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Laplace Transform of Product of Generalized
Marcum Q, Bessel I, and Power Functions with

Applications
Natalia Y. Ermolova and Olav Tirkkonen

Abstract—Integral transforms of special functions often occur
in different research and practical areas. Analyzing the κ-
µ fading distribution, also known as the generalized Rician
distribution, we find out that the assessment of a few different
performance metrics involves the evaluation of an improper in-
tegral expressed as the Laplace transform of product of Marcum
Q, Bessel I, and power functions. We evaluate this integral in a
closed form and apply the derived results to assess the probability
of detection of unknown signals over κ-µ fading channels as well
as to evaluate the outage probability under interference-limited
κ-µ fading scenarios with κ-µ–faded co-channel interference.

Index Terms—Bessel I function, co-channel interference, con-
fluent hypergeometric functions of two variables, detection
probability, generalized fading distributions, Laplace transform,
Marcum Q function, outage probability.

I. INTRODUCTION

The evaluation of integral transforms of special functions
is required in different areas of engineering. This problem
arises when solving various analysis and design tasks such
as assessment of average performance metrics. In some prac-
tical applications, integral transforms of the Marcum Q and
Bessel I functions occur. In communication engineering, these
functions appear in statistical models of fading radio channels,
see, for example, [1]-[4]. The Marcum Q function arises also
in different tasks of signal detection in additive white Gaussian
noise (AWGN) [4]-[8].

Both functions are available via standard software packages
such as Mathematica, but nowadays analytical results on
integral transforms of these special functions are not widely
presented in the literature, and only some special cases have
been reported. A large number of integrals involving the
Marcum Q function of first order is presented in [6].

Due to modern software, even improper integrals can often
be evaluated numerically. But it is well known that this
process may be accompanied by numerical problems. There-
fore, it is convenient to have closed-form expressions, which
additionally can be useful for analyzing effects of system
parameters on performance metrics. Furthermore, closed-form
expressions can be effective for solving various optimization
and approximation tasks.
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The product of Bessel I and power functions occurs in
the probability density function (PDF) of the κ-µ generalized
fading distribution recently introduced by M.-D. Yacoub for
modeling propagation effects in a non-homogeneous line-of-
sight environment [3]. The κ-µ distribution is also known
as the generalized Rician distribution [9]-[10]. Analyzing
this fading distribution, we reveal that an improper integral
(expressed as the Laplace transform of product of Marcum
Q, Bessel I, and power functions) occurs in a few practical
tasks related to the performance assessment of communication
systems over κ-µ fading. Such are evaluation of probability of
energy detection of unknown signals as well as assessment of
outage probability in κ-µ/κ-µ interference-limited scenarios.
As far as we are aware, both tasks have not been yet solved
analytically.

The detection probability over κ-µ fading was evaluated so
far by applying series expansions of Marcum Q and Bessel
I functions [11]-[12]. These procedures resulted in formulas
given in terms of infinite series [11] that can be expressed
in terms of multivariate hypergeometric functions [12]. The
hypergeometric functions required for the evaluation are not
nowadays available via standard software.

Considering the κ-µ fading channels with κ-µ–faded co-
channel interference, we note that no analytical results on
the outage probability have been reported so far, while other
generalized fading scenarios, such as η-µ/η-µ, η-µ/κ-µ, and
κ-µ/η-µ cases, have been successfully analyzed [13]-[15].

In this paper, we evaluate the integral required for the
assessment of a few performance metrics in κ-µ fading. This
integral can be represented by the Laplace transform (L) of
the product of generalized Marcum Q, Bessel I, and power
functions as

In(α, β, c, p, µ1, µ2) = L
{
Qµ1(α

√
t, β)t

µ2−1

2 Iµ2−1(c
√
t), {t, p}

}
=

∫ ∞

0

exp(−pt)Qµ1(α
√
t, β)t

µ2−1

2 Iµ2−1(c
√
t)dt

= 2

∫ ∞

0

exp(−pt2)tµ2Qµ1(αt, β)Iµ2−1(ct)dt (1)

where QM (α, β) is the generalized Marcum Q function [4]-
[8], [16]-[17], Iν(.) is the modified Bessel function of the first
kind and order ν [18], µ1, µ2, and c∈ (−∞,∞), p ∈ (0,∞),
and α, β are either real or purely imaginary [8].

