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Abstract

This paper discusses the application of simulated annealing (SA) based meta-
heuristics to self-organized orthogonal resource allocation problems in small
cell networks (SCN)s, for static and dynamic topologies. We consider the
graph coloring formulation of the orthogonal resource allocation problem,
where a planar graph is used to model interference relations in a SCN com-
prising of randomly deployed mutually interfering cells. The aim is to color
the underlying conflict graph in a distributed way, for which different variants
of SA such as SA with focusing heuristic (i.e., limiting the local moves only
to the cells that are in conflict), and fixed temperature, are investigated.For
static topologies, distributed algorithms are used, in which no dedicated
message-passing is required between the cells, except for the symmetriza-
tion of conflict graph. To enable distributed SA in dynamic topologies, a
distributed temperature control protocol based on message-passing is con-
sidered. Different aspects relevant to self-organizing cellular networks are
analyzed using simulations. These include the number of cells with resource
conflicts, number of resource reconfigurations required by the cells to re-
solve the conflicts, requirements on dedicated message-passing between the
cells, and sensitivity to the temperature parameter that guides the stochastic
search process. Simulation results indicate that the considered algorithms are
inherently suitable for SCNs, thereby enabling efficient resource allocation in
a self-organized way. Furthermore, the underlying concepts and the key con-
clusions are general, and relevant to other problems that can be solved by
distributed graph coloring.

Keywords: Simulated annealing, self-organization, resource allocation,
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1. Introduction

Self-organization in wireless networking entails functionalities that ensure
ubiquitous network connectivity and scalability, whilst guaranteeing the de-
sired quality of service to the served users [1]. In the context of contemporary
cellular systems such as Long Term Evolution (LTE)/LTE-Advanced (LTE-
A), the self-organizing networking (SON) paradigm encompasses mechanisms
for self-configuration, self-healing, and self-optimization [2]. As the cellular
networks are becoming increasingly complex due to massive deployments of
small cells, a multitude of challenges related to network resource allocation,
management, and operation have emerged. SON mechanisms address these
challenges by enabling automated optimization of network parameters and
reduction in capital/operational expenditure.

The importance of SON in future networks is underscored by the fact
that the vision for 5G entails diverse use-cases, involving both cooperative
and non-cooperative scenarios. For fully cooperative scenarios, virtualiza-
tion of network resources is under consideration, which involves abstraction
of multiple network management functions to network graphs for software-
based control [3]. On the other hand, resource allocation problems in non-
cooperative scenarios, such as multiple-operators sharing spectrum in autho-
rized shared access and multiple technologies sharing unlicensed spectrum
are inherently more challenging, and will require SON algorithms which do
not involve any dedicated message-passing between the nodes. Moreover, in
large-scale networks, computation of an optimal resource allocation is pro-
hibitively complex, especially under dynamically changing topologies, as it
requires the availability of complete information regarding the network state
at every node. Local decisions based on limited information, computation
capabilities, and inter-cell signaling are thus inevitable, and motivate the
application of self-organizing algorithms.

A number of existing SON mechanisms in cellular networks involve self-
organized allocation of orthogonal resources among cells. Notable exam-
ples include primary component carrier (PCC) selection [4, 5], physical cell
ID (PCI) assignment [5, 6], and the classical frequency assignment prob-
lem [7].These can be modeled as graph coloring problems, where vertices
represent the cells and colors are the available resources. The aim is to color
the underlying interference graph such that no two adjacent cells use the same
resource. Thus, resource allocation problems are of due importance for both
contemporary and future cellular networks, and mandate the study of new
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self-organizing algorithms, tailored to the requirements of SCNs. Generally,
self-organized resource allocation in wireless networks involves computing a
solution to an underlying network optimization problem, using distributed
algorithms [8, 9]. For discrete problems such as orthogonal resource alloca-
tion on an interference graph, combinatorial optimization methods involving
metaheuristics are an attractive option. Accordingly, distributed algorithms
based on metaheuristics can pave the way for engineering self-organizing so-
lutions to discrete resource allocation problems in SCNs.

In this paper, we study different variants of the Simulated Annealing (SA)
metaheuristic for self-organized resource allocation in SCN, under static as
well as dynamic topologies. To this end, different parameters and perfor-
mance indicators important from a perspective of SCNs are taken into ac-
count, in the design and analysis of algorithms. It is assumed that the re-
sources are orthogonal, which leads to a generic system model applicable to a
number of SON problems. The algorithms investigated are SA with focused
search enhancements [10], which focuses uphill and/or plateau moves only on
the cells which are in conflict with their respective neighbors. Furthermore,
the overall concept can be considered as a generic framework for distributed
resource allocation under limited information and dynamic topology. In the
remaining part of this section, we give a brief description of the state-of-the-
art of SA based methods in wireless networks, followed by a summary of the
contributions of this work.

