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Distribution of Diagonal Elements of a General
Central Complex Wishart Matrix
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Abstract—We consider a general central complex Wishart
matrix derived from non-circular complex Gaussian vectors. We
present a technique for evaluation of the probability density,
cumulative distribution, and moment generating functions of the
joint distribution of the diagonal elements of the Wishart matrix.
We give examples of application of the obtained results.

Index Terms—Complex Wishart matrix, multivariate distribu-
tions, non-circular Gaussian processes.

I. INTRODUCTION

STATISTICAL properties of Wishart matrices [1] are
widely applied to performance evaluation of multiple-

input multiple-output (MIMO) systems. Many works on the
complex Wishart distribution consider only matrices derived
from circular complex-valued Gaussian vectors. The circular
Gaussian processes fit well to modeling fading effects in
homogeneous diffuse scattering fields where under a large
number of randomly distributed point scatters, the in-phase
(I) and quadrature (Q) components of the fading signal are
normally distributed, independent, and have equal powers. In
this case, the propagation environment is characterized by the
Rayleigh or Rician fading models. Many results on the Wishart
distribution are applicable only to these fading scenarios.

The real fading environment is, however, non-homogeneous
[2]. Recently introduced η − µ [3] and η − λ − µ [4] fading
models take into account the non-homogeneous structure of
the propagation medium and assume that the I and Q compo-
nents of the fading signal are correlated and (or) have different
powers. A large number of practical examples given in [3]– [4]
prove that these models show better fits to experimental data
in non-line-of-sight propagation mediums than some widely
used fading distributions, such as the Rayleigh or Nakagami-
m approximations. The underlying Gaussian processes in both
η − µ and η − λ− µ fading models are non-circular. The full
statistical characterization of the vector non-circular Gaussian
variable Z requires not only the expectation M = E {Z}
and correlation matrix Σ = E

{
ZZH

}
(as in the case of

the circular Gaussian vectors), but also the relation matrix
C = E

{
ZZT

}
[5], where E means the expectation, H

means transposition and complex conjugation, and T means
transposition.

Diagonal elements of the complex Wishart matrix character-
ize the effective signal-to-noise ratio (SNR) in MIMO systems
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under various transmission policies, and many works have
been devoted to the statistical analysis of the diagonal elements
of the real and complex Wishart matrices (see, for example, [6]
and the references therein). If the underlying Gaussian vectors
are circular, the diagonal elements of the Wishart matrix are
chi-square distributed [6]. This is not, however, the case if the
underlying Gaussian vectors are non-circular. Recently results
on the multivariate η− µ distribution were presented [7]. But
in this case, the underlying Gaussian processes represent just
a special type of non-circular processes where the real and
imaginary components are either correlated or have different
powers. In this letter, we consider the complex Wishart matrix
derived from the general zero-mean non-circular Gaussian
vectors. We present a full statistical characterization of the
diagonal elements of this matrix in terms of the probability
density, cumulative distribution, and moment generating func-
tions (PDF, CDF, and MGF).

II. DISTRIBUTION OF DIAGONAL ELEMENTS OF THE
GENERAL CENTRAL COMPLEX WISHART MATRIX

A. General Central Wishart Matrix
We consider a K×N matrix of identically distributed com-

plex Gaussian variables with mutually independent columns
Zi = [Z1,i, . . . , ZK,i]

T , where Zm,i = Xm,i + jYm,i . We
assume that Zi are non-circular and zero-mean Gaussian, and
they are characterized by the correlation matrix Σ and the
relation matrix C expressed in terms of E

{
X2
}

= σ2
X ,

E
{
Y 2
}

= σ2
Y , and the correlation coefficients λXm,n =

E{Xm,iXn,i}
σ2
X

, λYm,n =
E{Ym,iYn,i}

σ2
Y

, and λm,n =
E{Xm,iYn,i}

σXσY
:

Σm,n = λXm,nσ
2
X + λYm,nσ

2
Y + jσXσY (λn,m − λm,n) ,

Cm,n = λXm,nσ
2
X − λYm,nσ2

Y + jσXσY

× (λn,m + λm,n) . (1)

