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Abstract. This work considers electrical impedance tomography in the special case
that the boundary measurements of current and voltage are carried out with two
(infinitely) small electrodes. One of the electrodes lies at a fixed position while the
other is moved along the object boundary in a sweeping motion, with the corresponding
measurement being the (relative) potential difference required for maintaining a unit
current between the two electrodes. Assuming that the two-dimensional object of
interest has constant background conductivity but is contaminated by compactly
supported inhomogeneities, it is shown that such sweep data represents the boundary
value of a holomorphic function defined in the exterior of the embedded inclusions. This
observation makes it possible to use the sweep data as the input for the convex source
support method in order to localize conductivity inhomogeneities. The functionality of
the resulting algorithm is demonstrated by numerical experiments both with idealized
point electrode data and with simulated complete electrode model measurements.
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1. Introduction

Flectrical impedance tomography (EIT) is a noninvasive imaging technique for recovering
information about the conductivity distribution inside a physical body from boundary
measurements of current and voltage. It has applications, e.g., in medical imaging,
process tomography, and nondestructive testing of materials; see the review articles
[1, 3, 26] and the references therein. In this work we consider EIT in the special case
that the boundary measurements are carried out with only two electrodes.

Throughout this text our two-dimensional object of interest is assumed to have
constant isotropic background conductivity with a compactly supported (possibly
anisotropic) embedded inhomogeneity. We consider the following measurement setting:
One of the two electrodes lies at a fixed position while the other moves along the
object boundary in a sweeping motion. One unit of current is maintained between
the electrodes and the corresponding voltage difference is recorded as a function of the
location of the dynamic electrode. We call the alteration in such measurement caused
by the inhomogeneity the sweep data of EIT. The objective of this work is to extract
information on the whereabouts of the conductivity inhomogeneity from the sweep data.
(Notice that the needed reference measurement corresponding to a homogeneous object
can in practice be computed if the constant background conductivity is known, and
sometimes, e.g., in the case of time difference imaging, it may also be measured with
the same equipment as the data for the inhomogeneous body.)

In the theoretical part of this text, we adopt the the so-called point electrode model
(PEM), i.e., we model the electrodes as unit point current sources (cf., e.g., [5]), which
is a good approximation if the used electrodes are small; in our setting the discrepancy
between the PEM and the complete electrode model (CEM) [4, 23| is of the order O(d?)
where d > 0 is the length of the electrodes [9, Theorem 2.1|. Following the ideas in [13]
for the backscatter data of EIT (see also [8, 12, 15]), we show that the sweep data can be
continued as a holomorphic function to the exterior of the conductivity inhomogeneity.
With the help of such an extension, it is then demonstrated that the sweep data can be
used as the input for the convex source support method [11], resulting in the concept
of conver sweep support and an algorithm for reconstructing it; see [20] for the original
ideas behind this technique. In particular, the convex sweep support is a nonempty
subset of the convex hull of the support of the conductivity inhomogeneity, assuming
that the sweep data is nonconstant. The functionality of the ensuing inclusion detection
algorithm is tested with numerical experiments, some of which are based on simulated
CEM data.

Although the ideas and techniques utilized in this work resemble to a certain
extent the ones in [13|, there are also some essential differences. Most importantly,
the backscatter data considered in [13] is realized by conducting a single dipole current,
not two point currents of opposite signs like here, through the object boundary, and
then taking the tangential derivative of the corresponding relative boundary potential.
Such a measurement can be emulated in practice up to the order O(d) by letting a net
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current of 1/(2d) units flow between two electrodes of length d > 0 at distance d from
each other, and then dividing the (relative) potential difference between the electrodes
by d |9, Theorem 4.1]. In order to obtain a good approximation of the backscatter
data, one thus needs to apply high net currents, which is naturally suspect in real-
life, and/or to divide the resulting voltage measurements by a small number, which is
bound to amplify the noise content of the (relative) backscatter data (cf. [9, Section
4]). These practical complications can be explained in an intuitive manner as follows: If
the used small electrodes lie close to each other, the voltage measurements do not carry
legible information about the conductivity distribution far away from the boundary as
most electrons travel between the two electrodes without ever visiting the interior of
the object. For the sweep data promoted in this work, these kinds of difficulties are not
as severe because the two electrodes do not move together along the object boundary,
and thus there are reasonable current densities in the interior of the object even without
application of unrealistically high net currents through the electrodes. Compared to
the material in [13], we also present three other enhancements, namely the theoretical
treatment of anisotropic conductivity inhomogeneities, the formulation of the results for
general smooth, bounded and simply connected domains, not just for the unit disk as
in [13], and the testing of the reconstruction algorithm with simulated CEM data.

This text is organized as follows. In Section 2, we list our assumptions and recall a
couple of useful tools from [13]. Section 3 introduces the sweep data and proves some of
its basic properties. In Section 4 it is shown that the sweep data can be continued as a
holomorphic function to the exterior of the conductivity inhomogeneity. Subsequently,
the convex sweep support is defined in Section 5 and the algorithm for reconstructing it
is outlined in Section 6. Finally, Section 7 presents the numerical examples and Section 8
lists the concluding remarks.

2. Assumptions and background material

Let D C R? be a simply connected and bounded domain with a C*°-boundary. Assume
that the symmetric conductivity o € L (D, R**?) satisfies the conditions

o>cl fore>0 and supp(c — I) is a compact subset of D,

where I € R?*2 is the identity matrix and the first condition is to be understood in
the sense of positive definiteness. We fix ¥ C D, consisting of finitely many simply
connected, nonempty, closed and mutually disjoint sets X;, j = 1,...,m, such that

supp(c — 1) C ¥ C D. (2.1)

(Take note that here we choose ¥ to be closed, not open as in [13].) In addition,
for technical reasons which will become apparent in what follows, we introduce simply
connected C*°-domains €2, j = 1,...,m, such that 3; C Q;, Q; C D and Q; N Q) =0
for j # k. The union of these domains is denoted by €.

