, is defined for formulae in
the conjunctive normal form only (the clausal form). Defining resolution for non-clausal formulae
is more difficult.

The second reason is that certain computational problems can be solved more efficiently for
formulae in normal form. For example, testing the validity of propositional formulae is in general
co-NP-hard, but if the formulae are in CNF then it is polynomial time: just check whether every
conjunct contains bothp and¬p for some propositionp.

Transformation into a normal form in general is not a good solution to any computationally
intractable problem like validity testing, because for example in the case of CNF, polynomial-time
validity testing became possible only by allowing a potentially exponential increase in the size of
the formula.

However, there are certain normal forms for propositional formulae that have proved very use-
ful in various types of reasoning needed in planning and other related areas, like model-checking
in computer-aided verification.

In this section we discuss (ordered) binary decision diagrams (BDDs)[Bryant, 1992]. Other
normal forms of propositional formulae that have found use in AI and could be applied to planning
include the decomposable negation normal form[Darwiche, 2001] which is less restricted than
binary decision diagrams (formulae in DNNF can be viewed as a superclass of BDDs) and are
sometimes much smaller. However, smaller size means that some of the logical operations that
can be performed in polynomial time for BDDs, like equivalence testing, are NP-hard for formulae
in DNNF.

The main reason for using BDDs is that the logical equivalence of BDDs coincides with syn-
tactic equivalence: two BDDs are logically equivalent if and only if they are the same BDD.
Propositional formulae in general, or formulae in CNF or in DNF do not have this property. Fur-
thermore, computing a BDD that represents the conjunction or disjunction of two BDDs or the
negation of a BDDs also takes only polynomial time.

However, like with other normal forms, a BDD can be exponentially bigger than a correspond-
ing unrestricted propositional formula. One example of such a propositional formulae is the binary
multiplier: Any BDD representation ofn-bit multipliers has a size exponential inn. Also, even
though many of the basic operations on BDDs can be computed in polynomial time in the size
of the component BDDs, iterating these operations may increase the size exponentially: some of
these operator may double the size of the BDD, and doublingn times is exponential inn and in
the size of the original BDD.

A main application of BDDs has been model-checking in computer-aided verification[Burch
et al., 1994; Clarkeet al., 1994], and in recent years these same techniques have been applied to
AI planning as well. We will discuss BDD-based planning algorithms in Chapter 4.
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Figure 2.6: A BDD

BDDs are expressed in terms of the ternary Boolean operator if-then-elseite(p, φ1, φ2) defined
as(p∧φ1)∨(¬p∧φ2), wherep is a proposition. Any Boolean formula can be represented by using
this operator together with propositions and the constants> and⊥. Figure 2.6 depicts a BDD for
the formula(A ∨ B) ∧ (B ∨ C). The normal arrow coming from a node forP corresponds to
the case in whichP is true, and the dotted arrow to the case in whichP is false. Note that BDDs
are graphs, not trees like formulae, and this provides a further reduction in the BDD size as a
subformula never occurs more than once.

There is an ordering condition on BDDs: the occurrences of propositions on any path from the
root to a leaf node must obey a fixed ordering of the propositions. This ordering condition together
with the graph representation is required for the good computational properties of BDDs, like the
polynomial time equivalence test.

A BDD corresponding to a propositional formula can be obtained by repeated application of
an equivalence called the Shannon expansion.

φ ≡ (p ∧ φ[>/p]) ∨ (¬p ∧ φ[⊥/p]) ≡ ite(p, φ[>/p], φ[⊥/p])

Example 2.6 We show how the BDD for(A∨B)∧ (B ∨C) is produced by repeated application
of the Shannon expansion. We use the variable orderingA, B, C and use the Shannon expansion
to eliminate the variables in this order.

(A ∨B) ∧ (B ∨ C)
≡ ite(A, (> ∨B) ∧ (B ∨ C), (⊥ ∨B) ∧ (B ∨ C))
≡ ite(A,B ∨ C,B)
≡ ite(A, ite(B,> ∨ C,⊥ ∨ C), ite(B,>,⊥))
≡ ite(A, ite(B,>, C), ite(B,>,⊥))
≡ ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

The simplifications in the intermediate steps are by the equivalences> ∨ φ ≡ > and⊥ ∨ φ ≡ φ
and> ∧ φ ≡ φ and⊥ ∧ φ ≡ ⊥. When

ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

is first turned into a tree and then equivalent subtrees are identified, we get the BDD in Figure 2.6.
The terminal node 1 corresponds to> and the terminal node 0 to⊥. �

There are many operations on BDDs that are computable in polynomial time. These include
forming the conjunction∧ and the disjunction∨ of two BDDs, and forming the negation¬ of a
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BDD. However, conjunction and disjunction ofn BDDs may have a size that is exponential inn,
as adding a new disjunct or conjunct may double the size of the BDD.

An important operation in many applications of BDDs is the existential abstraction operation
∃p.φ, which is defined by

∃p.φ = φ[>/p] ∨ φ[⊥/p]

whereφ[ψ/p] means replacing all occurrences ofp in φ by ψ. Also this is computable in polyno-
mial time, and in contrast to repeated conjunction and disjunction, repeated existential abstraction
of several variables remains a polynomial time operation. Existential abstraction can of course be
used for any propositional formulae, not only for BDDs.

The formulaφ′ obtained fromφ by existentially abstractingp is in general not equivalent toφ,
but has many properties that make the abstraction operation useful.

Lemma 2.7 Letφ be a formula andp a proposition. Letφ′ = ∃p.φ = φ[>/p]∨φ[⊥/p]. Now the
following hold.

1. φ is satisfiable if and only ifφ′ is.

2. φ is valid if and only ifφ′ is.

3. If χ is a formula without occurrences ofp, thenφ |= χ if and only ifφ′ |= χ.

Example 2.8

∃B.((A→B) ∧ (B→C))
= ((A→>) ∧ (>→C)) ∨ ((A→⊥) ∧ (⊥→C))
≡ C ∨ ¬A ≡ A→C

∃AB.(A ∨B) = ∃B.(> ∨B) ∨ (⊥ ∨B) = ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))

�

2.2.3 Algebraic decision diagrams

Algebraic decision diagrams (ADDs)[Fujita et al., 1997; Baharet al., 1997] are a generalization
of binary decision diagrams that has been applied to many kinds of probabilistic extensions of
problems solved by BDDs. BDDs have only two terminal nodes, 1 and 0, and ADDs generalize
this to a finite number of real numbers.

While BDDs represent Boolean functions, ADDs represent mapping from valuations to real
numbers. The Boolean operations on BDDs, like taking the disjunction or conjunction of two
BDDs, generalize to the arithmetic operations to take the arithmetic sum or the arithmetic product
of two functions. There are further operations on ADDs that have no counterpart for BDDs, like
constructing a function that on any valuation equals the maximum of two functions.

Figure 2.7 depicts three ADDs, the first of which is also a BDD. The product of ADDs is a
generalization of conjunction of BDDs: if for some valuation/state ADDA assigns the valuer1
and ADDB assigns the valuer2, then the product ADDA · B assigns the valuer1 · r2 to the
valuation.

The following are some of the operations typically available in implementations of ADDs.
Here we denote ADDs byf andg and view them as functions from valuationsx to real numbers.
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Figure 2.7: Three ADDs, the first of which is also a BDD.

operation notation meaning
sum f + g (f + g)(x) = f(x) + g(x)
product f · g (f · g)(x) = f(x) · g(x)
maximization max(f, g) (max(f, g))(x) = max(f(x), g(x))

There is an operation for ADDs that corresponds to the existential abstraction operation on
BDDs, and that is used in multiplication of matrices represented as ADDs, just like existential
abstraction is used in multiplication of Boolean matrices represented as BDDs.

Let f be an ADD andp a proposition. Thenarithmetic existential abstractionof f , written
∃p.f , is an ADD that satisfies the following.

(∃p.f)(x) = (f [>/p])(x) + (f [⊥/p])(x)

2.3 Succinct transition systems

It is often more natural to represent the states of a transition system as valuations of state variables
instead of enumeratively as in Section 2.1. The binary relations that correspond to actions can
often be represented compactly in terms of the changes the actions cause to the values of state
variables.

We represent states in terms of a setA of Boolean state variables which take the valuestrueor
false. Eachstateis a valuation ofA (a functions : A→ {0, 1}.)

Since we identify states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations and test relations between sets by inference in the propositional
logic as summarized in Table 2.1

The actions of a succinct transition system are described by operators. An operator has two
components. The precondition describes the set of states in which the action can be taken. The
effect describes the successor states of each state in terms of the changes made to the values of the
state variables.

Definition 2.9 LetA be a set of state variables. Anoperatoris a pair 〈c, e〉 wherec is a proposi-
tional formula overA (theprecondition), ande is aneffectoverA. Effects overA are recursively
defined as follows.
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set formula
T ∪ U T ∨ U
T ∩ U T ∧ U
T ¬T
T\U T ∧ ¬U
∅ ⊥
the universal set >
question about setsquestion about formulae
T ⊆ U? |= T→U?
T ⊂ U? |= T→U and 6|= U→T?
T = U? |= T ↔ U?

Table 2.1: Correspondence between set-theoretical and logical operations

1. a and¬a for state variablesa ∈ A are effects overA.

2. e1 ∧ · · · ∧ en is an effect overA if e1, . . . , en are effects overA (the special case withn = 0
is the empty effect>).

3. c B e is an effect overA if c is a formula overA ande is an effect overA.

4. e1| · · · |en is an effect overA if e1, . . . , en for n ≥ 2 are effects overA.

The compound effectse1 ∧ · · · ∧ en denote executing all the effectse1, . . . , en simultaneously.
In conditional effectsc B e the effecte is executed ifc is true in the current state. The effects
e1| · · · |en denote nondeterministic choice between the effectse1, . . . , en. Exactly one of these
effects is chosen randomly.

Operators describe a binary relation on the set of states as follows.

Definition 2.10 (Operator application) Let 〈c, e〉 be an operator overA. Let s be a state (a
valuation ofA). The operator isapplicable ins if s |= c and every setE ∈ [e]s is consistent. The
set[e]s is recursively defined as follows.

1. [a]s = {{a}} and[¬a]s = {{¬a}} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {
⋃n

i=1Ei|E1 ∈ [e1]s, . . . , En ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = {∅} otherwise.

4. [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s .

An operator〈c, e〉 induces a binary relationR〈c, e〉 on states as follows: statess ands′ are related
byR〈c, e〉 if s |= c and s′ is obtained froms by making the literals in someE ∈ [e]s true and
retaining the values of state variables not occurring inE.

We define images and preimages for operatorso in terms ofR(o), for instance bypreimgo(s) =
preimgR(o)(s).

Definition 2.11 A succinct transition systemis a 5-tupleΠ = 〈A, I,O,G, V 〉 where
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1. A is a finite set of state variables,

2. I is a formula overA describing the initial states,

3. O is a finite set of operators overA,

4. G is a formula overA describing the goal states, and

5. V ⊆ A is the set of observable state variables.

Succinct transition systems withV = A arefully observable, and succinct transition systems
with V = ∅ are unobservable. Without restrictions onV the succinct transition systems are
partially observable.

We can associate a transition system with every succinct transition system.

Definition 2.12 Given a succinct transition systemΠ = 〈A, I,O,G, V 〉, define the transition
systemF (Π) = 〈S, I ′, O′, G′, P 〉 where

1. S is the set of all Boolean valuations ofA,

2. I ′ = {s ∈ S|s |= I},

3. O′ = {R(o)|o ∈ O},

4. G′ = {s ∈ S|s |= G}, and

5. P = (C1, . . . , Cn) wherev1, . . . , vn for n = 2|V | are all the Boolean valuations ofV and
Ci = {s ∈ S|s(a) = vi(a) for all a ∈ V } for all i ∈ {1, . . . , n}.

The transition system may have a size that is exponential in the size of the succinct transition
system. However, the construction takes only polynomial time in the size of the transition system.

2.3.1 Deterministic succinct transition systems

A deterministic operator has no occurrences of| in the effect. Further, in this special case the
definition of operator application is slightly simpler.

Definition 2.13 (Operator application) Let 〈c, e〉 be a deterministic operator overA. Lets be a
state (a valuation ofA). The operator isapplicable ins if s |= c and the set[e]det

s is consistent.
The set[e]det

s is recursively defined as follows.

1. [a]det
s = {a} and[¬a]det

s = {¬a} for a ∈ A.

2. [e1 ∧ · · · ∧ en]det
s =

⋃n
i=1[ei]

det
s .

3. [c′ B e]det
s = [e]det

s if s |= c′ and[c′ B e]det
s = ∅ otherwise.

A deterministic operator〈c, e〉 induces a partial functionR〈c, e〉 on states as follows: two states
s ands′ are related byR〈c, e〉 if s |= c ands′ is obtained froms by making the literals in[e]det

s

true and retaining the truth-values of state variables not occurring in[e]det
s .



20 CHAPTER 2. BACKGROUND

We defineappo(s) = s′ by sR(o)s′ andappo1;...;on(s) = s′ by appon(. . .appo1(s) . . .), just
like for non-succinct transition systems.

We formally define deterministic succinct transition systems.

Definition 2.14 A deterministic succinct transition systemis a 4-tupleΠ = 〈A, I,O,G〉 where

1. A is a finite set of state variables,

2. I is an initial state,

3. O is a finite set of operators overA, and

4. G is a formula overA describing the goal states.

We can associate a deterministic transition system with every deterministic succinct transition
system.

Definition 2.15 Given a deterministic succinct transition systemΠ = 〈A, I,O,G〉, define the
deterministic transition systemF (Π) = 〈S, I,O′, G′〉 where

1. S is the set of all Boolean valuations ofA,

2. O′ = {R(o)|o ∈ O}, and

3. G′ = {s ∈ S|s |= G}.

A subclass of operators considered in many early and recent works restrict toSTRIPSoperators.
An operator〈c, e〉 is a STRIPS operator ifc is a conjunction of state variables ande is a conjunction
of literals. STRIPS operators do not allow disjunctivity in formulae nor conditional effects. This
class of operators is sufficient in the sense that any transition system can be expressed in terms of
STRIPS operators only if the identities of operators are not important: when expressing a transition
system in terms of STRIPS operators only some operators correspond to an exponential number
of STRIPS operators.

Example 2.16 LetA = {a1, . . . , an} be the set of state variables. Leto = 〈>, e〉 where

e = (a1 B ¬a1) ∧ (¬a1 B a1) ∧ · · · ∧ (an B ¬an) ∧ (¬an B an)〉.

This operator reverses the values of all state variables. As its set of active effects[e]det
s is different

in every one of2n states, this operator corresponds to2n STRIPS operators.

o0 = 〈¬a1 ∧ ¬a2 ∧ · · · ∧ ¬an, a1 ∧ a2 ∧ · · · ∧ an〉
o1 = 〈a1 ∧ ¬a2 ∧ · · · ∧ ¬an,¬a1 ∧ a2 ∧ · · · ∧ an〉
o2 = 〈¬a1 ∧ a2 ∧ · · · ∧ ¬an, a1 ∧ ¬a2 ∧ · · · ∧ an〉
o3 = 〈a1 ∧ a2 ∧ · · · ∧ ¬an,¬a1 ∧ ¬a2 ∧ · · · ∧ an〉

...
o2n−1 = 〈a1 ∧ a2 ∧ · · · ∧ an,¬a1 ∧ ¬a2 · · · ∧ ¬an〉

�
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c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (2.1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2.2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (2.3)

e ∧ (c B e) ≡ e (2.4)

e ≡ > B e (2.5)

e1 ∧ (e2 ∧ e3) ≡ (e1 ∧ e2) ∧ e3 (2.6)

e1 ∧ e2 ≡ e2 ∧ e1 (2.7)

c B > ≡ > (2.8)

e ∧ > ≡ e (2.9)

Table 2.2: Equivalences on effects

2.3.2 Extensions

The basic language for effects could be extended with further constructs. A natural construct is
sequential compositionof effects. Ife ande′ are effects, then alsoe; e′ is an effect that corresponds
to first executinge and thene′. Definition 3.11 and Theorem 3.12 show how effects with sequential
composition can be reduced to effects without sequential composition.

2.3.3 Normal form for deterministic operators

Deterministic operators can be transformed to a particularly simple form without nesting of con-
ditionality B and with only atomic effectse as antecedents of conditionalsφ B e. Normal forms
are useful as they allow concentrating on a particularly simple form of effects.

Table 2.2 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.13 are straightforward. An effecte is equivalent to> ∧ e, and conjunctions of effects can be
arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving all occurrences ofB inside∧ so that the consequents
of B are atomic effects.

Definition 2.17 A deterministic effecte is in normal formif it is > or a conjunction of one or
more effectsc B a and c B ¬a with at most one occurrence of atomic effecta and¬a for any
a ∈ A. An operator〈c, e〉 is in normal form ife is in normal form.

Theorem 2.18 For every deterministic operator there is an equivalent one in normal form. There
is one that has a size that is polynomial in the size of the operator.

Proof: We can transform any deterministic operator into normal form by using the equivalences
in Table 2.2. The proof is by structural induction on the effecte of the operator〈c, e〉.

Induction hypothesis: the effecte can be transformed to normal form.
Base case 1,e = >: This is already in normal form.
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Base case 2,e = a or e = ¬a: An equivalent effect in normal form is> B e by Equivalence
2.5.

Inductive case 1,e = e1 ∧ e2: By the induction hypothesise1 ande2 can be transformed into
normal form, so assume that they already are. If one ofe1 ande2 is>, by Equivalence 2.9 we can
eliminate it.

Assumee1 containsc1 B l for some literall ande2 containsc2 B l. We can reordere1∧e2 with
Equivalences 2.6 and 2.7 so that one of the conjuncts is(c1 B l) ∧ (c2 B l). Then by Equivalence
2.3 it can be replaced by(c1 ∨ c2) B l. Since this can be done repeatedly for every literall, we
can transforme1 ∧ e2 into normal form.

Inductive case 2,e = z B e1: By the induction hypothesise1 can be transformed to normal
form, so assume that it already is.

If e1 is>, e can be replaced by> which is in normal form.
If e1 = z′ B e2 for somez′ ande2, thene can be replaced by the equivalent (by Equivalence

2.2) effect(z ∧ z′) B e2 in normal form.
Otherwise,e1 is a conjunction of effectsz B l. By Equivalence 2.1 we can movez inside the

conjunction. Applications of Equivalences 2.2 transform the effect into normal form.
In this transformation the conditionsc in c B e are copied into front of the atomic effects.

Let m be the sum of the sizes of all the conditionsc, and letn be the number of occurrences of
atomic effectsa and¬a in the effect. An upper bound on size of the new effect isO(nm) which
is polynomial in the size of the original effect. �

2.3.4 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.3 to nondeterministic effects and opera-
tors. In the normal form nondeterministic choices and conjunctions are the outermost constructs,
and consequentse of conditional effectsc B e are atomic effects.

Definition 2.19 (Normal form for nondeterministic operators) A deterministic effect is in nor-
mal form if it is> or a conjunction of one or more effectsc B a and c B ¬a with at most one
occurrence ofa and¬a for anya ∈ A.

A nondeterministic effect is in normal form if it ise1| · · · |en or e1 ∧ · · · ∧ en for effectsei that
are in normal form.

A nondeterministic operator〈c, e〉 is in normal form ife is in normal form.

For showing that every nondeterministic effect can be transformed into normal form we use
further equivalences that are given in Table 2.3.

Theorem 2.20 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the former.

Proof: Transformation to normal form is like in the proof of Theorem 2.18. Additional equiva-
lences needed for nondeterministic choices are 2.10 and 2.11. �

Example 2.21 The effect

a B (b|(c ∧ f)) ∧ ((d ∧ e)|(b B e))
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c B (e1| · · · |en) ≡ (c B e1)| · · · |(c B en) (2.10)

e ∧ (e1| · · · |en) ≡ (e ∧ e1)| · · · |(e ∧ en) (2.11)

(e′1| · · · |e′n′)|e2| · · · |en ≡ e′1| · · · |e′n′ |e2| · · · |en (2.12)

(e′ ∧ (c B e1))|e2| · · · |en ≡ (c B ((e′ ∧ e1)|e2| · · · |en)) ∧ (¬c B (e′|e2| · · · |en)) (2.13)

Table 2.3: Equivalences on nondeterministic effects

in normal form is

((a B b)|((a B c) ∧ (a B f))) ∧ (((> B d) ∧ (> B e))|(b B e)).

�

For some applications a still simpler form of operators is useful. In the second normal form
for nondeterministic operators nondeterminism may appear only at the outermost structure in the
effect.

Definition 2.22 (Normal form II for nondeterministic operators) A deterministic effect is in nor-
mal formal II if it is> or a conjunction of one or more effectsc B a andc B ¬a with at most one
occurrence ofa and¬a for anya ∈ A.

A nondeterministic effect is in normal form II if it is of forme1| · · · |en whereei are determin-
istic effects in normal form II.

A nondeterministic operator〈c, e〉 is in normal form II ife is in normal form II.

Theorem 2.23 For every operator there is an equivalent one in normal form II.

Proof: By Theorem 2.20 there is an equivalent operator in normal form. The transformation
further into normal form II requires equivalences 2.11 and 2.12. �

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbooks[Balcázaret al., 1988;
1990; Papadimitriou, 1994].

The definition of ATMs we use is like that of Balcázar et al.[1990] but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMs) are a special case of
alternating Turing machines.

Definition 2.24 Analternating Turing machineis a tuple〈Σ, Q, δ, q0, g〉 where

• Σ is a finite alphabet (the contents of tape cells),

• Q is a finite set of states (the internal states of the ATM),
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• δ is a transition functionδ : Q× (Σ ∪ {|,�}) → 2(Σ∪{|})×Q×{L,N,R},

• q0 is the initial state, and

• g : Q→ {∀,∃,accept, reject} is a labeling of the states.

The symbols| and�, the end-of-tape symbol and the blank symbol, in the definition ofδ
respectively refer to the beginning of the tape and to the end of the tape. It is required thats = |
andm = R for all 〈s, q′,m〉 ∈ δ(q, |) for any q ∈ Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape symbol| may not be changed. Fors ∈ Σ we
restricts′ in 〈s′, q′,m〉 ∈ δ(q, s) to s′ ∈ Σ, that is,| gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Note that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM is〈q, σ, σ′〉whereq is the current state,σ is the tape contents left of
the R/W head with the rightmost symbol under the R/W head, andσ′ is the tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM. The configuration is universal (∀) if g(q) = ∀, and existential (∃) if g(q) = ∃.

The computation of an ATM starts from the initial configuration〈q0, |a, σ〉 whereaσ is the
input string of the Turing machine. Belowε denotes the empty string.

Successor configurations are defined as follows.

1. A successor of〈q, σa, σ′〉 is 〈q′, σ, a′σ′〉 if 〈a′, q′, L〉 ∈ δ(q, a).

2. A successor of〈q, σa, σ′〉 is 〈q′, σa′, σ′〉 if 〈a′, q′, N〉 ∈ δ(q, a).

3. A successor of〈q, σa, bσ′〉 is 〈q′, σa′b, σ′〉 if 〈a′, q′, R〉 ∈ δ(q, a).

4. A successor of〈q, σa, ε〉 is 〈q′, σa′�, ε〉 if 〈a′, q′, R〉 ∈ δ(q, a).

We write〈q, σ〉 ` 〈q′, σ′〉 if the latter is a successor configuration of the former. A configuration
〈q, σ, σ′〉 of an ATM isfinal if g(q) = accept org(q) = reject.

The acceptance of an input string by an ATM is defined recursively starting from final configu-
rations. A final configuration is 0-accepting ifg(q) = accept. A non-final universal configuration
is n-accepting forn ≥ 1 if its every successor configuration ism-accepting for somem < n
and one of its successor configurations isn− 1-accepting. A non-final existential configuration is
n-accepting forn ≥ 1 if at least one of its successor configurations isn − 1-accepting and it has
nom-accepting successor configurations for anym < n − 1. Finally, an ATM accepts a given
input string if its initial configuration isn-accepting for somen ≥ 0. A configuration isaccepting
if it is n-accepting for somen ≥ 0.

If an ATM accepts a given input string, then we can definean accepting computation subtree
of the ATM and the input string as a setT of accepting configurations such that

1. the initial configuration is inT ,

2. if c ∈ T is a∀-configuration thenc′ ∈ T for all configurationsc′ such thatc ` c′,

3. if c ∈ T is ann-accepting∃-configuration thenc′ ∈ T for at least onec′ such thatc ` c′

andc′ ism-accepting for somem < n.
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A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM with|δ(q, s)| = 1 for all q ∈ Q ands ∈ Σ.

The complexity classes used in this lecture are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input lengthn. Formally,

PSPACE=
⋃
k≥0

DSPACE(nk).

Other complexity classes are similarly defined in terms of the time consumption on a determin-
istic Turing machine (DTIME(f(n)), time consumption on a nondeterministic Turing machine
(NTIME(f(n)), or time or space consumption on alternating Turing machines (ATIME(f(n)) or
ASPACE(f(n))) [Balcázaret al., 1988; 1990].

P =
⋃

k≥0 DTIME(nk)
NP =

⋃
k≥0 NTIME(nk)

EXP =
⋃

k≥0 DTIME(2nk
)

NEXP =
⋃

k≥0 NTIME(2nk
)

EXPSPACE=
⋃

k≥0 DSPACE(2nk
)

2-EXP =
⋃

k≥0 DTIME(22nk

)

2-NEXP =
⋃

k≥0 NTIME(22nk

)

APSPACE=
⋃

k≥0 ASPACE(nk)
AEXPSPACE=

⋃
k≥0 ASPACE(2nk

)

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing machines[Chandraet al., 1981], for example

EXP = APSPACE
2-EXP = AEXPSPACE.

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this lecture, we can equivalently use conventional programming languages (like C
or Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this lecture, the proofs of membership of a given computational problem in a certain
complexity class are usually given in terms of a program in a simple programming language com-
parable to a small subset of C or Java, instead of giving a formal description of a Turing machine
because the latter would usually be very complicated and difficult to understand.

A problemL is C-hard(where C is any of the complexity classes) if all problems in the class C
are polynomial timemany-one reducibleto it; that is, for all problemsL′ ∈ C there is a function
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fL′ that can be computed in polynomial time on the size of its input andfL′(x) ∈ L if and only if
x ∈ L′ for all inputsx. We say that the functionfL′ is a translation fromL′ to L. A problem is
C-completeif it belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
betweentractableandintractable problems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important that
certain basic steps in these algorithms can be guaranteed to be tractable.

In this lecture we analyze the complexity of many computational problems, showing them to
be complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the
problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the following.1

class complete problem
P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)
PSPACE truth-value of quantified Boolean formulae

Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae[Papadimitriou and Yannakakis, 1986].

2.5 Exercises

2.1 Show that any transition system in which the states are valuations of a setA of propositional
variables can be translated into an equivalent succinct transition system.

2.2Show that conditional effects withB are necessary, that is, find a transition system where states
are valuations of a set of state variables and the actions cannot be represented as operators without
conditional effects withB. Hint: There is an example with two states and one state variable.

1For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.
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Deterministic planning

The simplest planning problems involves finding a sequence of actions that lead from a given initial
state to a goal state. Only deterministic actions are considered. Determinism and the uniqueness of
the initial state mean that the state of the transition system after any sequence of actions is exactly
predictable. The problem instances in this chapter are deterministic succinct transition systems as
defined in Section 2.3.1.

3.1 State-space search

The simplest possible planning algorithm generates all states (valuations of the state variables),
constructs the transition graph, and then finds a path from the initial stateI to a goal stateg ∈ G
for example by a shortest-path algorithm. The plan is then simply the sequence of operators
corresponding to the edges on the shortest path from the initial state to a goal state. However,
this algorithm is not feasible when the number of state variables is higher than 20 or 30 because
the number of valuations is very high:220 = 1048576 ∼ 106 for 20 Boolean state variables and
230 = 1073741824 ∼ 109 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space ex-
plicitly and to produce only the successor or predecessor states of the states currently under con-
sideration. This form of plan search can be easiest viewed as the application of general-purpose
search algorithms that can be employed in solving a wide range of search problems. The best
knownheuristic search algorithmsare A∗, IDA∗ and their variants[Hartet al., 1968; Pearl, 1984;
Korf, 1985] which can be used in finding shortest plans or plans that are guaranteed to be close to
the shortest ones.

There are two main possibilities to find a path from the initial state to a goal state: traverse
the transition graph forwards starting from the initial state, or traverse it backwards starting from
the goal states. The main difference between these possibilities is that there may be several goal
states (and one state may have several predecessor states with respect to one operator) but only one
initial state: in forward traversal we repeatedly compute the unique successor state of the current
state, whereas with backward traversal we are forced to keep track of a possibly very high number
of possible predecessor states of the goal states. Backward search is slightly more complicated to
implement but it allows to simultaneously consider several paths leading to a goal state.

27
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3.1.1 Progression and forward search

We have already definedprogressionfor single statess asappo(s). The simplest algorithm for the
deterministic planning problem does not require the explicit representation of the whole transition
graph. The search starts in the initial state. New states are generated by progression. As soon as a
states such thats |= G is found a plan is guaranteed to exist: it is the sequence of operators with
which the states is reached from the initial state.

A planner can use progression in connection with any of the standard search algorithms. Later
in this chapter we will discuss how heuristic search algorithms together with heuristics yield an
efficient planning method.

3.1.2 Regression and backward search

With backward search the starting point is a propositional formulaG that describes the set of goal
states. An operator is selected, the set of possible predecessor states is computed, and this set is
again described by a propositional formula. A plan has been found when a formula that is true
in the initial state is reached. The computation of a formula representing the predecessor states
of the states represented by another formula is calledregression. Regression is more powerful
than progression because it allows handling potentially very big sets of states, but it is also more
expensive.

Definition 3.1 We define the condition EPCl(e) of literal l made true when an operator with the
effecte is applied recursively as follows.

EPCl(>) = ⊥
EPCl(l) = >
EPCl(l′) = ⊥ whenl 6= l′ (for literals l′)

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = c ∧ EPCl(e)

The caseEPCl(e1∧· · ·∧en) = EPCl(e1)∨· · ·∨EPCl(en) is defined as a disjunction because
it is sufficient that at least one of the effects makesl true.

Definition 3.2 LetA be the set of state variables. We define the condition EPCl(o) of operator
o = 〈c, e〉 being applicable so that literall is made true asc ∧ EPCl(e) ∧

∧
a∈A ¬(EPCa(e) ∧

EPC¬a(e)).

For effectse the truth-value of the formulaEPCl(e) indicates in which statesl is a literal to
which the effecte assigns the value true. The connection to the earlier definition of[e]det

s is stated
in the following lemma.

Lemma 3.3 LetA be the set of state variables,s a state onA, l a literal onA, ando and operator
with effecte. Then

1. l ∈ [e]det
s if and only ifs |= EPCl(e), and

2. appo(s) is defined andl ∈ [e]det
s if and only ifs |= EPCl(o).
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Proof: We first prove (1) by induction on the structure of the effecte.
Base case 1,e = >: By definition of [>]det

s we havel 6∈ [>]det
s = ∅, and by definition of

EPCl(>) we haves 6|= EPCl(>) = ⊥, so the equivalence holds.
Base case 2,e = l: l ∈ [l]det

s = {l} by definition, ands |= EPCl(l) = > by definition.
Base case 3,e = l′ for some literall′ 6= l: l 6∈ [l′]det

s = {l′} by definition, ands 6|= EPCl(l′) =
⊥ by definition.

Inductive case 1,e = e1 ∧ · · · ∧ en:
l ∈ [e]det

s if and only if l ∈ [e′]det
s for somee′ ∈ {e1, . . . , en}

if and only if s |= EPCl(e′) for somee′ ∈ {e1, . . . , en}
if and only if s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
if and only if s |= EPCl(e1 ∧ · · · ∧ en).

The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions ofEPCl(e) and[e]det

s as well as elementary facts about propositional formulae.
Inductive case 2,e = c B e′:
l ∈ [c B e′]det

s if and only if l ∈ [e′]det
s ands |= c

if and only if s |= EPCl(e′) ands |= c
if and only if s |= EPCl(c B e′).

The second equivalence is by the induction hypothesis. This completes the proof of (1).
(2) follows from the fact that the conjunctsc and

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) in EPCl(o)

exactly state the applicability conditions ofo. �

Note that any operator〈c, e〉 can be expressed in normal form in terms ofEPCa(e) as〈
c,
∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

The formulaEPCa(e)∨ (a∧¬EPC¬a(e)) expresses the condition for the trutha ∈ A after the
effecte is executed in terms of truth-values of state variables before: eithera becomes true, ora
is true before and does not become false.

Lemma 3.4 Let a ∈ A be a state variable,o = 〈c, e〉 ∈ O an operator, ands ands′ = appo(s)
states. Thens |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only ifs′ |= a.

Proof: Assume thats |= EPCa(e)∨ (a∧¬EPC¬a(e)). We perform a case analysis and show that
s′ |= a holds in both cases.

Case 1: Assume thats |= EPCa(e). By Lemma 3.3a ∈ [e]det
s , and hences′ |= a.

Case 2: Assume thats |= a ∧ ¬EPC¬a(e). By Lemma 3.3¬a 6∈ [e]det
s . Hencea is true ins′.

For the other half of the equivalence, assume thats 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Hence
s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)).

Case 1: Assume thats |= a. Now s |= EPC¬a(e) becauses |= ¬a ∨ EPC¬a(e), and hence by
Lemma 3.3¬a ∈ [e]det

s and hences′ 6|= a.
Case 2: Assume thats 6|= a. Sinces |= ¬EPCa(e), by Lemma 3.3a 6∈ [e]det

s and hences′ 6|= a.
Therefores′ 6|= a in all cases. �

The formulaeEPCl(e) can be used in defining regression.
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Definition 3.5 (Regression)Let φ be a propositional formula ando = 〈c, e〉 an operator. The
regressionofφwith respect too is regro(φ) = φr∧c∧χwhereχ =

∧
a∈A ¬(EPCa(e)∧EPC¬a(e))

andφr is obtained fromφ by replacing everya ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Define
regre(φ) = φr ∧ χ and use the notation regro1;...;on(φ) = regro1(· · · regron(φ) · · ·).