1.1. Related work

The well known SA based optimization methods essentially balance ex-
ploration and exploitation to search the solution space in an efficient manner.
In particular, the hill-climbing feature and the plateau moves play a key role
in escaping from local minima and long plateaus, whereas downhill moves
ensure attraction to the global optimum. Frequency of uphill moves is con-
trolled via a temperature parameter which is set before-hand, and is reduced
according to a cooling schedule as the algorithm progresses [11].

In wireless networking domain, SA has been discussed for distributed
channel allocation in wireless local area networks [12], where each access
point is assigned a sigmoidal utility function, parametrized by the interference
level it experiences. A similar approach proposed in [13], minimizes the total
interference in the network, and is shown to outperform the Leith and Clifford
algorithm [14]. SA for uplink power control in LTE-A networks is discussed
in [15], and for power optimization of pilot signals in [16, 17]. Other resource
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allocation problems in cellular networks addressed using SA include downlink
scheduling in LTE networks [18], handover parameter optimization in LTE
networks [19], and antenna-tilt optimization [20].

To develop the SA based methods for the orthogonal resource allocation
problem, we consider the graph coloring model, where the aim is to assign
resources to cells in a non-conflicting way. The minimization of resource
conflicts in the network translates to mitigation of cross-channel interference
between the cells. This work can be considered as an extension of [12, 13],
however, our focus is on the soft computing aspects and different variants of
SA, which are pertinent to self-organization in SCNs.

1.2. Contributions

We seek to minimize the number of resource conflicts among the cells, as
well as the number of resource reconfigurations in the SCN, for both static
and dynamically changing topologies. It is important from the perspective
of a SCN that both the cells with conflicting resources, and total reconfig-
urations incurred while resolving those conflicts, are minimized. The first
SA variant, we discuss, comprises of SA metaheuristic combined with the
focused search mechanism [21, 10], which allows uphill/plateau moves only
to the cells that are in conflict. Existing works discuss SA with a cooling
schedule, where temperature is considered as a network parameter. This
introduces a centralized component in the procedure, and is therefore not
suitable for SCNs which often have dynamic topologies. Thus, we introduce
the fixed temperature alternative [22, 23], which is fully distributed as it
does not require any cooperation between cells. It is observed that the fixed
temperature variant performs better than the standard SA algorithm. The
second variant is motivated by the practical issue of minimizing the reconfig-
urations of cells in a network, and it involves focusing plateau moves only on
the cells that are in conflict. Similar variants that involve combined focusing
of plateau moves and uphill moves are also considered. To determine the
optimal noise strategy (temperature) for coloring problem, we compare fixed
temperature SA variants to their cooling counterparts across a wide range of
temperatures. Furthermore, we discuss distributed temperature control pro-
tocols for applying SA to dynamic networks. The discussed algorithms have
different characteristics related to plateau moves, uphill moves and down-
hill moves, which results in varying performance in different scenarios, when
applied to the graph coloring problem.
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The rest of the paper is organized as follows: Section II introduces the
system model along with an overview of distributed graph coloring concept,
and properties of planar graphs. Section III involves discussion on SA for or-
thogonal resource allocation, and related self-organizing algorithms for SCNs.
In Sections IV and V, comparison of the considered algorithms is carried out
by simulations, for static and dynamic networks, respectively. Finally, con-
clusions are given in Section VI.

2. System Model

The motivation for applying metaheuristics for self-organized allocation of
orthogonal resources (e.g., channels, PCCs, PCIs) in cellular networks stems
from the fact that in such cases graph coloring models can be readily applied.
In fact, graph coloring is a well studied problem, and both centralized as well
as distributed graph coloring approaches exist. These approaches may be
applied to SCNs, provided that the assumptions on computation and inter-
cell communication aspects of the system are reasonable. In this regard, the
distributed graph coloring approaches have gained considerable popularity,
because of their promising features well suited to the needs of SCNs.

2.1. Distributed Graph Coloring

Graph coloring is an NP-complete combinatorial optimization problem,
with a wide range of applications, see for example [24, 25]. Centralized
coloring approaches based on SA are discussed in [26, 27]. Another impor-
tant metaheuristic is Tabu search [28], which avoids being trapped in local
minima by maintaining a list of bad moves, and updating them during itera-
tions. For large graphs, pure local search methods may not work efficiently.
Such graphs can be colored by using stable set extraction as a first step, fol-
lowed by using local search on residual graph. Another important approach
is genetic optimization combined with local search, which leads to hybrid
algorithms [29, 30]. A detailed survey of local search algorithms for graph
coloring, along with classification of different local search strategies is given
in [31]. The distributed approaches have seen a steady rise in popularity
due to their practical applications in different areas, for details see [32], and
references therein. For distributed coloring, local search methods as well
as distributed constraint satisfaction algorithms are relevant [33, 34]. Fully
distributed algorithms are particularly important for self-organized color-
ing. These algorithms work in a way that each node of the graph makes
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the decisions regarding its color, on the basis of local information only. This
motivates their application for self-organized resource allocation in the SCNs.

