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Received: date / Accepted: date

Abstract Let Aq(n, d) denote the maximum size of a q-ary code with length
n and minimum distance d. For most values of n and d, only lower and upper
bounds on Aq(n, d) are known. In this paper new lower bounds on and updated
tables of Aq(n, d) for q ∈ {3, 4, 5} are presented. The new bounds are obtained
through an extensive computer search for codes with prescribed groups of
automorphisms. Groups that act transitively on the (coordinate,value) pairs
as well as groups with certain other closely related actions are considered.

Keywords automorphism groups, bounds on codes, error-correcting codes,
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1 Introduction

A q-ary code C of length n is a subset of Zn
q where Zq = {0, 1, . . . , q − 1}.

Each element c ∈ C is called a codeword, and Zq is called the alphabet of C.
The size of C is |C|, and the minimum distance of C is

min
a,b∈C,a 6=b

dH(a, b)

where dH denotes the Hamming distance. A q-ary code with length n, size M

and minimum distance at least d is called an (n,M, d)q code.
Let Aq(n, d) denote the maximum size of an (n,M, d)q code. As it is difficult

to determine exact values of Aq(n, d), an important problem in coding theory
is to find lower and upper bounds on this function. While binary codes have
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received the most attention [1], also ternary [6], quaternary [4] and quinary [5]
codes have been studied in this context.

Lower bounds on Aq(n, d) can be determined by constructing codes: if
there is an (n,M, d)q code, then Aq(n, d) ≥ M . Computer search techniques
are often used to find such codes. However, as the search space gets very large
already for relatively small parameters, assumptions about the structure of
the code are usually needed to make such a search efficient enough.

One way to limit the search space is to assume that the codes have sym-

metries. Two q-ary codes are said to be equivalent if there is a permutation
of the coordinates and permutations of the coordinate values, individually for
each coordinate, that map one code to the other. Such a mapping from a
code to itself is called an automorphism. The automorphisms form a group
under composition, the automorphism group of the code. A subgroup of the
automorphism group is called a group of automorphisms.

The approach of searching for codes with prescribed groups of automor-
phisms has been used in several studies, including [9,12,25]. One challenge in
such an approach is that of deciding the class of groups and actions to con-
sider. In [16], binary codes are obtained by focusing on codes with a group
of automorphisms that acts transitively on the (coordinate,value) pairs. This
approach is here extended to ternary (q = 3), quaternary (q = 4) and quinary
(q = 5) codes. Preliminary results of the current study can be found in [17].

The structure of the rest of the paper is as follows: In Section 2, we discuss
the method used for constructing codes with prescribed groups of automor-
phisms and carrying out the computer search. Then, in Section 3, we present
the new lower bounds and updated tables of Aq(n, d) for q = 3, n ≤ 16; q = 4,
n ≤ 12; and q = 5, n ≤ 11.

2 Code Construction

To study codes with prescribed groups of automorphisms, it is convenient to
consider codes in the framework of set systems and represent codewords as sets
of integers in the following way. Let [n] = {1, 2, . . . , n}. The representation of
a q-ary codeword c1c2 · · · cn is a set

{ckn+ k | k ∈ [n]},

so that each codeword is an n-element subset of [nq]. Automorphisms can then
be studied in the context of permutations acting on [nq]. Notice that not all
permutations of [nq] are allowed, but a group of permutations must have a
block system

{{k, n+ k, . . . , (q − 1)n+ k} | k ∈ [n]}. (1)

A block system for the action of a group G on a set is defined as a partition
of the set (into subsets called blocks) that is G-invariant, that is, each element
of G maps a block to some block.
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Consider a prescribed group of automorphisms G for a q-ary code of length
n. The orbit of a word w is

{gw | g ∈ G}.

A code with G as a group of automorphisms consists of a union of such orbits
of codewords, that is, for each orbit of words, either all words or no words are
in the code.

Example: Let us construct a ternary code of length 4 with

G = 〈(1 5 9)(2 6 10)(3 7 11)(4)(8)(12)〉

as a group of automorphisms. Consequently, whenever we include a codeword
c1c2c3c4 in the code, we must also include all other codewords of the form
(c1 + i)(c2 + i)(c3 + i)c4 where i ∈ Z3 and addition is carried out modulo 3.
For example, we may then create the (Hamming) code

C = {0000, 1110, 2220, 0121, 1201, 2011, 0212, 1022, 2102},

which consists of three orbits whose representatives are, for example, 0000,
0121 and 0212.