The conjuncts ofχ say that none of the state variables may simultaneously become true and
false. The operator is not applicable in states in whichχ is false.

Remark 3.6 Regression can be equivalently defined in terms of the conditions the state variables
stay or become false, that is, we could use the formula EPC¬a(e) ∨ (¬a ∧ ¬EPCa(e)) which tells
whena is false. The negation of this formula, which can be written as(EPCa(e)∧¬EPC¬a(e))∨
(a ∧ ¬EPC¬a(e)), is not equivalent to EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). However, if EPCa(e) and
EPC¬a(e) are not simultaneously true, we do get equivalence, that is,

¬(EPCa(e) ∧ EPC¬a(e)) |= ((EPCa(e) ∧ ¬EPC¬a(e)) ∨ (a ∧ ¬EPC¬a(e)))
↔ (EPCa(e) ∨ (a ∧ ¬EPC¬a(e)))

because¬(EPCa(e) ∧ EPC¬a(e)) |= (EPCa(e) ∧ ¬EPC¬a(e)) ↔ EPCa(e).

An upper bound on the size of the formula obtained by regression with operatorso1, . . . , on

starting fromφ is the product of the sizes ofφ, o1, . . . , on, which is exponential inn. However,
the formulae can often be simplified because there are many occurrences of> and⊥, for example
by using the equivalences>∧φ ≡ φ,⊥∧φ ≡ ⊥,>∨φ ≡ >,⊥∨φ ≡ φ,¬⊥ ≡ >, and¬> ≡ ⊥.
For unconditional operatorso1, . . . , on (with no occurrences ofB), an upper bound on the size of
the formula (after eliminating> and⊥) is the sum of the sizes ofo1, . . . , on andφ.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same does not seem to be possible for progression
because there is no known simple definition of successor states of aset of states expressed in
terms of a formula: simple syntactic progression is restricted to individual states only (see Section
4.2 for a general but expensive definition of progression for arbitrary formulae.)

The important property of regression is formalized in the following lemma.

Theorem 3.7 Let φ be a formula overA, o an operator overA, andS the set of all states i.e.
valuations ofA. Then{s ∈ S|s |= regro(φ)} = {s ∈ S|appo(s) |= φ}.

Proof: We show that for any states, s |= regro(φ) if and only if appo(s) is defined andappo(s) |=
φ. By definitionregro(φ) = φr∧c∧χ for o = 〈c, e〉whereφr is obtained fromφ by replacing every
state variablea ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) andχ =

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

First we show thats |= c ∧ χ if and only if appo(s) is defined.
s |= c ∧ χ iff s |= c and{a,¬a} 6⊆ [e]det

s for all a ∈ A by Lemma 3.3
iff appo(s) is defined by Definition 2.13.

Then we show thats |= φr if and only if appo(s) |= φ. This is by structural induction over
subformulaeφ′ of φ and formulaeφ′r obtained fromφ′ by replacinga ∈ A by EPCa(e) ∨ (a ∧
¬EPC¬a(e))

Induction hypothesis:s |= φ′r if and only if appo(s) |= φ′.
Base case 1,φ′ = >: Now φ′r = > and both are true in the respective states.
Base case 2,φ′ = ⊥: Now φ′r = ⊥ and both are false in the respective states.
Base case 3,φ′ = a for somea ∈ A: Now φ′r = EPCa(e)∨ (a∧¬EPC¬a(e)). By Lemma 3.4

s |= φ′r if and only if appo(s) |= φ′.
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Inductive case 1,φ′ = ¬θ: By the induction hypothesiss |= θr iff appo(s) |= θ. Hences |= φ′r
iff appo(s) |= φ′ by the truth-definition of¬.

Inductive case 2,φ′ = θ ∨ θ′: By the induction hypothesiss |= θr iff appo(s) |= θ, ands |= θ′r
iff appo(s) |= θ′. Hences |= φ′r iff appo(s) |= φ′ by the truth-definition of∨.

Inductive case 3,φ′ = θ ∧ θ′: By the induction hypothesiss |= θr iff appo(s) |= θ, ands |= θ′r
iff appo(s) |= θ′. Hences |= φ′r iff appo(s) |= φ′ by the truth-definition of∧. �

Regression can be performed with any operator but not all applications of regression are useful.
First, regressing for example the formulaa with the effect¬a is not useful because the new unsat-
isfiable formula describes the empty set of states. Hence the sequence of operators of the previous
regressions steps do not lead to a goal from any state. Second, regressinga with the operator〈b, c〉
yieldsregr〈b,c〉(a) = a ∧ b. Finding a plan for reaching a state satisfyinga is easier than finding a
plan for reaching a state satisfyinga∧ b. Hence the regression step produced a subproblem that is
more difficult than the original problem, and it would therefore be better not to take this regression
step.

Lemma 3.8 Let there be a plano1, . . . , on for 〈A, I,O,G〉. If regrok;...;on(G) |= regrok+1;...;on(G)
for somek ∈ {1, . . . , n− 1}, then alsoo1, . . . , ok−1, ok+1, . . . , on is a plan for〈A, I,O,G〉.

Proof: By Theorem 3.7appok+1;...;on(s) |= G for any s such thats |= regrok+1;...;on(G). Since
appo1;...;ok−1

(I) |= regrok;...;on(G) andregrok;...;on(G) |= regrok+1;...;on(G) alsoappo1;...;ok−1
(I) |=

regrok+1;...;on(G). Henceappo1;...;ok−1;ok+1;...;on(I) |= G ando1; . . . ; ok−1; ok+1; . . . ; on is a plan
for 〈A, I,O,G〉. �

Therefore any regression step that makes the set of states smaller in the set-inclusion sense
is unnecessary. However, testing whether this is the case may be computationally expensive.
Although the following two problems are closely related to SAT, it could be possible that the
formulae obtained by reduction to SAT would fall in some polynomial-time subclass. We show
that this is not the case.

Lemma 3.9 The problem of testing whether regro(φ) 6|= φ is NP-hard.

Proof: We give a reduction from SAT to the problem. Letφ be any formula. Leta be a state
variable not occurring inφ. Now regr〈¬φ→a,a〉(a) 6|= a if and only if (¬φ→ a) 6|= a, because
regr〈¬φ→a,a〉(a) = ¬φ→ a. (¬φ→ a) 6|= a is equivalent to6|= (¬φ→ a)→ a that is equivalent
to the satisfiability of¬((¬φ→ a) → a). Further,¬((¬φ→ a) → a) is logically equivalent to
¬(¬(φ ∨ a) ∨ a) and further to¬(¬φ ∨ a) andφ ∧ ¬a.

Satisfiability ofφ ∧ ¬a is equivalent to the satisfiability ofφ asa does not occur inφ: if φ is
satisfiable, there is a valuationv such thatv |= φ, we can seta false inv to obtainv′, and asa
does not occur inφ, we still havev′ |= φ, and furtherv′ |= φ ∧ ¬a. Clearly, ifφ is unsatisfiable
alsoφ ∧ ¬a is.

Henceregr〈¬φ→a,a〉(a) 6|= a if and only if φ is satisfiable. �

Also the problem of testing whether a regression step leads to an empty set of states is difficult.

Lemma 3.10 The problem of testing that regro(φ) is satisfiable is NP-hard.
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Proof: Proof is a reduction from SAT. Letφ be a formula.regr〈φ,a〉(a) is satisfiable if and only if
φ is satisfiable becauseregr〈φ,a〉(a) ≡ φ.

The problem is NP-hard even if we restrict to operators that have a satisfiable precondition:φ
is satisfiable if and only if(φ∨¬a)∧a is satisfiable if and only ifregr〈φ∨¬a,b〉(a∧ b) is satisfiable.
Herea is a state variable that does not occur inφ. Clearly,φ ∨ ¬a is true whena is false, and
henceφ ∨ ¬a is satisfiable. �

Of course, testing thatregro(φ) 6|= φ or that regro(φ) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions
of state variables and to unconditional effects (STRIPS operators with only positive literals in
preconditions.) In this special case both goalsG and operator effectse can be viewed as sets of
literals, and the definition of regression is particularly simple: regressingG with respect to〈c, e〉
is (G\e) ∪ c. If there isa ∈ A such thata ∈ G and¬a ∈ e, then the result of regression is⊥, that
is, the empty set of states. We do not use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching. For example, the backward step from
g with operator〈a ∨ b, g〉 yieldsa ∨ b. This formula corresponds to two non-disjunctive goals,
a and b. For each of these new goals a separate subtree is produced. Disjunctivity caused by
conditional effects can similarly be handled by branching. However, this branching may lead to a
very high branching factor and thus to poor performance.

In addition to being the basis of backward search, regression has many other applications in
reasoning about actions. One of them is the composition of operators. The compositiono1 ◦ o2
of operatorso1 = 〈c1, e1〉 ando2 = 〈c2, e2〉 is an operator that behaves like applyingo1 followed
by o2. For a to be true aftero2 we can regressa with respect too2, obtainingEPCa(e2) ∨ (a ∧
¬EPC¬a(e2)). Condition for this formula to be true aftero1 is obtained by regressing withe1,
leading to

regre1(EPCa(e2) ∨ (a ∧ ¬EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ (regre1(a) ∧ ¬regre1(EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ ((EPCa(e1) ∨ (a ∧ ¬EPC¬a(e2))) ∧ ¬regre1(EPC¬a(e2))).

Since we want to define an effectφ B a of o1 ◦o2 so thata becomes true whenevero1 followed by
o2 would make it true, the formulaφ does not have to represent the case in whicha is true already
before the application ofo1 ◦ o2. Hence we can simplify the above formula to

regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

An analogous formula is needed for making¬a false. This leads to the following definition.

Definition 3.11 (Composition of operators)Let o1 = 〈c1, e1〉 ando2 = 〈c2, e2〉 be two opera-
tors onA. Then theircompositiono1 ◦ o2 is defined as〈

c,
∧
a∈A

(
((regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2)))) B a)∧
((regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2)))) B ¬a)

)〉

wherec = c1 ∧ regre1(c2) ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).
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Note that ino1 ◦ o2 first o1 is applied and theno2, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Let o1 ando2 be operators ands a state. Then appo1◦o2(s) is defined if and only
if appo1;o2(s) is defined, and appo1◦o2(s) = appo1;o2(s).

Proof: Let o1 = 〈c1, e1〉 ando2 = 〈c2, e2〉. Assumeappo1◦o2(s) is defined. Hences |= c1 ∧
regre1(c2)∧

∧
a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)), that is, the precondition ofo1 ◦o2 is true, ands 6|=

(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A, that is, the effects do not contradict each other.

Nowappo1(s) in appo1;o2(s) = appo2(appo1(s)) defined becauses |= c1∧
∧

a∈A ¬(EPCa(e1)∧
EPC¬a(e1)). Furtherappo1(s) |= c2 by Theorem 3.7 becauses |= regre1(c2). From s 6|=
(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A logically followss 6|= regre1(EPCa(e2))∧regre1(EPC¬a(e2))
for all a ∈ A. Hence by Theorem 3.7appo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) for all a ∈ A, and by
Lemma 3.3appo2(appo1(s)) is defined.

For the other direction, sinceappo1(s) is defined,s |= c1 ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).
Sinceappo2(appo1(s)) is defined,s |= regre1(c2) by Theorem 3.7.

It remains to show that the effects ofo1 ◦ o2 do not contradict. Sinceappo2(appo1(s)) is
definedappo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) ands 6|= EPCa(e1) ∧ EPC¬a(e1) for all a ∈ A.
Hence by Theorem 3.7s 6|= regre1(EPCa(e2)) ∧ regre1(EPC¬a(e2)) for all a ∈ A. Assume that
for somea ∈ A s |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))), that is,a ∈ [o1 ◦
o2]det

s . If s |= regre1(EPCa(e2)) thens 6|= regre1(EPC¬a(e2)) ∨ ¬regre1(EPCa(e2)). Otherwise
s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)) and hences 6|= EPC¬a(e1). Hence in both casess 6|=
regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))), that is,¬a 6∈ [o1 ◦ o2]det

s . Therefore
appo1◦o2(s) is defined.

We show that for anya ∈ A, appo1◦o2(s) |= a if and only if appo1(appo2(s)) |= a. Assume
appo1◦o2(s) |= a. Hence one of two cases hold.

1. Assumes |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

If s |= regre1(EPCa(e2)) then by Theorem 3.7 and Lemma 3.3a ∈ [e1]det
appo1 (s). Hence

appo1;o2(s) |= a.

Assumes |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)). Hence by Lemma 3.3a ∈ [e1]det
s and

appo1(s) |= a, andappo1(s) 6|= EPC¬a(e2) and¬a 6∈ [e2]det
appo1 (s). Henceappo1;o2(s) |= a.

2. Assumes |= a ands 6|= regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))).

Sinces 6|= regre1(EPC¬a(e2)) by Theorem 3.7appo1(s) 6|= EPC¬a(e2) and hence¬a 6∈
[e2]det

appo1 (s).

Sinces 6|= EPC¬a(e1) ∧ ¬regre1(EPCa(e2)) by Lemma 3.3¬a 6∈ [e1]det
s or appe1(s) |=

EPCa(e2) and hence by Theorem 3.7a ∈ [e2]det
appo1 (s).

Hence eithero1 does not makea false, or if it makes, makeso2 it true again so thatappo1;o2(s) |= a
in all cases.

Assumeappo1;o2(s) |= a. Hence one of the following three cases must hold.

1. If a ∈ [e2]det
appo1 (s) then by Lemma 3.3appo1(s) |= EPCa(e2). By Theorem 3.7s |=

regre1(EPCa(e2)).
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2. If a ∈ [e1]det
s and¬a 6∈ [e2]det

appo1 (s) then by Lemma 3.3appo1(s) 6|= EPC¬a(e2). By

Theorem 3.7s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)).

3. If s |= a and¬a 6∈ [e2]det
appo1 (s) and¬a 6∈ [e1]det

s then by Lemma 3.3appo1(s) 6|= EPC¬a(e2).
By Theorem 3.7s 6|= regre1(EPC¬a(e2)).

By Lemma 3.3s 6|= EPC¬a(e1).

In the first two cases the antecedent of the first conditional in the definition ofo1 ◦ o2 is true,
meaning thatappo1◦o2(s) |= a, and in the third cases |= a and the antecedent of the second
conditional effect is false, also meaning thatappo1◦o2(s) |= a. �

The above construction can be used to eliminatesequential compositionfrom operator effects
(Section 2.3.2).

3.2 Planning by heuristic search algorithms

Search for plans can be performed forwards or backwards respectively with progression or regres-
sion as described in Sections 3.1.1 and 3.1.2. There are several algorithms that can be used for
the purpose, including depth-first search, breadth-first search, and iterative deepening, but without
informed selection of operators these algorithms perform poorly.

The use of additional information for guiding search is essential for achieving efficient plan-
ning with general-purpose search algorithms. Algorithms that use heuristic estimates on the values
of the nodes in the search space for guiding the search have been applied to planning very suc-
cessfully. Some of the more sophisticated search algorithms that can be used are A∗ [Hart et al.,
1968], WA∗ [Pearl, 1984], IDA∗ [Korf, 1985], and simulated annealing[Kirkpatrick et al., 1983].

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
The most important heuristics are estimates of distances between states. The distance is the min-
imum number of operators needed for reaching a state from another state. In Section 3.4 we will
present techniques for estimating the distances between states and sets of states. In this section we
will discuss how heuristic search algorithms are applied in planning.

When search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds backwards by
regression starting from the goal states, we estimate the distance between the initial state and the
current set of goal states as computed by regression.

All the systematic heuristic search algorithms can easily be implemented to keep track of the
search history which for planning equals the sequence of operators in the incomplete plan under
consideration. Therefore the algorithms are started from the initial stateI (forward search) or from
the goal formulaG (backward search) and then proceed forwards with progression or backwards
with regression. Whenever the search successfully finishes, the plan can be recovered from the
data structures maintained by the algorithm.

Local search algorithms do not keep track of the search history, and we have to define the
elements of the search space as prefixes or suffixes of plans. For forward search we use sequences
of operators (prefixes of plans)

o1; o2; . . . ; on.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the end of the plan or by deleting some of the last operators.
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Definition 3.13 (Neighbors for local search with progression)Let〈A, I,O,G〉 be a succinct tran-
sition system. For forward search, the neighbors of an incomplete plano1; o2; . . . ; on are the
following.

1. o1; o2; . . . ; on; o for anyo ∈ O such that appo1;...;on;o(I) is defined
2. o1; o2; . . . ; oi for anyi < n

Whenappo1;o2;...;on(I) |= G theno1; . . . ; on is a plan.
Also for backward search the incomplete plans are sequence of operators (suffixes of plans)

on; . . . ; o1.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the beginning of the plan or by deleting some of the first operators.

Definition 3.14 (Neighbors for local search with regression)Let〈A, I,O,G〉 be a succinct tran-
sition system. For backward search, the children of an incomplete planon; . . . ; o1 are the follow-
ing.

1. o; on; . . . ; o1 for anyo ∈ O such that regro;on;...;o1(G) is defined

2. oi; . . . ; o1 for anyi < n

WhenI |= regron;...;o1(G) thenon; . . . ; o1 is a plan.
Backward search and forward search are not the only possibilities to define planning as a search

problem. In partial-order planning[McAllester and Rosenblitt, 1991] the search space consists of
incomplete plans which are partially ordered multisets of operators. The neighbors of an incom-
plete plan are those obtained by adding an operator or an ordering constraint. Incomplete plans can
also be formalized as fixed length sequences of operators in which zero or more of the operators
are missing. This leads to the constraint-based approaches to planning, including the planning as
satisfiability approach that is presented in Section 3.6.

3.3 Reachability

The notion of reachability is important in defining whether a planning problem is solvable and in
deriving techniques that speed up search for plans.

3.3.1 Distances

First we define the distances between states in a transition system in which all operators are deter-
ministic. Heuristics in Section 3.4 are approximations of distances.

Definition 3.15 Let I be an initial state andO a set of operators. Define theforward distance
setsDfwd

i for I,O that consist of those states that are reachable fromI by at mosti operator
applications as follows.

Dfwd
0 = {I}

Dfwd
i = Dfwd

i−1 ∪ {s|o ∈ O, s ∈ imgo(D
fwd
i−1)} for all i ≥ 1
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Definition 3.16 Let I be a state,O a set of operators, andDfwd
0 , Dfwd

1 , . . . the forward distance
sets forI,O. Thenthe forward distanceof a states from I is

δfwd
I (s) =

{
0 if s = I

i if s ∈ Dfwd
i \Dfwd

i−1.

If s 6∈ Dfwd
i for all i ≥ 0 thenδfwd

I (s) = ∞. States that have a finite forward distance arereachable
(from I withO).

Distances can also be defined for formulae.

Definition 3.17 Let φ be a formula. Then theforward distanceδfwd
I (φ) of φ is i if there is state

s such thats |= φ andδfwd
I (s) = i and there is no states′ such thats′ |= φ andδfwd

I (s) < i. If

I |= φ thenδfwd
I (φ) = 0.

A formulaφ has a finite distance<∞ if and only if 〈A, I,O, φ〉 has a plan.
Reachability and distances are useful for implementing efficient planning systems. We mention

two applications.
First, if we know that no state satisfying a formulaφ is reachable from the initial states, then

we know that no operator〈φ, e〉 can be a part of a plan, and we can ignore any such operator.
Second, distances help in finding a plan. Consider a deterministic planning problem with goal

stateG. We can now produce a shortest plan by finding an operatoro so thatδfwd
I (regro(G)) <

δfwd
I (G), usingregro(G) as the new goal state and repeating the process until the initial stateI is

reached.
Of course, since computing distances is in the worst case just as difficult as planning (PSPACE-

complete) it is in general not useful to use subprocedures based on exact distances in a planning
algorithm. Instead, different kinds ofapproximationsof distances and reachability have to be used.
The most important approximations allow the computation of useful reachability and distance
information in polynomial time in the size of the succinct transition system. In Section 3.4 we will
consider some of them.

3.3.2 Invariants

An invariant is a formula that is true in the initial state and in every state that is reached by
applying an operator in a state in which it holds. Invariants are closely connected to reachability
and distances: a formulaφ is an invariant if and only if the distance of¬φ from the initial state is
∞. Invariants can be used for example to speed up algorithms based on regression.

Definition 3.18 Let I be a set of initial states andO a set of operators. An formulaφ is an
invariantof I,O if s |= φ for all statess that are reachable fromI by a sequence of 0 or more
operators inO.

An invariantφ is the strongest invariantif φ |= ψ for any invariantψ. The strongest invariant
exactly characterizes the set of all states that are reachable from the initial state: for every states,
s |= φ if and only if s is reachable from the initial state. We say “the strongest invariant” even
though there are actually several strongest invariants: ifφ satisfies the properties of the strongest
invariant, any other formula that is logically equivalent toφ, for exampleφ ∨ φ, also does. Hence
the uniqueness of the strongest invariant has to be understood up to logical equivalence.
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Example 3.19 Consider a set of blocks that can be on the table or stacked on top of other blocks.
Every block can be on at most one block and on every block there can be one block at most. The
actions for moving the blocks can be described by the following schematic operators.

〈ontable(x) ∧ clear(x) ∧ clear(y),on(x, y) ∧ ¬clear(y) ∧ ¬ontable(x)〉
〈clear(x) ∧ on(x, y),ontable(x) ∧ clear(y) ∧ ¬on(x, y)〉
〈clear(x) ∧ on(x, y) ∧ clear(z),on(x, z) ∧ clear(y) ∧ ¬clear(z) ∧ ¬on(x, y)〉

We consider the operators obtained by instantiating the schemata with the objectsA,B andC. Let
all the blocks be initially on the table. Hence the initial state satisfies the formula

clear(A) ∧ clear(B) ∧ clear(C) ∧ ontable(A) ∧ ontable(B) ∧ ontable(C)∧
¬on(A,B) ∧ ¬on(A,C) ∧ ¬on(B,A) ∧ ¬on(B,C) ∧ ¬on(C,A) ∧ ¬on(C,B)

that determines the truth-values of all state variables uniquely. The strongest invariant of this
problem is the conjunction of the following formulae.

clear(A) ↔ (¬on(B,A) ∧ ¬on(C,A)) clear(B) ↔ (¬on(A,B) ∧ ¬on(C,B))
clear(C) ↔ (¬on(A,C) ∧ ¬on(B,C)) ontable(A) ↔ (¬on(A,B) ∧ ¬on(A,C))
ontable(B) ↔ (¬on(B,A) ∧ ¬on(B,C)) ontable(C) ↔ (¬on(C,A) ∧ ¬on(C,B))
¬on(A,B) ∨ ¬on(A,C) ¬on(B,A) ∨ ¬on(B,C)
¬on(C,A) ∨ ¬on(C,B)
¬on(B,A) ∨ ¬on(C,A) ¬on(A,B) ∨ ¬on(C,B)
¬on(A,C) ∨ ¬on(B,C)
¬(on(A,B) ∧ on(B,C) ∧ on(C,A)) ¬(on(A,C) ∧ on(C,B) ∧ on(B,A))

We can schematically give the invariants for any setX of blocks as follows.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x)
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y)
¬on(x, y) ∨ ¬on(x, z) wheny 6= z
¬on(y, x) ∨ ¬on(z, x) wheny 6= z
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1)) for all n ≥ 1, {x1, . . . , xn} ⊆ X

The last formula says that theon relation is acyclic. �

3.4 Approximations of distances

The approximations of distances are based on the following idea. Instead of considering the num-
ber of operators required to reach individual states, we approximately compute the number of
operators to reach a state in which a certain state variable has a certain value. So instead of using
distances of states, we use distances of literals.

The estimates are not accurate for two reasons. First, and more importantly, distance estimation
is done one state variable at a time and dependencies between state variables are ignored. Second,
to achieve polynomial-time computation, satisfiability tests for a formula and a set of literals to
test the applicability of an operator and to compute the distance estimate of a formula, have to
be performed by an inaccurate polynomial-time algorithm that approximates NP-hard satisfiabil-
ity testing. As we are interested in computing distance estimates efficiently the inaccuracy is a
necessary and acceptable compromise.
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3.4.1 Admissible max heuristic

We give a recursive procedure that computes a lower bound on the number of operator applications
that are needed for reaching from a stateI a state in which state variablesa ∈ A have certain
values. This is by computing a sequence of setsDmax

i of literals. The setDmax
i consists of literals

that are true in all states that have distance≤ i from the stateI.
Recall Definition 3.2 ofEPCl(o) for literalsl and operatorso = 〈c, e〉:

EPCl(o) = c ∧ EPCl(e) ∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

Definition 3.20 LetL = A∪{¬a|a ∈ A} be the set of literals onA andI a state. Define the sets
Dmax

i for i ≥ 0 as follows.

Dmax
0 = {l ∈ L|I |= l}

Dmax
i = Dmax

i−1 \{l ∈ L|o ∈ O,Dmax
i−1 ∪ {EPCl(o)} is satisfiable}, for i ≥ 1

Since we consider only finite setsA of state variables and|Dmax
0 | = |A| andDmax

i+1 ⊆ Dmax
i

for all i ≥ 0, necessarilyDmax
i = Dmax

j for somei ≤ |A| and allj > i.
The above computation starts from the setDmax

0 of all literals that are true in the initial stateI.
This set of literals characterizes those states that have distance 0 from the initial state. The initial
state is the only such state.

Then we repeatedly compute sets of literals characterizing sets of states that are reachable with
1, 2 and more operators. Each setDmax

i is computed from the preceding setDmax
i−1 as follows. For

each operatoro it is tested whether it is applicable in one of the distancei−1 states and whether it
could make a literall false. This is by testing whetherEPCl(o) is true in one of the distancei− 1
states. If this is the case, the literall could be false, and it will not be included inDmax

i .
The sets of states in which the literalsDmax

i are true are an upper bound (set-inclusion) on the
set of states that have forward distancei.

Theorem 3.21 LetDfwd
i , i ≥ 0 be the forward distance sets andDmax

i the max-distance sets for

I andO. Then for alli ≥ 0,Dfwd
i ⊆ {s ∈ S|s |= Dmax

i } whereS is the set of all states.

Proof: By induction oni.
Base casei = 0: Dfwd

0 consists of the unique initial stateI andDmax
0 consists of exactly those

literals that are true inI, identifying it uniquely. HenceDfwd
i = {s ∈ S|s |= Dmax

i }.
Inductive casei ≥ 1: Let s be any state inDfwd

i . We show thats |= Dmax
i . Let l be any literal

in Dmax
i .

Assumes ∈ Dfwd
i−1. AsDmax

i ⊆ Dmax
i−1 alsol ∈ Dmax

i−1 . By the induction hypothesiss |= l.

Otherwises ∈ Dfwd
i \Dfwd

i−1. Hence there iso ∈ O ands0 ∈ Dfwd
i−1 with s = appo(s0). By

Dmax
i ⊆ Dmax

i−1 and the induction hypothesiss0 |= l. As l ∈ Dmax
i , by definition ofDmax

i the set

Dmax
i−1 ∪ {EPCl(o)} is not satisfiable. Bys0 ∈ Dfwd

i−1 and the induction hypothesiss0 |= Dmax
i−1 .

Hences0 6|= EPCl(o). By Lemma 3.3 applyingo in s0 does not makel false. Hences |= l. �

The setsDmax
i can be used for estimating the distances of formulae. The distance of a formula

is the minimum of the distances of states that satisfy the formula.
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Definition 3.22 Letφ be a formula. Define

δmax
I (φ) =

{
0 iff Dmax

0 ∪ {φ} is satisfiable
d iff Dmax

d ∪ {φ} is satisfiable andDmax
d−1 ∪ {φ} is not satisfiable, for d ≥ 1.

Lemma 3.23 Let I be a state,O a set of operators, andDmax
0 , Dmax

1 , . . . the sets given in Defi-
nition 3.20 forI andO. Then appo1;...;on(I) |= Dmax

n for any operators{o1, . . . , on} ⊆ O.

Proof: By induction onn.
Base casen = 0: The length of the operator sequence is zero, and henceappε(I) = I. The set

Dmax
0 consists exactly of those literals that are true ins, and henceI |= Dmax

0 .
Inductive casen ≥ 1: By the induction hypothesisappo1;...;on−1(I) |= Dmax

n−1 .
Let l be any literal inDmax

n . We show it is true inappo1;...;on(I). Sincel ∈ Dmax
n and

Dmax
n ⊆ Dmax

n−1 , also l ∈ Dmax
n−1 , and hence by the induction hypothesisappo1;...;on−1(I) |= l.

Sincel ∈ Dmax
n it must be thatDmax

n−1 ∪ {EPCl(on)} is not satisfiable (definition ofDmax
n ) and

further thatappo1;...;on−1(I) 6|= EPCl(on). Hence applyingon in appo1;...;on−1(I) does not makel
false, and consequentlyappo1;...;on(I) |= l.

�

The next theorem shows that the distance estimates given for formulae yield a lower bound on
the number of actions needed to reach a state satisfying the formula.

Theorem 3.24 Let I be a state,O a set of operators,φ a formula, andDmax
0 , Dmax

1 , . . . the sets
given in Definition 3.20 forI andO. If appo1;...;on(I) |= φ, thenDmax

n ∪ {φ} is satisfiable.

Proof: By Lemma 3.23appo1;...;on(I) |= Dmax
n . By assumptionappo1;...;on(I) |= φ. Hence

Dmax
n ∪ {φ} is satisfiable. �

Corollary 3.25 Let I be a state andφ a formula. Then for any sequenceo1, . . . , on of operators
such that appo1;...;on(I) |= φ, n ≥ δmax

I (φ).

The estimateδmax
s (φ) never overestimates the distance froms to φ and it is therefore an ad-

missible heuristic. It may severely underestimate the distance, as discussed in the end of this
section.

Distance estimation in polynomial time

The algorithm for computing the setsDmax
i runs in polynomial time except that the satisfiability

tests forD∪{φ} are instances of the NP-complete SAT problem. For polynomial time computation
we perform these tests by a polynomial-time approximation that has the property that ifD∪{φ} is
satisfiable then asat(D,φ) returns true, but not necessarily vice versa. A counterpart of Theorem
3.21 can be established when the satisfiability testsD ∪ {φ} are replaced by tests asat(D,φ).

The function asat(D,φ) tests whether there is a state in whichφ and the literalsD are true, or
equivalently, whetherD ∪ {φ} is satisfiable. This algorithm does not accurately test satisfiability,
and may claim thatD ∪ {φ} is satisfiable even when it is not. This, however, never leads to
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overestimating the distances, only underestimating. The algorithm runs in polynomial time and is
defined as follows.

asat(D,⊥) = false
asat(D,>) = true
asat(D, a) = true iff ¬a 6∈ D (for state variablesa ∈ A)

asat(D,¬a) = true iff a 6∈ D (for state variablesa ∈ A)
asat(D,¬¬φ) = asat(D,φ)

asat(D,φ1 ∨ φ2) = asat(D,φ1) or asat(D,φ2)
asat(D,φ1 ∧ φ2) = asat(D,φ1) and asat(D,φ2)

asat(D,¬(φ1 ∨ φ2)) = asat(D,¬φ1) and asat(D,¬φ2)
asat(D,¬(φ1 ∧ φ2)) = asat(D,¬φ1) or asat(D,¬φ2)

In this and other recursive definitions about formulae the cases for¬(φ1 ∧φ2) and¬(φ1 ∨φ2) are
obtained respectively from the cases forφ1 ∨ φ2 andφ1 ∧ φ2 by the De Morgan laws.

The reason why the satisfiability test is not accurate is that for formulaeφ ∧ ψ (respectively
¬(φ ∨ ψ)) we make recursively two satisfiability tests that do not require that the subformulaeφ
andψ (respectively¬φ and¬ψ) aresimultaneouslysatisfiable.

We give a lemma that states the connection between asat(D,φ) and the satisfiability ofD∪{φ}.

Lemma 3.26 Let φ be a formula andD a consistent set of literals (it contains at most one ofa
and¬a for everya ∈ A.) If D ∪ {φ} is satisfiable, then asat(D,φ) returns true.

Proof: The proof is by induction on the structure ofφ.
Base case 1,φ = ⊥: The setD ∪ {⊥} is not satisfiable, and hence the implication trivially

holds.
Base case 2,φ = >: asat(D,>) always returns true, and hence the implication trivially holds.
Base case 3,φ = a for somea ∈ A: If D ∪ {a} is satisfiable, then¬a 6∈ D, and hence

asat(D, a) returns true.
Base case 4,φ = ¬a for somea ∈ A: If D ∪ {¬a} is satisfiable, thena 6∈ D, and hence

asat(D,¬a) returns true.
Inductive case 1,φ = ¬¬φ′ for someφ′: The formulae are logically equivalent, and by the

induction hypothesis we directly establish the claim.
Inductive case 2,φ = φ1∨φ2: If D∪{φ1∨φ2} is satisfiable, then eitherD∪{φ1} orD∪{φ2}

is satisfiable and by the induction hypothesis at least one of asat(D,φ1) and asat(D,φ2) returns
true. Hence asat(D,φ1 ∨ φ2) returns true.

Inductive case 3,φ = φ1 ∧ φ2: If D ∪ {φ1 ∧ φ2} is satisfiable, then bothD ∪ {φ1} and
D ∪ {φ2} are satisfiable and by the induction hypothesis both asat(D,φ1) and asat(D,φ2) return
true. Hence asat(D,φ1 ∧ φ2) returns true.

Inductive cases 4 and 5,φ = ¬(φ1 ∨ φ2) andφ = ¬(φ1 ∧ φ2): Like cases 2 and 3 by logical
equivalence. �

The other direction of the implication does not hold because for example asat(∅, a∧¬a) returns
true even though the formula is not satisfiable. The procedure is a polynomial-time approximation
of the logical consequence test from a set of literals: asat(D,φ) always returns true ifD ∪ {φ} is
satisfiable, but it may return true also when the set is not satisfiable.
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Informativeness of the max heuristic

The max heuristic often underestimates distances. Consider an initial state in which alln state
variables are false and a goal state in which all state variables are true and a set ofn operators each
of which is always applicable and makes one of the state variables true. The max heuristic assigns
the distance 1 to the goal state although the distance isn.