2.2. Network Model: Interference Graphs and Voronoi Tessellations

We consider a planar graph model for a SCN comprising of low power
cells deployed randomly, in a given geographical area. A cell considers a
neighboring cell to be an interferer if the interference received from it is
greater than a given threshold. The threshold models the measurement and
reporting capabilities of the users served by the cell. The neighbor relations
among the cells are based on the mutual interference which is predominantly
dependent on their spatial separation. Thus, an interference graph can be
created via thresholding, where the cells are the vertices, and the edges rep-
resent the interference couplings between them. These interference couplings
may be symmetrized in the cellular networks in which a backhaul connection
exists between the cells (e.g., LTE/LTE-A). The resulting interference graph
is undirected, so that a conflict can be seen by both cells. Alternatively, for
SCNs deployed on a 2D plane, an effective approach is to use planar graph
model [35, 36]. This model is particularly accurate under the assumptions
that non-distance dependent propagation effects such as shadow fading are
mild. Consequently, the interference couplings are considered only between
the cells that are neighbors geographically, as they would be measured and
reported as strong potential interferers by the users. In this case, each user in
the network coverage area will connect to the closest base-station (cell), i.e.,
the base-station with the minimum Euclidean distance, whereas the points
equidistant from multiple base-stations may pick their serving base-station
randomly. This results in a Voronoi tessellation of the coverage area, which
is planar by definition. In order to create such graph, we consider a square-
shaped coverage area and drop Nv points v ∈ V at random in it, and compute
the Voronoi tessellation corresponding to those points. The coverage area is
split into Voronoi cells, where each cell constitutes the area consisting of the
points that are closest to its base-station. The points v ∈ V are taken as
the vertices of the created graph G(V, E), whereas edges e ∈ E connect the
vertices of the cells that share the common boundary. Figure 1 shows an
example instance of a planar graph generated by this method. It can be seen
that no two edges cross, and the graph is colorable by four colors, which is a
distinct characteristic of planar graphs [37].
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Figure 1: A planar graph with Nv = 100 vertices that represent small cells, colored with
Nc = 4 colors, that can be regarded as orthogonal resources assigned to the cells in a
non-conflicting way.

2.3. Problem Formulation

In graph coloring terminology, a Nc−coloring for a given number of colors
Nc, is defined as function col : V → {1, . . . , Nc}. Two adjacent vertices x and
y are said to be conflicting if they have the same color, i.e., col(x) = col(y).
A Nc-coloring is defined to be legal if the colors are assigned to vertices in a
way that there are no conflicting edges. For the resource allocation problem
under consideration, we are interested in legal Nc-coloring of G, where Nc

represents the number of orthogonal resources, and G is planar and takes
into account the interference couplings in a SCN.

3. Simulated Annealing Algorithms

3.1. Local Search: Downhill, Uphill and Plateau moves

We discuss distributed algorithms based on local search mechanism, which
involves local changes by individual cells to move in the configuration space
from one solution to another. The aim is to reach a conflict-free state, where
no two neighboring cells are using the same resource. To this end, the search
space is explored by making perturbations to the existing solution, known
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as local moves. In this case, a local move in the configuration space is the
change of a resource by one cell, and the neighbors in configuration space
are two states that are connected by a local move. Thus, the configuration
space is searched by a sequence of local moves taken by cells. A local move
that reduces the conflicts is known as downhill move. The key feature of con-
figuration space in coloring conflict graphs is the existence of plateaus, i.e.,
neighboring states with the same number of conflicts. A greedy local search
in which each cell picks the best move gets trapped in a local minimum, which
is often located at plateaus. A main feature of stochastic local search algo-
rithms is that they can move on the plateaus, and avoid entrapment in local
minima. In this context, a plateau move is a local move, in which the num-
ber of conflicts remain unchanged. Plateau moves are therefore important
for escaping from local minima, in search of a global optimum. An effective
strategy to further improve the performance of stochastic local search algo-
rithms is to enable uphill moves occasionally, i.e., accepting local moves that
increase the cost (number of conflicts). Moreover, the probability of uphill
moves is controlled by a noise parameter, which is temperature for the SA
algorithms we discuss here. The performance of algorithm is strongly depen-
dent on the value chosen for the temperature. Hence, finding an optimal set
of parameters is also an interesting problem [10, 38].