Since Zm,j are identically distributed, we put λm,m = λ. Then
the Wishart matrix is W = ZZH , and its diagonal elements
are:

diag (W) =

[
N∑
i=1

|Z1,i|2, . . . ,
N∑
i=1

|ZK,i|2
]T

= [w1, . . . , wK ]
T

= w. (2)

Obviously, the second-order statistics of w are totally defined
by the second-order statistics of the underlying Gaussain
processes. The covariance cov {wmwn} is [8]:

cov {wmwn} = 2N
[
λ2
Xm,nσ

4
X + λ2

Ym,nσ
4
Y

+σ2
Xσ

2
Y

(
λ2
n,m + λ2

m,n

)]
. (3)
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We introduce a normalized covariance matrix R with the
elements Rm,n = ρm,n = cov{wmwn}

var{w} , where var {.} denotes
the variance.

B. MGF, PDF, and CDF

It is seen from (2) that wl is the sum of two corre-
lated gamma variables vl and tl with the shape parameter
p = N/2 and respective scale parameters αX = 2σX

2

and αY = 2σY
2. Using the Karhunen-Loeve expansion of

the underlying Gaussian processes, wl can be represented as
the sum of independent gamma variables [9]. The following
lemma specifies the parameters of these gamma variables.

Lemma: The variable wl in (2) can be decomposed into the
sum of two independent gamma variables g1,l and g2,l with the
same shape parameter N/2 and the respective scale parameters
θ1(2) = 2

c1+c2−(+)
√

(c2−c1)2+4a2
, where a = λ

2σXσY (1−λ2) ,

c1 =
[
2σX

2
(
1− λ2

)]−1
, and c2 =

[
2σY

2
(
1− λ2

)]−1
.

Proof: See Appendix.
We decompose the vector w in (2) into the sum w = g1 +

g2, where g1 = [g1,1, . . . , g1,K ]
T and g2 = [g2,1, . . . , g2,K ]

T

are independent vector gamma variables. Then the correlation
of the elements of w is due to the correlation of the elements
of g1 and elements of g2, and the correlation coefficient ρi,j
is expressed in terms of the correlation coefficients ρmi,j

∆
=

cov{gm,igm,j}
var{gm,i} between gm,i and gm,j , m = 1, 2:

ρi,j =
(
ρ1i,jvar {g1,i}+ ρ2i,jvar {g2,i}

)
/var {w} . (4)

If ρ1i,j = ρ2i,j = ρi,j , we obtain the given correlation model
between the elements of w.

The MGF Mw (s)
∆
= E{exp(wT s)} = Mg1(s)Mg2(s),

where Mg1(.) and Mg2(.) are the respective MGFs of the
multivariate gamma distributions of g1 and g2, and s =
[s1, . . . , sK ]T . For the arbitrary correlation model [6, eq. (4)],
we find that

Mw(s) = (|I− θ1R1S| ·|I− θ2R1S|)−N/2 (5)

where I is the K-dimensional identity matrix, and S =
diag{sj}. The matrix R1 is the covariance matrix for the
Gaussian vectors generating g1 and g2: R1i,j =

√
Ri,j [13].

The PDF fw(z1, . . . , zK︸ ︷︷ ︸
z

) and CDF Fw(z) are [7]:

fw(z) =

∫ z

0

f1(t)f2(z− t)dt,

Fw(z) =

∫ z

0

f1(t)F2(z− t)dt (6)

where t = [t1, . . . , tK ]T , f1(F1) (.) and f2(F2) (.) are the
multivariate gamma PDFs (CDFs) of g1 and g2, respectively.
Expressions for the multivariate gamma PDFs have been
presented for exponential correlation [10], constant correla-
tion [11], and arbitrary correlation [12], [6] in the form of
infinite series with the terms expressed via the products of the
marginal gamma PDFs of the individual variables zj . Hence,
(6) shows that for any correlation model, fw(Fw)(z) can been
defined similarly, in the form of infinite series. The terms of

the series are the scaled products of the following functions
of the individual variables:

G1(p1, p2, ϑ1, ϑ2, zj) =

∫ zj

0

fγ1(p1, ϑ1, t)fγ2(p2, ϑ2, zj − t)dt

=
exp (−zj/ϑ2) zp1+p2−1

j

ϑp11 ϑ
p2
2 Γ(p1 + p2)

1F1(p1; p1 + p2; zj ·∆ϑ), and

G2(p1, p2, ϑ1, ϑ2, zj) =

∫ zj

0

fγ1(p1, ϑ1, t)Fγ2(p2, ϑ2, zj − t)dt

=
zp1+p2
j Φ2(p1; p2; p1 + p2 + 1;−zj/ϑ1;−zj/ϑ2)

Γ(p1 + p2 + 1)ϑp11 ϑ
p2
2

(7)

where fγi(Fγi)(pi, ϑi, t) is the marginal gamma PDF (CDF)
with the shape parameter pi and scale parameter ϑi [6], 1F1(.)
is the Kummer hypergeometric function, Φ2(.) is a confluent
Lauricella function [14, vol. 3], ∆ϑ =

(
1
ϑ2
− 1

ϑ1

)
, and the

scale factors are the pairwise products of the corresponding
coefficients of the series representing f1(z) and f2(F2)(z).
The first integral in (7) is evaluated via [14, vol. 1, eq.
(2.3.6.1)], and the second integral is evaluated via its Laplace
transform and the use of [14, vol. 4, eq. (3.43.4)]. If p2 is an
integer, Fγ2(p2, ϑ2, t) is a linear combination of the marginal
gamma PDFs, and G2(p1, p2, ϑ1, ϑ2, zj) =

γ(p1,zj/ϑ1)
Γ(p1) −

ϑ2

∑p2−1
i=0 G1(p1, i+ 1, ϑ1, ϑ2, zj), where γ(a, x) is the lower

incomplete gamma function [14, vol. 2].
For example, for arbitrary correlation, we use the results

of [6] ( that are directly extended to the case of non-integer
values of N/2) and obtain that

fw(z) = q2K
∞∑
n=0

∞∑
m=0

∑
n1+···+nK=n,

∑
m1+···+mK=m

c (n1, · · · , nK) c (m1, · · · ,mK)

K∏
j=1

nj∑
i1=0

mj∑
i2=0

(−nj)i1

×
(−mj)i2G1

(
N
2 + i1, N2 + i2, θ1, θ2, q

2zj
)

i1!i2!
(8)

where (a)i denotes the Pochhammer symbol [14, vol.
3], and q is a weighting factor providing the con-
vergence of the power series (see [6] for details).
The parameters c(n1, · · ·nK) are the coefficients of
the series expansion of |I − (I − QR1Q)|−N/2 =∑∞
n=0

∑
n1+···+nK=n c(n1, ..., nK)

∏K
j=1 u

nj
j where U =

diag{uj}, and Q = qI. A MathematicaTM program for the
fast numerical evaluation of c(n1, . . . , nK) is given in [6].

A CDF expression can be obtained from (6) as

Fw(z) =

∞∑
n=0

∞∑
m=0

∑
n1+···+nK=n,

∑
m1+···+mK=m

c (n1, · · · , nK) c (m1, · · · ,mK)

K∏
j=1

P (nj ,mj , zj) (9)

where P (nj ,mj , zj) =
∑nj
i1=0

(−nj)i1
i1!

∑mj−1
i2=0

(−mj+1)i2
i2!

×G1

(
N
2 + i1, N2 + i2 + 1, θ1, θ2, q

2zj
)

if mj 6= 0. Other-

wise, P (nj , 0, zj) =

∑nj−1

i=0

(−nj+1)iG1(N
2

+i+1, N
2
,θ1,θ2,q

2zj)

i!(q2zj)
i

θ
nj−1

1

if

nj 6= 0, and, Simpler formulas can be obtained for the case
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of NT = 2 [15] and for the constant correlation model
[7]. For the exponential correlation [10], i.e. for the case of
ρi,j = ρ|i−j|,

Fw(z) =
(1− ρ)N[

Γ
(
N
2

)]2
(1 + ρ)N(K−2)

∞∑
k1=0

. . .