The problem is that assigning every state variable the desired value requires a different operator,
and taking the maximum number of operators for each state variable ignores this fact. In this case
the actual distance is obtained as thesumof the distances suggested by each of then state variables.
In other cases the max heuristic works well when the desired state variable values can be reached
with the same operators.

Next we will consider heuristics that are not admissible like the max heuristic but in many cases
provide a much better estimate of the distances.

3.4.2 Inadmissible additive heuristic

The max heuristic is very optimistic about the distances, and in many cases very seriously underes-
timates them. If two goal literals have to be made true, the maximum of the goal costs (distances)
is assumed to be the combined cost. This however is only accurate when the easier goal is achieved
for free while achieving the more difficult goal. Often the goals are independent and then a more
accurate estimate would be the sum of the individual costs. This suggests another heuristic, first
considered by Bonet and Geffner[2001] as a more practical variant of the max heuristic in the
previous section. Our formalization differs from the one given by Bonet and Geffner.

Definition 3.27 Let I be a state andL = A ∪ {¬a|a ∈ A} the set of literals. Define the setsD+
i

for i ≥ 0 as follows.

D+
0 = {l ∈ L|I |= l}

D+
i = D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i} for all i ≥ 1

We define cost(φ, i) by the following recursive definition.

cost(⊥, i) = ∞
cost(>, i) = 0
cost(a, i) = 0 if ¬a 6∈ D+

0 , for a ∈ A
cost(¬a, i) = 0 if a 6∈ D+

0 , for a ∈ A
cost(a, i) = j if ¬a ∈ D+

j−1\D
+
j for somej < i

cost(¬a, i) = j if a ∈ D+
j−1\D

+
j for somej < i

cost(a, i) = ∞ if ¬a ∈ D+
j for all j < i

cost(¬a, i) = ∞ if a ∈ D+
j for all j < i

cost(φ1 ∨ φ2, i) = min(cost(φ1, i), cost(φ2, i))
cost(φ1 ∧ φ2, i) = cost(φ1, i) + cost(φ2, i)

cost(¬¬φ, i) = cost(φ, i)
cost(¬(φ1 ∧ φ2), i) = min(cost(¬φ1, i), cost(¬φ2, i))
cost(¬(φ1 ∨ φ2), i) = cost(¬φ1, i) + cost(¬φ2, i)

Note that a variant of the definition of the max heuristic could be obtained by replacing the
sum+ in the definition of costs of conjunctions bymax. The definition of cost(φ, i) approximates
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satisfiability tests similarly to the definition of asat(D,φ) by ignoring the dependencies between
state variables.

Similarly to max distances we can define distances of formulae.

Definition 3.28 Letφ be a formula. Define

δ+I (φ) = cost(φ, n)

wheren is the smallesti such thatD+
i = D+

i−1.

The following theorem shows that the distance estimates given by the sum heuristic for literals
are at least as high as those given by the max heuristic.

Theorem 3.29 LetDmax
i , i ≥ 0 be the sets defined in terms of the approximate satisfiability tests

asat(D,φ). ThenDmax
i ⊆ D+

i for all i ≥ 0.

Proof: The proof is by induction oni.
Base casei = 0: By definitionD+

0 = Dmax
0 .

Inductive casei ≥ 1: We have to show thatDmax
i−1 \{l ∈ L|o ∈ O,asat(Dmax

i−1 ,EPCl(o))} ⊆
D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i}. By the induction hypothesisDmax
i−1 ⊆ D+

i−1. It is
sufficient to show that cost(EPCl(o), i) < i implies asat(Dmax

i−1 ,EPCl(o)).
We show this by induction on the structure ofφ = EPCl(o).
Induction hypothesis: cost(φ, i) < i implies asat(Dmax

i−1 , φ)=true.
Base case 1,φ = ⊥: cost(⊥, i) = ∞ and asat(Dmax

i ,⊥)=false.
Base case 2,φ = >: cost(>, i) = 0 and asat(Dmax

i ,>)=true.
Base case 3,φ = a: If cost(a, i) < i then¬a 6∈ D+

j for somej < i or ¬a 6∈ D+
0 . Hence

¬a 6∈ D+
i−1. By the outer induction hypothesis¬a 6∈ Dmax

i−1 and consequently¬a 6∈ Dmax
i . Hence

asat(Dmax
i , a)=true.

Base case 4,φ = ¬a: Analogous to the caseφ = a.
Inductive case 5,φ = φ1 ∨ φ2: Assume cost(φ1 ∨ φ2, i) < i. Since cost(φ1 ∨ φ2, i) =

min(cost(φ1, i), cost(φ2, i)), either cost(φ1, i) < i or cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence either

asat(Dmax
i−1 , φ1) or asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∨ φ2).

Inductive case 6,φ = φ1∧φ2: Assume cost(φ1∧φ2, i) < i. Sincei ≥ 1 and cost(φ1∨φ2, i) =
cost(φ1, i) + cost(φ2, i), both cost(φ1, i) < i and cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence both

asat(Dmax
i−1 , φ1) an asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∧ φ2).

Inductive case 7,φ = ¬¬φ1: By the induction hypothesis cost(φ1, i) < i implies asat(Dmax
i−1 , φ1).

By definition cost(¬¬φ1, i) = cost(φ1, i) and asat(D,¬¬φ) = asat(D,φ). By the induction hy-
pothesis cost(¬¬φ1, i) < i implies asat(Dmax

i−1 ,¬¬φ1).
Inductive case 8,φ = ¬(φ1 ∨ φ2): Analogous to the caseφ = φ1 ∧ φ2.
Inductive case 9,φ = ¬(φ1 ∧ φ2): Analogous to the caseφ = φ1 ∨ φ2. �

That the sum heuristic gives higher estimates than the max heuristic could in many cases be
viewed as an advantage because the estimates would be more accurate. However, in some cases
this leads to overestimating the actual distance, and therefore the sum distances are not an admis-
sible heuristic.
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Example 3.30 Consider an initial state such thatI |= ¬a∧¬b∧¬c and the operator〈>, a∧b∧c〉.
A state satisfyinga ∧ b ∧ c is reached by this operator in one step butδ+I (a ∧ b ∧ c) = 3. �

3.4.3 Relaxed plan heuristic

The max heuristic and the additive heuristic represent two extremes. The first assumes that sets
of operators required for reaching the individual goal literals maximally overlap in the sense that
the operators needed for the most difficult goal literal include the operators needed for all the
remaining ones. The second assumes that the required operators are completely disjoint.

Usually, of course, the reality is somewhere in between and which notion is better depends on
the properties of the operators. This suggests yet another heuristic: we attempt to find a set of
operators that approximates, in a sense that will become clear later, the smallest set of operators
that are needed to reach a state from another state. This idea has been considered by Hoffman
and Nebel[2001]. If the approximation is exact, the cardinality of this set equals the actual dis-
tance between the states. The approximation may both overestimate and underestimate the actual
distance, and hence does not yield an admissible heuristic.

The idea of the heuristic is the following. We first choose a set of goal literals the truth of
which is sufficient for the truth ofG. These literals must be reachable in the sense of the sets
Dmax

i which we defined earlier. Then we identify those goal literals that were the last to become
reachable and a set of operators making them true. A new goal formula represents the conditions
under which these operator can make the literals true, and a new set of goal literals is produced by
a simplified form of regression from the new goal formula. The computation is repeated until we
have a set of goal literals that are true in the initial state.

The function goals(D,φ) recursively finds a setM of literals such thatM |= φ and each literal
inM is consistent withD. Note thatM itself is not necessarily consistent, for example forD = ∅
andφ = a ∧ ¬a we getM = {a,¬a}. If a setM is found goals(D,φ) = {M} and otherwise
goals(D,φ) = ∅.

Definition 3.31 LetD be a set of literals.

goals(D,⊥) = ∅
goals(D,>) = {∅}
goals(D, a) = {{a}} if ¬a 6∈ D
goals(D, a) = ∅ if ¬a ∈ D

goals(D,¬a) = {{¬a}} if a 6∈ D
goals(D,¬a) = ∅ if a ∈ D

goals(D,¬¬φ) = goals(D,φ)

goals(D,φ1 ∨ φ2) =
{

goals(D,φ1) if goals(D,φ1) 6= ∅
goals(D,φ2) otherwise

goals(D,φ1 ∧ φ2) =
{
{L1 ∪ L2} if goals(D,φ1) = {L1} and goals(D,φ2) = {L2}
∅ otherwise

goals(D,¬(φ1 ∧ φ2)) =
{

goals(D,¬φ1) if goals(D,¬φ1) 6= ∅
goals(D,¬φ2) otherwise

goals(D,¬(φ1 ∨ φ2)) =
{
{L1 ∪ L2} if goals(D,¬φ1) = {L1} and goals(D,¬φ2) = {L2}
∅ otherwise

Above in the case forφ1 ∨ φ2 if both φ1 andφ2 yield a set of goal literals the set forφ1 is
always chosen. A practically better implementation is to choose the smaller of the two sets.
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Lemma 3.32 LetD be a set of literals andφ a formula.

1. goals(D,φ) 6= ∅ if and only if asat(D,φ) = true.

2. If goals(D,φ) = {M} then{l|l ∈M} ∩D = ∅ and asat(D,
∧

l∈M l) = true.

Proof:

1. This is by an easy induction proof on the structure ofφ based on the definitions of asat(D,φ)
and goals(D,φ).

2. This is becausel 6∈ D for all l ∈M . This can be shown by a simple induction proof.

�

Lemma 3.33 LetD andD′ ⊆ D be sets of literals. If goals(D,φ) = ∅ and goals(D′, φ) = {M}
for someM , then there isl ∈M such thatl ∈ D\D′.

Proof: Proof is by induction in the structure of formulaeφ.
Induction hypothesis: If goals(D,φ) = ∅ and goals(D′, φ) = {M} for someM , then there is

l ∈M such thatl ∈ D\D′.
Base cases 1 & 2,φ = > and 2φ = ⊥: Trivial as the condition cannot hold.
Base case 3,φ = a: If goals(D, a) = ∅ and goals(D′, a) = M = {{a}}, then respectively

¬a ∈ D and¬a 6∈ D′. Hence there isa ∈M such thata ∈ D\D′.
Inductive case 1,φ = ¬¬φ′: By the induction hypothesis as goals(D,¬¬φ′) = goals(D,φ′).
Inductive case 2,φ = φ1∨φ2: Assume goals(D,φ1∨φ2) = ∅ and goals(D′, φ1∨φ2) = {M}

for someM . Hence goals(D,φ1) = ∅ and goals(D,φ2) = ∅, and goals(D′, φ1) = {M} or
goals(D′, φ2) = {M}. Hence by the induction hypothesis withφ1 or φ2 there isl ∈M such that
l ∈ D\D′.

Inductive case 3,φ = φ1∧φ2: Assume goals(D,φ1∧φ2) = ∅ and goals(D′, φ1∧φ2) = {M}
for someM . Hence goals(D,φ1) = ∅ or goals(D,φ2) = ∅, and goals(D′, φ1) = {L1} and
goals(D′, φ2) = {L2} for someL1 andL2 such thatM = L1 ∪ L2. Hence by the induction
hypothesis withφ1 or φ2 there is eitherl ∈ L1 or l ∈ L2 such thatl ∈ D\D′.

Inductive casesφ = ¬(φ1 ∧ φ2) andφ = ¬(φ1 ∨ φ2) are analogous to cases 2 and 3. �

Definition 3.34 Defineδrlx
I (φ) = relaxedplan(A, I,O, φ).

Like the sum heuristic, the relaxed plan heuristic gives higher distance estimates than the max
heuristic.

Theorem 3.35 Letφ be a formula andδmax
I (φ) the max-distance defined in terms of asat(D,φ).

Thenδrlx
I (φ) ≥ δmax

I (φ).

Proof: We have to show that for any formulaG the procedure callrelaxedplan(A,I,O,G) returns a
number≥ δmax

I (G).
First, the procedure returns∞ if and only if asat(Dmax

i , G) = false for alli ≥ 0. In this case
by definitionδmax

I (G) = ∞.
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1: procedure relaxedplan(A,I,O,G);
2: L := A ∪ {¬a|a ∈ A}; (* Set of all literals *)
3: compute setsDmax

i as in Definition 3.20;
4: if asat(Dmax

i , G) = false for alli ≥ 0 then return ∞; (* Goal not reachable *)
5: t := δmax

I (G);
6: LG

t+1 := ∅;
7: Nt+1 := ∅;
8: Gt :=G;
9: for i := t downto 1 do

10: begin
11: LG

i := (LG
i+1\Ni+1) ∪ {l ∈M |M ∈ goals(Dmax

i , Gi)}; (* The goal literals *)
12: Ni := {l ∈ LG

i |l ∈ Dmax
i−1 }; (* Goal literals that become true betweeni− 1 andi *)

13: Ti := a minimal subset ofO so thatNi ⊆ {l ∈ L|o ∈ Ti,asat(Dmax
i−1 ,EPCl(o))};

14: Gi−1 :=
∧

l∈Ni

∨
{EPCl(o)|o ∈ Ti}; (* New goal formula *)

15: end
16: return |T1|+ |T2|+ · · ·+ |Tt|;

Figure 3.1: Algorithm for finding a relaxed plan

Otherwiset = δmax
I (G). Now t = 0 if and only if asat(Dmax

0 , G) = true. In this case the
procedure returns 0 without iterating the loop starting on line 9.

We show that ift ≥ 1 then for everyi ∈ {1, . . . , t} the setTi is non-empty, entailing|T1| +
· · ·+ |Tt| ≥ t = δmax

I (G). This is by an induction proof fromt to 1.
We use the following auxiliary result. If asat(Dmax

i−1 , Gi) = false and asat(Dmax
i , Gi) = true

andl 6∈ Dmax
i for all l ∈ LG

i thenTi is well-defined andTi 6= ∅. The proof is as follows.

By Lemma 3.32 goals(Dmax
i−1 , Gi) = ∅ and goals(Dmax

i , Gi) = {M} for someM .
By Lemma 3.33 there isl ∈M such thatl ∈ Dmax

i−1 and henceNi 6= ∅. By definition
l ∈ Dmax

i−1 for all l ∈ Ni. By Ni ⊆ LG
i and the assumption aboutLG

i l 6∈ Dmax
i for

all l ∈ Ni. Hencel ∈ Dmax
i−1 \Dmax

i for all l ∈ Ni. Hence by definition ofDmax
i for

everyl ∈ Ni there iso ∈ O such that asat(Dmax
i−1 ,EPCl(o)). Hence there isTi ⊆ O

so thatNi ⊆ {l ∈ L|o ∈ Ti,asat(Dmax
i−1 ,EPCl(o))} and the value ofTi is defined. As

Ni 6= ∅ alsoTi 6= ∅.

In the induction proof we establish the assumptions of the auxiliary result and then invoke the
auxiliary result itself.

Induction hypothesis: For allj ∈ {i, . . . , t}

1. l 6∈ Dmax
j for all l ∈ LG

j ,

2. asat(Dmax
j , Gj) = true and asat(Dmax

j−1 , Gj) = false, and

3. Tj 6= ∅.

Base casei = t:

1. l 6∈ Dmax
t for all l ∈ LG

t by (2) of Lemma 3.32 becauseLG
t = {l ∈ goals(Dmax

t , Gt)}.

2. As t = δmax
I (Gt) by definition asat(Dmax

t−1 , Gt) = false and asat(Dmax
t , Gt) = true.
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3. By the auxiliary result from the preceding case.

Inductive casei < t:

1. We havel 6∈ Dmax
i for all l ∈ LG

i becauseLG
i = (LG

i+1\Ni+1) ∪ {l ∈ goals(Dmax
i , Gi)}

and by the induction hypothesisl 6∈ Dmax
i+1 for all l ∈ LG

i+1 and by (2) of Lemma 3.32
l 6∈ Dmax

i for all l ∈M for M ∈ goals(Dmax
i , Gi).

2. By definition Gi =
∧

l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. By definition of Ti+1 for every

l ∈ Ni+1 there iso ∈ Ti+1 such that asat(Dmax
i ,EPCl(o)) = true. By definition of

asat(Dmax
i , φ1 ∨ φ2) and asat(Dmax

i , φ1 ∧ φ2) for φ1 andφ2 also asat(Dmax
i , Gi) = true.

Then we show that asat(Dmax
i−1 , Gi) = false. By definition ofDmax

i , asat(Dmax
i−1 ,EPCl(o)) =

false for alll ∈ Dmax
i ando ∈ O. Hence asat(Dmax

i−1 ,EPCl(o)) = false for alll ∈ Ni+1

ando ∈ O becausel ∈ Dmax
i . Hence asat(Dmax

i−1 ,EPCl(o)) = false for alll ∈ Ni+1 and
o ∈ Ti+1 becauseTi+1 ⊆ O. By definitionGi =

∧
l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. Hence

by definition of asat(D,φ) also asat(Dmax
i−1 , Gi) = false.

3. By the auxiliary result from the preceding case.

�

3.5 Algorithm for computing invariants

Planning with backward search and regression suffers from the following problem. Often only
a fraction of all valuations of state variables represent states that are reachable from the initial
state and represent possible world states. The goal formula and many of the formulae produced
by regression often represent many unreachable states. If the formulae represent only unreachable
states a planning algorithm may waste a lot of effort determining that a certain sequence of actions
is not the suffix of any plan1. Also planning with propositional logic (Section 3.6) suffers from the
same problem.

Planning can be made more efficient by restricting search to states that are reachable from
the initial state. However, determining whether a given state is reachable from the initial state
is PSPACE-complete. Consequently, exact information on the reachability of states could not be
used for speeding up the basic forward and backward search algorithms: solving the subproblem
would be just as complex as solving the problem itself.

In this section we will present a polynomial time algorithm for computing a class of invariants
that approximately characterize the set of reachable states. These invariants help in improving
the efficiency of planning algorithms based on backward search and on satisfiability testing in the
propositional logic (Section 3.6).

Our algorithm computes invariants that are clauses with at mostn literals, for some fixedn.
For representing the strongest invariant arbitrarily highn may be needed. Although the runtime
is polynomial for any fixedn, the runtimes grow quickly asn increases. However, for many
applications short invariants of lengthn = 2 are sufficient, and longer invariants are less important.

1A symmetric problem arises with forward search because with progression one may reach states from which goal
states are unreachable.



3.5. ALGORITHM FOR COMPUTING INVARIANTS 47

1: procedurepreserved(φ,C,o);
2: φ = l1 ∨ · · · ∨ ln for somel1, . . . , ln ando = 〈c, e〉 for somec ande;
3: for each l ∈ {l1, . . . , ln} do
4: if C ∪ {EPCl(o)} is unsatisfiablethen gotoOK; (* l cannot become false. *)
5: for each l′ ∈ {l1, . . . , ln}\{l} do (* Otherwise another literal inφ must be true. *)
6: if C ∪ {EPCl(o)} |= EPCl′(o) then gotoOK; (* l′ becomes true. *)
7: if C ∪ {EPCl(o)} |= l′ ∧ ¬EPCl′(o) then gotoOK; (* l′ was and stays true. *)
8: end do
9: return false; (* Truth of the clause could not be guaranteed. *)

10: OK:
11: end do
12: return true;

Figure 3.2: Algorithm that tests whethero may falsifyl1 ∨ · · · ∨ ln in a state satisfyingC

The algorithm first computes the set of all 1-literal clauses that are true in the initial state. This
set exactly characterizes the set of distance 0 states consisting of the initial state only. Then the
algorithm considers the application of every operator. If an operator is applicable it may make
some of the clauses false. These clauses are removed and replaced by weaker clauses which are
also tested against every operator. When no further clauses are falsified, we have a set of clauses
that are guaranteed to be true in all distance 1 states. This computation is repeated for distances
2, 3, and so on, until the clause set does not change. The resulting clauses are invariants because
they are true after any number of operator applications.

The flavor of the algorithm is similar to the distance estimation in Section 3.4: starting from
a description of what is possible in the initial state, inductively determine what is possible afteri
operator applications. In contrast to the distance estimation method in Section 3.4 the state sets
are characterized by sets of clauses instead of sets of literals.

LetCi be a set of clauses that characterizes those states that are reachable byi operator appli-
cations. Similarly to distance computation, we consider for each operator and for each clause in
Ci whether applying the operator may make the clause false. If it can, the clause could be false
afteri operator applications and therefore will not be in the setCi+1.

Figure 3.2 gives an algorithm that tests whether applying an operatoro ∈ O in some states
may make a formulal1 ∨ · · · ∨ ln false assuming thats |= C ∪ {l1 ∨ · · · ∨ ln}.

The algorithm performs a case analysis for every literal in the clause, testing in each case
whether the clause remains true: if a literal becomes false, either another literal becomes true
simultaneously or another literal was true before and does not become false.

Lemma 3.36 Let C be a set of clauses,φ = l1 ∨ · · · ∨ ln a clause, ando an operator. If
preserved(φ,C,o) returns true, then appo(s) |= φ for any states such thats |= C ∪ {φ} and
o is applicable ins. (It may under these conditions also returnfalse).

Proof: Assumes is a state such thats |= C ∧ φ, appo(s) is defined andappo(s) 6|= φ. We show
that the procedure returnsfalse.

Sinces |= φ andappo(s) 6|= φ at least one literal inφ is made false byo. Let {l⊥1 , . . . , l⊥m} ⊆
{l1, . . . , ln} be the set of all such literals. Hences |= l⊥1 ∧ · · · ∧ l⊥m and{l⊥1 , . . . , l⊥m} ⊆ [e]det

s .
The literals in{l1, . . . , ln}\{l⊥1 , . . . , l⊥m} are false ins ando does not make them true.
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1: procedure invariants(A, I,O, n);
2: C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a}; (* Clauses true in the initial state *)
3: repeat
4: C ′ := C;
5: for eacho ∈ O and l1 ∨ · · · ∨ lm ∈ C such thatnot preserved(l1 ∨ · · · ∨ lm,C ′,o) do
6: C := C\{l1 ∨ · · · ∨ lm};
7: if m < n then (* Clause length within pre-defined limit. *)
8: begin (* Add weaker clauses. *)
9: C := C ∪ {l1 ∨ · · · ∨ lm ∨ a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};

10: C := C ∪ {l1 ∨ · · · ∨ lm ∨ ¬a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};
11: end
12: end do
13: until C = C ′;
14: return C;

Figure 3.3: Algorithm for computing a set of invariant clauses

Choose anyl ∈ {l⊥1 , . . . , l⊥m}. We show that when the outermostfor eachloop starting on line
3 considersl the procedure will returnfalse.

Sincel ∈ [e]det
s ando is applicable ins by Lemma 3.3s |= EPCl(o). Since by assumption

s |= C, the condition of theif statement on line 4 is not satisfied and the execution proceeds by
iteration of the innerfor eachloop.

Let l′ be any of the literals inφ exceptl. Sinceappo(s) 6|= φ, l′ 6∈ [e]det
s . Hence by Lemma

3.3 s 6|= EPCl′(o), and ass |= C ∪ {EPCl(o)} the condition of theif statement on line 6 is not
satisfied and the execution continues from line 7. Analyze two cases.

1. If l′ ∈ {l⊥1 , . . . , l⊥m} then by assumptionl′ ∈ [e]det
s and by Lemma 3.3s |= EPCl′(o). Hence

C ∪{EPCl(o)} 6|= ¬EPCl′(o) and the condition of theif statement on line 7 is not satisfied.

2. If l′ 6∈ {l⊥1 , . . . , l⊥m} thens 6|= l′. HenceC ∪ {EPCl(o)} 6|= l′ and the condition of theif
statement on line 7 is not satisfied.

Hence on none of the iterations of the innerfor eachloop is agoto OKexecuted, and as the
loop exits, the procedure returnsfalse. �

Figure 3.3 gives the algorithm for computing invariants consisting of at mostn literals. The
loop on line 5 is repeated until there are noo ∈ O and clausesφ in C such that preserved(φ,C ′,o)
returns false. This exit condition for the loop is critical for the correctness proof.

Theorem 3.37 LetA be a set of state variables,I a state,O a set of operators, andn ≥ 1 an
integer. Then the procedure call invariants(A, I,O, n) returns a setC of clauses with at mostn
literals so that for any sequenceo1; . . . ; om of operators fromO appo1;...;om(I) |= C.

Proof: Let C0 be the value first assigned to the variableC in the procedureinvariants, and
C1, C2, . . . be the values of the variable in the end of each iteration of the outermostrepeatloop.

Induction hypothesis: for every{o1, . . . , oi} ⊆ O andφ ∈ Ci, appo1;...;oi(I) |= φ.
Base casei = 0: appε(I) for the empty sequence is by definitionI itself, and by construction

C0 consists of only formulae that are true in the initial state.
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Inductive casei ≥ 1: Take any{o1, . . . , oi} ⊆ O andφ ∈ Ci. First notice that preserved(φ,Ci,o)
returnstruebecause otherwiseφ could not be inCi. Analyze two cases.

1. If φ ∈ Ci−1, then by the induction hypothesisappo1;...;oi−1(I) |= φ. Sinceφ ∈ Ci

preserved(φ,Ci−1,o) returnstrue. Hence by Lemma 3.36appo1;...;oi(I) |= φ.

2. If φ 6∈ Ci−1, it must be because preserved(φ′,Ci−1,o′) returnsfalse for someo′ ∈ O and
φ′ ∈ Ci−1 such thatφ is obtained fromφ′ by conjoining some literals to it. Henceφ′ |= φ.

Sinceφ′ ∈ Ci−1 by the induction hypothesisappo1;...;oi−1(I) |= φ′. Sinceφ′ |= φ also
appo1;...;oi−1(I) |= φ. Since the function call preserved(φ,Ci,o) returnstrueby Lemma 3.36
appo1;...;oi(I) |= φ.

This finishes the induction proof. The iteration of the procedure stops whenCi = Ci−1, mean-
ing that the claim of the theorem holds for arbitrarily long sequenceso1; . . . ; om of operators. �

The algorithm does not find the strongest invariant for two reasons. First, only clauses until
some fixed length are considered. Expressing the strongest invariant may require clauses that are
longer. Second, the test performed bypreservedtries to prove for one of the literals in the clause
that it is true after an operator application. Consider the clausea∨b∨c and the operator〈b∨c,¬a〉.
We cannot show for any literal that it is true after applying the operator but we know that eitherb
or c is true. The test performed bypreservedcould be strengthened to handle cases like these, for
example by using the techniques discussed in Section 4.2, but this would make the computation
more expensive and eventually lead to intractability.

To make the algorithm run in polynomial time the satisfiability and logical consequence tests
should be performed by algorithms that approximate these tests in polynomial time. The procedure
asat(D,φ) is not suitable because it assumes thatD is a set of literals, whereas forpreservedthe
setC usually contain clauses with 2 or more literals. There are generalizations of the ideas behind
asat(D,φ) to this more general case but we do not discuss the topic further.

3.5.1 Applications of invariants in planning by regression and satisfiability

Invariants can be used to speed up backward search with regression. Consider the blocks world
with the goalAonB∧BonC. Regression with the operator that moves B onto C from the table yields
AonB∧ Bclear∧ Cclear∧ BonT. This formula does not correspond to an intended blocks world
state becauseAonB is incompatible withBclear, and indeed,¬AonB∨ ¬Bclear is an invariant
for the blocks world. Any regression step that leads to a formula that is incompatible with the
invariants can be ignored because that formula does not represent any state that is reachable from
the initial state, and hence no plan extending the current incomplete plan can reach the goals.

Another application of invariants and the intermediate setsCi produced by our invariant al-
gorithm is improving the heuristics in Section 3.4. UsingDmax

i for testing whether an operator
precondition, for examplea ∧ b, has distancei from the initial state, the distances ofa andb are
used separately. But even when it is possible to reach botha andb with i operator applications,
it might still not be possible to reach them both simultaneously withi operator applications. For
example, fori = 1 and an initial state in which botha andb are false, there might be no single op-
erator that makes them both true, but two operators, each of which makes only one of them true. If
¬a∨¬b ∈ Ci, we know that afteri operator applications one ofa or b must still be false, and then
we know that the operator in question is not applicable at time pointi. Therefore the invariants
and the setsCi produced during the invariant computation can improve distance estimates.
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3.6 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning was introduced in 1992 by Kautz and Selman
[1992; 1996]. In this approach the problem of reachability of a goal state from a given initial
state is translated into propositional formulaeφ0, φ1, φ2, . . . so that every valuation that satisfies
formulaφi corresponds to a plan of lengthi. Planning proceeds by first testing the satisfiability of
φ0. If φ0 is unsatisfiable, continue withφ1, φ2, and so on, until a satisfiable formulaφn is found.
From a valuation that satisfiesφn a plan of lengthn can be constructed.

3.6.1 Actions as propositional formulae

First we need a representation of actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variablesA = {a1, . . . , an}, one could describe an action directly as a
propositional formulaφ over propositional variablesA ∪ A′ whereA′ = {a′1, . . . , a′n}. Here the
variablesA represent the values of state variables in the states in which an action is taken, and
variablesA′ the values of state variables in a successor states′.

A pair of valuationss ands′ can be understood as a valuation ofA ∪ A′ (the states assigns a
value to variablesA ands′ to variablesA′), and a transition froms to s′ is possible if and only if
s, s′ |= φ.

Example 3.38 The action that reverses the values of state variablesa1 anda2 is described by
φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2). The following4× 4 incidence matrix represents this action.

a′1a
′
2 a

′
1a

′
2 a

′
1a

′
2 a

′
1a

′
2

a1a2 00 01 10 11
00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0
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The matrix can be equivalently represented as the following truth-table.

a1 a2 a
′
1 a

′
2 φ

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

�

Example 3.39 Let the set of state variables beA = {a1, a2, a3}. The formula(a1 ↔ a′2)∧(a2 ↔
a′3) ∧ (a3 ↔ a′1) represents the action that rotates the values of the state variablesa1, a2 anda3

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations ofA and the columns to valuations ofA′ = {a′1, a′2, a′3}.

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table
with one row for every valuation ofA ∪A′, a total of 64 rows. �

The action in Example 3.39 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for determinism is that the
formula is of the form(φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) ∧ ψ whereA = {a1, . . . , an} is the set of
all state variables,φi are formulae overA (without occurrences ofA′ = {a′1, . . . , a′n}). There are
no restrictions onψ. Formulae of this form uniquely determine the value of every state variable
in the successor state in terms of the values in the predecessor state. Therefore they represent
deterministic actions.
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3.6.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators is represented as disjunction.

Definition 3.40 The formulaτA(o) which represents the operatoro = 〈c, e〉 is defined by

τA(e) =
∧

a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e))
τA(o) = c ∧ τA(e).

The formulaτA(e) expresses the value ofa in the successor state in terms of the values of
the state variables in the predecessor state and requires that executinge may not make any state
variable simultaneously true and false. This is like in the definition of regression in Section 3.1.2.
The formulaτA(o) additionally requires that the operator’s precondition is true.

Example 3.41 Consider operator〈a ∨ b, (b B a) ∧ (c B ¬a) ∧ (a B b)〉. The corresponding
propositional formula is

(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ (b ∧ ¬⊥)) ↔ b′)
∧((⊥ ∨ (c ∧ ¬⊥)) ↔ c′)
∧¬(b ∧ c) ∧ ¬(a ∧ ⊥) ∧ ¬(⊥ ∧⊥)

≡ (a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ b) ↔ b′)
∧(c↔ c′)
∧¬(b ∧ c).

�

Lemma 3.42 Let s ands′ be states ando an operator. Letv : A ∪ A′ → {0, 1} be a valuation
such that

1. for all a ∈ A, v(a) = s(a), and

2. for all a ∈ A, v(a′) = s′(a).

Thenv |= τA(o) if and only ifs′ = appo(s).

Proof: Assumev |= τA(o). Hences |= c ands |=
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)), and therefore
appo(s) is defined. Consider any state variablea ∈ A. By Lemma 3.4 and the assumption
v |= (EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′, the value of every state variable ins′ matches the
definition ofappo(s). Hences′ = appo(s).

Assumes′ = appo(s). Sinces′ is defined,v |= τA(o) andv |=
∧

a∈A ¬(EPCa(e)∧EPC¬a(e)).
By Lemma 3.4v |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a. �

Definition 3.43 DefineR1(A,A′) = τA(o1) ∨ · · · ∨ τA(on).
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The valuations that satisfy this formula do not uniquely determine which operator was applied
because for a given state more than one operator may produce the same successor state. However,
in such cases it does not matter which operator is applied, and when constructing a plan from the
valuation any of the operators may be chosen arbitrarily.

It has been noticed that extendingR1(A,A′) by 2-literal invariants (see Section 3.5) reduces
runtimes of algorithms that test satisfiability. Note that invariants do not affect the set of models of
a formula representing planning: any satisfying valuation of the original formula also satisfies the
invariants because the values of variables describing the values of state variables at any time point
corresponds to a state that is reachable from the initial state, and hence this valuation also satisfies
any invariant.

3.6.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating succinct transition systems〈A, I,O,G〉 into
propositional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.6.1 we showed how operators can be described by propositional formulae over
setsA andA′ of propositional variables, the setA describing the values of the state variables in
the state in which the operator is applied, and the setA′ describing the values of the state variables
in the successor state of that state.

For a fixed plan lengthn, we use setsA0, . . . , An of variables to represent the values of state
variables at different time points, with variablesAi representing the values at timei. In other
words, a valuation of these propositional variables represents a sequences0, . . . , sn of states. If
a ∈ A is a state variable, then we use the propositional variableai for representing the value ofa
at time pointi.

Then we construct a formula so that the states0 is determined byI, the statesn is determined
by G, and the changes of state variables between any two consecutive states corresponds to the
application of an operator.

