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Sweep data of EIT 21. Introdu
tionEle
tri
al impedan
e tomography (EIT) is a noninvasive imaging te
hnique for re
overinginformation about the 
ondu
tivity distribution inside a physi
al body from boundarymeasurements of 
urrent and voltage. It has appli
ations, e.g., in medi
al imaging,pro
ess tomography, and nondestru
tive testing of materials; see the review arti
les[1, 3, 26℄ and the referen
es therein. In this work we 
onsider EIT in the spe
ial 
asethat the boundary measurements are 
arried out with only two ele
trodes.Throughout this text our two-dimensional obje
t of interest is assumed to have
onstant isotropi
 ba
kground 
ondu
tivity with a 
ompa
tly supported (possiblyanisotropi
) embedded inhomogeneity. We 
onsider the following measurement setting:One of the two ele
trodes lies at a �xed position while the other moves along theobje
t boundary in a sweeping motion. One unit of 
urrent is maintained betweenthe ele
trodes and the 
orresponding voltage di�eren
e is re
orded as a fun
tion of thelo
ation of the dynami
 ele
trode. We 
all the alteration in su
h measurement 
ausedby the inhomogeneity the sweep data of EIT. The obje
tive of this work is to extra
tinformation on the whereabouts of the 
ondu
tivity inhomogeneity from the sweep data.(Noti
e that the needed referen
e measurement 
orresponding to a homogeneous obje
t
an in pra
ti
e be 
omputed if the 
onstant ba
kground 
ondu
tivity is known, andsometimes, e.g., in the 
ase of time di�eren
e imaging, it may also be measured withthe same equipment as the data for the inhomogeneous body.)In the theoreti
al part of this text, we adopt the the so-
alled point ele
trode model(PEM), i.e., we model the ele
trodes as unit point 
urrent sour
es (
f., e.g., [5℄), whi
his a good approximation if the used ele
trodes are small; in our setting the dis
repan
ybetween the PEM and the 
omplete ele
trode model (CEM) [4, 23℄ is of the order O(d2)where d > 0 is the length of the ele
trodes [9, Theorem 2.1℄. Following the ideas in [13℄for the ba
ks
atter data of EIT (see also [8, 12, 15℄), we show that the sweep data 
an be
ontinued as a holomorphi
 fun
tion to the exterior of the 
ondu
tivity inhomogeneity.With the help of su
h an extension, it is then demonstrated that the sweep data 
an beused as the input for the 
onvex sour
e support method [11℄, resulting in the 
on
eptof 
onvex sweep support and an algorithm for re
onstru
ting it; see [20℄ for the originalideas behind this te
hnique. In parti
ular, the 
onvex sweep support is a nonemptysubset of the 
onvex hull of the support of the 
ondu
tivity inhomogeneity, assumingthat the sweep data is non
onstant. The fun
tionality of the ensuing in
lusion dete
tionalgorithm is tested with numeri
al experiments, some of whi
h are based on simulatedCEM data.Although the ideas and te
hniques utilized in this work resemble to a 
ertainextent the ones in [13℄, there are also some essential di�eren
es. Most importantly,the ba
ks
atter data 
onsidered in [13℄ is realized by 
ondu
ting a single dipole 
urrent,not two point 
urrents of opposite signs like here, through the obje
t boundary, andthen taking the tangential derivative of the 
orresponding relative boundary potential.Su
h a measurement 
an be emulated in pra
ti
e up to the order O(d) by letting a net
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urrent of 1/(2d) units �ow between two ele
trodes of length d > 0 at distan
e d fromea
h other, and then dividing the (relative) potential di�eren
e between the ele
trodesby d [9, Theorem 4.1℄. In order to obtain a good approximation of the ba
ks
atterdata, one thus needs to apply high net 
urrents, whi
h is naturally suspe
t in real-life, and/or to divide the resulting voltage measurements by a small number, whi
h isbound to amplify the noise 
ontent of the (relative) ba
ks
atter data (
f. [9, Se
tion4℄). These pra
ti
al 
ompli
ations 
an be explained in an intuitive manner as follows: Ifthe used small ele
trodes lie 
lose to ea
h other, the voltage measurements do not 
arrylegible information about the 
ondu
tivity distribution far away from the boundary asmost ele
trons travel between the two ele
trodes without ever visiting the interior ofthe obje
t. For the sweep data promoted in this work, these kinds of di�
ulties are notas severe be
ause the two ele
trodes do not move together along the obje
t boundary,and thus there are reasonable 
urrent densities in the interior of the obje
t even withoutappli
ation of unrealisti
ally high net 
urrents through the ele
trodes. Compared tothe material in [13℄, we also present three other enhan
ements, namely the theoreti
altreatment of anisotropi
 
ondu
tivity inhomogeneities, the formulation of the results forgeneral smooth, bounded and simply 
onne
ted domains, not just for the unit disk asin [13℄, and the testing of the re
onstru
tion algorithm with simulated CEM data.This text is organized as follows. In Se
tion 2, we list our assumptions and re
all a
ouple of useful tools from [13℄. Se
tion 3 introdu
es the sweep data and proves some ofits basi
 properties. In Se
tion 4 it is shown that the sweep data 
an be 
ontinued as aholomorphi
 fun
tion to the exterior of the 
ondu
tivity inhomogeneity. Subsequently,the 
onvex sweep support is de�ned in Se
tion 5 and the algorithm for re
onstru
ting itis outlined in Se
tion 6. Finally, Se
tion 7 presents the numeri
al examples and Se
tion 8lists the 
on
luding remarks.2. Assumptions and ba
kground materialLet D ⊂ R2 be a simply 
onne
ted and bounded domain with a C∞-boundary. Assumethat the symmetri
 
ondu
tivity σ ∈ L∞(D,R2×2) satis�es the 
onditions
σ ≥ cI for c > 0 and supp(σ − I) is a 
ompa
t subset of D,where I ∈ R2×2 is the identity matrix and the �rst 
ondition is to be understood inthe sense of positive de�niteness. We �x Σ ⊂ D, 
onsisting of �nitely many simply
onne
ted, nonempty, 
losed and mutually disjoint sets Σj , j = 1, . . . , m, su
h that
supp(σ − I) ⊂ Σ ⊂ D . (2.1)(Take note that here we 
hoose Σ to be 
losed, not open as in [13℄.) In addition,for te
hni
al reasons whi
h will be
ome apparent in what follows, we introdu
e simply
onne
ted C∞-domains Ωj , j = 1, . . . , m, su
h that Σj ⊂ Ωj , Ωj ⊂ D and Ωj ∩ Ωk = ∅for j 6= k. The union of these domains is denoted by Ω.Let us 
onsider the boundary value problem
∇ · (σ∇u) = 0 in D, ∂u

∂ν
= f on ∂D, (2.2)



Sweep data of EIT 4where ν is the exterior unit normal of ∂D. A

ording to the material in, e.g., [13,Appendix℄, for any boundary 
urrent density f in
Hs

⋄(∂D) = {g ∈ Hs(∂D) | 〈g, 1〉∂D = 0}, s ∈ R, (2.3)the problem (2.2) has a unique solution u in (Hmin{1,s+3/2}(D) ∩H1
loc(D))/C, where