We use the solution to (1) to obtain a closed-form expression
for the outage probability over interference-limited κ-µ fading
radio channels with κ-µ–faded co-channel interference, as
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well as we derive a formula for the detection probability of
unknown signals in κ-µ fading.

II. PRELIMINARIES

In this section, we introduce concepts and special functions
used in this work.

A. The κ-µ Fading Distribution

The κ-µ fading signal is considered as the composition of
clusters of multipath waves with the uncorrelated Gaussian in-
phase (I) and quadrature (Q) components within each cluster,
and the PDF fγκ−µ of the κ-µ power variable γκ−µ is given
in [3] as

fγκ−µ(x) =
µ(1 + κ)

µ+1
2 x

µ−1
2

κ
µ−1
2 exp(µκ)Ω

µ+1
2

exp

(
−µ(1 + κ)x

Ω

)
×Iµ−1

(
2µ

√
κ(1 + κ)x

Ω

)
(2)

where κ > 0 is the ratio of the total power of the domi-
nant components to that of the scattered waves, and Ω =
E{γκ−µ} (with E{} denoting the expectation). The parameter
µ =

Ω2
κ(1+2κ)

2var{γκ−µ}(1+κ)2 characterizes the number of multipath
clusters, where var{} defines the variance. Three parameters
of the distribution provide a better fit to experimental data than
do the commonly used fading models. As it is pointed out in
[3], a fitting procedure may result in non-integer values of µ
that can be caused by a few factors such as the non-Gaussian
distribution of the I and Q components, non-zero correlation
between the I and Q components, or non-zero correlation
between the multipath clusters.

The κ-µ distribution is a generalized fading model that
includes many well-known fading distributions as particular
cases. For example, the Rice distribution (µ = 1) and
Nakagami-m distribution (κ → 0) are particular cases of
model (2). For integer values of µ, (2) reduces to the non-
central chi-square distribution.

The cumulative distribution function (CDF) corresponding
to (2) is given by [3, eq. (3)] as

Fγκ−µ(z) = 1−Qµ

[√
2κµ,

√
2(1 + κ)µz

Ω

]
. (3)

B. Modified Bessel Function of the First Kind (Bessel I
Function)

The Bessel I function of the arbitrary order ν is one of the
solutions to the modified Bessel differential equation [18], and
it is often defined via its series expansion [18] as

Iν(x) =
∞∑
k=0

(
x
2

)2k+ν

Γ(ν + k + 1)k!
(4)

where Γ(.) is the gamma function. For integer values of ν = n,
I−n(x) = In(x).

C. Confluent Hypergeometric Functions of Two Variables
Φ3(b; g;w, z) and Ψ2(a; d, d

′;w, z)

The confluent hypergeometric functions of two variables
Φ3(b; g;w, z) and Ψ2(a; d, d

′;w, z) are defined via absolutely
convergent hypergeometric series [19, vol. 3, eq. (7.2.4.7)] and
[19, vol. 3, eq. (7.2.4.9)] as

Φ3(b; g;w, z) =

∞∑
k,l=0

(b)k
(g)k+lk!l!

wkzl, (5)

and

Ψ2(a; d, d
′;w, z) =

∞∑
k,l=0

(a)k+l

(d)k(d′)lk!l!
wkzl (6)

where (a)k means the Pochhammer index [19, vol. 3, Section
II.2], and −g,−d,−d′ /∈ Z∗ (with Z∗ denoting the set of
positive integers (Z+) and 0, that is Z∗ = Z+ ∪ {0}).

The Laplace transform of the product tg−1Φ3(b, g, ςt, wt)
is given in [19, vol. 4, eq. (3.43.8)] as

L
{
tg−1Φ3(b, g, ςt, wt), {t, p}

}
=

Γ(g)

pg−b
(p− ς)−bexp (w/p)

(7)
where the real parts of g, p, and (p− ς) are positive.

A series expansion of Φ3(b; g;w, z) is given in [20, eq. (29)]
as

Φ3(b; g; z, w) = Γ(g)w
1−g
2

∞∑
j=0

(b)j
j!

