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Outage Probability Analysis in Generalized Fading
Channels with Co-Channel Interference and

Background Noise: η − µ/η − µ, η − µ/κ− µ, and
κ− µ/η − µ Scenarios
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Abstract—In this paper, we present expressions for the cu-
mulative distribution function (CDF) of a specially constructed
random variable (RV) represented by the ratio of two generalized
RVs. The obtained theoretical results are used to evaluate the
outage probability in scenarios with η-µ–faded signals of interest
(SoI), η-µ– or κ-µ–faded co-channel interference (CCI), and
background white Gaussian noise. Our results are applicable also
to scenarios where the SoI passes through the κ-µ fading channel,
and the interfering signals are η-µ–faded. The derived results
can be used if all parameters µi of the η-µ models representing
the statistical distributions of either the SoI components or
CCI components are integers. We prove, in particular, that in
the former case, the CDF is expressed in terms of elementary
functions.

Index Terms—Co-channel interference, η-µ and κ-µ fading
distributions, outage probability, ratio of random variables.

I. INTRODUCTION

ANALYSIS of communication systems with co-channel
interference (CCI) is of interest in many practical appli-

cations, including cellular mobile networks, ad hoc networks,
and cognitive radio systems. This fact caused a large amount of
research activity in this area, and nowadays analytical results
characterizing interference in systems with CCI have been
reported for many combinations of fading models that expe-
rience the signal of interest (SoI) and CCI. Some studies an-
alyze interference-limited scenarios (that is, scenarios without
background noise), while others take background noise into
account. Detailed analysis of interference–limited scenarios for
different SoI and CCI fading models can be found in books
[1, Chapter 3]–[2, Chapter 10]. Scenarios with background
noise taken into account were considered, for example, in
several studies [3]–[5]. More precisely, Nakagami-m–faded
components of the SoI and equal-power Nakagami-m–faded
components of CCI (Nakagami-m/Nakagami-m scenarios)
were assumed in [3], whereas Nakagami-m/Rayleigh and
Rice/ Rayleigh scenarios were analyzed in [4], and Rice/Rice
cases were investigated in [5].

The η-µ and κ-µ fading distributions were recently intro-
duced by M. D. Yacoub [6] for modeling non-line-of-sight and
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line-of-sight propagation effects, respectively. Both statistical
models are generalized fading distributions that include many
well-known fading models (for example, the Nakagami-m,
Nakagami-q, and Nakagami-n distributions). Moreover, these
models fit better to measurement data than do the commonly
used fading models [6].

The outage probability (OP) is an important metric charac-
terizing the signal-to-interference ratio in systems with CCI.
Recently, several studies analyzed the OP in η-µ and κ-
µ fading channels with CCI. An approximate integral-form
expression was derived in [7] for equal-gain combining at the
receiver. An elegant solution in terms of elementary functions
was found in [8], where the author considered interference-
limited scenarios over η-µ and κ-µ fading channels while
assuming a number of η-µ–faded interfering signals with
integer values of the fading parameter µi. Expressions for the
OP in scenarios assuming the η-µ–faded SoI, Rayleigh–faded
CCI, and background noise, were recently derived in [9].

In this paper, we obtain analytical results that can be applied
to an analysis of the OP in wireless communication systems
with CCI and background noise. For example, on the basis of
the results presented here, the OP can be evaluated analytically
in η-µ/η-µ, η-µ /κ-µ, and κ-µ/η-µ fading scenarios with
integer parameters µi of the η-µ distributions representing the
SoI or CCI fading models. If all parameters µi of the η-µ
distributions characterizing the SoI components are integers,
the OP is expressed in terms of elementary functions.

II. CUMULATIVE DISTRIBUTION FUNCTIONS OF THE
RATIO OF GENERALIZED RANDOM VARIABLES

A. System Model

In this study, we analyze the statistical distribution of a
random variable (RV) γ, which is expressed as

