
Incorporating Stiefel Geometry

in Codebook Design and Selection

for Improved Base Station Cooperation

Renaud-Alexandre Pitaval and Olav Tirkkonen

Aalto University, Department of Communications and Networking, Espoo, Finland

email: {renaud-alexandre.pitaval, olav.tirkkonen}@aalto.fi

Abstract—Base station cooperation is expected to enhance
spectrum efficiency of future cellular system. Performance heav-
ily depends on the channel state information available at the
transmitter. In practical systems, channel information are acquire
through a limited feedback channel. Typically, quantization of the
channel at the receiver side is done with a fixed pre-designed
codebook. In this paper, we consider the codebook design
and codeword selection problem when a product codebook is
employed, reusing a point-to-point codebook. Point-to-point code-
books are often designed as Grassmannian packings. To improve
the performance of the codebook for base station cooperation
without impairing the performance for single cell transmission,
we propose a novel joint Grassmann-Stiefel codebook design. In
addition, we propose a method for independently selecting the
per-cell codewords by using a distance on the Stiefel manifold.

I. INTRODUCTION

Base station (BS) cooperation or coordinated multi-point

(CoMP) is expected to be a key technology in future wireless

cellular systems [1]. In order to synchronize the transmission

between the cooperative BSs, the receiver needs to feed

back channel state information (CSI) to the transmitters. In

frequency-division duplex systems, the only way to acquire

CSI is through a limited feedback channel. A widely applied

method is to use codebook-based precoding in which the

receiver selects a precoding codeword from a predefined

codebook and feeds back the index to the transmitter. Since it

is more important to feed back the channel direction than the

channel beam gain [2], the quantization of the eigendirections

of the channel is often done with a unitary code.

In point-to-point communications, the performance of a

unitary precoding codebook depends of the distance properties

of the Grassmannian planes generated by the codebook. This

has led to the well known Grassmannian codebook design [3]

where the codebook is understood as a discretization of

the Grassmann manifold. Since a Grassmannian codeword

represents a subspace and an infinite number of different

orthonormal matrices span this same subspace, a suitable

representative in this equivalence class has to be chosen. It

follows that the chosen representative does not impact the

performance in point-to-point MIMO communications.
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In cooperative MIMO BS, the receiver has to quantize an

aggregate channel matrix carrying the transmission from the

multiple BSs. Preliminary work considered transposing point-

to-point limited feedback design to cooperative systems [1],

[4]. However, as described in [5], the aggregate channel matrix

is a specific feature that cannot be addressed by directly

applying point-to-point codebook based precoding. Depending

on the user position in the cell, the number of cooperative

BS as well as the large scale path loss from the BSs would

vary and thus be dynamic. It may also be desirable to allow

the network to choose the active BSs for a transmission,

independently of the feedback.

As a consequence, the authors of [5] proposed to employ

a product codebook constructed by concatenating codewords

of a single cell codebook. The method is flexible and has the

evident advantage that it reuses point-to-point codebooks. To

decrease codeword selection complexity, it was subsequently

suggested in [6] that the receiver quantizes independently each

per-cell channel. While this decreases complexity, it induces a

loss in performance. This loss is a consequence of dismissing

the phase ambiguity between per-cell channels, as recognized

in [6], [7], [8]. To solve this problem the authors of [6], [7], [8]

suggested that the receiver feeds back additional bits related

to this phase ambiguity.

Since matrix concatenation is employed in the product

codebook, it is not enough to quantize the channel subspace

of the per-cell codebook. Instead, quantizing the full space of

unitary precoders, the Stiefel manifold, could be considered.

Nevertheless, in practical system it would be desirable that a

single codebook can be employed for Grassmann and Stiefel

quantization. In this paper we show that the representative of a

per-cell Grassmannian codebook can be chosen appropriately

to yield a better product codebook. This leads to a new

codebook design problem, where first one has to design a

Grassmannian codebook, then one chooses the representative

for every codeword to efficiently quantize the Stiefel manifold.

