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Abstract:  We analyse the outage probability over 
compound    fading – log-normal shadowing radio 

channels. We use the gamma distribution as a 
substitute to the log-normal shadowing model and  
obtain new finite-integral expressions for the 
probability density and cumulative distribution 
functions of the composite   – gamma distribution. 

We also present approximate estimates obtained by 
reducing the considered problem to that over 
generalized K – fading. 
 

1    Introduction 

   Recently, the    fading distribution was proposed 

for modelling small-scale fading in non-line-of-sight 
scenarios [1].  It was shown in [1], that the    

distribution fits better to experimental data than other 
frequently used fading models (for example, the 
Nakagami-m distribution), and it involves some of 
them as  particular cases. The    model considers 

the fading signal as the composition of   multipath 
clusters where either the in-phase and quadrature 
Gaussian components within each cluster have 
different powers, or these components  are correlated. 
It was shown in [1] that under both scenarios (formats), 
the probability density function (PDF) is expressed by 
the same formula but with different definition of the 
parameter . Analysis of the outage probability over 

   fading is given in [1]-[2]. 

     In a wireless environment, large-scale fading 
(shadowing) is often superimposed on small-scale 
fading, and  the log-normal distribution based on 
experimental data  is commonly used for modelling 
shadowing effects [3]. The compound fading-
shadowing PDF can be obtained by averaging the 
small-scale fading PDF conditioned on the mean signal 
power over the log-normal distribution [3]. Such an 
approach does not result, however, in closed-form PDF 
expressions even for the Rayleigh small-scale fading 
model. This fact makes any analytical evaluations over 
the compound fading-shadowing channels difficult. 
Different substitutes to the log-normal distributions 
have been proposed to overcome this problem. Such 
are approximations by the gamma and inverse 
Gaussian distributions [4]-[5]. These approximations 
lead to closed-form expressions for the composite PDF 
for Rayleigh and Nakagami-m small-scale fading 
models [4]-[7]. The compound gamma – gamma  

distribution is the generalized K-distribution [6]-[9], 
and the gamma – inverse Gaussian distribution is the 
G-distribution [5]. The outage probability over G - and 
K - fading is evaluated in [5] and [7]-[9], respectively. 
The composite Weibull-gamma distribution is 
introduced and analysed in [10], and a generalized 
fading composite model termed the extended 
generalized K- fading distribution is proposed and 
studied in [11]. 

   The compound    – gamma distribution is 

considered in [12]. But the analysis in [12] is restricted 
by obtaining formulas for the probability density 
function (PDF) only. Those are an approximate 
formula for arbitrary values of the fading parameters 
and a closed-form expression for integer values of . 

Meanwhile, shadowing channels are often not ergodic 
because the mean signal power varies slowly. In this 
case, the probability of the outage is a very important 
characteristic of such channels. The problem of the 
definition of the outage probability is not addressed in 
[10] at all. Additionally, no numerical estimates were 
given to show accuracy of the applied approximation 
and applicability of the derived results to the log-
normal shadowing model.  

   In this paper, in contrast to [10], we analyse the 

outage probability  0compout P over   the compound 

   fading – gamma shadowing radio channels. We 

obtain a new finite-integral expression for 

 0compout P 		for  arbitrary values of the fading 

parameters and  a novel simplified formula for integer 
values of  the fading parameter  . The latter result 

corresponds to the case of an even number of the 
multipath clusters in the small-scale fading model [1]. 
Both formulas are  derived on the basis of new PDF 
formulas of the compound    – gamma distribution 

for the arbitrary fading parameters and for integer 
values of the fading parameter . Additionally to the 

exact formulas, we present approximate estimates 
obtained by reducing composite    – gamma 

fading to generalized K– fading. We present numerical 
estimates confirming applicability of the obtained 
results for analysing the outage probability over    

fading – log-normal shadowing radio channels.  To the 

best of our knowledge, no results on  0compout P
have been reported yet. 

 



 
 

2    Fading and shadowing models 

2.1 The    fading  distribution  

   The PDF of the    power variable   with the 

average   E  is [1]: 
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where 2  is the number of multipath clusters, 
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  (where  var   denotes the 

variance),   .  is the gamma function, and  .I   is the 

modified Bessel function of the first kind of the order  . 
For the format 1, 0  is the power ratio of the in-

phase and quadrature scattered waves in each multipath 
cluster;   4/1   H  and   4/2 1   h . For 

the format 2, 11    is the correlation coefficient 

between the in-phase and quadrature scattered waves; 

 21/  H    and  21/1 h  .   

