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Abstract—In this letter, we consider bivariate gamma dis-
tributions with arbitrary parameters and obtain closed-form
expressions for the cumulative distribution function for scenarios
where the difference between the shape parameters of the
marginal distributions is an integer.

Index Terms—Bivariate gamma distribution, correlated fading,
diversity.

I. INTRODUCTION

In communication engineering, bivariate fading distributions
are of interest, for example, in the analysis of multi-antenna
wireless communication systems operating over correlated
branches. Such scenarios are typical in communication termi-
nals where the available resources do not provide independent
fading [1].

The Nakagami-m distribution is a generalized fading model
representing miscellaneous fading scenarios with different
fading severities by varying the parameter m from m = 1/2
(meaning a very strong fading severity) to m → ∞ (corre-
sponding to the absence of fading) [1]-[2]. In Nakagami-m
environment, the gamma distribution models channel power
gains affecting the received signal-to-noise ratio (SNR). Due
to a good approximating ability, the two-parameter gamma
distribution is widely used as a substitute to more sophisticated
fading models [3]-[5].

For scenarios with equal shape parameters m of the
marginal distributions, the probability density function (PDF)
of two correlated gamma variates was presented in the original
work by M. Nakagami [2, eq. (125)], and for integer values
of m, an expression for the cumulative distribution function
(CDF) was recently derived in [6, eq. (13)]. Practical fading
scenarios, however, are often characterized by non-integer
values of m. Additionally, in multi-antenna systems, the
fading statistics for diversity branches can be different [7]-[8].
Examples include macrodiversity, angle diversity, polarization
diversity, and rake receivers where the distribution of signal
power is non-uniform at different delays [7]. Full statisti-
cal studies of bivariate gamma distributions with arbitrary
fading parameters were given in [8]-[9]. The latter work
assumes also arbitrary cross-correlation between the in-phase
and quadrature components of underlying Gaussian signals.
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An alternative PDF expression was obtained in [10] in terms of
the Humbert hypergeometric function Φ3. The CDF formulas
are given, however, only in [8]-[9], and they are expressed via
multiple infinite series with the summands containing special
functions, which may be inconvenient in the practical use.

In this letter, using the approaches of [8] and [10], we
derive closed-form CDF expressions for scenarios where the
difference between the shape parameters of the marginal
distributions is an integer. The results of this work can be
used for analyzing multi-antenna systems.

II. CLOSED-FORM CDF EXPRESSIONS

A. Preliminaries

The PDF of two correlated gamma variates can be repre-
sented as [10, eq. (12)]

pX1,X2(x1, x2) =
xm1−1
1 xm2−1

2 αm1
1

Γ(m1)Γ(m2)θ2
m2

exp (−α1x1 − α2x2)

× Φ3 (m2 −m1;m2; ρα2x2, ρα1α2x1x2) (1)

where m1, m2 ≥ m1, and θ1, θ2 are the respective shape and
scale parameters of the marginal distributions. The correlation
coefficient ρ = (E{X1X2,a} − E{X1}E{X2, a})/(m1θ1θ2)
(with E denoting the expectation) characterizes the correlation
between X1 and one component of X2, X2,a, with the shape
parameter m1, while the other component X2,b = X2 −X2,a

is assumed to be independent of X1. Thus, the correlation
coefficient ρ can be expressed via the correlation coefficient ρC
between X1 and X2 as ρ = ρC

√
m2

m1
. In (1), α1 = 1/[θ1(1−

ρ)], α2 = 1/[θ2(1−ρ)], Γ(.) is the gamma function, and Φ3 is
the Humbert hypergeometric function, which is often defined
as [11, vol. 3, eq. (7.2.4.7)]

Φ3(b; c;w, z) =
∞∑
k=0

∞∑
l=0

(b)kw
kzl

(c)k+lk!l!
(2)

where(.)k denotes the Pochhammer symbol [11, vol. 3, II.2],
and c ̸= 0,−1,−2, . . . , .

