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□ 1. Free network and datum

Literature:

Kallio (1998b, p. 67–71, 141–150)

Lankinen (1989)

Leick (1995, p. 130–135)

Cooper (1987, s. 206-215, 311-321)

Strang and Borre (1997, p. 405–430)

Leick (1995, p. 130–135)

Baarda (1973) partly.

□ 1.1 Theory

A free network is a network that is not in any way connected with exter-
nal fixed points or a higher order (already measured earlier) network.

Write the observation equations as follows

ℓ+v= Ax̂. (1.1)

Here ℓ is the vector of observations, v that of the residuals, and x̂ the
vector of unknowns; the matrix A is the design matrix.

Let it hold for certain values of the vector x , i.e., ci, i = 1 . . . r:

Aci = 0.

Then we call the subspace of the space of observation vectors1 x which
is spanned by the vectors ci, having a dimensionality of r, the null space
of A. The number r is called the rank defect of the matrix A2. Cf. Kallio

1A so-called abstract vector space
2The rank of a matrix is the number of its linearly independent rows or
columns. Generally it is either the number of rows or the number of columns,
whichever is smaller; for the design matrix it is thus the number of columns. If
he rank is less than this, we speak of a rank defect.

– 1 –
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2 Free network and datum
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Figure 1.1. An example of a levelling network.
□

(1998b, p. 68). If r > 0, then the rank of the A matrixis less than its
number of columns (or unknowns).

This produces the following situation:

�

�

�

�
If x̂ is the least-squares solution of equation 1.1, then also

every x̂+∑r
i=1α

ici is such a solution, with the same
residuals. Here the coefficients αi are arbitrary.

□ 1.2 Example: a levelling network

What do these null space vectors look like in realistic cases?

As an example we present a levelling network. The network points i and
j have heights Hi and H j. As a measurement technique, levelling can
only produce differences between heights, not absolute heights. There-
fore the observation equations look as follows:

ℓk +vk = Ĥi − Ĥ j.

Let the geometry of a levelling network be according to figure 1.1. In
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1.2. Example: a levelling network 3

this case the observation equations are

ℓ1 +v1
def= h12 +v1 = Ĥ2 − Ĥ1,

ℓ2 +v2
def= h24 +v2 = Ĥ4 − Ĥ2,

ℓ3 +v3
def= h14 +v3 = Ĥ4 − Ĥ1,

ℓ4 +v4
def= h13 +v4 = Ĥ3 − Ĥ1,

ℓ5 +v5
def= h16 +v5 = Ĥ6 − Ĥ1,

ℓ6 +v6
def= h34 +v6 = Ĥ4 − Ĥ3,

ℓ7 +v7
def= h35 +v7 = Ĥ5 − Ĥ3,

ℓ8 +v8
def= h36 +v6 = Ĥ6 − Ĥ3,

ℓ9 +v9
def= h45 +v6 = Ĥ5 − Ĥ4.

Written in matrix form:

ℓ+v=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
0 −1 0 1 0 0
−1 0 0 1 0 0
−1 0 1 0 0 0
−1 0 0 0 0 1
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 −1 0 0 1
0 0 0 −1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ1

Ĥ2

Ĥ3

Ĥ4

Ĥ5

Ĥ6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

As can be easily verified, we obtain by summing together all columns of
the matrix: [

0 0 0 0 0 0 0 0 0
]T

.

Thus we have found one c vector: c = [ 1 1 1 1 1 1
]T

. Every ele-
ment represents one column in the A matrix, and the sum of columns

Ac= 0.

The rank defect of the above A matrix is 1 and its null space consists of
all vectors

αc= [ α α α α α α
]T

.

�

�

�

�
In a levelling network, adding a constant to the height Hi

of each point i does not change a single one of the
levelling’s observed quantities.
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4 Free network and datum

This is called the datum defect. Numerically the datum effect will cause
the network adjustment’s normal equations to be not solvable: the coef-
ficient matrix is singular3.

Every datum defect is at the same time an invariant of the observation
equations, i.e., the left hand side does not change, even if we add to the
vector of unknowns an element

∑r
i=1α

i ci of the null space of matrix
A. In the example case, adding a constant to all heights is such an
invariant.

□ 1.3 Fixing the datum

We just saw, that if the design matrix has a rank defect r, then there
exist Rr different but equivalent solutions x, that differ from each other
only by an amount equal to a vector c ∈Rr.

◦ Each such solution we call a datum.

◦ The transformation from such a datum to another one (example
case: adding a constant to all heights in a network) we call a datum
transformation or S-transformation4.

◦ We can eliminate the datum defect by fixing r unknowns (arbitrar-
ily and/or sensibly) to chosen values.

In our example case we can fix the datum, e.g., by fixing the height value
in Helsinki harbour to mean sea level at the beginning of 1960, as we
described earlier. . .

□ 1.3.1 Constraints

Let us start from
Aci = 0, i = 1, . . . , r

where the vectors ci are mutually independent, i.e., the null space of the
matrix A is r-dimensional. Let us form the matrix

C = [ c1 c2 · · · ci · · · cr−1 cr
]
.

Now we may write the above condition as

AC = 0.

Now study the expanded matrix5

Ã =
[

A
CT

]
.

3Without special precautions, the program will probably crash on a zerodivide.
4S for similarity.
5In the publication Kallio (1998b) the matrix CT is called E.
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1.3. Fixing the datum 5

Calculate

ÃC =
[

A
CT

]
C =

[
AC

CTC

]
=
[

0
CTC

]
̸= 0.

In other words: the adjustment problem described by design matrix Ã
has no rank defect.

Such an adjustment problem is, e.g.:[
ℓ

k

]
+
[

v
0

]
=
[

A
CT

]
x̂.

Forming the normal equations6:

[
AT C

][ P 0
0 I

][
ℓ+v

k

]
= [ AT C

][ P 0
0 I

][
A

CT

]
x̂,

in which the extended normal matrix

Ñ = [ AT C
][ P 0

0 I

][
A

CT

]
=

= ATP A+CCT.

Here N = ATP A is the normal matrix of the original adjustment prob-
lem. The term CCT is new and represents the so-called inner constraints
(Cf. Kallio (1998b, pp. 69–71)). As the solution we obtain

x̂= [ATP A+CCT
]−1 [

AT C
][ P 0

0 I

][
ℓ+v

k

]
=

= [ATP A+CCT
]−1 [

ATPℓ+Ck
]
.

The most important change is the term added to the normal matrix,
CCT, which makes it invertable, i.e., Ñ−1 exists even if N−1 would not
exist. This is why the literature also speaks about (Tikhonov) regular-
ization7. The other change is the extra term Ck added on the observation
side.

Example: in the case of the above mentioned levelling network c= [ 1 1 1 1 1 1
]T

,

6Observe from the form of the weight matrix P̃ =
[

P 0
0 I

]
, that the formal

additional observation vector k has been given the formal weight matrix I (unit
matrix) and that we have assumed ℓ and k to be statistically independent (or
at least uncorrelated).
7. . . or “ridge regression”. The terminology is somewhat confusing.
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6 Free network and datum

and the observation equations extended with the inner constraint are

[
ℓ+v

k

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
0 −1 0 1 0 0
−1 0 0 1 0 0
−1 0 1 0 0 0
−1 0 0 0 0 1
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 −1 0 0 1
0 0 0 −1 1 0
1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ1

Ĥ2

Ĥ3

Ĥ4

Ĥ5

Ĥ6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Here we can see that the added condition fixes the sum (or equivalently,
the average) of the heights of all the network’s points to the given value
k, i.e.

6∑
i=1

Hi = k.

This way of fixing yields the network solution in the “centre-of-mass da-
tum”. The choice of the constant k (more generally: the vector of con-
stants k) is arbitrary from the viewpoint of the “goodness” of x̂ but it
fixes it to certain numerical values.

□ 1.3.2 Another approach: optimization

In the publication Kallio (1998b) on pages 69–71 as well as in publica-
tion Cooper (1987) the following approach is presented, however in a
somewhat unclear fashion. The least squares solution of the adjustment
problem

ℓ+v= Ax̂

is obtained by minimizing literally the (weighted) square sum of residu-
als:

ϕ = vTQ−1v= (Ax−ℓ)TQ−1 (Ax−ℓ)=
= xTATQ−1Ax−xTATQ−1ℓ−ℓTQ−1Ax+ℓTQ−1ℓ.
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1.3. Fixing the datum 7

Differentiating with respect to each x8 yields

∂ϕ

∂x
= xTATQ−1A+ ATQ−1Ax− ATQ−1ℓ−ℓTQ−1A+0,

which must vanish (stationary point). This happens if

ATQ−1Ax− ATQ−1ℓ= 0,

(because then also xTATQ−1A−ℓTQ−1A = 0) which is precisely the sys-
tem of normal equations.

Let us again study both the observation equations and the constraint
equations: [

ℓ

k

]
+
[

v
0

]
=
[

A
CT

]
x̂.

This can be interpreted as a minimization problem with “side condi-
tions”, i.e., a minimization problem with so-called Lagrange9 multipli-
ers. Let us write the quantity to be minimized as follows:

ϕ= (Ax−ℓ)TQ−1 (Ax−ℓ)+λT
(
CTx−k

)+(CTx−k
)T
λ,

where λ is the (length r) vector of Lagrange multipliers. Minimizing the
expression ϕ minimizes both the square sum of residuals and forces the
additional conditions CTx= k to be satisfied.

Differentiation with respect to x yields

∂ϕ

∂x
= xTATQ−1A+ ATQ−1Ax− ATQ−1ℓ−ℓTQ−1A+λTCT+Cλ

which again must vanish. This is achieved by putting

ATQ−1Ax− ATQ−1ℓ+Cλ= 0

i.e., the normal equations

ATQ−1Ax+Cλ= ATQ−1ℓ.

8This is allowed, because

∂xi

∂x j = δi
j =
{

1 i = j,

0 i ̸= j,

(Kronecker delta) where x= [ x1 · · · xi · · · xm
]T

; or in “vector/matrix lan-
guage”

∂x
∂x

= I.

After this we apply the chain rule.
9Joseph-Louis (Giuseppe Lodovico) Lagrange (1736-1813), French (Italian)
mathematician.
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lagrange.html.
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8 Free network and datum

Combining this with the constraint equation CTx= k yields[
ATQ−1A C

CT 0

][
x
λ

]
=
[

ATQ−1ℓ

k

]
.

Here now the Lagrange multipliers are along as unknowns, and further-
more this set of equations looks deceptively like a set of normal equa-
tions. . . the matrix on the left hand side is invertible, albeit not particu-
larly pretty.

The background for this acrobatics is the wish to find a form of the nor-
mal equations which allow the use of the generalized inverse or Moore-
Penrose10 inverse, also in the case that there is a rank defect. No more
on this here.

□ 1.3.3 Interpreting constraints as minimising a norm

The use of constraints as presented in subsection 1.3.1 can be inter-
preted as minimizing the following expression:

ϕ= (Ax−ℓ)TQ−1 (Ax−ℓ)+
(
CTx−k

)T (
CTx−k

)
.

On the right hand side of this expression we see what are mathemati-
cally two norms, and in the literature we speak of minimum norm solu-
tion. It is typical for using inner constraints, that the solution obtained
is not “deformed” by the use of the constraints, e.g., when fixing a lev-
elling network in this way, the height differences between points do not
change. The only effect is to make the solution unique.

We can replace the above expression by

ϕ= (Ax−ℓ)TQ−1 (Ax−ℓ)+λ
(
CTx−k

)T (
CTx−k

)
,

where λ can be chosen arbitrarily, as long as λ> 0. The end result does
not depend on λ, and we may even use ϕ= limλ↓0ϕ (λ), yielding still the
same solution.

In fact, any choice that picks from all equivalent solutions x just one, is
a “legal” choice. E.g.

ϕ= (Ax−ℓ)TQ−1 (Ax−ℓ)+xTx

is just fine. Then we minimize the length of the x vector ∥x∥ =
p

xTx. A
more general case is the form

(Ax−ℓ)TQ−1 (Ax−ℓ)+λxTGx,

in which G is a suitably positive (semi-)definite matrix.

If in the earlier equation we choose k= 0, we obtain

ϕ= (Ax−ℓ)TQ−1 (Ax−ℓ)+λxTCCTx,

which belongs to this group: G def= CCT.

10Cf. http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html
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1.4. Other examples 9

□ 1.3.4 More generally about regularization

Similar techniques are also used in cases, where A isn’t strictly rank
deficient, but just very poorly conditioned. In this case we speak of reg-
ularization. This situation can be studied in the following way. Let the
normal matrix be

N = ATQ−1A.

If the matrix is regular, it will also be positive definite, ie., all its eigen-
values will be positive. Also, according to theory, will the corresponding
eigenvectors be mutually orthogonal. Therefore, by a simple rotation in
x space, we may bring N “on principal axes”11:

N = RTΛR,

where Λ is a diagonal matrix having as elements the eigenvalues λi, i =
1,m (m the number of unknowns, i.e. the length of the vector x.)

If the matrix N is not regular, then some of its eigenvalues are zero.
Their number is precisely the rank defect of the matrix A. Adding a
suitable term G to N will fix this singularity.

If some of the eigenvalues of N are instead of zero only very small, we
speak of a poorly conditioned matrix12. Often it is numerically impos-
sible to invert, or inversion succeeds only by used double or extended
precision numbers. A good metric for the invertability of a matrix is its
condition number

κ= λmax

λmin
,

the ratio between the largest and the smallest eigenvalue. Matlab can
calculate this number:

kappa=cond(N);

The smaller, the better.

□ 1.4 Other examples

□ 1.4.1 Distance measurement

If we have a plane network, in which have been measured only ranges
(distances), then the observation equations are of the form:

ℓk +vk =
√(

x̂i − x̂ j
)2 +( ŷi − ŷj

)2.

11Surely you remember that a rotation matrix is orthogonal, i.e. RRT = RTR =
I or R−1 = RT .
12The whole adjustment problem is called ill-posed.
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10 Free network and datum

As we can easily see, increasing all x values – i.e., both x̂i and x̂ j – with
a constant amount will not change the right hand side of this equation.
The same with y. In other words:

Shifting (translating) all points over a fixed vector
[
∆x ∆y

]T
in the

plane does not change the observation equations.

There is still a third invariant: the expression
√(

xi − x j
)2 +(yi − yj

)2

is precisely the distance between points i and j, and it does not change
even if the whole point field were to be rotated by an angle α, e.g., about
the origin.

If we write the vector of unknowns in the form
[ · · · xi yi · · · x j yj · · · ]T,

then the c vectors take on the form:

c1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
1
0
...
1
0
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
1
...
0
1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
−yi

+xi
...

−yj

+x j
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here c1 and c2 represent the translations in the xand y directions and
c3 the rotation around the origin (let us assume for simplicity, that α is
small).

The general datum transformation vector is now

r∑
i=1

αici =∆x ·c1 +∆y ·c2 +α ·c3.

The rank defect r is 3.