∞∑
k2K−2=0[

ρ

(1 + ρ)K−2

]k1+...k2K−2 2K−2∏
i=0

1

kj !

×
K∏
i=1

aiG2

(
N

2
+ ni,

N

2
+ ni+K , β1,i, β2,i, zi

)
(10)

where a1 = aK = 1, ai =
∏
j=0,1 Γ

(
N
2 + ki−1+j·(K−1)

+ki+j·(K−1)

)
/
∏
j=0,1 Γ

(
N
2 + ki+j·(K−1)

)
if i = 2,

. . . ,K − 2, aK−1 =
∏
j=0,1 Γ

(
kK−2+j·(K−1) + N

2

+ kK−1+j·(K−1)

)
, n1 = k1, nK = kK−1, nK+1 =

kK , n2K = k2K−2, ni = ki−1 + ki, βm,1 = βm,K =
θm(1−ρ), and βm,i = θm(1−ρ)/(1+ρ) for i = 2, . . . ,K−1,
m = 1, 2.

The approximation of the sum of two gamma variables
by a single gamma variable proposed in [16] reduces
the considered problem to that solved in [6], [10]– [12].
In this case, fw(z) is approximated by the multivariate
gamma distribution fg(z), with the shape parameter
of the marginal distribution p = E2{wl}

E{w2
l
}−E2{wl}

={[
(1 + 2/N)

(
θ2

1 + θ2
2

)
+ 2θ1θ2

]
(θ1 + θ2)

2 − 1
}−1

and
scale parameter θ = E{wl}/p [16].

III. NUMERICAL RESULTS

We apply the derived results to the evaluation of the outage
probability Pout(r) = Pr(γ ≤ r) in a MIMO system with NT

transmitting (Tx) and NR receiving (Rx) antennas and with the
Rx antenna selection where only one antenna with the maximal
SNR is selected [6]. Let the NR×NT channel matrix be W,
and E{wl} = 1, l = 1, . . . , NR. If the transmitted power is
split equally between the Tx antennas, the SNR γ at the output
of the combiner is expressed as

γ =
γT

NT
max

1≤i≤NR

diag
{

WWH
}

=
γT

NT
max {w1, . . . , wNR

}
(11)

where γT is the transmitted SNR. Hence, Pout(r) =

Pr(w1 ≤ r · NT/γT, . . . , wNR
≤ r · NT/γT)

∆
=

Fw(r ·NT/γT, . . . , r ·NT/γT︸ ︷︷ ︸
NR

). The technique given in Sec-

tion II is applicable if the spatial correlation is observed
at the receiver side only. In the case of spatial correlation
at the transmitter side, wl in (2) is the sum of J > 2
correlated gamma variables, which can be transformed into
the statistically equivalent sum of a number (larger than
two) of independent gamma variables [9]. Application of the
decomposition method in this case is apparently unreasonable
since it will result in much more complicated expressions than
those obtained in this work.

In Fig. 1, we show the CDF of the received SNR for a
few values of the transmitted SNR and antenna configurations:
NT = 2, NR = 4, and NR = 2. For NR = 4, the matrix

R =


1 0.3 0.25 0.2

0.3 1 0.16 0.12
0.25 0.16 1 0.1
0.2 0.12 0.1 10

, and ρ = 0.3 for NR =

2. Unfortunately, the evaluations on the basis of (9) are very
time-consuming in a common PC due to a large number of
terms required for the evaluation of the truncated series. To
solve the problem, we use an approximate method presented
in Section II and apply the efficient MathematicaTM program
given in [6]. In Fig. 2, the outage probability Pout(r) is plotted
as a function of the transmitted SNR. We consider the cases of
exponential correlation with ρ = 0.1 and ρ = 0.81. The value
of the threshold r = E{wl}. The presented estimates clearly
show effects of increasing the number of the antennas, spatial
correlation, and homogeneity of the fading environment on
the outage probability. It is seen, particularly, that the outage
probability gets smaller as the fading environment becomes
more homogeneous.