(
z√
w

)j

×Ig+j−1

(
2
√
w
)
. (8)

We find from (8) that the regularized hypergeometric func-
tion Φ̃3(−k, g, ςx, wx) = 1

Γ(g)Φ3(−k, g, ςx, wx) with k ∈
Z+ can be expressed via the sum of Bessel I functions as

Φ̃3(−k; g; ςx, wx) = (wx)
1−g
2

k∑
j=0

(−k)j
j!

(
ς√
w

)j

×x
j
2 Ig+j−1

(
2
√
wx
)
. (9)

It is interesting to note that the function Φ̃3 on the left-hand
side (LHS) of (9) is not defined for −g ∈ Z∗, while the
expression on the right-hand side (RHS) is defined, and it
specifies g → m,−m ∈ Z∗limΦ̃3(−k; g; ςx, wx).

D. Marcum Q Function

The generalized Marcum Q function is defined in [4]-[8],
[16]-[17] as

QM (α, β) =
1

αM−1

∫ ∞

β

xMexp

(
−α2 + x2

2

)
IM−1(αx)dx.

(10)
This function has many interesting features, see, for instance,
[4]-[8], [16]-[17]. In this work, we employ a differentiation
formula w.r.t. β, which can be directly obtained from (10) as

∂QM (α, β)

∂β
= −βexp

(
−α2 + β2

2

)
×
(
β

α

)M−1

IM−1 (αβ) . (11)
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We also use a recurrence formula for the Marcum Q function
given in [17, eq. (4)] as

QM+n(α, β) = QM (α, β) +

(
β

α

)M

exp

(
−α2 + β2

2

)
×

n−1∑
k=0

(
β

α

)k

IM+k (αβ) , n ∈ Z+, (12)

as well as a formula [21, eq. (11)] that gives a relation between
two Marcum Q functions of positive and negative integer
orders as

QM (α, β) +Q1−M (β, α) = 1. (13)

A relation formula between the Marcum Q function of the
integer order M and confluent hypergeometric function Φ3

was recently derived in [16, eq. (9)] as

QM (α, β) =

(
α2

2

)1−M exp
(
−α2+β2

2

)
Γ(2−M)

×Φ3

(
1; 2−M ;

α2

2
;
α2β2

4

)
, M < 2. (14)

The arguments of the Marcum Q function α and β may
be real or purely imaginary [8], and in the latter case, the
Marcum Q function is referred to as the modified Q function
[8]. A series expansion given in [22, eq. (2.6)] in terms of
Laguerre polynomials LM

k (.) as

QM (α, β) = 1− exp

(
−α2

2

) ∞∑
k=0

(−1)k

×
L
(M−1)
k

(
α2

2

)
Γ(M + k + 1)

(
β2

2

)k+M

, (15)

proves that the modified Marcum Q function is real-valued.

III. EVALUATION OF LAPLACE TRANSFORM

We start with the presentation of two lemmas required for
the evaluation of (1).

Lemma 1: The confluent hypergeometric function
Ψ2(a; d, a;w, z) is expressed in terms of the confluent
hypergeometric function Φ3 as

Ψ2(a; d; a;w; z) = exp (z + w)Φ3(d− a; d;−w,wz),

−a,−d /∈ Z∗. (16)

Proof : See Appendix A.
The next lemma extends previously reported results on the

relation between the Marcum Q function and hypergeometric
function Φ3(b, g, t, v) (valid only for g ∈ Z+) [16]-[17] to the
case of g ∈ (0,∞).

Lemma 2: The Marcum Q function QM (α, β) with M ∈
(−1,∞) can be expressed via the hypergeometric function
Φ3(.) as

1−QM (α, β) =

(
β2

2

)M

exp

(
−α2 + β2

2

)

×
Φ3

(
1;M + 1; β2

2 , α2β2

4

)
Γ(M + 1)

, (17)

and the regularized hypergeometric function Φ̃3(b; g; t, v) with
b ∈ Z+ and g ∈ (0,∞) can be expressed via the Marcum Q
function as

Φ̃3(b; g; t, v) = exp (v/t+ t)

2(b−1)∑
j=0

δj(b, g, t, v)t
1−g+j

×
[
1−Qg−1−j

(√
2v/t,

√
2t
)]

. (18)