□ 1.4.2 About the scale

If we measure, instead of distances, ratios between distances — which
is what happens in reality if we use a poorly calibrated distance mea-
surement instrument13 — we will have, in addition to the already men-
tioned three datum defects, a fourth one: the scale. Its c vector is c =[ · · · xi yi · · · x j yj · · · ]T .

In this case the datum defect is four. It is eliminated by fixing two points
or four co-ordinates.

13Often the poorly known effect of the atmosphere (propagation medium) on
signal propagation has a similar effect as poor calibration. Therefore it is a
good idea to make the scale into an unknown in the network sides are long.
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1.4. Other examples 11

The whole C matrix is now

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

1 0 −yi xi

0 1 +xi yi
...

...
...

...
1 0 −yj x j

0 1 +x j yj
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Cf. Kallio (1998b, p. 70).

□ 1.4.3 Angle measurement

If we have measured in the network also angles, the amount of datum
defects does not change. Also angle measurements are invariant with
respect to translation, rotation and (where appropriate) scaling.

□ 1.4.4 Azimuth measurement

A rather rare situation. If we have measured absolute azimuths (e.g.,
with a gyrotheodolite), there will not be a datum defect associated with
rotation. All the azimuths in the network will be obtained absolutely
from the adjustment.

□ 1.4.5 The case of space geodesy

In this case we measure, in three dimensions, (pseudo-)ranges. We may
think that the datum defect would be six: three translations (compo-
nents of the translation vector) and three rotation angles in space.

However,

1. if the measurements are done to satellites orbiting Earth, we ob-
tain as the implicit origin of the equations of motion the centre of
mass of the Earth. I.e., the three dimensional translation defect
disappears.

2. if the measurements are done at different times of the day, then
the Earth will have rotated about its axes between them. This
direction of the Earth’s rotation axis (two parameters) will then
appear in the observation equations, and two of the three rotation
angles disappear, if the measurements are done between stations
on the Earth’s surface and satellites orbiting in space.

Only one datum defect is left: the rotation angle around the Earth’s ro-
tation axis.
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12 Free network and datum

□ 1.4.6 Very long baseline interferometry (VLBI)

In this case the measurement targets in space are so far away, that the
centre of mass of the Earth does not appear in the observation equations.
There are four datum defects: a translation vector (i.e., the position vec-
tor of the origin of the co-ordinate system) of three components, and a
rotation angle about the rotation axis of the Earth.
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□ 2. Similarity transformations
(S-transformations) and criterion
matrices

Literature:

Kallio (1998b, s. 67–71, 141–150)

Strang van Hees (1982)

Leick (1995, p. 130–135)

Cooper (1987, p. 206–215, 311–321)

Strang and Borre (1997, p. 405–430)

Baarda (1973) partially.

□ 2.1 Complex co-ordinates and point variances

As we saw already earlier, we can advantageously express plane co-
ordinates as complex numbers:

z= x+ i y,

where (x, y) are plane co-ordinates. Now also variances can be written
complexly: if the real-valued variance and covariance definitions are

Var(x)
def= E

{
(x−E {x})2} ,

Cov(x, y)
def= E {(x−E {x}) (y−E {y})} ,

we can make corresponding definitions also in the complex plane:

Var(z)
def= E {(z−E {z}) (z−E {z})} ,

Cov(z,w)
def= E {(z−E {z}) (w−E {w})} .

Here, the overbar means complex conjugate, i.e., if z = x+ i y, then z =
x− i y.

We can see by calculating (remember that i2 =−1), that

Var(z)=Var(x)+Var(y) .

– 13 –
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14Similarity transformations (S-transformations) and criterion matrices

In other words, the point variance σ2
P ≡ σ2

x +σ2
y = Var(x)+Var(y) is the

same as the complex variance Var(z)(which thus is real valued), and
the covariance between the co-ordinates x and y of the same point van-
ishes.The variance ellipses are then always circles.

□ 2.2 S-transformation in the complex plane

If given are the co-ordinates of the point field (xi, yi), we can transform
them to the new co-ordinate system using a similarity transformation,
by giving only the co-ordinates of two points in both the old and the
new system. Let the points be A and B, and the co-ordinate differences
between the old and the new system

δzA = z′
A −zA,

δzB = z′
B −zB.

Here we assume z′
A,z′

B to be exact, i.e., the points A and B act as datum
points, the co-ordinates of which are a matter of definition and not the
result measurement and calculation.

Then we can compute the correction to the co-ordinates of point zi as the
following linear combination of the corrections for points A and B:

δzi = zi −zA

zB −zA
δzB + zi −zB

zA −zB
δzA.

We define zAB ≡ zB −zA, zAi ≡ zi −zA etc. and write in matric form:

z′
i = [

1 ziB
zAB

zAi
zAB

]⎡⎣ zi

δzA

δzB

⎤⎦=

= [
1 − ziB

zAB
− zAi

zAB

]⎡⎣ zi

zA −z′
A

zB −z′
B

⎤⎦ . (2.1)

Note that the sum of elements of the row matrix on the left hand side
vanishes:

1− ziB

zAB
− zAi

zAB
= 0.

□ 2.3 Standard form of the criterion matrix

The precision effects of an S-transformation can be studied theoretically.
Let us start by assuming, that the network has been measured by a method
of which we know the precision behaviour. Instead of the true precision,
we then often use a so-called criterion variance matrix Baarda (1973),
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2.3. Standard form of the criterion matrix 15

which describes in a simple mathematical fashion the spatial behaviour
of the point field precision.

The classification of geodetic networks into orders based upon precision
may be considered a primitive form of the criterion variance idea.

A simple rule is, e.g., that the so-called relative point mean error be-
tween two points has to be a function of the distance separating the
points, and that it does not depend upon the direction between them, and
also not on the absolute location of the points. Suitable such so-called ho-
mogeneous and isotropic spatial variance structures can be found in the
literature.

Often, following the Delft school, we use as the criterion matrix – some
sort of idealized variance matrix, close to what we would get as the vari-
ance matrix in a regular, well designed network – the following expres-
sion1:

Var(z)=α2, (2.2)

Cov(z,w)=α2 − 1
2
σ2 (z−w) (z−w)=

=α2 − 1
2
σ2 ∥z−w∥2 . (2.3)

Here, the value α2 nis arbitrary; it is always positive. One can imagine,
that it is very large, larger than 1

2σ
2 ∥z−w∥2 anywhere in the area of

study, and represents the local (close to the origin) uncertainty in co-
ordinates caused by the use of very remote fixed points.

Remark: Intuitively, one can imagine a network made up of triangles, all of
the same size, where all sides have been measured with equal precision,
and the edge of the network is allowed to travel to infinity in all direc-
tions. The edge points are kept fixed. Then

α2 →∞,

but before that

Cov(z,w)−→Var(z)− 1
2
σ2 ∥z−w∥2 .

See figure. 2.1)

1An alternative structure producing the same end results would be

Var(z) = σ2zz

Cov(z,w) = 1
2
σ2 (zw+zw)= 1

2
σ2 (zz+ww)− 1

2
σ2 [(z−w) (z−w)]=

= 1
2

(Var(z)+Var(w))− 1
2
σ2 [(z−w) (z−w)] .

The aesthetic advantage of this alternative is, that we have no need for an
arbitrary α2. However, the aestetic weakness is that it contains the absolute
point location z. The problem has only changed place.
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16Similarity transformations (S-transformations) and criterion matrices

Figure 2.1. A regular triangle network extending in all directions to infinity
□

After this definition, we can calculate the relative variance matrix be-
tween two points A and B:

Var(zAB) = Var(zA)+Var(zB)−2Cov(zA,zB)=
= 2α2 −2α2 +σ2zABzAB =+σ2zABzAB.

We see that α2 has vanished from this and the variance obtained is di-
rectly proportional to the second power of the inter-point distance:

zABzAB = (xB − xA)2 + (yB − yA)2 .

This is also a real number, i.e., there is no correlation between the co-
ordinates x and y and the error ellipses are circles.

□ 2.3.1 A more general form

A more general form of the criterion function is an arbitrary function of
the inter-point distance:

Var(z) = α2,

Cov(z,w) = α2 − 1
2
σ2 f (∥z−w∥) ,

e.g.,

Cov(z,w)=α2 − 1
2
σ2 ∥z−w∥2ν ,

where ν is a constant to be chosen. In practice, values 0.5...1.0 are suit-
able.
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2.4. S-transformation of the criterion matrix 17

□ 2.4 S-transformation of the criterion matrix

The criterion matrix of the point field zi,zA,zB can be written as follows:

Var

⎛⎝⎡⎣ zi

zA

zB

⎤⎦⎞⎠ =
⎡⎣ Var(zi) Cov(zi,zA) Cov(zi,zB)

Cov(zA,zi) Var(zA) Cov(zA,zB)
Cov(zB,zi) Cov(zB,zA) Var(zB)

⎤⎦=

=
⎡⎣ α2 α2 − 1

2σ
2ziAziA α2 − 1

2σ
2ziBziB

α2 − 1
2σ

2ziAziA α2 α2 − 1
2σ

2zABzAB

α2 − 1
2σ

2ziBziB α2 − 1
2σ

2zABzAB α2

⎤⎦ .

Because in the formula 2.1 the co-ordinates zA and zB are exact, we may
now write directly the propagation law of variances:

Var
(
z′

i
)= [ 1 − ziB

zAB
− zAi

zAB

]
Var

⎛⎝⎡⎣ zi

zA

zB

⎤⎦⎞⎠
⎡⎢⎣ 1

− ziB
zAB

− zAi
zAB

⎤⎥⎦ . (2.4)

Here the aforementioned variance matrix has been pre-multiplied by
the coefficients of equation 2.1 as a row vector, and post-multiplied by
the same coefficients transposed (i.e., as a column vector) and complex
conjugated. This is the complex version of the propagation law of vari-
ances.

In practice, because of the structure of the coefficient matrix (the row
sums vanish), the α2 term may be left out from all elements, and we
obtain

Var
(
z′

i
)=σ2 [ 1 − ziB

zAB
− zAi

zAB

]⎡⎣ 0 −1
2ziAziA −1

2ziBziB

−1
2ziAziA 0 −1

2zABzAB

−1
2ziBziB −1

2zABzAB 0

⎤⎦
⎡⎢⎣ 1

− ziB
zAB

− zAi
zAB

⎤⎥⎦ .

Careful calculation yields:

Var
(
z′

i
)= 1

2
σ2
[
ziAziA

{
ziB

zAB
+ ziB

zAB

}
+ziBziB

{
ziA

zAB
+ ziA

zAB

}
+(ziAziB +ziAziB

)]
.

Geometric interpretation: firstly we see, that this is real valued. Also:

ziAziA = ∥ziA∥2 ,

ziBziB = ∥ziB∥2 ,
ziA

zAB
+ ziA

zAB
= 2ℜ

{
ziA

zAB

}
=−2

∥ziA∥
∥zAB∥

cos∠iAB,

ziB

zAB
+ ziB

zAB
= 2ℜ

{
ziB

zAB

}
=+2

∥ziB∥
∥zAB∥

cos∠iBA,

ziAziB +ziAziB = 2ℜ {ziAziB}= 2∥ziA∥∥ziB∥cos∠AiB.

So:

Var
(
z′i
) = σ2

[
∥ziA∥2ℜ

{
ziB

zAB

}
+∥ziB∥2ℜ

{
ziA

zAB

}
+ℜ {ziAziB}

]
=

= σ2
[
∥ziA∥2 ∥ziB∥

∥zAB∥
cos∠iBA−∥ziB∥2 ∥ziA∥

∥zAB∥
cos∠iAB+∥ziA∥∥ziB∥cos∠AiB

]
=

= σ2 ∥ziA∥∥ziB∥
∥zAB∥ [∥ziA∥cos∠iBA−∥ziB∥cos∠iAB+∥zAB∥cos∠AiB] .
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18Similarity transformations (S-transformations) and criterion matrices

i

iAB

iBA

AiB

A

ziA

ziB

zAB

B

Figure 2.2. The quantities used in defining the criterion variance matrix.
□

See figure 2.2.

□ 2.5 S-transformations as members of a group

In mathematics a group G is defined (cf. http://mathworld.wolfram.com/
Group.html) as a set with the following properties:

1. If A and B are two elements in G , then the product AB is also in
G (closure)

2. Multiplication is associative, i.e., for all A,B,C in G, (AB)C =
A (BC)

3. There is an identity element I so that I A = AI = A ∀A∈G

4. There must be an inverse of each element: for each element A ∈G,
the set contains also an element B = A−1so that AB = BA = I.

The set of all invertible S-transformations (between two local datums)
forms such a group.

□ 2.5.1 The S-transformation from “infinity” to a local datum

The above described transformation of points from an “infinity datum” to
a local datum can be generalized. Equation (2.4) for one point zi can be
written, e.g., for three different points zi,zP ,zQ , so that we can compute,
in addition to the variances, also the covariances between the points.
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2.5. S-transformations as members of a group 19

The formula looks then like this:

Var

⎛⎜⎝
⎡⎢⎣ z′

i
z′

P
z′

Q

⎤⎥⎦
⎞⎟⎠=

⎡⎢⎣ 1 − ziB
zAB

− zAi
zAB

1 − zPB
zAB

−zAP
zAB

1 −zQB
zAB

−zAQ
zAB

⎤⎥⎦Var

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
zi

zP

zQ

zA

zB

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎣
1

1
1

− ziB
zAB

− zPB
zAB

−zQB
zAB

− zAi
zAB

−zAP
zAB

−zAQ
zAB

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix featuring here may also be called

S(AB)
(∞) =

⎡⎢⎣ 1 − ziB
zAB

− zAi
zAB

1 − zPB
zAB

−zAP
zAB

1 −zQB
zAB

−zAQ
zAB

⎤⎥⎦ .

This matrix is rectangular and not invertible. This only illustrates the
fact, that a datum once transformed from “infinity” to a local datum (AB)
cannot be transformed back again. The above transformation equation
is

Var
(
z(AB))= S(AB)

(∞) Var
(
z(∞))[S(AB)

(∞)

]†
,

where the symbol †, the so-called hermitian2, designates the combina-
tion of transpose and complex conjugate.

□ 2.5.2 The S-transformation between two local datums

Within a local network, there are always many alternatives for choosing
the point pair A,B that act as datum points. It is even possible to trans-
form a co-ordinate set that already refers to datum points A,B to some
other datum point pair P,Q. That can be done as follows, starting from
equation 2.1:⎡⎣ z′′

i
z′′

A −z′
A

z′′
B −z′

B

⎤⎦=

⎡⎢⎣ 1 − ziQ
zPQ

− zPi
zPQ

0 −zAQ
zPQ

−zP A
zPQ

0 −zBQ
zPQ

− zPB
zPQ

⎤⎥⎦
⎡⎢⎣ z′

i
z′

P −z′′
P

z′
Q −z′′

Q

⎤⎥⎦ .

Here we also obtain the corrections of the “old” datum points A and B,
i.e., z′′

A −z′
A and z′′

B −z′
B, to the new ′′ system, where we have as given

co-ordinates z′′
P and z′′

Q .

