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Abstract—We consider a massive multiuser MIMO downlink
scenario with 1-bit digital-to-analog converters. QPSK informa-
tion symbols are transmitted to the users by a channel-dependent
mapping of the symbols to 1-bit DAC signals that are transmitted
from each base station (BS) antenna. The mapping is selected to
emulate the desired information bearing QPSK symbols at the
users. Non-linear precoding is considered, where the mapping
from the information symbols to the transmit antenna signals
is selected based on the combination of information symbols.
First, a linear quantized precoder is used to create tentative
transmit symbols. For each combination of information symbols,
a subset of antennas is selected, and an exhaustive search over
a limited size codebook of precoding alternatives is performed.
The resulting method significantly lowers the error floor caused
by quantization, with a complexity that is linear in the number
of transmit antennas.

I. INTRODUCTION

Massive multiuser (MU) multiple-input multiple-output
(MIMO) is a promising technology for fifth generation (5G)
mobile communication systems [1], [2]. In extremes, massive
MIMO base stations (BS) would be equipped with hundreds or
thousands of antennas, and tens or hundreds of users would be
served per cell, leading to potentially significant improvements
in spectral and energy efficiency of wireless communication.

Increasing the number of BS antennas increases the cost
of radio frequency (RF) hardware, such as power ampli-
fiers (PAs), analog-to-digital converters (ADCs) and digital-
to-analog converters (DACs), which start to dominate BS
costs. Power consumption, as well as the cost of fronthaul
communication between digital base band and RF units also
become an issue. To be viable, massive MU-MIMO BSs have
to be built with low-cost and power-efficient RF components.

Reducing the number of quantization bits in ADCs and
DACs is a straightforward method to reduce hardware costs. In
addition to reducing the costs of these components themselves,
low-precision ADCs and DACs lower the quality requirements
on all surrounding RF hardware. In particular, linearity re-
quirements of the PAs are reduced, thus making them cheaper
and more energy-efficient. Quantization also directly reduces
fronthaul data rates. In the extreme, 1-bit ADCs and DACs
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may be considered. Such reduction in accuracy has to be
carefully analyzed with respect to the resulting loss in control
over the communication signals, and the corresponding loss in
communication performance and reliability.

Uplink MU-MIMO with low-precision ADCs has been
thoroughly investigated in [3]–[5], and a degree of maturity
has been reached. For the downlink, however, less is known
about the impact of low precision DACs. The use of linear
precoders followed by direct quantization [6] is shown to
provide rather reliable transmission for large antenna arrays
even when only 1-bit quantization is used in the DACs [7]–[9].
Such linear-quantized methods are, however, marred by error
floors that are caused by the quantization operation, which
produce heavy distortions on the received signal constellations.
These distortions increase with the number of users, and
their effect becomes significant when the signal-to-noise ratio
(SNR) increases.

Recently, non-linear precoding methods have been pro-
posed to mitigate these distortions. In [10], [11], non-linear
precoding was used when QPSK constellations are used to
communicate with the users, and in [12] when higher order
modulation constellations are transmitted to the receivers.
These non-linear methods significantly outperform 1-bit linear-
quantization methods when the ratio of users to antennas is
high. In [11], [12], the inherent integer programming problem
is relaxed to convex problems. Convex solvers with polynomial
complexity in the number B of Tx antennas and the number U
of users can be applied. The resulting complexity is still high,
e.g., in the semi-definite relaxation approach of [11], the worst
case complexity scales cubically in 2B.

In this paper, we consider codebook-based methods to
reduce the complexity of non-linear precoders in 1-bit massive
MU-MIMO systems. We find approximate solutions to the
integer program directly by searching over a limited set of
precoding alternatives. The search set reduction is based on
first carrying out a linear-quantized precoder, and selecting a
subset of antennas that the search concentrates on. Complexity
is further reduced by searching only over a limited size
codebook in the selected subset, not over all possibilities.
Outside the selected set, a linear quantized precoder is used.
The codebook is selected so that the search can be performed
with extremely low complexity. As a result, the complexity of
non-linear precoding only grows linearly in B.