In this letter, we apply the Nuttall Q function Qm,v(α, β)
introduced in [12, eq. (86)] as

Qm,v(α, β) =

∫ ∞

β

xmexp

(
−α2 + x2

2

)
Iv(αx)dx (3)

with Iv(.) denoting the modified Bessel function of the first
kind of the order v [13], and we also use the generalized
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Marcum Q function Qm(α, β) = 1
αm−1Qm,m−1(α, β) [1, eq.

(4.60)]. If (m−v) in (3) is an odd integer, then [1, eq. (4.110)]

Qv+2k+1,v(α, β) =
k+1∑
l=1

cl(k, v)α
v+2(l−1)Qv+l(α, β)

+exp

(
−α2 + β2

2

) k∑
l=1

Pk,l(v, β)β
v+l+1Iv+l−1(αβ) (4)

where cl(k, v) = 2k−l+1 k!
(l−1)!

(
k+v

k−l+1

)
, and Pl,k(v, β) =∑k−l

j=0 2
k−l−j (k−1−j)!2k−l−j

(l−1)!

(
k+v

k−l−j

)
β2j with

(
.
.

)
denoting the

binomial coefficient.

B. Results

Lemma 1: Incomplete integrals of Bessel I functions,
Ii(v, p, w, z)

∆
=

∫ z

0
ti+

v−1
2 exp (−pt) Iv−1

(
2
√
wt

)
dt, where

i is a non-negative integer, can be expressed as

Ii(v, p, w, z) = exp

(
w

p

)[
Γ(i+ v)w

v−1
2 i!

Γ(v)pi+v(v)i
Lv−1
i

(
−w

p

)

−
Q2i+v,v−1

(√
2w/p,

√
2pz

)
pi+

v+1
2 2i+

v−1
2

 (5)

where Lm
i (z) = (m+1)i

i!

∑i
k=0

(−i)k
(m+1)kk!

zk is the generalized
Laguerre polynomial [14], and the Nuttall Q function in (5)
can be evaluated via (4).

Proof : Eq. (5) follows directly from a Laplace transform
(LT) formula [11, vol. 4, eq. (3.15.2.5)] including the Kummer
hypergeometric function 1F1(.), a transformation formula for
1F1(.) [11, vol. 3, eq. (7.11.15)], and (3).

Lemma 2: Incomplete integrals of Nuttall Q functions,
Hl(v, w, q, z)

∆
=

∫ z

0
t
v−1
2 Q2l+v,v−1

(√
wt,

√
q
)
dt, where l is

a positive integer, can be evaluated as

Hl(v,w, q, z) = zvw
v−1
2

l+1∑
k=1

ck(l, v − 1)
(wz)k−1

v − 1 + k

×
{
Qv−1+k

(√
wz,

√
q
)
−
( q

wz

)v−1+k

×
[
1−Qv+k

(√
q,
√
wz

)]}
+

2

w
v+1
2

l∑
k=1

qv+k−1

× Pl,k(v − 1,
√
q)

[
1−Qv−1+k

(√
q,
√
wz

)]
. (6)

Proof : See Appendix A.
Lemma 3:
1. Incomplete integrals of Marcum Q functions,

Qm(p, w, q, z)
∆
=

∫ z

0
tm−1exp(−pt)Qm

(
w
√
t, q

)
dt, where

m > 0, can be expressed as

Qm(p, w, q, z) =
∞∑
k=0

(
w2

2

)k

Γ

(
k +m,

q2

2

)

×
γ
[
k +m,

(
p+ w2

2

)
z
]

Γ(k +m)
(
p+ w2

2

)k+m
k!

(7)

where γ(a, x) and Γ(a, x) = Γ(a)−γ(a, x) are the respective
lower and upper incomplete gamma functions.

If the series in (7) is approximated by the sum of (Nmax+1)
terms, the remainder RNmax can be bounded as

RNmax <

(
w2

2

)Nmax+1
γ(m+Nmax + 1, pz)

pm+Nmax+1

× Qm+Nmax+1 (w
√
z, q)

(Nmax + 1)!
. (8)

2. If m is a positive integer, Qm(p, w, q, z) can be evaluated
as

Qm(p, w, q, z) =
(m− 1)!

