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Sweep data of EIT 21. IntrodutionEletrial impedane tomography (EIT) is a noninvasive imaging tehnique for reoveringinformation about the ondutivity distribution inside a physial body from boundarymeasurements of urrent and voltage. It has appliations, e.g., in medial imaging,proess tomography, and nondestrutive testing of materials; see the review artiles[1, 3, 26℄ and the referenes therein. In this work we onsider EIT in the speial asethat the boundary measurements are arried out with only two eletrodes.Throughout this text our two-dimensional objet of interest is assumed to haveonstant isotropi bakground ondutivity with a ompatly supported (possiblyanisotropi) embedded inhomogeneity. We onsider the following measurement setting:One of the two eletrodes lies at a �xed position while the other moves along theobjet boundary in a sweeping motion. One unit of urrent is maintained betweenthe eletrodes and the orresponding voltage di�erene is reorded as a funtion of theloation of the dynami eletrode. We all the alteration in suh measurement ausedby the inhomogeneity the sweep data of EIT. The objetive of this work is to extratinformation on the whereabouts of the ondutivity inhomogeneity from the sweep data.(Notie that the needed referene measurement orresponding to a homogeneous objetan in pratie be omputed if the onstant bakground ondutivity is known, andsometimes, e.g., in the ase of time di�erene imaging, it may also be measured withthe same equipment as the data for the inhomogeneous body.)In the theoretial part of this text, we adopt the the so-alled point eletrode model(PEM), i.e., we model the eletrodes as unit point urrent soures (f., e.g., [5℄), whihis a good approximation if the used eletrodes are small; in our setting the disrepanybetween the PEM and the omplete eletrode model (CEM) [4, 23℄ is of the order O(d2)where d > 0 is the length of the eletrodes [9, Theorem 2.1℄. Following the ideas in [13℄for the baksatter data of EIT (see also [8, 12, 15℄), we show that the sweep data an beontinued as a holomorphi funtion to the exterior of the ondutivity inhomogeneity.With the help of suh an extension, it is then demonstrated that the sweep data an beused as the input for the onvex soure support method [11℄, resulting in the oneptof onvex sweep support and an algorithm for reonstruting it; see [20℄ for the originalideas behind this tehnique. In partiular, the onvex sweep support is a nonemptysubset of the onvex hull of the support of the ondutivity inhomogeneity, assumingthat the sweep data is nononstant. The funtionality of the ensuing inlusion detetionalgorithm is tested with numerial experiments, some of whih are based on simulatedCEM data.Although the ideas and tehniques utilized in this work resemble to a ertainextent the ones in [13℄, there are also some essential di�erenes. Most importantly,the baksatter data onsidered in [13℄ is realized by onduting a single dipole urrent,not two point urrents of opposite signs like here, through the objet boundary, andthen taking the tangential derivative of the orresponding relative boundary potential.Suh a measurement an be emulated in pratie up to the order O(d) by letting a net



Sweep data of EIT 3urrent of 1/(2d) units �ow between two eletrodes of length d > 0 at distane d fromeah other, and then dividing the (relative) potential di�erene between the eletrodesby d [9, Theorem 4.1℄. In order to obtain a good approximation of the baksatterdata, one thus needs to apply high net urrents, whih is naturally suspet in real-life, and/or to divide the resulting voltage measurements by a small number, whih isbound to amplify the noise ontent of the (relative) baksatter data (f. [9, Setion4℄). These pratial ompliations an be explained in an intuitive manner as follows: Ifthe used small eletrodes lie lose to eah other, the voltage measurements do not arrylegible information about the ondutivity distribution far away from the boundary asmost eletrons travel between the two eletrodes without ever visiting the interior ofthe objet. For the sweep data promoted in this work, these kinds of di�ulties are notas severe beause the two eletrodes do not move together along the objet boundary,and thus there are reasonable urrent densities in the interior of the objet even withoutappliation of unrealistially high net urrents through the eletrodes. Compared tothe material in [13℄, we also present three other enhanements, namely the theoretialtreatment of anisotropi ondutivity inhomogeneities, the formulation of the results forgeneral smooth, bounded and simply onneted domains, not just for the unit disk asin [13℄, and the testing of the reonstrution algorithm with simulated CEM data.This text is organized as follows. In Setion 2, we list our assumptions and reall aouple of useful tools from [13℄. Setion 3 introdues the sweep data and proves some ofits basi properties. In Setion 4 it is shown that the sweep data an be ontinued as aholomorphi funtion to the exterior of the ondutivity inhomogeneity. Subsequently,the onvex sweep support is de�ned in Setion 5 and the algorithm for reonstruting itis outlined in Setion 6. Finally, Setion 7 presents the numerial examples and Setion 8lists the onluding remarks.2. Assumptions and bakground materialLet D ⊂ R2 be a simply onneted and bounded domain with a C∞-boundary. Assumethat the symmetri ondutivity σ ∈ L∞(D,R2×2) satis�es the onditions
σ ≥ cI for c > 0 and supp(σ − I) is a ompat subset of D,where I ∈ R2×2 is the identity matrix and the �rst ondition is to be understood inthe sense of positive de�niteness. We �x Σ ⊂ D, onsisting of �nitely many simplyonneted, nonempty, losed and mutually disjoint sets Σj , j = 1, . . . , m, suh that
supp(σ − I) ⊂ Σ ⊂ D . (2.1)(Take note that here we hoose Σ to be losed, not open as in [13℄.) In addition,for tehnial reasons whih will beome apparent in what follows, we introdue simplyonneted C∞-domains Ωj , j = 1, . . . , m, suh that Σj ⊂ Ωj , Ωj ⊂ D and Ωj ∩ Ωk = ∅for j 6= k. The union of these domains is denoted by Ω.Let us onsider the boundary value problem
∇ · (σ∇u) = 0 in D, ∂u

∂ν
= f on ∂D, (2.2)



Sweep data of EIT 4where ν is the exterior unit normal of ∂D. Aording to the material in, e.g., [13,Appendix℄, for any boundary urrent density f in
Hs

⋄(∂D) = {g ∈ Hs(∂D) | 〈g, 1〉∂D = 0}, s ∈ R, (2.3)the problem (2.2) has a unique solution u in (Hmin{1,s+3/2}(D) ∩H1
loc(D))/C, where