The parameter δj(b, c, w, z) in (18) is specified in [16, eq.(39)]
as

δj(b, g, w, z) =
(−1)b−1zb−1−j

wb−1Γ(b)

×
⌊j/2⌋∑
k=0

(−1)k(b− j + k)j−k(g − j − 1 + k)j−2k

(j − 2k)!k!
zk (19)

where ⌊u⌋ means the integer part of u.
Proof : See Appendix B.
It is seen that for integer values of M , (17) with the help

of (13) reduces to (14) derived in [16].
Corollary 1: The regularized hypergeometric function
1

Γ(a+n)Ψ2(a; a + n; a;w; z) with n ∈ Z+ and −a,−(a +

n) /∈ Z∗ can be expressed in terms of Marcum Q function
QM (α, β) as

1

Γ(a+ n)
Ψ2(a; a+ n; a;w; z) =

2(n−1)∑
j=0

(−w)1−a−n+j

×δj(n, a+ n,−w,wz)

×
[
1−Qa+n−j−1

(
i
√
2z, i

√
2w
)]

(20)

where i =
√
−1.

Proof: Eq. (20) follows directly from (16) and (18)-(19).
It is seen that the function on the LHS of (20) is not

defined for −a ∈ Z∗ and for −(a + n) ∈ Z∗, while
the expression on the RHS is defined. The latter formula
specifies a → m,−m ∈ Z∗lim 1

Γ(a+n)Ψ2(a; a+n; a;w; z) and
(a+ n) → m,−m ∈ Z∗lim 1

Γ(a+n)Ψ2(a; a + n; a;w; z), see
also the proof in Appendix A.

Corollary 2: The regularized hypergeometric function
1

Γ(a)Ψ2(a+n; a; a+n;w; z) with n ∈ Z+ and −a,−(a+n) /∈
Z∗ can be expressed via the sum of Bessel I functions as

1

Γ(a)
Ψ2(a+ n; a; a+ n;w; z) = exp (w + z) (wz)

1−a
2

×
n∑

j=0

(−1)j
(−n)j
j!

(w
z

) j
2

Ia+j−1

(
2
√
wz
)
. (21)

Proof: Eq. (21) is obtained immediately from (16) and (9).
Similarly to (20), the expression on the RHS of (21)

defines a → m,−m ∈ Z∗lim 1
Γ(a)Ψ2(a+n; a; a+n;w; z) and

(a+ n) → m,−m ∈ Z∗lim 1
Γ(a)Ψ2(a+ n; a; a+ n;w; z).

Then we consider (1). The solution of (1) depends on the
relation between the parameters µ1 and µ2, and the following
proposition holds true.

Proposition 1:
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1. For the arbitrary real µ2 and µ2 = µ1, (1) can be
evaluated as

In(α, β, c, p, µ1, µ1) =
1

p

(
c

2p

)µ1−1

exp

(
c2

4p

)
×Qµ1

(
αc√
2p · p̃

, β

√
2p

p̃

)
(22)

where p̃ = 2p+ α2.
2. For the real µ2 > −1 and µ1 = µ2 + n with n ∈ Z+,

(1) can be evaluated as

In(α, β, c, p, µ2 + n, µ2) = In(α, β, c, p, µ2, µ2)

+
2

c

(
−α2

c

)−µ2

exp

(
−β2

2

) n−1∑
k=0

2k∑
j=0

(
β2

2

)j

×
(
−α2

p̃

)−k+j

δj

(
k + 1, µ2 + k + 1,−α2β2

2p̃
,
α2β2c2

4p̃2

)
×
[
1−Qµ2+k−j

(
i
c√
p̃
, i
αβ√
p̃

)]
. (23)

3. The solution to (1) for µ1 = µ2−n, where n ∈ Z+, can
be expressed as

In(α, β, c, p, µ1, µ1 + n) = In(α, β, c, p, µ1 + n, µ1 + n)

−2

c

(
c

p̃

)n(
β

α

)µ1

exp

(
c2/2− pβ2

p̃

) n−1∑
k=0

n−k−1∑
j=0

(
β

c

)j+k

×
(
p̃

α

)k

(−α)
j (−n+ k + 1)j

j!
Iµ1+k+j

(
c
αβ

p̃

)
. (24)