II. SYSTEM MODEL

We consider a downlink multiuser MIMO system, where
there are U single-antenna users that are served by a base
station with B transmitter antennas. The channels between the
base station transmitter (Tx) and the users (Rx) are described
by a single-tap channel matrix H of dimensions U ×B.

The RF chains in the BS have limited complexity, so that
there is a 1-bit DAC for the in phase and quadrature component
at each antenna. Without loss of generality, this is interpreted
so that the output of each Tx antenna is a QPSK-symbol, i.e.,
taking values in the set XQ = {±1± i}/

√
2. The transmitted

signal is thus a B × 1 vector x ∈ XB
Q , and the received (Rx)

signals at the users are

y = Hx+ n , (1)

where n is a U × 1 vector of complex-valued additive noise,
assumed Gaussian. We shall model the entries in H as i.i.d.
circularly symmetric complex Gaussians with unit variance.
The channel gains and transmit powers are absorbed to the
variance of the entries of n. Accordingly, the variance of nu

is B
γuU

, where the signal-to-noise ratio (SNR) γu is the total
received power at user u, divided with the number of users,
and the noise power spectral density at u.

Nonlinear precoding is applied at the Tx. Information trans-
mitted to the users is mapped to the U × 1 vector s ∈ XU

Q

of QPSK-symbols, one for each user. It is assumed that H
is perfectly known at the Tx. Protocols for approximately
achieving this from uplink transmissions can be designed even
if the uplink base station receiver has limited accuracy ADCs.

The task of the nonlinear precoder is to find a vector quanti-
zation function qH yielding the transmitted signal x = qH(s)
such that the information can be reliably decoded at the
individual users. The quantizer depends on the channel H.
The Rx signals can be modeled as

y = diag(v) s+ ñ , (2)

where the vector v consists of an effective complex-valued
channel to each user, and the interference and distortion caused
by the multiuser transmission and the quantization at Tx is
added to the noise in ñ. Note that both v and the statistics
of ñ depend on the quantization map qH. The contribution of
the quantizer to vn constitutes a user-specific complex-valued
generalization of the scaling factor β in [11].

At the user u, the transmitted information symbol xu is
estimated from yu. We assume that the receiver knows the
effective channel gain vu from estimation. Using this, the users
may first find

zu =
v∗uyu
|vu|2

, (3)

from which hard decision estimates of the transmitted symbols
can be found as

ŝu = signC (zu) . (4)

Here signC() takes the sign of both the real and the imaginary
parts of its argument and normalizes with

√
2, and thus returns
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Fig. 1. Tx- and Rx-chains in the considered 1-bit precoded system.

a QPSK symbol. A diagram of the considered 1-bit massive
MU-MIMO system is shown in Fig. 1 .

We decouple the quantizer optimizations for different signal
constellations s by assuming that v is known when selecting
the quantizer qH(s).

To proceed, we need a metric for non-linear precoding.
In [7], [11], [12], the mean square error (MSE) is used as
a quality metric. As argued in [10], for a low-cardinality
constellation such as QPSK, a metric taking the structure of
the constellation into account may be more accurate, as certain
large distortions do not cause errors. Accordingly, we take
the quality metric to be average multiuser QPSK bit-error-
rate (BER), which has a well-known expression in terms of
distances to decision surfaces.

In contrast to [10], where the distances of the multiple users
were combined in a product metric, we consider the smallest
distance as a multiuser metric. This is optimal at high SNR,
where the minimum distance dominates performance. With a
given quantizer qH and signal s, the scaled smallest distance
of the received signal of user u from its decision surfaces is

d(zu, su) = minC{s∗uzu} , (5)

where minC(w) ≡ min{Rew, Imw}. The received signal
has been rotated according to the phase of the received mean
constellation vu, so that Rx u assumes zu to be a conventional
QPSK symbol. In (5), this symbol is rotated to the first
quadrant, and the distances to the decision surfaces are given
by the real and imaginary parts. If zu is on the wrong side
of the decision surface, the distance becomes negative. For
a given transmitted signal s we thus consider the multiuser
distance

dm(s|q) = min
u

d(zu, su) , (6)

which is the minimum distance to the decision surface over
the set of users. The quantizer for the signal s is then

qB(s|v) = argmax
q∈Q̃

dm(s|q) . (7)

optimized over the set Q̃ of single signal precoders with
cardinality 4B .