The numerical evaluations require truncation of the infinite
series. The maximal number of terms taken into account
(Nmax) depends on the concrete scenario, and an example for
λ = 0.9, σ2

X/σ
2
Y = 0.1, NT = 2, and NR = 3 is shown in

Table I.

TABLE I
Nmax NEEDED TO PROVIDE 10−6 ACCURACY IN (10).

SNR, dB ρ Nmax

0 0.1 5
10 0.1 2
0 0.81 42
10 0.81 31

IV. CONCLUSION

In this paper, we analyze the statistical distribution of the di-
agonal elements of the general central complex Wishart matrix
derived from the non-circular Gaussian vectors. We present
a full statistical characterization of the diagonal elements in
terms of the PDF, CDF, and MGF, and give examples of
application of the obtained results for performance evaluation
of MIMO systems. The results of this work are based on
the bivariate gamma distribution [17] and on the multivariate
central chi-square distribution [6], [10]– [12], and thus they
are applicable only to the central Wishart matrix.

APPENDIX
PROOF OF LEMMA

We evaluate the PDF fw(z) of the sum of two correlated
gamma variables w = v+ t with the joint PDF f(v, t) defined
by [17, eq. (125)-(126)] using [8, eq. (6-38)] :

fw (z) =

∫ z

0

f (z − t, t) dt

=
exp (−c1z)

Γ (p) (αXαY )
(p+1)/2

λp−1 (1− λ2)︸ ︷︷ ︸
A

×
∫ z

0

(z − t)(p−1)/2
t(p−1)/2exp [− (c2 − c1) t]
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Fig. 1. CDF of received SNR. λ = 0.8, σ2
X/σ

2
Y = 0.1. Solid lines represent

approximate estimates, and circles show simulation results for NR = 4.
Single points report simulation results for NR = 2.

Fig. 2. Outage probability for the MIMO system with Rx antenna selection.
NR = 3, λ = 0.9. Single points report simulation results.

×Ip−1

[
2

λ
√
t(z − t)

(1− λ2)
√
αXαY

]
dt = A

√
πexp

[
− (c2 + c1) z2

]
Γ (p)

×ap−1
∞∑
k=0

a2k

k!

(
z

c2 − c1

)p−1/2+k

Ip+k− 1
2

[
(c2 − c1)

z

2

]

=

√
π

Γ (p)

ap−1exp
[
− (c2 + c1) z2

] (
z

c2−c1

)p− 1
2

(αXαY )
(p+1)/2

λp−1 (1− λ2)

×Ip− 1
2

[
z

2

√
(c2 − c1)

2
+ 4a2

](
1 +

4a2

(c2 − c1)
2

)− (p− 1
2 )

2

(12)

where Iν (.) is the modified Bessel function of the first kind
of the order ν . To obtain (12), we took into account that the
correlation coefficient between Xi,j

2 and Yi,j2 is λ2 [13, eq.
(28)]. We also use a series expansion of Ip−1 (.) in (12) [14,
vol. 1, eq. (5.2.10.1)], an integration formula [14, vol. 1, eq.
(2.3.6.2)], and summation formula [14, vol. 2, eq. (5.8.2.4)].

Evaluating the PDF fsum(z) of the sum of two independent
gamma variables with the same shape parameter p and some
scale parameters θ1 and θ2, we obtain on the basis of [8, eq.
(6-39)] and [14, vol. 1, eq. (2.3.6.2)] that

fsum (z) =
exp

(
− z
θ1

)
[Γ (p)]

2
(θ1θ2)

p

∫ z

0

(z − y)
p−1

yp−1

×exp

[
−
(

1

θ2
− 1

θ1

)
y

]
dy =

√
π

exp
[
− z2

(
1
θ1

+ 1
θ2

)]
Γ (p) (θ1θ2)

p

×

[
z

1
θ2
− 1

θ1

]p− 1
2

Ip− 1
2

[(
1

θ2
− 1

θ1

)
z

2

]
. (13)

We note that (12) and (13) are equivalent if θ1 =
2

c1+c2−
√

(c2−c1)2+4a2
and θ2 = 2

c1+c2+
√

(c2−c1)2+4a2
.
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