Proof : See Appendix C.
Corollary 3: Proposition 1 gives also solutions to the integral

having the form of
L
{
Qµ1(α, β

√
t)t

µ2−1

2 Iµ2−1(c
√
t), {t, p}

}
, where µ1 and µ2

are integers. It can be expressed as

L
{
Qµ1(α, β

√
t)t

µ2−1

2 Iµ2−1(c
√
t), {t, p}

}
=
( c
2

)µ2−1

×p−µ2exp

(
c2

4p

)
− In(β, α, c, p, 1− µ1, µ2). (25)

Proof : Eq. (25) follows immediately from (13) [21, eq.
(11)], and a Laplace transform formula [19, vol. 4, eq.
(3.15.2.8)]

L
{
t
µ−1
2 Iµ−1(c

√
t), {t, p}

}
=
( c
2

)µ−1

p−µexp

(
c2

4p

)
.(26)

IV. APPLICATIONS

In this section, we present examples of application of the
derived results to the performance evaluation of communica-
tion systems operating over κ-µ fading.

A. Outage Probability Analysis in κ-µ/κ-µ Interference-
limited Scenarios

The problem of analyzing communication systems under
co-channel interference (CCI) arises in many practical appli-
cations such as cellular, and ad hoc networks. This problem
is very important in cognitive radio systems. The analysis

of outage probability (OP) under CCI was presented for
different signal of interest (SoI) and CCI fading models, see,
for example, [23]-[25] and [13]-[15]. While many generalized
fading scenarios have been analyzed, as far as we are aware,
analytical results on the OP in scenarios with the κ-µ–faded
SoI and CCI have not been reported yet. Meanwhile, using
(22)-(25), we can obtain a formula for the OP, Pout, in κ-µ/κ-
µ interference-limited scenarios.

The OP in interference-limited scenarios is merely the CDF
of a random variable (RV) represented by the ratio of SoI and
CCI powers, which is defined on the basis of a well-known
rule [24], [26] as

Pout(z) = Pr

{
PSoI

PCCI
< z

}
=

∫ ∞

0

FSoI (zy) fCCI(y)dy (27)

where fx(z) and Fx(z) are the respective PDF and CDF of
the RV x, and P denotes the power.

Let the SoI statistical parameters be κS, µS, and ΩS, while
the CCI parameters be κI, µI, and ΩI. Then plugging (2)-(3)
into (27) and using (13), we find that for integer values of µS

and µI, the OP can be expressed as

Pout(z) =
µI(1 + κI)

µI+1

2

κ
µI−1

2

I exp (µIκI)Ω
µI+1

2

I

×In (β′, α′, c′, p′, 1− µS, µI) (28)

where c′ = 2µI

√
κI(1+κI)

ΩI
, p′ = µI(1+κI)

ΩI
, α′ =

√
2κSµS, and

β′ =
√

2(1+κS)µSz
ΩS

.
In Fig. 1, we present numerical estimates of the OP depicted

versus the signal-to-interference ratio (SIR) defined as ΩS/ΩI.
The estimates in Fig. 1 are given for a few antenna configu-
rations with one receiving antenna and a different number L
of the transmitting antennas. Fig. 1 shows both analytical and
numerical estimates represented by the respective solid lines
and single points. The good agreement is observed between
two kinds of estimates.

B. Probability of Energy Detection of an Unknown Signal in
κ-µ Fading Channels

The detection of unknown signals is an important issue in
various applications such as cognitive radio systems [5], [11]-
[12]. The detection procedure can be implemented in different
ways. Measuring the energy of the received waveform over an
observation time window and then comparing it with a thresh-
old, is the simplest detection method referred to as the energy
detection [5]. Evaluation of the detection probability, Pd, over
κ-µ fading was solved so far by applying series expansions of
Marcum Q and Bessel I functions [11]-[12]. These procedures
resulted in formulas given either in terms of infinite series
[11] or in terms of multivariate hypergeometric functions [12],
which are not nowadays implemented in standard software.
Based on the results of this work, closed-form expressions
can be obtained for some combinations of parameters.
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Fig. 1: Outage probability versus the signal-to-interference
ratio in κ-µ/κ-µ interference-limited scenarios; κI = 0.5,
µI = 2. Solid lines represent analytical estimates, and single
points report numerical results.