Let us consider the boundary value problem

V-(oVu) =0 in D, ? = f ondD, (2.2)
v
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where v is the exterior unit normal of dD. According to the material in, e.g., [13,
Appendix|, for any boundary current density f in

H:(0D) = {g € H'(D) | {9, )op =0}, s € R, (2.3
the problem (2.2) has a unique solution u in (H™™:5+3/2H (D) N HL (D))/C, where

loc
H! (D) = {veD (D) | gve H(D) for every ¢ € C3°(D)}.

Here and in what follows, (-, -)gp : H*(0D) x H=*(0D) — C denotes the dual evaluation
between Sobolev spaces on 0D; if there is no possibility for a mix-up we refrain from
marking the spaces in the brackets and use this same notation for the induced duality
between H$(0D) and H~*(0D)/C. Moreover, unless there is room for confusion, we
identify an equivalence class of a quotient Sobolev space with any representative of the
class in question.

The Neumann-to-Dirichlet map

A f v ulsp, H:(OD) — H**Y(0D)/C, (2.4)
is well defined and bounded for every s € R (cf., e.g., [13, Appendix]|). The same also
applies to the reference Neumann-to-Dirichlet map

Ao 1 f — uplop, H:(OD) — H**Y(0D)/C,
where uy € H*+3/2(D)/C is the unique solution of (see [21, Chapter 2, Remark 7.2])

dug

Aug = 0 in D, 2 = f ondD. (2.5)

Because o is identically I in some (interior) neighborhood of 0D, it follows that u — ug
is smooth near the boundary 0D, and the relative Neumann-to-Dirichlet map

A — Ay : H7%(OD) — H*(9D)/C (2.6)

is bounded for any fixed s € R (cf., e.g., [13, Appendix]).

To be able to prove some useful properties of the sweep data of EIT that is
introduced in the following section, we need to recall a factorization of the difference
boundary map A — Ay from [13]. To this end, we first introduce the space

H?(0Q)/C™ = (H*(0)/C) @ ... d (H*(0Q2,)/C), seR,
and note that its dual is realized by
H 2 (0) == H*(0) @ ... d H,*(0Q,),

where the components are defined in accordance with (2.3). Let us then introduce the
linear and bounded operator

T: fr uplog,  H(OD) — HY?(6Q)/C™, (2.7)

where ug is the unique solution of (2.5) and thus smooth in the interior of 2 (cf., e.g.,
[21, Chapter 2, Remark 7.2 and Theorem 3.2]). It is important to note that although
the Dirichlet trace of ug on 02 is defined up to only one additive constant, i.e., up to
the ground level of potential, here we interpret wug|sq as an element of H'/2(99Q)/C™
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by letting each component uglaq,, 7 = 1,...,m, float independently, that is, we let
each ug|an; define an equivalence class in the corresponding component quotient space
HY2(99;)/C.

With these tools in hand, we are ready to restate [13, Corollary 3.2]. The proof
is omitted as it is in essence the same as that of [13, Corollary 3.2], although here we
consider a slightly more general framework allowing anisotropic conductivities; see, e.g.,
[6, 18] for other factorizations of A — Ag in the anisotropic setting.

Theorem 2.1. The operator A — Ag can be factored as
A— Ay = T*GT, (2.8)

where G : H'/?(0Q)/C™ — H@l/z(ﬁﬁ) is a bounded linear operator, which coincides with
its own dual. Moreover, G can be extended to a continuous operator from H*®(0€2)/C™
to H 2(0R) for any s € R.

As the intermediate operator G is well defined on H'Y2(9Q)/C™, it does not
see additions of constants to the components of its argument (cf. [13, Remark
3]). To make this statement more concrete, let 1) = @©J.,1; be any element of
HY2(0Q) = @7 H'?(8;), introduce an arbitrary constant vector ¢ € C™, and set
Y +c = @7, (Y; +¢;). Then, it holds that G(¢) + ¢) = G since ¢ + ¢ = 1 in the
topology of HY/2(9Q)/C™. This property of G will be essential in the analysis of Section
4 below.

3. Sweep data of EIT

Let us then consider a specific localized current pattern, namely 6, —d,, € HQUQ_E(@D),
e > 0, with y,yg € D and 9, denoting the delta distribution located at z on dD. Due
to the boundedness of the boundary operator (2.6) and since , — d,, has zero mean in
the sense of (2.3), the quantity

<(y) = ((A = Ao)(dy — dyo), (0y — 0ye)) s (3.1)
is well defined. The function ¢ : 0D — R is what we call the sweep data of EIT.
According to [9], such data can be approximated in practice as follows: Unit current
is maintained between two small (but finite) electrodes at yo and y while the latter is
moved along 0D in a sweeping motion. The corresponding potential difference between
the electrodes is recorded as a function of y, and the actual sweep-type data is finally
obtained by subtracting the corresponding measurement in the case that ¢ = 1. In the
framework of the CEM [4, 23|, the discrepancy between such a realistic data set and ¢
is of the order O(d?), where d > 0 is the length of the used electrodes; see [9, Theorem
2.1| for the details.

Remark 3.1. The sweep data can alternatively be given in the form

() = (' —ug)(y) — (W’ —ug)(wo), (3.2)
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where u¥ and u§ are the solutions of (2.2) and (2.5), respectively, for f = 8, — d,,. In
particular, the alteration of y € 0D affects not only the argument of the first term on
the right-hand side of (3.2) but also the involved potentials u¥ and uf via the applied
current pattern. This means that the sweep measurement is considerably different from
a standard (idealized) EIT measurement pair, which consists of an applied boundary
current density and the resulting potential measured everywhere on the object boundary.
On the other hand, the sweep data does resemble the backscatter data of EIT [12, 13] to
a certain extent.