Definition 3.44 Let 〈A, I,O,G〉 be a deterministic transition system. Defineι0 =
∧
{a0|a ∈

A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} for the initial state andGn as the formulaG with every
variablea ∈ A replaced byan. Define

Φseq
n = ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An) ∧Gn

whereAi = {ai|a ∈ A} for all i ∈ {0, . . . , n}.

A plan can be found by using the formulaeΦseq
i as follows. We start with plan lengthi = 0, test

the satisfiability ofΦseq
i , and depending on the result, either construct a plan (ifΦseq

i is satisfiable),
or increasei by one and repeat the previous steps, until a plan is found.

If there are no plans, it has to be somehow decided when to stop increasingi. An upper
bound on plan length is2|A| − 1 whereA is the set of state variables but this upper bound does
not provide a practical termination condition for this procedure. Some work on more practical
termination conditions are cited in Section 3.8.

The construction of a plan from a valuationv that satisfiesΦseq
i is straightforward. The plan

has exactlyi operators, and this plan is known to be the shortest one because the formulaΦseq
i−1

had already been determined to be unsatisfiable. First construct the executions0, . . . , si of the
plan fromv as follows. For allj ∈ {0, . . . , i} anda ∈ A, sj(a) = v(aj). The plan has the
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form o1, . . . , oi. Operatoroj for j ∈ {1, . . . , i} is identified by testing for allo ∈ O whether
appo(sj−1) = sj . There may be several operators satisfying this condition, and any of them can
be chosen.

Example 3.45 LetA = {a, b}. Let the stateI satisfyI |= a ∧ b. LetG = (a ∧ ¬b) ∨ (¬a ∧ b)
ando1 = 〈>, (a B ¬a) ∧ (¬a B a)〉 ando2 = 〈>, (b B ¬b) ∧ (¬b B b)〉. The following formula
is satisfiable if and only if〈A, I, {o1, o2}, G〉 has a plan of length 3.

(a0 ∧ b0)
∧(((a0 ↔ a1) ∧ (b0 ↔ ¬b1)) ∨ ((a0 ↔ ¬a1) ∧ (b0 ↔ b1)))
∧(((a1 ↔ a2) ∧ (b1 ↔ ¬b2)) ∨ ((a1 ↔ ¬a2) ∧ (b1 ↔ b2)))
∧(((a2 ↔ a3) ∧ (b2 ↔ ¬b3)) ∨ ((a2 ↔ ¬a3) ∧ (b2 ↔ b3)))
∧((a3 ∧ ¬b3) ∨ (¬a3 ∧ b3))

One of the valuations that satisfy the formula is the following.

time i
0 1 2 3

ai 1 0 0 0
bi 1 1 0 1

This valuation corresponds to the plan that applies operatoro1 at time point 0,o2 at time point 1,
ando2 at time point 2. There are also other satisfying valuations. The shortest plans have length 1
and respectively consist of the operatorso1 ando2. �

Example 3.46 Consider the following problem. There are two operators, one for rotating the
values of bits abc one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(¬a2 ∧ ¬b2 ∧ c2)

Since the literals describing the initial and the goal state must be true, we can replace occurrences
of these state variables in the subformulae for operators by> and⊥.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((> ↔ b1) ∧ (⊥ ↔ c1) ∧ (⊥ ↔ a1)) ∨ ((¬> ↔ a1) ∧ (¬⊥ ↔ b1) ∧ (¬⊥ ↔ c1)))
∧(((a1 ↔ ⊥) ∧ (b1 ↔ >) ∧ (c1 ↔ ⊥)) ∨ ((¬a1 ↔ ⊥) ∧ (¬b1 ↔ ⊥) ∧ (¬c1 ↔ >)))
∧(¬a2 ∧ ¬b2 ∧ c2)

After simplifying we have the following.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1)
∧((¬a1 ∧ b1 ∧ ¬c1) ∨ (a1 ∧ b1 ∧ ¬c1))
∧(¬a2 ∧ ¬b2 ∧ c2)
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The only way of satisfying this formula is to make the first disjuncts of both disjunctions true, that
is, b1 must be true anda1 andc1 must be false. The resulting valuation corresponds to taking the
rotation action twice.

Consider the same problem but now with the goal state 101.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(a2 ∧ ¬b2 ∧ c2)

We simplify again and get the following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1))
∧((¬a1 ∧ b1 ∧ c1) ∨ (¬a1 ∧ b1 ∧ ¬c1))
∧(a2 ∧ ¬b2 ∧ c2)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. �

3.6.4 Parallel application of operators

For statess and setsT of operators we defineappT (s) as the result of simultaneously applying all
operatorso ∈ T : the preconditions of all operators inT must be true ins and the stateappT (s) is
obtained froms by making the literals in

⋃
〈p,e〉∈T [e]det

s true. Analogously to sequential plans we
can defineappT1;T2;...;Tn(s) asappTn(· · ·appT2(appT1(s)) · · ·).

Next we show how the translation of deterministic operators into the propositional logic in
Section 3.6.2 can be extended to the simultaneous application of operators as inappT (s).

Consider the formulaτA(o) representing one operatoro = 〈c, e〉.

c ∧
∧
a∈A

((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

This formula can be rewritten to the following logically equivalent formula that separately says
which state variables are changed by the operator and which state variables retain their values.

c∧∧
a∈A(EPCa(e)→a′)∧∧
a∈A(EPC¬a(e)→¬a′)∧∧
a∈A((a ∧ ¬a′)→EPC¬a(e))∧∧
a∈A((¬a ∧ a′)→EPCa(e))

We use this formulation ofτA(o) as basis of obtaining encodings of planning that allowseveral
operators in parallel. Every operator applied at a given time point causes its effects to be true
and requires its precondition to be true. This is expressed by the first three conjuncts. The last
two conjuncts say that, assuming the operator that is applied is the only one, certain state variables
retain their value. These formulae have to be modified to accommodate the possibility of executing
several operators in parallel.

We introduce propositional variableso for denoting the execution of operatorso ∈ O.
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Definition 3.47 Let A be the set of state variables andO a set of operators. Let the formula
τA(O) denote the conjunction of formulae

(o→c)∧∧
a∈A(o ∧ EPCa(e)→a′)∧∧
a∈A(o ∧ EPC¬a(e)→¬a′)

for all 〈c, e〉 ∈ O and∧
a∈A((a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en))∧∧
a∈A((¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (on ∧ EPCa(en)))

whereO = {o1, . . . , on} ande1, . . . , en are the respective effects.

The difference to the definition ofτA(o) in Section 3.6.2 is that above the formulae do not
assume that there is only one operator explaining the changes that take place.

The formulaτA(O) matches the definition ofappT (s).

Lemma 3.48 Let s ands′ be states andO andT ⊆ O sets of operators. Letv : A ∪ A′ ∪ O →
{0, 1} be a valuation such that

1. for all o ∈ O, v(o) = 1 iff o ∈ T ,

2. for all a ∈ A, v(a) = s(a), and

3. for all a ∈ A, v(a′) = s′(a).

Thenv |= τA(O) if and only ifs′ = appT (s).

Proof: For the proof from right to left we assume thats′ = appT (s) and show thatv |= τA(O).
For the formulaeo→ c consider anyo = 〈c, e〉 ∈ O. If o 6∈ T thenv 6|= o andv |= o→ c.

So assumeo ∈ T . By assumptions is a state such thatappT (s) is defined. Hences |= c. Hence
v |= o→c.

For the formulaeo ∧ EPCa(e)→ a′ consider anyo = 〈c, e〉 ∈ O. If o 6∈ T thenv 6|= o and
v |= o ∧ EPCl(e)→ l for all literals l. So assumeo ∈ T . Now v |= o ∧ EPCl(e)→ l because
if s |= EPCl(e) then l ∈ [e]det

s by Lemma 3.3 ands′ |= l. Proof foro ∧ EPC¬a(e) → ¬a′ is
analogous.

For the formulae((a ∧ ¬a′) → ((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en)) consider any
a ∈ A. According to the definition ofs′ = appT (s), a can be true ins and false ins′ only if
¬a ∈ [o]det

s for someo ∈ T . By Lemma 3.3¬a ∈ [o]det
s if and only if s |= EPC¬a(o). So if the

antecedent of(a∧¬a′)→((o1 ∧EPC¬a(o1))∨ · · · ∨ (om ∧EPC¬a(om))) is true, then one of the
disjuncts of the consequent is true, whereO = {o1, . . . , om}. The proof for the change from false
to true is analogous.

For the proof from left to right we assumev |= τA(O) and show thats′ = appT (s).
The preconditionc of everyo ∈ T is true ins becausev |= o andv |= o→ c, ands′ |= [e]det

s

for everyo = 〈c, e〉 ∈ T becausev |= o andv |= o ∧ EPCl(e)→ l for every literall. This also
means that[T ]det

s is consistent andappT (s) is defined.
For state variablesa not occurring in[T ]det

s we have to show thats(a) = s′(a). Sincea does not
occur in[T ]det

s , for everyo ∈ {o1, . . . , om} = O = {〈c1, e1〉, . . . , 〈cm, em〉} eithero 6∈ T or both
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a 6∈ [e]det
s and¬a 6∈ [e]det

s . Hence eitherv 6|= o or (by Lemma 3.3)v |= ¬(EPCa(e))∧¬EPC¬a(e).
This together with the assumptions thatv |= (a ∧ ¬a′) → ((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (om ∧
EPC¬a(em))) andv |= (¬a ∧ a′)→ ((o1 ∧ EPCa(o1)) ∨ · · · ∨ (om ∧ EPCa(em))) impliesv |=
(a→a′)∧ (¬a→¬a′). Therefore everya ∈ A not occurring in[T ]det

s remains unchanged. Hence
s′ = appT (s). �

Example 3.49 Let o1 = 〈¬LAMP1, LAMP1〉 ando2 = 〈¬LAMP2, LAMP2〉. The applica-
tion of none, one or both of these operators is described by the following formula.

(¬LAMP1 ∧ LAMP1′)→((o1 ∧ >) ∨ (o2 ∧ ⊥)
(LAMP1 ∧ ¬LAMP1′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
(¬LAMP2 ∧ LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ >)
(LAMP2 ∧ ¬LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
o1→LAMP1′

o1→¬LAMP1
o2→LAMP2′

o2→¬LAMP2

�

3.6.5 Partially-ordered plans

In this section we consider a more general notion of plans in which several operators can be applied
simultaneously. This kind of plans are formalized as sequences of sets of operators. In such a plan
the operators are partially ordered because there is no ordering on the operators taking place at the
same time point. This notion of plans is useful for two reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there aren such operators, there aren! plans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm shows that there is
no plan of lengthn consisting of these operators, it has to show that none of then! plans reaches
the goals. This may be combinatorially very difficult ifn is high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: partially-ordered plans require less
time points than the corresponding sequential plans. This reduces the number of propositional
variables that are needed for representing the planning problem, which may make testing the
satisfiability of these formulae much more efficient.

In Section 3.6.4 we have shown how to represent the parallel application of operators in the
propositional logic. However, this definition is too loose because it allows plans that cannot be
executed.

Example 3.50 The operators〈a,¬b〉 and〈b,¬a〉 may be executed simultaneously resulting in a
state satisfying¬a ∧ ¬b, although this state is not reachable by the two operators sequentially.�

A realistic way of interpreting parallelism in partially ordered plans is that any total ordering
of the simultaneous operators is executable and results in the same state in all cases. This is the
definition used in planning research so far.
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Definition 3.51 (Step plans)For a set of operatorsO and an initial stateI, a step plan forO
andI is a sequenceT = 〈T0, . . . , Tl−1〉 of sets of operators for somel ≥ 0 such that there is a
sequence of statess0, . . . , sl (the execution ofT ) such that

1. s0 = I,

2. for all i ∈ {0, . . . , l−1} and every total orderingo1, . . . , on ofTi, appo1;...;on(si) is defined
and equalssi+1.

Theorem 3.52 Testing whether a sequence of sets of operators is a step plan is co-NP-hard.

Proof: The proof is by reduction from the co-NP-complete validity problem TAUT. Letφ be any
propositional formula. LetA = {a1, . . . , an} be the set of propositional variables occurring inφ.
Our set of state variables isA. Let oz = 〈φ,>〉 andO = {〈>, a1〉, . . . , 〈>, an〉, oz}. Let s ands′

be states such thats 6|= a ands′ |= a for all a ∈ A. We show thatφ is a tautology if and only if
T = 〈O〉 is a step plan forO ands.

Assumeφ is a tautology. Now for any total orderingo0, . . . , on of O the stateappo0;...;on(s)
is defined and equalss′ because all preconditions are true in all states and the set of effects of all
operators isA (the set is consistent and making the effects true ins yieldss′.) HenceT is a step
plan.

AssumeT is a step plan. Letv be any valuation. We show thatv |= φ. LetOv = {〈>, a〉|a ∈
A, v |= a}. The operatorsO can be ordered too0, . . . , on so that the operatorsOv = {o0, . . . , ok}
precedeoz andO\(Ov ∪ {oz}) follow oz. SinceT is a step plan,appo0;...;on(s) is defined. Since
alsoappo0;...;ok;oz(s) is defined, the preconditionφ of oz is true inv = appo0;...;ok

(s). Hence
v |= φ. Since this holds for any valuationv, φ is a tautology. �

To avoid intractability it is better to restrict to a class of step plans that are easy to recognize.
One such class is based on the notion ofinterference.

Definition 3.53 (Affect) LetA be a set of state variables ando = 〈c, e〉 ando′ = 〈c′, e′〉 opera-
tors overA. Theno affectso′ if there isa ∈ A such that

1. a is an atomic effect ine anda occurs in a formula ine′ or it occurs negatively inc′, or

2. ¬a is an atomic effect ine anda occurs in a formula ine′ or it occurs positively inc′.

Definition 3.54 (Interference) Operatorso ando′ interfereif o affectso′ or o′ affectso.

Testing for interference of two operators is easy polynomial time computation. Non-interference
not only guarantees that a set of operators is executable in any order, but it also guarantees that the
result equals to applying all the operators simultaneously.

Lemma 3.55 Let s be a state andT a set of operators so that appT (s) is defined and no two
operators interfere. Then appT (s) = appo1;...;on(s) for any total orderingo1, . . . , on of T .

Proof: Let o1, . . . , on be any total ordering ofT . We prove by induction on the length of a prefix
of o1, . . . , on the following statement for alli ∈ {0, . . . , n − 1} by induction oni: s |= a if and
only if appo1;...;oi(s) |= a for all state variablesa occurring in an antecedent of a conditional effect
or a precondition of operatorsoi+1, . . . , on.
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Base casei = 0: Trivial.
Inductive casei ≥ 1: By the induction hypothesis the antecedents of conditional effects ofoi

have the same value ins and inappo1;...;oi−1(s), from which follows[oi]det
s = [oi]det

appo1;...;oi−1 (s).

Sinceoi does not interfere with operatorsoi+1, . . . , on, no state variable occurring in[oi]det
s occurs

in an antecedent of a conditional effect or in the precondition ofoi+1, . . . , on, that is, these state
variables do not change. Since[oi]det

s = [oi]det
appo1;...;oi−1 (s) this also holds whenoi is applied in

appo1;...;oi−1(s). This completes the induction proof.
SinceappT (s) is defined, the precondition of everyo ∈ T is true ins and[o]det

s is consistent.
By the fact we established above, the precondition of everyo ∈ T is true also inappo1;...;ok

(s)
and [o]det

appo1;...;ok
(s) is consistent for any{o1, . . . , ok} ⊆ T\{o}. Hence any total ordering of

the operators is executable. By the fact we established above,[o]det
s = [o]det

appo1;...;ok
(s) for every

{o1, . . . , ok} ⊆ T\{o}. Hence every operator causes the same changes no matter what the total
ordering is. SinceappT (s) is defined, no operator inT undoes the effects of another operator.
Hence the same states′ = appT (s) is reached in every case. �

For finding plans by using the translation of parallel actions from Section 3.6.4 it remains to
encode the condition that no two parallel actions are allowed to interfere.

Definition 3.56 Define

R2(A,A′, O) = τA(O) ∧
∧
{¬(o ∧ o′)|{o, o′} ⊆ O, o 6= o′, o ando′interfere}

Definition 3.57 Let 〈A, I,O,G〉 be a deterministic succinct transition system. Define

Φpar
n = ι0 ∧R2(A0, A1, O0) ∧R2(A1, A2, O1) ∧ · · · ∧ R2(An−1, An, On−1) ∧Gn

whereAi = {ai|a ∈ A} for all i ∈ {0, . . . , n} andOi = {oi|o ∈ O} for all i ∈ {1, . . . , n} and
ι0 =

∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} andGn isG with everya ∈ A replaced

byan.

If Φpar
n is satisfiable andv is a valuation such thatv |= Φpar

n , then defineTi = {o ∈ O|v |=
oi} for every i ∈ {1, . . . , n}. Then 〈T1, . . . , Tn〉 is a plan for the transition system, that is,
appT1;...;Tn(I) |= G.

It may be tempting to think that non-interference implies that the actions occurring in parallel
in a plan could always be executed simultaneously in the real world. This however is not the case.
For genuine temporal parallelism the formalization of problems as operators has to fulfill much
stronger criteria than when sequential execution is assumed.

Example 3.58 Consider the operators

transport-A-with-truck-1= 〈AinFreiburg,AinStuttgart∧ ¬AinFreiburg〉
transport-B-with-truck-1= 〈BinFreiburg,BinKarlsruhe∧ ¬BinFreiburg〉

which formalize the transportation of two objects with one vehicle. The operators do not interfere,
and our notion of plans allows the simultaneous execution of these operators. However, these
actions cannot really be simultaneous because the corresponding real world actions involve the
same vehicle going to different destinations. �
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3.7 Computational complexity

In this section we discuss the computational complexity of the main decision problems related to
deterministic planning.

The plan existence problem of deterministic planning is PSPACE-complete. The result was
proved by Bylander[1994]. He proved the hardness part by giving a simulation of deterministic
polynomial-space Turing machines, and the membership part by giving an algorithm that solves
the problem in polynomial space. We later generalize his Turing machine simulation to alter-
nating Turing machines to obtain an EXP-hardness proof for nondeterministic planning with full
observability in Theorem 4.53.

Theorem 3.59 The problem of testing the existence of a plan is PSPACE-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with a polynomial space bound
p(x). Letσ be an input string of lengthn.

We construct a deterministic succinct transition system for simulating the Turing machine. The
succinct transition system has a size that is polynomial in the size of the description of the Turing
machine and the input string.

The setA of state variables in the succinct transition system consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The initial state of the succinct transition system represents the initial configuration of the TM.
The initial stateI is as follows.

1. I(q0) = 1

2. I(q) = 0 for all q ∈ Q\{q0}.

3. I(si) = 1 if and only if ith input symbol iss ∈ Σ, for all i ∈ {1, . . . , n}.

4. I(si) = 0 for all s ∈ Σ andi ∈ {0, n+ 1, n+ 2, . . . , p(n)}.

5. I(�i) = 1 for all i ∈ {n+ 1, . . . , p(n)}.

6. I(�i) = 0 for all i ∈ {0, . . . , n}.

7. I(|0) = 1

8. I(|i) = 0 for all n ∈ {1, . . . , p(n)}

9. I(h1) = 1

10. I(hi) = 0 for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}



3.7. COMPUTATIONAL COMPLEXITY 61

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
Turing machine. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s′, q′,m〉}. If
g(q) = ∃, then define the operator

os,q,i = 〈hi ∧ si ∧ q, τs,q,i(s′, q′,m)〉.

We claim that the succinct transition system has a plan if and only if the Turing machine accepts
without violating the space bound.

If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an
accepting state cannot be reached because no further operator will be applicable.

So, because all deterministic Turing machines with a polynomial space bound can be in poly-
nomial time translated into a planning problem, all decision problems in PSPACE are polynomial
time many-one reducible to deterministic planning, and the plan existence problem is PSPACE-
hard. �

Theorem 3.60 The problem of testing the existence of a plan is in PSPACE.

Proof: A recursive algorithm for testingm-step reachability between two states withlogm mem-
ory consumption is given in Figure 3.4. The parameters of the algorithm are the setO of operators,
the starting states, the terminal states′, andm characterizing the maximum number2m of opera-
tors needed for reachings′ from s.

We show that when the algorithm is called with the numbern = |A| of state variables as the
last argument, it consumes a polynomial amount of memory inn. The recursion depth isn. At the
recursive calls memory is needed for storing the intermediate statess′′. The memory needed for
this is polynomial inn. Hence at any point of time the space consumption isO(m2).

A succinct transition system〈A, I,O,G〉 with n = |A| state variables has a plan if and only
if reach(O,I,s′,n) returnstrue for somes′ such thats′ |= G. Iteration over all statess′ can be
performed in polynomial space and testings′ |= G can be performed in polynomial time in the
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1: procedure reach(O,s,s′,m)
2: if m = 0 then (* Plans of length 0 and 1 *)
3: if s = s’or there iso ∈ O such thats′ = appo(s) then return true
4: else return false
5: else
6: begin (* Longer plans *)
7: for all statess′′ do (* Iteration over intermediate states *)
8: if reach(O,s,s′′,m− 1) and reach(O,s′′,s′,m− 1) then return true

; 9: end
10: return false;
11: end

Figure 3.4: Algorithm for testing plan existence in polynomial space

size ofG. Hence the whole memory consumption is polynomial. �

Part of the high complexity of planning is due to the fact that plans can be exponentially long.
If a polynomial upper bound for plan length exists, testing the existence of plans is still intractable
but much easier.

Theorem 3.61 The problem of whether a plan having a length bounded by a given polynomial
exists is NP-hard.

Proof: We reduce the satisfiability problem of the classical propositional logic to the plan existence
problem. The length of the plans, whenever they exist, is bounded by the number of propositional
variables and hence is polynomial.

Let φ be a formula over the propositional variables inA. LetN = 〈A, {(a, 0)|a ∈ A}, O, φ〉
whereO = {〈>, a〉|a ∈ A} We show thatN has a plan if and only if the formulaφ is satisfiable.

Assumeφ ∈ SAT , that is, there is a valuationv : A → {0, 1} such thatv |= φ. Now take the
operators{〈>, a〉|v |= a, a ∈ A} in any order: these operators form a plan that reach the statev
that satisfiesφ.

AssumeN has a plano1, . . . , om. The valuationv = {(a, 1)|(>, a) ∈ {o1, . . . , om}} ∪
{(a, 0)|a ∈ A, (>, a) 6∈ {o1, . . . , om}} of A is the terminal state of the plan and satisfiesφ. �

Theorem 3.62 The problem of whether a plan having a length bounded by a given polynomial
exists is in NP.

Proof: Let p(m) be a polynomial. We give a nondeterministic algorithm that runs in polynomial
time and determines whether a plan of lengthp(m) exists.

LetN = 〈A, I,O,G〉 be a deterministic succinct transition system.

1. Nondeterministically guess a sequence ofl ≤ p(m) operatorso1, . . . , ol from the setO.
Sincel is bounded by the polynomialp(m), the time consumptionO(p(m)) is polynomial
in the size ofN .

2. Computes = appol
(appol−1

(· ·appo2(appo1(I)) · ·)). This takes polynomial time in the size
of the operators and the number of state variables.
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3. Tests |= G. This takes polynomial time in the size of the operators and the number of state
variables.

This nondeterministic algorithm correctly determines whether a plan of length at mostp(m) exists
and it runs in nondeterministic polynomial time. Hence the problem is in NP. �

These theorems show the NP-completeness of the plan existence problem for polynomial-
length plans.

3.8 Literature

Progression and regression were used early in planning research[Rosenschein, 1981]. Our defi-
nition of regression in Section 3.1.2 is related to the weakest precondition predicates for program
synthesis[de Bakker and de Roever, 1972; Dijkstra, 1976]. Instead of using the general definition
of regression we presented, earlier work on planning with regression and a definition of operators
that includes disjunctive preconditions and conditional effects has avoided all disjunctivity by pro-
ducing only goal formulae that are conjunctions of literals[Andersonet al., 1998]. Essentially,
these formulae are the disjuncts ofregro(φ) in DNF, although the formulaeregro(φ) are not gen-
erated. The search algorithm then produces a search tree with one branch for every disjunct of the
DNF formula. In comparison to the general definition, this approach often leads to a much higher
branching factor and an exponentially bigger search tree.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at the time[Kautz and Sel-
man, 1992; 1996]. In addition to Kautz and Selman[1996], parallel plans were used by Blum and
Furst in their Graphplan planner[Blum and Furst, 1997]. Parallelism in this context serves the
same purpose as partial-order reduction[Godefroid, 1991; Valmari, 1991], reducing the number
of orderings of independent actions to consider. There are also other notions of parallel plans
that may lead to much more efficient planning[Rintanenet al., 2005]. Ernst et al.[1997] have
considered translations of planning into the propositional that utilize the regular structure of sets
of operators obtained from schematic operators. Planning by satisfiability has been extended to
model-checking for testing whether a finite or infinite execution satisfying a given Linear Tem-
poral Logic (LTL) formula exists[Biereet al., 1999]. This approach to model-checking is called
bounded model-checking.

It is trickier to use a satisfiability algorithm for showing that no plans of any length exist than
for finding a plan of a given length. To show that no plans exist all plan lengths up to2n − 1
have to be considered when there aren state variables. In typical planning applicationsn is
often some hundreds or thousands, and generating and testing the satisfiability of all the required
formulae is practically impossible. That no plans of a given lengthn < 2|A| do not exist does not
directly imply anything about the existence of longer plans. Some other approaches for solving
this problem based on satisfiability algorithms have been recently proposed[McMillan, 2003;
Mneimneh and Sakallah, 2003].

The use of general-purpose heuristic search algorithms has recently got a lot of attention. The
class of heuristics currently in the focus of interest was first proposed by McDermott[1999] and
Bonet and Geffner[2001]. The distance estimatesδmax

I (φ) andδ+I (φ) in Section 3.4 are based on
the ones proposed by Bonet and Geffner[2001]. Many other distance estimates similar to Bonet
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and Geffner’s exist[Haslum and Geffner, 2000; Hoffmann and Nebel, 2001; Nguyenet al., 2002].
Theδrlx

I (φ) estimate generalizes ideas proposed by Hoffmann and Nebel[2001].
Other techniques for speeding up planning with heuristic state-space search include symmetry

reduction[Starke, 1991; Emerson and Sistla, 1996] and partial-order reduction[Godefroid, 1991;
Valmari, 1991; Aluret al., 1997], both originally introduced outside planning in the context of
reachability analysis and model-checking in computer-aided verification. Both of these techni-
ques address the main problem in heuristic state-space search, high branching factor (number of
applicable operators) and high number of states.

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effects[Rintanen, 1998]. The computation parallels the construction of planning
graphs in the Graphplan algorithm[Blum and Furst, 1997], and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of invariant
computation are useful for backward search algorithms: if a depth-bound ofn is imposed on the
search tree, then formulae obtained bym regression steps (suffixes of possible plans of length
m) that do not satisfy clausesCn−m cannot lead to a plan, and the search tree can be pruned. A
different approach to find invariants has been proposed by Gerevini and Schubert[1998].

Some researchers extensively use Graphplan’s planning graphs[Blum and Furst, 1997] for var-
ious purposes but we do not and have not discussed them in more detail for certain reasons. First,
the graph character of planning graphs becomes inconvenient when preconditions of operators are
arbitrary formulae and effects are conditional. As a result, the basic construction steps of planning
graphs become unintuitive. Second, even when the operators have the simple form, the practi-
cally and theoretically important properties of planning graphs are not graph-theoretic. We can
equivalently represent the contents of planning graphs as sequences of sets of literals and 2-literal
clauses, as we have done in Section 3.5. In general it seems that the graph representation does
not provide advantages over more conventional logic-based and set-based representations and is
primarily useful for visualization purposes.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving
big problem instances with a sufficiently simple structure. This often entails better runtimes than
in the SAT/CSP approach because of the high overheads with handling big formulae or constraint
nets in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach
but on which heuristic state-space search fails.

There are few empirical studies on the behavior of different algorithms on planning problems
in general or average. Bylander[1996] gives empirical results suggesting the existence of hard-
easy pattern and a phase transition behavior similar to those found in other NP-hard problems
like propositional satisfiability[Selmanet al., 1996]. Bylander also demonstrates that outside the
phase transition region plans can be found by a simple hill-climbing algorithm or the inexistence
of plans can be determined by using a simple syntactic test. Rintanen[2004b] complemented
Bylander’s work by analyzing the behavior of different types of planning algorithms on difficult
problems inside the phase transition region, suggesting that current planners based on heuristic
state space search are outperformed by satisfiability algorithms on difficult problems.

The PSPACE-completeness of the plan existence problem for deterministic planning is due to
Bylander[1994]. The same result for another succinct representation of graphs had been estab-
lished earlier by Lozano and Balcazar[1990].

Any computational problem that is NP-hard – not to mention PSPACE-hard – is considered too
difficult to be solved in general. As planning even in the deterministic case is PSPACE-hard there
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has been interest in finding restricted special cases in which efficient (polynomial-time) planning
is always guaranteed. Syntactic restrictions have been investigated by several researchers[Bylan-
der, 1994; B̈ackstr̈om and Nebel, 1995] but the restrictions are so strict that very few interesting
problems can be represented.

Schematic operators increase the conciseness of the representations of some problem instances
exponentially and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-complete[Erol et al., 1995]. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible and the plan existence problem is
undecidable[Erol et al., 1995].

3.9 Exercises

3.1 Show that regression for goalsG that are sets (conjunctions) of state variables and operators
with preconditionsp that are sets (conjunctions) of state variables and effects that consist of an
add lista (a set of state variables that become true) and a delete listd (a set of state variables that
become false) can equivalently be defined as(G\a) ∪ p whend ∩G = ∅.

3.2Show that the problem in Lemma 3.9 is in NP and therefore NP-complete.

3.3 Satisfiability testing in the propositional logic is tractable in some special cases, like for sets
of clauses with at most 2 literals in each, and for Horn clauses, that is sets of clauses with at most
one positive literal in each clause.

Can you identify special cases in which existence of ann-step plan can be determined in
polynomial time (inn and the size of the problem instance), because the corresponding formula
transformed to CNF is a set of 2-literal clauses or a set of Horn clauses?



Chapter 4

Nondeterministic planning

4.1 Nondeterministic operators

In this section we will present a basic translation of nondeterministic operators into the proposi-
tional logic and a regression operation for nondeterministic operators. In the next sections we will
discuss a general framework for computing with nondeterministic operators and their transition
relations which are represented as propositional formulae. This framework provides techniques
for computing both regression and progression for sets of states that are represented as formulae.

4.1.1 Regression for nondeterministic operators

Regression for deterministic operators is given in Definition 3.5. It can be easily generalized to a
subclass of nondeterministic operators.

Definition 4.1 (Regression for nondeterministic operators)Let φ be a propositional formula
ando = 〈c, e1| · · · |en〉 an operator wheree1, . . . , en are deterministic. Define

regrnd
o (φ) = regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ).

Theorem 4.2 Letφ be a formula overA, o an operator overA, andS the set of all states overA.
Then{s ∈ S|s |= regrnd

o (φ)} = spreimgo({s ∈ S|s |= φ}).

Proof: Let o = 〈c, (e1| · · · |en)〉.
{s ∈ S|s |= regrnd

o (φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ), . . . , s |= regr〈c,en〉(φ)}
= {s ∈ S|app〈c,e1〉(s) |= φ, . . . ,app〈c,en〉(s) |= φ} T3.7
= {s ∈ S|s′ |= φ for all s′ ∈ imgo(s) and there iss′ |= φ with sos′}
= spreimgo({s ∈ S|s |= φ})

The second last equality is becauseimgo(s) = {app〈c,e1〉(s), . . . ,app〈c,en〉(s)}. �

Example 4.3 Let o = 〈d, (b|¬c)〉. Then

regrnd
o (b↔ c) = regr〈d,b〉(b↔ c) ∧ regr〈d,¬c〉(b↔ c)

= (d ∧ (> ↔ c)) ∧ (d ∧ (b↔ ⊥))
≡ d ∧ c ∧ ¬b.

66
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�

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.6.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

We define for effectse the setschanges(e) of state variables that are possibly changed bye, or
in other words, the set of state variables occurring in an atomic effect ine.

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(e1| · · · |en) = changes(e1) ∪ · · · ∪ changes(en)

We make the following assumption to simplify the translation.

Assumption 4.4 Leta ∈ A be a state variable. Lete1∧· · ·∧en occur in the effect of an operator.
If e1, . . . , en are not all deterministic, thena or ¬a may occur as an atomic effect in at most one
of e1, . . . , en.

This assumption rules out effects like(a|b) ∧ (¬a|c) that may makea simultaneously true
and false. It also rules out effects like((d B a)|b) ∧ ((¬d B ¬a)|c) that are well-defined and
could be translated into the propositional logic. However, the additional complexity outweighs
the benefit of allowing them. Effects can often easily be transformed by the equivalences in Table
2.3 to satisfy Assumption 4.4:((d B a)|b) ∧ ((¬d B ¬a)|c) is equivalent to((d B a) ∧ (¬d B
¬a))|((d B a) ∧ c)|(b ∧ (¬d B ¬a))|(b ∧ c).

The problem in the translation that does not show up with deterministic operators is that for
nondeterministic choicese1| · · · |en the formula for eachei has to express the changes for exactly
the same set of state variables. This setB is given as a parameter to the translation function. The
setB has to include all state variables possibly changed by the effect.

τnd
B (e) = τB(e) whene is deterministic

τnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en)

τnd
B (e1 ∧ · · · ∧ en) = τnd

B\(B2∪···∪Bn)(e1) ∧ τ
nd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en)
whereBi = changes(ei) for all i ∈ {2, . . . , n}

The first part of the translationτnd
B (e) for deterministice is the translation of deterministic effects

we presented in Section 3.6.2 restricted to state variables inB. The other two parts cover all
nondeterministic effects in normal form. In the translation ofe1 ∧ · · · ∧ en all state variables that
are not changed are handled in the translation ofe1. Assumption 4.4 guarantees that for each
τnd
B (e) all state variables changed bye are inB.