γ =

∑NS

i=1 si∑NI

i=1 ci + σ2
(1)

where si and ci are η-µ (κ-µ)–distributed power variables,
and σ2 > 0 is a positive constant. Under some scenarios, γ
may be viewed as the signal-to-interference-plus-noise ratio
(SINR) in communication systems with CCI and background
white Gaussian noise with the variance σ2. In this case, NS

and NI in (1) characterize the number of the SoI and CCI
components, respectively.
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The probability density function (PDF) of the η-µ power
variable γη−µ, fγη−µ , is expressed as [6]

fγη−µ(x) =
2
√
πµµ+ 1

2hµxµ− 1
2

Γ(µ)Hµ− 1
2Ω

µ+ 1
2

η

exp

(
−2µxh

Ωη

)
×Iµ− 1

2

(
2µHx

Ωη

)
(2)

where Ωη = E{γη−µ}, µ =
Ω2

η

2var{γη−µ}

[
1 +

(
H
h

)2]
(with

E{.} and var{.} denoting the expectation and variance re-
spectively), Γ(.) is the gamma function, and Iα(.) is the
modified Bessel function of the first kind of the order α. The
statistical model (2) comprises two different fading scenarios
(formats) with different physical meanings of the parameter η
and different definitions of the parameters H and h. In format
(1), the parameter 0 < η < ∞ represents the power ratio of
the in-phase and quadrature components of the fading signal
in each multipath cluster, and the parameters H and h are
defined as

H = (η−1 − η)/4 and h = (2 + η−1 + η)/4. (3)

In format 2, −1 < η < 1 is the correlation coefficient between
the in-phase and quadrature scattered waves in each multipath
cluster, and the parameters H and h are specified as

H = η/(1− η2) and h = 1/(1− η2). (4)

In our derivations, we apply a widely recognized fact about
the validity of decomposition of the η − µ RV into the sum
of two gamma RVs [6]. Both gamma RVs are characterized
by the same shape parameter µ, and the scale parameters
are ω1 =

Ωη

2µ(h+H) and ω2 =
Ωη

2µ(h−H) [10, eq. 4]. Let
the scale parameters of the gamma RVs characterizing the
SoI components be θS1i

and θS2i
(i = 1, · · ·NS), and the

scale parameters of the gamma RVs representing the CCI
components be θI1i , and θI2i (i = 1, · · ·NI).

The PDF of the κ-µ power variable γκ−µ, fγκ−µ , is given
in [6] as

fγκ−µ(x) =
µ(1 + κ)

µ+1
2 x

µ−1
2

κ
µ−1
2 exp(µκ)Ω

µ+1
2

κ

exp

(
−µ(1 + κ)x

Ωκ

)

×Iµ−1

2µ

√
κ(1 + κ)x

Ωκ

 (5)

where κ > 0 is the ratio of the total power of the dominant
components to that of the scattered waves, Ωκ = E{γκ−µ},
and µ =

Ω2
κ

2var{γκ−µ} · 1+2κ
(1+κ)2 .

In the case of η-µ fading, we assume, without a loss
of generality, that the SoI and CCI components in (1) are
independent and non-identically distributed (i.n.d.) RVs with
the parameters {ηSi , µηSi

,ΩηSi
} and {ηIi , µηIi

,ΩηIi
}, respec-

tively. Obviously, this may not always be the case, and some
components may be independent and identically distributed
(i.i.d.). In this case, we use the fact that the sum of i.i.d. η-µ
RVs is another η-µ RV [6] and merely change the sum of i.i.d.
η-µ RVs by a single η-µ RV with properly chosen parameters.
In the case of κ-µ fading, we assume the i.i.d. SoI and CCI

components, and thus the SoI and CCI are κ-µ–distributed [6].
Let the respective parameters of the SoI and CCI distributions
be {κS, µκS , ΩκS} and {κI, µκI , ΩκI}. Thus, the actual number
of the SoI and CCI components are included into the model
implicitly via the parameters of the statistical distributions.

B. Evaluation of Cumulative Distribution Function

By introducing new RVs X =
∑NS

i=1 si/σ
2 and Y =∑NI

i=1 ci/σ
2, we obtain that the cumulative distribution func-

tion (CDF) of γ can be expressed as [4]

Fγ(z) = Pr

{
X

Y + 1
< z

}
= Pr{X < z(Y + 1)}

=

∫ ∞

0

FX [z (y + 1)] fY (y)dy (6)

where fa(z) and Fa(z) are the respective PDF and CDF of
the RV a.