According to the Riemann mapping theorem, there exists a conformal map ® that
sends D onto the unit disk B and y, to zo = (1,0) € dB. As D has a smooth boundary,
® also defines a smooth diffeomorphism of 9D onto 0B [22, Section 3.3]. We denote
the inverse of ® by ¥, and let A be the Neumann-to-Dirichlet map corresponding to B
and the conductivity

& = Jg (o oW)(Jg ) det Jy € L™(B,R*?), (3.3)

where Jy denotes the Jacobian of W. Take note that ¢ is a feasible conductivity in the
sense of Section 2, i.e.,

oc>c¢l fore>0 and supp(6 — I) is a compact subset of B,
because ¥ : B — D is a diffeomorphism and as a conformal mapping it satisfies
JgJy = (det Jy)I. (3.4)

In particular, & = o o U for an isotropic o. We let Ay be the Neumann-to-Dirichlet
map corresponding to B and the unit conductivity. The (pushforward) sweep data
¢ : 0B — R corresponding to the unit disk B and the conductivity & is defined in the
natural way, i.e.,

§~(2’49) = <(/~\ - ]\0)(520 - 520)’ (520 - 5ZO)>8B’ (35)
where the bracket denotes the Sobolev duality on 0B and zyp = (cos6,sinf) for some

polar angle # € R. The following theorem demonstrates that ® can be used to transfer
sweep data between 0D and 0B.

Theorem 3.2. It holds that
¢ =G¢od,

where ¢ : 0D — R and ¢ : OB — R are the sweep data defined by (3.1) and (3.5),
respectively.

Proof. Let us fix y € 9D and denote by @ € (H'~¢(B) N H}

loc

(B))/C, € > 0, the unique
solution of the Neumann problem

V-(6Vi) =0 in B, % — bay) — 0z on IB. (3.6)

Our initial aim is to show that uv = @ o ® satisfies (2.2) for f = §, — ¢,
that v € (H'™¢(D) N H}\

loc

.- lake note
(D))/C because ¢ and V¥ are diffeomorphisms with bounded
derivatives up to an arbitrary order (cf., e.g., [21, 22]).
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We start by tackling the first equation of (2.2). Let ¢ € Cg°(D) be arbitrary. Since
uwe H} (D) and u € H}

loc loc

/chu-Vgodx: /an(vaocb)-wda;
D D

(B), using an obvious change of variables we may write

_ / (00 W)(JF 0 W)V - (Vo W) det Jy dz
_ / (00 W) (J3)TVa - (J31)TV(p o U) det Jy du

= /6Vﬂ-Vcﬁdx
B

for = o o ¥ € C§°(B) due to the definition of 6. Since @ satisfies the first equation
of (3.6), it thus follows from the definition of distributional differentiation that

/chu-Vgodx =0
D

for any ¢ € C3°(D), which in turn is just the weak form of the first equation of (2.2).

Next we show that u satisfies the boundary condition of (2.2) with f = d, — dy,.
Let ¢ € C°°(0D) be arbitrary and extend it as a smooth function to D so that (cf., e.g.,
[21, Chapter 1, Theorem 9.4])

gﬁzo on 0D and suppyp C D\ 2.
v
Now it follows from the generalized Green’s formula [21, Chapter 2, Theorem 6.5 with
r = 0] that
du -
(5= ¥)op = — | uApdr = — [ (Go®)Apda.
ov D D

A change of variables thus yields

(%,cp)aD = —/ﬁ((Acp)o\If)deth,dx = —/ﬁAcﬁdx,
v B B

where = ¢ oW and the second step is a straightforward consequence of the fact that W
satisfies the Cauchy-Riemann equations. As conformal mappings retain homogeneous
Neumann boundary conditions, we see that

g_go =0 onodB and suppp C B\ ®(%).
v
Because supp(¢ — I) C ®(3) due to (2.1) and (3.4), we can use the generalized Green’s

formula for a second time to come up with

ou ou _ .

(5, Plop = {5 Plop = P(2(y)) — $(20) = @(y) = #(vo)
where the second and third steps follow from the definitions of @ and , respectively.
Since the original ¢ € C*°(0D) was arbitrary, this means that

ou

% = 5@/ - 5y0 on 8D,



Sweep data of EIT 8

and thus u = @ o ® is the unique solution of (2.2) for f = d, — d,,.

A simplified version of the above line of reasoning shows that the solution of (2.5)
for f = 8, — d,, can be given as uy = g o ¢, where g € H'"¢(B)/C is the unique
solution of (3.6) when & is replaced by I. In consequence, we have

s(y) = (A = Ao)(0y = dyy), (Oy = Oyo))an
= (u = uo)(y) — (v — o) (yo)
= (@ — 1) (®(y)) — (& — o) (P(yo))
= (A = R0)(Gagy) = 00): (Faiy) = 020))on = S(B(y))-
Because y € 0D was chosen arbitrarily, this completes the proof. O

4. Analytic continuation of the sweep data

In this section, we will follow the argumentation of [13] for the case of the backscatter
data to establish that the sweep data ¢ is the boundary value of a univalent holomorphic
function defined in the exterior of ¥; note that if the topology of supp(c — I) is not
very complicated, we can choose X to be the so-called infinity support of ¢ — I, which
is, in essence, composed of supp(c — I) together with the holes in it [20]. Although
the following analysis resembles that in [13], there is one essential difference: When the
backscatter data is continued analytically to the exterior of the inhomogeneity in [13],
the encountered singularities are poles located on the boundary of the inhomogeneity,
or to be more precise on 0. Here, we are forced to work with complex logarithms that
have branch cuts extending from the origin to the boundary of €2. In order to get rid
of this hindrance, we must make explicit use the factor space property of G discussed
after Theorem 2.1 to move the branch cuts entirely inside . To begin with, we assume
that D is the unit disk; this assumption will be relaxed at the end of this section with
the help of Theorem 3.2.