To prove that Aq(n, d) ≥ M , it suffices to find a code with size at least M
and minimum distance d. For a fixed group of automorphisms G, the problem
of finding such a code can be transformed into the problem of finding a clique
of weight at least M in the following graph [15, Sect. 9.3.2]: For each orbit
where the distance between any two words is at least d, there is a vertex. The
weight of such a vertex is the number of words in the orbit. There is further
an edge between two vertices if the distance between any two words in the
corresponding orbits is at least d.

For given parameters q and n, we now search for codes by prescribing a
group of automorphisms G that acts transitively on [qn], that is, the permuta-
tion group has degree qn. Transitive permutation groups have been classified
[7,11] up to degree 47, so we may systematically consider all transitive groups
of degree qn as long as qn ≤ 47.

For a prescribed permutation group G, we first generate all block systems
of G with block size q and for each such block system, we relabel the elements
of [qn] so that the blocks are of the form (1). Finally, we conduct a search for
cliques of large weight in the graph defined earlier.

In addition to transitive group actions on all elements in [qn], we consider
the following four types of actions. We search for q-ary codes of length n+ 1
such that G acts transitively on the (coordinate,value) pairs of n coordinates
and fixes one coordinate and its values—in other words, we have a transitive
action on a subset [qn] of a set [q(n+1)]. We further search for q-ary codes of
length nk using k copies of G that act transitively and simultaneously on the
(coordinate,value) pairs of n coordinates each, and we also search for q-ary
codes of length nk+1 by combining the two previous cases. Finally, we search
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for q-ary codes of length n such that G acts transitively on (coordinate,value)
pairs considering just q− 1 of the coordinate values and fixing one coordinate
value.

We use the Cliquer software [22] to find maximum-weight cliques in graphs.
We restricted ourselves to graphs that contain at most 5000 vertices, because
processing larger graphs would have been too slow. Each clique search was run
for at most 1000 seconds; in most cases the maximum-weight clique was found
in a couple of seconds.

3 New Lower Bounds

We study A3(n, d) for n ≤ 16, A4(n, d) for n ≤ 12 and A5(n, d) for n ≤ 11.
The current work led to 22 new lower bounds for those parameters, three of
which—A3(14, 4), A4(8, 5) and A5(7, 4)—follow from other new bounds either
through

Aq(n+ 1, d) ≤ qAq(n, d) (2)

or
Aq(n+ 1, d+ 1) ≤ Aq(n, d). (3)

The new codes are listed in the Appendix and in the presentation [17] of
preliminary results of the current study.

Tables 1, 2 and 3 contain the current best known lower and upper bound
for A3(n, d), A4(n, d) and A5(n, d), respectively, in the above mentioned ranges
(for q = 3 we further have [6] A3(16, 12) = 9, A3(15, 12) = 6, A3(16, 13) = 4
and A3(n, d) = 3 for 0 ≤ n − d ≤ 2, 12 ≤ d ≤ 16). The tables update earlier
tables published in [6,27] for q = 3, in [4] for q = 4, and in [5] for q = 5. The
new lower bounds obtained in the current work are marked in boldface in the
tables.
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Table 1: Bounds on A3(n, d) for n ≤ 16, d ≤ 11

n\d 3 4 5 6 7 8 9 10 11
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33f 10 3 3
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252b
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9 937
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243
81 27 6 3 3

10 2808g

2187
891d

729
243 81 14h 6 3 3

11 7029
6561

2561
1458

729 243 36i 12 4 3 3

12 19683 6839j
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1557j
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729 108d

60b

36 9 4 3
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27702a

10624j

6561
3660j

2187
805j

243
237
108b

62j

36b

13kc 6

15 434815
354294

149585j
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Table 2: Bounds on A4(n, d) for n ≤ 12

n \ d 3 4 5 6 7 8 9 10 11 12

3 4

4 16 4

5 64 16 4

6 176e

164
64 9 4

7 596e

512
155e

128
32 8 4

8 2340
2048

611f

352

128
76a

32 5 4

9 9344g

8192
2314f

1152

512
256

120h

76

20
18

5 4

10 30427
24576

8951f

4192

2045f

1024
480d

256
80
48a

16 5 4

11 109226
77056

30427
16384

6241
4096

1780f

1024
320
128a

60h

48a

12 4 4

12 419430
262144

109226
65536

20852
8192

5864f

4096
1167f

256
240d

128b

48c 9 4 4

Unmarked bounds are from Bogdanova, Brouwer, Kapralov, Österg̊ard [4].
Lower bounds: a – (3), b – Blokhuis, Brouwer [3], c – Mackenzie, Seberry [21]
Upper bounds: d – (2), e – Litjens, Polak, Schrijver [20], f – Gijswijt, Schrijver, Tanaka [10], g –
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Table 3: Bounds on A5(n, d) for n ≤ 11