δm
exp

(
−q2

2

)
×[

exp

(
λ
q2

2

)
1− ((1− λ)q2/2)m

(1− λ)m(1− (1− λ)q2/2)

−exp (−δ)

m−1∑
k=0

(δz)k

k!
Fm,k(z)

]
(9)

where δ = p+w2/2, λ = w2/(w2+2p), and Fm,k(z) = (1−

λ)m−k

[
exp

(
q2

2 + δλz
)(

q2

2

)k

Φ̃3

(
1, k + 1, q2

2 ,
δλq2z

2

)]
+
∑m−k

l=1 (1−λ)k+l−m−1
(

q2

2

)k+l−1

Φ̃3

(
l, k + l, λ q2

2 ,
δλq2z

2

)
with Φ̃3 (b, g, w, z) =

Φ3(b,g,w,z)
Γ(g) .

Proof : See Appendix A.
Proposition 1: The CDF of bivariate gamma distribution (1)

with integer values of (m2 −m1) can be expressed as

FX1,X2(z1, z2) =
1

Γ(m1)

[
γ

(
m1,

z1
θ1

)
−(

z1
θ1

)m1

Qm1

(
z1
θ1

,
√
2ρα1z1,

√
2α2z2, 1

)]
(10)

if m1 = m2.
Otherwise,

FX1,X2(z1, z2) =
γ
(
m1,

z1
θ1

)
Γ(m1)

− θ1
−m1

Γ(m1)
×{

z1
m1Qm1

(
z1
θ1

,
√

2ρα1z1,
√
2α2z2, 1

)
+

exp
(
− z2

θ2

)
ρm1

m2−m1−1∑
i=0

θ−i
2

i!

i∑
l=0

(
i

l

)
z2

i−l

×
(
− 1

ρα2

)l [
zm1
1

m1 + l
l!Lm1

l (−α1z1)−

z1
m1+1

2

2l(2α1)
m1−1

2

Hl (m1, 2α1z1, 2ρα2z2, 1)

]}
. (11)

Proof : See Appendix B.
If m1 is an integer, and m1 = m2, the CDF can be assessed

via [6, eq. (13)]. For arbitrary m1 > 0 and m1 = m2,
(10) gives an approximate CDF formula with the accuracy
specified by (8). If (m2−m1) > 0 is an integer, (11) provides
a CDF formula. In any case, one can avoid the evaluation
of the double infinite series required so far for the CDF
assessment [8, eq. (15)]. Additionally, taking into account (4)
and a relation between the generalized Marcum Q function and
Φ3 [15], we see that (10) and (11) can be efficiently evaluated
via standard software packages such as Mathematica.
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III. APPLICATIONS

The derived results can be applied to assessing the outage
probability (OP) Pout(γ0) in multiple-input multiple-output
(MIMO) systems with NT transmitting (Tx) and two receiving
(Rx) antennas. Let H = [Hi,j ] be the 2×NT channel matrix.
We assume that the spatial correlation only appears at the
receiver side, as well as that |Hi,j |2 are gamma-distributed
with different shape parameters µi,j and scale parameters θi,j ,
|Hi,j |2 ∼ G (µi,j ; θi,j). Then the diagonal elements of the
Gramian matrix G = HHH , di =

∑NT

j=1 |Hi,j |2, i = 1, 2, are
correlated random variables. Generally, di are approximately
gamma-distributed, di ≃ G (mi; θi), since they are the sums
of independent gamma variables [5]. In general, the fitting
procedure [5, eqs. (10)-(11)] certainly does not result in integer
values of (m2 −m1). In this case, under scenarios described
below, (10)-(11) can be used as approximate bounds on real
OP values since the shape parameter is inversely proportional
to the amount of fading [1, eq. (1.27)]. If θi,j = θi, di are
correlated gamma variables, di ∼ G

(
mi =

∑NT

j=1 µi,j ; θi

)
,

and depending on the values of (m2−m1), (10)-(11) provide
either real OP estimates or real bounds.