Assume for the moment that D = B is the unit disk. To begin with, we note that
one representative of the equivalence class T(8,, —d.,) € HY2(98)/C™ is given by (see,
e.g., |13, Section 4] or [14, Appendix])

. 1
go(x) := ;(log|:p—zo|—log|x—29|), x € 0N.

As a consequence, Theorem 2.1 allows us to write the sweep data introduced in Section 2
in the form

$(29) = (GT(0z5 = 0z), T(0zy = 02)) o = /m(G?Je)(fC) go(x) ds(x), (4.1)

where the second equality is a consequence of the regularity properties of G. Let us
then fix points y*) € ¥, k = 1,..., m, and make the componentwise definition

. 1 )
go(x) == go(z) + %(log |29 — y(k)| +i(pr — 0)), red, k=1,...,m,
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where ¢, = ¢ () is the polar angle of the point zg — y*), i.e., the polar angle of z
with respect to y®), defined in such a way that the mapping R > 6 — ¢,(0) — 0 is
continuous, 27-periodic and takes values in the open interval (—m/2,7/2); a simple
geometric considerations shows that such a choice is possible. Obviously, gy and gy
belong to the same equivalence class of H'/2(9Q)/C™, and thus we have

o) = [ (G ) dsta) = 3 [ (Gan)o) gfe) ),

which holds for all polar angles 6 € R.
Let us then introduce the complex variables £ = &(z) = 2, + izg, ¢ = € and
v = yYC) + iyék), k=1,...,m, and identify D with the unit disk of the complex plane

when appropriate. By slight abuse of the notation, we obtain for x € 9€); that

go(2) = o~ log (‘1 —ng—vk)

2m XSRS
1 |1—§|2C—Uk)
_27r10g<1—5§ ¢(—¢
B T A

where at every occurrence log denotes the principal value of the complex logarithm.
Indeed, the first equality of (4.2) holds due to the definition of ¢, and the second
one follows from a trivial algebraic manipulation. To see that the third equality of
(4.2) is also valid, notice first that the argument of |1 — &|?/(1 — £C) is in the interval
(—m/2,7/2) — modulo 2 — because the real part of this expression is positive for all
x € 0 and ¢ € dD. Moreover, it follows from a straightforward geometric reasoning
that the argument of (¢ — v)/(¢ — &) is in the open interval (—m,7) — modulo 27
— for all z € 09, and ¢ € dD. To sum up, for any fixed x € 9, and ( € 9D the
second and third lines of (4.2) represent logarithms of the same complex number, with
the corresponding imaginary parts in (—7/2,7/2) and (—37/2,37/2), respectively. As
different branches of the complex logarithm differ by integer multiples of 27i, we thus
deduce that the expressions on the second and third lines of (4.2) must, in fact, be the
same, i.e., gg(z) = gp(x, ¢) for all z € 9O, and ¢ = €l € ID.

It is obvious that g, can be extended as a continuous function to 9, x (D \ Q),
with the first variable treated as a point in R? and the second as an element of C: For
any fixed & = £(z) € 0 C C, the first term of gx(z,-) can be chosen to have a branch
cut from ¢ = 1/€ ¢ D to infinity without intersecting D, and the second term a branch
cut from ¢ = € to ¢ = v, within Q. Moreover, this extended gy, is complex differentiable
with respect to ¢ € D\ Q, with the corresponding derivative also being a continuous
function in 9Q; x (D \ Q4), as apparent from the explicit representation

1 3 1 1
ool ) = %(1—Z<+<—vk‘<—£>'
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(Notice that if this same technique had been applied directly to the original candidate gy,
we would have ended up with gi(z,-) having a branch cut between the origin and
& € 0, since the second term on the last line of (4.2) would have been log(¢/(¢ —£)).
In general, such §, would not have been continuous in 9§, x (D \ ), and the reasoning
presented below would not have been valid as such.)

We extend gy, as zero to U, (0Q; x D) continuing to denote it by the same symbol,
which in particular means that

= ng(:c,g), red, ¢=e"
k=1

Due to the linearity of G and through slight abuse of the notation, we thus see that

D> / (Gor(-, O)(@) gy, ) ds(z), ¢ €aD.

7=1 k=1

It follows from the same line of reasoning as in [13, Lemma 4.1] that the function
[Gar(-, O)(x), (z,() € 90 x (D \ ), is complex differentiable with respect to (.
Moreover, both [Gg(-,()](x) and 0:[Ggx(-,¢)](z) are continuous in 9Q x (D \ ).
As a consequence,

O = [ (Gl gy ) dsa), (e oD, (4.9

extends as a holomorphic function to D\ (Q; UQy) for all 1 < j,k < m due to the basic
results on line integrals depending on a complex parameter (cf., e.g., [25, Proposition
27]). Altogether, we are ready to state the following.

Theorem 4.1. Assume that D is the unit disk. Then, the sweep data < of (3.1) extends
as a holomorphic function to D \ ¥, with ¥ as in Section 2.

Proof. The same logic as in the proof of [13, Theorem 4.2] shows that ¢j;, of (4.3) actually
extends holomorphically to the whole domain D\ (X; UX;) D D\ (Q; U Q) for any
1 <7,k < m. Hence,

Zzgjk 9 <€8D7

=1 k=1

can be continued as a univalent holomorphic function to D\ UTL,%; = D\ %. O

Corollary 4.2. Assume that D is the unit disk. Then, the Cauchy problem

Av =0 inD\X%, v =c¢ ondD, ?:0 on 0D (4.4)
v

has a solution.