2.2 Gamma approximation to log-normal shadowing 
model  

    Under shadowing (large-scale fading), the average 
power   is a random variable that is commonly 
modeled by the log-normal distribution with the PDF 
[3]:                             

   







 



 2

2

normlog 2

ln
exp

2

1





f     (2)                                                                                                    

where   and  are the respective mean and standard 
shadow  deviations expressed in nepers.   The 
corresponding values in dB are:    [dB] 

 686.8  [Np]. 

     The gamma distribution was proposed in  [4] as an 
approximation to (2): 
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where s  is a measure of the mean power, and 

0M is the shape parameter of the gamma 
distribution. Different approaches for specifying the 
parameters of the approximating distribution (3) have 
been proposed. In our numerical evaluations, we follow 

a widely used method presented in [4] that is based on 
an approximate equality of all raw moments of the 
distributions (2) and (3): 

     2)(  M   and    MM  exps    (4)                       

where     
dx

xd
x




ln  is the digamma function [11, 

vol. 3, Section II. 4]. The value of the parameter M is 
calculated numerically from the first equation in (4), 

and then it is used for evaluation of  s on the basis of 

the second equation. 

3  Outage probability over compound   –  

gamma channels 

3.1 The PDF of the composite   –  gamma 

distribution  

   The compound    – gamma PDF is defined by 

averaging the distribution (1) over the gamma PDF (3), 
i.e.      
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    Proposition 1: The compound   – gamma PDF 

can be expressed as 
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where 21   ,       Hh   221 , and 

 K  is the modified Bessel function of the second 

kind of the order   [11, vol.2, Section 2.16].  

    Proof: We use a representation of the    power 

variable as the sum of two gamma variables with the 
same shape parameter   and different scale 

parameters   Hh   2/1  and  

  Hh   2/2  [12]. Then the PDF (1) can be 

represented as the convolution of two gamma PDFs 
[13]. Thus the compound PDF is: 
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Changing the order of integration in (7) and applying 
[11, vol.1, eq.  (2.3.16.1)] (valid for  21   ) we 

obtain (6).                                                                    ■                                                                                                                                 
    Eq. (6) is given in the form of a finite-range integral. 
This is a proper integral that can be easily evaluated via 
any modern software. 

3.2  The outage probability over   –  

gamma fading 

We use the derived formula (6) for evaluation of the 
outage probability. 

    Proposition 2: The outage probability 
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 where  .21 F  is a  hypergeometric function [11, vol. 

3, Section 7.2.3]. 

     Proof: Eq. (8) is obtained by application of an 
integration formula [11, vol. 2, eq. (1.12.1.2) ] to (6) 

after changing the order of integration in the double 
integral.                                                                         ■                        

    The integrals in (8) are proper too and they can be 
easily evaluated via any modern software.  

     3.3  The PDF of composite   –  

gamma distribution for integer values of 
  

Simplified formulas for   xf comp  and  xP comp-out

can be obtained for integer values of the fading 
parameter  , i.e. for the small-scale fading model 

with the even number of the multipath clusters [1]. 

    Proposition 3: For integer values of  , the PDF of 

the compound    – gamma  distribution can be 

expressed as:   

-for 0x , 
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    Proof:  First we derive a new PDF formula for the 
   distribution with integer values of .                                        

By using  an  integration   formula  [11, vol. 1, eq. 
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Taking     into   account the definition of  the  lower 
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the integral in (10) is: 
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Eq. (12) is a new PDF formula of the      

distribution  with integer values of   .   

   Applying an integration formula [11, vol. 1, eq. 
(2.3.16. 1)] that is valid for 0x , we obtain  the  
expression for 0x given in (9). By direct evaluation 

of   (5)  we  find     that   00comp f  .                      ■  

3.4  The outage probability for integer 
values of   

From (9),  we obtain a simplified expression for the 
outage probability.   

     Proposition 4: The outage probability  for integer 
values of   is: 
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  where    
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   Proof: Eq.  (13) - (14) directly follow from the 
integration formula [11, vol. 2, eq. (1.12.1.2)] after 
some algebra.                                                               ■                         

   Eq. (8) is not defined for integer values of  ( M2
) and (13) is not defined for integer values of the 
shadowing parameter M.  But  the outage probability is 
continuous with respect to these parameters. Thus 

 0compout P  can be found numerically from (8) or 
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(13) by setting the values of the above parameters close 
to the integers.  