n \ d 3 4 5 6 7 8 9 10 11

3 5

4 25 5

5 125 25 5

6 625 125 25 5

7 2291
1597

489d

257a

87d

57

15 5

8 9672
7985

2291
1225

435c

257

65e

50a

10 5

9 44642
31040

9672
4375

2152f

857

325c

157

50a 10 5

10 217013
125000

44642
17500

9559f

3125
1625c

625
250
125

50b 7 5

11 1085053g

468750
217013
78125

44379f

15625
8125c

3125
1250
625

250
125

35
25

6 5

Unmarked bounds are from Bogdanova, Österg̊ard [5].
Lower bounds: a – (3), b – Mackenzie, Seberry [21]
Upper bounds: c – (2), d – Litjens, Polak, Schrijver [20], e – Polak [26], f – Gijswijt, Schrijver,
Tanaka [10], g – Lang, Quistorff, Schneider [18]
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14. Kaski, P., Österg̊ard, P. R. J.: There exists no (15,5,4) RBIBD. J. Combin. Des. 9,
227–232 (2001)
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24. Österg̊ard, P. R. J.: Classification of binary/ternary one-error-correcting codes. Discrete
Math. 223, 253–262 (2000)
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Appendix: Codes Attaining New Lower Bounds

Bound: A5(7, 5) ≥ 57
Generators of G:

(2 9)(3 17)(4 11)(5 26)(6 27)(7 21)(10 24)(12 19)(13 20)(14 28)(16 23)(18 25),
(1 3 5 14 23 25 27)(2 4 6 22 24 26 21)(7 16 18 20 8 10 12)
(9 11 13 15 17 19 28)(29 31 33 35 30 32 34)
Orbit representatives:

0304000, 4444444

Bound: A5(8, 5) ≥ 257
(1 14 9 6)(2 21 26 13)(3 8 19 24)(4 15)(5 10 29 18)(7 12)
(11 16 27 32)(17 30 25 22)(20 31)(23 28)(33 38)(34 37)(35 40)(36 39),
(1 28 17 4)(2 27)(3 26)(5 16 21 32)(6 7 14 15)(8 29 24 13)
(9 20 25 12)(10 19)(11 18)(22 31 30 23)(33 36)(34 35)(37 40)(38 39),
(1 32 25 16)(2 15 10 7)(3 14 27 30)(4 5)(6 19 22 11)(8 9 24 17)
(12 13)(18 31 26 23)(20 21)(28 29)(33 40)(34 39)(35 38)(36 37)
Orbit representatives:

21401000, 44444444
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Bound: A5(9, 5) ≥ 857
Generators of G:

(1 30 24 14)(2 35 25 36)(3 33 23 19)(4 13)(5 10 12 6)(7 9 11 8)
(15 32 28 21)(16 18 29 17)(20 26 34 27)(22 31)(37 39 42 41)(38 44 43 45),
(1 11 34)(2 7 28)(3 22 17)(4 8 30)(5 9 33)(6 32 27)(10 29 16)(12 31 35)
(13 26 21)(14 18 24)(15 23 36)(19 20 25)(37 38 43)(39 40 44)(41 45 42)
Orbit representatives:

114040000, 312431000, 221012000, 443423000, 334241100, 000322200, 224143300,
401410010, 024433010, 023240110, 031121110, 112402410, 444444444

Bound: A5(9, 6) ≥ 157
Generators of G:

(1 3 2)(4 31 22)(5 32 23)(6 33 24)(7 35 18)(8 36 16)(9 34 17)
(10 30 20)(11 28 21)(12 29 19)(25 26 27)(37 39 38)(43 44 45),
(1 18 32 2 16 31 3 17 33)(4 21 26 6 19 27 5 20 25)(7 13 30 8 15 28 9 14 29)
(10 36 23 11 34 22 12 35 24)(37 45 41 38 43 40 39 44 42)
Orbit representatives:

111000000, 412423100, 144310210, 444444444
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