H1
loc(D) = {v ∈ D′(D) | ϕv ∈ H1(D) for every ϕ ∈ C∞

0 (D)}.Here and in what follows, 〈·, ·〉∂D : Hs(∂D)×H−s(∂D) → C denotes the dual evaluationbetween Sobolev spa
es on ∂D; if there is no possibility for a mix-up we refrain frommarking the spa
es in the bra
kets and use this same notation for the indu
ed dualitybetween Hs
⋄(∂D) and H−s(∂D)/C. Moreover, unless there is room for 
onfusion, weidentify an equivalen
e 
lass of a quotient Sobolev spa
e with any representative of the
lass in question.The Neumann-to-Diri
hlet map

Λ : f 7→ u|∂D, Hs
⋄(∂D) → Hs+1(∂D)/C, (2.4)is well de�ned and bounded for every s ∈ R (
f., e.g., [13, Appendix℄). The same alsoapplies to the referen
e Neumann-to-Diri
hlet map

Λ0 : f 7→ u0|∂D, Hs
⋄(∂D) → Hs+1(∂D)/C,where u0 ∈ Hs+3/2(D)/C is the unique solution of (see [21, Chapter 2, Remark 7.2℄)

∆u0 = 0 in D, ∂u0

∂ν
= f on ∂D. (2.5)Be
ause σ is identi
ally I in some (interior) neighborhood of ∂D, it follows that u− u0is smooth near the boundary ∂D, and the relative Neumann-to-Diri
hlet map

Λ − Λ0 : H−s
⋄ (∂D) → Hs(∂D)/C (2.6)is bounded for any �xed s ∈ R (
f., e.g., [13, Appendix℄).To be able to prove some useful properties of the sweep data of EIT that isintrodu
ed in the following se
tion, we need to re
all a fa
torization of the di�eren
eboundary map Λ − Λ0 from [13℄. To this end, we �rst introdu
e the spa
e

Hs(∂Ω)/Cm := (Hs(∂Ω1)/C) ⊕ . . .⊕ (Hs(∂Ωm)/C), s ∈ R ,and note that its dual is realized by
H−s

⋄⋄ (∂Ω) := H−s
⋄ (∂Ω1) ⊕ . . .⊕H−s

⋄ (∂Ωm),where the 
omponents are de�ned in a

ordan
e with (2.3). Let us then introdu
e thelinear and bounded operator
T : f 7→ u0|∂Ω, Hs

⋄(∂D) → H1/2(∂Ω)/Cm , (2.7)where u0 is the unique solution of (2.5) and thus smooth in the interior of Ω (
f., e.g.,[21, Chapter 2, Remark 7.2 and Theorem 3.2℄). It is important to note that althoughthe Diri
hlet tra
e of u0 on ∂Ω is de�ned up to only one additive 
onstant, i.e., up tothe ground level of potential, here we interpret u0|∂Ω as an element of H1/2(∂Ω)/Cm



Sweep data of EIT 5by letting ea
h 
omponent u0|∂Ωj
, j = 1, . . . , m, �oat independently, that is, we letea
h u0|∂Ωj

de�ne an equivalen
e 
lass in the 
orresponding 
omponent quotient spa
e
H1/2(∂Ωj)/C.With these tools in hand, we are ready to restate [13, Corollary 3.2℄. The proofis omitted as it is in essen
e the same as that of [13, Corollary 3.2℄, although here we
onsider a slightly more general framework allowing anisotropi
 
ondu
tivities; see, e.g.,[6, 18℄ for other fa
torizations of Λ − Λ0 in the anisotropi
 setting.Theorem 2.1. The operator Λ − Λ0 
an be fa
tored as

Λ − Λ0 = T ∗GT, (2.8)where G : H1/2(∂Ω)/Cm → H
−1/2
⋄⋄ (∂Ω) is a bounded linear operator, whi
h 
oin
ides withits own dual. Moreover, G 
an be extended to a 
ontinuous operator from Hs(∂Ω)/Cmto H−s

⋄⋄ (∂Ω) for any s ∈ R.As the intermediate operator G is well de�ned on H1/2(∂Ω)/Cm, it does notsee additions of 
onstants to the 
omponents of its argument (
f. [13, Remark3℄). To make this statement more 
on
rete, let ψ = ⊕m
j=1ψj be any element of

H1/2(∂Ω) = ⊕m
j=1H

1/2(∂Ωj), introdu
e an arbitrary 
onstant ve
tor c ∈ Cm, and set
ψ + c = ⊕m

j=1(ψj + cj). Then, it holds that G(ψ + c) = Gψ sin
e ψ + c = ψ in thetopology of H1/2(∂Ω)/Cm. This property of G will be essential in the analysis of Se
tion4 below.3. Sweep data of EITLet us then 
onsider a spe
i�
 lo
alized 
urrent pattern, namely δy−δy0 ∈ H
−1/2−ǫ
⋄ (∂D),

ǫ > 0, with y, y0 ∈ ∂D and δz denoting the delta distribution lo
ated at z on ∂D. Dueto the boundedness of the boundary operator (2.6) and sin
e δy − δy0 has zero mean inthe sense of (2.3), the quantity
ς(y) = 〈(Λ − Λ0)(δy − δy0), (δy − δy0)〉∂D (3.1)is well de�ned. The fun
tion ς : ∂D → R is what we 
all the sweep data of EIT.A

ording to [9℄, su
h data 
an be approximated in pra
ti
e as follows: Unit 
urrentis maintained between two small (but �nite) ele
trodes at y0 and y while the latter ismoved along ∂D in a sweeping motion. The 
orresponding potential di�eren
e betweenthe ele
trodes is re
orded as a fun
tion of y, and the a
tual sweep-type data is �nallyobtained by subtra
ting the 
orresponding measurement in the 
ase that σ ≡ 1. In theframework of the CEM [4, 23℄, the dis
repan
y between su
h a realisti
 data set and ςis of the order O(d2), where d > 0 is the length of the used ele
trodes; see [9, Theorem2.1℄ for the details.Remark 3.1. The sweep data 
an alternatively be given in the form
ς(y) = (uy − uy

0)(y) − (uy − uy
0)(y0), (3.2)
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0 are the solutions of (2.2) and (2.5), respe
tively, for f = δy − δy0. Inparti
ular, the alteration of y ∈ ∂D a�e
ts not only the argument of the �rst term onthe right-hand side of (3.2) but also the involved potentials uy and uy

0 via the applied
urrent pattern. This means that the sweep measurement is 
onsiderably di�erent froma standard (idealized) EIT measurement pair, whi
h 
onsists of an applied boundary
urrent density and the resulting potential measured everywhere on the obje
t boundary.On the other hand, the sweep data does resemble the ba
ks
atter data of EIT [12, 13℄ toa 
ertain extent.A

ording to the Riemann mapping theorem, there exists a 
onformal map Φ thatsends D onto the unit disk B and y0 to z0 = (1, 0) ∈ ∂B. As D has a smooth boundary,
Φ also de�nes a smooth di�eomorphism of ∂D onto ∂B [22, Se
tion 3.3℄. We denotethe inverse of Φ by Ψ, and let Λ̃ be the Neumann-to-Diri
hlet map 
orresponding to Band the 
ondu
tivity