CDF formulas (10)-(11) can be applied to the OP evaluation
for MIMO systems exploiting Rx antenna selection where
only one Rx antenna with the highest SNR is selected. If
the transmitted power is split equally among the Tx antennas,
the SNR γ at the combiner output is γ = γ̄T

NT
max{d1, d2},

and Pout(γ0) = Fd1,d2

(
NT

γ0

γ̄T
, NT

γ0

γ̄T

)
. For this scenario, we

present in Fig. 1 analytical estimates as well as simulation
results for the OP versus the normalized threshold γnorm =
γ/θ1. We consider both the balanced ( with E{d1} = E{d2})
and unbalanced branches. The latter scenario corresponds to
the case of different shape and scale parameters of 2 × 2
channel matrix, where one gamma variable is used as a
substitute to the sum of two gamma variables [5].

With the help of (10)-(11), an upper bound on the OP can be
evaluated in transmit beamforming (TB) MIMO maximal ratio
combining (MRC) systems where the SNR γ at the combiner
output is the product of the transmitted SNR γ̄T and the
maximal eigenvalue λ1 of G: γ = γ̄Tλ1 [16]. Under these
conditions, Pout(γ0) ≤ Fd1,d2(

γ0

γ̄T
, γ0

γ̄T
) [17].

Furthermore, CDF expressions (10)-(11) can be applied to
the OP evaluation for 2×NT TB MIMO MRC systems with
limited-rate feedback channels, see [19] for more details.

IV. CONCLUSION

In this letter, we derived formulas for the CDF of two
correlated gamma variates for scenarios where the difference
between the shape parameters of the marginal distributions is
an integer. For integer values of the smallest shape parameter
m1, we presented exact formulas, and for arbitrary values of
m1, we obtained approximate CDF expressions and derived
an upper bound on the approximation error.

Since the shape parameter m is inversely proportional to the
amount of fading, the presented formulas provide CDF bounds
for scenarios with non-integer values of (m2−m1). Thus, (10)-
(11) can be applied to the CDF assessment in Nakagami-m
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Fig. 1. Outage probability for MIMO systems with NT Tx antennas, two
Rx antennas, and Rx antenna selection. Single points report simulation results
for integer values of (m2 − m1), and dashed lines show simulation results
for scenarios where analytical estimates do not exist.

fading with arbitrary values of m1 and m2 ≥ m1. Important
application scenarios include cases of non-integer values of
m1 such as severe fading scenarios with 1/2 ≤ m1 < 1, as
well as fading scenarios where the gamma distribution is used
as a substitute to real fading models.

APPENDIX A
PROOFS OF LEMMA 2 AND LEMMA 3

To obtain (6), we use (4), and the integral of Qm(.)

is evaluated by parts taking into account that ∂Qµ(ax,b)
∂x =

bµexp
(
− a2x2+b2

2

)
aµ−2xµ−1 Iµ(abx) [18, eqs. (18), (4)]. Then using (5)

with i = 0, we obtain (6).
To derive (7), we apply the Maclaurin series expansion of

Qm1(α, β) in the variable α2 given in [20, eq. (29)] as

Qm1(α, β) = exp

(
−α2

2

) ∞∑
k=0

α2kΓ
(
k +m1,

β2

2

)
2kk!Γ(k +m1)

. (12)

If the series in (7) is truncated after (Nmax + 1) terms, the
remainder RNmax can be assessed by estimating the remainder
in series (12), rNmax , which can be evaluated, for instance,
by using the Lagrange form of the reminder [11, vol. 3,
I.3.6]. We note that (12) can be derived by using the fact
that ∂k

∂α2k

[
exp

(
α2

2

)
Qµ(α, β)

]
= 2−k

[
exp

(
α2

2

)
Qµ(α, β)

]
[18, eq. (15)]. Then putting α = w

√
t and applying the

Lagrange form of the residual, we obtain that rNmax(w
2t) =(

w2t
2

)Nmax+1

(Nmax+1)! Qm+Nmax+1

(
ϑ · w

√
t, q

)
, where 0 < ϑ < 1.