In principle, for each combination s of transmitted symbols,
a different mapping q is thus selected. Each mapping selects
one out of 4B alternate output signals. From (1) it is however
clear that there is a ZZ4 symmetry; the same mapping is



optimal for any of the four symbol vectors ims, for integers
m = 0, . . . , 3. Without loss of generality, it is thus sufficient
to consider mappings for signals s ∈ S, where e.g., s1 is
be fixed. Altogether |S| = 4U−1 precoder mappings are thus
needed, and the cardinality of the precoder set is

|Q| = 4B+U−1 . (8)

The optimization space is excessively large even for moderate
values of B. For each candidate precoder, received signals
have to be estimated according to (1), and metrics have to be
calculated in (6). All of this should happen within channel
coherence time, for a transient user population.

Accordingly, heuristic methods to reduce the set Q have
been considered in the literature. Direct quantization of zero
forcing (ZF) precoders [8], [9] produces a q without any
search. In [7], improved MMSE precoders are considered,
where quantization noise is taken into account when finding
the linear precoder.

Here, we shall consider codebook-based methods to re-
duce Q. For this, we consider codebooks with codeword
length D and cardinality N ,

C = {c1, c2, . . . , cN} , (9)

where the codewords have fourth-root-of-unity entries, cn ∈
RD

4 with R4 = {1, i,−1,−i}.

III. SUBSET CODEWORD SELECTION PRECODING

In subset codeword selection (SCS) precoding, we have
a fixed codebook C and a fixed subset selection principle,
which do not depend on the channel realization H. Precoding
happens as follows. First, for each signal constellation s ∈ S ,
we take a baseline precoder q̃(s) ∈ XB

Q . Using these baseline
precoders, we get baseline Rx signal constellations, and take
the means of those constellations, rotated to the appropriate
quadrant, as the effective channels v. This way we have
decoupled the optimization problems for different s from each
other, and can use (7) online for each s that is needed.

When optimizing the quantizer for a given s, a subset D of
Tx antennas with cardinality D is selected. The restriction of
the baseline precoder to this set is q̃D. We restrict the search
for quantization maps for this s such that the precoder is fixed
to q̃(s) outside D, and in D, the candidates in the set

Qs = {qD | qD = q̃D ◦ c; c ∈ C} (10)

are considered. Here ◦ is the element-wise (Hadamard) product
of two vectors. Note that the Hadamard-rotation of any s ∈
XD

Q with a cn ∈ RD
4 remains in XD

Q .
We shall use two kinds of baseline precoders. The 1-bit

quantized matched filter (MF) precoder is

q̃mf = signC
(
HHs

)
, (11)

whereas the 1-bit quantized ZF precoder is

q̃zf = signC

(
HH

(
HHH

)−1
s
)
. (12)

For ZF precoding, the U × U covariance matrix HHH has
to be inverted. We denote the antenna-specific outputs by the
baseline precoders as x̃ = q̃(s)

The underlying assumption is that the baseline precoders
are largely good, and that critical mis-quantizations of the
baseline precoders can be corrected with a limited (and hence
low complexity) search. To apply SDS on top of these baseline
precoders, one thus has to develop a method for selecting the
subset D, and one has to design a codebook C.

We use the following heuristic for selection of subsets. The
processed signals zu of (3) at the users have a contribution
from each transmit antenna. Denoting the channel between
the BS and u by hH

u , and omitting the noise contribution, we
have

zu ≈ hH
ux/vu =

N∑
n=1

hunxn/vu ≡
N∑

n=1

zun(xn) , (13)

where we stress the (linear) dependence of zun on xn.
Now, according to (5), each antenna contributes towards the
decision distance of user with a factor minC

{
s∗uzun(xn)

}
.