H1
loc(D) = {v ∈ D′(D) | ϕv ∈ H1(D) for every ϕ ∈ C∞

0 (D)}.Here and in what follows, 〈·, ·〉∂D : Hs(∂D)×H−s(∂D) → C denotes the dual evaluationbetween Sobolev spaes on ∂D; if there is no possibility for a mix-up we refrain frommarking the spaes in the brakets and use this same notation for the indued dualitybetween Hs
⋄(∂D) and H−s(∂D)/C. Moreover, unless there is room for onfusion, weidentify an equivalene lass of a quotient Sobolev spae with any representative of thelass in question.The Neumann-to-Dirihlet map

Λ : f 7→ u|∂D, Hs
⋄(∂D) → Hs+1(∂D)/C, (2.4)is well de�ned and bounded for every s ∈ R (f., e.g., [13, Appendix℄). The same alsoapplies to the referene Neumann-to-Dirihlet map

Λ0 : f 7→ u0|∂D, Hs
⋄(∂D) → Hs+1(∂D)/C,where u0 ∈ Hs+3/2(D)/C is the unique solution of (see [21, Chapter 2, Remark 7.2℄)

∆u0 = 0 in D, ∂u0

∂ν
= f on ∂D. (2.5)Beause σ is identially I in some (interior) neighborhood of ∂D, it follows that u− u0is smooth near the boundary ∂D, and the relative Neumann-to-Dirihlet map

Λ − Λ0 : H−s
⋄ (∂D) → Hs(∂D)/C (2.6)is bounded for any �xed s ∈ R (f., e.g., [13, Appendix℄).To be able to prove some useful properties of the sweep data of EIT that isintrodued in the following setion, we need to reall a fatorization of the di�ereneboundary map Λ − Λ0 from [13℄. To this end, we �rst introdue the spae

Hs(∂Ω)/Cm := (Hs(∂Ω1)/C) ⊕ . . .⊕ (Hs(∂Ωm)/C), s ∈ R ,and note that its dual is realized by
H−s

⋄⋄ (∂Ω) := H−s
⋄ (∂Ω1) ⊕ . . .⊕H−s

⋄ (∂Ωm),where the omponents are de�ned in aordane with (2.3). Let us then introdue thelinear and bounded operator
T : f 7→ u0|∂Ω, Hs

⋄(∂D) → H1/2(∂Ω)/Cm , (2.7)where u0 is the unique solution of (2.5) and thus smooth in the interior of Ω (f., e.g.,[21, Chapter 2, Remark 7.2 and Theorem 3.2℄). It is important to note that althoughthe Dirihlet trae of u0 on ∂Ω is de�ned up to only one additive onstant, i.e., up tothe ground level of potential, here we interpret u0|∂Ω as an element of H1/2(∂Ω)/Cm



Sweep data of EIT 5by letting eah omponent u0|∂Ωj
, j = 1, . . . , m, �oat independently, that is, we leteah u0|∂Ωj

de�ne an equivalene lass in the orresponding omponent quotient spae
H1/2(∂Ωj)/C.With these tools in hand, we are ready to restate [13, Corollary 3.2℄. The proofis omitted as it is in essene the same as that of [13, Corollary 3.2℄, although here weonsider a slightly more general framework allowing anisotropi ondutivities; see, e.g.,[6, 18℄ for other fatorizations of Λ − Λ0 in the anisotropi setting.Theorem 2.1. The operator Λ − Λ0 an be fatored as

Λ − Λ0 = T ∗GT, (2.8)where G : H1/2(∂Ω)/Cm → H
−1/2
⋄⋄ (∂Ω) is a bounded linear operator, whih oinides withits own dual. Moreover, G an be extended to a ontinuous operator from Hs(∂Ω)/Cmto H−s

⋄⋄ (∂Ω) for any s ∈ R.As the intermediate operator G is well de�ned on H1/2(∂Ω)/Cm, it does notsee additions of onstants to the omponents of its argument (f. [13, Remark3℄). To make this statement more onrete, let ψ = ⊕m
j=1ψj be any element of

H1/2(∂Ω) = ⊕m
j=1H

1/2(∂Ωj), introdue an arbitrary onstant vetor c ∈ Cm, and set
ψ + c = ⊕m

j=1(ψj + cj). Then, it holds that G(ψ + c) = Gψ sine ψ + c = ψ in thetopology of H1/2(∂Ω)/Cm. This property of G will be essential in the analysis of Setion4 below.3. Sweep data of EITLet us then onsider a spei� loalized urrent pattern, namely δy−δy0 ∈ H
−1/2−ǫ
⋄ (∂D),

ǫ > 0, with y, y0 ∈ ∂D and δz denoting the delta distribution loated at z on ∂D. Dueto the boundedness of the boundary operator (2.6) and sine δy − δy0 has zero mean inthe sense of (2.3), the quantity
ς(y) = 〈(Λ − Λ0)(δy − δy0), (δy − δy0)〉∂D (3.1)is well de�ned. The funtion ς : ∂D → R is what we all the sweep data of EIT.Aording to [9℄, suh data an be approximated in pratie as follows: Unit urrentis maintained between two small (but �nite) eletrodes at y0 and y while the latter ismoved along ∂D in a sweeping motion. The orresponding potential di�erene betweenthe eletrodes is reorded as a funtion of y, and the atual sweep-type data is �nallyobtained by subtrating the orresponding measurement in the ase that σ ≡ 1. In theframework of the CEM [4, 23℄, the disrepany between suh a realisti data set and ςis of the order O(d2), where d > 0 is the length of the used eletrodes; see [9, Theorem2.1℄ for the details.Remark 3.1. The sweep data an alternatively be given in the form
ς(y) = (uy − uy

0)(y) − (uy − uy
0)(y0), (3.2)



Sweep data of EIT 6where uy and uy
0 are the solutions of (2.2) and (2.5), respetively, for f = δy − δy0. Inpartiular, the alteration of y ∈ ∂D a�ets not only the argument of the �rst term onthe right-hand side of (3.2) but also the involved potentials uy and uy

0 via the appliedurrent pattern. This means that the sweep measurement is onsiderably di�erent froma standard (idealized) EIT measurement pair, whih onsists of an applied boundaryurrent density and the resulting potential measured everywhere on the objet boundary.On the other hand, the sweep data does resemble the baksatter data of EIT [12, 13℄ toa ertain extent.Aording to the Riemann mapping theorem, there exists a onformal map Φ thatsends D onto the unit disk B and y0 to z0 = (1, 0) ∈ ∂B. As D has a smooth boundary,
Φ also de�nes a smooth di�eomorphism of ∂D onto ∂B [22, Setion 3.3℄. We denotethe inverse of Φ by Ψ, and let Λ̃ be the Neumann-to-Dirihlet map orresponding to Band the ondutivity