It is advantageous to use the following notation:⎡⎢⎣ z(PQ)
i

z(PQ)
A −z(AB)

A
z(PQ)

B −z(AB)
B

⎤⎥⎦=

⎡⎢⎣ 1 − ziQ
zPQ

− zPi
zPQ

0 −zAQ
zPQ

−zP A
zPQ

0 −zBQ
zPQ

− zPB
zPQ

⎤⎥⎦
⎡⎢⎣ z(AB)

i
z(AB)

P −z(PQ)
P

z(AB)
Q −z(PQ)

Q

⎤⎥⎦ . (2.5)

2Charles Hermite, 1822-1901, French mathematician.
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hermite.html.
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20Similarity transformations (S-transformations) and criterion matrices

Here we have as given as the datum definition in the (AB) system the co-
ordinates z(AB)

A ,z(AB)
B (left hand side) and in the (PQ) system, z(PQ)

P ,z(PQ)
Q .

The matrix is often called

S(PQ)
(AB) ≡

⎡⎢⎣ 1 − ziQ
zPQ

− zPi
zPQ

0 −zAQ
zPQ

−zP A
zPQ

0 −zBQ
zPQ

− zPB
zPQ

⎤⎥⎦ .

These transformation matrices form a mathematical group:

S(PQ)
(UV ) ·S(UV )

(AB) = S(PQ)
(AB),(

S(PQ)
(AB)

)−1
= S(AB)

(PQ),

S(AB)
(AB) = I.

i.e.,

1. transformations can be applied successively from the system (AB)
through the system (UV ) to the system (PQ);

2. the transformation (AB) → (PQ) has an inverse transformation
(PQ)→ (AB);

3. the trivial transformation S(AB)
(AB) also belongs to the group; it may

be replaced by the unit matrix I because then on the right hand
side, z(AB)

A −z(AB)
A = z(AB)

B −z(AB)
B = 0.3

Using this symbolism, we obtain

z(PQ) = S(PQ)
(AB)z

(AB),

where

z(PQ) def=

⎡⎢⎣ z(PQ)
i

z(PQ)
A −z(AB)

A
z(PQ)

B −z(AB)
B

⎤⎥⎦ def=

⎡⎢⎣ z(PQ)
i

∆z(PQ)
A

∆z(PQ)
B

⎤⎥⎦ , z(AB) def=

⎡⎢⎣ z(AB)
i

z(AB)
P −z(PQ)

P
z(AB)

Q −z(PQ)
Q

⎤⎥⎦ def=

⎡⎢⎣ z(AB)
i

∆z(AB)
P

∆z(AB)
Q

⎤⎥⎦ ,

where the “delta quantities” ∆z(AB)
P etc. are defined according to the

pattern !computed minus fixed by the datum definition”.

All S-transformations are similarity transformations that preserve an-
gles and ratios of lengths. Also the transformation formed by two suc-
cessive S-transformations is again a similarity transformation, and so
is the inverse of an S-transformation. This means that all operations
defined for the group produce again a group member.

3More precisely, the matrix of the trivial transformation is

⎡⎢⎣ 1
−1

−1

⎤⎥⎦;

however, from the viewpoint of variance propagation this is equivalent with a
unit matrix.
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□ 2.5.3 The case of several i-points

This formalism of S transformation matrices can easily be interprested
– as it should be – more generally, if we let the point number i represent
several points, i = 1, . . . ,n. Then

S(AB)
(∞) =

⎡⎢⎢⎣
In×n

[
− ziB

zAB

]
i=1,...,n

[
− zAi

zAB

]
i=1,...,n

1 − zPB
zAB

−zAP
zAB

1 −zQB
zAB

−zAQ
zAB

⎤⎥⎥⎦ ,

where the square bracketed expressions ([·]i=1,...,n) are column vectors of
length nSimilarly

S(PQ)
(AB)

def=

⎡⎢⎢⎣
In×n

[
− ziQ

zPQ

]
i=1,...,n

[
− zPi

zPQ

]
i=1,...,n

O1×n −zAQ
zPQ

−zP A
zPQ

O1×n −zBQ
zPQ

− zPB
zPQ

⎤⎥⎥⎦ ,

where O1×n is a row vector of length n full of zeroes.

□ 2.6 The S-transformation of variances

The variances are transformed in the following way:

Var
(
z(PQ))= S(PQ)

(AB)Var
(
z(AB))[S(PQ)

(AB)

]†
,

in which

z(PQ) =

⎡⎢⎣ z(PQ)
i

∆z(PQ)
A

∆z(PQ)
B

⎤⎥⎦ , z(AB) =

⎡⎢⎣ z(AB)
i

∆z(AB)
P

∆z(AB)
Q

⎤⎥⎦ ,and
[
S(PQ)

(AB)

]†
=

⎡⎢⎣ 1 0 0
− ziQ

zPQ
−zAQ

zPQ
−zBQ

zPQ

− zPi
zPQ

−zP A
zPQ

− zPB
zPQ

⎤⎥⎦ .

Here, the delta quantities are∆z(PQ)
A = z(PQ)

A −z(AB)
A , ∆z(AB)

P = z(AB)
P −z(PQ)

P ,
etc. As reference value we always use the location that was fixed for the
datum point when defining the datum.
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□ 3. The affine S-transformation

□ 3.1 Triangulation and the finite elements method

The finite elements method is a way to discretize partial differential
equations, such as are used, e.g., in statics, structural mechanics, geo-
physics, meteorology and astrophysics. The domain of computation is
divided up into simple parts, finite elements, that have common border
lines, surfaces and nodes. The we define base functions having value 1
in only one nodal point, and value 0 in all other nodal points. Inside
the element, the base functions are simple, e.g., linear functions. Across
border lines or surfaces, they are continuous.

The differential equations that are to be solved are now discretized, tak-
ing on a form reminiscent of normal equations (Ritz-Galerkin), making
possible the solving for the unknowns, i.e., the function values at the
nodes.

The most common element is the triangle, in which case we use as base
functions linear functions of the co-ordinates. The surface of the Earth
may be suitably divided into triangles using so-called Delaunay triangu-
lation.

□ 3.2 Bilinear affine transformation

In the publication Anon. (2008) it is proposed to use for the plane co-
ordinate transformation between the GauSS-Krüger projection co-ordinates
of ETRS-89 and the ykj co-ordinate system, a triangle-wise affine trans-
formation.

Inside each triangle, the affine transformation can be written in the form

x(2) = ∆x+a1x(1) +a2 y(1)

y(2) = ∆y+b1x(1) +b2 y(1)

where
(
x(1), y(1)

)
are the point co-ordinates in ETRS-GK27, and

(
x(2), y(2)

)
are the co-ordinates of the same point in ykj. This transformation for-
mula has six parameters: ∆x, ∆y, a1,a2,b1 ja b2. If, in the three corners
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24 The affine S-transformation

of the triangle, are given both
(
x(1), y(1)

)
and

(
x(2), y(2)

)
, we can solve for

these uniquely.

The transformation formula obtained is inside the triangles linear and
continuous across the edges, but not differentiable: the scale is discon-
tinuous across triangle edges. Because the mapping is not conformal
either, the scale will also be dependent upon the direction considered.

A useful property of triangulation is, that it can be locally “patched”: if
better data is available in the local area – a denser point set, whose co-
ordinate pairs

(
x(i), y(i)

)
, i = 1,2 are known – then we can take away only

the triangles of that area and replace them by a larger number of smaller
triangle, inside which the transformation will become more precise. This
is precisely the procedure that local players, like municipalities, can use
to advantage.

The equations above can also be written in vector form:[
x(2)

y(2)

]
=
[
∆x
∆y

]
+
[

a1 a2

b1 b2

][
x(1)

y(1)

]
.

Generally the co-ordinates in the (1)and (2) datums are close to each
other, i.e.,

[
∆x ∆y

]T
are small. In that case we may write the shifts

δx def= x(2) − x(1) =∆x+ (a1 −1) x(1) +a2 y(1),

δy def= y(2) − y(1) =∆y+b1x(1) + (b2 −1) y(1).

If we now define

∆x def=
[
∆x
∆y

]
, A=

[
a11 a12

a21 a22

]
def=
[

a1 −1 a2

b1 b2 −1

]
,

we obtain shortly

δx=∆x+Ax(1).

Also in this generally, if the co-ordinates are close together, the elements
of A will be “small”. Let there be a triangle ABC. Then we have given
the shift vectors of the corners

δxA = ∆x+Ax(1)
A ,

δxB = ∆x+Ax(1)
B ,

δxC = ∆x+Ax(1)
C .
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3.2. Bilinear affine transformation 25

A

B

C

=

pC = = ω(△ABP)
ω(△ABC)

= ω(△APC)
ω(△ABC)

pB =

pA =

= ω(△PBC)
ω(△ABC)

P

Figure 3.1. Computing barycentric co-ordinates as the ratio of the surface ar-
eas of two triangles

□

Write this out in components, with ∆x,A on the right hand side:

δxA = ∆x+a11x(1)
A +a12 y(1)

A

δyA = ∆y+a21x(1)
A +a22 y(1)

A

δxB = ∆x+a11x(1)
B +a12 y(1)

B

δyB = ∆y+a12x(1)
B +a22 y(1)

B

δxC = ∆x+a11x(1)
C +a12 y(1)

C

δyC = ∆y+a21x(1)
C +a22 y(1)

C

or in matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎣

δxA

δyA

δxB

δyB

δxC

δyC

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 x(1)
A 0 y(1)

A 0
0 1 0 x(1)

A 0 y(1)
A

1 0 x(1)
B 0 y(1)

B 0
0 1 0 x(1)

B 0 y(1)
B

1 0 x(1)
C 0 y(1)

C 0
0 1 0 x(1)

C 0 y(1)
C

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆x
∆y
a11

a21

a12

a22

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

from which they can all be solved.

Let us write the coordinates (x, y) as follows:

x = pAxA + pBxB + pCxC,

y = pA yA + pB yB + pC yC,

with the additional condition pA + pB + pC = 1. Then also

δx = pAδxA + pBδxB + pCδxC, (3.1)

δy = pAδyA + pBδyB + pCδyC. (3.2)

The triplet
(

pA, pB, pC
)

is called the barycentric co-ordinates of point P
See figure 3.1.

They can be found as follows (geometrically pA = ω(∆BCP)
ω(∆ABC) etc., where ω

is the surface area of the triangle) using determinants:
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26 The affine S-transformation

pA =

⏐⏐⏐⏐⏐⏐
xB xC x
yB yC y
1 1 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
, pB =

⏐⏐⏐⏐⏐⏐
xC xA x
yC yA y
1 1 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
, pC =

⏐⏐⏐⏐⏐⏐
xA xB x
yA yB y
1 1 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
.

These equations can be directly implemented in software.

□ 3.3 Applying the method of affine transformation in a
local situation

If we wish to apply the method proposed in the JHS on the local level,
we go through the following steps:

1. Construct a suitable triangulation for the area. Choose from the
national triangulation a suitable set of triangles covering the area.
Divide up the area in sufficiently small triangles, and formulate
the equations for computing the co-ordinate shifts of the corner
points of the triangles.

2. Study the error propagation in the chosen geometry and find it to
be acceptable.

3. The transformation formulas, coefficients and all, are implemented
in software.

The best would be an implementation in which the processing is dis-
tributed: the co-ordinates find a server and transformation software
suitable for them. A denser and more precise solution is found for some
municipalities, for other, the national solution will do. On the Internet,
this would be implementable in the frame of an RPC based architecture
(e.g., XML/SOAP).

□ 3.4 A theoretical analysis of error propagation

The precision behaviour of the method can be studied by simulating the
computation of co-ordinates with synthetic but realistic-looking errors.
We can also use real observational material, from which we can leave out
one point at a time, and investigate how well this approximation method
succeeds in reproducing this point’s co-ordinate shifts (cross-validation).

On the other hand we can also investigate the problem theoretically. We
can start from the knowledge that the “old” network, from which the ykj
co-ordinates originate, was measured by traditional triangulation and
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3.4. A theoretical analysis of error propagation 27

Figure 3.2. Error propagation in triangles of different sizes. Only qualita-
tively.

□

polygon measurements that have a certain known precision behaviour1.
Instead of the true precision, we often use a so-called criterion variance
matrix Baarda (1973), which describes in a simple mathematical way
the spatial behaviour of the precision of the point field.

□ 3.4.1 Affine transformations

In the same way as for similarity transformations, we can treat the error
propagation of affine transformations formally.

If we have three points A,B,C the co-ordinates of which are given, then
the co-ordinate correction of an arbitrary point zi can be written as fol-
lows (complexly):

z′
i = zi + pA

i
(
z′

A −zA
)+ pB

i
(
z′

B −zB
)+ pC

i
(
z′

C −zC
)

.

Again in matrix form:

z′
i =
[

1 −pA
i −pB

i −pC
i

]
⎡⎢⎢⎢⎣

zi

zA −z′
A

zB −z′
B

zC −z′
C

⎤⎥⎥⎥⎦ .

1Compared to them, GPS measurements can be considered absolutely precise
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28 The affine S-transformation

Here again z′
A,z′

B,z′
C are the fixed co-ordinates given as the (ABC) da-

tum definition.

We write the affine datum transformations again in the familiar form2

(equation 2.5):

⎡⎢⎢⎢⎣
z(PQR)

i
z(PQR)

A −z(ABC)
A

z(PQR)
B −z(ABC)

B
z(PQR)

C −z(ABC)
C

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
1 −pP

i −pQ
i −pR

i
0 −pP

A −pQ
A −pR

A
0 −pP

B −pQ
B −pR

B
0 −pP

C −pQ
C −pR

C

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

z(ABC)
i

z(ABC)
P −z(PQR)

P
z(ABC)

Q −z(PQR)
Q

z(ABC)
R −z(PQR)

R

⎤⎥⎥⎥⎦ .

Here all elements (p values) are, otherwise than in the case of a similar-
ity transformation (S-transformation), all real valued.

Let us again write symbolically:

S(PQR)
(ABC)

def=

⎡⎢⎢⎢⎣
1 −pP

i −pQ
i −pR

i
0 −pP

A −pQ
A −pR

A
0 −pP

B −pQ
B −pR

B
0 −pP

C −pQ
C −pR

C

⎤⎥⎥⎥⎦ ,

where the p values are computed as explained before:

pP
A = ω (∆QRA)

ω (∆PQR)
=

⏐⏐⏐⏐⏐⏐
xQ xR xA

yQ yR yA

1 1 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
xP xQ xR

yP yQ yR

1 1 1

⏐⏐⏐⏐⏐⏐
,

etc. For humans, this is hard, but not for computers.

Also affine transformations form a mathematical group. Two succes-
sive affine transformations (ABC)→ (UVW)→ (PQR) produce again an
affine transformation, the inverse transformation of (ABC) → (PQR),
i.e., (PQR) → (ABC) does so as well, and the trivial tramnsformation
(ABC)→ (ABC) does also.

□ 3.4.2 The affine transformation and the criterion matrix

We start again from the standard form of the criterion matrix 2.2, 2.3:

Var(z) = α2,

Cov(z,w) = α2 − 1
2
σ2 (z−w) (z−w) .