Proof. The solution of (4.4) is given by the real part of the holomorphic extension of ¢
as reasoned in the proof of [13, Corollary 4.3| for the backscatter data of EIT. O
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We complete this section by noting that the statements of Theorem 4.1 and
Corollary 4.2 remain valid for a general smooth and simply connected domain D. This
generalization is a straightforward consequence of Theorem 3.2.

Theorem 4.3. Theorem 4.1 and Corollary 4.2 remain valid for any simply connected
and bounded C*-domain D C R?.

Proof. Assume that D is a simply connected and bounded C*°-domain, with the
corresponding sweep data ¢ defined by (3.1). Furthermore, let B be the unit disk and
® a conformal map sending D onto B and 1, to zg = (1,0), with the inverse ¥ = &1,
As in Section 3, we denote the sweep data corresponding to B and the conductivity &
of (3.3) by ¢: 9B — R. Since @ is a diffeomorphism, the simply connected, nonempty
and closed sets ij =®(%;), j=1,...,m, satisfy ij Ny = 0 for j # k. Moreover, due
to (3.3) and (3.4), the union ¥ = U;”:lf]j has the property

supp(6 —I) C ¥ C B.

According to Theorem 4.1 and Corollary 4.2, the modified sweep data ¢ thus extends as
a holomorphic function to B\ 3, and the Cauchy problem

- oV
Ab =0 inB\YE, ©=¢ ondB, 8—”:0 on 0B (4.5)
v
has a solution.
Because ¢ = ¢ o ® due to Theorem 3.2, it is obvious that ¢ can be extended

holomorphically from D to D\ ¥(X) = D \ ¥. Furthermore, if ¢ is the solution
of the Cauchy problem (4.5), then © o ® is a solution of (4.4) since conformal mappings
retain harmonicity and homogeneous Neumann boundary conditions. This completes
the proof. O

5. Convex sweep support

From the practical point of view, the most important observation of the preceding section
was that the Cauchy problem for the Laplacian with the data (¢,0) on 9D attains a
solution in the exterior of X, with X as in Section 2. As noted in the beginning of
Section 4, if the topology of the set supp(o —I) is not very complicated, one can, loosely
speaking, choose ¥ to be supp(c — I) together with the holes in it, which would mean
that the Cauchy data (g,0) can be continued harmonically up to the outer boundary of
the conductivity inhomogeneity. Be that as it may, for the purposes of the analysis of
the current section, it is enough to settle for a less optimal 3, the existence of which
is guaranteed by the following lemma. Here and in what follows, we denote the convex
hull and the open e-neighborhood of a set A C R? by ch A and N.(A), respectively.

Lemma 5.1. There exists 3 satisfying the assumptions of Section 2 such that ¥ C
D N ch(supp(o — 1)).
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Proof. Due to an obvious compactness argument, the sets supp(c — I) and 9D lie at a
positive distance from each other. Hence, there exists a closed, injective curve that is
composed of a finite number of line segments and is the boundary of a closed, simply
connected set ¥’ C D such that supp(c — I) C ¥'. Our aim is to prove that

¥ := X' Nch(supp(o — 1))

has the required properties. It is self-evident that ¥ is closed and satisfies supp(o—1) C
> C D. In consequence, the only thing we need to show is that X is composed of a
finite number of simply connected components.

To begin with, we note that either one of the trivial cases ¥ = ch(supp(c — 1))
and ¥ = ¥’ holds or the set ¥ is composed of regions bounded partially by 9% and
partially by the boundary of " := ch(supp(o —1I)). In particular, ¥ can have an infinite
number of path connected components only if the (piecewise differentiable) curves 0%/
and 0" intersect an infinite number of times (with a common connected boundary
section counted as a single intersection). Suppose that this is the case. Due to a
compactness argument, say, 0%’ must carry an accumulation point, any neighborhood of
which contains an infinite number of intersections of the two boundary curves. However,
since 0¥’ is composed of line segments of finite length and 9X" can be locally given as
a graph of a convex function, it is obvious that such an accumulation point cannot
exist. This is a contradiction, which shows that X is composed of a finite number of
path connected components. To complete the proof, we note that every path connected
component of ¥ = ¥/ N ¥X" is simply connected since the fundamental group of the
intersection of any two simply connected planar sets is trivial (see, e.g., [17]). O

Now we have gathered enough tools to introduce the convex sweep support and
show that it carries some useful properties. To this end, let us consider the Poisson
problem

Aw=F in D, g—w =0 ondD, (5.1)
v

which has a unique solution w € U,,ezH™(D)/C for any distributional source F in
€</>(D) = {'U S g,(D) | <U, 1>D = O}a
where (-,-)p : &'(D) x C*(D) — C denotes the dual evaluation between compactly
supported distributions and smooth functions in D (cf., e.g., [10, Section 2|). Since the
solution w is smooth near the boundary 0D (cf., e.g., [21]), the linear measurement
operator
L:Fw— wlgp, E,
is well defined.

Definition 5.2. Let supp F' be the conver hull of the support of F € E(D). Then, the
convex sweep support S¢ s defined to be

S¢ = n supp,.F.

LF=¢

(D) — L*(0D)/C,
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The convex sweep support S¢ is the convex source support corresponding to the
boundary data g; see [10, Definition 4.1] and [11, (2.1)]. In particular, S¢ need not be a
subset of D, if D is nonconvex (cf. [11, Example 1]). On the positive side, the convex
sweep support inherits useful properties from the convex source support, as concretized
by the following theorem.

Theorem 5.3. The convex sweep support Ss is a subset of the convexr hull of the
inhomogeneity supp(o — I). Moreover, S¢ = 0 if and only if < is a constant, i.e.,

the zero element of L*(0D)/C.