We focus on distributed graph coloring algorithms based on SA, where
each cell performs an SA update to select a resource, while avoiding con-
flicts with the neighboring cells. In all cases, we consider asynchronous and
periodic updates, where each cell updates on its turn. The standard SA al-
gorithm has been discussed for channel selection problem in [12, 13]. Here,
we consider several alternatives.

Consider cell x using resource c. The number of conflicts of cell x (num-
ber of neighbors which are using the same resource) is F(c). The cell may
or may not be in conflict with neighbors while using resource c. On its turn
to update, it picks a resource c′ ∈ C\c randomly and evaluates its cost in
terms of conflicts, given by the cost function F(c′). If ∆ = F(c′)−F(c) < 0,
cell x selects resource c′, otherwise it selects resource c′ with the probabil-
ity e−∆/T . Thus, the higher is the cost of taking the uphill move, the lower
is the probability of it being accepted. The temperature parameter T is
reduced according to some cooling schedule such as T (t) = T0/ log2(2 + t),
where t is the update time (or iteration) and T0 is the initial temperature.
The algorithm is summarized as Algorithm 1. Note that the parameter T
here is assumed to be same for all the cells v ∈ V. For a fully distributed
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ALGORITHM 1: SA
Cell v using resource c selects a resource c′ ∈ C\c and computes:
∆ = F(c′)−F(c).
if {∆ ≤ 0}or {rand(1) < e−∆/T }
then

c← c′

else
c← c

end

Update the temperature parameter: T (t) = T0

log2 (2+t) .

ALGORITHM 2: SA with focused uphill (SAFU)

Cell v using resource c selects a resource c′ ∈ C\c and computes:
∆ = F(c′)−F(c).
if {∆ ≤ 0}or {F(c) > 0 and rand(1) < e−∆/T }
then

c← c′

else
c← c

end

Update the temperature parameter: T (t) = T0

log2 (2+t) .

implementation, it can be fixed to T = T0. The key feature of this algorithm
is that when a cell is in conflict, it always takes downhill and plateau moves.
Moreover, it also takes uphill move with the probability e−∆/T . On the other
hand, when the cell is conflict-free, it again accepts all plateau moves and
also the uphill moves with probability e−∆/T .

3.2. Focused Uphill moves

In SA, we see that a cell may accept uphill moves from both conflict-, and
conflict-free states. Following [21, 10], we introduce a focused search feature
to make the search more effective by limiting the number of uphill moves
accepted. Only the cells that are in conflict accept uphill moves with prob-
ability e−∆/T , conflict-free cells accept plateau moves only. Thus, the focus
is only on the cells that are in conflict, hence the name, focused search. An
important feature induced by this search strategy is that the algorithm does
not escape the conflict-free state, i.e., the global optimum, as no uphill moves
are accepted by any of the cells. This property, where the global optimum
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ALGORITHM 3: SA with focused plateau (SAFP)

Cell v using resource c selects a resource c′ ∈ C\c and computes:
∆ = F(c′)−F(c).
if {F(c) > 0 and ∆ ≤ 0 }or {rand(1) < e−∆/T }
then

c← c′

else
c← c

end

Update the temperature parameter: T (t) = T0

log2 (2+t) .

ALGORITHM 4: SA with focused uphill and plateau (SAFUP)

Cell v using resource c selects a resource c′ ∈ C\c and computes:
∆ = F(c′)−F(c).
if {F(c) > 0 and ∆ ≤ 0 }or{F(c) > 0 and rand(1) < e−∆/T }
then

c← c′

else
c← c

end

Update the temperature parameter: T (t) = T0

log2 (2+t) .

becomes an absorbing state is often referred to as an absorbing minimum.
The SA algorithm with focused search enhancement and cooling schedule is
summarized as SAFU in Algorithm 2, whereas the fixed temperature version
SAFU-Fix can be obtained by simply setting T = T0. In SAFU algorithm
metropolis dynamics have been considered, in conjunction with the cooling
schedule. The SAFU-Fix is same as the FSAM algorithm presented in [36],
albeit it is based on metropolis dynamics.