2Change of notation: z→ z(ABC) and z′ → z(PQR).
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3.5. The case of height measurement 29

Propagation of variances yields

Var
(
z′

i
)= [ 1 −pA

i −pB
i −pC

i

]
Var(zi,zA,zB,zC)

⎡⎢⎢⎢⎣
1

−pA
i

−pB
i

−pC
i

⎤⎥⎥⎥⎦=

= [ 1 −pA
i −pB

i −pC
i

] ·
·

⎡⎢⎢⎢⎣
α2 α2− 1

2σ
2ziAziA α2− 1

2σ
2ziBziB α2− 1

2σ
2ziCziC

α2− 1
2σ

2ziAziA α2 α2− 1
2σ

2zABzAB α2− 1
2σ

2zACzAC

α2− 1
2σ

2ziBziB α2− 1
2σ

2zABzAB α2 α2− 1
2σ

2zBCzBC

α2− 1
2σ

2ziCziC α2− 1
2σ

2zACzAC α2− 1
2σ

2zBCzBC α2

⎤⎥⎥⎥⎦ ·

·

⎡⎢⎢⎢⎣
1

−pA
i

−pB
i

−pC
i

⎤⎥⎥⎥⎦
Note that again, the sum of elements of this row vector, 1−pA

i −pB
i −pC

i =
0 and α2 drops out of the equation. We obtain

Var
(
z′

i
) = σ2 [ 1 −pA

i −pB
i −pC

i

] ·
·

⎡⎢⎢⎢⎣
0 −1

2ziAziA −1
2ziBziB −1

2ziCziC

−1
2ziAziA 0 −1

2zABzAB −1
2zACzAC

−1
2ziBziB −1

2zABzAB 0 −1
2zBCzBC

−1
2ziCziC −1

2zACzAC −1
2zBCzBC 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
−pA

i
−pB

i
−pC

i

⎤⎥⎥⎥⎦=

= −1
2
σ2 [ 1 −pA

i −pB
i −pC

i

] ·
·

⎡⎢⎢⎢⎣
0 ∥ziA∥2 ∥ziB∥2 ∥ziC∥2

∥ziA∥2 0 ∥zAB∥2 ∥zAC∥2

∥ziB∥2 ∥zAB∥2 0 ∥zBC∥2

∥ziC∥2 ∥zAC∥2 ∥zBC∥2 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
−pA

i
−pB

i
−pC

i

⎤⎥⎥⎥⎦ .

Unfortunately we cannot readily make this formula neater. This is no
problem, however, for the computer.

□ 3.5 The case of height measurement

In height measurement, the quantity being studied is a scalar, h, which
nevertheless is a function of location z. Therefore we may write h (z).

In the case of height measurement we know, that the relative or inter-
point errors grow with the square root of the distance between the points
(because the measurement method is levelling). For this reason it is wise
to study the more general case where the error is proportional to some
power ν of the distance, which thus generally is not ν= 1 but ν= 0.5.
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30 The affine S-transformation

Then we can (still in the case of location co-ordinates) define the stan-
dard form of the criterion matrix as follows:

Var(z) = α2,

Cov(z,w) = α2 − 1
2
σ2 (z−w)ν (z−w)ν =

= α2 − 1
2
σ2 ∥z−w∥2ν .

We again obtain for the relative variance

Var(zAB) = Var(zA)+Var(zB)−2Cov(zA,zB)=
= 2α2 −2α2 +σ2 (zABzAB)ν =+σ2 (zABzAB)ν .

Let us apply this now to height measurement. We obtain (ν= 0.5)

Var(∆hAB)=σ2 ∥zAB∥

and
σ∆hAB =σ

√
∥zAB∥,

as is well known.

In realistic networks, however, due to the increased strength brought by
the network adjustment, also in the case of location networks ν< 1, and
for levelling networks we may have v < 0.5. The values given here are
however a decent first approximation.

In the case of GPS measurements we know, that the relative precision of
point locations can be well described by a power law of the distance with
an exponent of ν≈ 0.5 (the so-called Bernese rule-of-thumb).
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□ 4. Determining the shape of an object
(circle, sphere, straight line)

(More generally: building and parametrizing models in preparation for
adjustment)

Literature:

Kallio (1998b, p. 140–143)

Kallio (1998a)

Krakiwsky (1983)

Norri (1999a)

Strang and Borre (1997, p. 441–444)

Leick (1995, p. 123-130)

□ 4.1 The general case

Let be given a figure in the plane, on the edge of which

f (x, y)= 0.

Edge points of this figure have been measured n times:

(xi, yi) , i = 1, . . . ,n

Let us assume, that the shape of the figure depends on exterior parame-
ters a j, j = 1, . . . ,m. I.e.,

f
(
x, y;a j

)= 0.

Let us call the observations (xi, yi) , i = 1, . . . ,n. We construct approximate
values that are sufficiently close to the observations, and for which holds

f
(

x(0)
i , y(0)

i ;a(0)
j

)
= 0.

Now we can write the TAYLOR expansion:

f
(
xi, yi;a j

)= f
(

x(0)
i , y(0)

i ;a(0)
j

)
+ ∂ f
∂x

⏐⏐⏐⏐
x=x(0)

i

∆xi+ ∂ f
∂y

⏐⏐⏐⏐
y=y(0)

i

∆yi+
m∑

j=1

∂ f
∂a j

∆a j,
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32 Determining the shape of an object (circle, sphere, straight line)

where
∆xi = xi − x(0)

i ,∆yi = yi − y(0)
i , ja ∆a j = a j −a(0)

j .

The expression f
(
xi, yi;a j

)− f
(

x(0)
i , y(0)

i ;a(0)
j

)
must vanish.

This is how we obtain our final observation equation

∂ f
∂xi

∆xi + ∂ f
∂yi

∆yi +
m∑

j=1

∂ f
∂a j

∆a j = 0.

Here, the two left hand side terms constitute a linear combination of
the edge point observations (xi, yi) which is computable if the partial
derivatives of the edge function f

(
x, y;a j

)
with respect to x and y can be

computed. The same for the elements of the design matrix d f
da j

.

More generally, if we had, instead of a curve, a surface in three-dimensional
space, we would obtain as observation equations:

∂ f
∂xi

∆xi + ∂ f
∂yi

∆yi + ∂ f
∂zi

∆zi +
m∑

j=1

∂ f
∂a j

(
a j −a0

j
)= 0.

If the observations (xi, yi) have the same weight (and are equally precise
in the x and y directions), we must still require, that

∥∇ f ∥ =
√(

∂ f
∂xi

)2

+
(
∂ f
∂yi

)2

+
(
∂ f
∂zi

)2

is a constant, in other words, does not depend on the values of xi and
yiOnly then are the variances of the “replacement observable” ℓi ≡ ∂ f

∂xi
∆xi+

∂ f
∂yi
∆yi + ∂ f

∂zi
∆zi the same, and one may use a unit matrix as the weight

coefficient matrix.

□ 4.2 Example: circle

The equation for the circle is

x2 + y2 = r2,

where r is the circle’s radius. The equation for a freely positioned circle
is

(x− X )2 + (y−Y )2 = r2,

where (X ,Y ) are the co-ordinates of the circle’s centre.

The function f is

f
(
x, y;a j

)= (x− X )2 + (y−Y )2 − r2
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4.2. Example: circle 33

and the vector a j:

a=
⎡⎣ X

Y
r

⎤⎦ .

Partial derivatives:
∂ f
∂x

= 2(x− X ) ,
∂ f
∂y

= 2(y−Y ) ,
∂ f
∂a1

=−2(x− X ) ,
∂ f
∂a2

=−2(y−Y ) ,
∂ f
∂a3

=−2r.

These partial derivatives are evaluated at suitable approximate values
X (0),Y (0), r(0).

x

y

1

4

3

2

We get as observation equations(
x(0)

i − X (0))∆xi+
(

y(0)
i −Y (0))∆yi−

(
x(0)

i − X (0))∆X−(y(0)
i −Y (0))∆Y−r(0)∆r = 0,

from which the linearized unknowns ∆X ,∆Y and ∆r (corrections to the
assumed approximate values) can be solved if the number of equations
exceeds three.

Let the following observation points be given: (4,4) , (1,4) , (4,2) and (3,1) .
Let the starting or approximate values be X0 = Y 0 = 2,r0 = 2. We obtain
approximate values for the observations as follows. From the figure we
see, that

x(0)
i = X (0) + r(0) cosϕ(0)

i ,

y(0)
i = Y (0) + r(0) sinϕ(0)

i ,

where ϕ is the direction angle. Graphically we obtain suitable values for
ϕ, and thus

i ϕ(0) xi yi x(0)
i y(0)

i ∆xi ∆yi x(0)
i − X (0) y(0)

i −Y (0)

1 45◦ 4 4 3.414 3.414 0.586 0.586 1.414 1.414
2 120◦ 1 4 1.000 3.732 0.000 0.268 −1.000 1.732
3 0◦ 4 2 4.000 2.000 0.000 0.000 2.000 0.000
4 −45◦ 3 1 3.414 0.586 −0.414 0.414 1.414 −1.414
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Thus we obtain

(
x(0)

i − X (0))∆xi +
(

y(0)
i −Y (0))∆yi =

⎡⎢⎢⎢⎣
1.657
0.464
0.000

−1.171

⎤⎥⎥⎥⎦ ,

and we get for our observation equation⎡⎢⎢⎢⎣
1.657
0.464
0.000

−1.171

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
1.414 1.414 2

−1.000 1.732 2
2.000 0.000 2
1.414 −1.414 2

⎤⎥⎥⎥⎦
⎡⎣ ∆X
∆Y
∆r

⎤⎦ .

Solving this by means of Matlabin/Octave yields∆X = 0.485,∆Y = 0.966,∆r =
−0.322, and thus X = 2.485,Y = 2.966, r = 1.678. This solution was drawn
into the graphic. As can be seen is the solution for r rather poor, which
undoubtedly is due to nonlinearity together with poor starting values.
Iteration would improve the solution.

□ 4.3 Exercises

If we wish to determine a straight line going through a point cloud, we
have the following regression alternatives:

◦ Traditional linear regression:

yi +vi = a+bxi,

minimizes s ≡∑i v2
i by means of the variables a,b.

Esim.E.g., calculating a: demand

∂s
∂a

= 0= ∂

∂a

∑
i

(a+bxi − yi)2 = 2n (a+bx− y) ,

where x, y are the co-ordinates of the centre of mass of the n mea-
sured points (xi, yi). If we choose the origin or our co-ordinates
such that

x = y= 0

(so-called barycentric co-ordinates), it follows that 2na = 0 ⇒ a = 0.
In other words, the regression line goes through the centre of mass
of the measured points.

◦ Interchange the roles of x and y and perform a regression of x with
respect to y:

yi = a+b (xi +wi) ,

minimize
∑

w2
i .
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◦ Orthogonal regression:

yi −ui

√
1−b2 = a+ bp

1−b2

(
xi +ui

√
b2
)

, (4.1)

minimize
∑

u2
i .

1. Prove that also when regressing x with respect to y, the regression
line goes through the centre of mass of the measured points.

Answer: s =∑w2
i is to be minimized. Calculate in the same way

ds
da

= d
da

∑
w2

i =
∑ d

da

(
yi −a−bxi

b

)2

=

= 2 ·−1
b
·
∑

i

(
yi −a−bxi

b

)
=−2n

b2 (y−a−bx) ;

in barycentric co-ordinates x = y = 0 this becomes zero iff (if
and only if):

2na
b2 = 0 ⇒ a = 0.

(A requirement in this case is, that b ̸= 0.)

2. The same proof in the case of orthogonal regression.

Answer: Minimize s =∑u2
i . First move ui to the left in equation

4.1:

ui

√
1−b2 +bui

√
b2 = a+ bp

1−b2
xi − yi ⇒

⇒ ui

(√
1−b2 +b2

)
= a+ bp

1−b2
xi − yi,

ds
da

= d
da

∑
i

(
a+ bp

1−b2 xi − yi

b2 +
p

1−b2

)2

=

= 2 · 1

b2 +
p

1−b2
·
∑

i

a+ bp
1−b2 xi − yi

b2 +
p

1−b2
=

= 2n(
b2 +

p
1−b2

)2

(
a+ bp

1−b2
x− y

)
,

which again vanishes in the case of x = y = 0 iff a = 0. In this
case this will work even if b = 0.

3. In the figure are drawn the lines found by the three different re-
gression methods. Identify them according to the above classifica-
tion.
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3
2

1

Answer: The least tilted line is the traditional regression. The
middle one is the orthogonal regression.The steepest line is
the regression of x with respect to y.
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□ 5. 3D network, industrial measurements
with a system of several theodolites

Literature:
Norri (1999b)
Norri (1999a)
Kärkäs (1993)
Strang and Borre (1997, p. 363–368)
Salmenperä (1995, p. 17–31)

□ 5.1 Three dimensional theodolite measurement (EPLA)

We describe here the method according to the model of Cooper and Al-
lan, Allan (1987). In this method, we observe with theodolites that are
oriented with respect ot each other, the point P.

A

ηB

B

B′∠A
b

x

z

∠B

P ′

µq

y

λp

P

ηA

Figure 5.1. Cooper & Allan method
□
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383D network, industrial measurements with a system of several theodolites

In this method, the distance in space between the lines AP and BP is
minimized. The directions of these lines are represented by the unit
vectors p and q, respectively; the inter-theodolite vector is b. These
vectors are now, with the origin in point A and the X axis along AB:

b=
⎡⎣ xB

0
zB

⎤⎦ ,

p=
⎡⎣ cosηA cos∠A

cosηA sin∠A
sinηA

⎤⎦ , q=
⎡⎣ −cosηB cos∠B

cosηB sin∠B
sinηB

⎤⎦ .

Here η is the elevation angle.

Now the closing vector is

e=−λp+b+µq,

where we choose the multipliersλ and µ so as to minimise the length or
norm of e . Then, the best estimate of point P will be the centre point of
e , i.e.

xP = 1
2

(
λp+b+µq

)
.

Below we provide an example of how to do the computation in an ap-
proximate fashion.

□ 5.2 Example

The point P is observed using two theodolites from two standpoints. The
co-ordinates of the standpoints A,B are in the co-ordinate frame of the
factory hall:

x (m) y (m) z (m)

A 9.00 12.40 2.55
B 15.45 16.66 2.95

The angle measurements are the following:

Point Horizontal (gon) ∠ Vertical η (gon)

A 61.166 14.042
B 345.995 9.081
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The measurements are done in a local co-ordinate system defined by the
theodolites. See figure 5.1. We minimize the length of the vector

e≡−λp+b+µq

. p and q are unit vectors.

Approximative method:

1. Compute at first only the horizontal co-ordinates x, y of point P in
the local co-ordinate frame defined by the theodolites.

2. Compute the parameters λ ja µ.

3. Compute the length ∥e∥of the vertical difference vector e .

Answer: let us first compute the projection of b = AB upon the
horizontal plane:

∥b⊥∥ =
√

(15.45−9.00)2 + (16.66−12.40)2 =
= p

41.6025+18.1476= 7.7298m

In the horizontal plane, the triangle AB′P ′ is

∠P = 200−61.166− (400−345.995)= 84.829gon.