Example 4.5 We translate the effect

e = (a|(d B a)) ∧ (c|d)
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into a propositional formula. The set of state variables isA = {a, b, c, d}.

τnd
{a,b,c,d}(e) = τnd

{a,b}(a|(d B a)) ∧ τnd
{c,d}(c|d)

= (τnd
{a,b}(a) ∨ τ

nd
{a,b}(d B a)) ∧ (τnd

{c,d}(c) ∨ τ
nd
{c,d}(d))

= ((a′ ∧ (b↔ b′)) ∨ (((a ∨ d) ↔ a′) ∧ (b↔ b′)))∧
((c′ ∧ (d↔ d′)) ∨ ((c↔ c′) ∧ d′))

�

For expressing a state in terms ofA′ instead ofA, or vice versa, we need to map a valuation
of A to a corresponding valuation ofA′, or vice versa. for this purpose we defines[A′/A] =
{〈a′, s(a)〉|a ∈ A}.

Definition 4.6 LetA be a set of state variables. Leto = 〈c, e〉 be an operator overA in normal
form. Defineτnd

A (o) = c ∧ τnd
A (e).

Lemma 4.7 Leto be an operator over a setA of state variables. Then

{v|v is a valuation ofA ∪A′, v |= τnd
A (o)} = {s ∪ s′[A′/A]|s, s′ ∈ S, s′ ∈ imgo(s)}.

Proof: We show that there is a one-to-one match between valuations satisfyingτnd
A (o) and pairs of

states and their successor states.
For the proof from right to left assume thats ands′ are states such thats′ ∈ imgo(s). Hence

there isE ∈ [e]s such thats′ is obtained froms by making literals inE true. Letv = s∪s′[A′/A].
We show thatv |= τnd

A (o). Let o = 〈c, e〉. Sinceimgo(s) is non-empty,s |= c. It remains to show
thatv |= τnd

A (e).
Induction hypothesis: Lete be any effect over a setB of state variables, ands ands′ states

such for someE ∈ [e]s s′ |= E ands(a) = s′(a) for everya ∈ B such that{a,¬a} ∩ E = ∅.
Thens ∪ s′[A′/A] |= τnd

B (e).
Base case:e is a deterministic effect. There is only oneE ∈ [e]s. A proof similar to that of

Lemma 3.42 shows thats ∪ s′[A′/A] |= τnd
B (e).

Inductive case 1,e = e1 ∧ · · · ∧ en: By definitionτnd
B (e1 ∧ · · · ∧ en) = τnd

B\(B2∪···∪Bn)(e1) ∧
τnd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en) for Bi = changes(ei), i ∈ {2, . . . , n}. LetE be any member of[e]s and
s′ a state such thats′ |= E ands(a) = s′(a) for everya ∈ B such that{a,¬a} ∩ E = ∅. By
definition of [e]s we haveE = E1 ∪ · · · ∪ En for someEi ∈ [ei]s for everyi ∈ {1, . . . , n}. The
assumptions of the induction hypothesis hold for everyei andBi, i ∈ {2, . . . , n}:

1. s′ |= Ei becauseEi ⊆ E.

2. By Assumption 4.4s(a) = s′(a) for everya ∈ Bi such that{a,¬a} ∩ Ei = ∅.

Similarly for e1 andB\(B2 ∪ · · · ∪Bn). Hences∪ s′[A′/A] |= τnd
Bi

(ei) for all i ∈ {2, . . . , n} and
s ∪ s′[A′/A] |= τnd

B\(B2∪···∪Bn)(ei), and therefores ∪ s′[A′/A] |= τnd
B (e).

Inductive case 2,e = e1| · · · |en: By definitionτnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en). By

definition [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. HenceE ∈ [ei]s for somei ∈ {1, . . . , n}. Hence
the assumptions of the induction hypothesis hold for at least oneei, i ∈ {1, . . . , n} and we get
s∪ s′[A′/A] |= τnd

B (ei). As τnd
B (ei) is one of the disjuncts ofτnd

B (e) finally s∪ s′[A′/A] |= τnd
B (e).

For the proof from left to right assume thatv |= τnd
B (e) for v = s ∪ s′[A′/A]. We prove by

structural induction that the changes froms to s′ correspond to[e]s.
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Induction hypothesis: Lete be any effect,B a set of state variables that includes those occurring
in e, ands ands′ states such thatv |= τnd

B (e) wherev = s∪ s′[A′/A]. Then there isE ∈ [e]s such
thats |= E ands(a) = s′(a) for all a ∈ B such that{a,¬a} ∩ E = ∅.

Base case:e is a deterministic effect. There is only oneE ∈ [e]s. A proof similar to that of
Lemma 3.42 shows that the changes betweens ands′ for a ∈ B correspond toE.

Inductive case 1,e = e1 ∧ · · · ∧ en: By definition[e]s = {E1 ∪ · · · ∪En|E1 ∈ [e1]s, . . . , En ∈
[en]s}, and by Assumption 4.4 sets of the state variables occurring ine1, . . . , en are disjoint.
By definition τnd

B (e1 ∧ · · · ∧ en) = τnd
B\(B2∪···∪Bn)(e1) ∧ τnd

B2
(e2) ∧ · · · ∧ τnd

Bn
(en) for Bi =

changes(ei), i ∈ {2, . . . , n}. The induction hypothesis fore and all a ∈ B is directly by
the induction hypothesis for alla ∈ B = (B\(B2 ∪ · · · ∪ Bn)) ∪ B2 ∪ · · · ∪ Bn because
v |= τnd

B\(B2∪···∪Bn)(e1) ∧ τ
nd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en).
Inductive case 2,e = e1| · · · |en: By definition[e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. By definition

τnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en). Becausev |= τnd

B (e1| · · · |en), v |= τnd
B (ei) for some

i ∈ {1, . . . , n}. By the induction hypothesis there isE ∈ [ei]s with the given property. We get the
induction hypothesis fore because[ei]s ⊆ [e]s and hence alsoE ∈ [e]s.

Therefores′ is obtained froms by making some literals inE ∈ [e]s true and retaining the
values of state variables not mentioned inE, ands′ ∈ imgo(s). �

4.2 Computing with transition relations as formulae

As discussed in Section 2.3, formulae are a representation of sets of states. In this section we show
how operations on transition relations have a counterpart as operations on formulae that represent
transition relations.

Most implementations of the techniques in this section are based on binary decision diagrams
(BDDs) [Bryant, 1992], a representation (essentially a normal form) of propositional formulae
with useful computational properties, but the techniques are applicable to other representations of
propositional formulae as well.

4.2.1 Existential and universal abstraction

The most important operations performed on transition relations represented as propositional for-
mulae are based onexistential abstractionanduniversal abstraction.

Definition 4.8 Existential abstractionof a formulaφ with respect to an atomic propositiona is
the formula

∃a.φ = φ[>/a] ∨ φ[⊥/a].

Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition 4.9 Universal abstractionof a formulaφ with respect to an atomic propositiona is the
formula

∀a.φ = φ[>/a] ∧ φ[⊥/a].

Existential and universal abstraction ofφ with respect to aset of atomic propositionsis defined
in the obvious way: forB = {b1, . . . , bn} such thatB is a subset of the propositional variables
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occurring inφ define
∃B.φ = ∃b1.(∃b2.(. . .∃bn.φ . . .))
∀B.φ = ∀b1.(∀b2.(. . .∀bn.φ . . .)).

In the resulting formulae there are no occurrences of variables inB.
Let φ be a formula overA. Then∃A.φ is a formula that consists of the constants> and⊥ and

the logical connectives only. The truth-value of this formula is independent of the valuation ofA,
that is, its value is the same for all valuations.

The following lemma expresses the important properties of existential and universal abstrac-
tion. When we writev ∪ v′ for a pair of valuations we view valuationsv as binary relations, that
is, sets of pairs such that{(a, b), (a, c)} 6∈ v for anya, b andc such thatb 6= c.

Lemma 4.10 Letφ be a formula overA ∪A′ andv′ a valuation ofA′. Then

1. v′ |= ∃A.φ if and only if(v ∪ v′) |= φ for at least one valuationv ofA, and

2. v′ |= ∀A.φ if and only if(v ∪ v′) |= φ for all valuationsv ofA.

Proof: We prove the statements by induction on the cardinality ofA. We only give the proof for
∃. The proof for∀ is analogous to that for∃.

Base case|A| = 0: There is only one valuationv = ∅ of the empty setA = ∅. When there is
nothing to abstract we have∃∅.φ = φ. Hence triviallyv′ |= ∃∅.φ if and only if (v ∪ ∅) |= φ.

Inductive case|A| ≥ 1: Take anya ∈ A. v′ |= ∃A.φ if and only if v′ |= ∃A\{a}.(φ[>/a] ∨
φ[⊥/a]) by the definition of∃a.φ. By the induction hypothesisv′ |= ∃A\{a}.(φ[>/a]∨ φ[⊥/a])
if and only if (v0∪v′) |= φ[>/a]∨φ[⊥/a] for at least one valuationv0 ofA\{a}. Since the formula
φ[>/a] ∨ φ[⊥/a] represents both possible valuations ofa in φ, the last statement is equivalent to
(v ∪ v′) |= φ for at least one valuationv of A. �

4.2.2 Images and preimages as formula manipulation

Let A = {a1, . . . , an}, A′ = {a′1, . . . , a′n} andA′′ = {a′′1, . . . , a′′n}. Let φ1 be a formula over
A ∪ A′ andφ2 be a formula overA′ ∪ A′′. The formulae can be viewed as representations of
2n × 2n matrices or as transition relations over a state space of size2n.

The product matrix ofφ1 andφ2 is represented by a the following formula overA ∪A′′.

∃A′.φ1 ∧ φ2

Example 4.11 Let φ1 = a ↔ ¬a′ andφ2 = a′ ↔ a′′ represent two actions, reversing the truth-
value ofa and doing nothing. The sequential composition of these actions is

∃a′.φ1 ∧ φ2 = ((a↔ ¬>) ∧ (> ↔ a′′)) ∨ ((a↔ ¬⊥) ∧ (⊥ ↔ a′′))
≡ ((a↔ ⊥) ∧ (> ↔ a′′)) ∨ ((a↔ >) ∧ (⊥ ↔ a′′))
≡ a↔ ¬a′′.

�

This idea can be used for computing the images, preimages and strong preimages of operators
and sets of states in terms of formula manipulation by existential and universal abstraction. Table
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matrices formulas sets of states
vectorV1×n formula overA set of states
matrixMn×n formula overA ∪A′ transition relation
V1×n + V ′

1×n φ1 ∨ φ2 set union
φ1 ∧ φ2 set intersection

Mn×n ×Nn×n ∃A′.(τnd
A (o) ∧ τnd

A (o′)[A′′/A′, A′/A])[A′/A′′] sequential compositiono ◦ o′
V1×n ×Mn×n (∃A.(φ ∧ τnd

A (o)))[A/A′] imgo(T )
Mn×n × Vn×1 ∃A′.(τnd

A (o) ∧ φ[A′/A]) preimgo(T )
∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o) spreimgo(T )

Table 4.1: Correspondence between matrix operations, Boolean operations and set-
theoretic/relational operations. AboveT = {s ∈ S|s |= φ}, M is the matrix corresponding
to τnd

A (o) andN is the matrix corresponding too′.

4.1 outlines a number of connections between operations on vectors and matrices, on propositional
formulae, and on sets and relations. For transition relations we use valuations ofA ∪ A′ for
representing pairs for states and for states we use valuations ofA.

Lemma 4.12 Let φ be a formula overA and v a valuation ofA. Thenv |= φ if and only if
v[A′/A] |= φ[A′/A], and(φ[A′/A])[A/A′] = φ.

Definition 4.13 Leto be an operator andφ a formula. Define

imgo(φ) = (∃A.(φ ∧ τnd
A (o)))[A/A′]

preimgo(φ) = ∃A′.(τnd
A (o) ∧ φ[A′/A])

spreimgo(φ) = ∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o).

Theorem 4.14 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= imgo(φ)} = {s ∈ S|s |=
(∃A.(φ ∧ τnd

A (o)))[A/A′]} = imgo(T ).

Proof: s′ |= (∃A.(φ ∧ τnd
A (o)))[A/A′]

iff s′[A′/A] |= ∃A.(φ ∧ τnd
A (o)) L4.12

iff there is valuations of A such that(s ∪ s′[A′/A]) |= φ ∧ τnd
A (o) L4.10

iff there is valuations of A such thats |= φ and(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss ∈ T such that(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss ∈ T such thats′ ∈ imgo(s) L4.7
iff s′ ∈ imgo(T ).

�

Theorem 4.15 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= preimgo(φ)} = {s ∈ S|s |=
∃A′.(τnd

A (o) ∧ φ[A′/A])} = preimgo(T ).
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Proof: s |= ∃A′.(τnd
A (o) ∧ φ[A′/A])

iff there iss′0 : A′ → {0, 1} such that(s ∪ s′0) |= τnd
A (o) ∧ φ[A′/A]

iff there iss′0 : A′ → {0, 1} such thats′0 |= φ[A′/A] and(s ∪ s′0) |= τnd
A (o) L4.10

iff there iss′ : A→ {0, 1} such thats′ |= φ and(s ∪ s′0) |= τnd
A (o) L4.12

iff there iss′ ∈ T such that(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss′ ∈ T such thats′ ∈ imgo(s) L4.7
iff there iss′ ∈ T such thats ∈ preimgo(s′) (5) of L2.2
iff s ∈ preimgo(T ).

Above we defines′ = s′0[A/A
′] (and hences′0 = s′[A′/A].) �

Theorem 4.16 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= spreimgo(φ)} = {s ∈ S|s |=
∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o)} = spreimgo(T ).

Proof:
s |= ∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o)

iff s |= ∀A′.(τnd
A (o)→φ[A′/A]) ands |= ∃A′.τnd

A (o)
iff (s ∪ s′0) |= τnd

A (o)→φ[A′/A] for all s′0 : A′ → {0, 1} ands |= ∃A′.τnd
A (o) L4.10

iff (s ∪ s′0) 6|= τnd
A (o) or s′0 |= φ[A′/A] for all s′0 : A′ → {0, 1} ands |= ∃A′.τnd

A (o)
iff (s ∪ s′[A′/A]) 6|= τnd

A (o) or s′ |= φ for all s′ : A→ {0, 1} ands |= ∃A′.τnd
A (o) L4.12

iff s′ 6∈ imgo(s) or s′ |= φ for all s′ : A→ {0, 1} ands |= ∃A′.τnd
A (o) L4.7

iff s′ ∈ imgo(s) impliess′ |= φ for all s′ : A→ {0, 1} ands |= ∃A′.τnd
A (o)

iff imgo(s) ⊆ T ands |= ∃A′.τnd
A (o)

iff imgo(s) ⊆ T and there iss′ : A→ {0, 1} with (s ∪ s′[A′/A]) |= τnd
A (o) L4.10

iff imgo(s) ⊆ T and there iss′ : A→ {0, 1} with s′ ∈ imgo(s) L4.7
iff imgo(s) ⊆ T and there iss′ ∈ T with s′ ∈ imgo(s)
iff imgo(s) ⊆ T and there iss′ ∈ T with sos′

iff s ∈ spreimgo(T ).
Above we defines′ = s′0[A/A

′] (and hences′0 = s′[A′/A].) �

Corollary 4.17 Let o = 〈c, (e1| · · · |en)〉 be an operator such that allei are deterministic. The
formula spreimgo(φ) is logically equivalent to regrnd

o (φ) as given in Definition 4.1.

Proof: By Theorems 4.2 and 4.16{s ∈ S|s |= regro(φ)} = spreimgo({s ∈ S|s |= φ}) = {s ∈
S|s |= spreimgo(φ)}. �

Example 4.18 Let o = 〈c, a ∧ (a B b)〉. Then

regrnd
o (a ∧ b) = c ∧ (> ∧ (b ∨ a)) ≡ c ∧ (b ∨ a).

The transition relation ofo is represented by

τnd
A (o) = c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c↔ c′).
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The preimage ofa ∧ b with respect too is represented by

∃a′b′c′.((a′ ∧ b′) ∧ τnd
A (o)) ≡ ∃a′b′c′.((a′ ∧ b′) ∧ c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c↔ c′))

≡ ∃a′b′c′.(a′ ∧ b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃b′c′.(b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃c′.(c ∧ (b ∨ a) ∧ c′)
≡ c ∧ (b ∨ a)

�

Hence regression for nondeterministic operators (Definition 4.1) can be viewed as a specialized
method for computing preimages of sets of states represented as formulae.

Many algorithms include the computation of the union of images or preimages with respect
to all operators, for example

⋃
o∈O imgo(T ), or in terms of formulae,

∨
o∈O imgo(φ) whereT =

{s ∈ S|s |= φ}. A technique used by many implementations of such algorithms is the following.
Instead of computing the images or preimages one operator at a time, construct a combined tran-
sition relation for all operators. For an illustration of the technique, considerimgo1(φ)∨ imgo2(φ)
that represents the union of state sets represented byimgo1(φ) andimgo2(φ). By definition

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τnd
A (o1)))[A/A′] ∨ (∃A.(φ ∧ τnd

A (o2)))[A/A′].

Since substitution commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τnd
A (o1))) ∨ (∃A.(φ ∧ τnd

A (o2)))[A/A′].

Since existential abstraction commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.((φ ∧ τnd
A (o1)) ∨ (φ ∧ τnd

A (o2))))[A/A′].

By logical equivalence finally

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ (τnd
A (o1) ∨ τnd

A (o2))))[A/A′].

Hence an alternative way of computing the union of images
∨

o∈O imgo(φ) is to first form the
disjunction

∨
o∈O τ

nd
A (o) and then conjoin the formula withφ and only once existentially abstract

the propositional variables inA.
The definitions ofpreimgo(φ) andspreimgo(φ) allow using

∨
o∈O τ

nd
A (o) in the same way.

Note that defining progression for arbitrary formulae (sets of states) seems to require the ex-
plicit use of existential abstraction with potential exponential increase in formula size. A simple
syntactic definition of progression similar to that of regression does not seem to be possible be-
cause the value of a state variable in a given state cannot be stated in terms of the values of the
state variables in the successor state. This is because of the asymmetry of deterministic actions:
the current state and an operator determine the successor state uniquely but the successor state
and the operator do not determine the current state uniquely. In other words, the changes that
take place are a function of the current state, but not a function of the successor state. Taking an
action erases the information that determines which changes take place between two states. This
information is visible in the predecessor state but not in the successor state.
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4.3 Problem definition

We state the conditional planning problem in the general form. Because the number of observa-
tions that are possible has a very strong effect on the type of solution techniques that are applicable,
we will discuss algorithms for three classes of planning problems that are defined in terms of re-
strictions on the setB of observable state variables.

The setB did not appear in the definition of deterministic planning. This is the set ofobservable
state variables. The idea is that plans can make decisions about what operations to apply and how
the execution proceeds based on the values of the observable state variables. Restrictions on
observability and sensing emerge because of various restrictions on the sensors human beings and
robots have: typically only a small part of the world can be observed.

However, because of nondeterminism and the possibility of more than one initial state, it is
in general not possible to use the same sequence of operators for reaching the goals from all the
initial states, and a more general notion of plans has to be used.

Nondeterministic planning problems under certain restrictions have very different properties
than the problem in its full generality. In Chapter 3 we had the restriction to one initial state (I
was defined as a valuation) and deterministic operators. We relax these two restrictions in this
chapter, but still consider two special cases obtained by restrictions on the setB of observable
state variables.

1. Full observability.

This is the most direct extension of the deterministic planning problem of the previous
chapter. The difference is that we have to use a more general notion of plans with branches
(and with loops, if there is no upper bound on the number of actions that might be needed
to reach the goals.)

2. No observability.

Planning without observability can be considered more difficult than planning with full ob-
servability, although they are in many respects not directly comparable.

The main difference to deterministic planning as discussed in Chapter 3 and to planning
with full observability is that during plan execution it is not known what the actual current
state is, and there are several possible current states. This complication means that planning
takes place inthe belief space: the role of individual states in deterministic planning is
taken by sets of states, calledbelief states.

Because no observations can be made, branching is not possible, and plans are still just
sequences of actions, just like in deterministic planning with one initial state.

The type of observability we consider in this lecture is very restricted as only values of in-
dividual state variables can be observed (as opposed to arbitrary formulae) and observations are
independent of what operators have been executed before. Hence we cannot for example directly
express special sensing actions. However, extensions to the above definition like sensing actions
can be relatively easily reduced to the basic definition but we will not discuss this topic further.

4.3.1 Memoryless plans

We use two definitions of plans. The simpler definition, formalized as mappings from states
to operators, is applicable to fully observable planning problems only. The general definition
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has a sufficient generality for all kinds of planning problems, and includes the sequential plans
considered for deterministic planning as a special case.

Definition 4.19 Let 〈A, I,O,G, V 〉 be a succinct transition system. LetS be the set of states (all
Boolean valuations ofA). Then amemoryless planis a partial functionπ : S → O.

To be able to execute a memoryless plan the current state must always be known, otherwise the
correct operator in general cannot be correctly chosen. Hence we always assume full observability
when using a memoryless plan. In the context of Markov decision processes (see Section 5.5)
memoryless plans are also known aspoliciesor history dependent policies.

We define the satisfaction of plan objectives in terms of the transition system that is obtained
when the original transition system is being controlled by a plan, that is, the plan chooses which
of the transitions possible in a state is taken.

Definition 4.20 (Execution graph of a memoryless plan)Letπ be a memoryless plan for a suc-
cinct transition system〈A, I,O,G, V 〉. Then theexecution graphof π and the transition system is
the graph〈S,E〉 where

1. E ⊆ S × S and

2. (s, s′) ∈ E if s′ ∈ imgo(s).

The statess such thats |= I areinitial nodesof the execution graph, and the statess such that
s |= G aregoal nodesof the execution graph. We have introduced the nodes of an execution graph
as a notion that is separate from the states in the transition system because for the more general
notion of plans we define next these two notions do not coincide.

4.3.2 Conditional plans

Plans determine what actions are executed. We formalize plans as a form of directed graphs. Each
node is assigned an operator and information on zero or more successor nodes.

Definition 4.21 Let Π = 〈A, I,O,G, V 〉 be a succinct transition system. Aplan for Π is a triple
〈N, b, l〉 where

1. N is a finite set of nodes,

2. b ⊆ L×N maps initial states to starting nodes, and

3. l : N → O × 2L×N is a function that assigns each noden an operator and a set of pairs
〈φ, n′〉whereφ is a formula over the observable state variablesV andn′ ∈ N is a successor
node.

Nodesn with l(n) = 〈o, ∅〉 for someo ∈ O are terminal nodes.

Ignoring the operators and branch formulae in a planπ we can construct a graphG(π) =
〈N,E〉 with E ⊆ N ×N such that〈n, n′〉 ∈ E iff 〈φ, n′〉 ∈ B for l(n) = 〈o,B〉 and someφ. A
planπ is acyclic if there is no non-trivial path starting and ending at the same node inG(π).

Plan execution starts from a noden ∈ N and states such that〈φ, n〉 ∈ b ands |= I ∧ φ.
Execution in noden with l(n) = 〈o,B〉 proceeds by executing the operatoro and then testing for
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each〈φ, n′〉 ∈ l(n) whetherφ is true in all possible current states, and if it is, continuing execution
from plan noden′. At most oneφ may be true for this to be well-defined. Plan execution ends
when none of the branch labels matches the current state. In a terminal node plan execution
necessarily ends.

Definition 4.22 (Execution graph of a conditional plan) Let〈A, I,O,G, V 〉 be a succinct tran-
sition system andπ = 〈N, b, l〉 be a plan. Definethe execution graphof π as a pair〈M,E〉 where

1. M = S × (N ∪ {⊥}), whereS is the set of Boolean valuations ofA,

2. E ⊆M×M has an edge from〈s, n〉 ∈ S×N to 〈s′, n′〉 ∈ S×N if and only ifl(n) = 〈o,B〉
and for some〈φ, n′〉 ∈ B

(a) s′ ∈ imgo(s) and

(b) s′ |= φ.

and an edge from〈s, n〉 ∈ S ×N to 〈s′,⊥〉 if and only if

(a) l(n) = 〈o,B〉,
(b) s′ ∈ imgo(s), and

(c) there is no〈φ, n′〉 ∈ B such thats′ |= φ.

The initial nodesof these execution graphs are nodes〈s, n〉 such thats |= I ands |= φ for
some〈φ, n〉 ∈ b.

Thegoal nodesof these execution graphs are nodes〈s, n〉 such thats |= G.
We can translate every memoryless plan to a conditional plan.

Definition 4.23 Let 〈A, I,O,G, V 〉 be a succinct transition system. LetS be the set of all states
onA. Letπ : S → O be a memoryless plan. DefineC(π) = 〈N, b, l〉 where

1. N = O,

2. b = {〈FMA({s ∈ S|π(s) = o}), o〉|o ∈ O}, and

3. l(o) = (o, {〈FMA({s ∈ S|π(s) = o}), o′〉|o′ ∈ O}) for all o ∈ O.

AboveFMA(T ) is a formulaφ such thatT = {s ∈ S|s |= φ}.
The memoryless planπ corresponds the conditional planC(π) in the sense that the subgraphs

induced by the initial nodes are isomorphic, and this isomorphism preserves both initial and goal
nodes.

4.3.3 Decision problems

There are different types of objectives the plans may have to fulfill. The most basic one, considered
in much of AI planning research, is the reachability of a goal state. In this case every plan execution
has a finite length. Also problems with infinite plan executions can be considered. A plan does
not reach a goal and terminate, but is a continuing process that has to repeatedly reach goal states
or avoid visiting bad states. Examples of these are different kinds of maintenance tasks: keep a
building clean and transport mail from location A to location B.
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We consider two objectives defined in terms of finite plan executions. The first objective re-
quires, just like in deterministic planning, that a goal state is reached after a given number of
operator executions.

Not all planning problems that have an intuitively plausible solution are solvable under this
objective. A problem that is intuitively solvable is tossing a coin until it yields heads. This problem
can be in practice always solved after a small number of tosses but because there is no guaranteed
upper bound on the number of tosses that are needed, under the first objective it is not solvable.
Hence we also consider another objective.

The second objective requires that from every state that can be reached by executing the plan,
the plan is either a goal state or a goal state is reachable by executing the plan further.

The third objective we consider is defined in terms of infinite plan executions. The objective
requires that all executions of a plan are infinite, and on every execution all states that are visited
are goal states. This objective is known asmaintenancebecause the transition system has to be
kept in one of the goal states.

Other infinite horizon objectives that are defined in terms of expected costs/rewards are used in
connection with probabilistic planning, see Section 5.3.

Definition 4.24 (Bounded reachability) A planπ for 〈A, I,O,G, V 〉 under theBounded Reach-
ability criterion fulfills the following.

For all initial nodesx in the execution graph, all paths starting fromx have a finite length and
maximal paths end in a goal node.

Definition 4.25 (Unbounded reachability) A plan π for 〈A, I,O,G, V 〉 under theUnbounded
Reachabilitycriterion fulfills the following.

For all initial nodesx in the execution graph, for everyx′ to which there is a path fromx there
is a path fromx′ of length≥ 0 to somex′′ such thatx′′ is a goal node without successor nodes.

This plan objective with unbounded looping can be interpreted probabilistically. For every
nondeterministic choice in an operator we have to assume that each of the alternatives has a non-
zero probability. Then for goal reachability, a plan with unbounded looping is simply a plan that
has no finite upper bound on the length of its executions, but that with probability 1 eventually
reaches a goal state. A non-looping plan also reaches a goal state with probability 1, but there is a
finite upper bound on the execution length.

Definition 4.26 (Maintenance) A plan π for 〈A, I,O,G, V 〉 under theMaintenancecriterion
fulfills the following.

All nodesx in the execution graph to which there is a path of length≥ 0 from an initial node
of the execution graph are goal nodes and have a successor node.

Example 4.27 Consider the plan〈N, b, l〉 for a problem instance with the operatorsO = {o1, o2, o3},
where

N = {1, 2}
b = {〈>, 1〉}

l(1) = 〈o3, {〈φ1, 1〉, 〈φ2, 2〉, 〈φ3, 3〉}〉
l(2) = 〈o2, {〈φ4, 1〉, 〈φ5, 3〉}〉

This could be visualized as the program.
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1: o3
CASE
φ1: GOTO 1
φ2: GOTO 2
¬(φ1 ∨ φ2): GOTO 3

2: o2
CASE
φ4: GOTO 1
¬φ4: GOTO 3

3:
Every plan〈N, b, l〉 can be written as such a program. �

A plan isacyclic if it is a directed acyclic graph in the usual graph theoretic sense.

4.4 Planning with full observability

Nondeterminism causes several The differences to algorithms for deterministic planning The main
difference is that successor states are not uniquely determined by the current state and the action,
and different action may be needed for each successor state. Further, nondeterminism may require
loops. Consider tossing a die until it yields 6. Plan for this task involves tossing the die over
and over, and there is no upper bound on the number of tosses that might be needed.1 Hence we
need plans with loops for representing the sequences of actions of unbounded length required for
solving the problem.

Below in Section 4.4.1 we first discuss the simplest algorithm for planning with nondetermin-
ism and full observability. The plans this algorithm produces are acyclic, and the algorithm does
not find plans for problem instances that only have plans with loops. Then in Section 4.4.2 we
present an algorithm that also produces plans with loops. The structure of the algorithm is more
complicated. The algorithms can be implemented by using data structures like binary decision
diagrams which makes it possible to utilize the regularities in the state space and to solve very big
planning problems. Representation of planning problems with these logic-based data structures is
explained in Section 4.2.

4.4.1 An algorithm for constructing acyclic plans

Next we present an algorithm for constructing acyclic plans for nondeterministic problem with full
observability. Acyclicity means that during any execution of the plan no state is visited more than
once. Not all nondeterministic planning problems that have an intuitively acceptable solution have
a solution as an acyclic plan. For a more detailed discussion of this topic and related algorithms
see[Cimatti et al., 2003].

The basic algorithm is for transition systems as in Definition 2.1 but the techniques in Section
4.2 can be directly applied to obtain a logic-based algorithm for succinct transition systems (Def-
inition 2.11 in Section 2.3) that can be implemented easily by using any publicly available BDD
package.

In the first phase the algorithm computes distances of the states. In the second phase the
algorithm constructs a plan based on the distances.

1However, for everyp > 0 there is a finite plan that reaches the goal with probabilityp or higher.
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distance toG
∞ 3 2 1 0

G

Figure 4.1: Goal distances in a nondeterministic transition system

Let G be a set of states andO a set of operators. Then we define thebackward distance sets
Dbwd

i for G,O that consist of those states for which there is a guarantee of reaching a state inG
with at mosti operator applications.

Dbwd
0 = G

Dbwd
i = Dbwd

i−1 ∪
⋃

o∈O spreimgo(Dbwd
i−1) for all i ≥ 1

Definition 4.28 LetG be as set of states andO a set of operators, and letDbwd
0 , Dbwd

1 , . . . be the
backward distance sets forG andO. Thenthe backward distanceof a states toG is

δbwd
G (s) =

{
0 if s ∈ G
i if s ∈ Dbwd

i \Dbwd
i−1

If s 6∈ Dbwd
i for all i ≥ 0 thenδbwd

G (s) = ∞.

Example 4.29 We illustrate the distance computation by the diagram in Figure 4.1. The set of
states with distance 0 is the set of goal statesG. States with distancei are those for which there
is an action that always leads to states with distancei − 1 or smaller. In this example the action
depicted by the solid arrow has this property for every state. The dashed arrows depict the second
action which for no state is guaranteed to get closer to the goal states. States for which there is no
finite upper bound on the number of actions for reaching a goal state have distance∞. �

Given the backward distance sets we can construct a plan covering all states having a finite
backward distance. LetS′ ⊆ S be those states having a finite backward distance. The planπ is
defined by assigning for everys ∈ S such thatδbwd

G (s) ≥ 1 π(s) any operatoro ∈ O such that
imgo(s) ⊆ Dbwd

i−1 wherei = δbwd
G (s).

The plan execution starts from one of the initial states. As we have full observability, we may
observe the current states and then execute the action corresponding to the operatorπ(s), reaching
one of the successor statess′ ∈ imgo(s). The plan execution proceeds by repeatedly observing the
new current states′ and executing the associated actionπ(s′) until the current state is a goal state.
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Lemma 4.30 Let a states be inDj . Then there is a plan that reaches a goal state froms by at
mostj operator applications.

The algorithm can be implemented by using logic-based data structures and operations defined
in Section 4.2 by representing the set of goal states as a formula, using the logic-based operation
spreimgo(φ) instead of the set-based operationspreimgo(T ) for computing the setsDbwd

i that
are also represented as formulae, and replacing all set-theoretic operations like∪ and∩ by the
respective logical operations∨ and∧.

4.4.2 An algorithm for constructing plans with loops

There are many nondeterministic planning problems that require plans with loops because there is
no finite upper bound on the number of actions that might be needed for reaching the goals. These
plan executions with an unbounded length cannot be handled in acyclic plans of a finite size. For
unbounded execution lengths we have to allow loops (cycles) in the plans.

Example 4.31 �

The problem is those states that do not have a finite strong distance as defined Section 4.4.1.
Reaching the goals from these states is either impossible or there is no finite upper bound on the
number of actions that might be needed. For the former states nothing can be done, but the latter
states can be handled by plans with loops.

We present an algorithm based on a generalized notion of distances that does not require reach-
ability by a finitely bounded number of actions. The algorithm is based on the procedureprunethat
identifies a set of states for which reaching a goal state eventually is guaranteed. The procedure
pruneis given in Figure 4.2.

We introduce some terminology. LetS be a set of states,O a set of operators, andx : S → O
a mapping from states to operators. A sequences0, . . . , sn of states is anexecutionif for all
i ∈ {1, . . . , n} there iso ∈ O such thatsi ∈ imgo(si−1), and it is anexecution ofx if si ∈
imgx(si−1)(si−1) for all i ∈ {1, . . . , n}.