σ̃ = J−1
Ψ (σ ◦ Ψ)(J−1

Ψ )Tdet JΨ ∈ L∞(B,R2×2), (3.3)where JΨ denotes the Jaobian of Ψ. Take note that σ̃ is a feasible ondutivity in thesense of Setion 2, i.e.,
σ ≥ c̃I for c̃ > 0 and supp(σ̃ − I) is a ompat subset of B,beause Ψ : B → D is a di�eomorphism and as a onformal mapping it satis�es
JT

ΨJΨ = (det JΨ)I. (3.4)In partiular, σ̃ = σ ◦ Ψ for an isotropi σ. We let Λ̃0 be the Neumann-to-Dirihletmap orresponding to B and the unit ondutivity. The (pushforward) sweep data
ς̃ : ∂B → R orresponding to the unit disk B and the ondutivity σ̃ is de�ned in thenatural way, i.e.,

ς̃(zθ) = 〈(Λ̃ − Λ̃0)(δzθ
− δz0), (δzθ

− δz0)〉∂B, (3.5)where the braket denotes the Sobolev duality on ∂B and zθ = (cos θ, sin θ) for somepolar angle θ ∈ R. The following theorem demonstrates that Φ an be used to transfersweep data between ∂D and ∂B.Theorem 3.2. It holds that
ς = ς̃ ◦ Φ,where ς : ∂D → R and ς̃ : ∂B → R are the sweep data de�ned by (3.1) and (3.5),respetively.Proof. Let us �x y ∈ ∂D and denote by ũ ∈ (H1−ǫ(B) ∩H1

loc(B))/C, ǫ > 0, the uniquesolution of the Neumann problem
∇ · (σ̃∇ũ) = 0 in B, ∂ũ

∂ν
= δΦ(y) − δz0 on ∂B. (3.6)Our initial aim is to show that u = ũ ◦ Φ satis�es (2.2) for f = δy − δy0. Take notethat u ∈ (H1−ǫ(D) ∩ H1

loc(D))/C beause Φ and Ψ are di�eomorphisms with boundedderivatives up to an arbitrary order (f., e.g., [21, 22℄).



Sweep data of EIT 7We start by takling the �rst equation of (2.2). Let ϕ ∈ C∞
0 (D) be arbitrary. Sine

u ∈ H1
loc(D) and ũ ∈ H1

loc(B), using an obvious hange of variables we may write
∫

D

σ∇u · ∇ϕ dx =

∫

D

σJT
Φ (∇ũ ◦ Φ) · ∇ϕ dx

=

∫

B

(σ ◦ Ψ)(JT
Φ ◦ Ψ)∇ũ · (∇ϕ ◦ Ψ) detJΨ dx

=

∫

B

(σ ◦ Ψ)(J−1
Ψ )T∇ũ · (J−1

Ψ )T∇(ϕ ◦ Ψ) det JΨ dx

=

∫

B

σ̃∇ũ · ∇ϕ̃ dxfor ϕ̃ = ϕ ◦ Ψ ∈ C∞
0 (B) due to the de�nition of σ̃. Sine ũ satis�es the �rst equationof (3.6), it thus follows from the de�nition of distributional di�erentiation that

∫

D

σ∇u · ∇ϕ dx = 0for any ϕ ∈ C∞
0 (D), whih in turn is just the weak form of the �rst equation of (2.2).Next we show that u satis�es the boundary ondition of (2.2) with f = δy − δy0 .Let ϕ ∈ C∞(∂D) be arbitrary and extend it as a smooth funtion to D so that (f., e.g.,[21, Chapter 1, Theorem 9.4℄)
∂ϕ

∂ν
= 0 on ∂D and suppϕ ⊂ D \ Σ.Now it follows from the generalized Green's formula [21, Chapter 2, Theorem 6.5 with

r = 0℄ that
〈
∂u

∂ν
, ϕ〉∂D = −

∫

D

u∆ϕ dx = −

∫

D

(ũ ◦ Φ) ∆ϕ dx.A hange of variables thus yields
〈
∂u

∂ν
, ϕ〉∂D = −

∫

B

ũ ((∆ϕ) ◦ Ψ) detJΨ dx = −

∫

B

ũ∆ϕ̃dx,where ϕ̃ = ϕ◦Ψ and the seond step is a straightforward onsequene of the fat that Ψsatis�es the Cauhy�Riemann equations. As onformal mappings retain homogeneousNeumann boundary onditions, we see that
∂ϕ̃

∂ν
= 0 on ∂B and supp ϕ̃ ⊂ B \ Φ(Σ).Beause supp(σ̃− I) ⊂ Φ(Σ) due to (2.1) and (3.4), we an use the generalized Green'sformula for a seond time to ome up with

〈
∂u

∂ν
, ϕ〉∂D = 〈

∂ũ

∂ν
, ϕ̃〉∂B = ϕ̃(Φ(y)) − ϕ̃(z0) = ϕ(y) − ϕ(y0) ,where the seond and third steps follow from the de�nitions of ũ and ϕ̃, respetively.Sine the original ϕ ∈ C∞(∂D) was arbitrary, this means that

∂u

∂ν
= δy − δy0 on ∂D,



Sweep data of EIT 8and thus u = ũ ◦ Φ is the unique solution of (2.2) for f = δy − δy0 .A simpli�ed version of the above line of reasoning shows that the solution of (2.5)for f = δy − δy0 an be given as u0 = ũ0 ◦ Φ, where ũ0 ∈ H1−ǫ(B)/C is the uniquesolution of (3.6) when σ̃ is replaed by I. In onsequene, we have
ς(y) = 〈(Λ − Λ0)(δy − δy0), (δy − δy0)〉∂D

= (u− u0)(y) − (u− u0)(y0)

= (ũ− ũ0)(Φ(y)) − (ũ− ũ0)(Φ(y0))