Respective expressions for the probability of detection and
false alarm (Pf ) in an AWGN channel are given in [5], [11]-
[12] as

Pd = Qu

(√
2γ,

√
2λ
)
, (29)

and

Pf =
Γ (u, λ/2)

Γ (u)
(30)

where u is the product of the observation time and signal band-
width, Γ (a, x) =

∫∞
x

ta−1exp (−t) dt is the upper incomplete
gamma function, γ denotes the signal-to-noise ratio (SNR),
and λ is the detector threshold. Thus, by averaging (29) over
the fading distribution (2), we obtain that the probability of
energy detection over κ-µ fading, Pdκ−µ , can be expressed as

Pdκ−µ =
µ(1 + κ)

µ+1
2

κ
µ−1
2 exp (µκ)Ω

µ+1
2

In
(√

2,
√
2λ, ĉ, p̂, u, µ

)
(31)

where ĉ = 2µ
√

κ(1+κ)
Ω and p̂ = µ(1+κ)

Ω .
In Fig. 2, we present estimates of the detection probability

over κ-µ fading for a few different scenarios. The solid lines
represent the analytical estimates, and single points report the
numerical results. As in the previous application example, we
observe the very good match between two kinds of estimates.
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Fig. 2: Probability of energy detection of unknown signals
in κ-µ fading, Pf = 0.1. Solid lines represent analytical
estimates, and single points report numerical results.

V. CONCLUSION

In this paper, we solve the improper integral (1) that is re-
quired for assessing a few performance metrics of communica-
tion systems operating over κ-µ fading channels. On the basis
of derived results, the probability of detection of unknown
signals and outage probability in κ-µ/κ-µ interference-limited
scenarios can be evaluated analytically.

Since the κ-µ fading distribution is a general statistical
model comprising many fading distributions, the results of this
work can be applied to a large variety of fading scenarios.
The analytical results derived in this paper are restricted by
scenarios with µ2 = µ1 + n, where n is an integer. Based on
the fact that the parameter µ of the κ-µ distribution is inversely
proportional to the amount of fading under a fixed κ [3, eq.
(8)], our results can be used as bounds for real estimates in
scenarios where n is a non-integer.

All derived formulas are given in terms of functions avail-
able via standard software such as Mathematica. The theoret-
ical contribution of this work includes also the recognition
of relations between the hypergeometric functions of two
variables Ψ2 and Φ3, see (16), as well as an extension of
previously derived results on the connection between the
generalized Marcum Q function and confluent hypergeometric
function Φ3, see (17)-(18). These facts resulted in establishing
connections between the hypergeometric function Ψ2 and
modified Marcum Q function, see (20), as well as between
Ψ2 and Bessel I functions, see (21).
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APPENDIX A
PROOF OF LEMMA 1

We use a series expansion of Ψ2(a; d, a;w, z) given in [19,
vol. 3, eq. (6.6.2.2)] as

Ψ2(a; d, a;w, z) =
∞∑
k=0

(wz)k

(d)kk!

×1F1 (a+ k; a+ k; z)1F1 (a+ k; d+ k;w)

= exp(z)
∞∑
k=0

(wz)k

(d)kk!
1F1 (a+ k; d+ k;w) (32)

where 1F1 (s; q;w) is the Kummer confluent hypergeometric
function that can be represented as [19, vol. 3, eq. (7.2.2.1)]
and [19, vol. 3, eq. (7.2.2.8)]

1F1(s; q;w) =

∞∑
l=0

(s)l
(q)ll!

wl = exp(w)1F1 (q − s; q;−w) ,

−q /∈ Z∗. (33)

Plugging (33) into (32), we obtain the product of exp(w+ z)
and the hypergeometric series (5).