Lemma 4.32 (Procedure prune)Let S be a set of states,O a set of operators andG ⊆ S a
set of states. Then the procedure call prune(S,O,G) will terminate after a finite number of steps
returning a set of statesW ⊆ S such that there is functionx : W → O such that

1. for everys ∈ W there is an executions0, s1, . . . , sn of x with n ≥ 1 such thats = s0 and
sn ∈ G,

2. imgx(s)({s}) ⊆W ∪G for everys ∈W , and

3. There is no functionx satisfying the above properties for states not inW : for everys ∈
S\W and functionx′ : S → O there is an executions0, . . . , sn of x′ such thats = s0 and
there is nom ≥ n and executionsn, sn+1, . . . , sm such thatsm ∈ G.

Proof: The proof is by two nested induction proofs that respectively correspond to the repeat-until
loops on lines 9 and 13 in the procedureprune. If there is no plan that is guaranteed to reach a goal
state from a states, then this is because for any plan after some number of executions stepsi it is
possible to reach a state from which no sequence actions can reach a goal state. A plan covering
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1: procedureprune(S,O,G);
2: W−1 := S;
3: W0 := ∅;
4: repeat
5: W ′

0 :=W0;
6: W0 := (W ′

0 ∪
⋃

o∈O preimgo(W ′
0 ∪G)) ∩ S;

7: until W0 = W ′
0; (* States from which a goal state can be reached by≥ 1 operators *)

8: i := 0;
9: repeat

10: i := i+ 1;
11: k := 0;
12: S0 := ∅;
13: repeat
14: k := k + 1; (* States from which a state inG is reachable with≤ k steps. *)
15: Sk := Sk−1 ∪

⋃
o∈O(S ∩ preimgo(Sk−1 ∪G) ∩ spreimgo(Wi−1 ∪G));

16: until Sk = Sk−1; (* States that stay withinWi−1 before reachingG. *)
17: Wi := Sk;
18: until Wi = Wi−1; (* States inWi stay withinWi before reachingG. *)
19: return Wi;

Figure 4.2: Algorithm for detecting a loop that eventually makes progress

all other states exists with an execution reaching a goal state in someh steps. The outer loop and
induction go throughi = 0, 1, 2, . . . and the inner loop and induction throughh = 0, 1, 2, . . ..

Induction hypothesis: There is functionx : Wi → O such that

1. for everys ∈Wi there is an executions0, . . . , sn of x such thatn ≥ 1, s = s0 andsn ∈ G,

2. imgx(s)({s}) ⊆Wi−1 ∪G for everys ∈Wi, and

3. for all functionsx′ : S → O and statess ∈ S\Wi there isi′ ∈ {0, . . . , i} and an execution
s0, . . . , si′ of x′ such thats0 = s and there is noh ≥ i′ and executionsi′ , si′+1, . . . , sh such
thatsh ∈ G.

Base casei = 0:

1. W0 has been computed to fulfill exactly this property. We denote the value of the variables
W0 in the end of iterationi of the first repeat-until loop byW0,i.

Induction hypothesis:

(a) There is a functionx : W0,j → O such that there is an execution ofx for every
s ∈W0,j of lengthj ≥ 1 reaching a state inG.

(b) For states not inW0,j there is nox with this property.

Base casej = 1: After the first iterationW0,1 =
⋃

o∈O preimgo(G). Hence for every
s ∈W0,1 assignx(s) = o for anyo such thats ∈ preimgo(G).

(a) Now there is an execution of length 1 from anys ∈W0,1 to a state inG.
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(b) For states not inW0,1 no operator alone may reach a state inG.

Inductive casej ≥ 2: By induction hypothesis there is a functionx with execution of length
j − 1 ≥ 1 for reaching a state inG for every state for which such an execution exists. We
extend this function to cover statess ∈ W0,j\W0,j−1 as follows:x(s) = o for anyo such
thats ∈ preimgo(W0,j−1 ∪G).

(a) For anys ∈ W0,j there is an execution ofx reaching a state inG because for states
s ∈W0,j−1 this is by the induction hypothesis, and for states inW0,j\W0,j−1 applying
the operatorx(s) may reach a state inW0,j−1 for which an execution reachingG exists
by the induction hypothesis.

(b) Let s be a state such that there is a functionx′ : S → O with an execution that
reachesG from s with j steps. Hence there is a states′ for which an execution with
x′ reachesG from s′ with j − 1 steps. Hence by the induction hypothesiss ∈W0,j−1

and consequentlys ∈ preimgx′(s)(W0,j−1). Therefore for any state not inW0,j there
is no such functionx′.

2. AsW−1 = S trivially imgx(s)({s}) ⊆W−1 ∪G.

3. Statess ∈ W0\W−1 are exactly those states from which no operator sequence leads toG
by construction ofW0, as shown above.

Inductive casei ≥ 1: For the innerrepeat-untilloop we prove inductively the following.
Induction hypothesis: There is functionx : Sk → O such that

1. for everys ∈ Sk there is an executions0, s1, . . . , sn of x such thatn ∈ {1, . . . , k}, s = s0
andsn ∈ G,

2. imgx(s)({s}) ⊆Wi−1 ∪G for everys ∈ Sk, and

3. for all functionsx′ : S → O and statess ∈ S\Sk either

(a) there isi′ ∈ {0, . . . , i} and an executions0, . . . , si′ of x′ such thats0 = s and there is
noh ≥ i′ and executionsi′ , si′+1, . . . , sh such thatsh ∈ G, or

(b) there is nok′ ∈ {1, . . . , k} and an executions0, . . . , sk′ of x′ such thats0 = s and
sk′ ∈ G.

Base casek = 0: SinceS0 = ∅, cases (1) and (2) trivially hold for everys ∈ S0. It remains to
show the third component of the induction hypothesis.

3. For anys ∈ S\S0 = S (3b) is satisfied because it requires executions to be longer than
k = 0.

Inductive casek ≥ 1: We extend the functionx : Sk−1 → O to cover states inSk\Sk−1.
Let s be any state inSk. If s ∈ Sk−1 then properties (1) and (2) are by the induction hypothesis.
Otherwises ∈ Sk\Sk−1. Therefore by definition ofSk, s ∈ preimgo(Sk−1∪G)∩spreimgo(Wi−1∪
G) for someo ∈ O.
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1. As s ∈ preimgo(Sk−1∪G) for someo ∈ O, by (4) of Lemma 2.2 eithers ∈ preimgo(Sk−1)
or s ∈ preimgo(G).

If s ∈ preimgo(G) then we setx(s) = o. The desired execution consists ofs and a state
s′ ∈ G.

If s ∈ preimgo(Sk−1)\preimgo(G) then there is a states′ ∈ Sk−1 such thats′ ∈ imgo({s}).
By the induction hypothesis there is an execution ofx starting froms′ that ends in a goal
state. Fors such an execution is obtained by prefixing witho, so we definex(s) = o.

2. Sinces ∈ spreimgo(Wi−1 ∪G) by (2) and (3) of Lemma 2.2imgo({s}) ⊆Wi−1 ∪G.

3. Take anys ∈ S\Sk. Now for every operatoro ∈ O, eithers 6∈ spreimgo(Wi−1 ∪ G) or
s 6∈ preimgo(Sk−1 ∪G). Consider any functionx′ : S → O such thatx′(s) = o.

In the first case by the outer induction hypothesis there isi′ ∈ {0, . . . , i − 1} and an ex-
ecutions0, . . . , si′ of x′ such thats0 ∈ imgo(s) and there is noh ≥ i′ and execution
si′ , si′+1, . . . , sh such thatsh ∈ G. Hence executingo first could similarly lead to the state
si′ from which no goal could be reached, now requiringi steps.

In the second case by the inner induction hypothesis for alls′ ∈ imgo(s) there is no execu-
tion of lengthk − 1 ending in a goal state.

Since this holds for anyo ∈ O, everyx′ has one of these properties.

This completes the inner induction. To establish the induction step of the outer induction
consider the following. The inner repeat-until loops ends whenSk = Sk−1. This means that
Sz = Sk for all z ≥ k. Hence executions for reaching a goal state for (1) and (3) are allowed to
have arbitrarily high lengthk. The outer induction hypothesis is obtained from the inner induction
hypothesis by removing the upper bound and replacingSk byWi. By constructionWi = Sk.

This finishes the outer induction proof. The claim of the lemma is obtained from the outer
induction hypothesis by noticing that the outer loop exits whenWi = Wi−1 (it will exit after a
finite number of iterations becauseW0 is finite and its size decreases on every iteration) and by
replacing bothWi andWi−1 byW we obtain the claim of the lemma. �

The algorithm in Figure 4.3 usespruneto identify states from which a goal state is reachable
by some execution and no execution leads to a state outside the set. On line 4 the algorithm tests
whether the reachability of a goal state can be guaranteed for the initial states. If not, the algorithm
terminates. Starting on line 7 the algorithm computes theweak backward distancesto G for all
states inL. Finally, starting on line 11 the algorithm assigns every state inL\G an operator that
may reduce the distance to a goal by one.

4.4.3 An algorithm for constructing plans for maintenance goals

There are many important planning problems in which the objective is not to reach a goal state and
then stop execution. Amaintanence goalis a goal that has to hold in all time points. To achieve a
maintenance goals a plan has to keep the state of the system in a goal state indefinitely.

Plans that satisfy a maintenance goal have only infinite executions.
Figure 4.4 gives an algorithm for finding plans for maintenance goals. The algorithm starts

with the setG of all states that satisfy the property to be maintained. Then iteratively such states
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1: procedureFOplancyclic(I,O,G)
2: S := the set of all states;
3: L :=G∪ prune(S,O,G);
4: if I 6⊆ L then return false;
5: D0 :=G; (* States with weak backward distance 0 *)
6: i := 1;
7: repeat
8: Di :=Di−1 ∪

⋃
o∈O(preimgo(Di−1) ∩ spreimgo(L));

9: i := i+ 1;
10: until Di = Di−1;
11: for eachs ∈ Di\G do
12: d := number such thats ∈ Dd\Dd−1; (* State has weak backward distanced. *)
13: assignπ(s) := o such thatimgo(s) ⊆ L andimgo(s) ∩Dd−1 6= ∅;
14: end do

Figure 4.3: Algorithm for nondeterministic planning with full observability

1: procedureFOplanMAINTENANCE(I,O,G)
2: i := 0;
3: G0 :=G;
4: repeat
5: i := i+ 1; (* The subset ofGi−1 from whichGi−1 can be always reached. *)
6: Gi :=

⋃
o∈O (spreimgo(Gi−1) ∩Gi−1);

7: until Gi = Gi−1;
8: return Gi;
9: for eachs ∈ Gi do

10: assignπ(s) := o such thatimgo(s) ⊆ Gi;
11: end do

Figure 4.4: Algorithm for nondeterministic planning with full observability and maintenance goals
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are removed fromG for which the satisfaction of the property cannot be guaranteed in the next
time point. More precisely, the setsGi for i ≥ 0 consist of all those states in which the goal
objective can be maintained for the nexti time points. For somei the setsGi andGi−1 coincide,
and thenGj = Gi for all j ≥ i. This means that starting from the states inGi the goal objective
can be maintained indefinitely.

Theorem 4.33 Let I be a set of initial states,O a set of operator andG a set of goal states. Let
G′ be the set returned by the procedure FOplanMAINTENANCE in Figure 4.4.

ThenG′ ⊆ G and there is a planπ such that imgπ(s)(s) ⊆ G′ for everys ∈ G′, and for every
s ∈ S\G′ and every planπ′ there isn ≥ 1 and and an executions0, . . . , sn ofπ′ with s0 = s such
thatsn 6∈ G.

Proof:
Induction hypothesis:

1. Gi ⊆ G,

2. there is a planπ such thatimgπ(s)(s) ⊆ Gi−1 for everys ∈ Gi, and

3. for everys ∈ S\Gi and every planπ′ there isn ∈ {1, . . . , i} and an executions0, . . . , sn

of π′ with s0 = s such thatsn 6∈ G.

Base casei = 1:

1. G1 ⊆ G0 = G by construction.

2. By constructionG1 =
⋃

o∈O(spreimgo(G0) ∩G0). Hence for everys ∈ G1 there iso ∈ O
such thats ∈ spreimgo(G0)∩G0 ⊆ spreimgo(G0). Henceimgo(s) ⊆ G0. Defineπ(s) = o.
Henceimgπ(s)(s) ⊆ G0 for everys ∈ G1.

3. Consider anys ∈ S\G1. For everyo ∈ O imgo(s) 6⊆ G0 = G becauses 6∈ G1. Hence for
everys ∈ S\G1 and every planπ′ there is an executions0, s1 of π′ with s0 = s such that
s1 6∈ G.

Inductive casei ≥ 2:

1. AsGi ⊆ Gi−1 and by the induction hypothesisGi−1 ⊆ G,Gi ⊆ G.

2. By constructionGi =
⋃

o∈O(spreimgo(Gi−1) ∩ Gi−1). Hence for everys ∈ Gi there is
o ∈ O such thats ∈ spreimgo(Gi−1) ∩ Gi−1 ⊆ spreimgo(Gi−1). Henceimgo(s) ⊆ Gi−1.
Defineπ(s) = o. Hence there is a planπ such thatimgπ(s)(s) ⊆ Gi−1 for everys ∈ Gi.

3. Consider anys ∈ S\Gi. Hences 6∈ spreimgo(Gi−1) for everyo ∈ O. Hence for every
o ∈ O there iss′ ∈ S\Gi−1 such thats′ ∈ imgo(s). By the induction hypothesis for every
planπ′ there isn ∈ {1, . . . , i− 1} and an executions0, . . . , sn of π′ with s0 = s′ such that
sn 6∈ G. Hence for every planπ′ there is alson′ = n + 1 ∈ {1, . . . , i} and an execution
s, s0, . . . , sn of π′ with s0 = s′ such thatsn 6∈ G.

BecauseGi are finite sets andGi ⊆ Gi−1 and everyGi+1 is a function ofGi, Gj = Gj−1 for
somej and the loop iteration terminates after a finite number of iterations.

Now the claim of the lemma are obtained as follows.
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Figure 4.5: Example run of the algorithm for maintenance goals

1. TheG′ that is returned isG′ = Gj . By the induction proofGj ⊆ G.

2. By the termination condition of the loopGj = Gj+1 = G′. Hence by the results of the
induction proof there is a planπ such thatimgπ(s)(s) ⊆ G′ for everys ∈ G′.

3. BecauseG′ = Gj = Gj−1 andGj is a function ofGj−1, the setsGk for all k ≥ j equal
Gj . Hence the constantn for the length of executions leading outsideG can be arbitrarily
high. By the results of the induction proof for everys ∈ S\G′ and everyπ′ there isn ≥ 0
and an executions0, . . . , sn of π′ with s0 = s such thatsn 6∈ G.

�

Example 4.34 Consider the problem depicted in Figure 4.5. An animal may drink at a river and
eat at a pasture. To get from the river to the pasture it must go through a desert. Its hunger and
thirst increase after every time point after respectively leaving the pasture or the river. If either one
reaches level 3 the animal dies. The hunger and thirst levels are indicated by different colors: the
upper halves of the rectanges show thirst level and the lower halves the hunger level. Blue means
no hunger or thirst, red means much hunger or thirst. The upper left diagram shows all the possible
actions the animal can take. The objective of the animal is to stay alive. The three iterations of the
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Figure 4.6: A sorting network with three inputs

algorithm for finding a plan that satisfies the goal of staying alive are depicted by the remaining
three diagrams. The diagram on upper right depicts all the states that satisfy the goal. The diagram
on lower left depicts all the states that satisfy the goal and after which the satisfaction of the goal
can be guaranteed for at least one time period. The diagram on lower right depicts all the states
that satisfy the goal and after which the satisfaction of the goal can be guaranteed for at least two
time periods.

Further iterations of the algorithm do not eliminate further states, and hence the last diagram
depicts all those states for which the satisfaction of the goal can be guaranteed indefinitely.

Hence the only plan says that the animal has to go continuously back and forth between the
pasture and the river. The only choice the animal has is in the beginning if in the initial state it is
not at all hungry or thirsty. For instance, if it is in the desert initially, then it may freely choose
whether to first go to the pasture or the river. �

4.5 Planning without observability

4.5.1 Planning without observability by heuristic search

Planning under unobservability is similar to deterministic planning in the sense that the problem
is to find a path from the initial state(s) to the goal states. For unobservable planning, however, the
nodes in the graph do not correspond to individual states but to belief states, and the size of the
belief space is exponentially higher than the size of the state space. Algorithms for deterministic
planning have direct counterparts for unobservable planning, which is not the case for conditional
planning with full or partial observability.

Example 4.35 A sorting network[Knuth, 1998, Section 5.3.4 in 2nd edition] consists of a se-
quence of gates acting on a number of input lines. Each gate combines a comparator and a swap-
per: if the first value is greater than the second, then swap them. The goal is to sort any given input
sequence. The sorting network always has to perform the same operations irrespective of the input,
and hence constructing a sorting network corresponds to planning without observability. Figure
4.6 depicts a sorting network with three inputs. An important property of sorting networks is that
any network that sorts any sequence of zeros and ones will also sort any sequence of arbitrary
numbers. Hence it suffices to consider Boolean 0-1 input values only.

Construction of sorting networks is essentially a planning problem without observability, be-
cause there are several initial states and a goal state has to be reached by using the same sequence
of actions irrespective of the initial states.

For the 3-input sorting net the initial states are000, 001, 010, 011, 100, 101, 110, 111. and the
goal states are000, 001, 011, 111 Now we can compute the images and strong preimages of the
three sorting actions, sort12, sort02 and sort01 respectively starting from the initial or the goal
states. These yield the following belief states at different stages of the sorting network.
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000, 001, 010, 011, 100, 101, 110, 111 initially
000, 001, 011, 100, 101, 111 after sort12
000, 001, 011, 101, 111 after sort02
000, 001, 011, 111 after sort01

�

The most obvious approaches to planning with unobservability is to use regression, strong
preimages or images, and to perform backward or forward search in the belief space. The differ-
ence to forward search with deterministic operators and one initial state is that belief states are
used instead of states. The difference to backward search for deterministic planning is that re-
gression for nondeterministic operators has to be used and testing whether (a subset of) the initial
belief state has been reached involves the co-NP-hard inclusion test|= I→ regro(φ) for the belief
states. With one initial state this is an easy polynomial time testI |= regro(φ) of whetherregro(φ)
is true in the initial state.

Deriving good heuristics for heuristic search in the belief space is more difficult than in de-
terministic planning. The main approaches have been to use distances in the state space as an
estimate for distances in the belief space, and to use the cardinalities of belief spaces as a measure
of progress.

Many problems cannot be solved by blindly taking actions that reduce the cardinality of the
current belief state: the cardinality of the belief state may stay the same or increase during plan
execution, and hence the decrease in cardinality is not characteristic to belief space planning in
general, even though in many problems it is a useful measure of progress.

Similarly, distances in the state space ignore the most distinctive aspect of planning with partial
observability: the same action must be used in two states if the states are not observationally
distinguishable. A given (optimal) plan for an unobservable problem may increase the actual
current state-space distance to the goal states (on a given execution) when the distance in the
belief-space monotonically decreases, and vice versa. Hence, the state space distances may yield
wildly misleading estimates of the distances in the corresponding belief space.

Heuristics based on state-space distances

The most obvious distance heuristics are based on the backward distances in the state space.

D0 = G
Di+1 = Di ∪

⋃
o∈O spreimgo(Di) for all i ≥ 1

A lower bound on plan length for belief stateZ is j if Z ⊆ Dj andZ 6⊆ Dj−1.
Next we derive distance heuristics for the belief space based on state space distances. Backward

distances yield an admissible distance heuristic for belief states.

Definition 4.36 (State space distance)Thestate space distanceof a belief stateB is d ≥ 1 when
B ⊆ Dd andB 6⊆ Dd−1, and it is0 whenB ⊆ D0 = G.

Even though computing the exact distances for the operator based representation of state spaces
is PSPACE-hard, the much higher complexity of planning problems with partial observability
still often justifies it: this computation would in many cases be an inexpensive preprocessing
step, preceding the much more expensive solution of the partially observable planning problem.
Otherwise cheaper approximations can be used.
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Heuristics based on belief state cardinality

The second heuristic that has been used in algorithms for partial observability is simply based on
the cardinality of the belief states.

In forward search, prefer operators that maximally decrease the cardinality of the belief state.
In backward search, prefer operators that maximally increase the cardinality of the belief state.
These heuristics are not in general admissible, because there is no direct connection between

the distance to a goal belief state and the cardinalities of the current belief state and a goal belief
state. The belief state cardinality can decrease or increase arbitrarily much by one step.

4.6 Planning as satisfiability in the propositional logic and QBF

The techniques presented in Sections 3.6 and 3.6.5 can be extended to nondeterministic operators.
The notion of parallel application of operators and partially ordered plans can be generalized to
nondeterministic operators.

Let T be a set of operators ands a state such thats |= c for every〈c, e〉 ∈ T andE1 ∪ · · · ∪
En is consistent for for anyEi ∈ [ei]s, i ∈ {1, . . . , n} andT = {〈c1, e1〉, . . . 〈cn, en〉}. Then
defineimgT (s) as the set of statess′ that are obtained froms by makingE1 ∪ · · · ∪ En true ins
whereEi ∈ [ei]s for everyi ∈ {1, . . . , n}. We also use the notationsTs′ for s′ ∈ imgT (s) and
imgT (S) =

⋃
s∈S imgT (s).

4.6.1 Advanced translation of nondeterministic operators into propositional logic

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae in the
propositional logic. This translation is not sufficient for reasoning about actions and plans in a
setting with more than one agent. This is because the formulaeτnd

A (o1) ∨ · · · ∨ τnd
A (on) do not

distinguish between the choice of operator in{o1, . . . , on} and the nondeterministic effects (the
opponent) of each operator, even though the former is controllable and the latter is not.

In nondeterministic planning in general we have to treat the controllable and uncontrollable
choices differently. We cannot do this practically in the propositional logic but by using quantified
Boolean formulae (QBF) we can. For the QBF representation of nondeterministic operators
we universally quantify over all uncontrollable eventualities (nondeterminism) and existentially
quantify over controllable eventualities (the choice of operators).

We need to universally quantify over all the nondeterministic choices because for every choice
the remaining operators in the plan must lead to a goal state. This is achieved by associating with
every atomic effect a formula that is true if and only if that effect is executed, similarly to functions
EPCl(e) in Definition 3.1, so that forl to become true the universally quantified auxiliary variables
that represent nondeterminism have to have values corresponding to an effect that makesl true.

The operators are assumed to be in normal form. For simplicity of presentation we further
transform nondeterministic choicese1| · · · |en so that only binary choices exist. For example
a|b|c|d is replaced by(a|b)|(c|d). Each binary choice can be encoded in terms of one auxiliary
variable.

The condition for the atomic effectl to be executed whene is executed isEPCnd
l (e, σ). The

sequenceσ of integers is used for deriving unique names for auxiliary variables inEPCnd
l (e, σ).

The sequences correspond to paths in the tree formed by nested nondeterministic choices and
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conjunctions.

EPCnd
l (e, σ) = EPCl(e) if e is deterministic

EPCnd
l (e1|e2, σ) = (xσ ∧ EPCnd

l (e1, σ1)) ∨ (¬xσ ∧ EPCnd
l (e2, σ1))

EPCnd
l (e1 ∧ · · · ∧ en, σ) = EPCnd

l (e1, σ1) ∨ · · · ∨ EPCnd
l (en, σn)

The translation of nondeterministic operators into the propositional logic is similar to the trans-
lation for deterministic operators given in Section 3.6.4. Nondeterminism is encoded by making
the effects conditional on the values of the auxiliary variablesxσ. Different valuations of these
auxiliary variables correspond to different nondeterministic effects.

The following frame axioms express the conditions under which state variablesa ∈ A may
change from true to false and from false to true. Lete1, . . . , en be the effects ofo1, . . . , on respec-
tively. Each operatoro ∈ O has a unique integer indexΩ(o).

(a ∧ ¬a′)→((o1 ∧ EPCnd
¬a(e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd

¬a(en,Ω(on))))
(¬a ∧ a′)→((o1 ∧ EPCnd

a (e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd
a (en,Ω(on))))

Foro = 〈c, e〉 ∈ O there is a formula for describing values of state variables in the predecessor
and successor states when the operator is applied.

(o→c)∧∧
a∈A(o ∧ EPCnd

a (e,Ω(o))→a′)∧∧
a∈A(o ∧ EPCnd

¬a(e,Ω(o))→¬a′)

Example 4.37 Considero1 = 〈¬a, (b|(c B d)) ∧ (a|c)〉 ando2 = 〈¬b, (((d B b)|c)|a)〉. The
application of these operators is described by the following formulae.

¬(a ∧ ¬a′) (¬a ∧ a′)→((o1 ∧ x12) ∨ (o2 ∧ ¬x2))
¬(b ∧ ¬b′) (¬b ∧ b′)→((o1 ∧ x11) ∨ (o2 ∧ x2 ∧ x21 ∧ d))
¬(c ∧ ¬c′) (¬c ∧ c′)→((o1 ∧ ¬x12) ∨ (o2 ∧ x2 ∧ ¬x21))
¬(d ∧ ¬d′) (¬d ∧ d′)→(o1 ∧ ¬x11 ∧ c)
o1→¬a
(o1 ∧ x12)→a′ (o1 ∧ x11)→b′

(o1 ∧ ¬x12)→c′ (o1 ∧ ¬x11 ∧ c)→d′

o2→¬b
(o2 ∧ ¬x2)→a′ (o2 ∧ x2 ∧ x21 ∧ d)→b′

(o2 ∧ x2 ∧ ¬x21)→c′

�

Two operatorso ando′ may be applied in parallel only if they do not interfere. Hence we use
formulae

¬(o ∧ o′)

for all operatorso ando′ that interfere ando 6= o′.
LetX be the set of auxiliary variablesxσ in all the above formulae. The conjunction of all the

above formulae is denoted by
R3(A,A′, O,X).
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We use two lemmata for proving properties about these formulae and the translation of nonde-
terministic operators into the propositional logic.

Let Ξσ(e) be the set of propositional variablesxσ′ in the translation of the effecte with a given
σ. This is equal to the set of variablesxσ′ in formulaeEPCnd

a (e, σ) andEPCnd
¬a(e, σ)) for all

a ∈ A.

Definition 4.38 Define the set of literals[e]σ,v
s which are the active effects ofe whene is exe-

cuted in states and nondeterministic choices are determined by the valuationv of propositional
variables inΞσ(e) as follows.

[e]σ,v
s = [e]det

s if e is deterministic

[e1|e2]σ,v
s =

{
[e1]

σ1,v
s if v(xσ) = 1

[e2]
σ1,v
s if v(xσ) = 0

[e1 ∧ · · · ∧ en]σ,v
s = [e1]

σ1,v
s ∪ · · · ∪ [en]σn,v

s

Lemma 4.39 Let s be a state and{v1, . . . , vn} all valuations ofΞσ(e). Then
⋃

1≤i≤n[e]σ,vi
s =

[e]s.

Lemma 4.40 Let O and T ⊆ O be sets of operators,s and s′ states,vx a valuation ofX =⋃
〈c,e〉∈O ΞΩ(〈c,e〉)(e), andvo a valuation ofO such thatvo(o) = 1 iff o ∈ T .
Thens ∪ s′[A′/A] ∪ vo ∪ vx |= R3(A,A′, O,X) if and only if

1. s |= a iff s′ |= a for all a ∈ A such that{a,¬a} ∩
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s = ∅,

2. s′ |=
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s , and

3. s |= c for all 〈c, e〉 ∈ T .

The number of auxiliary variablesxσ can be reduced when two operatorso ando′ interfere.
Since they cannot be applied simultaneously the same auxiliary variables can control the nonde-
terminism in both operators. To share the variables rename the ones occurring in the formulae for
one of the operators so that the variables needed foro is a subset of those foro′ or vice versa.
Having as small a number of auxiliary variables as possible may be important for the efficiency
for algorithms evaluating QBF and testing propositional satisfiability.

The formulaeR3(A,A′, O,X) can be used for plan search with algorithms that evaluate QBF
(Section 4.6.2) as well as for testing by a satisfiability algorithm whether a conditional plan (with
full, partial or no observability) that allows several operators simultaneously indeed is a valid plan.

4.6.2 Finding plans by evaluation of QBF

In deterministic planning in propositional logic (Section 3.6) the problem is to find a sequence of
operators so that a goal state is reached when the operators are applied starting in the initial state.
When there are several initial states, the operators are nondeterministic and it is not possible to
use observations during plan execution for selecting operators, the problem is to find an operator
sequence so that a goal state is reached in all possible executions of the operator sequence. There
may be several executions because there may be several initial states and the operators may be
nondeterministic. Expressing the quantification over all possible executions cannot be concisely
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expressed in the propositional logic. This is the reason why quantified Boolean formulae are used
instead.

The existence of ann-step partially-ordered plan that reaches a state satisfyingG from any
state satisfying the formulaI can be tested by evaluating the QBFΦqpar

n defined as

∃Vplan∀Vnd∃Vexec

I0→(R3(A0, A1, O0, X0) ∧R3(A1, A2, O1, X1) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

HereVplan = O0 ∪ · · · ∪On−1, Vnd = A0 ∪X0 ∪ · · · ∪Xn−1 andVexec= A1 ∪ · · · ∪An. Define
ΦqparM

n = I0→(R3(A0, A1, O0, X0)∧R3(A1, A2, O1, X1)∧· · ·∧R3(An−1, An, On−1, Xn−1)∧
Gn). The valuation ofVplan corresponds to a sequence of sets of operators. For a given valuation
of Vplan any valuation ofVnd determines an execution of these operators. The valuation ofVexecis
uniquely determined by the valuation ofVplan∪ Vnd.

The algorithms for evaluating QBF that extend the Davis-Putnam procedure traverse an and-or
tree in which the and-nodes correspond to universally quantified variables and or-nodes correspond
to existentially quantified variables. If the QBF istrue then these algorithms return a valuation of
the outermost existential variables. For a trueΦqpar

n this valuation ofVplan corresponds to a plan
that can be constructed like the plans in the deterministic case in Section 3.6.5.
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Theorem 4.41 The QBFΦqpar
n has valuetrue if and only if there is a sequenceT0, . . . , Tn−1 of

sets of operators such that for everyi ∈ {0, . . . , n} and every state sequences0, . . . , si such that

1. s0 |= I and

2. s0T0s1T1s2 · · · si−1Ti−1si

Ti is applicable insi if i < n andsi |= G if i = n.

Proof: We first prove the implication from left to right. SinceΦqpar
n is true there is a valuation

vplan of Vplan = O0 ∪ · · · ∪On−1 such that for all valuationsvnd of Vnd = A0 ∪X0 ∪ · · · ∪Xn−1

there is a valuationvexec of Vexec = A1 ∪ · · · ∪ An such thatvplan ∪ vnd ∪ vexec |= I0 →
(R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

Let T0, . . . , Tn−1 be the sequence of sets of operators such that for allo ∈ O and i ∈
{0, . . . , n − 1}, o ∈ Ti if and only if vplan(oi) = 1. We prove the right hand side of the the-
orem by induction onn.

Induction hypothesis: For everys0, . . . , si such thats0 |= I ands0T0s1T1s2 · · · si−1Ti−1si:

1. Ti is applicable insi if i < n.

2. si |= G if i = n.

Base casei = 0: Let s0 be any state sequence such thats0 |= I.

1. If 0 < n then we have to show thatT0 is applicable ins0.

Let E = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and anyEj ∈ [ej ]s0 , wheree1, . . . , em
are respectively the effects of the operatorso1, . . . , om in T0. Such setsE are the possible
active effects ofT0.

We have to show thatE is consistent and the preconditions of operators inT0 are true ins0.

By Lemma 4.39 there is a valuationv of X such thatE =
⋃
〈c,e〉∈T0

[e]Ω(〈c,e〉),v
s0 .

Let vnd be any valuation ofVnd such thats0[A0/A] ⊆ vnd andv[X0/X] ⊆ vnd. SinceΦqpar
n

is true there is a valuation ofvexec such thatvplan ∪ vnd ∪ vexec |= ΦqparM
n .

Sincevnd |= I0 alsovplan∪vnd∪vexec |= R3(A0, A1, O0, X0). Hence by Lemma 4.40 the
preconditions of operators inT0 are true ins0 ands1 |= E wheres1 is the state such that
s1(a) = vexec(a1) for all a ∈ A. SinceE was chosen arbitrarily from the sets of possible
sets of active effects ofT0 and it is consistent,T0 is applicable ins0.

2. If n = 0 thenVplan = Vexec = ∅ and∀Vnd(I0 → G0) is true, andvnd |= G0 for every
valuationvnd of Vnd such thatvnd |= I0.

Inductive casei ≥ 1: Lets0, . . . , si be any sequence such thats0 |= I ands0T0s1 . . . si−1Ti−1si.

1. If i < n then we have to show thatTi is applicable insi.

LetE = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and anyEj ∈ [ej ]si , wheree1, . . . , em are
respectively the effects of the operatorso1, . . . , om in Ti. Such setsE are the possible active
effects ofTi.

We have to show thatE is consistent and the preconditions of operators inTi are true insi.
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By Lemma 4.39 there is a valuationv of X such thatE =
⋃
〈c,e〉∈Ti

[e]Ω(〈c,e〉),v
si .

Since by the induction hypothesissjTjsj+1 for all j ∈ {0, . . . , i − 1}, by Lemma 4.39 for
everyj ∈ {0, . . . , i−1} there is a valuationvx

j ofX such thatsj [A/Aj ]∪ sj+1[A′/Aj+1]∪
vo ∪ vx

j |= R3(A,A′, O,X) wherevo assigns everyo ∈ O value 1 iffo ∈ Tj .