= 〈(Λ̃ − Λ̃0)(δΦ(y) − δz0), (δΦ(y) − δz0)〉∂B = ς̃(Φ(y)).Beause y ∈ ∂D was hosen arbitrarily, this ompletes the proof.4. Analyti ontinuation of the sweep dataIn this setion, we will follow the argumentation of [13℄ for the ase of the baksatterdata to establish that the sweep data ς is the boundary value of a univalent holomorphifuntion de�ned in the exterior of Σ; note that if the topology of supp(σ − I) is notvery ompliated, we an hoose Σ to be the so-alled in�nity support of σ − I, whihis, in essene, omposed of supp(σ − I) together with the holes in it [20℄. Althoughthe following analysis resembles that in [13℄, there is one essential di�erene: When thebaksatter data is ontinued analytially to the exterior of the inhomogeneity in [13℄,the enountered singularities are poles loated on the boundary of the inhomogeneity,or to be more preise on ∂Ω. Here, we are fored to work with omplex logarithms thathave branh uts extending from the origin to the boundary of Ω. In order to get ridof this hindrane, we must make expliit use the fator spae property of G disussedafter Theorem 2.1 to move the branh uts entirely inside Ω. To begin with, we assumethat D is the unit disk; this assumption will be relaxed at the end of this setion withthe help of Theorem 3.2.Assume for the moment that D = B is the unit disk. To begin with, we note thatone representative of the equivalene lass T (δzθ
− δz0) ∈ H1/2(∂Ω)/Cm is given by (see,e.g., [13, Setion 4℄ or [14, Appendix℄)

g̃θ(x) :=
1

π
(log |x− z0| − log |x− zθ|), x ∈ ∂Ω.As a onsequene, Theorem 2.1 allows us to write the sweep data introdued in Setion 2in the form

ς(zθ) = 〈GT (δzθ
− δz0), T (δzθ

− δz0)〉∂Ω =

∫

∂Ω

(Gg̃θ)(x) g̃θ(x) ds(x), (4.1)where the seond equality is a onsequene of the regularity properties of G. Let usthen �x points y(k) ∈ Σk, k = 1, . . . , m, and make the omponentwise de�nition
gθ(x) := g̃θ(x) +

1

2π
(log |zθ − y(k)| + i(φk − θ)), x ∈ ∂Ωk, k = 1, . . . , m,



Sweep data of EIT 9where φk = φk(θ) is the polar angle of the point zθ − y(k), i.e., the polar angle of zθwith respet to y(k), de�ned in suh a way that the mapping R ∋ θ 7→ φk(θ) − θ isontinuous, 2π-periodi and takes values in the open interval (−π/2, π/2); a simplegeometri onsiderations shows that suh a hoie is possible. Obviously, gθ and g̃θbelong to the same equivalene lass of H1/2(∂Ω)/Cm, and thus we have
ς(zθ) =

∫

∂Ω

(Ggθ)(x) gθ(x) ds(x) =

m
∑

j=1

∫

∂Ωj

(Ggθ)(x) gθ(x) ds(x),whih holds for all polar angles θ ∈ R.Let us then introdue the omplex variables ξ = ξ(x) = x1 + ix2, ζ = eiθ and
υk = y

(k)
1 + iy

(k)
2 , k = 1, . . . , m, and identify D with the unit disk of the omplex planewhen appropriate. By slight abuse of the notation, we obtain for x ∈ ∂Ωk that
gθ(x) =

1

2π
log

(

|1 − ξ|2

|ζ − ξ|2
ζ − υk

ζ

)

=
1

2π
log

(

|1 − ξ|2

1 − ξζ

ζ − υk

ζ − ξ

)

=
1

2π

(

log
|1 − ξ|2

1 − ξζ
+ log

ζ − υk

ζ − ξ

)

=: gk(x, ζ), (4.2)where at every ourrene log denotes the prinipal value of the omplex logarithm.Indeed, the �rst equality of (4.2) holds due to the de�nition of φk, and the seondone follows from a trivial algebrai manipulation. To see that the third equality of(4.2) is also valid, notie �rst that the argument of |1 − ξ|2/(1 − ξζ) is in the interval
(−π/2, π/2) � modulo 2π � beause the real part of this expression is positive for all
x ∈ ∂Ωk and ζ ∈ ∂D. Moreover, it follows from a straightforward geometri reasoningthat the argument of (ζ − υk)/(ζ − ξ) is in the open interval (−π, π) � modulo 2π� for all x ∈ ∂Ωk and ζ ∈ ∂D. To sum up, for any �xed x ∈ ∂Ωk and ζ ∈ ∂D theseond and third lines of (4.2) represent logarithms of the same omplex number, withthe orresponding imaginary parts in (−π/2, π/2) and (−3π/2, 3π/2), respetively. Asdi�erent branhes of the omplex logarithm di�er by integer multiples of 2πi, we thusdedue that the expressions on the seond and third lines of (4.2) must, in fat, be thesame, i.e., gθ(x) = gk(x, ζ) for all x ∈ ∂Ωk and ζ = eiθ ∈ ∂D.It is obvious that gk an be extended as a ontinuous funtion to ∂Ωk × (D \ Ωk),with the �rst variable treated as a point in R2 and the seond as an element of C: Forany �xed ξ = ξ(x) ∈ ∂Ωk ⊂ C, the �rst term of gk(x, ·) an be hosen to have a branhut from ζ = 1/ξ /∈ D to in�nity without interseting D, and the seond term a branhut from ζ = ξ to ζ = υk within Ωk. Moreover, this extended gk is omplex di�erentiablewith respet to ζ ∈ D \ Ωk, with the orresponding derivative also being a ontinuousfuntion in ∂Ωk × (D \ Ωk), as apparent from the expliit representation

∂ζgk(x, ζ) =
1

2π

(

ξ

1 − ξζ
+

1

ζ − υk
−

1

ζ − ξ

)

.



Sweep data of EIT 10(Notie that if this same tehnique had been applied diretly to the original andidate g̃θ,we would have ended up with g̃k(x, ·) having a branh ut between the origin and
ξ ∈ ∂Ωk, sine the seond term on the last line of (4.2) would have been log(ζ/(ζ − ξ)).In general, suh g̃k would not have been ontinuous in ∂Ωk ×(D\Ωk), and the reasoningpresented below would not have been valid as suh.)We extend gk as zero to ∪j 6=k(∂Ωj ×D) ontinuing to denote it by the same symbol,whih in partiular means that

gθ(x) =
m

∑

k=1

gk(x, ζ), x ∈ ∂Ω, ζ = eiθ.Due to the linearity of G and through slight abuse of the notation, we thus see that
ς(ζ) =

m
∑

j=1

m
∑

k=1

∫

∂Ωj

[Ggk(·, ζ)](x) gj(x, ζ) ds(x), ζ ∈ ∂D.It follows from the same line of reasoning as in [13, Lemma 4.1℄ that the funtion
[Ggk(·, ζ)](x), (x, ζ) ∈ ∂Ω × (D \ Ωk), is omplex di�erentiable with respet to ζ .Moreover, both [Ggk(·, ζ)](x) and ∂ζ [Ggk(·, ζ)](x) are ontinuous in ∂Ω × (D \ Ωk).As a onsequene,