Since Qm+Nmax+1

(
w
√
t, q

)
is a monotonically increasing

function of t, t ∈ [0, z], see ∂Qµ(ax,b)
∂x above, we find

that rNmax(w
2t) <

(
w2t
2

)Nmax+1

(Nmax+1)! Qm+Nmax+1 (w
√
z, q) , t ∈

[0, z]. Putting this inequality into the integral formula speci-
fying Qm(p, w, q, z), we obtain (8).
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For integer values of m, using [21, eqs. (15)-(16)], we find
that Qm(p, w, q, z) can be evaluated via (9).

APPENDIX B
PROOF OF PROPOSITION 1

In view of (1), the CDF FX1,X2(z1, z2)
∆
=∫ z1

0

∫ z2
0

pX1,X2(x1, x2)dx2dx1 can be expressed as

FX1,X2(z1, z2) =
αm1
1

Γ(m1)θ
m2
2

∫ z1

0

xm1−1
1 exp (−α1x1)

×
∫ z2

0

xm2−1
2 exp (−α2x2)×

Φ̃3 (m2 −m1;m2; ρα2x2, ρα1α2x1x2) dx2dx1. (13)

If ν = (m2−m1) = 0, Φ̃3 (0; c;w, z) = z
1−c
2 Ic−1 (2

√
z) (see

(2)), and the inner integral in (13) can be evaluated by using
(5) resulting in (10). If ν ̸= 0, the inner integral in (13) can
be evaluated by using LT formulas [11, vol. 4, eq. 3.43.8, eq.
1.1.3.1, and eq. 1.1.3.1 ]. The LT L of the inner integral in
(13) can be expressed as

L
{∫ z2

0

x2
m2−1exp (−α2x2)×

Φ̃3 (m2 −m1;m2; ρα2x2, ρα1α2x1x2) dx2; {z2, p}
}

=
exp

(
−ρα1α2x1

p+α2

)
(p+ α2)m1p(p+ 1/θ2)m2−m1

. (14)

Then using LT formulas [11, vol. 4, eq. 3.15.2.8 and eq.
3.10.1.1], we find that the last line of (14) is the product of LTs

L

(ρα1α2x1)
1−m1

2 exp (−α2z) z
m1−1

2 Im1−1(
√
2ρα1α2x1z)︸ ︷︷ ︸

f1(z)

;

{z, p}

}
and L

θm2−m1
2 γ

(
m2 −m1,

z

θ2

)
︸ ︷︷ ︸

f2(z)

; {z, p}

. Thus,

the inner integral in (13) is the convolution of f1(z) and
f2(z) [11, vol. 4, eq. (1.1.5.7]. If ν is a positive integer,
γ
(
ν, z

θ2

)
can be expressed as [11, vol. 1, eq. 4.1.7.10]

γ

(
ν,

z

θ2

)
= ν!

[
1− exp

(
− z

θ2

) ν−1∑
k=0

(z/θ2)
k

k!

]
. (15)

Evaluating the convolution of f1(z) and f2(z) and using the
binomial expansion in (15), we find that

FX1,X2(z1, z2) =
γ
(
m1,

z1
θ1

)
Γ(m1)

− θ1
−m1

Γ(m1)

{
z1

m1×∫ 1

0

xm1−1exp

(
−x

z1
θ1

)
Qm1

(√
2ρα1z1x,

√
2α2z2

)
dx

+
exp

(
− z2

θ2

)
ρm1

m2−m1−1∑
i=0

θ−i
2

i!

i∑
l=0

(
i

l

)
z2

i−l

(
− 1

ρα2

)l

×

[
zm1
1

m1 + l
l!Lm1

l (−α1z1)−
z1

m1+1
2

2l(2α1)
m1−1

2

∫ 1

0

t
m1−1

2

×Q2l+m1,m1−1

(√
2α1z1t,

√
2ρα2z2

)
dt
]}

. (16)

Then applying lemma 2, we obtain (11).
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