Then, the following propositions are valid.
Proposition 1: For both η-µ/η-µ and η-µ/κ-µ scenarios,

where si in (1) are i.n.d. η-µ distributed RVs with integer
parameters µSi , i = 1, · · ·NS, and ci are either i.n.d. η-µ– or
i.i.d. κ-µ–distributed RVs, the CDF is expressed as

Fγ(z) =

2NS∑
k=1

mk∑
q=1

λ
(mk−q)
k

θmk−q
k (mk − q)![

1− exp

(
− z

θk

) q−1∑
n=0

zn

θnkn!

n∑
i=0

(
n

i

)
vi,k

]
(7)

where
(
n
i

)
is a binomial coefficient, m2l−1 = m2l =

µSl
, θ2l−1 = θS1l

/σ2, θ2l = θS2l
/σ2, l = 1, · · · , NS;

λ
(mk−q)
k =

(
d
dp

)mk−q∏2NS

j=1,j ̸=k

(
θ−1
j + p

)−mj
∣∣∣
p=−1/θk

=∑ (mk−q)!
k1!...k2NS

!

∏2NS

j=1,j ̸=k(−1)mk−q (mj)mk−q

(1/θj−1/θk)
mj+mk−q , where

the sum is over the indexes k1+. . .+kk−1+kk+1+. . . k2NS =
(mk−q). To evaluate this expression, we use the Leibniz iden-

tity [11, eq. (3.3.8)] and the fact that
(

d
dp

)k
[(p+ a)−mj ] =

(−1)k(mj)k(p + a)−(mj+k), where (t)n is the Pochhammer
symbol [12, vol. 3, Section II.2].

The parameters vi,k in (7) are defined differently depending
on whether the interfering signals are η-µ–faded or κ-µ–faded.
For the case of NI i.n.d. η-µ–faded interfering signals, vi,k are
defined as

vη−µ
i,k =

2NI∏
j=1

ϑ
−bj
j


(
− d

dp

)i 2NI∏
j=1

[(p+ 1/ϑj)]
−bj

∣∣∣p=z/θk

=

2NI∏
j=1

ϑ
−bj
j

∑
k1+...+k2NI

=i

i!

k1! . . . k2NI !

×
2NI∏
j=0

(bj)kj

(z/θk + 1/ϑj)−(bj+kj)
(8)

where b2l−1 = b2l = µIl , ϑ2l−1 = θI1l/σ
2, ϑ2l = θI2l /σ

2,
l = 1, · · · , NI.
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For the case of i.i.d. κ-µ–faded interfering signals (that are
statistically equivalent to one κ-µ–faded interfering signal),
vi,k are defined as

vκ−µ
i,k = exp(−α)

(
β
σ2

ΩκI

)µκI

×


(
− d

dp

)i


exp

(
α·β· σ2

ΩκI

p+β σ2

ΩκI

)
(
p+ β σ2

ΩκI

)µκI



∣∣∣
p=z/θk

= i!

(
β
σ2

ΩκI

)µκI
(

z

θk
+ β

σ2

ΩκI

)−µκI
−i

×exp

 −αz

z + θk · β σ2

ΩκI

L
µκI

−1

i

(
−α · β · σ2

z
ΩκI

θk
+ β · σ2

)
(9)

where α = κIµκI , β = µκI(1 + κI), and Lν
i (x) is the

generalized Laguerre polynomial [12], which is a built-in
function in many standard software packages.

Proof: See Appendix A.
A recent study [13] proved that the sum of correlated η-

µ power RVs with integer or half-integer values of µi is
statistically equivalent to the sum of independent gamma RVs
with properly chosen parameters. In this case, the proof given
in Appendix A holds true. Thus, the conditions of proposition
1 can be extended to scenarios where ci in (1) are correlated
η-µ RVs with integer or half-integer values of µIi .

If (7)-(9) are used for numerical calculations only, the high-
order derivatives in these expressions can simply be evaluated
by using the differentiation operator available in many standard
software packages, such as Mathematica or Maple.

Proposition 2: For η-µ/η-µ scenarios with i.n.d. si, ci, and
with integer parameters µIi of the statistical distributions of
ci, i = 1, · · ·NI, the CDF can be expressed as

Fγ(z) =
zmΣ∏2NI

j=1 ϑk
bk
∏2NS

l=1 θml

l

2NI∑
k=1

exp

(
1

ϑk

)

×
bk∑
q=1

ν
(bk−q)
k

(bk − q)!

q−1∑
i=0

(−1)q−i−1

(q − 1− i)!

×

 ∑
k0+...+k2NS

=i

ϑ1+k0

k

k1! . . . k2NS !