ςjk(ζ) :=

∫

∂Ωj

[Ggk(·, ζ)](x) gj(x, ζ) ds(x), ζ ∈ ∂D, (4.3)extends as a holomorphi funtion to D \ (Ωj ∪Ωk) for all 1 ≤ j, k ≤ m due to the basiresults on line integrals depending on a omplex parameter (f., e.g., [25, Proposition27℄). Altogether, we are ready to state the following.Theorem 4.1. Assume that D is the unit disk. Then, the sweep data ς of (3.1) extendsas a holomorphi funtion to D \ Σ, with Σ as in Setion 2.Proof. The same logi as in the proof of [13, Theorem 4.2℄ shows that ςjk of (4.3) atuallyextends holomorphially to the whole domain D \ (Σj ∪ Σk) ⊃ D \ (Ωj ∪ Ωk) for any
1 ≤ j, k ≤ m. Hene,

ς(ζ) =
m

∑

j=1

m
∑

k=1

ςjk(ζ), ζ ∈ ∂D,an be ontinued as a univalent holomorphi funtion to D \ ∪m
j=1Σj = D \ Σ.Corollary 4.2. Assume that D is the unit disk. Then, the Cauhy problem

∆v = 0 in D \ Σ, v = ς on ∂D, ∂v

∂ν
= 0 on ∂D (4.4)has a solution.Proof. The solution of (4.4) is given by the real part of the holomorphi extension of ςas reasoned in the proof of [13, Corollary 4.3℄ for the baksatter data of EIT.



Sweep data of EIT 11We omplete this setion by noting that the statements of Theorem 4.1 andCorollary 4.2 remain valid for a general smooth and simply onneted domain D. Thisgeneralization is a straightforward onsequene of Theorem 3.2.Theorem 4.3. Theorem 4.1 and Corollary 4.2 remain valid for any simply onnetedand bounded C∞-domain D ⊂ R
2.Proof. Assume that D is a simply onneted and bounded C∞-domain, with theorresponding sweep data ς de�ned by (3.1). Furthermore, let B be the unit disk and

Φ a onformal map sending D onto B and y0 to z0 = (1, 0), with the inverse Ψ = Φ−1.As in Setion 3, we denote the sweep data orresponding to B and the ondutivity σ̃of (3.3) by ς̃ : ∂B → R. Sine Φ is a di�eomorphism, the simply onneted, nonemptyand losed sets Σ̃j := Φ(Σj), j = 1, . . . , m, satisfy Σ̃j ∩ Σ̃k = ∅ for j 6= k. Moreover, dueto (3.3) and (3.4), the union Σ̃ = ∪m
j=1Σ̃j has the property

supp(σ̃ − I) ⊂ Σ̃ ⊂ B .Aording to Theorem 4.1 and Corollary 4.2, the modi�ed sweep data ς̃ thus extends asa holomorphi funtion to B \ Σ̃, and the Cauhy problem
∆ṽ = 0 in B \ Σ̃, ṽ = ς̃ on ∂B, ∂ṽ

∂ν
= 0 on ∂B (4.5)has a solution.Beause ς = ς̃ ◦ Φ due to Theorem 3.2, it is obvious that ς an be extendedholomorphially from ∂D to D \ Ψ(Σ̃) = D \ Σ. Furthermore, if ṽ is the solutionof the Cauhy problem (4.5), then ṽ ◦Φ is a solution of (4.4) sine onformal mappingsretain harmoniity and homogeneous Neumann boundary onditions. This ompletesthe proof.5. Convex sweep supportFrom the pratial point of view, the most important observation of the preeding setionwas that the Cauhy problem for the Laplaian with the data (ς, 0) on ∂D attains asolution in the exterior of Σ, with Σ as in Setion 2. As noted in the beginning ofSetion 4, if the topology of the set supp(σ−I) is not very ompliated, one an, looselyspeaking, hoose Σ to be supp(σ − I) together with the holes in it, whih would meanthat the Cauhy data (ς, 0) an be ontinued harmonially up to the outer boundary ofthe ondutivity inhomogeneity. Be that as it may, for the purposes of the analysis ofthe urrent setion, it is enough to settle for a less optimal Σ, the existene of whihis guaranteed by the following lemma. Here and in what follows, we denote the onvexhull and the open ǫ-neighborhood of a set A ⊂ R2 by chA and Nǫ(A), respetively.Lemma 5.1. There exists Σ satisfying the assumptions of Setion 2 suh that Σ ⊂

D ∩ ch(supp(σ − I)).



Sweep data of EIT 12Proof. Due to an obvious ompatness argument, the sets supp(σ − I) and ∂D lie at apositive distane from eah other. Hene, there exists a losed, injetive urve that isomposed of a �nite number of line segments and is the boundary of a losed, simplyonneted set Σ′ ⊂ D suh that supp(σ − I) ⊂ Σ′. Our aim is to prove that
Σ := Σ′ ∩ ch(supp(σ − I))has the required properties. It is self-evident that Σ is losed and satis�es supp(σ−I) ⊂

Σ ⊂ D. In onsequene, the only thing we need to show is that Σ is omposed of a�nite number of simply onneted omponents.To begin with, we note that either one of the trivial ases Σ = ch(supp(σ − I))and Σ = Σ′ holds or the set Σ is omposed of regions bounded partially by ∂Σ′ andpartially by the boundary of Σ′′ := ch(supp(σ−I)). In partiular, Σ an have an in�nitenumber of path onneted omponents only if the (pieewise di�erentiable) urves ∂Σ′and ∂Σ′′ interset an in�nite number of times (with a ommon onneted boundarysetion ounted as a single intersetion). Suppose that this is the ase. Due to aompatness argument, say, ∂Σ′ must arry an aumulation point, any neighborhood ofwhih ontains an in�nite number of intersetions of the two boundary urves. However,sine ∂Σ′ is omposed of line segments of �nite length and ∂Σ′′ an be loally given asa graph of a onvex funtion, it is obvious that suh an aumulation point annotexist. This is a ontradition, whih shows that Σ is omposed of a �nite number ofpath onneted omponents. To omplete the proof, we note that every path onnetedomponent of Σ = Σ′ ∩ Σ′′ is simply onneted sine the fundamental group of theintersetion of any two simply onneted planar sets is trivial (see, e.g., [17℄).Now we have gathered enough tools to introdue the onvex sweep support andshow that it arries some useful properties. To this end, let us onsider the Poissonproblem
∆w = F in D,

∂w

∂ν
= 0 on ∂D, (5.1)whih has a unique solution w ∈ ∪m∈ZH

m(D)/C for any distributional soure F in
E ′
⋄(D) = {v ∈ E ′(D) | 〈v, 1〉D = 0} ,where 〈·, ·〉D : E ′(D) × C∞(D) → C denotes the dual evaluation between ompatlysupported distributions and smooth funtions in D (f., e.g., [10, Setion 2℄). Sine thesolution w is smooth near the boundary ∂D (f., e.g., [21℄), the linear measurementoperator
L : F 7→ w|∂D, E ′

⋄(D) → L2(∂D)/C ,is well de�ned.De�nition 5.2. Let suppcF be the onvex hull of the support of F ∈ E ′
⋄(D). Then, theonvex sweep support Sς is de�ned to be

Sς =
⋂

LF=ς

suppcF.