The sine rule:

AP⊥ = AP ′ = AB⊥
sin∠B
sin∠P

= 7.7298
0.75016
0.97174

= 5.9672m.

This distance is projected to the the horizontal plane. In space the
slant range is

AP = AP⊥
cosηA

= 6.1510m=λ.

Now, using the vertical angle

zP = zA + AP⊥ tanηA = 2.55+5.9672tan(14.042 gon)= 3.8880m.

BP⊥ = B′P ′ = AB⊥
sin∠A
sin∠P

= 7.7298
0.81965
0.97174

= 6.5200m.

Again, this distance is in the horizontal plane. In space

BP = BP⊥
cosηB

= 6.6028m=µ.

Again

zP = zB +BP⊥ tanηB = 2.95+6.5200 tan(9.081 gon)= 3.8864m.

So
∥e∥ = zP,B − zP,A = 3.8864−3.8880=−1.6mm.

Co-ordinates in the system defined by the theodolite (origin point
A, x axis direction AB, z axis up):

xP = AP⊥ cos∠A = 5.9672 ·0.5729m= 3.4184m

yP = AP⊥ sin∠A = 5.9672 ·0.81965m= 4.8910m

zP = 1
2

(
zP,1 + zP,2

)− zA = 3.8872m−2.55m= 1.3372m
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403D network, industrial measurements with a system of several theodolites

We must note that this is an approximate method, which is acceptable
only if the vertical angles η are close to 0g, i.e., the measurements are
in the horizontal direction: then, the shortest vector s is almost oriented
vertically. Of course also an exact least squares solution (for a general,
tilted vector s) is possible.

□ 5.3 Different ways to create the scale

◦ By knowing the distance between the theodolite points A,B . To-
day’s theodolites contain a distance measurement component, but
at these distances of just a few metres its precision may be insuffi-
cient compared to the angle measurement.

◦ By using a known scale rod or staff, and measuring markings on
the staff, the distance between which is precisely known through
calibration.

◦ By including at least two points the distance between which is
known, into the measurement set-up.
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□ 6. Deformation analysis

Literature:

Ahola (2001)

FIG Commission 6 (1998, p. 191–256)

Kallio (1998b, p. 95–101)

Cooper (1987, p. 331–352)

Vaníček and Krakiwsky (1986, p. 611–659)

□ 6.1 One dimensional deformation analysis

The simplest case is that, where the same levelling line or network has
been measured twice:

hi (t1) ,i = 1, . . . ,n

hi (t2) ,i = 1, . . . ,n

and the corresponding variance matrices of the heights are available:
Q (t1) and Q (t2).

Obviously the comparison is possible only, if both measurements are first
reduced to the same reference point of datum. E.g., choose the first point
as the datum point:

h(1)
1 (t1)= h(1)

1 (t2) (= some known value, e.g.,0)

After this the variance matrices for both measurement times or epochs
are only of size (n−1)× (n−1), because now point 1 is known and no
longer has (co-)variances.

Q(1) (t1)=

⎡⎢⎢⎢⎣
q(1)

22 q(1)
23 · · · q(1)

2n
q(1)

32 q(1)
33 · · · q(1)

3n
...

... . . . ...
q(1)

n2 q(1)
n3 · · · q(1)

nn

⎤⎥⎥⎥⎦ ,
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and the same for Q(1) (t2). Here

q(k)
ii = Var

(
h(k)

i
)

,

q(k)
i j = Cov

(
h(k)

i ,h(k)
j

)
.

Now, calculate the height differences between the two epochs and their
variances, assuming that the masurements made at times t1 and t2 are
statistically independent of each other:

∆h(1)
i = h(1)

i (t2)−h(1)
i (t1) , i = 2, . . . ,n;

Q(1)
∆h∆h =Q(1) (t1)+Q(1) (t2) .

After this it is intuitively clear that the following quantity has the χ2
n−1

distribution:
E = [∆h(1)]T [Q(1)

∆h∆h

]−1
∆h(1).

Statistical testing uses this quantity. Here

∆h(1) =

⎡⎢⎢⎢⎣
∆h(1)

2
∆h(1)

3
...

∆h(1)
n

⎤⎥⎥⎥⎦
is the vector of height differences.

□ 6.2 Two dimensional deformation analysis

This goes in the same way as in the one dimensional case, except that

1. the co-ordinates are treated as complex numbers, and

2. there are two datum points, the co-ordinates of which are consid-
ered known.

So, if there are n points, then the size of the variance matrix is now
(n−2)× (n−2). Also the variance matrix is complex valued.

The testing variate is

E = [d(AB)]† [Q(AB)
dd

]−1
d(AB),

where d is the complex vector of all co-ordinate differences:

d(AB) =

⎡⎢⎢⎢⎣
x(AB)

3 (t2)− x(AB)
3 (t1)+ i

[
y(AB)

3 (t2)− y(AB)
3 (t1)

]
x(AB)

4 (t2)− x(AB)
4 (t1)+ i

[
y(AB)

4 (t2)− y(AB)
4 (t1)

]
x(AB)

n (t2)− x(AB)
n (t1)+ i

[
y(AB)

n (t2)− y(AB)
n (t1)

]
⎤⎥⎥⎥⎦ .

AB is the chosen datum or starting point for both epochs t1 and t2. The
other points are numbered 3,4, . . . ,n. The symbol † signifies both trans-
position and complex conjugate, the so called hermitian:

A† ≡ AT = AT .
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Warning In Cooper’s book Cooper (1987, s. 335) there is an error under
equation (9.52), the right equation is (inverse, not transpose):

Ω= d̂tQ−1
d d̂.

□ 6.3 Example

Let the adjusted co-ordinates xi (t1) , i = 1, . . . ,4 of the deformation net-
work from the first measurement epoch be the following:

Point x (m) y (m)
1 1234.123 2134.453
2 2224.045 2034.487
3 2232.495 975.456
4 1148.865 879.775

and the co-ordinates of the second measurement epoch xi (t2) , i = 1, . . . ,4
be the following:

Point x (m) y (m)
1 1234.189 2134.485
2 2224.004 2034.433
3 2232.451 975.497
4 1148.929 879.766

Intermezzo: so we are computing:

d x (m) y (m)
1 −0.066 −0.032
2 +0.041 +0.054
3 +0.044 −0.041
4 −0.064 +0.009

dTd=
4∑

i=1

[
{xi (t2)− xi (t1)}2 + {yi (t2)− yi (t1)}2

]= 0.017771m2

(Similarly with complex numbers:

d†d=
4∑

i=1

{zi (t2)−zi (t1)} {zi (t2)−zi (t1)}= 0.017771m2,

as can be verified by computation. Here zi ≡ xi+ i yi and zi = xi− i yi.)

Let the precisions (mean co-ordinate errors) of the co-ordinates of the
first epoch be xi (t1) ja yi (t1) m0,1 = ±5cm, and the precisions of the co-
ordinates of the second measurement xi (t2) , yi (t2) tarkkuudet m0,2 =
±1cm. The variance matrices of the co-ordinate vectors are thus Q1 =
m2

0,1I and Q2 = m2
0,2I.
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1. Compute the mean value m0 of a single co-ordinate difference ∆x =
x (t2)− x (t1). Propagation of variances yields

m2
0 = m2

0,1 +m2
0,2 = (25+1) cm2 = 26cm2.

Now the variance matrix of co-ordinate differences is

Q =Q1 +Q2 = m2
0I.

From this still m0 =
p

26cm= 5.1cm= 0.051m.

2. Compute the deformation’s testing variate

E = dTQ−1d = dTd
m2

0
.

Here d = x2 − x1 is the shift vector, i.e., the vector of co-ordinate
differences between the epochs. Because we assume that both co-
ordinate sets are given in the same, common datum, the starting
points of which nevertheless don’t belong to the set 1−4, we may
assume that all co-ordinates are free. In that case the number of
degrees of freedom is h = 2n = 8, where n is the number of points.
The variance matrix of the co-ordinates of the shift vector d is m2

0I.

Answer:
E = 1

0.0026m2

(
dTd

)= 0.017771m2

0.0026m2 = 6.835.

3. The quantity E is distributed according to the χ2
8 distribution. If

the limit value of this distribution for a significance level of 95% is
15.51 (cf. Cooper (1987) page 355), has in this case a deformation
probably taken place?

Answer: No, it has not. 6.835< 15.51.

4. If, however, the assumed precisions were m0,1 = m0,2 =±1cm, would
then, at a significance level of 95%, probably a deformation have
taken place?

Answer: Yes, it would. m2
0 = (1+1) cm2 = 0.0002m2 ja E = 1

0.0002m2

(
dTd

)=
0.017771m2

0.0002m2 = 88.9> 15.51.

□ 6.4 Strain tensor and affine deformation

We start from the known formula for the affine transformation:

x(2) = ∆x+a1x(1) +a2 y(1),

y(2) = ∆y+b1x(1) +b2 y(1).
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Now we apply this, instead of to the relationship between two different
datums, to the relationship between a given point field seen at two dif-
ferent epochs t1and t2:

x (t2) = ∆x+a1x (t1)+a2 y (t1) ,

y (t2) = ∆y+b1x (t1)+b2 y (t1) ,

or in matrix form:[
x
y

]
(t2)=

[
∆x
∆y

]
+
[

a1 a2

b1 b2

][
x
y

]
(t1) .

Now we define the scaling and rotation parameters:

m = 1
2

(a1 +b2) ,

θ = 1
2

(b1 −a2) ,

allowing us to write[
a1 a2

b1 b2

]
=
[

m 0
0 m

]
+
[

0 −θ
θ 0

]
+
[ 1

2 (a1 −b2) 1
2 (b1 +a2)

1
2 (b1 +a2) −1

2 (a1 −b2)

]
.

The rightmost matrix is symmetric and we may write it as

S =
[ 1

2 (a1 −b2) 1
2 (b1 +a2)

1
2 (b1 +a2) −1

2 (a1 −b2)

]
=
[

sxx sxy

sxy syy

]
.

This matrix is called the strain tensor. It describes how the shape of
a little square of Earth surface deforms, and is thus the only “intrinsic”
descriptor of deformation (The parameter m describes the change in sur-
face area; θ describes rotational motion which neither changes surface
area nor shape.).

The tensor has two main components which are at an angle of 45◦ to
each other: 1

2

(
sxx − syy

) = 1
2 (a1 −b2) (“principal strain”) describes elon-

gation in the x direction together with compression in the y direction —
or the opposite if negative —, while sxy = 1

2 (b1 +a2) (“shear strain”) de-
scribes extension in the 45◦ direction together with compression in the
orthogonal −45◦ direction.

This is easily generalized to three dimensions, where there are three
principal strains and three shear strains. Also, the analysis can be done
over a whole area, using a DELAUNAY triangulation of the set of mea-
sured points. Sometimes this has been done to study crustal deforma-
tions after a seismic event.

C F T A B IC F T A B I



46 Deformation analysis

Figure 6.1. The strain tensor’s two main components
□
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□ 7. Stochastic processes and time
series

Kirjallisuutta:
Santala (1981, s. 31-46)
Papoulis (1965)

□ 7.1 Definitions

A stochastic process is a stochastic variable, the domain of which is a
function space.

A stochastic variable x is a recipe for producing realizations x1, x2, x3, . . . xi, . . .
Every realization value has a certain probability of happening. If we re-
peat the realizations or “throws” often enough, the long-term percentage
of that value happening tends towards the probability value.

First example E.g., throwing a die: the domain is {1,2,3,4,5,6} and the
probability of realization is p1 = p2 = ·· · = p6 = 1

6 , or approx. 16%.

Second example angle measurement with a theodolite: the domain is
R, all real values1 and the probability distribution is

p (x)= 1
σ
p

2π
e−

1
2 ( x−µ

σ )2
,

where σ is the mean error (standard deviation) of the distribution,
and µ its expectancy. Here is is assumed, that the distribution is
normal, i.e., the Gaussian bell curve.
In this case we speak of probability density and not the probability
of a certain realization value x. The probability of a realization
falling within a certain interval (x1, x2) is computed as the integral

p =
∫ x2

x1

p (x)dx.

The stochastic process x (t) is now a stochastic variable, the realizations
of which are functions x1 (t) , x2 (t) , x3 (t) , . . . , xi (t) , . . .

1More precisely: all rational values Q.
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The argument t is usually time, but can also be, e.g., place
(
ϕ,λ

)
on the

Earth’s surface.

A time series is a series obtained from a stochastic process by specializing
the argument t to more or less regularly spaced, chosen values t j, j =
1,2, . . . In other words, a stochastic process that is regularly measured.

A stochastic process — or a time series – is called stationary if its statis-
tical properties do not change, when the argument t is replaced by the
argument t+∆t.

□ 7.2 Variances and covariances of stochastic variables

Let us remember the definitions of the variance and covariance of stochas-
tic variables:

Var
(
x
) def= E

{(
x−E

{
x
})2
}

Cov
(
x, y
) def= E

{(
x−E

{
x
})(

y−E
{

y
})}

and correlation:

Corr
(
x, y
) def= Cov

(
x, y
)√

Var
(
x
)√

Var
(

y
) .

The correlation is always between -100% and 100%.

□ 7.3 Auto- and cross-covariance and -correlation

Studying stochastic processes is based on studying the dependencies be-
tween them. The autocovariance function of a stochastic process de-
scribes the internal statistical dependency of one process:

Ax (t1, t2) = Cov
{

x (t1) , x (t2)
}=

= E
{[

x (t1)−E
{

x (t1))
}] ·[x (t2)−E

{
x (t2))

}]}
.

Similarly we can define the cross covariance function between two dif-
ferent processes:

Cxy (t1, t2) = Cov
{

x (t1) , y (t2)
}=

= E
{[

x (t1)−E
{

x (t1))
}] ·[y (t2)−E

{
y (t2))

}]}
.

In case the processes in question are stationary, we obtain

Ax (t1, t2) = Ax (∆t) ,

Cxy (t1, t2) = Cxy (∆t) ,
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where ∆t = t2 − t1.

Autocorrelation is defined in the following way2:

Corrx (∆t)
def= Ax (t1, t2)√

Ax (t1, t1) Ax (t2, t2)
= Ax (∆t)

Ax (0)
.

Here one sees, that if ∆t = 0, the autocorrelation is 1, and otherwise it is
always between −1 and +1.

Cross-correlation is defined in the following non-trivial way:

Corrxy (∆t)
def= Cxy (∆t) /

√
Ax (0) A y (0)

all the time assuming stationarity.

Remember that

Ax (0)=Var
(
x (t)
)= E

{(
x (t)−E

{
x (t)
})2
}

.

2Note that in the book Papoulis (1965) an entirely different definition od auto-
and cross-correlation is used!

C F T A B IC F T A B I



50 Stochastic processes and time series

Because3⏐⏐E{(x (t1)−E
{

x (t1))
})(

y (t2)−E
{

y (t2))
})}⏐⏐≤

≤
√

E
{(

x (t1)−E
{

x (t1))
})2
}

E
{(

y (t2)−E
{

y (t2))
})2
}

,

the cross correlation is always between −1 and +1, and is 1 if both ∆t = 0
and x = y.