In addition, we give an independent codeword selection

method to take into account the phase ambiguity between

the per-cell channel that does not require any additional

information to feed back. This is done by applying a distance

on the Stiefel manifold for codeword selection rather than the

typical Grassmannian chordal distance.



This paper is organized as follows. Section II defines

the pertinent mathematical spaces for the codebook design.

In Section III, the system model and the codebook design

problem are presented. In Section IV, we present a joint

Grassmann-Stiefel codebook design and illustrated it with a

toy example. In section V are presented different codeword

selection principles, from which a independent selection using

the Stiefel distance. Section VI presents simulation results, and

finally Section VII concludes.

II. DEFINITIONS

The primary codebooks we considered are designed for

transmission of ns-streams from a nt-antenna base station.

Pertinent spaces for the codebook design are as follows.

Unitary Group: The codebooks addressed have orthonor-

mal columns, and consist thus of a number of columns from

a unitary matrix. The space of all nt-dimensional unitary

matrices is denoted by the unitary group:

Unt
=

{

U ∈ C
nt×nt | UHU = Int

}

.

Stiefel manifold: The complex Stiefel manifold VC
nt,ns

is defined as the space of orthonormal rectangular matrices

(with ns ≤ nt):

VC

nt,ns
=

{

Y ∈ C
nt×ns | YHY = Ins

}

. (1)

When ns = 1, the Stiefel manifold is the set of unit vectors

in C
nt which can be identified as a hypersphere in R

2nt .

Otherwise, for general values of ns, the Stiefel manifold is

a subspace of a hypersphere in R
2ntns . The standard distance

considered on the Stiefel manifold is thus

ds(X,Y) = ‖X−Y‖F (2)

=
√

2ns − 2R(Tr[XHY]) (3)

Grassmann manifold: The complex Grassmann manifold

GC
nt,ns

is the set of all ns-dimensional subspaces of C
nt .

GC
nt,ns

can be expressed as the quotient space of the Stiefel

manifold and the unitary group: GC
nt,ns

∼= VC
nt,ns

/Uns
. A point

in the Grassmann manifold can thus be represented as the

equivalence class of the nt × ns orthonormal matrices whose

columns span the same space:

[Y] = {YU | U ∈ Uns
} . (4)

where the Stiefel-matrix Y is an nt×ns matrix with orthonor-

mal columns. Each column in Y determines a line in C
nt , so

that each Y determines an ns-dimensional subspace in C
nt .

The equivalence class [Y] thus represents a set of matrices

Y determining the same subspace. Taking two Grassmannian

points [X], [Y] ∈ GC
nt,ns

, the representatives X, Y ∈ VC
nt,ns

determine two subspaces of Cnt . The chordal distance between

these is defined as [9]

dg([X], [Y]) =
1√
2
‖XXH −YYH‖F (5)

=
√

ns − ‖XHY‖2F (6)

This distance does not depend on the representative in [X] and

[Y] chosen.

Stiefel and Grassmannian codebook: A code or a code-

book is a finite subset of points in the considered space. Since a

Grassmannian codebook is a set of equivalence classes, it may

be represented by a suitable representative in each equivalence

class. The obtained set of rectangular unitary matrices is

inherently both a Grassmannian code and a Stiefel code. The

distance properties of the code in these two interpretations

depend on the design principle.

III. SYSTEM MODEL

We consider precoded transmission over a cooperative

MIMO multi-cell system with nbs base stations each equipped

with nt antennas. It is assumed that the BSs are able to

instantaneously share the feedback information, e.g. via high

speed backhauls. When the BSs transmit to a user, the received

signal is

y = HlsWx+ n, (7)

where y ∈ C
nr×1 is the received vector, W is an nbsnt × ns

aggregate precoding matrix, x is an ns× 1 vector of informa-

tion symbols, ns is the number of streams, and

Hls = [α1H1, . . . , αnbs
Hnbs

] = HssG (8)

is the aggregate channel matrix where the channels from

the BSs to the receiver are concatenated, and large scale

path losses are explicitly taken into account. The average

path gain from the ith BS to the receiver is αi, incorpo-

rating distance-dependent path loss and shadowing. Small-

scale path gains are characterized by the matrices Hi ∈
C

nr×nt . The aggregate small-scale path gain matrix is denoted

Hss = [H1, . . . ,Hnbs
] and the large scale path gains by

G = diag(α1Int
, . . . , αnbs

Int
).