Sweep data of EIT 13The onvex sweep support Sς is the onvex soure support orresponding to theboundary data ς; see [10, De�nition 4.1℄ and [11, (2.1)℄. In partiular, Sς need not be asubset of D, if D is nononvex (f. [11, Example 1℄). On the positive side, the onvexsweep support inherits useful properties from the onvex soure support, as onretizedby the following theorem.Theorem 5.3. The onvex sweep support Sς is a subset of the onvex hull of theinhomogeneity supp(σ − I). Moreover, Sς = ∅ if and only if ς is a onstant, i.e.,the zero element of L2(∂D)/C.Proof. Although the assertion follows from the same ideas as [13, Theorem 5.2℄, werepeat the argumentation here sine [13℄ only onsiders the ase that D is onvex, ormore preisely the unit disk.Let Σ satisfy the assumptions of Setion 2 and be suh that Σ ⊂ D∩ch(supp(σ−I));the existene of suh a set is guaranteed by Lemma 5.1. We �x ǫ > 0 so that Nǫ(Σ)satis�es Nǫ(Σ) ⊂ D and onsider the L2(D)-funtion
vǫ =

{

v in D \Nǫ(Σ),

0 otherwise,where v is the solution of the Cauhy problem (4.4) guaranteed by Theorem 4.3. Itfollows that Fǫ = ∆vǫ ∈ E ′
⋄(D) ∩H−2(D) is supported in Nǫ(Σ) and, moreover,

LFǫ = vǫ|∂D = v|∂D = ς .Sine ǫ was hosen arbitrarily, we dedue that
Sς ⊂

⋂

ǫ>0

ch(Nǫ(Σ)) ⊂
⋂

ǫ>0

Nǫ(ch(supp(σ − I))) = ch(supp(σ − I)) .This proves the �rst part of the assertion. The seond part follows from the propertiesof the onvex soure support established in [11, Theorem 2.1℄.6. Reonstrution algorithmIn this setion, we will introdue an algorithm for reonstruting the onvex sweepsupport Sς in the ase that the objet of interest D = B is the unit disk. This will alsobe the framework for our numerial studies in Setion 7 below. However, Remark 6.1at the end of this setion onsiders two methods for generalizing our algorithm to thease of a general smooth, bounded and simply onneted D. Beause the reonstrutionalgorithm is essentially the same as the one presented in [11℄ for standard EIT data andsubsequently in [13℄ for the baksatter data of EIT, we will skip many of the detailsand only outline the main ideas.To begin with, we interpret ς as a funtion of the polar angle and denote its Fourieroe�ients by
αj =

1

2π

∫ π

−π

ς(θ)e−ijθ dθ, j ∈ Z .



Sweep data of EIT 14Moreover, we introdue the propagated sweep data via
ςρ(θ) =

∑

j∈Z

αj

ρ|j|
eijθ, θ ∈ [−π, π) , (6.1)for ρ ≥ 1 (f. [11, Lemma 3.1℄).Let us identify R2 with the omplex plane, �x ρ ≥ 1, and denote by Bρ the opendisk of radius ρ entered at the origin. Up to rotations of the image spae all Möbiustransformations mapping Bρ onto D an be given as

Φζ(z) = ρ
z − ζ

ρ2 − ζz
, (6.2)where the free omplex parameter ζ ∈ Bρ determines the point that is mapped to theorigin. We denote the inverse of Φζ by Ψζ, and the orresponding angular maps, sending

(−π, π] to itself, by
ϕζ : θ 7→ arg Φζ(ρe

iθ), ψζ : θ 7→ arg Ψζ(e
iθ),respetively. The Fourier oe�ients of ςρ ◦ ψζ are given by

αj(ζ) =
1

2π

∫ π

−π

ςρ(ψζ(θ)) e
−ijθ dθ =

1

2π

∫ π

−π

ςρ(θ) e
−ijϕζ(θ)ϕ′

ζ(θ)dθ , j ∈ Z . (6.3)With the help of these de�nitions, we have the following haraterization (see [11,Corollary 3.3℄): The onvex sweep support Sς is a subset of Ψζ(BR), 0 ≤ R < 1, ifand only if
∑

j∈Z

|αj(ζ)|
2

(R + ǫ)2|j|
< ∞ (6.4)for any ǫ > 0.In order to devise an algorithm based on this observation, we approximate theFourier oe�ients of the modi�ed sweep data ςρ ◦ψζ by a logarithmi regression model

log |αj(ζ)| ≈ a|j| + b, a, b ∈ R, (6.5)for j ∈ Z, as suggested originally in [2℄. Under the ourtesy of the assumption that(6.5) is exat, inequality (6.4) asserts that the losed disk Ψζ(BR) ontains Sς if andonly if R ≥ Rζ := ea. This proedure an be arried out for a set of test points {ζk},produing a family of disks ontaining Sς. We use the intersetion of these disks as ourapproximation for the onvex sweep support, i.e.,
Sς ≈

⋂

k

Ψζk
(BRk

), (6.6)where we have used the short notation Rk = Rζk
.In all numerial tests presented in Setion 7, we use the parameter value ρ = 1.4 andhoose {ζk} to onsist of 64 equidistant points on a irle of radius 0.7 around the origin.These are hoies that have been found reasonable in [11, 13℄ for standard EIT data andbaksatter data, respetively. Finally, it should be noted that the number of reliableFourier oe�ients for (6.5) varies with ζ and the amount of model and measurementnoise in the data (f. Setion 7): For low spatial frequenies the logarithms of |αj(ζ)|