3.3. Focused Plateau moves

In the distributed graph coloring algorithms we consider here, one pa-
rameter that is particularly relevant to the resource allocation problems for
SCNs is the total number of resource reconfigurations taken to reach the
conflict-free state. From a practical standpoint, it is important to minimize
these, as the reconfiguration essentially could mean rebooting of the cell.
Moreover, change of resource in one cell could set off a chain of reconfigura-
tions in the whole network. Therefore, we consider an alternative strategy
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with reduced plateau moves, where a cell always accepts plateau moves, only
if it is in conflict. Uphill moves are also accepted from conflict states with
probability e−∆/T . From the conflict-free state, uphill and plateau moves
are both accepted with probability e−∆/T . The price of reduction of plateau
moves is an increase in the possibility of getting stuck in local minima. The
SA algorithm with focused search enhancement for plateau moves is summa-
rized as SAFP in Algorithm 3. Moreover, the focused search principle for
uphill and plateau moves can be combined as SA with focused uphill and
plateau (SAFUP) algorithm given as Algorithm 4. In this variant, only cells
with conflicts will reconfigure their resource, thereby resulting in a significant
reduction in total number of reconfigurations in the network.

3.4. Temperature: Fixed vs. Cooling

The probability of accepting an uphill move depends on the temperature
parameter, and the cooling schedule. The initial value strongly influences
the algorithm performance, and a suitable value can be found by trying dif-
ferent starting points. The systematic tuning of temperature parameter for
stochastic local search algorithms is discussed in [10, 38]. As temperature T is
a network parameter, with the cooling enabled, the algorithm is not fully dis-
tributed, as the cells would require a common reference to start their clocks.
To make the algorithm fully distributed (i.e., with no inter-cell dedicated
message-passing), it can be kept constant. The fixed temperature SA has
been explored for other types of problems in [22, 23]. It is worth noting that
for dynamic networks, the application of SA variants with cooling requires
implementation of temperature control protocol. A cell joining the network
may need to acquire the network timing or temperature from its neighboring
cells by message-passing. Distributed temperature control can be enabled
via message-passing, at an obvious cost of an information exchange overhead
between the cells. However, such approaches are not fully distributed and
thus, not suitable from a self-organization perspective. This point is further
elaborated in Section V, where we develop temperature control protocols for
SA in dynamic networks.

4. Performance in Static Networks

4.1. Simulation Scenario

In order to analyze the performance of algorithms in a static scenario,
the first step is to generate a planar graph according to principles enunci-

11



ated in Section II. As the network is static, the adjacencies of graph remain
fixed, while the cells run the algorithms aimed at avoiding resource conflicts
with their respective neighbors. The algorithms are run till convergence to
a conflict-free (i.e., colored) state, or for a maximum number of iterations
MaxIters. A range of temperatures is considered to determine the optimal
performance, and its sensitivity to the temperature settings. The starting
point of all algorithms is a randomly generated uncolored state, which is the
same for all algorithms, across the whole range of temperatures. The param-
eters evaluated after each run, are the average number of conflicts per cell
per iteration, average number of resource reconfigurations per cell per iter-
ation, and convergence probability. In all simulations, planar graphs of size
Nv = 100 cells are used, whereas the number of resources used to color the
graph is Nc = 4. The maximum number of iterations is MaxIters = 1000,
and the statistics are averaged over 250 randomly generated planar graph
instances. In total, there are eight algorithms that we compare here. These
include fixed temperature (T = T0) and cooling (T (t) = T0/ log2 (2 + t))
variants of SA, SAFU, SAFP, and SAFUP, as summarized in Algorithms 1
through 4. The cooling schedule used for temperature reduction is illustrated
in Fig. 2 for the whole range of temperature considered.

4.2. Simulation Results

Each cell carries out an update on its turn, where the updates are asyn-
chronous and periodic, i.e., the cells update their channels in a sequential
manner. Figure 3 shows the probability of reaching a conflict-free state
against a given range of temperatures. The corresponding average number of
conflicts per cell per iteration are illustrated in Fig. 4. Performance depends
strongly on the selection of initial temperature. The cooling variants, which
involve temperature reduction, are effective in the high temperature range,
when compared to their fixed temperature counterparts. Thus, reaching
conflict-free state is possible with both fixed temperature and cooling. For
the fixed temperature variants, the algorithms perform well in temperature
range in which the number of uphill and plateau moves is reasonable enough
to escape local minima. Increase of temperature beyond that results in too
many conflicts due to a large acceptance probability of uphill moves, which
are impossible to resolve. On the other hand, in cooling variants, the temper-
ature falls and the uphill moves are reduced gradually, and consequently, the
algorithm converges. Nevertheless, with too high temperature, an algorithm
may fail to converge, if the number of iterations are not sufficient.
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Figure 2: SA involves gradual reduction of temperature according to the cooling schedule
T = T0

log
2
(2+t) shown here, where t is the iteration index and T0 is the initial temperature.