Proof. Although the assertion follows from the same ideas as [13, Theorem 5.2|, we
repeat the argumentation here since [13| only considers the case that D is convex, or
more precisely the unit disk.

Let ¥ satisfy the assumptions of Section 2 and be such that ¥ C DNch(supp(c—1));
the existence of such a set is guaranteed by Lemma 5.1. We fix € > 0 so that N.(X)

satisfies N.(X) C D and consider the L?(D)-function
v in D\ N(2),
Ve =
0 otherwise,

where v is the solution of the Cauchy problem (4.4) guaranteed by Theorem 4.3. Tt
follows that F, = Av. € £(D) N H~?(D) is supported in N,(3) and, moreover,

LF. = vlop = v|op = <.
Since € was chosen arbitrarily, we deduce that

S¢ C ﬂch(Ne(E)) C ﬂNe(Ch(supp(cr— I))) = ch(supp(c —1I)).

e>0 e>0

This proves the first part of the assertion. The second part follows from the properties
of the convex source support established in [11, Theorem 2.1]. O

6. Reconstruction algorithm

In this section, we will introduce an algorithm for reconstructing the convex sweep
support S¢ in the case that the object of interest D = B is the unit disk. This will also
be the framework for our numerical studies in Section 7 below. However, Remark 6.1
at the end of this section considers two methods for generalizing our algorithm to the
case of a general smooth, bounded and simply connected D. Because the reconstruction
algorithm is essentially the same as the one presented in [11] for standard EIT data and
subsequently in [13| for the backscatter data of EIT, we will skip many of the details
and only outline the main ideas.

To begin with, we interpret ¢ as a function of the polar angle and denote its Fourier
coefficients by

1 4 .
a; =5 <(0)e 7 dg, jEL.

—Tr
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Moreover, we introduce the propagated sweep data via
GO) =D Lel, e m), (6.1)
JEL
for p > 1 (cf. [11, Lemma 3.1]).
Let us identify R? with the complex plane, fix p > 1, and denote by B, the open
disk of radius p centered at the origin. Up to rotations of the image space all M&bius
transformations mapping Ep onto D can be given as

z=C
De(2) = p——2 (6.2)
p°—GCz
where the free complex parameter ( € B, determines the point that is mapped to the

origin. We denote the inverse of &, by W, and the corresponding angular maps, sending
(—m, 7] to itself, by
@ 2 0 arg O (pe?), Ve 0 arg Ue(e?),
respectively. The Fourier coefficients of ¢, o 9. are given by
L[ —ij6 L[ —ijioc(0 ~
a;(¢) = %/ Sp(Pc(0)) e df = —— 3 (0)e 1 Dl(9)de,  jeZ. (6.3)

With the help of these definitions, we have the following characterization (see [11,
Corollary 3.3]): The convex sweep support S is a subset of W;(Bg), 0 < R < 1, if
and only if

—Tr

oy (Q)?
LNl < oo (6.4)
jeZZ (R + €)2ldl
for any € > 0.

In order to devise an algorithm based on this observation, we approximate the

Fourier coefficients of the modified sweep data g, 01¢ by a logarithmic regression model
log | (C)| ~ alj] +b, a,beR, (6.5)

for j € Z, as suggested originally in [2]. Under the courtesy of the assumption that
(6.5) is exact, inequality (6.4) asserts that the closed disk W(Bpg) contains Sg if and
only if R > R := e®. This procedure can be carried out for a set of test points {(},
producing a family of disks containing S¢. We use the intersection of these disks as our
approximation for the convex sweep support, i.e.,

S¢ ~ ﬂ\IjCk(ERk)7 (66)
k

where we have used the short notation R, = Ry, .

In all numerical tests presented in Section 7, we use the parameter value p = 1.4 and
choose {(j} to consist of 64 equidistant points on a circle of radius 0.7 around the origin.
These are choices that have been found reasonable in [11, 13| for standard EIT data and
backscatter data, respectively. Finally, it should be noted that the number of reliable
Fourier coefficients for (6.5) varies with ¢ and the amount of model and measurement
noise in the data (cf. Section 7): For low spatial frequencies the logarithms of |o;(¢)|
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lie approximately on a descending line as functions of |j|, while the high frequency
coefficients consist of noise. In consequence, an adaptive method must be devised to
pick a cut-off frequency for determining the coefficients to be used in (6.5). There are
a number of reasonable ways for making such a choice. In this work we resort to the
most fundamental one and use visual inspection.

Remark 6.1. There are two ways to use the above introduced algorithm for gathering
information about the conductivity inhomogeneity in the case that D is not the open unit
disk, but only a smooth, bounded and simply connected domain.

First of all, if a conformal map ® sending D onto the open unit disk B is known, one
can use Theorem 3.2 to obtain the sweep data ¢ corresponding to B and the pushforward
conductivity & given by (3.3). Subsequently, the convex sweep support corresponding to &
and B, say S¢S, can be reconstructed by our algorithm and mapped by U = &1 back inside
D. Since 8¢ lies within the convexr hull of supp(6 — I) = ®(supp(o — 1)), the obtained
set W(SS) carries information about the whereabouts of the original inhomogeneity
supp(o — I). However, W(SS) is not, in general, the original convexr sweep support Ss.