APPENDIX B
PROOF OF LEMMA 2

We evaluate the Laplace transforms of functions on the LHS
and RHS of (17) w.r.t. β2

2 . Using [19, vol. 4, eq. 1.1.3.1] and
[19, vol. 4, eq. 3.43.8] (valid for M > −1), we find that

L

{
exp

(
−α2 + β2

2

)(
β2

2

)M

×
Φ3

(
1,M + 1, β2

2 , α2β2

4

)
Γ(M + 1)

, {β2/2, p}


=

exp
(
−α2

2

)
p(p+ 1)M

exp

[
α2

2(p+ 1)

]
. (34)

Evaluating L
{
1−QM (α, β) , {β2/2, p}

}
we obtain that

L
{
1−QM (α, β), {β2/2, p}

}
=

exp
(
−α2

2

)
2

M−1
2

αM−1

×L


∫ β2

2

0

exp (−t) t
M−1

2 IM−1(α
√
2t)dt, {β2/2, p}


=

exp
(
−α2

2

)
p(p+ 1)M

exp

[
α2

2(p+ 1)

]
(35)

where we used (10) and Laplace transform properties given
by [19, vol. 4, eq. 1.1.3.1], [19, vol. 4, eq. 1.1.5.2], and [19,
vol. 4, eq. 3.15.2.8].

We see that the expressions on the RHS of (34) and (35)
are equal, and thus (17) holds true. Eq. (18) for b = 1
is obtained directly from (17). Then applying a recurrence
method proposed in [16, eq. (36)-(37)] and increasing b, we
obtain (18) with the parameter δj(b, g, w, z) equal to that
derived in [16, eq. (39)]. In such a way we express Φ̃3 directly
in terms of Marcum Q function.

APPENDIX C
PROOF OF PROPOSITION 1

Using the differentiation formula (11), we find that

∂In1(α, β, c, p, µ1, µ2)

∂β
= − 2βµ1

αµ1−1
exp

(
−β2

2

)
×
∫ ∞

0

exp

[
−
(
p+

α2

2

)
t2
]
tµ2−µ1+1

×Iµ1−1(αβt)Iµ2−1(ct)dt. (36)

If µ1 = µ2, (36) can be evaluated directly on the basis of
[19, vol. (4), eq. (3.15.17.1)] as

∂In1(α, β, c, p, µ1, µ1)

∂β
= − 2βµ1

αµ1−1 (2p+ α2)

×exp

[
−2p · β2 + c2

2(2p+ α2)

]
Iµ1−1

(
αβc

2p+ α2

)
, (37)

and (22) follows directly from (37) and (10).
From (12) [17, eq. (4)], we obtain a recurrence relation for

(1) with µ1 = µ2 + n as

In(α, β, c, p, µ2 + n, µ2) = In(α, β, c, p, µ2, µ2)

+exp

(
−β2

2

)(
β

α

)µ2

×
n−1∑
k=0

(
β

α

)k ∫ ∞

0

exp
[
−(p+ α2/2)t

]
t
−k−1

2

×Iµ2+k(αβ
√
t)Iµ2−1(c

√
t)dt. (38)

Applying a Laplace transform formula [19, vol. 4, eq.
(3.15.17.13)], we find that

In(α, β, c, p, µ2 + n, µ2) = In(α, β, c, p, µ2, µ2)

+2cµ2−1exp

(
−β2

2

)(
β2

4p+ 2α2

)µ2

×
n−1∑
k=0

(
β2/2

)k
Γ(µ2 + k + 1)

×Ψ2

(
µ2;µ2 + k + 1, µ2;

α2β2

4p+ 2α2
,

c2

4p+ 2α2

)
. (39)

Then using Corollary 1, we obtain (23).
For µ1 = µ2 − n, we find from (12) that

In(α, β, c, p, µ1, µ1 + n) = In(α, β, c, p, µ1 + n, µ1 + n)

−exp

(
−β2

2

) n−1∑
k=0

(
β

α

)µ1+k

∫ ∞

0

exp
[
−(p+ α2/2)t

]
t
n−k−1

2

×Iµ1+k

(
αβ

√
t
)
Iµ2−1

(
c
√
t
)
dt

= In(α, β, c, p, µ1 + n, µ1 + n)− 2

c

(
c

p̃

)µ1+n

exp

(
−β2

2

)
×

n−1∑
k=0

(
β2/2

)k
Γ(µ1 + k + 1)

Ψ2 (µ1 + n;µ1 + k + 1, µ1 + n;

α2β2

4p+ 2α2
,

c2

4p+ 2α2

)
(40)
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where we again used [19, vol. 4, eq. (3.15.17.13)]. Then
applying Corollary 2, we obtain (24).
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