Let vnd be any valuation ofVnd such thats0[A0/A] ⊆ vnd and v[Xi/X] ⊆ vnd and
vx
j [Xj/X] ⊆ vnd for all j ∈ {0, . . . , i− 1}.

SinceΦqpar
n is true there is a valuation ofvexec such thatvplan ∪ vnd ∪ vexec |= ΦqparM

n .

Sincevnd |= I0 alsovplan ∪ vnd ∪ vexec |= R3(Ai, Ai+1, Oi, X i). Hence by Lemma 4.40
the preconditions of operators inTi are true insi andsi+1 |= E wheresi+1 is a state such
thatsi+1(a) = vexec(ai+1) for all a ∈ A. Since anyE is consistent,Ti is applicable insi.

2. If i = n we have to show thatsn |= G. Like in the proof for the previous case we construct
valuationsvnd andvexec matching the executions0, . . . , sn, and sincevplan∪ vnd∪ vexec |=
I0→Gn we havesn |= G.

Then we prove the implication from right to left. So there is sequenceT0, . . . , Tn−1 for which
all executions are defined and reachG.

We show thatΦqpar
n is true: there is valuationvplan of Vplan = O0 ∪ · · · ∪ On−1 such that for

every valuationvnd of Vnd = A0∪X0∪· · ·∪Xn−1 there is a valuationvexec of Vexec= A1∪· · ·∪An

such thatvplan ∪ vnd ∪ vexec |= ΦqparM
n .

We define the valuationvplan of Vplan by o ∈ Ti iff vplan(oi) = 1 for every o ∈ O and
i ∈ {0, . . . , n− 1}.

Take any valuationvnd of Vnd. Define the states0 by s0(a) = 1 iff vnd(a0) = 1 for every
a ∈ A.

If s0 6|= I thenvnd 6|= I0 andvplan ∪ vnd ∪ vexec |= ΦqparM
n for any valuationvexec of Vexec.

It remains to consider the cases0 |= I.
Define for everyi ∈ {1, . . . , n} setsEi and statessi as follows.

1. Let vi
x be a valuation ofX such thatvi

x(x) = vnd(xi−1) for everyx ∈ X.

2. LetEi =
⋃
〈c,e〉∈Ti−1

[e]Ω(〈c,e〉),vi
x

si−1 .

We show below that this is the set of literals made true byTi−1 in si−1.

3. Definesi(a) = 1 iff a ∈ Ei or si−1(a) = 1 and¬a 6∈ Ei, for everya ∈ A.

Let vexec = s1[A1/A] ∪ · · · ∪ sn[An/A].
Induction hypothesis:vplan ∪ vnd ∪ s1[A1/A]∪ · · · ∪ si[Ai/A] |= I0 ∧R3(A0, A1, O0, X0)∧

· · · ∧ R3(Ai−1, Ai, Oi−1, X i−1) andsjTjsj+1 for all j ∈ {0, . . . , i− 1}.
Base casei = 0: Trivial becausevnd |= I0.
Inductive casei ≥ 1: Let vx ⊆ vnd be the valuation ofXi−1 determined byvnd and let

vo be the valuation ofOi−1 such thatvo(o) = vplan(oi−1) for everyo ∈ O. By Lemma 4.40
vplan ∪ vnd ∪ si−1[Ai−1/A] ∪ si[Ai/A] |= R3(Ai−1, Ai, Oi−1, X i−1). This together with the
claim of the induction hypothesis fori− 1 establishes the first part of the claim of the hypothesis
for i. By Lemma 4.39 the setEi is one of the possible sets of active effects ofTi−1 in si−1. Hence
si−1Ti−1si. This finishes the induction proof.
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Hencevplan ∪ vnd ∪ vexec |= I0 ∧R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1),
andvexec |= Gn becausesn |= G by assumption andsn[An/A] ⊆ vexec. �

4.7 Planning with partial observability

Planning with partial observability is much more complicated than its two special cases with full
and no observability. Like planning without observability, the notion of belief states becomes very
important. Like planning with full observability, formalization of plans as sequences of operators
is insufficient. However, plans also cannot be formalized as mappings from states to operators be-
cause partial observability implies that the current state is not necessarily unambiguously known.
Hence we will need the general definition of plans introduced in Section 4.3.1.

When executing operatoro in belief stateB the set of possible successor states isimgo(B), and
based on the observation that are made, this set is restricted toB′ = imgo(B) ∩ C whereC is the
equivalence class of observationally indistinguishable states corresponding to the observation.

In planning with unobservability, a backward search algorithm starts from the goal belief state
and uses regression or strong preimages for finding predecessor belief states until a belief state
covering the initial belief state is found.

With partial observability, plans do not just contain operators but may also branch. With
branching the sequence of operators may depend on the observations, and this makes it possible
to reach goals also when no fixed sequence of operators reaches the goals. Like strong preimages
in backward search correspond to images, the question arises what does branching correspond to
in backward search?

Example 4.42 Consider the blocks world with three blocks with the goal state in which all the
blocks are on the table. There are three operators, each of which picks up one block (if there is
nothing on top of it) and places it on the table. We can only observe which blocks are not below
another block. This splits the state space to seven observational classes, corresponding to the
valuations of the state variables clear-A, clear-B and clear-C in which at least one block is clear.

The plan construction steps are given in Figure 4.7. Starting from the top left, the first diagram
depicts the goal belief state. The second diagram depicts the belief states obtained by computing
the strong preimage of the goal belief state with respect to the move-A-onto-table action and
splitting the set of states to belief states corresponding to the observational classes. The next two
diagrams are similarly for strong preimages of move-B-onto-table and move-C-onto-table.

The fifth diagram depicts the computation of the strong preimage from the union of two existing
belief states in which the block A is on the table and C is on B or B is on C. In the resulting belief
state A is the topmost block in a stack containing all three blocks. The next two diagrams similarly
construct belief states in which respectively B and C are the topmost blocks.

The last three diagrams depict the most interesting cases, constructing belief states that sub-
sume two existing belief states in one observational class. The first diagram depicts the construc-
tion of the belief state consisting of both states in which A and B are clear and C is under either A
or B. This belief state is obtained as the strong preimage of the union of two existing belief states,
the one in which all blocks are on the table and the one in which A is on the table and B is on top
of C. The action that moves A onto the table yields the belief state because if A is on C all blocks
will be on the table and if A is already on the table nothing will happen. Construction of the belief
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Figure 4.7: Solution of a simple blocks world problem

states in which B and C are clear and A and C are clear is analogous and depicted in the last two
diagrams.

The resulting plan reaches the goal state from any state in the blocks world. The plan in the
program form is given in Figure 4.8 (order of construction is from the end to the beginning.)

�

We restrict to acyclic plans. Construction of cyclic plans requires looking at more global prop-
erties of transition graphs than what is needed for acyclic plans. Taking these local properties into
account is difficult because we want to avoid explicit enumeration of the belief states.

4.7.1 Problem representation

Now we introduce the representation for sets of state sets for which a plan for reaching goal states
exists.
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16:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 15
IF clear-B AND clear-C THEN GOTO 13
IF clear-A AND clear-B THEN GOTO 11
IF clear-A THEN GOTO 5
IF clear-B THEN GOTO 7
IF clear-C THEN GOTO 9

15:
move-C-onto-table

14:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 1

13:
move-B-onto-table

12:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-B AND clear-C THEN GOTO 3

11:
move-A-onto-table

10:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-B THEN GOTO 2

9:
move-C-onto-table

8:
IF clear-A AND clear-C THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 2

7:
move-B-onto-table

6:
IF clear-A AND clear-B THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 3

5:
move-A-onto-table

4:
IF clear-A AND clear-B THEN GOTO 2
IF clear-A AND clear-C THEN GOTO 3

3:
move-C-onto-table
GOTO end

2:
move-B-onto-table
GOTO end

1:
move-A-onto-table

end:

Figure 4.8: A plan for a partially observable blocks world problem
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In the following example states are viewed as valuations of state variables, and the observa-
tional classes correspond to valuations of those state variables that are observable.

Example 4.43 Consider the blocks world with the state variablesclear(X) observable, allowing
to observe the topmost block of each stack. With three blocks there are 7 observational classes
because there are 7 valuations of{clear(A), clear(B), clear(C)} with at least one block clear.

Consider the problem of trying to reach the state in which all blocks are on the table. For each
block there is an action for moving it onto the table from wherever it was before. If a block cannot
be moved nothing happens. Initially we only have the empty plan for the goal states.
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? ?
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Then we compute the preimages of this set with actions that respectively put the blocks A, B
and C onto the table, and split the resulting sets to the different observational classes.
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preimage of A−onto−table
preimage of B−onto−table
preimage of C−onto−table

Now for these 7 belief states we have a plan consisting of one or zero actions. But we also
have plans for sets of states that are only represented implicitly. These involve branching. For
example, we have a plan for the state set consisting of the four states in which respectively all
blocks are on the table, A is on C, A is on B, and B is on A. This plan first makes observations
and branches, and then executes the plan associated with the belief state obtained in each case.
Because 3 observational classes each have 2 belief states, there are23 maximal state sets with a
branching plan. From each class only one belief state can be chosen because observations cannot
distinguish between belief states in the same class.

We can find more belief states that have plans by computing preimages of existing belief states.
Let us choose the belief states in which respectively all blocks are on the table, B is on C, C is on
B, and C is on A, and compute their union’s preimage with A-onto-table. The preimage intersected
with the observational classes yields new belief states: for the class with A and B clear there is a
new 2-state belief state covering both previous belief states in the class, and for the class with A
clear there is a new 2-state belief state.
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Computation of further preimages yields for each observational class a belief state covering all
the states in that class, and hence a plan for every belief state. �

Next we formalize the framework in detail.

Definition 4.44 (Belief space)LetP = (C1, . . . , Cn) be a partition of the set of all states. Then
a belief spaceis ann-tuple〈G1, . . . , Gn〉 whereGi ⊆ 2Ci for all i ∈ {1, . . . , n} andB 6⊂ B′ for
all i ∈ {1, . . . , n} and{B,B′} ⊆ Gi.

Note that in each component of a belief space we only have set-inclusion maximal belief states.
The simplest belief spaces are obtained from setsB of states asF(B) = 〈{C1 ∩ B}, . . . , {Cn ∩
B}〉. A belief space is extended as follows.

Definition 4.45 (Extension) LetP = (C1, . . . , Cn) be the partition of all states,G = 〈G1, . . . , Gn〉
a belief space, andT a set of states. DefineG⊕T as〈G1d(T ∩C1), . . . , Gnd(T ∩Cn)〉where the
operationd adds the latter set of states to the former set of sets of states and eliminates sets that
are not set-inclusion maximal, defined asU dV = {R ∈ U ∪{V }|R 6⊂ K for all K ∈ U ∪{V }}.

A belief spaceG = 〈G1, . . . , Gn〉 represents the set of sets of states flat(G) = {B1 ∪ · · · ∪
Bn|Bi ∈ Gi for all i ∈ {1, . . . , n}} and its cardinality is|G1| · |G2| · . . . · |Gn|.

4.7.2 Complexity of basic operations

The basic operations on belief spaces needed in planning algorithms are testing the membership
of a set of states in a belief space, and finding a set of states whose preimage with respect to an
action is not contained in the belief space. Next we analyze the complexity of these operations.

Theorem 4.46 For belief spacesG and state setsB, testing whether there isB′ ∈ flat(G) such
thatB ⊆ B′, and computingG⊕B takes polynomial time.

Proof: Idea: A linear number of set-inclusion tests suffices. �

Our algorithm for extending belief spaces by computing the preimage of a set of states (Lemma 4.48)
uses exhaustive search and runs in worst-case exponential time. This asymptotic worst-case com-
plexity is very likely the best possible because the problem is NP-hard. Our proof for this fact
is a reduction from SAT: represent each clause as the set of literals that are not in it, and then a
satisfying assignment is a set of literals that is not included in any of the sets, corresponding to the
same question about belief spaces.
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Theorem 4.47 Testing if for belief spaceG there isR ∈ flat(G) such that preimgo(R) 6⊆ R′ for
all R′ ∈ flat(G) is NP-complete. This holds even for deterministic actionso.

Proof: Membership is easy: ForG = 〈G1, . . . , Gn〉 choose nondeterministicallyRi ∈ Gi for
everyi ∈ {1, . . . , n}, computeR = preimgo(R1 ∪ · · · ∪ Rn), and verify thatR ∩ Ci 6⊆ B for
somei ∈ {1, . . . , n} and allB ∈ Gi. Each of these steps takes only polynomial time.

Let T = {c1, . . . , cm} be a set of clauses over propositionsA = {a1, . . . , ak}. We define a
belief space based on states{a1, . . . , ak, â1, . . . , âk, z1, . . . , zk, ẑ1, . . . , ẑk}. The stateŝa represent
negative literals. Define

c′i = (A\ci) ∪ {â|a ∈ A,¬a 6∈ ci} for i ∈ {1, . . . ,m},
G = 〈{c′1, . . . , c′m}, {{z1}, {ẑ1}}, . . . , {{zk}, {ẑk}}〉 ,
o = {〈ai, zi〉|1 ≤ i ≤ k} ∪ {〈âi, ẑi〉|1 ≤ i ≤ k}.

We claim thatT is satisfiable if and only if there isB ∈ flat(G) such thatpreimgo(B) 6⊆ B′

for all B′ ∈ flat(G).
AssumeT is satisfiable, that is, there isM such thatM |= T . DefineM ′ = {zi|ai ∈ A,M |=

ai}∪{ẑi|ai ∈ A,M 6|= ai}. NowM ′ ⊆ B for someB ∈ flat(G) because from each class only one
of {zi} or {ẑi} is taken. LetM ′′ = preimgo(M ′) = {ai ∈ A|M |= ai} ∪ {âi|ai ∈ A,M 6|= ai}.
We show thatM ′′ 6⊆ B for all B ∈ flat(G). Take anyi ∈ {1, . . . ,m}. BecauseM |= ci, there is
aj ∈ ci ∩ A such thatM |= aj (or ¬aj ∈ ci, for which the proof goes similarly.) Nowzj ∈ M ′,
and thereforeaj ∈ M ′′. Also,aj 6∈ c′j . As there is such anaj (or ¬aj) for everyi ∈ {1, . . . ,m},
M ′′ is not a subset of anyc′i, and henceM ′′ 6⊆ B for all B ∈ flat(G).

Assume there isB ∈ flat(G) such thatD = preimgo(B) 6⊆ B′ for all B′ ∈ flat(G). Now
D is a subset ofA ∪ {â|a ∈ A} with at most one ofai andâi for any i ∈ {1, . . . , k}. Define a
modelM such that for alla ∈ A, M |= a if and only if a ∈ D. We show thatM |= T . Take
any i ∈ {1, . . . ,m} (corresponding to a clause.) AsD 6⊆ B for all B ∈ flat(G), D 6⊆ c′i. Hence
there isaj or âj in D\c′i. Consider the case withaj (âj goes similarly.) Asaj 6∈ c′i, aj ∈ ci. By
definition ofM ,M |= aj and henceM |= ci. As this holds for alli ∈ {1, . . . ,m},M |= T . �

4.7.3 Algorithms

Based on the problem representation in the preceding section, we devise a planning algorithm
that repeatedly identifies new belief states (and associated plans) until a plan covering the initial
states is found. The algorithm in Figure 4.10 tests for plan existence; further book-keeping is
needed for outputting a plan. The size of the plan is proportional to the number of iterations the
algorithm performs, and outputting the plan takes polynomial time in the size of the plan. The
algorithm uses the subprocedurefindnew(Figure 4.9) for extending the belief space (this is the
NP-hard subproblem from Theorem 4.47). Our implementation of the subprocedure orders sets
f1, . . . , fm by cardinality in a decreasing order: bigger belief states are tried first. We also use
a simple pruning technique for deterministic actionso: If preimgo(fi) ⊆ preimgo(fj) for somei
andj such thati > j, then we may ignorefi.

Lemma 4.48 Let H be a belief space ando an action. The procedure call findnew(o,∅,F,H)
returns a setB′ of states such thatB′ = preimgo(B) for someB ∈ flat(F ) andB′ 6⊆ B′′ for all
B′′ ∈ flat(H), and if no such belief state exists it returns∅.
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1: procedurefindnew(o,A,F ,H);
2: if F = 〈〉 and preimgo(A) 6⊆ B for all B ∈ flat(H)
3: then return A;
4: if F = 〈〉 then return ∅;
5: F is 〈{f1, . . . , fm}, F2, . . . , Fk〉 for somek ≥ 1;
6: for i := 1 to m do
7: B := findnew(o,A ∪ fi,〈F2, . . . , Fk〉,H);
8: if B 6= ∅ then return B;
9: end;

10: return ∅;

Figure 4.9: Algorithm for finding new belief states

1: procedureplan(I,O,G);
2: H := F(G);
3: progress := true;
4: while progress andI 6⊆ I ′ for all I ′ ∈ flat(H) do
5: progress := false;
6: for eacho ∈ O do
7: B := findnew(o,∅,H,H);
8: if B 6= ∅ then
9: begin

10: H :=H ⊕ preimgo(B);
11: progress := true;
12: end;
13: end;
14: end;
15: if I ⊆ I ′ for someI ′ ∈ flat(H) then return true
16: else return false;

Figure 4.10: Algorithm for planning with partial observability

Proof: Sketch: The procedure goes through the elements〈B1, . . . , Bn〉 of F1× · · · ×Fn and tests
whetherpreimgo(B1 ∪ · · · ∪Bn) is inH. The setsB1 ∪ · · · ∪Bn are the elements of flat(F ). The
traversal throughF1 × · · · × Fn is by generating a search tree with elements ofF1 as children of
the root node, elements ofF2 as children of every child of the root node, and so on, and testing
whether the preimage is inH. The second parameter of the procedure represents the state set
constructed so far from the belief space, the third parameter is the remaining belief space, and the
last parameter is the belief space that is to be extended, that is, the new belief state may not belong
to it. �

The correctness proof of the procedureplan consists of the following lemma and theorems.
The first lemma simply says that extending a belief spaceH is monotonic in the sense that the
members of flat(H) can only become bigger.

Lemma 4.49 AssumeT is any set of states andB ∈ flat(H). Then there isB′ ∈ flat(H ⊕ T ) so
thatB ⊆ B′.
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The second lemma says that if we have belief states in different observational classes such that
each is included in a belief state of a belief spaceH, then there is a set in flat(H) that includes all
these belief states.

Lemma 4.50 Let B1, . . . , Bn be sets of states so that for everyi ∈ {1, . . . , n} there isB′
i ∈

flat(H) such thatBi ⊆ B′
i, and there is no observational classC such that for some{i, j} ⊆

{1, . . . , n} both i 6= j andBi ∩ C 6= ∅ andBj ∩ C 6= ∅. Then there isB′ ∈ flat(H) such that
B1 ∪ · · · ∪Bn ⊆ B′.

The proof of the next theorem shows how the algorithm is capable of finding any plan by
constructing it bottom up starting from the leaf nodes. The construction is based on first assigning
a belief state to each node in the plan, and then showing that the algorithm reaches that belief state
from the goal states by repeated computation of preimages.

Theorem 4.51 Whenever there exists a finite acyclic plan for a problem instance, the algorithm
in Figure 4.10 returnstrue.

Proof: Assume that there is a plan〈N, b, l〉 for a problem instance〈S, I,O,G, P 〉. We assume that
states inS are valuations of a set of state variables. Label all nodes of the plan as follows. Each
initial nodeni for i ∈ {1, . . . ,m} with {〈φ1, n1〉, . . . , 〈φm, nm〉} we assign the labelZ(ni) =
{s ∈ I|s |= φi}.

When all parent nodesn1, . . . , nm〉 of a noden have a label, we assign a label ton. Let l(ni) =
〈oi, {〈φi, n〉, . . .}〉 for all i ∈ {1, . . . ,m}. ThenZ(n) =

⋃
i∈{1,...,n}{s ∈ imgoi(Z(ni))|s |= φi}.

If the above labeling does not assign anything to a noden, then assignZ(n) = ∅. Each node is
labeled with exactly those states that are possible in that node on some execution.

We show that if plans forZ(n1), . . . , Z(nk) exist, wheren1, . . . , nk are children of a noden,
then the algorithm determines that a plan forZ(n) exists as well.

Induction hypothesis: for every plan noden such that all paths from it to a terminal node have
lengthi or less,B = Z(n) is a subset of someB′ ∈ flat(H) whereH is the value of the program
variableH after thewhile loop exits andH could not be extended further.

Base casei = 0: Terminal nodes of the plan are labeled with subsets ofG. By Lemma 4.49
there isG′ such thatG ⊆ G′ andG′ ∈ flat(H) because initiallyH = F(G) and thereafter it was
repeatedly extended.

Inductive casei ≥ 1: Let n be a plan node withl(n) = (o, {〈φ1, n1〉, . . . , 〈φk, nk〉}.
We show thatZ(n) ⊆ B for someB ∈ flat(H).
By the induction hypothesisZ(ni) ⊆ B for someB ∈ flat(H) for all i ∈ {1, . . . , k}.
For all i ∈ {1, . . . , k} {s ∈ imgo(Z(n))|s |= φi} ⊆ Z(ni).
Hence by Lemma 4.50B =

⋃
i∈{1,...,k}{s ∈ imgo(Z(n))|s |= φi} ⊆ B′ for someB′ ∈

flat(H). Assume that there is no suchB′′. But now by Lemma 4.48 findnew(o,∅,H,H) would
returnB′′′ such thatpreimgo(B′′′) 6⊆ B for all B ∈ flat(H), and thewhile loop could not have
exited withH, contrary to our assumption aboutH. �

Theorem 4.52 Let Π = 〈S, I,O,G, P 〉 be a problem instance. If plan(I,O,G) returnstrue, then
Π has a solution plan.

Proof: LetH0,H1, . . . be the sequence of belief spacesH produced by the algorithm.
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Induction hypothesis: For everyB ∈ Hi,j for somej ∈ {1, . . . , n} andHi = 〈Hi,1, . . . ,Hi,n〉
a plan reachingG exists.

Base casei = 0: Every component ofH0 consists of a subset ofG. The empty plan reachesG.
Inductive casei ≥ 1: Hi+1 is obtained asHi ⊕ preimgo(B) whereB = findnew(o,∅,Hi,Hi)

ando is an operator.
By Lemma 4.48B ∈ flat(Hi). By the induction hypothesis there are plansπi for everyB ∩

Ci, i ∈ {1, . . . , n}. The plan that executeso followed byπi on observationCi reachesG from
preimgo(B).

Let B′ ∈ Hi+1,j for Hi+1 = 〈Hi+1,1, . . . ,Hi+1,n〉 and somej ∈ {1, . . . , n}. We show that
for B′ there is a plan for reachingG.

If B′ ∈ Hi,j then by the induction hypothesis a plan exists.
OtherwiseB′ ⊆ preimgo(B) and we can use the plan forpreimgo(B) that first applieso and

then continues with a plan associated with one of the belief states inHi. �

It would be easy to define an algorithm that systematically generates all belief states (plans)
breadth-first and therefore plans with optimal execution lengths, but this algorithm would in prac-
tice be much slower and plans would be bigger.

Above we have used only one partition of the state space to observational classes. However, it
is straightforward to generalize the above definitions and algorithms to the case in which several
partitions are used, each for a different set of actions. This means that the possible observations
depend on the action that has last been taken.

4.8 Computational complexity

In this section we analyze the computational complexity of the main decision problems related
to nondeterministic planning. The conditional planning problem is a generalization of the deter-
ministic planning problem from Chapter 3, and therefore the plan existence problem is at least
PSPACE-hard. In this section we discuss the computational complexity of each of the three plan-
ning problems, the fully observable, the unobservable, and the general partially observable plan-
ning problem, showing them respectively complete for the complexity classes EXP, EXPSPACE
and 2-EXP.

4.8.1 Planning with full observability

We first show that the plan existence problem for nondeterministic planning with full observability
is EXP-hard and then that the problem is in EXP.

The EXP-hardness proof in Theorem 4.53 is by simulating polynomial-space alternating Tur-
ing machines by nondeterministic planning problems with full observability and the using the fact
that the complexity classes EXP and APSPACE are the same (see Section 2.4.) The most inter-
esting thing in the proof is the representation of alternation. Theorem 3.59 already showed how
deterministic Turing machines with a polynomial space bound are simulated, and the difference is
that we now have nondeterminism, that is, a configuration of the TM may have several successor
configurations, and that there are both∀ and∃ states.2

2Restricting the proof of Theorem 4.53 to∃ states with nondeterministic transitions would yield a proof of the
NPSPACE-hardness of deterministic planning, but this is not interesting as PSPACE=NPSPACE.
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The∀ states mean that all successor configurations must be accepting (terminal or non-terminal)
configurations. The∃ states mean that at least one successor configuration must be an accepting
(terminal or non-terminal) configuration. Both of these requirements can be represented in the
nondeterministic planning problem.

The transitions from a configuration with a∀ state will correspond to one nondeterministic
operator. That all successor configurations must be accepting (terminal or non-terminal) configu-
rations corresponds to requirement in planning that from all successor states of a state a goal state
must be reached.

Every transition from a configuration with∃ state will correspond to a deterministic operator,
that is, the transition may be chosen, as only one of the successor configurations needs to be
accepting.

Theorem 4.53 The problem of testing the existence of an acyclic plan for problem instances with
full observability is EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with a polynomial space boundp(x).
Let σ be an input string of lengthn.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The unique initial state of the problem instance represents the initial configuration of the TM.
The corresponding formula is the conjunction of the following literals.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol iss.

4. ¬si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol is nots.

5. ¬si for all s ∈ Σ andi ∈ {0, n+ 1, n+ 2, . . . , p(n)}.

6. �i for all i ∈ {n+ 1, . . . , p(n)}.

7. ¬�i for all i ∈ {0, . . . , n}.

8. |0

9. ¬|i for all n ∈ {1, . . . , p(n)}

10. h1

11. ¬hi for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}
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The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state.3 For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
ATM. Operators for existential statesq, g(q) = ∃ and for universal statesq, g(q) = ∀ differ. Let
〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,i,1 = 〈hi ∧ si ∧ q, τs,q,i(s1, q1,m1)〉
os,q,i,2 = 〈hi ∧ si ∧ q, τs,q,i(s2, q2,m2)〉
...
os,q,i,k = 〈hi ∧ si ∧ q, τs,q,i(sk, qk,mk)〉

That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q,i = 〈hi ∧ si ∧ q, (τs,q,i(s1, q1,m1)|
τs,q,i(s2, q2,m2)|
...
τs,q,i(sk, qk,mk))〉.

That is, the transition is chosen nondeterministically.

3No operators are needed for accepting or rejecting states.
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We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound.

If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an
accepting state cannot be reached because no operator will be applicable.

Otherwise, we show inductively that from a computation tree of an accepting ATM we can
extract a conditional plan that always reaches a goal state, and vice versa. For obtaining an cor-
respondence between conditional plans and computation trees it is essential that the plans are
acyclic.

kesken
So, because all alternating Turing machines with a polynomial space bound can be in polyno-

mial time translated to a nondeterministic planning problem, all decision problems in APSPACE
are polynomial time many-one reducible to nondeterministic planning, and the plan existence
problem is APSPACE-hard and consequently EXP-hard. �

We can extend Theorem 4.53 to general plans with loops. The problem looping plans cause in
the proofs of this theorem is that a Turing machine computation of infinite length is not accepting
but the corresponding infinite length zero-probability plan execution is allowed to be a part of plan
and would incorrectly count as an accepting Turing machine computation.

To eliminate infinite plan executions we have to modify the Turing machine simulation. This
is by counting the length of the plan executions and failing when at least one state or belief state
must have been visited more than once. This modification makes infinite loops ineffective, and
any plan containing a loop can be translated to a finite non-looping plan by unfolding the loop. In
the absence of loops the simulation of alternating Turing machines is faithful.

Theorem 4.54 The plan existence problem for problem instances with full observability is EXP-
hard.

Proof: This is an easy extension of the proof of Theorem 4.53. If there aren state variables, an
acyclic plan exists if and only if a plan with execution length at most2n exists, because visiting any
state more than once is unnecessary. Plans that rely on loops can be invalidated by counting the
number of actions taken and failing when this exceeds2n. This counting can be done by having
n + 1 auxiliary state variablesc0, . . . , cn that are initialized to false. Every operator〈p, e〉 is
extended to〈p, e∧ t〉 wheret is an effect that increments the binary number encoded byc0, . . . , cn
by one until the most significant bitcn becomes one. The goalG is replaced byG ∧ ¬cn.

Then a plan exists if and only if an acyclic plan exists if and only if the alternating Turing
machine accepts. �

Theorem 4.55 The problem of testing the existence of a plan for problem instances with full ob-
servability is in EXP.

Proof: The algorithm in Section 4.4.2 runs in exponential time in the size of the problem in-
stance. �
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4.8.2 Planning without observability

The plan existence problem of conditional planning with unobservability is more complex than
that of conditional planning with full observability.

To show the unobservable problem EXPSPACE-hard by a direct simulation of exponential
space Turing machines, the first problem is how to encode the tape of the TM. With polynomial
space, as in the PSPACE-hardness and APSPACE-hardness proofs of deterministic planning and
conditional planning with full observability, it was possible to represent all the tape cells as the
state variables of the planning problem. With an exponential space bound this is not possible any
more, as we would need an exponential number of state variables, and the planning problem could
not be constructed in polynomial time.

Hence we have to find a more clever way of encoding the working tape. It turns out that we
can use the uncertainty about the initial state for this purpose. When an execution of the plan
that simulates the Turing machine is started, we randomly choose one of the tape cells to be the
watchedtape cell. This is the only cell of the tape for which the current symbol is represented in
the state variables. On all transitions the plan makes, if the watched tape cell changes, the change
is reflected in the state variables.

That the plan corresponds to a simulation of the Turing machine it is tested whether the tran-
sition the plan makes when the current tape cell is the watched tape cell is the one that assumes
the current symbol to be the one that is stored in the state variables. If it is not, the plan is not a
valid plan. Because the watched tape cell could be any of the exponential number of tape cells,
all the transitions the plan makes are guaranteed to correspond to the contents of the current tape
cell of the Turing machine, so if the plan does not simulate the Turing machine, the plan is not
guaranteed to reach the goal states.

The proof requires both several initial states and unobservability. Several initial states are
needed for selecting the watched tape cell, and unobservability is needed so that the plan cannot
cheat: if the plan can determine what the current tape cell is, it could choose transitions that do
not correspond to the Turing machine on all but the watched tape cell. Because of unobservability
all the transitions have to correspond to the Turing machine.

Theorem 4.56 The problem of testing the existence of a plan for problem instances with unob-
servability is EXPSPACE-hard.

Proof: Proof is a special case of the proof of Theorem 4.59. We do not have∀ states and restrict
to deterministic Turing machines. Nondeterministic Turing machines could be simulated for a
NEXPSPACE-hardness proof, but it is already known that EXPSPACE = NEXPSPACE, so this
additional generality would not bring anything.

Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with an exponential space bounde(x).
Let σ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning without observability for simu-
lating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
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track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

4. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, . . .. Later we will also use effectsh := h+ 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1, . . ..

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) to denote that the
new symbol in the watched tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we
defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.
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The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


h := h− 1 if m = L

> if m = N
h := h+ 1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the operators

that simulate the DTM. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s′, q′,m〉}.
If g(q) = ∃, then define the operator

os,q = 〈((h 6= w) ∨ s) ∧ q, τs,q(s′, q′,m)〉

It is easy to verify that the planning problem simulates the DTM assuming that when operator
os,q is executed the current tape symbol is indeeds. So assume that someos,q is the first operator
that misrepresents the tape contents and thath = c for some tape cell locationc. Now there is an
execution of the plan so thatw = c. On this execution the preconditionos,q is not satisfied, and
the plan is not executable. Hence a valid plan cannot contain operators that misrepresent the tape
contents. �

Theorem 4.57 The problem of testing the existence of a plan for problem instances with unob-
servability is in EXPSPACE.

Proof: Proof is similar to the proof Theorem 3.60 but works at the level of belief states. �

The two theorems together yield the EXPSPACE-completeness of the plan existence problem
for conditional planning without observability.

4.8.3 Planning with partial observability

We show that the plan existence problem of the general conditional planning problem with partial
observability is 2-EXP-complete. The hardness proof is by a simulation of AEXPSPACE=2-EXP
Turing machines. Membership in 2-EXP is obtained directly from the decision procedure dis-
cussed earlier: the procedure runs in polynomial time in the size of the enumerated belief space of
doubly exponential size.

Showing that the plan existence problem for planning with partial observability is in 2-EXP is
straightforward. The easiest way to see this is to view the partially observable planning problem
as a nondeterministic fully observable planning problem with belief states viewed as states. An
operator maps a belief state to another belief state nondeterministically: compute the image of a
belief state with respect to an operator, and choose the subset of its states that correspond to one
of the possible observations. Like pointed out in the proof of Theorem 4.55, the algorithms for
fully observable planning run in polynomial time in the size of the state space. The state space
with the belief states as the states has a doubly exponential size in the size of the problem instance,
and hence the algorithm runs in doubly exponential time in the size of the problem instance. This
gives us the membership in 2-EXP.
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Theorem 4.58 The plan existence problem for problem instances with partial observability is in
2-EXP.

The hardness proof is an extension of both the EXP-hardness proof of Theorem 4.53 and of
the EXPSPACE-hardness proof of Theorem 4.56. From the first proof we have the simulation of
alternating Turing machines, and from the second proof the simulation of Turing machines with
an exponentially long tape.

Theorem 4.59 The problem of testing the existence of an acyclic plan for problem instances with
partial observability is 2-EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with an exponential space bound
e(x). Letσ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. s∗ for everys ∈ Σ ∪ {|} for the symbol last written (important for nondeterministic transi-
tions),

5. L, R andN for the last movement of the R/W head (important for nondeterministic transi-
tions), and

6. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The observable state variables areL,N andR, q ∈ Q, ands∗ for s ∈ Σ. These are needed by
the plan to decide how to proceed execution after a nondeterministic transition with a∀ state.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. ¬s∗ for all s ∈ Σ ∪ {|}.
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4. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

5. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, . . .. Later we will also use effectsh := h+ 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1, . . ..