□ 7.4 Estimating autocovariances

This is done in roughly the same way as variance estimation in general.
If we have, of the stochastic process x (t), realizations xi (t) , i = 1, . . . ,n,
then an unbiased estimator (stationarity assumed) is:

Âx (∆t)
def= 1

n−1

n∑
i=1

lim
T→∞

1
T

∫ T

0
[(xi (t)− x (t)) (xi (t+∆t)− x (t+∆t))]dt,

3Why? Eric Weisstein xgives the following proof (http://mathworld.wolfram.
com/StatisticalCorrelation.html):
Let be given the stochastic quantities x and y — which may be values of the
stochastic process x (t1) and x (t2), or values from two different processes x (t1)
and y (t2) — define normalized quantities:

ξ= x√
Var

(
x
) , η= y√

Var
(

y
) .

Then

Cov
(
ξ,η
)= Cov

(
x, y
)√

Var
(
x
)

Var
(

y
) =Corr

(
x, y
)

.

The following variances must be positive:

0≤Var
(
ξ+η) = Var

(
ξ
)+Var

(
η
)+2 ·Cov

(
ξ,η
)

,

0≤Var
(
ξ−η) = Var

(
ξ
)+Var

(
η
)−2 ·Cov

(
ξ,η
)

.

Also

Var
(
ξ
)= Var

(
x
)√(

Var
(
x
))2

= 1,Var
(
η
)= 1.

It follows that

0 ≤ 2+2 ·Cov
(
ξ,η
)

,

0 ≤ 2−2 ·Cov
(
ξ,η
)

,

i.e.,
−1≤Cov

(
ξ,η
)=Corr

(
x, y
)≤ 1.
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where

x (t)
def= 1

n

n∑
i=1

xi (t) .

Again assuming the process x (t) to be stationary4, and that we have
available n process realizations xi

(
t j
)

, i = 1, . . .n; j = 1, . . . ,m or time se-
ries, we may construct also from those an estimator. Nevertheless, either

◦ it must be assumed that the arguments t j are equi-spaced, i.e.,
t j+1 − t j = δt, or

◦ all possible values for ∆t must be classified into classes or “bins”
[0,δt), [δt,2δt), [2δt,3δt), . . .

Let us choose the first alternative. Then we can compute

Âx (kδt)≡ 1
n−1

n∑
i=1

1
m−k−1

m−k∑
j=1

[(
xi
(
t j
)− x

(
t j
))(

xi
(
t j+k

)− x
(
t j+k

))]
.

So we use for computing every autocovariance value only those argu-
ment values of the process, that have a suitable distance between them.
The problem is, that we can compute these autocovariances only for
those discrete values 0,δt,2δt, . . ..

The other mentioned approach has the same problem through the back
door: the size of the classes is finite.

Remark. In case we have a stochastic process of place
(
ϕ,λ

)
and not

of time, we use bins according to the spherical distance ψ. This is
common practice in gravity field theory. The often made assump-
tion corresponding to stationarity is homogeneity (the statistical
properties of the process do not depend on place) and isotropy (don’t
depend either on the compass heading between two points P,Q,
but only on the angular distance ψPQ .

□ 7.5 Autocovariance and spectrum

Let us assume a stationary stochastic process x (t),which at the same
time is noise, i.e., its expectancy vanishes:

E {x (t)}= 0.

The Fourier transform of the autocovariance of this process is (we use
here the notation t for the earlier ∆t):

S (ω)=
∫ +∞

−∞
Ax (t) e−iωtdt. (7.1)

4. . . and so-called ergodic.
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This function is called PSD (Power Spectral Density) . Another formula
for computing it is

S (ω)= lim
T→∞

1
2T

⏐⏐⏐⏐∫ T

−T
x (t) e−iωtdt

⏐⏐⏐⏐2 , (7.2)

i.e., the long term “average power” on different frequencies ω. This for-
mula can be used for empirically computingS, if from the process itself
x (t) we have available a realization xi (t). The former formula is used if
we have rather a closed expression for the auto covariance.

The inverse Fourier equation for computing Axfrom S (ω) is

Ax (t)= 1
2π

∫ +∞

−∞
S (ω) eiωtdω.

Proofs can be found in the book Papoulis (1965).

□ 7.6 AR(1), lineaariregressio ja varianssi

□ 7.6.1 Least-squares regression in absence of autocorrelation

Linear regression starts from the well known equation

y= a+bx

if given are many point pairs (xi, yi) , i = 1, . . .n. This is more precisely an
observation equation

yi = a+bxi +ni,

where the stochastic process ni models the stochastic uncertainty of the
measurement process, i.e., the noise.

We assume the noise to behave so, that the variance is a constant in-
dependent of i (“homoskedasticity”), and that the covariance vanishes
identically (“white noise”)5:

Var
(
ni
) = σ2,

Cov
(
ni,n j

) = 0, i ̸= j.

This is called the statistical model.

We may write the observation equations into the form⎡⎢⎢⎢⎢⎢⎣
y1

y2
...

yn−1

yn

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 x1

1 x2

1
...

1 xn−1

1 xn

⎤⎥⎥⎥⎥⎥⎦
[

a
b

]
,

5This set of assumptions is often called i.i.d., “independent, identically dis-
tributed”
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where now y def= [ y1 y2 · · · yn
]T

is the vector of observations (in an

n-dimensional abstract vector space), x def= [ a b
]T

is the vector of un-
knowns (parameters), and

A def=

⎡⎢⎢⎢⎢⎢⎣
1 x1

1 x2
...

...
1 xn−1

1 xn

⎤⎥⎥⎥⎥⎥⎦
is the design matrix. This way of presentation is referred to as the func-
tional model.

Based on the assumed statistical model we may compute the least-squares
solution with the help of the normal equations:(

ATA
)

x̂= ATy.

More concretely:

ATA =
[

n
∑

x∑
x
∑

x2

]
,

or (Cramèr’s rule):(
ATA

)−1 = 1

n
∑

x2 −(∑x
)2

[ ∑
x2 −∑x

−∑x n

]
,

from which

â =
∑

x2∑ y−∑x
∑

xy

n
∑

x2 −(∑x
)2 ,

b̂ = −∑x
∑

y+n
∑

xy

n
∑

x2 −(∑x
)2 ,

which are the least squares estimators of the unknowns. Their precision
(uncertainty, mean error) is given (formal error propagation) by the di-
agonal elements of the inverted normal matrix

(
AT A

)−1, scaled by the
factor σ:

σa =σ
√ ∑

x2

n
∑

x2 −(∑x
)2 , σb =σ

√
n

n
∑

x2 −(∑x
)2 .

Most often we are particularly interested in the trend b, meaning that
we should compare the value b̂ obtained with its own mean error σb. If
σ is not known a priori, it should be evaluated from the residuals: the
square sum of residuals∑

v2 =
∑(

y− â− b̂x
)2

has the expectancy of (n−2)σ2, where n− 2 is the number of degrees
of freedom (overdetermination), 2 being the number of unknowns esti-
mated. Or

σ̂2 =
∑

v2

n−2
.
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□ 7.6.2 AR(1) process

The assumption made above, that the observational errors ni are uncor-
related between themselves, is often wrong. Nevertheless least squares
regression is such a simple method – available, e.g., in popular spread-
sheets and pocket calculators – that it is often used even though the zero
correlation requirement is not fulfilled.

If the autocorrelation of the noise process ni does not vanish, we can
often model it as a so-called AR(1) (auto-regressive first-order) or Gauss-
Markov process. Such a process is described as a Markov chain:

ni+1 = ρni + ñi, (7.3)

where ρ is a suitable parameter, 0< ρ < 1, and ñ is a truly non-correlating
“white noise” process:

Var
(
ñi
) = σ̃2,

Cov
(
ñi, ñ j

) = 0, i ̸= j.

Write now the observation equation two times, multiplied the second
time around by −ρ:

yi+1 = a+bxi+1 +ni+1,

−ρyi = −ρa−ρbxi −ρni ,

. . . and sum together:

yi+1 −ρyi = (
a−ρa

)+b
(
xi+1 −ρxi

)+(ni+1 −ρni
)

.

This equation is of the form

Yi = A+bX i + ñi,

where

ñi as described above,

A = (
1−ρ)a,

X i = xi+1 −ρxi,

Yi = yi+1 −ρyi.

i.e., the formula for the non-correlated linear regression.

The recipe now is:

1. Compute X i and Yi according to above formulae;

2. Solve Â and b̂ according to non-correlated linear regression;

3. Compute â = (1−ρ)−1 Â;
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4. The ratio between σ̃2 and σ2: from equation 7.3 it follows, that
based on stationarity

σ2 = ρ2σ2 + σ̃2,

in other words, (
1−ρ2)σ2 = σ̃2.

So, one either computes an empirical σ̃2 and transforms it into a
σ2 of the original observations, or the given σ2 of the original ob-
servations is transformed to σ̃2 in order to evaluate the precisions
of the estimators of A and b.

5. From point 4 we may also conclude that

σ2
b,AR(1) =

σ2
b,nocorr

1−ρ2 ,

where σ2
b,nocorr is the “naively” calculated variance of the trend pa-

rameter.

Conclusion: if there is autocorrelation in the data, a simple linear re-
gression will give a much too optimistic picture of the trend param-
eter b’s mean error, and thus also of the statistical significance of
its difference from zero.
If the data is given as an equi-spaced function of time, i.e.,Jos data
on annettuna ajan tasavälisenä funktiona, siis xi = x0 + (i−1)∆t,
we may connect the parameter ρ of the AR(1) process in a simple
way to its correlation length: the solution of equation 7.3 (without
noise) is

n j = ρ j−ini = e( j−i) lnρ = exp
(
− ( j− i)∆t

τ

)
,

where τ is the correlation length in units of time.

For consideration of non-strictly-AR(1) processes, see Tamino (2008).

□ 7.7 Dimensional analysis

One can say that the dimension of process x (t) is, e.g., [length]. In equa-
tion 7.1 we then have for the dimension of Ax (t) [length]2, and for the
dimension of S (ω)[length]2 [time]. Also according to equation 7.2 the di-
mension is ([length]× [time])2 / [time].

□ Self-test questions

1. What is the definition of a stochastic process?
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56 Stochastic processes and time series

2. Describe autocovariance, cross-covariance, autocorrelation and cross-
correlation.

3. How can one empirically estimate the autocovariance of a stochas-
tic process?

4. What is isotropy, what is homogeneity?

5. What is the relationship between the autocovariance function and
the power spectral density?

6. What is the main risk of using ordinary least-squares regression
for determining the linear trend in a time series of correlated data?
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□ 8. Variants of adjustment theory

□ 8.1 Adjustment in two phases

Often we run into the situation, where a local network must be con-
nected to “given” fixed points. Then ℓ1 are the observations in the local
network and ℓ2 are the co-ordinates of the points given by the higher
order network. Let x2 be the co-ordinate unknowns of which there also
exist “given” co-ordinates.

The observation equations are now

ℓ1 +v1 = A1x̂1 + A2x̂2

ℓ2 +v2 = Ix̂2

– i.e., the A matrix is

A =
[

A1 A2

0 I

]
.

The variance matrix is

Σ=
[
Σ1 0
0 Σ2

]
=σ2

0

[
Q1 0
0 Q2

]
.

Here, Q1,Q2 are called weight coefficient matrices, and σ0 the mean
error of unit weight (this re-scaling of the variances makes the numerics
better behaved).

The observation, residuals and unknowns vectors are

ℓ=
[
ℓ1
ℓ2

]
,v=

[
v1
v2

]
,x=

[
x̂1

x̂2

]
.

Here Q2 is the weight coefficient matrix (i.e., a re-scaled variance ma-
trix) of the given points. We get as the solution

x̂= (ATQ−1A
)−1

ATQ−1ℓ,

in which

ATQ−1A =
[

AT
1 Q−1

1 A1 AT
1 Q−1

1 A2

AT
2 Q−1

1 A1 AT
2 Q−1

1 A2 +Q−1
2

]
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and

ATQ−1ℓ=
[

AT
1 Q−1

1 ℓ1
AT

2 Q−1
1 ℓ1 +Q−1

2 ℓ2

]
,

and thus[
AT

1 Q−1
1 A1 AT

1 Q−1
1 A2

AT
2 Q−1

1 A1 AT
2 Q−1

1 A2 +Q−1
2

][
x̂1

x̂2

]
=
[

AT
1 Q−1

1 ℓ1
AT

2 Q−1
1 ℓ1 +Q−1

2 ℓ2

]
.

From this we see that generally the adjusted ℓ̂2 = x̂2 differs from the
original value ℓ2!

Generally this is not acceptable.

The co-ordinates of a higher-order network may not change as the result
of the adjustment of a lower-order network!

How to solve this quandary?

One proposed solution is the so-called pseudo-least squares method (Baarda).

Put in front of the matrix Q2 a coefficient α, so[
AT

1 Q−1
1 A1 AT

1 Q−1
1 A2

AT
2 Q−1

1 A1 AT
2 Q−1

1 A2 +α−1Q−1
2

][
x̂1

x̂2

]
=
[

AT
1 Q−1

1 ℓ1
AT

2 Q−1
1 ℓ1 +α−1Q−1

2 ℓ2

]
.

Now, let α→ 0, i.e, assume the given points to be infinitely precise.

Multiply the last row with α:

[
AT

1 Q−1
1 A1 AT

1 Q−1
1 A2

αAT
2 Q−1

1 A1 αAT
2 Q−1

1 A2 +Q−1
2

][
x̂1

x̂2

]
=
[

AT
1 Q−1

1 ℓ1
αAT

2 Q−1
1 ℓ1 +Q−1

2 ℓ2

]
.

Now let α→ 0:[
AT

1 Q−1
1 A1 AT

1 Q−1
1 A2

0 Q−1
2

][
x̂1

x̂2

]
=
[

AT
1 Q−1

1 ℓ1
Q−1

2 ℓ2

]
or (multiply the last row with Q2):[

AT
1 Q−1

1 A1 AT
1 Q−1

1 A2

0 I

][
x̂1

x̂2

]
=
[

AT
1 Q−1

1 ℓ1
ℓ2

]
.

As can be seen do the now given co-ordinates no longer change: x̂2 = ℓ2.

The solution x̂1 is obtained from the following normal equations:(
AT

1 Q−1
1 A1

)
x̂1 = AT

1 Q−1
1 ℓ1 − AT

1 Q−1
1 A2ℓ2 = AT

1 Q−1
1
(
ℓ1 − A2ℓ2

)
.

If we look closer at this equation, we see that it tells that x̂1 is a linear
combination of the observations

[
ℓ1 ℓ2

]T
: thus we may write

x̂1 = L1ℓ1 +L2ℓ2,
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in which

L1 = (
AT

1 Q−1
1 A1

)−1
AT

1 Q−1
1 ,

L2 = (
AT

1 Q−1
1 A1

)−1
AT

1 Q−1
1 (−A2) .

The true weight coefficient matrix of x̂1 will now be, according to the
propagation law:

Qx̂1x̂1 = L1Q1LT
1 +L2Q2LT

2 =
= (

AT
1 Q−1

1 A1
)−1 (

AT
1 Q−1

1 A1 + AT
1 A2Q−1

2 AT
2 A1

)(
AT

1 Q−1
1 A1

)−1
,

after some simplifications.