In order to introduce the second option, we note that D may be assumed to lie inside
B; if this was not the case, we could resort to scaling and translation. Let us consider
s € L*(OD)/C as the Dirichlet data of the solution to the Poisson problem (5.1) with
an unspecified source F', and then compute the Dirichlet data, say g € L*(0B)/C, of the
solution to the Poisson problem with the very same source but with D replaced by B in
(5.1). This can be done by solving a suitable transmission problem without any further
knowledge about F; see [11, Section 2.1] for the details. After this, one can use the
above outlined algorithm to approrimate the convex source support Cg corresponding to g;
see [11] where the algorithm was originally introduced for the purpose of reconstructing
convex source supports. It follows from [11, Theorem 2.3] that Cg is always contained
within Ss and empty if and only if S is empty. Moreover, if D is convezx, then Cg s
exactly Sg.

7. Numerical experiments

In this section we test our reconstruction algorithm in the case that the object of interest
D is the open unit disk; see Remark 6.1 and the numerical test of [7] for treatment
of more general domains. Our numerical experiments consider the conductivity
inhomogeneities depicted in Figure 1: A kite-shaped inclusion with isotropic constant
conductivity o = 2 on the left, a disk and a square with isotropic constant conductivities
o = 2 and o = 0.5, respectively, on the right. The conductivity levels of these inclusions
are held fixed throughout the numerical studies, and the static electrode location is
chosen to be yo = (1,0) if not stated otherwise. We employ three data sets of varying
quality: They are called ideal, realistic and noisy realistic as explained in what follows.

To obtain ideal data, the relative boundary potential (A—Ag)(d,—6,,) € C*(0D)/C
is simulated with the help of layer potential techniques for all y belonging to an
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Figure 1. The studied inclusions in comparison with the unit disk and the two CEM
electrodes of length d = 7/16 used for gathering the CEM sweep data. Left: Kite-
shaped inhomogeneity with constant isotropic conductivity 2. Right: Discoidal and
square inhomogeneities with constant isotropic conductivities 2 and 0.5, respectively.

equidistant grid of 1000 points on 9D (cf., e.g., [12, Example 2.2|, [14, Appendix| and
[19]). Subsequently, the sweep data

s(y) = (A= 20)(0y = 80) ) () = (A = Ko)(6, = 61n) ) (30)

is evaluated at every point y of the very same grid. These 1000 point values of ¢ are then
used as the input for the algorithm introduced in Section 6; see [11] for the technical
details of the numerical implementation. The sweep data simulated in this manner is
very accurate, and thus the corresponding reconstructions should reflect the limits for
the functionality of the proposed algorithm.

To simulate realistic measurements, we resort to the CEM [4, 23]. We denote by e,
an electrode of length 0 < d < 7 around y = (cosf,sinf) € 9D, i.e.,

e, = {(cos¢,singp) € D | |¢p — 0| < d/2}.
Moreover, we let z > 0 be the contact resistance, which is a characteristic of real-life
electrode measurements. For a given conductivity distribution o that is feasible in the

sense of Section 2, the potential pair (u¥,UY) € H'(D) ® R is defined as the unique
solution of [23|

V-(oVuY) =0 in D,
ouY =
o = 0 on 0D \ (e, Uey,),
ouY
v,
u’ 4z 5 U on ey, (7.1)
y
uerz% = -UY on ey,
ouY ou?
—ds =1 —ds = —1
e, OV § ’ ey OV § ’

where we have assumed that e, N e, = 0 and chosen the ground level of potential so
that the two electrodes are at opposite voltages. We denote the reference potentials,
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0.005

- —

L L L L L L ~0.05 L L L L L
1 2 3 4 5 6 0 1 2 3 4 5 6

Figure 2. Comparison of the three data types as functions of the polar angle of y for
yo = (1,0) and the inclusion geometry in the left-hand image of Figure 1. Left: ideal
data (solid) and realistic data (dashed). Right: noisy realistic data.

i.e., the solution of (7.1) for o = 1, by (ug, U¥) € H' (D) ®R. In real life, noisy versions
of the electrode potentials UY and Uj can be obtained through electrode measurements

carried out with two electrodes [4, 23]. With this in mind, we define the CEM sweep
measurement at y € D, with e, Ney, =0, as

aly) = (U= (=U) = (U8 = (=U8)) = 20" = 1), (7.2

i.e., as the change in the potential difference between the two electrodes caused by the
conductivity inhomogeneity. This notion is reasonable because

s(y) — <aly)| < Cd® (7.3)

for y € 9D such that e, Ne,, = 0, according to [9, Theorem 2.1].

With these tools in hand, realistic data are constructed as follows: We simulate
the point values of ¢;, with z = 0.1 and d = 7/16 ~ 0.20 (cf. Figure 1), on the
grid y¥) = (cos(2wj/J),sin(275/J)), 7 = 1,...,J = 200, by solving (7.1) and the
corresponding reference problem by hp-FEM (cf., e.g., [16, 24]) fory =y, j = 1,..., J.
To be quite precise, depending on the chosen static electrode location y, some grid values
of ¢; are not defined by (7.2) due to overlapping of the electrodes in (7.1). We take
care of this problem in the natural way by setting <;(yo) = <(yo) = 0 and using linear
interpolation to estimate the other missing values of ¢;. The noisy realistic data are then
formed by adding a realization of a normally distributed random variable with zero mean
and standard deviation 0.001|{U¥"| to ¢y(y@) for each j = 1,...,J. Loosely speaking,
this means that the noise content of the electrode measurement is assumed to be 0.1
per cent. The reader should note, however, that this procedure results in a far higher
noise content in the point values of the (relative) CEM sweep data ¢; because the ratio
|UY|/|sa(y)| is over 40 for any y € 9D in all of our numerical examples. The different

data types are compared in Figure 2 for the kite-shaped inclusion of conductivity o = 2
shown in the left-hand image of Figure 1.