Sweep data of EIT 15lie approximately on a desending line as funtions of |j|, while the high frequenyoe�ients onsist of noise. In onsequene, an adaptive method must be devised topik a ut-o� frequeny for determining the oe�ients to be used in (6.5). There area number of reasonable ways for making suh a hoie. In this work we resort to themost fundamental one and use visual inspetion.Remark 6.1. There are two ways to use the above introdued algorithm for gatheringinformation about the ondutivity inhomogeneity in the ase that D is not the open unitdisk, but only a smooth, bounded and simply onneted domain.First of all, if a onformal map Φ sending D onto the open unit disk B is known, onean use Theorem 3.2 to obtain the sweep data ς̃ orresponding to B and the pushforwardondutivity σ̃ given by (3.3). Subsequently, the onvex sweep support orresponding to σ̃and B, say S ς̃ , an be reonstruted by our algorithm and mapped by Ψ = Φ−1 bak inside
D. Sine S ς̃ lies within the onvex hull of supp(σ̃ − I) = Φ(supp(σ − I)), the obtainedset Ψ(S ς̃) arries information about the whereabouts of the original inhomogeneity
supp(σ − I). However, Ψ(S ς̃) is not, in general, the original onvex sweep support Sς.In order to introdue the seond option, we note that D may be assumed to lie inside
B; if this was not the ase, we ould resort to saling and translation. Let us onsider
ς ∈ L2(∂D)/C as the Dirihlet data of the solution to the Poisson problem (5.1) withan unspei�ed soure F , and then ompute the Dirihlet data, say g ∈ L2(∂B)/C, of thesolution to the Poisson problem with the very same soure but with D replaed by B in(5.1). This an be done by solving a suitable transmission problem without any furtherknowledge about F ; see [11, Setion 2.1℄ for the details. After this, one an use theabove outlined algorithm to approximate the onvex soure support Cg orresponding to g;see [11℄ where the algorithm was originally introdued for the purpose of reonstrutingonvex soure supports. It follows from [11, Theorem 2.3℄ that Cg is always ontainedwithin Sς and empty if and only if Sς is empty. Moreover, if D is onvex, then Cg isexatly Sς.7. Numerial experimentsIn this setion we test our reonstrution algorithm in the ase that the objet of interest
D is the open unit disk; see Remark 6.1 and the numerial test of [7℄ for treatmentof more general domains. Our numerial experiments onsider the ondutivityinhomogeneities depited in Figure 1: A kite-shaped inlusion with isotropi onstantondutivity σ = 2 on the left, a disk and a square with isotropi onstant ondutivities
σ = 2 and σ = 0.5, respetively, on the right. The ondutivity levels of these inlusionsare held �xed throughout the numerial studies, and the stati eletrode loation ishosen to be y0 = (1, 0) if not stated otherwise. We employ three data sets of varyingquality: They are alled ideal, realisti and noisy realisti as explained in what follows.To obtain ideal data, the relative boundary potential (Λ−Λ0)(δy−δy0) ∈ C∞(∂D)/Cis simulated with the help of layer potential tehniques for all y belonging to an
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Figure 1. The studied inlusions in omparison with the unit disk and the two CEMeletrodes of length d = π/16 used for gathering the CEM sweep data. Left: Kite-shaped inhomogeneity with onstant isotropi ondutivity 2. Right: Disoidal andsquare inhomogeneities with onstant isotropi ondutivities 2 and 0.5, respetively.equidistant grid of 1000 points on ∂D (f., e.g., [12, Example 2.2℄, [14, Appendix℄ and[19℄). Subsequently, the sweep data
ς(y) =

(

(Λ − Λ0)(δy − δy0)
)

(y) −
(

(Λ − Λ0)(δy − δy0)
)

(y0)is evaluated at every point y of the very same grid. These 1000 point values of ς are thenused as the input for the algorithm introdued in Setion 6; see [11℄ for the tehnialdetails of the numerial implementation. The sweep data simulated in this manner isvery aurate, and thus the orresponding reonstrutions should re�et the limits forthe funtionality of the proposed algorithm.To simulate realisti measurements, we resort to the CEM [4, 23℄. We denote by eyan eletrode of length 0 < d < π around y = (cos θ, sin θ) ∈ ∂D, i.e.,
ey = {(cosφ, sinφ) ∈ ∂D | |φ− θ| < d/2}.Moreover, we let z > 0 be the ontat resistane, whih is a harateristi of real-lifeeletrode measurements. For a given ondutivity distribution σ that is feasible in thesense of Setion 2, the potential pair (uy, Uy) ∈ H1(D) ⊕ R is de�ned as the uniquesolution of [23℄
∇ · (σ∇uy) = 0 in D,

∂uy

∂ν
= 0 on ∂D \ (ey ∪ ey0),

uy + z
∂uy

∂ν
= Uy on ey,

uy + z
∂uy

∂ν
= −Uy on ey0 ,

∫

ey

∂uy

∂ν
ds = 1,

∫

ey0

∂uy

∂ν
ds = −1,

(7.1)
where we have assumed that ey ∩ ey0 = ∅ and hosen the ground level of potential sothat the two eletrodes are at opposite voltages. We denote the referene potentials,
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Figure 2. Comparison of the three data types as funtions of the polar angle of y for
y0 = (1, 0) and the inlusion geometry in the left-hand image of Figure 1. Left: idealdata (solid) and realisti data (dashed). Right: noisy realisti data.i.e., the solution of (7.1) for σ ≡ 1, by (uy

0, U
y
0 ) ∈ H1(D)⊕R. In real life, noisy versionsof the eletrode potentials Uy and Uy

0 an be obtained through eletrode measurementsarried out with two eletrodes [4, 23℄. With this in mind, we de�ne the CEM sweepmeasurement at y ∈ ∂D, with ey ∩ ey0 = ∅, as
ςd(y) =

(

Uy − (−Uy)
)

−
(

Uy
0 − (−Uy

0 )
)

= 2(Uy − Uy
0 ) , (7.2)i.e., as the hange in the potential di�erene between the two eletrodes aused by theondutivity inhomogeneity. This notion is reasonable beause

|ς(y) − ςd(y)| ≤ Cd2 (7.3)for y ∈ ∂D suh that ey ∩ ey0 = ∅, aording to [9, Theorem 2.1℄.With these tools in hand, realisti data are onstruted as follows: We simulatethe point values of ςd, with z = 0.1 and d = π/16 ≈ 0.20 (f. Figure 1), on thegrid y(j) = (cos(2πj/J), sin(2πj/J)), j = 1, . . . , J = 200, by solving (7.1) and theorresponding referene problem by hp-FEM (f., e.g., [16, 24℄) for y = y(j), j = 1, . . . , J .To be quite preise, depending on the hosen stati eletrode loation y0 some grid valuesof ςd are not de�ned by (7.2) due to overlapping of the eletrodes in (7.1). We takeare of this problem in the natural way by setting ςd(y0) = ς(y0) = 0 and using linearinterpolation to estimate the other missing values of ςd. The noisy realisti data are thenformed by adding a realization of a normally distributed random variable with zero meanand standard deviation 0.001|Uy(j)
| to ςd(y(j)) for eah j = 1, . . . , J . Loosely speaking,this means that the noise ontent of the eletrode measurement is assumed to be 0.1per ent. The reader should note, however, that this proedure results in a far highernoise ontent in the point values of the (relative) CEM sweep data ςd beause the ratio