σ̃ = J−1
Ψ (σ ◦ Ψ)(J−1

Ψ )Tdet JΨ ∈ L∞(B,R2×2), (3.3)where JΨ denotes the Ja
obian of Ψ. Take note that σ̃ is a feasible 
ondu
tivity in thesense of Se
tion 2, i.e.,
σ ≥ c̃I for c̃ > 0 and supp(σ̃ − I) is a 
ompa
t subset of B,be
ause Ψ : B → D is a di�eomorphism and as a 
onformal mapping it satis�es
JT

ΨJΨ = (det JΨ)I. (3.4)In parti
ular, σ̃ = σ ◦ Ψ for an isotropi
 σ. We let Λ̃0 be the Neumann-to-Diri
hletmap 
orresponding to B and the unit 
ondu
tivity. The (pushforward) sweep data
ς̃ : ∂B → R 
orresponding to the unit disk B and the 
ondu
tivity σ̃ is de�ned in thenatural way, i.e.,

ς̃(zθ) = 〈(Λ̃ − Λ̃0)(δzθ
− δz0), (δzθ

− δz0)〉∂B, (3.5)where the bra
ket denotes the Sobolev duality on ∂B and zθ = (cos θ, sin θ) for somepolar angle θ ∈ R. The following theorem demonstrates that Φ 
an be used to transfersweep data between ∂D and ∂B.Theorem 3.2. It holds that
ς = ς̃ ◦ Φ,where ς : ∂D → R and ς̃ : ∂B → R are the sweep data de�ned by (3.1) and (3.5),respe
tively.Proof. Let us �x y ∈ ∂D and denote by ũ ∈ (H1−ǫ(B) ∩H1

loc(B))/C, ǫ > 0, the uniquesolution of the Neumann problem
∇ · (σ̃∇ũ) = 0 in B, ∂ũ

∂ν
= δΦ(y) − δz0 on ∂B. (3.6)Our initial aim is to show that u = ũ ◦ Φ satis�es (2.2) for f = δy − δy0. Take notethat u ∈ (H1−ǫ(D) ∩ H1

loc(D))/C be
ause Φ and Ψ are di�eomorphisms with boundedderivatives up to an arbitrary order (
f., e.g., [21, 22℄).



Sweep data of EIT 7We start by ta
kling the �rst equation of (2.2). Let ϕ ∈ C∞
0 (D) be arbitrary. Sin
e

u ∈ H1
loc(D) and ũ ∈ H1

loc(B), using an obvious 
hange of variables we may write
∫

D

σ∇u · ∇ϕ dx =

∫

D

σJT
Φ (∇ũ ◦ Φ) · ∇ϕ dx

=

∫

B

(σ ◦ Ψ)(JT
Φ ◦ Ψ)∇ũ · (∇ϕ ◦ Ψ) detJΨ dx

=

∫

B

(σ ◦ Ψ)(J−1
Ψ )T∇ũ · (J−1

Ψ )T∇(ϕ ◦ Ψ) det JΨ dx

=

∫

B

σ̃∇ũ · ∇ϕ̃ dxfor ϕ̃ = ϕ ◦ Ψ ∈ C∞
0 (B) due to the de�nition of σ̃. Sin
e ũ satis�es the �rst equationof (3.6), it thus follows from the de�nition of distributional di�erentiation that

∫

D

σ∇u · ∇ϕ dx = 0for any ϕ ∈ C∞
0 (D), whi
h in turn is just the weak form of the �rst equation of (2.2).Next we show that u satis�es the boundary 
ondition of (2.2) with f = δy − δy0 .Let ϕ ∈ C∞(∂D) be arbitrary and extend it as a smooth fun
tion to D so that (
f., e.g.,[21, Chapter 1, Theorem 9.4℄)
∂ϕ

∂ν
= 0 on ∂D and suppϕ ⊂ D \ Σ.Now it follows from the generalized Green's formula [21, Chapter 2, Theorem 6.5 with

r = 0℄ that
〈
∂u

∂ν
, ϕ〉∂D = −

∫

D

u∆ϕ dx = −

∫

D

(ũ ◦ Φ) ∆ϕ dx.A 
hange of variables thus yields
〈
∂u

∂ν
, ϕ〉∂D = −

∫

B

ũ ((∆ϕ) ◦ Ψ) detJΨ dx = −

∫

B

ũ∆ϕ̃dx,where ϕ̃ = ϕ◦Ψ and the se
ond step is a straightforward 
onsequen
e of the fa
t that Ψsatis�es the Cau
hy�Riemann equations. As 
onformal mappings retain homogeneousNeumann boundary 
onditions, we see that
∂ϕ̃

∂ν
= 0 on ∂B and supp ϕ̃ ⊂ B \ Φ(Σ).Be
ause supp(σ̃− I) ⊂ Φ(Σ) due to (2.1) and (3.4), we 
an use the generalized Green'sformula for a se
ond time to 
ome up with

〈
∂u

∂ν
, ϕ〉∂D = 〈

∂ũ

∂ν
, ϕ̃〉∂B = ϕ̃(Φ(y)) − ϕ̃(z0) = ϕ(y) − ϕ(y0) ,where the se
ond and third steps follow from the de�nitions of ũ and ϕ̃, respe
tively.Sin
e the original ϕ ∈ C∞(∂D) was arbitrary, this means that

∂u

∂ν
= δy − δy0 on ∂D,



Sweep data of EIT 8and thus u = ũ ◦ Φ is the unique solution of (2.2) for f = δy − δy0 .A simpli�ed version of the above line of reasoning shows that the solution of (2.5)for f = δy − δy0 
an be given as u0 = ũ0 ◦ Φ, where ũ0 ∈ H1−ǫ(B)/C is the uniquesolution of (3.6) when σ̃ is repla
ed by I. In 
onsequen
e, we have
ς(y) = 〈(Λ − Λ0)(δy − δy0), (δy − δy0)〉∂D

= (u− u0)(y) − (u− u0)(y0)

= (ũ− ũ0)(Φ(y)) − (ũ− ũ0)(Φ(y0))

= 〈(Λ̃ − Λ̃0)(δΦ(y) − δz0), (δΦ(y) − δz0)〉∂B = ς̃(Φ(y)).Be
ause y ∈ ∂D was 
hosen arbitrarily, this 
ompletes the proof.4. Analyti
 
ontinuation of the sweep dataIn this se
tion, we will follow the argumentation of [13℄ for the 
ase of the ba
ks
atterdata to establish that the sweep data ς is the boundary value of a univalent holomorphi
fun
tion de�ned in the exterior of Σ; note that if the topology of supp(σ − I) is notvery 
ompli
ated, we 
an 
hoose Σ to be the so-
alled in�nity support of σ − I, whi
his, in essen
e, 
omposed of supp(σ − I) together with the holes in it [20℄. Althoughthe following analysis resembles that in [13℄, there is one essential di�eren
e: When theba
ks
atter data is 
ontinued analyti
ally to the exterior of the inhomogeneity in [13℄,the en
ountered singularities are poles lo
ated on the boundary of the inhomogeneity,or to be more pre
ise on ∂Ω. Here, we are for
ed to work with 
omplex logarithms thathave bran
h 
uts extending from the origin to the boundary of Ω. In order to get ridof this hindran
e, we must make expli
it use the fa
tor spa
e property of G dis
ussedafter Theorem 2.1 to move the bran
h 
uts entirely inside Ω. To begin with, we assumethat D is the unit disk; this assumption will be relaxed at the end of this se
tion withthe help of Theorem 3.2.Assume for the moment that D = B is the unit disk. To begin with, we note thatone representative of the equivalen
e 
lass T (δzθ
− δz0) ∈ H1/2(∂Ω)/Cm is given by (see,e.g., [13, Se
tion 4℄ or [14, Appendix℄)

g̃θ(x) :=
1

π
(log |x− z0| − log |x− zθ|), x ∈ ∂Ω.As a 
onsequen
e, Theorem 2.1 allows us to write the sweep data introdu
ed in Se
tion 2in the form