Note that this is bigger than the “naively” computed weight coefficient
matrix

Q∗
x̂1 x̂1

= (AT
1 Q−1

1 A1
)−1

,

which does not consider that the given co-ordinates, even though these
were assumed “errorless” for the sake of computing the co-ordinates,
nevertheless contain error which will propagate into the local solution
x̂1.

So:

◦ We compute the estimates of the unknowns using the “wrong” vari-
ance matrix;

◦ and then we compute the variances of those estimators “right”,
using the propagation law of variances.

□ 8.2 Using a priori knowledge in adjustment

Sometimes we estimate unknowns from observations, even though we
already know “something” about those unknowns. E.g., we estimate the
co-ordinates of points from geodetic observations, but those co-ordinates
are already approximately known, e.g., read from a map (we have found
the points to be measured, haven’t we!) The measurement was planned
using approximate co-ordinates, so apparently they already exist.

Let there be for the unknowns a priori values as well as a variance ma-
trix Σ, or weight coefficient matrix Q,

x,Σxx =σ2
0Qxx

and let the observation equations be

ℓ+v= Ax̂.

Let the weight coefficient matrix of the vector of observations be

Qℓℓ

C F T A B IC F T A B I

https://users.aalto.fi/~mvermeer/tasj-fi.pdf#section.8.2


60 Variants of adjustment theory

and let the values of observations and a priori unknowns be statisti-
cally independent from each other. Then we may extend the observation
equations: [

ℓ

x

]
+
[

v
vx

]
=
[

A
I

]
x̂.

If we define formally

Ã def=
[

A
I

]
,Q̃ def=

[
Qℓℓ 0

0 Qxx

]
, ℓ̃ def=

[
ℓ

x

]
, ṽ def=

[
v
vx

]
the solution is

x̂ =
[

ÃTQ̃−1 Ã
]−1

ÃTQ̃−1ℓ̃=

= [
ATQ−1

ℓℓ A+Q−1
xx
]−1 [

ATQ−1
ℓℓ ℓ+Q−1

xx x
]
.

If we are talking about linearized observation equations, and in the lin-
earization the same approximate values have been used as are being
used now as a priori values (i.e., x0 = x, in other words, ∆x = x−x0 = 0),
we obtain

∆̂x= [ATQ−1
ℓℓ A+Q−1

xx
]−1 [

ATQ−1
ℓℓ∆ℓ+Q−1

xx∆x
]= [ATQ−1

ℓℓ A+Q−1
xx
]−1

ATQ−1
ℓℓ∆ℓ.

The variance matrix of the unknowns after adjustment (a posteriori) is,
based on the propagation law

Qx̂x̂ = [
ATQ−1

ℓℓ A+Q−1
xx
]−1
[

ATQ−1
ℓℓ (Q∆ℓ∆ℓ)Q−1

ℓℓ A+
+Q−1

xx (Q∆x∆x)Q−1
xx

][
ATQ−1

ℓℓ A+Q−1
xx
]−1 =

= [
ATQ−1

ℓℓ A+Q−1
xx
]−1

,

because Var
(
∆ℓ
)=Q∆ℓ∆ℓ =Qℓℓ and Var

(
∆x
)=Q∆x∆x =Qxx.

Sometimes this method is used in order to stabilize unstable observation
or normal equations. The name for this is Tikhonov-regularization or
ridge regression. Inverting the above matrix may be impossible, e.g., if
the matrix A has a rank defect. Then, adding the matrix Q−1

xx makes its
inversion possible.

Often it is assumed that
Q−1

xx =αI,

where α is called a regularization parameter. When this is done just in
order to stabilize the equations, it should be remembered, that it means
adding information to the solution. If this information does not really
exist, the result of the adjustment will be too optimistic about the preci-
sion. In this case statistical testing is a good way of finding out, as the
residuals will be overly large.
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□ 8.3 Stacking of normal equations

Let us assume, that we have available the mutually independent obser-
vations ℓ1 ja ℓ2 which depend on the same unknowns x. The observation
equations are

ℓ1 +v1 = A1x̂

ℓ2 +v2 = A2x̂

and the weight coefficient matrices of the observations are Q1 and Q2.
Then the joint weight coefficient matrix is

Q =
[

Q1 0
0 Q2

]
and the joint system of equations

ℓ+v = Ax̂,

where ℓ =
[
ℓ1
ℓ2

]
, v =

[
v1
v2

]
and A =

[
A1

A2

]
. The system of normal

equations reads (
ATQ−1A

)
x̂= ATQ−1ℓ

i.e., (
AT

1 Q−1
1 A1 + AT

2 Q−1
2 A2

)
x̂= (AT

1 Q−1
1 ℓ1 + AT

2 Q−1
2 ℓ2

)
, (8.1)

from which we see, that the total solution is obtained by summing up
both the normal matrices ATQA and the normal vectors ATQ−1ℓ. The
procedure is called normals stacking.

In GPS computations this principle is exploited; the results of the ad-
justment of GPS networks are often distributed in a compact “normals”
form. Those can then be easily combined. SINEX = Software Indepen-
dent EXchange format.

If, of the elements of the vector of unknowns x , only a small part de-
pends on both observation vectors ℓ1 and ℓ2, we can exploit this to solve
the system of equations 8.1 efficiently in phases (Helmert-Wolf block-
ing). More generally there exist so-called sparse matrix algorithms that
exploit the special situation where the elements of the matrices A and
Q vanish for the most part.

□ 8.4 Helmert-Wolf blocking

□ 8.4.1 Principle

Often, a large adjustment problem can be naturally divided into small
parts. E.g., the adjustment of a large international triangulation net-
work can be executed in this way, that firstly we adjust every country
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62 Variants of adjustment theory

separately; then the border point co-ordinates obtained are fed into a
continental adjustment; and the corrections at the border points ob-
tained from that are again propagated back into every country’s internal
points.

This procedure was used, e.g., in the European ED50 triangulation ad-
justment, as well as in the NAD (North American Datum) adjustment
in North America.

The theory is the following: let there be two classes of unknowns,

1. ”global” unknowns x̂e on which observations ℓ1,ℓ2, . . . ,ℓn in all coun-
tries 1,2, . . . ,n depend, i.e., the “top level”, “European” unknowns;

2. ”local” unknowns x̂i, i = 1,2, . . .n on which only depend observa-
tions ℓi in a single country i.

Then the observation equations are1

⎡⎢⎢⎢⎣
ℓ1
ℓ2
...
ℓn

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
v1
v2
...

vn

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
A1 B1

A2 B2
. . . ...

An Bn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

x̂1

x̂2
...

x̂n

x̂e

⎤⎥⎥⎥⎥⎥⎥⎦ .

From this we obtain the normal equation system:⎡⎢⎢⎢⎢⎢⎢⎣
AT

1 Q−1
1 A1 AT

1 Q−1
1 B1

AT
2 Q−1

2 A2 AT
2 Q−1

2 B2
. . . ...

AT
nQ−1

n An AT
nQ−1

n Bn

BT
1 Q−1

1 A1 BT
2 Q−1

2 A2 · · · BT
nQ−1

n An
∑n

i=1 BT
i Q−1

i Bi

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x̂1

x̂2
...

x̂n

x̂e

⎤⎥⎥⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎢⎢⎣
AT

1 Q−1
1 ℓ1

AT
2 Q−1

2 ℓ2
...

AT
nQ−1

n ℓn∑n
i=1 BT

i Q−1
i ℓi

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Q i
def= Qℓiℓi is the variance matrix of the observations ℓi — we as-

sume that the observations of different “countries” ℓi,ℓ j don’t correlate.

Note that the above normal matrix is “arrow shaped” (↘), i.e., a “bor-
dered main diagonal matrix”. Such matrices occur often in adjustment
theory and make possible a simplified treatment.

1Note the “normals stacking” is a special case of this: A i = 0, i = 1, . . . ,n and the
xi do not exist.
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In more symbolic form:[
NI I NIE

NEI NEE

][
xI

xE

]
=
[

bI

bE

]
,

where the definitions of the various sub-matrices and -vectors are clear.

This matric equation represents two equations:

NI IxI +NIExE = bI ,

NEIxI +NEExE = bE.

Multiply the first equation with the matrix NEI N−1
I I and subtract it from

the second, in order to eliminate the “local” unknowns xi, i = 1, . . . ,n:(
NEE −NEI N−1

I I NIE
)

xE = bE −NEI N−1
I I bI , (8.2)

the so-called reduced system of normal equations, from which we obtain
x̂E. Written out:(∑n

i=1 BT
i

(
I i −Q−1

i A i
(

AT
i Q−1

i A i
)−1 AT

i

)
Q−1

i Bi

)
xE =

=
(∑n

i=1 BT
i

(
I i −Q−1

i A i
(

AT
i Q−1

i A i
)−1 AT

i

)
Q−1

i ℓi

)
.

After that, by substituting into the first equation:

NI IxI = bI −NIEx̂E,

i.e., the local solutions. Written out:⎡⎢⎢⎢⎣
AT

1 Q−1
1 A1

AT
2 Q−1

2 A2
. . .

AT
nQ−1

n An

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2
...

xn

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
AT

1 Q−1
1
(
ℓ1 −B1x̂E

)
AT

2 Q−1
2
(
ℓ2 −B2x̂E

)
...

AT
nQ−1

n
(
ℓn −Bnx̂E

)
⎤⎥⎥⎥⎦ ,

so, the individual solution of a country is obtained nicely separated:(
AT

i Q−1
i A i

)
xi = AT

i Q−1
i
(
ℓi −Bix̂E

)
, (8.3)

from which we obtain the estimators x̂i, i = 1, . . . ,n.

The major advantage of Helmert-Wolf is, that the new normal equations
(8.2, 8.3) have only the size of the vectors xE or xi, i = 1, . . .n, and not of
the whole system,

[
x1 x2 · · · xn xE

]T
. This matters because the

computational work required for solving the whole csystem of equations
(like also the work of inverting a matrix) is proportional to the third
power of its size!
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□ 8.4.2 Variances

The variance matrix of the whole vector of unknowns
[

xI xE
]T

is the
inverse N−1 of the normal matrix

N ≡
[

NI I NIE

NEI NEE

]
This inverse matrix is

N−1 =
[

N−1
I I +N−1

I I NIEQENEI N−1
I I −N−1

I I NIEQE

−QENEI N−1
I I QE

]
,

QE ≡ (
NEE −NEI N−1

I I NIE
)−1

,

which we can easily verify by multiplication N ·N−1 = I.

It follows that the variances of the least-squares estimators are:

Var
{

x̂E
}=σ2

0QE;

Var
{

x̂I
}=σ2

0
[
N−1

I I +N−1
I I NIEQENEI N−1

I I
]
.

Because NI I (and thus also N−1
I I ) is a block diagonal matrix

NI I =

⎡⎢⎢⎢⎣
AT

1 Q−1
1 A1

AT
2 Q−1

2 A2
. . .

AT
nQ−1

n An

⎤⎥⎥⎥⎦ ,

we may write separately for each local block i = 1, . . . ,n:

Var
{

x̂i
} = σ2

0

[(
AT

i Q−1
i A i

)−1 +(AT
i Q−1

i A i
)−1

NiEQENEi
(

AT
i Q−1

i A i
)−1
]
=

=σ2
0

[(
AT

i Q−1
i A i

)−1 +(AT
i Q−1

i A i
)−1

AT
i Q−1

i BiQEBT
i Q−1

i A i
(

AT
i Q−1

i A i
)−1
]

.

With the global adjustment, correlation is introduced between the in-
ternal unknowns of different country blocks i ̸= j However, computing
all covariances Cov

{
x̂i, x̂ j

}
, even if possible, is rarely sensible or use-

ful. The savings of Helmert-Wolf are mostly achieved by not computing
them.

□ 8.4.3 Practical application

In international co-operation it has been the habit of sending only the
“buffer matrices” of country i,

(
BT

i

(
I i −Q−1

i A i
(

AT
i Q−1

i A i
)−1

AT
i

)
Q−1

i Bi

)
and (

BT
i

(
I i −Q−1

i A i
(

AT
i Q−1

i A i
)−1

AT
i

)
Q−1

i ℓi

)
,

to the international computing centre, which in turn sends the vector x̂E

and variance matrix QE computed by it, back to the individual countries.

Among the major advantages of theHelmert-Wolf method are still, that

C F T A B IC F T A B I

https://users.aalto.fi/~mvermeer/tasj-fi.pdf#subsection.8.4.2
https://users.aalto.fi/~mvermeer/tasj-fi.pdf#subsection.8.4.3


8.5. Intersection in the plane 65

σx

σy

p
λ1

p
λ2

Figure 8.1. The parameters of the error ellipse.
□

1. the amounts of data to be processed at one time remain small

2. Also local observational material can be tested separately before
its use in a “jumbo adjustment”, and remove from them possible
gross errors

3. The greater part of the computation, consisting of national/provincial/regional/per-
different-epoch partial adjustments, can be executed independently
from each other, e.g., parallelly. HELMERT-WOLF is the perfect ex-
ample of parallel processing!

□ 8.5 Intersection in the plane

□ 8.5.1 Precision in the plane

Intersection from two known points is a good example for error propaga-
tion, It is also a good example for optimization, because optimization of
the result can be done in at least three different ways, which all three in
different ways make sense.

We start from the error ellipse (figure 8.1), which describes the precision
of determination of the co-ordinates (x, y) in the plane. If the variance
matrix of the vector x̂≡ [ x y

]T
is

Σx̂x̂ =
[
σ2

x σxy

σxy σ2
y

]
,

the formula for the error ellipse is

x̂TΣ−1
x̂x̂ x̂= 1.

The matrix Σx̂x̂ has two eigenvalues, λ1 and λ2, the square roots of which
are the major and minor semi-axes of the ellipse, see figure.

The size of the error ellipse can now be determined in the following dif-
ferent ways:

1. The radius of the circle inside which the ellipse fits. This is the
minimization of the expression Max (λ1,λ2), i.e., the largest eigen-
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66 Variants of adjustment theory

value of the matrix must be made as small as possible. This so-
called minimax optimization corresponds in practice to so-called
tolerance, i.e., the error may not exceed a pre-set value.

2. The mean point error, σP ≡
√
σ2

x +σ2
y = p

λ1 +λ2. The trace of
the variance matrix Σx̂x̂, i.e., the sum of the main diagonal ele-
ments. This corresponds to minimizing the diagonal of the rect-
angle within which the error ellipse fits (“television screen size in
inches”).

3. Minimize the matrix determinant det
(
Σx̂x̂
)
. This corresponds to

minimizing the quantity
p
λ1λ2,i.e., the surface area of the ellipse.