2NS∏
n=1

(mn)kn

(1/ϑk + z/θn)kn+mn

+
exp

(
− 1

ϑk

)
Γ (1 +mΣ)

Φ
(2NS)
2

[
(m); 1 +mΣ;−z

(
1

θ

)] i∑
n=0

ϑi+1−n
k

n!

−
i∑

n=0

ϑi+1−n
k

Γ(1 + n+mΣ)

∑
k1+...+k2NS

=n

2NS∏
j=1

(mj)kj

kj !

×Φ
(2NS)
2

[
(m+ k); 1 + n+mΣ; −z

(
1

θ

)
+

1

ϑk

]}
(10)

where (r) and (r) + v denote r1, . . . , r2NS and r1 +

v, . . . , r2NS + v, respectively, mΣ =
∑2NS

j=1 mj , ν
(bk−q)
k =(

d
dp

)bk−q∏2NI

j=1,j ̸=k

(
ϑ−1
j + p

)−bj
∣∣∣
p=−1/ϑk

, and Φ
(2NS)
2 (.) is

a confluent Lauricella hypergeometric function [14, eq. (10)].

Proof: See Appendix B.
Lauricella’s hypergeometric function Φ

(2NS)
2 (.) required for

the evaluation of (10) is not nowadays available via standard
software packages. Its Laplace transform is given in [15, p.
259] as

L
[
xc−1Φ

(2NS)
2 ((m); c;−x (r)) , {x, p}

]
=

Γ(c)

pc−mΣ

2NS∏
l=1

(p+ rl)
−ml . (11)

Thus, we can write that

Φ
(2NS)
2 [(m); c;− (r)]

=
Γ(c)

2πj

∫ χ+j∞

χ−j∞

exp(p)

pc−mΣ
∏2NS

l=1 (p+ rl)
ml

dp (12)

where χ is a real number that is larger than each pole of the
integrand. Then, by reducing the inverse Laplace transform to
the inverse Fourier transform by introducing jw = p− χ, we
obtain that

Φ2NS
2 [(m); c;− (r)] =

Γ(c)exp(χ)

2π

×
∫ ∞

−∞

exp(jw)

(χ+ jw)c−mΣ
∏2NS

l=1 (χ+ jw + rl)
ml

dw. (13)

The inverse Fourier transform can be efficiently evaluated in
Mathematica by using the operator NInverseFourierTransform.

Based on the results presented in [13], the conditions of
proposition 2 can be extended to scenarios where the SoI
components are correlated η-µ RVs with integer or half-integer
values of µSi .

Proposition 3: Under the κ-µ/η-µ scenario with i.n.d. ci
and with integer parameters µIi of all components of CCI,
i = 1, · · ·NI, the CDF can be expressed as

Fγ(z) = 1−
2NI∏
j=1

ϑk
−bk

2NI∑
k=1

exp

(
1

ϑk

) bk∑
q=1

ν
(bk−q)
k

(bk − q)!(q − 1)!

q−1∑
i=0

(
q − 1

i

)
(−1)q−i−1ti,k. (14)

In (14),

t0,k = ϑkQµκS

(
a, b

√
z
)
exp

(
− 1

ϑk

)
− ϑk

(
b2z

b2z + 2/ϑk

)µκS

×exp

[
−a2

2
+

a2b2z

2(b2z + 2/ϑk)

]
×QµκS

[
ab
√
z

(b2z + 2/ϑk)1/2
, (b2z + 2/ϑk)

1/2

]
(15)

where a =
√
2κSµκS , b = σ

√
2(1+κS)µκS

ΩκS
, and Qµ(a, b) =

1
aµ−1

∫∞
b

xµexp
(
−x2+a2

2

)
Iµ−1(ax)dx is the generalized

Marcum Q function [2, eq. (4.33)]. For i ≥ 1, ti,k is expressed
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as

ti,k = (−ϑk)
i(−i)it0,k +

i−1∑
j=0

(−1)i−j−1(−i)i−j−1ϑ
i−j
k

×
{
QµκS

(
a, b

√
z
)
exp

(
− 1

ϑk

)
− (b

√
z)µκS

+1a1−µκS

(b2z + 2/ϑk)
j+1+

µκS
+1

2

×exp

[
−a2

2
+

a2b2z

2(b2z + 2/ϑk)

]
×Q2j+2+µκS

,µκS
−1

[
ab
√
z

(b2z + 2/ϑk)1/2
, (b2z + 2/ϑk)

1/2

]}
.