Remark 7.1. If the measurement noise manifests itself in the absolute electrode
measurement, as we have assumed in the simulation of the noisy realistic data set above,
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Figure 3. Reconstructions corresponding to ideal data and the left-hand inclusion

geometry of Figure 1. The unit disk and the inhomogeneity are drawn by thick line,

while the thin circles correspond to the disks in the intersection on the right-hand

side of (6.6). The reconstructions are coloured with grey. Left: yo = (1,0). Right:

Yo = (*17 0)

it 1s not necessarily a good idea to use as small electrodes as possible when measuring

sweep data in practice: According to (7.1), the absolute value of the mean current density

through the two electrodes is 1/d. In consequence, due to the Robin boundary conditions
on the electrodes, the absolute value of the electrode potential UY, and thus also the ratio

\UY|/|sa(y)|, gets larger as the electrodes get smaller. If the amount of measurement

noise is proportional to |UY|, as it is assumed to be in our model, the measurement
noise content of the CEM sweep data thus increases as the electrode size decreases —
under the assumption that the contact resistance z is not affected by the electrode size.

To sum up, decreasing the size of the electrodes cuts down the model error (cf. (7.3))

but increases the noise content of the electrode sweep data.

In the first numerical experiment we work with ideal data and the left-hand inclusion
geometry of Figure 1. The aim is to test how the location of the static electrode affects
the functionality of our algorithm: The left-hand image of Figure 3 shows the obtained
reconstruction for yo = (1,0) and the right-hand image the one for yy = (—1,0). Here
and in all the other visualized reconstructions, the unit disk D and the inhomogeneity are
plotted with thick line, while the thin circles depict the boundaries of the disks entering
on the right-hand side of (6.6), with their intersection being the reconstruction of the
convex sweep support. For both choices of yg, the reconstruction looks approximately
like the convex hull of a smaller kite-shaped region. In particular, the algorithm seems
to provide information on both the location and the shape of the inhomogeneity. As
the position of the static electrode does not seem to play a major role, we fix it to be

yo = (1,0) for the rest of this text.

The second test continues to consider ideal data, but this time the inclusions in
the right-hand image of Figure 1 move into the focus of our attention. The left-hand
reconstruction of Figure 4 corresponds to the case that merely the square inhomogeneity
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Figure 4. Reconstructions corresponding to ideal data and the two inclusions in the
right-hand image of Figure 1. The unit disk and the inhomogeneities are drawn by
thick line, while the thin circles correspond to the disks in the intersection on the
right-hand side of (6.6). The reconstructions are coloured with grey. Left: the square
inclusion. Right: the combination of the disk and the square.

contaminates D), whereas the right-hand image visualizes the performance of our
algorithm with both the square and the discoidal inclusion inside the unit disk. For
the square inhomogeneity the reconstruction is approximately a smaller square. This is,
actually, how the algorithm typically functions for any convex polygonal inhomogeneity
of constant conductivity: The corresponding reconstruction is (almost) a polygon of
similar shape but smaller size. The observed discrepancy in size could be fixed by
omitting some lowest frequencies j in the linear regression model (6.5): According to
our experience, only the approximate location of the polygonal inclusion is visible in
the Fourier coefficients corresponding to low spatial frequencies whereas high-frequency
coefficients contain information about the corners. However, this would not be a very
practical solution because the high-frequency information is unattainable in real-life due
to measurement and model noise. On the other hand, the reconstruction corresponding
to the combination of the disk and the square extends over both inclusions, indicating
clearly their location. In fact, the estimated convex sweep support in the right-
hand image of Figure 4 is a rounder version of the convex hull of the corresponding
reconstructions computed separately for each of the two inclusions. (The reconstruction
for the square is already shown in the left-hand image of Figure 4, while the one
corresponding to the mere discoidal inhomogeneity is just one point approximately at the
center of the respective inclusion; see [13] for similar results for disk-like inhomogeneities
in the framework of backscattering.)

In the third and final numerical example, we consider realistic and noisy realistic
data; the images in the left-hand column of Figure 5 correspond to the former and
those in the right-hand column to the latter. The top row of Figure 5 represents
reconstructions for the kite-shaped inclusion depicted in the left-hand image of Figure 1.
For (exact) realistic data the obtained reconstruction is also kite-shaped but significantly
smaller than the original inclusion, whereas the reconstruction corresponding to
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Figure 5. Reconstructions corresponding to realistic and noisy realistic data sets.
The unit disk and the inhomogeneities are drawn by thick line, while the thin circles
correspond to the disks in the intersection on the right-hand side of (6.6). The
reconstructions are coloured with grey. Left column: realistic data. Right column:

noisy realistic data. Top row: the kite-shaped inclusion. Bottom row: the combination
of the disk and square inclusions.

noisy realistic data is empty but the region through which all the thin circles pass
clearly indicates the approximate location of the conductivity inhomogeneity. The
images in the bottom row of Figure 5 correspond to the the combination of the two
inhomogeneities depicted in the right-hand image of Figure 1. For this inclusion
geometry, the reconstruction provided by our algorithm is nonempty and extends over
both components of the inhomogeneity for both realistic and noisy realistic data, with
the one corresponding to the noiseless measurement being in a better agreement with
the ideal reconstruction in the right-hand image of Figure 4.

To sum up, the proposed algorithm provides information about the location of the
conductivity inhomogeneity for all three data types. However, only the reconstructions
corresponding to ideal data contain any clear information about the shape of the
searched for inclusions. Our results for ideal data are slightly worse than the ones
presented in [13| for the idealized backscatter measurement, but we anticipate that this
inferiority is overshadowed by the practicality of the sweep measurement promoted in
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this work.

8. Concluding remarks

We have introduced the sweep data of EIT, which can be approximated by real-life
measurements performed with two small electrodes, and shown that it can be used as
the input for the convex source support method [11] in order to reconstruct the so-called
convex sweep support. The functionality of the resulting numerical inclusion detection
algorithm was demonstrated both with idealized PEM and realistic CEM data.
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