We concentrate on designing W which steers the transmit-

ted energy to the signal subspace of the receiver. We assume

that the total transmit power is Tr[WHW] = ns, which

is equally shared among the symbols such that the diagonal

entries [WHW]ii = 1. We denote by Vls and Vss the right

singular vectors associated with the ns largest singular values

of Hls and Hss, respectively. The optimum precoding matrix

is then Wopt = Vls.

The optimum Grassmannian codeword can be written with-

out loss of generality in terms of component codewords as

Wopt = [WH
opt,1, . . . ,W

H
opt,nbs

]H where Wopt,i ∈ C
nt×ns .

The ns columns of Wopt are orthogonal, and any codeword

that is achieved by multiplying with a ns × ns unitary matrix

from the right is equivalent. This means that of its components,

Wopt,1 could be any nt × ns matrix up to the right unitary

rotation, whereas Wopt,i i > 1 could be any nt × ns

matrix. If quantizing W = Q(Wopt) with a per BS power

constraint, we would have the full space of normed rectangular

matrices, for all except one BS, and the full space of normed

matrices modulo unitary rotations for the remaining one. The

normalization can be per Wi, or for example per column of

Wi, or per row of Wi, or per element on Wi, depending on

the wish. In the case of ns = 1 this would mean that we would

have Grassmannian degrees of freedom (d.o.f) for one BS and



Stiefel d.o.f. for the rest. For ns > 1 it is remarkable that the

per-BS codewords Wopt,i do not necessarily have orthogonal

columns.

In order to accommodate to the possible dynamic number

of cooperating BSs and deal with the heterogeneous path

loss effects, it has been proposed that the receiver quantizes

Vss rather than Vls directly by reusing point-to-point code-

books [5]. The receiver uses a single pre-design codebook

C = {C1, . . . ,CN} of (nt × ns)-orthonormal matrices to

quantize the signal subspace seen at the receiver. The point-

to-point codebook is fixed and independent of the number

of cooperating BSs and large-scale path loss effects. Based

on this principle, [5] proposes a product codebook which

is a direct product of single-cell Grassmannian codebooks,

Cpr = 1√
nbs

C ⊗ · · · ⊗ C: a codeword in Cpr is a normalized

concatenation of nbs single cell codewords. This has the

benefit that the network can select the BSs that transmit inde-

pendently of the feedback. It has two non-idealities. First, the

Grassmannian codebooks are not necessarily the best ones for

Stiefel quantization. Indeed, in [6], a phase ambiguity problem

is proposed. Second, even in generic direct product codebooks

a minor loss would arise from the fact that joint discretization

would allow a somewhat better minimum distance property.

IV. JOINT GRASSMANN-STIEFEL CODEBOOK

We follow the principles of [5] where the same codebook is

used to feedback to all BSs, and that any selection of BSs can

be used to transmit to the user. Hence we require orthogonality

of the columns in each Wi. With a direct product codebook,

the eigendirection of the channel is quantized by concate-

nating codewords. Thus the choice of representative for a

Grassmannian codeword will impact cooperative transmission

performance. We propose that the codebook is constructed

by first designing a Grassmannian codebook according to

standard criteria such as maximizing the minimum distance

or minimizing the average distortion. Then, the representative

in each Grassmannian plane in the codebook is chosen to

optimize a metric on the Stiefel manifold. This means that we

select a good Stiefel codebook conditioned on the codebook

being simultaneously a near-optimal Grassmannian codebook.

In addition to improving performance, this joint Grassmann-

Stiefel codebook design has the flexibility that only a single

codebook has to be implemented for the different communi-

cations scenarios.