ς(zθ) = 〈GT (δzθ
− δz0), T (δzθ

− δz0)〉∂Ω =

∫

∂Ω

(Gg̃θ)(x) g̃θ(x) ds(x), (4.1)where the se
ond equality is a 
onsequen
e of the regularity properties of G. Let usthen �x points y(k) ∈ Σk, k = 1, . . . , m, and make the 
omponentwise de�nition
gθ(x) := g̃θ(x) +

1

2π
(log |zθ − y(k)| + i(φk − θ)), x ∈ ∂Ωk, k = 1, . . . , m,



Sweep data of EIT 9where φk = φk(θ) is the polar angle of the point zθ − y(k), i.e., the polar angle of zθwith respe
t to y(k), de�ned in su
h a way that the mapping R ∋ θ 7→ φk(θ) − θ is
ontinuous, 2π-periodi
 and takes values in the open interval (−π/2, π/2); a simplegeometri
 
onsiderations shows that su
h a 
hoi
e is possible. Obviously, gθ and g̃θbelong to the same equivalen
e 
lass of H1/2(∂Ω)/Cm, and thus we have
ς(zθ) =

∫

∂Ω

(Ggθ)(x) gθ(x) ds(x) =

m
∑

j=1

∫

∂Ωj

(Ggθ)(x) gθ(x) ds(x),whi
h holds for all polar angles θ ∈ R.Let us then introdu
e the 
omplex variables ξ = ξ(x) = x1 + ix2, ζ = eiθ and
υk = y

(k)
1 + iy

(k)
2 , k = 1, . . . , m, and identify D with the unit disk of the 
omplex planewhen appropriate. By slight abuse of the notation, we obtain for x ∈ ∂Ωk that
gθ(x) =

1

2π
log

(

|1 − ξ|2

|ζ − ξ|2
ζ − υk

ζ

)

=
1

2π
log

(

|1 − ξ|2

1 − ξζ

ζ − υk

ζ − ξ

)

=
1

2π

(

log
|1 − ξ|2

1 − ξζ
+ log

ζ − υk

ζ − ξ

)

=: gk(x, ζ), (4.2)where at every o

urren
e log denotes the prin
ipal value of the 
omplex logarithm.Indeed, the �rst equality of (4.2) holds due to the de�nition of φk, and the se
ondone follows from a trivial algebrai
 manipulation. To see that the third equality of(4.2) is also valid, noti
e �rst that the argument of |1 − ξ|2/(1 − ξζ) is in the interval
(−π/2, π/2) � modulo 2π � be
ause the real part of this expression is positive for all
x ∈ ∂Ωk and ζ ∈ ∂D. Moreover, it follows from a straightforward geometri
 reasoningthat the argument of (ζ − υk)/(ζ − ξ) is in the open interval (−π, π) � modulo 2π� for all x ∈ ∂Ωk and ζ ∈ ∂D. To sum up, for any �xed x ∈ ∂Ωk and ζ ∈ ∂D these
ond and third lines of (4.2) represent logarithms of the same 
omplex number, withthe 
orresponding imaginary parts in (−π/2, π/2) and (−3π/2, 3π/2), respe
tively. Asdi�erent bran
hes of the 
omplex logarithm di�er by integer multiples of 2πi, we thusdedu
e that the expressions on the se
ond and third lines of (4.2) must, in fa
t, be thesame, i.e., gθ(x) = gk(x, ζ) for all x ∈ ∂Ωk and ζ = eiθ ∈ ∂D.It is obvious that gk 
an be extended as a 
ontinuous fun
tion to ∂Ωk × (D \ Ωk),with the �rst variable treated as a point in R2 and the se
ond as an element of C: Forany �xed ξ = ξ(x) ∈ ∂Ωk ⊂ C, the �rst term of gk(x, ·) 
an be 
hosen to have a bran
h
ut from ζ = 1/ξ /∈ D to in�nity without interse
ting D, and the se
ond term a bran
h
ut from ζ = ξ to ζ = υk within Ωk. Moreover, this extended gk is 
omplex di�erentiablewith respe
t to ζ ∈ D \ Ωk, with the 
orresponding derivative also being a 
ontinuousfun
tion in ∂Ωk × (D \ Ωk), as apparent from the expli
it representation

∂ζgk(x, ζ) =
1

2π

(

ξ

1 − ξζ
+

1

ζ − υk
−

1

ζ − ξ

)

.



Sweep data of EIT 10(Noti
e that if this same te
hnique had been applied dire
tly to the original 
andidate g̃θ,we would have ended up with g̃k(x, ·) having a bran
h 
ut between the origin and
ξ ∈ ∂Ωk, sin
e the se
ond term on the last line of (4.2) would have been log(ζ/(ζ − ξ)).In general, su
h g̃k would not have been 
ontinuous in ∂Ωk ×(D\Ωk), and the reasoningpresented below would not have been valid as su
h.)We extend gk as zero to ∪j 6=k(∂Ωj ×D) 
ontinuing to denote it by the same symbol,whi
h in parti
ular means that

gθ(x) =
m

∑

k=1

gk(x, ζ), x ∈ ∂Ω, ζ = eiθ.Due to the linearity of G and through slight abuse of the notation, we thus see that
ς(ζ) =

m
∑

j=1

m
∑

k=1

∫

∂Ωj

[Ggk(·, ζ)](x) gj(x, ζ) ds(x), ζ ∈ ∂D.It follows from the same line of reasoning as in [13, Lemma 4.1℄ that the fun
tion
[Ggk(·, ζ)](x), (x, ζ) ∈ ∂Ω × (D \ Ωk), is 
omplex di�erentiable with respe
t to ζ .Moreover, both [Ggk(·, ζ)](x) and ∂ζ [Ggk(·, ζ)](x) are 
ontinuous in ∂Ω × (D \ Ωk).As a 
onsequen
e,

ςjk(ζ) :=

∫

∂Ωj

[Ggk(·, ζ)](x) gj(x, ζ) ds(x), ζ ∈ ∂D, (4.3)extends as a holomorphi
 fun
tion to D \ (Ωj ∪Ωk) for all 1 ≤ j, k ≤ m due to the basi
results on line integrals depending on a 
omplex parameter (
f., e.g., [25, Proposition27℄). Altogether, we are ready to state the following.Theorem 4.1. Assume that D is the unit disk. Then, the sweep data ς of (3.1) extendsas a holomorphi
 fun
tion to D \ Σ, with Σ as in Se
tion 2.Proof. The same logi
 as in the proof of [13, Theorem 4.2℄ shows that ςjk of (4.3) a
tuallyextends holomorphi
ally to the whole domain D \ (Σj ∪ Σk) ⊃ D \ (Ωj ∪ Ωk) for any
1 ≤ j, k ≤ m. Hen
e,