If we compare SA-fix with SA-cool, we observe that SA-fix is very sensi-
tive to the temperature as its convergence probability plummets to ≈ 0.15
whereas SA-cool degrades gracefully. As shown in Fig.4, SA-fix at tempera-
ture 0.21 (temperature at which convergence probability is 1) results in lower
number of conflicts than SA-cool at temperature 1.21, because SA-cool re-
quires a high initial temperature which results in a large number of uphill
moves in the initial iterations leading to a surge in number of conflicts that
dies down gradually and results in a conflict-free state. However, the number
of conflicts are still large when compared to SA-fix. A similar trend can be
observed in comparison of SAFU-fix and SAFU-cool as well, i.e., SA vari-
ants with fixed temperature outperform their cooling counterparts at their
respective optimal temperatures.

Moreover, the SAFU-fix outperforms both SA-fix and SA-cool signifi-
cantly. For example, the optimal temperature of SA-fix is 0.21, and the cor-
responding values of conflicts and reconfigurations are 0.00815 and 0.00726
respectively. Compare this to SAFU-Fix which has an optimal tempera-
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Figure 3: Comparison of SA variants in terms of convergence (to conflict-free state) prob-
abilities against a range of initial temperatures, in a static SCN.

ture of 0.31, and the corresponding conflicts and reconfigurations equal to
0.00552 and 0.00474 respectively. Thus, we see that the number of conflicts
and reconfigurations for SA-fix are 50% higher than that of SAFU-fix. The
gains yielded by focused search enhancement in SAFU-fix are even more
pronounced against SA-cool. Moreover, it is evident that SAFU-fix is less
sensitive against temperature settings as compared to SA-fix, and is therefore
easy to configure and more suitable for practical implementations.

Similar to SAFU, the SAFP-fix and SAFP-cool apply focusing principle
on the plateau moves, i.e., only the cells with conflicts are allowed plateau
moves. As illustrated in Fig. 5, it is a viable option for reducing the reconfig-
urations in the network. This reduction comes at a cost of increase in number
of conflicts. With a suitable temperature, the convergence behavior of SAFP-
fix mimics SA-fix for obvious reasons—both work in the similar way, except
for the fact that disadvantage of not having plateau moves by conflict-free
cells results in delayed convergence for SAFP-fix, due to which the number of
conflicts rise. The characteristics of SAFU and SAFP are merged in SAFUP,
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Figure 4: Comparison of SA variants in terms of number of conflicts against a range of
initial temperatures, in a static SCN.

which for SAFUP-fix results in almost same number of conflicts as SA-fix,
but the number of reconfigurations is significantly lower. Thus, SAFUP-fix
outperforms SA-fix significantly in reducing reconfigurations, and conver-
gence properties with a slight increase in number of conflicts. Therefore, it
can be concluded that for the static networks, the fixed temperature and the
focusing variants perform substantially better than the standard SA.

We observe that despite SA-fix and SAFP-fix exploring a larger fraction
of the configuration space than their cooling and focused uphill versions, the
probability to find the optimum, even with centralized termination (stopping
the algorithm when a solution is found), is worse. The reason is that the cool-
ing and focused uphill versions concentrate the search in configuration space
to the vicinity of the optimum. Finally, it should be noted that the focused
uphill moves act effectively as a distributed way of algorithm termination.

4.3. Cooling Schedules and Rates

The motivation behind using the standard logarithmic schedule [39], is
the fact that it performs well across a broad class of problems. However, it
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Figure 5: Comparison of SA variants in terms of number of reconfigurations (or cell
reboots) against a range of initial temperatures, in a static SCN.

seems worthwhile to compare it to linear and exponential cooling schedules
discussed in [40, 41]. For an initial temperature T0, the linear schedule is given
by T (t) = T0 − ηt, and the exponential schedule is defined as T (t) = T0α

t,
with 0 ≤ α ≤ 1. It is worth mentioning that the rate of temperature decrease
may also have an impact on the performance of SA algorithms. Therefore,
different cooling rates are considered for each of the three schedules. The
parameters η and α can be used to control the rate of temperature change in
the linear and exponential cases, respectively. For logarithmic schedule, we
introduce a rate control parameter β such that T (t) = T0

log2(2+βt)
. The linear

schedule is considered with η = 0.05 and η = 0.015, exponential schedule
with α = 0.95 and α = 0.99, and logarithmic schedule with β = 1 and β = 4.
The performance of SAFU-cool variant is analyzed against the number of
iterations, as it is a fully distributed algorithm, where we do not need any
centralized view to characterize converged states. Results for different cooling
rates for each of the three cooling schedules are shown in Fig.6. It can be
seen that the logarithmic schedule outperforms linear and exponential cooling
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schedules, and converges to an optimal solution within the fixed number of
iterations. Moreover, both exponential and linear cooling schedules results
in higher number of conflicts in the beginning as well, resulting in higher
cumulative number of conflicts.
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Figure 6: Performance comparison of linear, exponential, and logarithmic cooling schedules
for SAFU-cool.