To illustrate the joint Grassmann-Stiefel codebook design

problem, we consider the toy scenario of building a real

codebook of four codewords for a transmission from 3 anten-

nas. This leads to a rare example where visualization of the

proposed approach is possible. The real Grassmannian GR
3,1

that needs to be discretized is the set of lines through the

origin in the 3D Euclidean space. It can be understood as

the set of of antipodal points on the real unit sphere. The

corresponding Stiefel manifold is the space of all 3D unit-

norm vectors, and can be understood as the full sphere. A

Grassmannian code is then a set of antipodal points, and

choosing a representative for every Grassmannian codeword

means simply choosing one of the two antipodal points on the

sphere. A Stiefel-codebook, in turn, is a spherical code. The

best four-codeword Grassmannian packing is found by taking

the vertices of a cube – the eight vertices of the cube consist

of four pairs of antipodal points, i.e. four Grassmannian lines.

From this cube, there is four possible non-equivalent four-

codeword spherical codes: for example by taking only points in

the upper hemisphere we get a square, or by taking two points

in both upper and lower hemispheres we get a tetrahedron

as depicted on Fig 1. The best Grassmann-Stiefel codebooks

is obtained by taking the vertices of the cube that form a

tetrahedron. It turns out that the vertices of the tetrahedon

gives actually the optimum 4-point spherical (Stiefel) codes

under several criteria [10]. In this simple example, it is thus

possible to have a codebook that is simultaneously an optimal

Grassmannian and Stiefel packing.

Fig. 1. Illustration of the joint Grassmannian-Stiefel codebook design. On
the upper graph the optimum 2-bit Grassmannian packing in GR

3,1
, a set of 4

antipodal points forming a cube. On the lower part, two alternatives of 2-bit
Stiefel codebooks generating the above Grassmannian codebook: a square and
a tetrahedron.

V. CODEWORD SELECTION

The codeword of the joint codebook can be selected either

jointly [5], [6] or independently [6] over the components of

Vss = [VH
ss,1, . . . ,V

H
ss,nbs

]H . Here an improved independent

codeword selection using Stiefel distance is presented. For

non-unitary matrices the distances ds and dg are defined as

(2), (5) respectively.

a) Joint codeword selection: In joint selection [5], the

product codebook codeword minimizing

Wss = Qjs(Vss) = arg min
Ci∈Cpr

dg(Ci,Vss) (9)

is selected. This leads to high complexity due to the size of

the exhaustive search required [5], [6].

b) Joint codeword selection with transformed codebook:

Joint selection can be improved [6] by borrowing the idea of

transformed codebook for spatially correlated channel [11]:

Wss = Qjs−trans(Vls) = arg min
Ci∈Cpr

dg(GCi,Vls). (10)



It is worth noticing that
√
ntnbs

‖G‖ GCi ∈ VC
ntnbs,ns

. The two

joint selection methods provide similar performance for cell

edge user, where G ∝ I.

c) Independent codeword selection: As an alternative,

each single cell channel matrix could be quantized indepen-

dently [6]:

Wss,k = Qind(Vss,k) = arg min
Ci∈C

dg(Ci,Vss,k) (11)

This method leads to a loss of performance as it does not take

into account the phase ambiguity between the components of

the optimum precoding vector as recognized in [6].

d) Independent codeword selection with Stiefel distance:

In order to independently quantize the channel efficiently, the

phase ambiguity between the different channels should be

taken into account. We suggest that first the strongest channel

(with the largest αi) is quantized using the chordal distance

Wss,1 = Qind(Vss,1) = arg min
Ci∈C

dg(Ci,Vss,1) . (12)

The unitary rotation not seen by this Grassmannian codeword

selection can be found by performing the polar decomposition

WH
1 Vss,1 = PR where R ∈ Uns

and P is a positive-

semidefinite Hermitian matrix. The channels from the other

BSs, with the rotation R removed, are then discretized using

the Stiefel distance:

Wss,k = Qstief (Vss,k) = arg min
Ci∈C

ds(Ci,Vss,kR
H) (13)

To clarify the proposed codeword selection, first, we discuss

single stream transmission. The corresponding joint codeword

selection is to minimize dg(ci,vss) over the possible codeword

indexed by i which is equivalent to maximizing
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=
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∣

∣

∣
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−iφ1)

∣

∣

∣

∣

∣

. (16)

The loss of independent quantization of the |cHi,kvss,k| is due

to the lack of catching the phase ambiguity ei(φk−φ1) in

the process. This can be solved by using a distance on the

Stiefel manifold for quantizing vss,kr
H for k 6= 1 where

r = eiφ1 =
c
H
i,1vss,1

|cH
i,1

vss,1| .