ς(ζ) =
m

∑

j=1

m
∑

k=1

ςjk(ζ), ζ ∈ ∂D,
an be 
ontinued as a univalent holomorphi
 fun
tion to D \ ∪m
j=1Σj = D \ Σ.Corollary 4.2. Assume that D is the unit disk. Then, the Cau
hy problem

∆v = 0 in D \ Σ, v = ς on ∂D, ∂v

∂ν
= 0 on ∂D (4.4)has a solution.Proof. The solution of (4.4) is given by the real part of the holomorphi
 extension of ςas reasoned in the proof of [13, Corollary 4.3℄ for the ba
ks
atter data of EIT.
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omplete this se
tion by noting that the statements of Theorem 4.1 andCorollary 4.2 remain valid for a general smooth and simply 
onne
ted domain D. Thisgeneralization is a straightforward 
onsequen
e of Theorem 3.2.Theorem 4.3. Theorem 4.1 and Corollary 4.2 remain valid for any simply 
onne
tedand bounded C∞-domain D ⊂ R
2.Proof. Assume that D is a simply 
onne
ted and bounded C∞-domain, with the
orresponding sweep data ς de�ned by (3.1). Furthermore, let B be the unit disk and

Φ a 
onformal map sending D onto B and y0 to z0 = (1, 0), with the inverse Ψ = Φ−1.As in Se
tion 3, we denote the sweep data 
orresponding to B and the 
ondu
tivity σ̃of (3.3) by ς̃ : ∂B → R. Sin
e Φ is a di�eomorphism, the simply 
onne
ted, nonemptyand 
losed sets Σ̃j := Φ(Σj), j = 1, . . . , m, satisfy Σ̃j ∩ Σ̃k = ∅ for j 6= k. Moreover, dueto (3.3) and (3.4), the union Σ̃ = ∪m
j=1Σ̃j has the property

supp(σ̃ − I) ⊂ Σ̃ ⊂ B .A

ording to Theorem 4.1 and Corollary 4.2, the modi�ed sweep data ς̃ thus extends asa holomorphi
 fun
tion to B \ Σ̃, and the Cau
hy problem
∆ṽ = 0 in B \ Σ̃, ṽ = ς̃ on ∂B, ∂ṽ

∂ν
= 0 on ∂B (4.5)has a solution.Be
ause ς = ς̃ ◦ Φ due to Theorem 3.2, it is obvious that ς 
an be extendedholomorphi
ally from ∂D to D \ Ψ(Σ̃) = D \ Σ. Furthermore, if ṽ is the solutionof the Cau
hy problem (4.5), then ṽ ◦Φ is a solution of (4.4) sin
e 
onformal mappingsretain harmoni
ity and homogeneous Neumann boundary 
onditions. This 
ompletesthe proof.5. Convex sweep supportFrom the pra
ti
al point of view, the most important observation of the pre
eding se
tionwas that the Cau
hy problem for the Lapla
ian with the data (ς, 0) on ∂D attains asolution in the exterior of Σ, with Σ as in Se
tion 2. As noted in the beginning ofSe
tion 4, if the topology of the set supp(σ−I) is not very 
ompli
ated, one 
an, looselyspeaking, 
hoose Σ to be supp(σ − I) together with the holes in it, whi
h would meanthat the Cau
hy data (ς, 0) 
an be 
ontinued harmoni
ally up to the outer boundary ofthe 
ondu
tivity inhomogeneity. Be that as it may, for the purposes of the analysis ofthe 
urrent se
tion, it is enough to settle for a less optimal Σ, the existen
e of whi
his guaranteed by the following lemma. Here and in what follows, we denote the 
onvexhull and the open ǫ-neighborhood of a set A ⊂ R2 by chA and Nǫ(A), respe
tively.Lemma 5.1. There exists Σ satisfying the assumptions of Se
tion 2 su
h that Σ ⊂

D ∩ ch(supp(σ − I)).



Sweep data of EIT 12Proof. Due to an obvious 
ompa
tness argument, the sets supp(σ − I) and ∂D lie at apositive distan
e from ea
h other. Hen
e, there exists a 
losed, inje
tive 
urve that is
omposed of a �nite number of line segments and is the boundary of a 
losed, simply
onne
ted set Σ′ ⊂ D su
h that supp(σ − I) ⊂ Σ′. Our aim is to prove that
Σ := Σ′ ∩ ch(supp(σ − I))has the required properties. It is self-evident that Σ is 
losed and satis�es supp(σ−I) ⊂

Σ ⊂ D. In 
onsequen
e, the only thing we need to show is that Σ is 
omposed of a�nite number of simply 
onne
ted 
omponents.To begin with, we note that either one of the trivial 
ases Σ = ch(supp(σ − I))and Σ = Σ′ holds or the set Σ is 
omposed of regions bounded partially by ∂Σ′ andpartially by the boundary of Σ′′ := ch(supp(σ−I)). In parti
ular, Σ 
an have an in�nitenumber of path 
onne
ted 
omponents only if the (pie
ewise di�erentiable) 
urves ∂Σ′and ∂Σ′′ interse
t an in�nite number of times (with a 
ommon 
onne
ted boundaryse
tion 
ounted as a single interse
tion). Suppose that this is the 
ase. Due to a
ompa
tness argument, say, ∂Σ′ must 
arry an a

umulation point, any neighborhood ofwhi
h 
ontains an in�nite number of interse
tions of the two boundary 
urves. However,sin
e ∂Σ′ is 
omposed of line segments of �nite length and ∂Σ′′ 
an be lo
ally given asa graph of a 
onvex fun
tion, it is obvious that su
h an a

umulation point 
annotexist. This is a 
ontradi
tion, whi
h shows that Σ is 
omposed of a �nite number ofpath 
onne
ted 
omponents. To 
omplete the proof, we note that every path 
onne
ted
omponent of Σ = Σ′ ∩ Σ′′ is simply 
onne
ted sin
e the fundamental group of theinterse
tion of any two simply 
onne
ted planar sets is trivial (see, e.g., [17℄).Now we have gathered enough tools to introdu
e the 
onvex sweep support andshow that it 
arries some useful properties. To this end, let us 
onsider the Poissonproblem
∆w = F in D,

∂w

∂ν
= 0 on ∂D, (5.1)whi
h has a unique solution w ∈ ∪m∈ZH

m(D)/C for any distributional sour
e F in
E ′
⋄(D) = {v ∈ E ′(D) | 〈v, 1〉D = 0} ,where 〈·, ·〉D : E ′(D) × C∞(D) → C denotes the dual evaluation between 
ompa
tlysupported distributions and smooth fun
tions in D (
f., e.g., [10, Se
tion 2℄). Sin
e thesolution w is smooth near the boundary ∂D (
f., e.g., [21℄), the linear measurementoperator
L : F 7→ w|∂D, E ′

⋄(D) → L2(∂D)/C ,is well de�ned.De�nition 5.2. Let suppcF be the 
onvex hull of the support of F ∈ E ′
⋄(D). Then, the
onvex sweep support Sς is de�ned to be