|Uy|/|ςd(y)| is over 40 for any y ∈ ∂D in all of our numerial examples. The di�erentdata types are ompared in Figure 2 for the kite-shaped inlusion of ondutivity σ = 2shown in the left-hand image of Figure 1.Remark 7.1. If the measurement noise manifests itself in the absolute eletrodemeasurement, as we have assumed in the simulation of the noisy realisti data set above,
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Figure 3. Reonstrutions orresponding to ideal data and the left-hand inlusiongeometry of Figure 1. The unit disk and the inhomogeneity are drawn by thik line,while the thin irles orrespond to the disks in the intersetion on the right-handside of (6.6). The reonstrutions are oloured with grey. Left: y0 = (1, 0). Right:
y0 = (−1, 0).it is not neessarily a good idea to use as small eletrodes as possible when measuringsweep data in pratie: Aording to (7.1), the absolute value of the mean urrent densitythrough the two eletrodes is 1/d. In onsequene, due to the Robin boundary onditionson the eletrodes, the absolute value of the eletrode potential Uy, and thus also the ratio

|Uy|/|ςd(y)|, gets larger as the eletrodes get smaller. If the amount of measurementnoise is proportional to |Uy|, as it is assumed to be in our model, the measurementnoise ontent of the CEM sweep data thus inreases as the eletrode size dereases �under the assumption that the ontat resistane z is not a�eted by the eletrode size.To sum up, dereasing the size of the eletrodes uts down the model error (f. (7.3))but inreases the noise ontent of the eletrode sweep data.In the �rst numerial experiment we work with ideal data and the left-hand inlusiongeometry of Figure 1. The aim is to test how the loation of the stati eletrode a�etsthe funtionality of our algorithm: The left-hand image of Figure 3 shows the obtainedreonstrution for y0 = (1, 0) and the right-hand image the one for y0 = (−1, 0). Hereand in all the other visualized reonstrutions, the unit diskD and the inhomogeneity areplotted with thik line, while the thin irles depit the boundaries of the disks enteringon the right-hand side of (6.6), with their intersetion being the reonstrution of theonvex sweep support. For both hoies of y0, the reonstrution looks approximatelylike the onvex hull of a smaller kite-shaped region. In partiular, the algorithm seemsto provide information on both the loation and the shape of the inhomogeneity. Asthe position of the stati eletrode does not seem to play a major role, we �x it to be
y0 = (1, 0) for the rest of this text.The seond test ontinues to onsider ideal data, but this time the inlusions inthe right-hand image of Figure 1 move into the fous of our attention. The left-handreonstrution of Figure 4 orresponds to the ase that merely the square inhomogeneity
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Figure 4. Reonstrutions orresponding to ideal data and the two inlusions in theright-hand image of Figure 1. The unit disk and the inhomogeneities are drawn bythik line, while the thin irles orrespond to the disks in the intersetion on theright-hand side of (6.6). The reonstrutions are oloured with grey. Left: the squareinlusion. Right: the ombination of the disk and the square.ontaminates D, whereas the right-hand image visualizes the performane of ouralgorithm with both the square and the disoidal inlusion inside the unit disk. Forthe square inhomogeneity the reonstrution is approximately a smaller square. This is,atually, how the algorithm typially funtions for any onvex polygonal inhomogeneityof onstant ondutivity: The orresponding reonstrution is (almost) a polygon ofsimilar shape but smaller size. The observed disrepany in size ould be �xed byomitting some lowest frequenies j in the linear regression model (6.5): Aording toour experiene, only the approximate loation of the polygonal inlusion is visible inthe Fourier oe�ients orresponding to low spatial frequenies whereas high-frequenyoe�ients ontain information about the orners. However, this would not be a verypratial solution beause the high-frequeny information is unattainable in real-life dueto measurement and model noise. On the other hand, the reonstrution orrespondingto the ombination of the disk and the square extends over both inlusions, indiatinglearly their loation. In fat, the estimated onvex sweep support in the right-hand image of Figure 4 is a rounder version of the onvex hull of the orrespondingreonstrutions omputed separately for eah of the two inlusions. (The reonstrutionfor the square is already shown in the left-hand image of Figure 4, while the oneorresponding to the mere disoidal inhomogeneity is just one point approximately at theenter of the respetive inlusion; see [13℄ for similar results for disk-like inhomogeneitiesin the framework of baksattering.)In the third and �nal numerial example, we onsider realisti and noisy realistidata; the images in the left-hand olumn of Figure 5 orrespond to the former andthose in the right-hand olumn to the latter. The top row of Figure 5 representsreonstrutions for the kite-shaped inlusion depited in the left-hand image of Figure 1.For (exat) realisti data the obtained reonstrution is also kite-shaped but signi�antlysmaller than the original inlusion, whereas the reonstrution orresponding to



Sweep data of EIT 20

Figure 5. Reonstrutions orresponding to realisti and noisy realisti data sets.The unit disk and the inhomogeneities are drawn by thik line, while the thin irlesorrespond to the disks in the intersetion on the right-hand side of (6.6). Thereonstrutions are oloured with grey. Left olumn: realisti data. Right olumn:noisy realisti data. Top row: the kite-shaped inlusion. Bottom row: the ombinationof the disk and square inlusions.noisy realisti data is empty but the region through whih all the thin irles passlearly indiates the approximate loation of the ondutivity inhomogeneity. Theimages in the bottom row of Figure 5 orrespond to the the ombination of the twoinhomogeneities depited in the right-hand image of Figure 1. For this inlusiongeometry, the reonstrution provided by our algorithm is nonempty and extends overboth omponents of the inhomogeneity for both realisti and noisy realisti data, withthe one orresponding to the noiseless measurement being in a better agreement withthe ideal reonstrution in the right-hand image of Figure 4.To sum up, the proposed algorithm provides information about the loation of theondutivity inhomogeneity for all three data types. However, only the reonstrutionsorresponding to ideal data ontain any lear information about the shape of thesearhed for inlusions. Our results for ideal data are slightly worse than the onespresented in [13℄ for the idealized baksatter measurement, but we antiipate that thisinferiority is overshadowed by the pratiality of the sweep measurement promoted in
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