Generalization to multistream requires to solve a so called

orthogonal Procrustes problem [12]:

R = arg min
Ω∈Uns

‖Vss,1 −W1Ω‖F . (17)

The solution is the polar decomposition of M = WH
1 Vss,1,

which is given by R = ŨṼH where M = ŨΣṼH is the

singular value decomposition of M.

VI. SIMULATION RESULTS

We numerically evalutate the Shannon capacity of the

different schemes when Hss is flat with i.i.d Rayleigh fading

components. The BSs construct the precoding matrix Wss

from the feedback bits sent by the MS. As in [5], it is assumed

that the BSs knows the large scale path gains of the channels

contains in G, and compute the final precoding matrix as

Wls =
√
ntnbs

‖G‖ GWss. With ρ the SNR per-stream, the spectral

efficiency is then given by

C = E
[

log2 det
(

I+ ρWH
ls H

H
ls HlsWls

)]

. (18)

Fig. 2, 3 and 4 depict the spectral efficiency of the proposed

scheme for 2 BSs with 2-bit feedback, 2 BSs with 3-bit

feedback, and 3 BSs with 2-bit feedback, respectively. We

consider equal large scale path loss for each channel. This

corresponds to the scenario where the MS is at the cell

edge. Cell edge users are more inclined to be served by

cooperative transmission, while in this context the performance

gap between the different methods is more consequent.

Fig. 5 depicts the variation of performance for different large

scale path gain imbalance between the first and the second

BS. The simulation scenario is a 2-bit feedback. The graph

represents the different performance depending of the position

of the user, from the center of the cell to the cell edge.

The optimum Grassmannian codebooks are taken from [10].

Using brute-force search, joint Grassmannian-Stiefel code-

books were generated by maximizing the average Stiefel

distance between the representatives of the Grassmannian

codebook (maximizing the minimum Stiefel distance was

also considered leading to similar but slightly worse spectral

efficiency).

As it can be seen from Fig. 2, 3, 4 and 5, the Stiefel-

improved codebooks lead to better performances for all code-

word selection methods. The proposed independent codeword

selection with Stiefel distance consequently improves the

scheme and leads to competitive performance w.r.t. the joint

selection. Fig. 5 shows that the independent selection meth-

ods gain performance relatively to the joint selection when

introducing large scale path gain imbalance. Cooperation are

more likely to happen when the user is close to the cell edge,

which corresponds to the right half of Fig. 5. However for

illustration purposes, when the user is at the center of the first

cell α2/α1 ≈ 0, the independent selection outperform the joint

selection agreeing with the results of [6]. Also, at this point,

all the independent selection methods merge which is justified

since the signal of the second BS vanishes. Joint selection with

transformed codebook provide the best performance in every

scenario: matching the performance of independent selection

for large imbalance and joint selection for no imbalance.

VII. CONCLUSION

We have considered product codebook quantization for

cooperative base stations. In this context, to improve per-

formance, we have described a joint Grassmannian-Stiefel

codebook design. Additionally, to decrease the complexity
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Fig. 2. Performance comparison for 2 BS with 2 Tx antennas using 2-bit
Tetrahedron codebook and Stiefel-Tetrahedron codebook
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Ideal beamforming
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Fig. 3. Performance comparison for 2 BS with 2 Tx antennas using 3-bit
Square-Antiprism codebook and Stiefel-Square-Antiprism codebook

of the codeword selection at the receiver, we considered

independent codeword selections, and proposed a selection

based on a distance on the Stiefiel manifold to absorb in

the selection the phase ambiguity between the channels. The

pertinence of the scheme was illustrated by simulations.
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