Sς =
⋂

LF=ς

suppcF.
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onvex sweep support Sς is the 
onvex sour
e support 
orresponding to theboundary data ς; see [10, De�nition 4.1℄ and [11, (2.1)℄. In parti
ular, Sς need not be asubset of D, if D is non
onvex (
f. [11, Example 1℄). On the positive side, the 
onvexsweep support inherits useful properties from the 
onvex sour
e support, as 
on
retizedby the following theorem.Theorem 5.3. The 
onvex sweep support Sς is a subset of the 
onvex hull of theinhomogeneity supp(σ − I). Moreover, Sς = ∅ if and only if ς is a 
onstant, i.e.,the zero element of L2(∂D)/C.Proof. Although the assertion follows from the same ideas as [13, Theorem 5.2℄, werepeat the argumentation here sin
e [13℄ only 
onsiders the 
ase that D is 
onvex, ormore pre
isely the unit disk.Let Σ satisfy the assumptions of Se
tion 2 and be su
h that Σ ⊂ D∩ch(supp(σ−I));the existen
e of su
h a set is guaranteed by Lemma 5.1. We �x ǫ > 0 so that Nǫ(Σ)satis�es Nǫ(Σ) ⊂ D and 
onsider the L2(D)-fun
tion
vǫ =

{

v in D \Nǫ(Σ),

0 otherwise,where v is the solution of the Cau
hy problem (4.4) guaranteed by Theorem 4.3. Itfollows that Fǫ = ∆vǫ ∈ E ′
⋄(D) ∩H−2(D) is supported in Nǫ(Σ) and, moreover,

LFǫ = vǫ|∂D = v|∂D = ς .Sin
e ǫ was 
hosen arbitrarily, we dedu
e that
Sς ⊂

⋂

ǫ>0

ch(Nǫ(Σ)) ⊂
⋂

ǫ>0

Nǫ(ch(supp(σ − I))) = ch(supp(σ − I)) .This proves the �rst part of the assertion. The se
ond part follows from the propertiesof the 
onvex sour
e support established in [11, Theorem 2.1℄.6. Re
onstru
tion algorithmIn this se
tion, we will introdu
e an algorithm for re
onstru
ting the 
onvex sweepsupport Sς in the 
ase that the obje
t of interest D = B is the unit disk. This will alsobe the framework for our numeri
al studies in Se
tion 7 below. However, Remark 6.1at the end of this se
tion 
onsiders two methods for generalizing our algorithm to the
ase of a general smooth, bounded and simply 
onne
ted D. Be
ause the re
onstru
tionalgorithm is essentially the same as the one presented in [11℄ for standard EIT data andsubsequently in [13℄ for the ba
ks
atter data of EIT, we will skip many of the detailsand only outline the main ideas.To begin with, we interpret ς as a fun
tion of the polar angle and denote its Fourier
oe�
ients by
αj =

1

2π

∫ π

−π

ς(θ)e−ijθ dθ, j ∈ Z .



Sweep data of EIT 14Moreover, we introdu
e the propagated sweep data via
ςρ(θ) =

∑

j∈Z

αj

ρ|j|
eijθ, θ ∈ [−π, π) , (6.1)for ρ ≥ 1 (
f. [11, Lemma 3.1℄).Let us identify R2 with the 
omplex plane, �x ρ ≥ 1, and denote by Bρ the opendisk of radius ρ 
entered at the origin. Up to rotations of the image spa
e all Möbiustransformations mapping Bρ onto D 
an be given as

Φζ(z) = ρ
z − ζ

ρ2 − ζz
, (6.2)where the free 
omplex parameter ζ ∈ Bρ determines the point that is mapped to theorigin. We denote the inverse of Φζ by Ψζ, and the 
orresponding angular maps, sending

(−π, π] to itself, by
ϕζ : θ 7→ arg Φζ(ρe

iθ), ψζ : θ 7→ arg Ψζ(e
iθ),respe
tively. The Fourier 
oe�
ients of ςρ ◦ ψζ are given by

αj(ζ) =
1

2π

∫ π

−π

ςρ(ψζ(θ)) e
−ijθ dθ =

1

2π

∫ π

−π

ςρ(θ) e
−ijϕζ(θ)ϕ′

ζ(θ)dθ , j ∈ Z . (6.3)With the help of these de�nitions, we have the following 
hara
terization (see [11,Corollary 3.3℄): The 
onvex sweep support Sς is a subset of Ψζ(BR), 0 ≤ R < 1, ifand only if
∑

j∈Z

|αj(ζ)|
2

(R + ǫ)2|j|
< ∞ (6.4)for any ǫ > 0.In order to devise an algorithm based on this observation, we approximate theFourier 
oe�
ients of the modi�ed sweep data ςρ ◦ψζ by a logarithmi
 regression model

log |αj(ζ)| ≈ a|j| + b, a, b ∈ R, (6.5)for j ∈ Z, as suggested originally in [2℄. Under the 
ourtesy of the assumption that(6.5) is exa
t, inequality (6.4) asserts that the 
losed disk Ψζ(BR) 
ontains Sς if andonly if R ≥ Rζ := ea. This pro
edure 
an be 
arried out for a set of test points {ζk},produ
ing a family of disks 
ontaining Sς. We use the interse
tion of these disks as ourapproximation for the 
onvex sweep support, i.e.,
Sς ≈

⋂

k

Ψζk
(BRk

), (6.6)where we have used the short notation Rk = Rζk
.In all numeri
al tests presented in Se
tion 7, we use the parameter value ρ = 1.4 and
hoose {ζk} to 
onsist of 64 equidistant points on a 
ir
le of radius 0.7 around the origin.These are 
hoi
es that have been found reasonable in [11, 13℄ for standard EIT data andba
ks
atter data, respe
tively. Finally, it should be noted that the number of reliableFourier 
oe�
ients for (6.5) varies with ζ and the amount of model and measurementnoise in the data (
f. Se
tion 7): For low spatial frequen
ies the logarithms of |αj(ζ)|