For antenna n, quantizers differ by outputting different sym-
bols xn. We define the improvement metric for user u on
antenna n as

aun = max
x∈XQ

[
minC s∗uzun(x) − minC s∗uzun(x̃n)

]
+
, (14)

that is, the maximum improvement in minimum distance for
this user, if the signal on antenna xn were changed. If the
baseline x̃n is the best signal for this user on this antenna,
aun = 0. Summing these, we get an improvement metric for
antenna n:

An =
∑
u

aun . (15)

The D antennas with largest An are selected as the subset D.

IV. CODEBOOKS

A priori it is not clear what characterizes a good codebook
for the problem. First, the assumption that the baseline pre-
coders are largely good indicates that C has to include the
all ones codeword c0. Furthermore, from the structure of the
baseline precoders (11,12), and (1), it is clear that no codeword
in the discrete D-dimensional torus TD = RD

4 can de directly
excluded. The cardinality of TD may, however, be too large
for practical use. For example, if a D = 8 dimensional subset
of Tx antennas would be selected, |TD| = 65536, which may
lead to prohibitive complexity.

Codebooks that are proper subsets of TD thus have to be
designed. The codebook design problem becomes a source
coding problem on TD. The source is distributed as the
optimum subset quantizer for a given statistics f(H) of
the channel. The distribution of this source over TD is not
known. Constructing a proper distortion metric would involve
integration of the distortion over f(H). From (1) it follows
that the set of precoders live in a linear space. A natural prior
distance metric between codewords is the Euclidean distance

d(cn, cm) = ∥cn − cm∥2 , (16)



which is the square root of the Hamming distance of a binary
representation of the codebook, so that the Hamming distance
can be directly used as well. Here, we use this metric for the
design of codebooks. Also, from (1) it follows that there is
continuity in TD, so that the distortion measure at neighboring
points are similar.

For one user, 1-bit quantized MF and ZF precoders are
equivalent, and they provide optimal quantizations. Also, as
can be seen in [11], at low SNR, linear-quantized MF and
ZF perform well, and cannot be improved. For a low number
of users, ZF performs reasonably well up to moderate SNRs.
This indicates that for low SNR, and a low number of users,
codewords in TD close to c0 are more likely to be optimal,
whereas for high number of users and/or high SNR, the
optimal codeword may be more evenly distributed over TD.

If it is enough to search over small changes to the base-
line precoder in the D-dimensional subset D, corresponding
codebooks would be minimum-maximum distance (Min-Max-
Dist) ones. One would select N distinct codewords at min-
imum distance from c0, corresponding to rotating one or a
few antennas with ±i, or with −1. It is a straight forward
combinatorical exercise to construct Min-Max-Dist codebooks
with low cardinality.

A more conventional maximum-minimum distance (Max-
Min-Dist) codebook would have an even spread of codewords
over TD. Such codebooks are based on an assumption that
the optimum codeword is i.i.d. in TD. Constructing Max-Min-
Dist codebooks is more challenging than constructing Min-
Max ones. We use results from the literature on codebooks for
Grassmannian subspace packings with finite alphabets [13],
[14]. First, we observe that TD can be decomposed as the
direct product TD = R4 × T̃D, where the R4 indicates the
overall phase of a vector, and the Grassmannian lines T̃D are
cosets w.r.t. R4, i.e., vectors in TD that are equivalent up to
overall rotations. The rotations in R4 acting on any c ∈ T̃D
generate antipodal points, i.e., points at maximum distance
in TD. Thus structured codebooks with large distances can
be constructed from direct products of R4 and Grassmannian
codebooks, which are subsets of TD. For the latter, we use
codebooks based on Mutually Unbiased Bases (MUBs). In
dimensions that are powers of 2, such codebooks can be
generated with entries in R4 [13], [14], some of which are
optimal packings [13]. It should be noted that here we generate
codes for the linear space T4 based on Grassmannian codes.
In projective geometry, selection of coset representative for
codebooks in T̃D (i.e., which of the vectors imc is used as a
codeword) is irrelevant. For use in linear space, the problem
of selecting a representative is not benign, however [15].