5. Performance in Dynamic Networks

5.1. Simulation Scenario

Next, we consider a dynamic scenario where the cells can join/leave the
network at random. In this case, it is assumed that the network is operational
and cell appears at a random location in the coverage area of network. The
new cell determines its neighbor relations on the basis of measurements done
by the served users, and establishes backhaul connection with them. Then, it
starts running the resource allocation protocol to avoid selecting the resource
that is being used by any of its neighbors. The planar graph for this case is
generated in the same way as in the static network case, i.e., by creating a
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Voronoi tesselation of coverage area. However, the starting point is a colored
state, as it assumed that the network is initially operational and there are no
conflicts among neighbors. When a new cell appears, conflicts may arise due
to the creation of new adjacency relations. Similarly, the departure of a cell
results in a change in adjacency relations and may result in appearance of new
conflicts, eventhough it reduces the total number of cells in the network. The
cells arrive and depart from the network according to a Poisson birth/death
process. The birth rate is λ, and the death rate is µ = (Ntλ)/Nu, where Nt

is the currently existing number of cells in the network. This keeps the total
number of cells in the network close to the initial number of cells Nu.

For a given temperature, the algorithms are run for a certain number of
iterations M ≤ MaxIters, which depends on the birth/death rate parame-
ters, and thus it models the time after which the network is changed. After
M iterations, a new cell appears or a randomly chosen cell vanishes which is
reflected by a change in the adjacency matrix, a new M is determined, and
algorithms are run again with updated parameters. The process is repeated
until M = MaxIters, after which the statistics related to conflicts and recon-
figurations over iterations are collected for all algorithms. Note that in this
case the network is randomly changing, and the network may or may not
be in a converged state when the maximum number of iterations is reached.
Thus, we will only evaluate the average number of conflicts and reconfigu-
rations, per cell per iteration. The idea here is to capture the performance
of an online algorithm, in a network snapshot with infinite time. Thus, SA
with cooling as such does not make sense, as the temperature would always
be approaching 0. We address SA with distributed temperature control, so
that the temperature is raised whenever the network topology changes.

5.2. Distributed Temperature Control

The SA algorithms that involve cooling are inherently complicated to
implement in dynamic settings, especially in the distributed networks where
there is limited cooperation among network elements. Ideally, all cells v ∈ V
in the network must have the same temperature at all times, i.e., Tv = T .
However, in a dynamic network, when a cell joins or leaves the network,
the graph essentially changes, and re-coloring will be required to resolve the
conflicts that might appear. Re-coloring in this case should constitute re-
run of the algorithms with temperature reset to the initial temperature for
all cells Tv = T0. Moreover, from a SCN perspective, it is important to
achieve this in a distributed way, with limited or no cooperation between the
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cells. For enabling temperature dependent distributed temperature control
in the network, we discuss the following cooperative and non-cooperative
approaches.

5.2.1. Cooperative global reset message-passing (CMP)

The CMP is based on local cooperation between the neighboring cells.
When a new cell joins the network, it starts with the initial temperature of
T0, regardless of the current network temperature T . If a cell i detects a
change in its neighbor relations, it re-initializes its temperature to Ti = T0,
and sends a temperature reset message to all its neighbors. A cell j, upon re-
ceiving temperature reset message originated by cell i, resets its temperature
to the current temperature of Ti, and sends a temperature reset message to
its neighbors. This eventually leads to a consensus of all cells on a network
temperature Tv → T , which keeps on decreasing until the network changes
again. It should be noted that the price for achieving consensus on tempera-
ture in the whole network is the message-passing overhead. Nevertheless, the
protocol enables the extension of SA algorithm to dynamic and distributed
networks. The execution of CMP leading to the convergence to a common
temperature in a dynamic network is illustrated in Fig. 7. First the network
changes at t = 19, which generates messages which lead to network consensus
on temperature. The same procedure is carried out for subsequent addition
and deletion, which occurs at t = 29 and t = 48, respectively. It can be seen
that in all cases, the cells in the network acquire the same temperature after
exhanging messages for some iterations.

5.2.2. Non-cooperative local reset (NCR)

To complement the message-passing protocol CMP, we consider an alter-
native NCR with no messaging. There is no explicit cooperation between the
cells in NCR, and no messages are generated. However, cells are capable of
discovering new neighbors. A cell i re-initializes its temperature to Ti = T0

only if it detects a change in its neighborhood. The underlying idea is to
re-color only those parts of the graph which have changed. Because of the
colored initial state, most of the graph would still be conflict-free. Therefore,
the propagation of messages in the network to achieve a common temper-
ature does not occur this case, and cells may have different temperatures.
Consequently, the conflict-free cells that do not detect any neighborhood
change have zero temperature, and the reconfigurations due to the uphill
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moves do not spread in the whole network. The simulation results presented
next provide a comparison of these approaches.