Sweep data of EIT 15lie approximately on a des
ending line as fun
tions of |j|, while the high frequen
y
oe�
ients 
onsist of noise. In 
onsequen
e, an adaptive method must be devised topi
k a 
ut-o� frequen
y for determining the 
oe�
ients to be used in (6.5). There area number of reasonable ways for making su
h a 
hoi
e. In this work we resort to themost fundamental one and use visual inspe
tion.Remark 6.1. There are two ways to use the above introdu
ed algorithm for gatheringinformation about the 
ondu
tivity inhomogeneity in the 
ase that D is not the open unitdisk, but only a smooth, bounded and simply 
onne
ted domain.First of all, if a 
onformal map Φ sending D onto the open unit disk B is known, one
an use Theorem 3.2 to obtain the sweep data ς̃ 
orresponding to B and the pushforward
ondu
tivity σ̃ given by (3.3). Subsequently, the 
onvex sweep support 
orresponding to σ̃and B, say S ς̃ , 
an be re
onstru
ted by our algorithm and mapped by Ψ = Φ−1 ba
k inside
D. Sin
e S ς̃ lies within the 
onvex hull of supp(σ̃ − I) = Φ(supp(σ − I)), the obtainedset Ψ(S ς̃) 
arries information about the whereabouts of the original inhomogeneity
supp(σ − I). However, Ψ(S ς̃) is not, in general, the original 
onvex sweep support Sς.In order to introdu
e the se
ond option, we note that D may be assumed to lie inside
B; if this was not the 
ase, we 
ould resort to s
aling and translation. Let us 
onsider
ς ∈ L2(∂D)/C as the Diri
hlet data of the solution to the Poisson problem (5.1) withan unspe
i�ed sour
e F , and then 
ompute the Diri
hlet data, say g ∈ L2(∂B)/C, of thesolution to the Poisson problem with the very same sour
e but with D repla
ed by B in(5.1). This 
an be done by solving a suitable transmission problem without any furtherknowledge about F ; see [11, Se
tion 2.1℄ for the details. After this, one 
an use theabove outlined algorithm to approximate the 
onvex sour
e support Cg 
orresponding to g;see [11℄ where the algorithm was originally introdu
ed for the purpose of re
onstru
ting
onvex sour
e supports. It follows from [11, Theorem 2.3℄ that Cg is always 
ontainedwithin Sς and empty if and only if Sς is empty. Moreover, if D is 
onvex, then Cg isexa
tly Sς.7. Numeri
al experimentsIn this se
tion we test our re
onstru
tion algorithm in the 
ase that the obje
t of interest
D is the open unit disk; see Remark 6.1 and the numeri
al test of [7℄ for treatmentof more general domains. Our numeri
al experiments 
onsider the 
ondu
tivityinhomogeneities depi
ted in Figure 1: A kite-shaped in
lusion with isotropi
 
onstant
ondu
tivity σ = 2 on the left, a disk and a square with isotropi
 
onstant 
ondu
tivities
σ = 2 and σ = 0.5, respe
tively, on the right. The 
ondu
tivity levels of these in
lusionsare held �xed throughout the numeri
al studies, and the stati
 ele
trode lo
ation is
hosen to be y0 = (1, 0) if not stated otherwise. We employ three data sets of varyingquality: They are 
alled ideal, realisti
 and noisy realisti
 as explained in what follows.To obtain ideal data, the relative boundary potential (Λ−Λ0)(δy−δy0) ∈ C∞(∂D)/Cis simulated with the help of layer potential te
hniques for all y belonging to an
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Figure 1. The studied in
lusions in 
omparison with the unit disk and the two CEMele
trodes of length d = π/16 used for gathering the CEM sweep data. Left: Kite-shaped inhomogeneity with 
onstant isotropi
 
ondu
tivity 2. Right: Dis
oidal andsquare inhomogeneities with 
onstant isotropi
 
ondu
tivities 2 and 0.5, respe
tively.equidistant grid of 1000 points on ∂D (
f., e.g., [12, Example 2.2℄, [14, Appendix℄ and[19℄). Subsequently, the sweep data
ς(y) =

(

(Λ − Λ0)(δy − δy0)
)

(y) −
(

(Λ − Λ0)(δy − δy0)
)

(y0)is evaluated at every point y of the very same grid. These 1000 point values of ς are thenused as the input for the algorithm introdu
ed in Se
tion 6; see [11℄ for the te
hni
aldetails of the numeri
al implementation. The sweep data simulated in this manner isvery a

urate, and thus the 
orresponding re
onstru
tions should re�e
t the limits forthe fun
tionality of the proposed algorithm.To simulate realisti
 measurements, we resort to the CEM [4, 23℄. We denote by eyan ele
trode of length 0 < d < π around y = (cos θ, sin θ) ∈ ∂D, i.e.,
ey = {(cosφ, sinφ) ∈ ∂D | |φ− θ| < d/2}.Moreover, we let z > 0 be the 
onta
t resistan
e, whi
h is a 
hara
teristi
 of real-lifeele
trode measurements. For a given 
ondu
tivity distribution σ that is feasible in thesense of Se
tion 2, the potential pair (uy, Uy) ∈ H1(D) ⊕ R is de�ned as the uniquesolution of [23℄
∇ · (σ∇uy) = 0 in D,

∂uy

∂ν
= 0 on ∂D \ (ey ∪ ey0),

uy + z
∂uy

∂ν
= Uy on ey,

uy + z
∂uy

∂ν
= −Uy on ey0 ,

∫

ey

∂uy

∂ν
ds = 1,

∫

ey0

∂uy

∂ν
ds = −1,

(7.1)
where we have assumed that ey ∩ ey0 = ∅ and 
hosen the ground level of potential sothat the two ele
trodes are at opposite voltages. We denote the referen
e potentials,
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Figure 2. Comparison of the three data types as fun
tions of the polar angle of y for
y0 = (1, 0) and the in
lusion geometry in the left-hand image of Figure 1. Left: idealdata (solid) and realisti
 data (dashed). Right: noisy realisti
 data.i.e., the solution of (7.1) for σ ≡ 1, by (uy

0, U
y
0 ) ∈ H1(D)⊕R. In real life, noisy versionsof the ele
trode potentials Uy and Uy

0 
an be obtained through ele
trode measurements
arried out with two ele
trodes [4, 23℄. With this in mind, we de�ne the CEM sweepmeasurement at y ∈ ∂D, with ey ∩ ey0 = ∅, as
ςd(y) =

(

Uy − (−Uy)
)

−
(

Uy
0 − (−Uy

0 )
)

= 2(Uy − Uy
0 ) , (7.2)i.e., as the 
hange in the potential di�eren
e between the two ele
trodes 
aused by the
ondu
tivity inhomogeneity. This notion is reasonable be
ause

|ς(y) − ςd(y)| ≤ Cd2 (7.3)for y ∈ ∂D su
h that ey ∩ ey0 = ∅, a

ording to [9, Theorem 2.1℄.With these tools in hand, realisti
 data are 
onstru
ted as follows: We simulatethe point values of ςd, with z = 0.1 and d = π/16 ≈ 0.20 (
f. Figure 1), on thegrid y(j) = (cos(2πj/J), sin(2πj/J)), j = 1, . . . , J = 200, by solving (7.1) and the
orresponding referen
e problem by hp-FEM (
f., e.g., [16, 24℄) for y = y(j), j = 1, . . . , J .To be quite pre
ise, depending on the 
hosen stati
 ele
trode lo
ation y0 some grid valuesof ςd are not de�ned by (7.2) due to overlapping of the ele
trodes in (7.1). We take
are of this problem in the natural way by setting ςd(y0) = ς(y0) = 0 and using linearinterpolation to estimate the other missing values of ςd. The noisy realisti
 data are thenformed by adding a realization of a normally distributed random variable with zero meanand standard deviation 0.001|Uy(j)
| to ςd(y(j)) for ea
h j = 1, . . . , J . Loosely speaking,this means that the noise 
ontent of the ele
trode measurement is assumed to be 0.1per 
ent. The reader should note, however, that this pro
edure results in a far highernoise 
ontent in the point values of the (relative) CEM sweep data ςd be
ause the ratio