Using structured codebooks based on MUBs has the benefit
that MUBs in dimensions of 2 can be constructed from
generalized Hadamard matrices [14], and thus come with an
inherent possibility of using Hadamard transforms to simplify
codebook processing. The dominant complexity in SCS will
thus be the subset selection, which again is dominated by the
multiplicative complexity of (13), linear in B. We leave more
detailed discussions of codebooks for future work.

Fig. 2. Comparison of SCS and random subset selection. Max-Min-Dist
codebooks of different size. B = 32; U = 4.

V. SIMULATION RESULTS

We now show simulation results to demonstrate the efficacy
of SCS precoding. We consider a scenario with B = 32 Tx
antennas and SCS in subspaces of dimension D = 8. We
assume that all users have the same SNR. All channels are i.i.d.
Rayleigh fading. The baseline precoder is ZF, if not otherwise
indicated. In all simulations, the channels are Monte Carlo
sampled, and for each sample, the 4U−1 different transmit
vector cosets in S are systematically considered, by evaluating
the QPSK bit-error probability for transmissions in a given
channel sample.

First, we investigate the subset selection criterion. We take
U = 4 users and Ns = 104 channel samples. In Fig. 2,
codebooks with different size, N ∈ {64, 512} are used in
two scenarios. Precoding in subsets selected with criterion
(15) (legend “SCS N”) is compared to precoding in randomly
selected subsets (legend “RND N”). SCS targets the use
of limited precoding to a subset where it has more impact
than in a randomly selected one, and provides overall better
performance both at low and high SNR than RND.

Next, in Fig. 3 Min-Max-Dist codebooks (legend “NS”)
are contrasted to Max-Min-Dist codebooks (legend “N”) for
codebook sizes N ∈ {8, 16, 32, 64} and U = 4. There is an
interesting cross-over behavior. The small-distance codebooks
result in better performance at low SNR, whereas the large-
distance ones are systematically better at high SNR. This
reveals interesting (and unclear) characteristics of the distri-
bution of the source signal over TD as a function of SNR.

High-SNR performance of Max-Min-Dist codebooks with
different N is shown in Fig. 4, for U = 4. The quantized Zero
Forcer (legend “ZF 1bit”) shows an error floor. This floor is
reduced by applying SCS, and becomes lower with increasing
N . Note that the error flor does not vanish with SCS, at least
for small codebooks. Here Ns = 10000 channel samples are
used, leading to approximately 2 · 107 different configurations
of bits and channels considered in the simulation. Accordingly,
the estimated BERs are rather reliable for BER > 10−5,
and ultimately unreliable at BER 10−7 and below. For the
combination of B and U considered for this figure, the



Fig. 3. Crossover behavior for SCS with Max-Min-Dist and Min-Max-Dist
codebooks of different size. B = 32; U = 4.

lowering of error floor is visible at impractically low levels
of BER.

In Fig. 5, a massive MIMO scenario with higher load is
considered, with transmissions to U = 8 users from B = 32
antennas. There, SCS shows clear performance improvement
already at low SNR, at BER 0.01. SCS both with MF and
ZF baseline are considered, the latter being considerably
better. Infinite precision ZF (legend “ZF”) is also shown for
comparison. The loss of SCS as compared to infinite precision
ZF is 7 dB at BER 0.01.

VI. CONCLUSION

We have proposed a novel, nonlinear precoding method
for 1-bit massive multiuser MIMO systems. Our algorithm
consists of a linear-quantized precoder followed by a re-
finement stage where we first select a subset of the anten-
nas with a quality metric, and then optimize the antenna
symbols in the subset with a limited codebook search to
reduce the error rate at the user side. The method, referred
to as subset codeword selection, is computationally efficient
and significantly outperforms conventional 1-bit precoders by
substantially reducing their error floor at high SNR, especially
in an overloaded massive MIMO system, where the number
of users is relatively large. The complexity of the search over
precoding can be significantly reduced by using an appropriate

Fig. 4. Perfromance of SCS with Max-Min-Dist codebooks of different size.
B = 32; U = 4.

Fig. 5. BER vs. SNR for 8-user SCS. B = 32; N = 64.

codebook. We find that the principle for designing the best
codebooks depends on the target SNR operation point.
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