3.5  Approximate expression for the 
outage probability  

 

    Along with the exact expressions for the outage 
probability (8) and (13), we present also approximate 
formulas based on reducing the compound   – 

gamma fading to the generalized K-fading.  

    Proposition 5:  The outage probability 

 0compout P  is expressed approximately as:  
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where 
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and  .12 F  is the Gauss hypergeometric  function [11, 

vo. 3, Section 7.2.1], and s/ Mm .  

   Proof: We use the representation of  the    power 

variable in the form of the sum of two independent 
gamma variables (see the proof of Proposition 1) and 
then approximate the sum of the independent gamma 
variables by the gamma distribution [14]. In such a 
way we obtain that   
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  [14]. Using [1, eq. (21)] we 

obtain the formula given below (15). Thus the 
generalized K (gamma-gamma) - distribution can be 
viewed as an approximation to the compound    
fading – gamma distribution.  Eq. (15) represents the 
outage probability over the generalized K– distribution 
[7, eq. (13)].                          ■                                                                                      

    Numerical aspects of the proposed approximation 
are discussed in the next Section.      

 

4   Numerical results                                                                             

  We emphasize that all the derived expressions show 
very good agreement with the corresponding integrals 
evaluated numerically for various combinations of the 
parameters of (1) and (3). 

    In Fig. 1, we present estimates of the outage 
probability versus the shadowing severity   for the 
format 1 of small-scale fading, and in Fig. 2, we show 
estimates of the outage probability against the mean 
SNR  for the format 2. These results were obtained 
via (8) and (13)  and via numerical averaging over 
composite   – log-normal fading. It is seen that the 

presented technique provides an acceptable  accuracy 
of the approximation in all cases considered. 

   We also check the accuracy of the approximate 
formula (15). Under all scenarios tested, we observe 
very slight differences between the estimates obtained 
on the basis of (8) and (15), which are not 
distinguished in Fig. 1-2. This is due to a good 
accuracy of the approximation of the compound  

   – gamma distribution by the generalized K-

distribution. This fact is confirmed by curves presented 
in Fig. 3 where the PDFs of both distributions are 
shown for a few sets of the parameters.  

 5     Conclusion   

   In this paper, we analyse the outage probability 
over the compound   fading – log-normal 

shadowing radio channels. Our approach is based on 
applying the gamma distribution as a substitute to the 
log-normal distribution. We present finite-integral  
expressions for the PDF and CDF of the composite 

  – gamma distribution. The obtained formulas 

contain proper finite-range integrals that can be easily 
evaluated via any modern software. We also derive 
simplified formulas for the case of integer values of the 
small-scale fading parameter  .  The PDF formulas 

obtained in this paper are given in the form of linear 
transforms of the products of the modified Bessel 

functions   K and power functions. Thus,  many 

theoretical results derived for the generalized K-fading 
via integral transforms of the PDF of the K-distribution 
(e.g. those given in [6]-[9]) can be applied  to 
performance evaluation of communication systems 
operating over   fading – shadowing radio 

channels. As a by-product,  we derive a new  formula 
for the PDF of the   distribution with integer 

values of . 

   Along with the exact formulas for the outage 
probability, we present approximate expressions 
obtained by application of the generalized K-
distribution as a substitute to the composite   – 

gamma distribution.  Our numerical estimates confirm 
good accuracy of the used approximation and 



 
 

applicability of all presented results to the analysis of 
the outage probability over  the   fading  – log-

normal shadowing radio channels. 
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Fig. 1. Outage probability versus shadowing severity; 
format 1 of small-scale fading;  0 dB, 0 -7dB. 

Lines represent numerical estimates for  - log-

normal fading, and single points report analytical 
results (8), (13), and (15). 
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Fig. 2. Outage probability versus mean SNR  ; format 
2 of small scale fading;  7.77 dB, 0 -7dB. 

Lines represent numerical estimates for  - log-

normal fading, and single points report analytical 
results (8), (13), and (15). 

      

 

 

 

 

 

       

                                         

 

Fig. 3  Comparison of PDFs of  – gamma (lines) 

and generalized K-distributions (circles). 
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