|Uy|/|ςd(y)| is over 40 for any y ∈ ∂D in all of our numeri
al examples. The di�erentdata types are 
ompared in Figure 2 for the kite-shaped in
lusion of 
ondu
tivity σ = 2shown in the left-hand image of Figure 1.Remark 7.1. If the measurement noise manifests itself in the absolute ele
trodemeasurement, as we have assumed in the simulation of the noisy realisti
 data set above,
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Figure 3. Re
onstru
tions 
orresponding to ideal data and the left-hand in
lusiongeometry of Figure 1. The unit disk and the inhomogeneity are drawn by thi
k line,while the thin 
ir
les 
orrespond to the disks in the interse
tion on the right-handside of (6.6). The re
onstru
tions are 
oloured with grey. Left: y0 = (1, 0). Right:
y0 = (−1, 0).it is not ne
essarily a good idea to use as small ele
trodes as possible when measuringsweep data in pra
ti
e: A

ording to (7.1), the absolute value of the mean 
urrent densitythrough the two ele
trodes is 1/d. In 
onsequen
e, due to the Robin boundary 
onditionson the ele
trodes, the absolute value of the ele
trode potential Uy, and thus also the ratio

|Uy|/|ςd(y)|, gets larger as the ele
trodes get smaller. If the amount of measurementnoise is proportional to |Uy|, as it is assumed to be in our model, the measurementnoise 
ontent of the CEM sweep data thus in
reases as the ele
trode size de
reases �under the assumption that the 
onta
t resistan
e z is not a�e
ted by the ele
trode size.To sum up, de
reasing the size of the ele
trodes 
uts down the model error (
f. (7.3))but in
reases the noise 
ontent of the ele
trode sweep data.In the �rst numeri
al experiment we work with ideal data and the left-hand in
lusiongeometry of Figure 1. The aim is to test how the lo
ation of the stati
 ele
trode a�e
tsthe fun
tionality of our algorithm: The left-hand image of Figure 3 shows the obtainedre
onstru
tion for y0 = (1, 0) and the right-hand image the one for y0 = (−1, 0). Hereand in all the other visualized re
onstru
tions, the unit diskD and the inhomogeneity areplotted with thi
k line, while the thin 
ir
les depi
t the boundaries of the disks enteringon the right-hand side of (6.6), with their interse
tion being the re
onstru
tion of the
onvex sweep support. For both 
hoi
es of y0, the re
onstru
tion looks approximatelylike the 
onvex hull of a smaller kite-shaped region. In parti
ular, the algorithm seemsto provide information on both the lo
ation and the shape of the inhomogeneity. Asthe position of the stati
 ele
trode does not seem to play a major role, we �x it to be
y0 = (1, 0) for the rest of this text.The se
ond test 
ontinues to 
onsider ideal data, but this time the in
lusions inthe right-hand image of Figure 1 move into the fo
us of our attention. The left-handre
onstru
tion of Figure 4 
orresponds to the 
ase that merely the square inhomogeneity
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Figure 4. Re
onstru
tions 
orresponding to ideal data and the two in
lusions in theright-hand image of Figure 1. The unit disk and the inhomogeneities are drawn bythi
k line, while the thin 
ir
les 
orrespond to the disks in the interse
tion on theright-hand side of (6.6). The re
onstru
tions are 
oloured with grey. Left: the squarein
lusion. Right: the 
ombination of the disk and the square.
ontaminates D, whereas the right-hand image visualizes the performan
e of ouralgorithm with both the square and the dis
oidal in
lusion inside the unit disk. Forthe square inhomogeneity the re
onstru
tion is approximately a smaller square. This is,a
tually, how the algorithm typi
ally fun
tions for any 
onvex polygonal inhomogeneityof 
onstant 
ondu
tivity: The 
orresponding re
onstru
tion is (almost) a polygon ofsimilar shape but smaller size. The observed dis
repan
y in size 
ould be �xed byomitting some lowest frequen
ies j in the linear regression model (6.5): A

ording toour experien
e, only the approximate lo
ation of the polygonal in
lusion is visible inthe Fourier 
oe�
ients 
orresponding to low spatial frequen
ies whereas high-frequen
y
oe�
ients 
ontain information about the 
orners. However, this would not be a verypra
ti
al solution be
ause the high-frequen
y information is unattainable in real-life dueto measurement and model noise. On the other hand, the re
onstru
tion 
orrespondingto the 
ombination of the disk and the square extends over both in
lusions, indi
ating
learly their lo
ation. In fa
t, the estimated 
onvex sweep support in the right-hand image of Figure 4 is a rounder version of the 
onvex hull of the 
orrespondingre
onstru
tions 
omputed separately for ea
h of the two in
lusions. (The re
onstru
tionfor the square is already shown in the left-hand image of Figure 4, while the one
orresponding to the mere dis
oidal inhomogeneity is just one point approximately at the
enter of the respe
tive in
lusion; see [13℄ for similar results for disk-like inhomogeneitiesin the framework of ba
ks
attering.)In the third and �nal numeri
al example, we 
onsider realisti
 and noisy realisti
data; the images in the left-hand 
olumn of Figure 5 
orrespond to the former andthose in the right-hand 
olumn to the latter. The top row of Figure 5 representsre
onstru
tions for the kite-shaped in
lusion depi
ted in the left-hand image of Figure 1.For (exa
t) realisti
 data the obtained re
onstru
tion is also kite-shaped but signi�
antlysmaller than the original in
lusion, whereas the re
onstru
tion 
orresponding to
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Figure 5. Re
onstru
tions 
orresponding to realisti
 and noisy realisti
 data sets.The unit disk and the inhomogeneities are drawn by thi
k line, while the thin 
ir
les
orrespond to the disks in the interse
tion on the right-hand side of (6.6). There
onstru
tions are 
oloured with grey. Left 
olumn: realisti
 data. Right 
olumn:noisy realisti
 data. Top row: the kite-shaped in
lusion. Bottom row: the 
ombinationof the disk and square in
lusions.noisy realisti
 data is empty but the region through whi
h all the thin 
ir
les pass
learly indi
ates the approximate lo
ation of the 
ondu
tivity inhomogeneity. Theimages in the bottom row of Figure 5 
orrespond to the the 
ombination of the twoinhomogeneities depi
ted in the right-hand image of Figure 1. For this in
lusiongeometry, the re
onstru
tion provided by our algorithm is nonempty and extends overboth 
omponents of the inhomogeneity for both realisti
 and noisy realisti
 data, withthe one 
orresponding to the noiseless measurement being in a better agreement withthe ideal re
onstru
tion in the right-hand image of Figure 4.To sum up, the proposed algorithm provides information about the lo
ation of the
ondu
tivity inhomogeneity for all three data types. However, only the re
onstru
tions
orresponding to ideal data 
ontain any 
lear information about the shape of thesear
hed for in
lusions. Our results for ideal data are slightly worse than the onespresented in [13℄ for the idealized ba
ks
atter measurement, but we anti
ipate that thisinferiority is overshadowed by the pra
ti
ality of the sweep measurement promoted in
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luding remarksWe have introdu
ed the sweep data of EIT, whi
h 
an be approximated by real-lifemeasurements performed with two small ele
trodes, and shown that it 
an be used asthe input for the 
onvex sour
e support method [11℄ in order to re
onstru
t the so-
alled
onvex sweep support. The fun
tionality of the resulting numeri
al in
lusion dete
tionalgorithm was demonstrated both with idealized PEM and realisti
 CEM data.A
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