(16)

where Qm,n(p, q) =
∫∞
q

tmexp
(
−p2+t2

2

)
In(pt)dt is the

Nuttall function if the parameters m and n are integers, since
the function Qm,n(p, q) was originally defined only for integer
values of m and n [16, eq. (86)], see also [17]. Otherwise, the
function Qm,n(p, q) in (16) can be viewed as an extension of
the Nuttall function to real values of m and n.

Proof : See Appendix C.
The Nuttall function is not available via standard software

packages, but it can be expressed in terms of the generalized
Marcum Q function and modified Bessel function of the first
kind implemented in Mathematica if (m−n) is an odd integer
[17, eq. (8)]. It is easy to show that the derivations in [17]
can be directly extended to non-integer values of m and n if
(m − n) is a positive odd integer. This is the case in (16).
Thus, we can represent the function Q2j+2+µκS

,µκS
−1 in (16)

as

Q2j+2+µκS
,µκS

−1(α, β) =

j+2∑
l=1

dl(j + 1)αµκS
−1+2(l−1)

×QµκS
−1+l(α, β) + exp

(
−α2 + β2

2

)
×

j+1∑
l=1

Pj+1,l(β
2)αl−1βl+µκS IµκS

+l−2(αβ) (17)

with

dl(j) = 2j−l+1

(
j

j − l + 1

)
(j − 1 + µκS)!

(µκS + l − 2)!

and

Pj,l(β
2) =

j−l∑
n=0

2j−l−n

(
j − 1− n

j − l − n

)
(µκS − 1 + j)!

(µκS − 1 + l + n)!
β2n.

The Nakagami-m and Rayleigh fading models are important
special cases of the η-µ distribution [6, Section 3.3.3]. For
these particular cases, the derived expressions become simpler.
For example, we can obtain from (14)-(15) that under the κ-
µ/Rayleigh scenario, the CDF can be expressed only in terms
of the Marcum Q function as

Fγ(z) = 1−
NI∏
i=1

(ϑi)
−1

NI∑
k=1

exp

(
1

ϑk

)
λkt0,k (18)

where λk =
∏NI

j=1,j ̸=k (1/ϑj − 1/ϑk)
−1.

It is seen that the CDF expressions (7), (10), (14), and (18)
are given in terms of the ratios θImi

/σ2, θSmi
/σ2 (m = 1, 2),

ΩκI/σ
2, and b = σ

√
2(1+κS)µκS

ΩκS
. We see, however, that these

variables can be expressed in terms of the signal-to-noise ratios
(SNR), SNRηi = ΩSηi

/σ2 and SNRκ = ΩSκ/σ
2, as well as

in terms of the co-channel interference-to-noise ratios (CNR),
CNRηi = ΩηI/σ

2 and CNRκ = ΩκI/σ
2. The parameter

ΩκI/σ
2 in (9) is just CNRκ, and the parameter b in (15) is

expressed directly in terms of SNRκ as

b =

√
2(1 + κS)µκS

SNRκ
. (19)

Expressions for θSmi
/σ2 and θImi

/σ2, m = 1, 2, in terms of
SNR and CNR depend on the format of the η-µ distribution.
This is because the parameters of the decomposition of the
η-µ power RV into two gamma RVs depend on the format of
the η-µ distribution. Based on (3), we find that in format 1,

θS1i
/σ2 = SNRηi

ηSi

µηSi
(1 + ηSi

)
,

θS2i
/σ2 = SNRηi

1

µηSi
(1 + ηSi)

,

θI1i /σ
2 = CNRηi

ηIi
µηIi

(1 + ηIi)
,

θI2i /σ
2 = CNRηi

1

µηIi
(1 + ηIi)

. (20)

In format 2, we find from (4) that

θS1i
/σ2 = SNRηi

1

2µηSi
(1− ηSi)

,

θS2i
/σ2 = SNRηi

1

2µηSi
(1 + ηSi)

,

θI1i/σ
2 = CNRηi

1

2µηIi
(1− ηIi)

,

θI2i/σ
2 = CNRηi

1

2µηIi
(1 + ηSi)

. (21)

III. APPLICATIONS

In this section, we discuss examples of application of the
derived theoretical results and present numerical estimates
evaluated analytically and via Monte Carlo simulations. In our
simulations, we generated the η-µ power RVs as the sum of
independent gamma RVs [10, eq. (4)], and we obtained the κ-µ
power RVs as the sum of independent gamma and Ricean RVs
with properly chosen parameters. This ability follows from the
validity of decomposition of the moment generating function
(MGF) of the κ-µ distribution [18, eq. (7)] into the product of
the gamma and Ricean MGFs. In our evaluations, we assumed
format 1 of the η-µ distribution.