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state. For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) ∧ s′∗ ∧ ¬s∗ to
denote that the new symbol in the watched tape cell iss′ and nots, and to make it possible for the
plan to detect which symbol was written to the tape by the possibly nondeterministic transition.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we
defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


(h := h− 1) ∧ L ∧ ¬N ∧ ¬R if m = L

N ∧ ¬L ∧ ¬R if m = N
(h := h+ 1) ∧R ∧ ¬L ∧ ¬N if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the opera-

tors that simulate the ATM. Operators for existential statesq, g(q) = ∃ and for universal states
q, g(q) = ∀ differ. Let 〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,1 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s1, q1,m1)〉
os,q,2 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s2, q2,m2)〉
...
os,q,k = 〈((h 6= w) ∨ s) ∧ q, τs,q(sk, qk,mk)〉
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That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q = 〈((h 6= w) ∨ s) ∧ q, (τs,q(s1, q1,m1)|
τs,q(s2, q2,m2)|
...
τs,q(sk, qk,mk)〉).

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only if the Turing machine accepts without

violating the space bound. If the Turing machine violates the space bound, thenh > e(n) and an
accepting state cannot be reached because no further operator will be applicable.

From an accepting computation tree of an ATM we can construct a plan, and vice versa. Ac-
cepting final configurations are mapped to terminal nodes of plans,∃-configurations are mapped
to operator nodes in which an operator corresponding to the transition to an accepting successor
configuration is applied, and∀-configurations are mapped to operator nodes corresponding to the
matching nondeterministic operators followed by a branch node that selects the plan nodes corre-
sponding to the successors of the∀ configuration. The successors of∀ and∃ configurations are
recursively mapped to plans.

Construction of computation trees from plans is similar, but involves small technicalities. A
plan with DAG form can be turned into a tree by having several copies of the shared subplans.
Branches not directly following the nondeterministic operator causing the uncertainty can be
moved earlier so that every nondeterministic operator is directly followed by a branch that chooses
a successor node for every possible new state, written symbol and last tape movement. With these
transformations there is an exact match between plans and computation trees of the ATM, and
mapping from plans to ATMs is straightforward like in the opposite direction.

Because alternating Turing machines with an exponential space bound are polynomial time
reducible to the nondeterministic planning problem with partial observability, the plan existence
problem is AEXPSPACE=2-EXP-hard. �

What remains to be done is the extension of the above theorem to the case with arbitrary
(possibly cyclic) plans. For the fully observable case counting the execution length does not
pose a problem because we only have to count an exponential number of execution steps, which
can be represented by a polynomial number of state variables, but in the partially observable
case we need to count a doubly exponential number of execution steps, as the number of belief
states to be visited may be doubly exponential. A binary representation of these numbers requires
an exponential number of bits, and we cannot use an exponential number of state variables for
the purpose, because the reduction to planning would not be polynomial time. However, partial
observability together with only a polynomial number of auxiliary state variables can be used to
force the plans to count doubly exponentially far.

Theorem 4.60 The plan existence problem for problem instances with partial observability is 2-
EXP-hard.

Proof: We extend the proof of Theorem 4.59 by a counting scheme that makes cyclic plans inef-
fective. We show how counting the execution length can be achieved within a problem instance
obtained from the alternating Turing machine and the input string in polynomial time.
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Instead of representing the exponential number of bits explicitly as state variables, we use a
randomizing technique for forcing the plans to count the number of Turing machine transitions.
The technique has resemblance to the idea in simulating exponentially long tapes in the proofs of
Theorems 4.56 and 4.53.

For a problem instance withn state variables (representing the Turing machine configurations)
executions that visit each belief state at most once may have length22n

. Representing numbers
from 0 to22n − 1 requires2n binary digits. We introducen+ 1 new unobservable state variables
d0, . . . , dn for representing the index of one of the digits andvd for the value of that digit, and
new state variablesc0, . . . , cn through which the plan indicates changes in the counter of Turing
machine transitions. There is a set of operators by means of which the plan sets the values of these
variables before every transition of the Turing machine is made.

The idea of the construction is the following. Whenever the counter of TM transitions is incre-
mented, one of the2n digits in the counter changes from 0 to 1 and all of the less significant digits
change from 1 to 0. The plan is forced to communicate the index of the digit that changes from
0 to 1 by the state variablesc0, . . . , cn. The unobservable state variablesd0, . . . , dn, vd store the
index and value of one of the digits (chosen randomly in the beginning of the plan execution), that
we call the watched digit, and they are used for checking that the reporting ofc0, . . . , cn by the
plan is truthful. The test for truthful reporting is randomized, but this suffices to invalidate plans
that incorrectly report the increments, as a valid plan has to reach the goals on every possible exe-
cution. The plan is invalid if reporting is false or when the count can exceed22n

. For this reason
a plan for the problem instance exists if and only if an acyclic plan exists if and only if the Turing
machine accepts the input string.

Next we exactly define how the problem instances defined in the proof of Theorem 4.59 are
extended with a counter to prevent unbounded looping.

The initial state description is extended with the conjunct¬dv to signify that the watched digit
is initially 0 (all the digits in the counter implicitly represented in the belief state are 0.) The state
variablesd0, . . . , dn may have any values which means that the watched digit is chosen randomly.
The state variablesdv, d0, . . . , dn are all unobservable so that the plan does not know the watched
digit (may not depend on it).

There is also a failure flagf that is initially set to false by having¬f in the initial states formula.
The goal is extended by¬f ∧ ((d0 ∧ · · · ∧dn)→¬dv) to prevent executions that lead to setting

f true or that have length22n+1−1 or more. The conjunct(d0∧· · ·∧dn)→¬dv is false if the index
of the watched digit is2n+1− 1 and the digit is true, indicating an execution of length≥ 22n+1−1.

Then we extend the operators simulating the Turing machine transitions, as well as introduce
new operators for indicating which digit changes from 0 to 1.

The operators for indicating the changing digit are

〈>, ci〉 for all i ∈ {0, . . . , n}
〈>,¬ci〉 for all i ∈ {0, . . . , n}

The operators for Turing machine transitions are extended with the randomized test that the digit
the plan claims to change from 0 to 1 is indeed the one: every operator〈p, e〉 defined in the proof
of Theorem 4.59 is replaced by〈p, e∧t〉where the testt is the conjunction of the following effects.

((c = d) ∧ dv) B f
(c = d) B dv

((c > d) ∧ ¬dv) B f
(c > d) B ¬dv



114 CHAPTER 4. NONDETERMINISTIC PLANNING

Herec = d denotes(c0 ↔ d0) ∧ · · · ∧ (cn ↔ dn) andc > d encodes the greater-than test for the
binary numbers encoded byc0, . . . , cn andd0, . . . , dn.

The above effects do the following.

1. When the plan claims that the watched digit changes from 0 to 1 and the value ofdv is 1,
fail.

2. When the plan claims that the watched digit changes from 0 to 1, changedv to 1.

3. When the plan claims that a more significant digit changes from 0 to 1 and the value ofdv

is 0, fail.

4. When the plan claims that a more significant digit changes from 0 to 1, set the value ofdv

to 0.

That these effects guarantee the invalidity of a plan that relies on unbounded looping is because
the failure flagf will be set if the plan lies about the count, or the most significant bit with index
2n+1 − 1 will be set if the count reaches22n+1−1. Attempts of unfair counting are recognized and
consequentlyf is set to true because of the following.

Assume that the binary digit at indexi changes from 0 to 1 (and therefore all less significant
digits change from 1 to 0) and the plan incorrectly claims that it is the digitj that changes, and
this is the first time on that execution that the plan lies (hence the value ofdv is the true value of
the watched digit.)

If j > i, theni could be the watched digit (and hencec > d), and forj to change from 0
to 1 the less significant biti should be 1, but we would know that it is not becausedv is false.
Consequently on this plan execution the failure flagf would be set.

If j < i, thenj could be the watched digit (and hencec = d), and the value ofdv would
indicate that the current value of digitj is 1, not 0. Consequently on this plan execution the failure
flagf would be set.

So, if the plan does not correctly report the digit that changes from 0 to 1, then the plan is not
valid. Hence any valid plan correctly counts the execution length which cannot exceed22n+1−1. �

4.8.4 Polynomial size plans

We showed in Section 3.7 that the plan existence problem of deterministic planning is only NP-
complete, in contrast to PSPACE-complete, when a restriction to plans of polynomial length is
made. Here we investigate the same question for conditional plans.

Theorem 4.61 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans is inΣp

2.

Proof: Let p(n) be any polynomial. We give an NPNP algorithm (Turing machine) that solves the
problem. Let the problem instance〈A, I,O,G, ∅〉 have sizen.

First guess a sequence of operatorsσ = o0, o1, . . . , ok for k < p(n). This is nondeterministic
polynomial time computation.

Then use an NP-oracle for testing thatσ is a solution. The oracle is a nondeterministic
polynomial-time Turing machine that accepts if a plan execution does not lead to a goal state
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or if the plan is not executable (operator precondition not satisfied). The oracle guesses an ini-
tial state and for each nondeterministic operator for each step which nondeterministic choices are
made, and then in polynomial time tests whether the execution of the operator sequence leads to a
goal state.

1. Guess valuationI ′ that satisfiesI.

2. Guess the results of the nondeterministic choices for every operator in the plan: replace
everyp1e1| · · · |pnen by a nondeterministically selectedei.

3. Computesj = appoj (appoj−1(· · ·appo2(appo1(I
′)))) for j = 0, j = 1, j = 2, . . . , j = k.

4. If sj 6|= cj for oj = 〈cj , ej〉, accept.

5. If sk 6|= G, accept.

6. Otherwise reject.

�

Theorem 4.62 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans isΣp

2-hard.

Proof: Truth of QBF of the form∃x1 · · ·xn∀y1 · · · ymφ is Σp
2-complete. We reduce this problem

to the plan existence problem of unobservable planning with polynomial length plans.

• A = {x1, . . . , xn, y1, . . . , ym, s, g}

• I = ¬x1 ∧ · · · ∧ ¬xn ∧ ¬g ∧ s

• O = {〈s, x1〉, 〈s, x2〉, . . . , 〈s, xn〉, 〈s,¬s ∧ (φ B g)〉}

• G = g

Out claim is that there is a plan if and only if∃x1 · · ·xn∀y1 · · · ymφ is true.
Assume the QBF is true, that is, there is a valuationx for x1, . . . , xn so thatx, y |= φ for any

valuationy of y1, . . . , ym. LetX = {〈s, xi〉|i ∈ {1, . . . , n}, x(xi) = 1}. Now the operatorsX
in any order followed by〈s,¬s ∧ (φ B g)〉 is a plan: whatever valuesy1, . . . , ym have,φ is true
after executing the operatorsX, and hence the last operator makesG = g true.

Assume there is a plan. The plan has one occurrence of〈s,¬s ∧ (φ B g)〉 and it must be the
last operator. Define the valuationx of x1, . . . , xn as follows. Letx(xi) = 1 iff 〈s, xi〉 is one of
the operators in the plan, for alli ∈ {1, . . . , n}. Becauseg is reached,x, y |= φ for any valuation
y of y1, . . . , ym, and the QBF is therefore true. �
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deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE EXPSPACE EXPSPACE
partial observability PSPACE EXPSPACE 2-EXPTIME

Table 4.2: Computational complexity of plan existence problems

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE PSPACE EXPSPACE
partial observability PSPACE PSPACE 2-EXPTIME

Table 4.3: Computational complexity of plan existence problems with one initial state

4.8.5 Summary of the results

The complexities of the plan existence problem under different restrictions on operators and ob-
servability are summarized in Tables 4.2 (with an arbitrary number of initial states) and 4.3 (with
one initial state). The different columns list the complexities with different restrictions on the
operators. In the previous sections we have considered the general problems with arbitrary opera-
tors containing conditional effects and nondeterministic choice. These results are summarized in
the third column. The second column lists the complexities in the case without nondeterminism
(choice|), and the first column without nondeterminism (choice|) and without conditional effects
(B). These results are not given in this lecture.

4.9 Literature

There is a difficult trade-off between the two extreme approaches, producing a conditional plan
covering all situations that might be encountered, and planning only one action ahead. Schoppers
[1987] proposeduniversal plansas a solution to the high complexity of planning. Ginsberg[1989]
attacked Schopper’s idea. Schopper’s proposal was to have memoryless plans that map any given
observations to an action. He argued that plans have to be memoryless in order to be able to react
to all the unforeseeable situations that might be encountered during plan execution. Ginsberg
argued that plans that are able to react to all possible situations are necessarily much too big to
be practical. It seems to us that Schopper’s insistence on using plans without a memory is not
realistic nor necessary, and that most of Ginsberg’s argumentation on impracticality of universal
plans relies on the lack of any memory in the plan execution mechanism. Of course, we agree that
a conditional plan that can be executed efficiently can be much bigger than a plan or a planner that
has no restrictions on the amount of time consumed in deciding about the action to be taken. Plans
without such restrictions could have as high expressivity as Turing machines, for example, and
then a conditional plan does not have to be less succinct than the description of a general purpose
planning algorithm.

There is some early work on conditional planning that mostly restricts to the fully observable
case and is based on partial-order planning[Etzioni et al., 1992; Peot and Smith, 1992; Pryor and
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Collins, 1996]. We have not discussed these algorithms because they have only been shown to
solve very small problem instances.

A variant of the algorithm for constructing plans for nondeterministic planning with full ob-
servability in Section 4.4.1 was first presented by Cimatti et al.[2003]. The algorithms by Cimatti
et al. construct mappings of states to actions whereas our presentation in Section 4.4 focuses on
the computation of distances of states, and plans are synthesized afterwards on the basis of the
distances. We believe that our algorithms are conceptually simpler. Cimatti et al. also presented
an algorithm for findingweak plansthat may reach the goals but are not guaranteed to. However,
finding weak plans is polynomially equivalent to the deterministic planning problem of Chapter 3.

The nondeterministic planning problem with unobservability is not very interesting because
all robots and intelligent beings can sense their environment to at least some extent. However,
there are problems (outside AI) that are equivalent to the unobservable planning problem. Finding
homing/reset/synchronization sequences of circuits/automata is an example of such a problem
[Pixley et al., 1992]. There are extensions of the distance and cardinality based heuristics for
planning without observability not discussed in this lecture[Rintanen, 2004a].

Bertoli et al. have presented a forward search algorithm for finding conditional plans in the
general partially observable case[Bertoli et al., 2001].

The computational complexity of conditional planning was first investigated by Littman[1997]
and Haslum and Jonsson[2000]. They presented proofs for the EXPTIME-completeness of plan-
ning with full observability and the EXPSPACE-completeness of planning without observability.
The hardness parts of the proofs were reductions respectively from the existence problem of win-
ning strategies for the gameG4 [Stockmeyer and Chandra, 1979] and from the universality prob-
lem of regular expressions with exponentiation[Hopcroft and Ullman, 1979]. In this chapter we
gave more direct hardness proofs by direct simulation of alternating polynomial space (exponential
time) and exponential space Turing machines.



Chapter 5

Probabilistic planning

Probabilistic planning is an extension of nondeterministic planning with information on the prob-
abilities of nondeterministic events.

Probabilites are important in quantifying the costs and success probabilities of plans when the
actions are nondeterministic. In many applications it is not sufficient just to have a plan. It is
important to have a plan that is efficient in the sense that the cost of the actions does not outweigh
the benefits of reaching the goals. On some other problems there are no plans that are guaranteed
to reach the goals. In these cases it is important to maximize the probability of reaching the goals,
and hence it is vitally important to use information on the probabilities of different effects of
operators.

Probabilities complicate planning, both conceptually and computationally. Whereas in the
non-probabilistic of conditional planning with partial observability it is sufficient to work in a
finite discrete belief space, probabilities make the belief space continuous and thereby infinite.

In this section a number of algorithms for probabilistic planning are presented. In Sections 5.1
and 5.2 we present the transition system model with probabilities that extend the definitions given
in Sections 2.1 and 2.3 for non-succinct and succinct transition systems, respectively. Like in
Chapter 4 we start from planning with full observability in Section 5.3. Many probabilistic plan-
ning problems with full observability are closely related to Markov decision processes[Puterman,
1994].

5.1 Probabilistic transition systems

In many types of probabilistic planning problems considered in the literature the objective is not to
reach one of a set of designated goal states. Instead, the objective is to act in a way that maximizes
therewardsor minimizes thecosts. Planning problems with a designated set of goal states can be
expressed in terms of rewards, but not vice versa.

Definition 5.1 A probabilistic transition systemis a 5-tupleΠ = 〈S, I,O,G, P 〉 where

1. S is a finite set of states,

2. I is a probability distribution overS,

3. O is a finite set of actionso that are partial functions that map each state to a probability
distribution overS,

118
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4. G ⊆ S is the set of goal states, and

5. P = (C1, . . . , Cn) is a partition ofS to classes of observationally indistinguishable states
satisfying

⋃
{C1, . . . , Cn} = S andCi ∩ Cj = ∅ for all i, j such that1 ≤ i < j ≤ n.

An action o is applicable in states for whicho(s) is defined. These states we denote by
prec(o) = {s ∈ S|o(s) is defined}. Below, we will denote the set of actions applicable in a state
s ∈ S byO(S). We also require thatO(s) is non-empty for everys ∈ S.

A major difference to the definition of Markov decision processes[Puterman, 1994] is that
o ∈ O are partial functions. This means that an action does not associate every state with a
probability distribution because an action is not necessarily applicable in all states.

Instead of using a designated set of goal states and have reaching a goal state or staying in
the goal states as an objective, in many types of planning problems the objective is to maximize
rewards or minimize costs. To formalize this we use instead of a set of goal states a cost function
that associates every action and state a numerical cost.

Definition 5.2 A probabilistic transition system with rewardsis a 5-tupleΠ = 〈S, I,O,C, P 〉
where the componentsS, I,O andP are as in Definition 5.1 andC : O × S → R is a function
from actions and states to real numbers, indicating thecostassociated with an action in a given
state.

5.2 Succinct probabilistic transition systems

Probabilistic transition system can be represented exponentially more succinctly in terms of state
variables and operators.

Definition 5.3 LetA be a set of state variables. Anoperatoris a pair 〈c, e〉 wherec is a proposi-
tional formula overA (theprecondition), ande is aneffectoverA. Effects overA are recursively
defined as follows.

1. a and¬a for state variablesa ∈ A are effects overA.

2. e1 ∧ · · · ∧ en is an effect overA if e1, . . . , en are effects overA (the special case withn = 0
is the empty effect>.)

3. c B e is an effect overA if c is a formula overA ande is an effect overA.

4. p1e1| · · · |pnen is an effect overA if n ≥ 2 and e1, . . . , en for n ≥ 2 are effects overA
and p1, . . . , pn are real numbers such thatp1 + · · · + pn = 1 and 0 ≤ pi ≤ 1 for all
i ∈ {1, . . . , n}.

Operators map states to probability distributions over their successor states.

Definition 5.4 (Operator application) Let 〈c, e〉 be an operator overA. Let s be a state (a
valuation ofA). The operator isapplicable ins if s |= c and for every setE ∈ [e]s the set⋃
{M |〈p,M〉 ∈ E, p > 0} is consistent.
Recursively assign each effecte a set[e]s of pairs〈p,M〉 wherep is a probability0 ≤ p ≤ 1

andM is a set of literalsa and¬a wherea ∈ A.
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1. [a]s = {〈1, {a}〉} and[¬a]s = {〈1, {¬a}〉} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {〈Πn
i=1pi,

⋃n
i=1Mi〉|〈p1,M1〉 ∈ [e1]s, . . . , 〈pn,Mn〉 ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = {〈1, ∅〉} otherwise.

4. [p1e1| · · · |pnen]s = {〈p1 · p, e〉|〈p, e〉 ∈ [e1]s} ∪ · · · ∪ {〈pn · p, e〉|〈p, e〉 ∈ [en]s}

For handling effects like(0.2a|0.8b)∧ (0.2a|0.8b), which produces sets{a}, {a, b}, {a, b}, {b}
respectively with probabilities0.04, 0.16, 0.16 and0.64, the sets in this definition are understood
as multisets so that the probability 0.16 of{a, b} is counted twice. Alternatively, in (4) the union
of sets is defined so that for example{〈0.2, {a}〉} ∪ {〈0.2, {a}〉} = {〈0.4, {a}〉}: same sets of
changes are combined by summing their probabilities.

The successor states ofs under the operator are ones that are obtained froms by making the
literals inM for 〈p,M〉 ∈ [e]s true and retaining the truth-values of state variables not occurring
in M . The probability of a successor state is the sum of the probabilitiesp for 〈p,M〉 ∈ [e]s that
lead to it.

Definition 5.5 A succinct probabilistic transition systemis a 5-tupleΠ = 〈A, I,O,G, V 〉 where

1. A is a finite set of state variables,

2. I which describes a probability distribution over the possible initial states is a set of pairs
〈p, φ〉 wherep is a number such that0 ≤ p ≤ 1 and φ is a formula overA such that
(
∑

s∈S,s|=φ1
p1) + · · ·+ (

∑
s∈S,s|=φn

pn) = 1 whereI = {〈p1, φ1〉, . . . , 〈pn, φn〉},

3. O is a finite set of operators overA,

4. G is a formula overA describing the goal states, and

5. V ⊆ A is the set of observable state variables.

Definition 5.6 Asuccinct probabilistic transition system with rewardsis a 5-tupleΠ = 〈A, I,O,C, V 〉
where the componentsA, I,O andV are as in Definition 5.5 andR is a function from operators
to pairs〈φ, r〉 whereφ is a formula overA andr is a real number indicating thecostassociated
with an action in a given state: cost of operatoro ∈ O in states is r if there is〈φ, r〉 ∈ C(o)
such thats |= φ. For this to be well defined there may be no{〈φ1, r1〉, 〈φ2, r2〉} ⊆ C(o) such that
φ1 ∧ φ2 is satisfiable.

We can associate a probabilistic transition system with every succinct probabilistic transition
system.

5.3 Problem definition

A given plan produces infinite sequences of rewardsr1, r2, . . .. Clearly, if the planning problem
has several initial states or if the actions are nondeterministic this sequence of rewards is not
unique. In either case, possible plans are assessed in terms of these rewards, and there are several
possibilities how good plans are defined. Because the sequences are infinite, we in general cannot
simply take their sum and compare them. Instead, several other possibilities have been considered.
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1. Expected total rewards over a finite horizon.

This is a natural alternative that allows using the normal arithmetic sum of the rewards.
However, there is typically no natural bound on the horizon length.

2. Expected average rewards over an infinite horizon.

This is for many applications that involve very long actions sequences the most natural way
of assessing plans. However, there are several technical complications that make average
rewards difficult to use.

3. Expected discounted rewards over an infinite horizon.

This is the most often used criterion in connection with Markov decision processes. Dis-
counting means multiplying theith reward byλi−1 and it means that early rewards are
much more important than rewards obtained much later. The discount constantλ has a
value strictly between 0.0 and 1.0. The sum of the geometrically discounted rewards is
finite. Like with choosing the horizon length when evaluating plans with respect to their
behavior within a finite horizon, it is often difficult to say why a certain discount constantλ
is used.

For the latter two infinite horizon problems there always is an optimal plan that is a mapping
from states to actions. For finite horizon problems the optimal actions in a given state at different
time points may be different. The optimal plans are therefore time-dependent.

5.4 Algorithms for finding finite horizon plans

Conceptually the simplest probabilistic planning is when plan executions are restricted to have a
finite horizon of lengthN . We briefly describe this problem to illustrate the techniques that are
used in connection with the infinite horizon planning problems.

The optimum valuesvi(s) that can be obtained in states ∈ S at time pointi ∈ {1, . . . , N}
fulfill the following equations.

vN (s) = max
a∈O(s)

R(s, a)

vi(s) = max
a∈O(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}

The value at the last stageN is simply the best immediate reward that can be obtained, and
values of states for the other stages are obtained in terms of the values of states for the later stages.

These equations also directly yield an algorithm for computing the optimal values and optimal
plans: first computevN , thenvN−1, vN−2 and so on, untilv1 is obtained. The action to be taken
in states ∈ S at time pointi is π(s, i) defined by

π(s,N) = arg max
a∈O(s)

R(s, a)

π(s, i) = arg max
a∈O(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}
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5.5 Algorithms for finding plans under discounted rewards

The valuev(s) of a states ∈ S is the discounted sum of the expected rewards that can be obtained
by choosing the best possible action ins and assuming that the best possible actions are also
chosen in all the possible successor states. The following equations, one for each states ∈ S,
characterize the relations between the values of states of a stochastic transition system under an
optimal plan and geometrically discounted rewards with discount constantλ.

v(s) = max
a∈O(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)v(s′)

)
(5.1)

These equations are called the optimality equations or the Bellman equations, and they are
the basis of the most important algorithms for finding optimal plans for probabilistic planning
problems with full observability.

5.5.1 Evaluating the value of a given plan

Given a planπ its value under discounted rewards with discount constantλ satisfies the following
equation for everys ∈ S.

v(s) = R(s, π(s)) +
∑
s′∈S

λp(s′|s, π(s))v(s′) (5.2)

This yields a system of linear equation with|S| equations and unknowns. The solution of these
equations yields the value of the plan in each state.

5.5.2 Value iteration

The value iteration algorithm finds an approximation of the value of the optimalλ-discounted plan
within a constantε, and a plan with at least this value.

1. n := 0

2. Assign (arbitrary) initial values tov0(s) for all s ∈ S.

3. For eachs ∈ S, assign

vn+1(s) := max
a∈O(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn(s′)

)

If |vn+1(s)− vn(s)| < ε(1−λ)
2λ for all s ∈ S then go to step 4.

Otherwise, setn := n+ 1 and go to step 3.

4. Assign

π(s) := arg max
a∈O(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn+1(s′)

)
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Figure 5.1: A stochastic transition system

Theorem 5.7 Let vπ be the value function of the plan produced by the value iteration algorithm,
and letv∗ be the value function of an optimal plan. Then|v∗(s)− vπ(s)| ≤ ε for all s ∈ S.

Note that unlike in partially observable planning problems, under full observability there is
never a trade-off between the values of two states: if the optimal value for states1 is r1 and the
optimal value for states2 is r2, then there is one plan that achieves these both.

Example 5.8 Consider the stochastic transition system in Figure 5.1. Only one of the actions is
nondeterministic and only in state B, and all the other actions and states have zero reward except
one of the actions in states A and D, with rewards 1 and 5, respectively. �

5.5.3 Policy iteration

The second, also rather widely used algorithm for finding plans, is policy iteration1. It is slightly
more complicated to implement than value iteration, but it typically converges after a smaller
number of iterations, and it is guaranteed to produce an optimal plan.

The idea is to start with an arbitrary plan (assignment of actions to states), compute its value,
and repeatedly choose for every state an action that is better than its old action.

1. Assignn := 0.

2. Let π0 be any mapping from states to actions.

3. Compute the valuesvn(s) of all s ∈ S underπn.

4. Let πn+1(s) = arg maxa∈O(s)

(
R(s, a) +

∑
s′∈S λp(s

′|s, a)vn(s′)
)
.

5. Assignn := n+ 1.

6. If n = 1 or vn 6= vn−1 then go to 3.

Theorem 5.9 The policy iteration algorithm terminates after a finite number of steps and returns
an optimal plan.

Proof: Outline: There is only a finite number of different plans, and at each step the new plan
assigns at least as high a value to each state as the old plan. �

1In connection with Markov decision processes the wordpolicy is typically used instead of the wordplan.
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It can be shown that the convergence rate of policy iteration is always at least as fast as that of
value iteration[Puterman, 1994], that is, the number of iterations needed for finding anε-optimal
plan for policy iteration is never higher than the number of iterations needed by value iteration.

In practise policy iteration often finds an optimal plan after just a few iterations. However,
the amount of computation in one round of policy iteration is substantially higher than in value
iteration, and value iteration is often considered more practical.

5.5.4 Implementation of the algorithms with ADDs

Similarly to the techniques in Section 4.2 that allow representing state sets and transition relations
as formulae or binary decision diagrams, also probabilistic planning algorithms can be imple-
mented with data structures that allow the compact representation of probability distributions.

A main difference to the non-probabilistic case (Sections 4.4.1 and 4.4.2) is that for probabilis-
tic planning propositional formulae and binary decision diagrams are not suitable for representing
the probabilities of nondeterministic operators nor the probabilities of the value functions needed
in the value and policy iteration algorithms.Algebraic decision diagramsADDs are a generaliza-
tion of BDDs can represent probability distributions. (Section 2.2.3).

In Section 4.1.2 we gave a translation from nondeterministic operators to propositional formu-
lae. The definition of nondeterministic operators and the translation does not use probabilities.

Next we define a similar translation from nondeterministic operators to ADDs that represents
the probabilities. The translation is based on a functionτprob

B (e) that translates an effecte with that
possibly affects state variables inB to an ADD.

τprob
B (e) = τB(e) whene is deterministic

τprob
B (p1e1| · · · |pnen) = p1 · τprob

B (e1) + · · ·+ pn · τprob
B (en)

τprob
B (e1 ∧ · · · ∧ en) = τprob

B\(B2∪···∪Bn)(e1) · τ
prob
B2

(e2) · . . . · τprob
Bn

(en)
whereBi = changes(ei) for all i ∈ {1, . . . , n}

The first part of the translationτprob
B (e) for deterministice is the translation of deterministic effects

we presented in Section 3.6.2, but restricted to state variables inB. The result of this translation
is a normal propositional formula, which can be further transformed to a BDD and an ADD with
only two terminal nodes 0 and 1. The other two cases cover all nondeterministic effects in normal
form.

The translation of an effecte in normal form into an ADD isτprob
A (e) whereA is the set of all

state variables. Translating an operatoro = 〈c, e〉 to an ADD representing its incidence matrix is
asTo = c · τprob

A (e), wherec is the ADD representing the precondition.

Example 5.10 Consider effect(0.2¬A|0.8A)∧ (0.5(b B ¬b)|0.5>). The two conjunct translated
to functions

aa′ fa

00 0.2
01 0.8
10 0.2
11 0.8

bb′ fb

00 1.0
01 0.0
10 0.5
11 0.5

Note that the sum of the probabilities of the successor states is 1.0. These functions are below
depicted in the same table. Note that the third column, with the two functions componentwise
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multiplied, has the property that the sum of successor states of each state is 1.0.

aba′b′ fa fb fa · fb

0000 0.2 1.0 0.2
0001 0.2 0.0 0.0
0010 0.8 1.0 0.8
0011 0.8 0.0 0.0
0100 0.2 0.5 0.1
0101 0.2 0.5 0.1
0110 0.8 0.5 0.4
0111 0.8 0.5 0.4
1000 0.2 1.0 0.2
1001 0.2 0.0 0.0
1010 0.8 1.0 0.8
1011 0.8 0.0 0.0
1100 0.2 0.5 0.1
1101 0.2 0.5 0.1
1110 0.8 0.5 0.4
1111 0.8 0.5 0.4

�

We represent the rewards produced by operatoro = 〈c, e〉 ∈ O in different states compactly
as a listR(o) = {〈φ1, r1〉, . . . , 〈φn, rn〉} of pairs〈φ, r〉, meaning that wheno is applied in a state
satisfyingφ the rewardr is obtained. In any state only one of the formulaeφi may be true, that
is φi |= ¬φj for all {i, j} ⊆ {1, . . . , n} such thati 6= j. If none of the formula is true in a given
state, then the reward is zero. HenceRo is simply a mapping from states to a real numbers.

The reward functionsR(o) can be easily translated to ADDs. First construct the BDDs for
φ1, . . . , φn and then multiply them with the respective rewards as

Ro = r1 · φ1 + · · ·+ rn · φn −∞ · ¬c.

The summand∞ · ¬c handles the case in which the precondition of the operator is not satisfied:
application yields immediate reward minus infinity. This prevent using the operator in any state.

Similarly, the probability distribution on possible initial states can be represented asI =
{〈φ1, p1〉, . . . , 〈φn, pn〉} and translated to an ADD.

Now the value iteration algorithm can be rephrased in terms of ADD operations as follows.

1. Assignn := 0 and letvn be an ADD that is constant 0.

2.

vn+1 := max
〈c,e〉=o∈O

(
Ro + λ · ∃A′.(To · (vn[A′/A])

)
for everys ∈ S

If all terminal nodes of ADD|vn+1 − vn| are< ε(1−λ)
2λ then stop.

Otherwise, setn := n+ 1 and repeat step 2.
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5.6 Literature

A comprehensive book on (fully observable) Markov decision processes has been written by Put-
erman[1994], and our presentation of the algorithms in Section 5.5 (5.5.2 and 5.5.3) follows that
of Puterman. The book represents the traditional research on MDPs and uses exclusively enu-
merative representations of state spaces and transition probabilities. The book discusses all the
main optimality criteria as well as algorithms for solving MDPs by iterative techniques and linear
programming. There are also many other books on solving MDPs.

A planning system that implements the value iteration algorithm with ADDs is described by
Hoey et al. [1999] and is shown to be capable of solving problems that could not be efficiently
solved by conventional implementations of value iteration.

The best known algorithms for solving partially observable Markov decision processes were
presented by Sondik and Smallwood in the early 1970’s[Sondik, 1978; Smallwood and Sondik,
1973] and even today most of the work on POMDPs is based on those algorithms[Kaelbling
et al., 1998]. In this section we have presented the standard value iteration algorithm with the
simplification that there is no sensing uncertainty, that is, for every state the same observation,
dependent on the state, is always made.

The most general infinite-horizon planning problems and POMDP solution construction are
undecidable[Madaniet al., 2003]. The complexity of probabilistic planning has been investigated
for example by Mundhenk et al.[2000] and Littman[1997].

Bonet and Geffner[2000] and Hansen and Zilberstein[2001] have presented algorithms for
probabilistic planning with Markov decision processes that use heuristic search.

5.7 Exercises

5.1Prove that on each step of policy iteration the policy improves.
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