5.3. Simulation Results

Initially, the number of cells in the graph isNv = 100. The key parameters
such as the temperatures, and maximum number of iterations are the same
as the ones that were used for the static case. Results are averaged over 250
randomly generated network instances. The performance of SA-cool and
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Figure 7: Distributed temperature control based on cooperative global message-passing
(CMP) for enabling SA in dynamic SCNs.

SAFU-cool, in terms of number of conflicts is given in Fig. 8, for both CMP
and NCR. Here, λ = 0.1 corresponds to fast changes in network topology
compared to λ = 0.01, and therefore, results in an overall higher number
of conflicts. First, we consider standard SA, which is effectively represented
by SA-cool(CMP), for the dynamic topologies, as it combines SA-cool with
a message-passing based temperature control which ensures the same tem-
perature in the whole network. On the other hand, in NCR, only cells that
detect a change in network topology raise their temperature. It can be seen
that CMP results in performance deterioration, when compared to NCR, as
the temperature rise throughout the network leads to higher probability of
uphill move at every cell. A direct consequence of this is that cells with con-
flicts allow uphill moves with higher probability, whenever network topology
changes. This is counter-productive, as the graph is mostly in a colored state
already, and raising temperature means enabling unnecessary uphill moves.
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Figure 8: Comparison of SA variants in terms of number of conflicts against a range of
initial temperatures, in a dynamic SCN.

Temperature control by NCR provides an effective alternative, where a lim-
ited number of cells raise their temperature (i.e., reset to T0) to enable uphill
moves, and this happens in the region where a change in network topology
occurs. The key idea here is to re-color only the sub-graph that has changed,
due to the appearance or vanishing of a cell. In the colored parts of the
graph, the temperature remains zero, and there are no uphill moves.

An alternative strategy for reducing the unnecessary uphill moves is
through the focused search variants. For example, in SAFU-cool (CMP), the
temperature is raised but the uphill moves will not be enabled, if the cell is
not in conflict. In addition, the SAFU-cool (NCR) combines focused search
with the NCR, and is the most conservative in allowing the uphill moves.
Hence, focused search variants, SAFU-cool (CMP) and SAFU-cool (NCR),
perform better than their respective counterparts, for both CMP and NCR,
as expected. This trend is more pronounced for λ = 0.1, as more conflicts
arise in a fast changing network leading to an overall high network tempera-
ture, which results in more uphill moves. For λ = 0.1, the SAFU-cool(CMP)
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Figure 9: Comparison of SA variants in terms of number of conflicts against a range of
initial temperatures, in a dynamic SCN.

gradually gets surpassed by SA-cool(NCR), which does not involve focused
search and its number of conflicts eventually rise, as the temperature is in-
creased. Both standard SA type network wide temperature raise, and lack
of focused search leads to a significant deterioration in performance as the
temperature is increased. The effect is more pronounced when the network
topology is changing rapidly. Nevertheless, the focused search variants are
robust compared to standard SA, as they are less impacted by increase in
temperature and frequency at which network changes. Similar trends can be
observed in the comparison of average number of reconfigurations per cell per
node, shown in Fig. 9. The SAFU-cool(NCR) consistently performs better,
especially, in the higher temperature range.

6. Conclusions

We investigate different variants of simulated annealing (SA) algorithm
for graph coloring based self-organized resource allocation, in static and dy-
namic small cell networks (SCN)s. These include focused search enhance-
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ment for SA, which involves constraining uphill/plateau moves only to the
cells that are in conflict with the neighbors. This appears to be a more effec-
tive approach than standard SA, for minimizing the number of conflicts, as
well as the resource reconfigurations, which is of key importance for an effi-
cient operation of SCNs. It is also less sensitive to variation in temperature
parameter. To find the optimal parameters for resource allocation, different
strategies such as fixed temperature and cooling have been studied. The re-
sults suggest that for static networks, SA with an optimal fixed temperature
outperforms its cooling counterpart. A similar trend ensues for other variants
as well. In SCNs with dynamic topologies, standard SA with cooling can be
enabled via distributed temperature control protocols. However, for dynamic
networks with partially colored conflict graphs, raising the temperature of the
whole network by standard SA type mechanisms is counter-productive, and
leads to large numbers of unresolved conflicts. An effective way to mitigate
such conflicts is to use the focused search variants, and the temperature con-
trol protocols which limit the uphill moves to a sub-graph comprising of only
those cells that detect a change in network topology.
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