The structure of (1) shows that it can be applied, for
example, for analyzing the statistical characterization of the
SINR in receiver diversity systems that employ maximal ratio
combining (MRC) at the receiver. It is known that although
MRC is not an optimal strategy under CCI, the method is
applied in practical systems as a suboptimal strategy [19]. But
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it is important to take into account the fact that we obtain the
weighted CCI components at the output of the combiner. This
fact results in a twofold effect. Firstly, generally the statistical
distribution of CCI at the output of the combiner changes.
Secondly, generally CCI at the output of the combiner depends
on the SoI. The latter is always the case unless CCI is zero-
mean Gaussian, that is, unless CCI is Rayleigh–faded [19].
Obviously, these two effects cannot be observed in the case
of one receiving antenna.

Model (1) may also be applied for the SINR representation
in open-loop transmit diversity (TD) systems.

Numerical results given in this section present estimates
of the OP, Pout(γ0) = Pr{γ ≤ γ0} = Fγ(z)

∣∣∣
z=γ0

,

for different scenarios with γ0 = 0 dB. In Fig. 1, we
show estimates of the OP for open-loop TD systems with
L transmitting antennas operating over η-µ–faded branches
with η-µ– and κ-µ–faded CCI. For the scenarios with in-
teger values of µSi , we applied (7)-(9) for the evaluation,
and in the case of integer values of µIi , we used (10).
In Fig. 2, we present estimates of the OP evaluated via
(14)-(16) for TD systems with i.i.d. κ-µ–faded SoI com-
ponents and η-µ–faded CCI components. We assume four
interfering signals with the parameters {ηIi , µIi ,CNRIi}4i=1 =
{{0.7; 3; 0dB}, {0.5; 2; 1dB}, {0.3; 1;−2dB}, {0.2; 1; 2dB}}.
The fading parameters of each propagation path are µ = 1.8,
κ = 0.5, and κ = 2.5. In both figures, the OP is shown versus

the average SINR, which is defined as
∑NS

i=1
SNRi

1+
∑NI

i=1
CNRi

.

Under all scenarios, the numerical estimates evaluated ana-
lytically and via Monte Carlo simulations agree well.

IV. CONCLUSION

In this paper, we obtained expressions for the cumulative
distribution function of a specially constructed random vari-
able expressed as the ratio of generalized random variables
(see (1)). The derived theoretical results can be applied, for
example, for evaluating the outage probability in η-µ and
κ-µ fading channels with CCI and background noise. More
precisely, examples of the application include η-µ/η-µ, η-µ/κ-
µ, and κ-µ/η-µ scenarios where the fading parameters µi of
the η-µ distributions describing the SoI or CCI components are
integers. Thus, we extend previously reported results obtained
for interference-limited scenarios [8] and for scenarios with
background noise, but restricted to the Rice–faded SoI [4]
and Rayleigh–faded CCI [4], [9]. For scenarios with integer
values of the parameters µSi of the η-µ models representing
the statistical distributions of the SoI components, we obtained
formulas in terms of elementary functions.

The results of this work are restricted to integer values of
the parameters µi of the η-µ distributions characterizing the
SoI or CCI components. Obviously, this may not always be
the case in practice. We note, however, that the parameter µ
of the η-µ distribution is inversely proportional to the amount
of fading under a fixed η [6, eq. (24)]. Thus, the presented
expressions may be used as bounds for real estimates of the
outage probability for arbitrary values of µ.
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Fig. 1: Outage probability for TD systems under η-µ/η-µ ((1)-
(5)) and η-µ/κ-µ ((6)-(7)) scenarios with a different number L of
transmitting antennas. Fading parameters are:
(1) - L = 3; {ηSi , µSi}3i=1 = {{0.1; 0.8}, {0.2; 1.2}, {0.3; 1.5}};
{ηIi , µIi ,CNRIi}2i=1 = {{0.1; 1; 2dB}, {0.2; 2; 0dB}};
(2)-(5) - two CCI components with {ηIi , µIi ,CNRIi}2i=1 =
{{0.1; 1.2; 5dB}, {0.2; 1.8; 0dB}};
(2) - L = 2; {ηSi , µSi}2i=1 = {{0.6; 1}, {0.4; 2}};
(3) - L = 3; {ηSi , µSi}3i=1 = {{0.6; 1}, {0.4; 2}, {0.4; 1}};
(4) - L = 2; {ηSi , µSi}2i=1 = {{0.6; 2}, {0.4; 3}};
(5) - L = 3; {ηSi , µSi}3i=1 = {{0.6; 2}, {0.4; 3}, {0.4; 2}};
(6)-(7) - CCI parameters are {κI = 1.5;µI = 2.3;CNR = 0dB};
(6) - L = 1; ηS = 0.1;µS = 1;
(7) - L = 2; {ηSi , µSi}2i=1 = {{0.6; 2}, {0.4; 3}}.
Single points report simulation results.

APPENDIX A
PROOF OF PROPOSITION 1

Based on the validity of decomposition of the η-µ power
RV into the sum of two gamma RVs (see, for example, [10,
eq. (4)] for details), and taking into account the fact that all
µSi are integers, we find that the CDF FX [z(y + 1)] can be
expressed as

FX [z(y + 1)] =

2NS∑
k=1

mk∑
q=1

λ
(mk−q)
k

θmk−q
k (mk − q)![

1− exp

[
−z(y + 1)

θk

] q−1∑
n=0

zn

θnkn!

n∑
i=0

(
n

i

)
yi

]
. (22)

To obtain (22), we use a PDF expression [20, eq. (10)]
and finite series expansion of the lower incomplete gamma
function γ(q, t) for integer values of q, γ(q, t) = (q −
1)!
[
1− exp(−t)

∑q−1
n=0

tn

n!

]
[12, vol. 1]. We also apply the

binomial theorem for the expansion of (y + 1)n [11]. After
plugging (22) into (6), we note that (6) can be expressed as the
composition of Laplace transforms L

[
yifY (y), {y, z/θk}

]
,
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Fig. 2: Outage probability for open-loop TD systems operating in
κ-µ fading (µ = 1.8, κ = 0.5, and κ = 2.5) with four η-µ–faded
interfering signals. CCI parameters are {ηIi , µIi ,CNRIi}4i=1 =
{{0.7; 3; 0dB}, {0.5; 2; 1dB}, {0.3; 1;−2dB}, {0.2; 1; 2dB}}. Sin-
gle points report simulation results.

where i is an integer. Thus we obtain that

Fγ(z) =

2NS∑
k=1

mi∑
q=1

λ
(mk−q)
k θqk

θmk−q
k (mk − q)!

{
1− exp

(
− z

θk

)

×
q−1∑
n=0

zn

θnkn!

n∑
i=0

(
n

i

)

×

[(
− d

dp

)i

L [fY (y), {y, p}]

] ∣∣∣
p=z/θk

}
(23)

where we use the fact that L
[
yifY (y), {y, p}

]
=(

− d
dp

)i
L [fY (y), {y, p}] if i is an integer [12, vol. 4, eq.

(1.1.2.9)].
Then, by taking into account expressions for the MGFs of

the η-µ and κ-µ distributions [18, eqs. (6)-(7)] as well as the
fact that the MGF of the sum of independent components is
the product of the individual MGFs, we immediately obtain
(8) and (9) by using Leibniz’s identity and a differentiation
formula [21, eq. (1.1.3.2)].

APPENDIX B
PROOF OF PROPOSITION 2

We represent (6) in an equivalent form as

Fγ(z) =

∫ ∞

1

FX(zy)fY (y − 1)dy. (24)

and take into account that [20, eq. (10)]

fY (y − 1) =

2NI∏
j=1

ϑ−bk
k

2NI∑
k=1

exp

(
1

ϑk

) bk∑
q=1

ν
(bk−q)
k

(bk − q)!(q − 1)!

×
q−1∑
i=0

(
q − 1

i

)
(−1)q−i−1yiexp

(
− y

ϑk

)
(25)

as well as that [14, eq. (13)]

FX(zy) =
(zy)

mΣ∏2NS

j=1 θ
mj

j Γ (1 +mΣ)

×Φ
(2NS )
2 (m1, . . . ,m2NS ; 1 +mΣ;

−zy

θ1
, . . . ,− zy

θ2NS

)
. (26)

Then we obtain from (24)-(25) that

Fγ(z) =

2NI∏
j=1

ϑ−bk
k

2NI∑
k=1

exp

(
1

ϑk

) bk∑
q=1

ν
(bk−q)
k

(bk − q)!(q − 1)!

×
q−1∑
i=0

(
q − 1

i

)
(−1)q−i−1


∫ ∞

0

yiexp

(
− y

ϑk

)
FX(zy)dy︸ ︷︷ ︸

I1

−
∫ 1

0

yiexp

(
− y

ϑk

)
FX(zy)dy︸ ︷︷ ︸

I2

 . (27)

It is seen that

I1 = L
[
yiFX(zy), {y, p}

] ∣∣∣
p=1/ϑk

=
1

z

×
(
− d

dp

)i

L [FX(y), {y, p/z}]
∣∣∣
p=1/ϑk

=
zmΣ∏2NS

j=1 θ
mj

j

×
∑

k0+...+k2NS
=i

ϑ1+k0

k

k1! . . . k2NS !

×
2NS∏
n=1

(mn)kn

(1/ϑk + z/θn)kn+mn
. (28)

To obtain (28), we use (26) and (11), as well as apply Leibniz’s
identity.

The integral I2 in (27) can be evaluated by parts. Doing
this, we ascertain that

I2 = ϑi+1
k i!

i∑
n=0

1

n!ϑn
k

[
−exp

(
− 1

ϑk

)
FX(z)

+L−1

{
1

p

(
− d

dp

)n

×
2NS∏
j=1

[1 + (p+ 1/ϑk)θj/z]
−mj ; p, x

∣∣∣x=1

 (29)

wherein we use Laplace transform properties [12, vol. 4, eqs.
(1.1.2.1), (1.1.2.9), (1.1.3.1), and (1.1.5.3)]. We find from (29)
that
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I2 =
zmΣ∏2NS

j=1 θ
mj

j

−
exp

(
− 1

ϑk

)
Γ (1 +mΣ)

i∑
n=0

ϑi+1−n
k

n!

×Φ
(2NS )
2

(
m1, . . . ,m2NS ; 1 +mΣ;−

z

θ1
, . . . ,− z

θ2NS

)
+

i∑
n=0

ϑi+1−n
k

Γ(1 + n+mΣ)

∑
k1+...+k2NS

=n

2NS∏
j=1

(mj)kj

kj !

×Φ
(2NS)
2 [m1 + k1, . . . ,m2NS + k2NS ; 1 + n+mΣ;

−
(

z

θi
+

1

ϑk

)
, . . . ,−

(
z

θ2NS

+
1

ϑk

)]}
. (30)

To obtain (30), we use (26) and (11), as well as apply Leibniz’s
identity.

APPENDIX C
PROOF OF PROPOSITION 3

We note that the evaluation of (24) with fY (y−1) defined by
(25) and FX(zy) representing the CDF of the κ-µ distribution
as [6, eq. (3)]

FX(zy) = 1−QµκS

[√
2κSµκS , σ

√
2(1 + κS)µκSzy

ΩκS

]
,

(31)
reduces to the evaluation of the integrals of the form

ti,k =

∫ ∞

1

yiexp

(
− y

ϑk

)
×QµκS

[√
2κSµκS , σ

√
2(1 + κS)µκSzy

ΩκS

]
dy. (32)

Let a =
√
2κSµκS and b = σ

√
2(1+κS)µκS

ΩκS
. By taking into

account the fact that [2, eq. (4.33)]

d

dy
QµκS

[a, b
√
zy] = − (b

√
z)µκS

+1

2aµκS
−1 y

µκS
−1

2

×exp

(
−a2 + b2zy

2

)
IµκS

−1 (ab
√
zy)

and evaluating (32) by parts, we obtain a recurrence equation
for ti,k, i ≥ 1 as

ti,k = iϑkti−1,k + ϑkQµκS

(
a, b

√
z
)
exp

(
− 1

ϑk

)
−ϑk

(b
√
z)µκS

+1a1−µκS

(b2z + 2/ϑk)i+
µκS

+1

2

exp

[
−a2

2
+

a2b2z

2(b2z + 2/ϑk)

]
×Q2i+µκS

,µκS
−1

[
ab
√
z

(b2z + 2/ϑk)1/2
,

(b2z + 2/ϑk)
1/2
]
. (33)

Eq. (15) is obtained by evaluation of (32) by parts for i = 0,
and (16) is derived on the basis of (33).
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