□ 8.5.2 The geometry of intersection

Let, for simplicity, the co-ordinates of the points A,B be (−1,0) and
(+1,0). From these points have been measured directions to the point
P with a constant precision. If the co-ordinates of point P are (x, y), the
observation equations will be:

α = arctan
( y

x+1

)
,

β = arctan
( y

x−1

)
.

We linearize:

dα = 1

1+( y
x+1

)2 ·
(

1
x+1

d y− y
(x+1)2 dx

)
,

dβ = 1

1+( y
x−1

)2 ·
(

1
x−1

d y− y
(x−1)2 dx

)
.

After simplifying:

dα = 1
(x+1)2 + y2 ((x+1)d y− ydx) ,

dβ = 1
(x−1)2 + y2 ((x−1)d y− ydx) .

The A matrix is

A =
[

x+1
(x+1)2+y2

−y
(x+1)2+y2

x−1
(x−1)2+y2

−y
(x−1)2+y2

]
=
[ 1

a cosα − 1
a sinα

1
b cosβ − 1

b sinβ

]
,

where a =
√

(x+1)2 + y2 ja b =
√

(x−1)2 + y2.

The normal matrix:

N = ATA =

=
⎡⎣ ( cosα

a

)2 +
(

cosβ
b

)2
− sinαcosα

a2 − sinβcosβ
b2

− sinαcosα
a2 − sinβcosβ

b2

( sinα
a

)2 +
(

sinβ
b

)2

⎤⎦ .
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The determinant:

det N =
(

cos2αsin2α

a4 + cos2αsin2β

a2b2 + cos2βsin2α

a2b2 + cos2βsin2β

b4

)
−

−
(

cos2αsin2α

a4 + cos2βsin2β

b4 +2
sinαsinβcosαcosβ

a2b2

)
=

= cos2βsin2α+cos2αsin2β−2sinαsinβcosαcosβ
a2b2 =

=
(

sinαcosβ−cosαsinβ
ab

)2

=
(

sin
(
α−β)
ab

)2

.

Compute the inverse matrix using Cramèr’s rule:

Σx̂x̂ = N−1 = 1
det N

[
sin2α

a2 + sin2β

b2
sinαcosα

a2 + sinβcosβ
b2

sinαcosα
a2 + sinβcosβ

b2
cos2α

a2 + cos2β

b2

]
.

The trace of this matrix is(
Σx̂x̂
)

11 +
(
Σx̂x̂
)

22 = a2b2

sin2 (α−β)
(

sin2α

a2 + sin2β

b2 + cos2α

a2 + cos2β

b2

)
=

= a2b2

sin2 (α−β)
( 1

a2 + 1
b2

)
=
(
a2 +b2

)
sin2 (α−β) .

Here still a2 +b2 = (x−1)2 + (x+1)2 +2y2 = 2
(
x2 + y2 +1

)
.

□ Geometrically:

1. The curves sin
(
α−β) =constant are circles going through A and

B.

2. The curves a2+b2 =constant, i.e., x2+y2 =constant, are circles also,
but around the origin (0,0).

3. Because of this, the value a2+b2 = 2
(
x2 + y2 +1

)
is minimized2 on

the curve sin
(
α−β)=constant, when x = 0.

Conclusion:

The optimal point is located on the y axis or symmetry axis, i.e., x = 0.

□ 8.5.3 Minimizing the point mean error

Let us still compute where. For a point on the y axis it holds that

α= arctan y= 180◦−β,

2Assumption: the angle γ> 90◦. We shall see that this is the case.
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y

A(−1,0) B(1,0)

β

xα

γ

Figure 8.2. Intersection in the plane
□

i.e.,
sin
(
α−β)= sin

(
2α−180◦)=−sin2α.

Now

(
Σx̂x̂
)

11 +
(
Σx̂x̂
)

22 = (a2+b2)
sin2(α−β) =

2
(

y2 +1
)

sin2 2α
= 2

(
y2 +1

)
(2sinαcosα)2 =

= 2
(

y2 +1
)(

2 yp
y2+1

· 1p
y2+1

)2 =
(

y2 +1
)3

2y2 .

Require now that this derivative vanish, i.e., a stationary point:

d
d y

(
y2 +1

)3

2y2 = 1
2

d
d y
(

y4 +3y2 +3+ y−2)=
= 2y3 +3y−1y−3 = 2y6 +3y4 −1

y3 = 0.

This can be done as follows:

2y6 +3y4 −1= 0

MATLAB yields (verify by substitution!):

y1,2 = ±1
2

p
2

y3,4 = ±i

y5,6 = ±i
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Of these, only the real values are of interest:

y= 1
2

p
2 ⇒α= arctany= 35◦.2644.

Then β= 180◦−35◦..2644= 144◦.7356 and γ= 109◦.4712.

This result, which required so much work, has further interest: it is
precisely the angle between chemical bonds between atoms in, e.g., a
diamond crystal or a methane molecule. . .

□ 8.5.4 Minimizing the determinant

Alternatively we may minimize det
(
Σx̂x̂
)

(or its square root), i.e., the ge-
ometrical mean of Σx̂x̂’s eigenvalues,

p
λ1λ2 (when minimizing the trace

amounts to minimizing there arithmetical mean, 1
2 (λ1 +λ2) ). Then we

compute first
a2b2 = [(x+1)2 + y2][(x−1)2 + y2] .

When x = 0, this is
a2b2 = (y2 +1

)2
.

Then also, just like before

sin2 (α−β)= sin2 2α=
(

2
y√

y2 +1
· 1√

y2 +1

)2

and we obtain as the final result

det
(
Σx̂x̂
)=(sin

(
α−β)
ab

)−2

=
(

y2 +1
)4

4y2 ,

the stationary points of which we seek.

MATLAB3 yields the solution

y1,2 =±1
3

p
3,

the other solutions are imaginary ±i. From this α= arctan y= 30◦.

□ 8.5.5 “Minimax” optimization

As the third alternative we minimize the biggest eigenvalue, i.e., we
minimize max(λ1,λ2). On the axis x = 0 we have a = b and sinαcosα=
−sinβcosβ, i.e., the form of the matrix N is:

N = 2
a2

[
sin2α 0

0 cos2α

]
= 2

y2 +1

[
y2

y2+1 0
0 1

y2+1

]
.

3Use symbolic computation. First define the function f (y), then its derivative
(diff function), and finally, using the solve function, its zero points.
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B(1,0)

x

A(−1,0)

y

α

Minimoidaan λ1 +λ2

Minimax, max(λ1,λ2)

Minimoidaan λ1 ·λ2

30◦

35◦.2644

45◦

Figure 8.3. Three different optimal solutions for intersection
□

Because α= arctan y, it follows that sinα= yp
y2+1

and cosα= 1p
y2+1

, and

a2 = y2 +1.

The eigenvalues of this matrix are thus

µ1 = 2y2(
y2 +1

)2 , µ2 = 2(
y2 +1

)2

and the eigenvalues of the inverse matrix

λ1 = 1
µ1

= 1
2y2

(
y2 +1

)2
, λ2 = 1

µ2
= 1

2

(
y2 +1

)2
.

When y = 1, these are the same; when y > 1, λ2 is the bigger one and
grows with y.

When y lies in the interval (0,1), then λ1 is the bigger one, λ1 = 1
2

(
y2 +2+ y−2

)⇒
d

dyλ1 = y− y−3 < 0, i.e., λ1 descends monotonously.

□ End result:

the optimal value is y= 1 and α= arctan1= 45◦.

□ 8.6 Exercises

1. Derive the corresponding equations as in section 8.5 for the case
where we make distance measurements from points A and B, the
precision of which does not depend on distance.
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2. Show, that if the eigenvalues of matrix N are close to each other,

λ1 = λ0 +∆λ1,

λ2 = λ0 +∆λ2,

· · ·
λn = λ0 +∆λn,

where the ∆λi are small compared to λ0, that then

(det N)
1
n =
(

n∏
i=1

λi

) 1
n

= 1
n

n∑
i=1

λi = 1
n

Tr(N) .

[Hint: use the binomial expansion (1+ x)y ≈ 1+ yx+ . . .]
So, in this case minimizing the determinant is equivalent to mini-
mizing the trace.

3. [Challenging.] Show that if, in three dimensional space, we mea-
sure the distance of point P,

s =
√

(xP − xA)2 + (yP − yA)2 + (zP − zA)2

from three known points A, B and C, the optimal geometry is that
in which the three directions P A,PB ja PC are mutually orthog-
onal, i.e., P A ⊥ PB ⊥ PC. The assumption is that the measure-
ments from all three points are equally precise and independent of
distance.
[Hint: write the 3× 3 design matrix which consists of the three
unit vectors, and maximize its determinant, or (geometrically intu-
itively) the volume spanned by these vectors. det

(
N−1

)= (det A)−2,
so this minimizes the determinant of Q x̂x̂]

4. [Challenging.] Show, that if we measure, in the plane, the pseudo-
range to a vessel A (DECCA system!)

ρ =
√

(xA − xM)2 + (yA − yM)2 + c∆TA,

from three points M,R,G (Master, Red Slave, Green Slave), the
optimal geometry is that, where the angles between the directions
AM, AR, AG are 120◦.
In the equation, ∆TA is the clock unknown of vessel A.
[Hint: write the 3×3 design matrix; remember that also ∆T is an
unknown. After that, as in the previous case.]
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□ 9. The Kalman filter

Literature:
Kallio (1998b, p. 62–66, 154–155)
Strang and Borre (1997, p. 543–584)
Leick (1995, p. 115–130)
Cooper (1987, p. 215–223)
Mikhail and Ackermann (1976, p. 333–392)

The Kalman filter is a linear predictive filter. Like a coffee filter which
filters coffee from drags, the Kalman filter filters signal (the so-called
state vector) from the noise of the measurement process.

The inventors of the Kalman filter were Rudolf Kalman and Richard
Bucy in the years 1960 – 1961 (Kalman (1960); Kalman and Bucy
(1961)). The invention was widely used in the space programme (rendez-
vous!) and in connection with missile guidance systems. However, the
Kalman filter is generally applicable and has been used except in navi-
gation, also in economic science, meteorology etc.

A Kalman filter consists of two parts:

1. The dynamic model; it describes the motion process according to
which the state vector evolves over time.

2. The observation model; it describes the process by which observ-
ables are obtained, that tell us something about the state vector at
the moment of observation.

Special for the Kalman filter is, that the state vector propagates in time
one step at a time; also the observations are used for correcting the state
vector only at the moment of observation. For this reason the Kalman
filter does not require much processing power and doesn’t handle large
matrices. It can be used inside a vehicle in real time.
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□ 9.1 Dynamic model

In the linear case, the dynamic model looks like this:

d
dt

x= Fx+n, (9.1)

where x is the state vector, n is the dynamic noise (i.e., how imprecisely
the above equations of motion are valid) and F is a coefficient matrix.

The variance matrix of the state vector’s x estimator x̂ which is available
at a certain point in time may be called Σ or Q x̂x̂. It describes the prob-
able deviation of the true state x from the estimated state x̂. The noise
vector n in the above equation describes, how imprecisely the equations
of motion, i.e., the dynamic model, in reality are valid, e.g., in the case
of satellite motion, the varying influence of atmospheric drag. A large
dynamical noise n means that Q x̂x̂ will inflate quickly with time. This
can then again be reduced with the help of observations to be made and
the state updates to be performed using these.

□ 9.2 State propagation in time

The computational propagation in time of the state vector estimator is
simple (no noise):

d
dt

x̂= Fx̂.

In the corresponding discrete case:

x̂ (t1)=Φ1
0x̂ (t0) ,

where (assuming F constant1)2

Φ1
0 = eF(t1−t0),

a discrete version of the the coefficient matrix integrated over time
[t0, t1).

If we call the variance matrix of n (more precisely: the autocovariance
function of n(t)) Q (t), we may also write the discrete propagation equa-
tion for the variance matrix:

Σ(t1)= (Φ1
0
)
Σ (t0)

(
Φ1

0
)T+

∫ t1

t0

Q (t)dt.

1If F is not a constant, we write

Φ1
0 = exp

∫ t1

t0

F (t)dt.

2The definition of the exponent of a square matrix is similar to the exponent of
a number: like ex = 1+x+ 1

2 x2+ 1
6 x3+. . . , we have eA = 1+A+ 1

2 A·A+ 1
6 A·A·A+. . .
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Here we have assumed, that n(t) is by its nature white noise. The proof
of this equation is difficult.

□ 9.3 Observational model

The development of the state vector in time would not be very interest-
ing, if we could not also somehow observe this vector. The observational
model is as follows:

ℓ= Hx+m,

where ℓ is an observable (vector), x is a state vector (“true value”), and
m is the observation process’s noise. H is the observation matrix. As the
variance of the noise we have given the variance matrix R; E {m}= 0 and
E
{

m mT
}= R.

□ 9.4 The update step

Updating is the optimal use of new observation data. It is done in such
a way, that the difference between the observable’s value ℓ̂i = Hx̂i com-
puted from the a priori state vector x̂i, and the truly observed observable
ℓi, is used as a closing error, which we try to adjust away in an optimal
fashion, according to the principle of least squares.

Let us construct an improved estimator

x̂i+1 = x̂i +K
(
ℓi −Hix̂i

)
.

Here x̂i+1 is the estimator of the state vector after observation i, i.e., a
posteriori. However, relative to the next observation i+1 is is again a
priori. The matrix K is called the Kalman “gain matrix”.

The “optimal” solution is obtained by choosing

K =ΣHT
(
HΣHT+R

)−1
,

which gives as solution

x̂i+1 = x̂i +ΣiHT
i
(
HiΣiHT

i +R
)−1 (

ℓi −Hix̂i
)

.

Updating the state variances is done as follows:

Σi+1 =Σi −ΣiHT
i
(
HiΣiHT

i +Ri
)−1

HiΣi = (I −K iHi)Σi,

without proof.
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□ 9.5 Sequential adjustment

Sequential adjustment is the Kalman filter applied to the case where
the state vector to be estimated (i.e., the vector of unknowns) does not
depend on time. In this case the formulas become simpler, but using the
Kalman formulation may nevertheless be advantageous, because it al-
lows the addition of new information to the solution immediately when it
becomes available. Also in network adjustment one sometimes processes
different groups of observations sequentially, which facilitates finding
possible errors. The co-ordinates are in this case state vector elements
independent of time.

The dynamical model is in this case

d
dt

x= 0,

i.e., F = 0 and n= 0. There is no dynamical noise.

There are also applications in which a part of the state vector’s ele-
ments are constants, and another part time dependent. E.g., in satel-
lite geodesy, earth station co-ordinates are (almost) fixed, whereas the
satellite orbital elements change with time.

□ 9.5.1 Sequential adjustment and stacking of normal equations

We may write the update step of the Kalman filter also as a parametric
adjustment problem.

The “observations” are the real observation vector ℓi and the a priori
estimated state vector x̂i. Observation equations:[

ℓi
x̂i

]
+
[

vi
wi

]
=
[

Hi

I

][
x̂i+1

]
.

Here, the design matrix is seen to be

Ã .=
[

Hi

I

]
.

The variance matrix of the “observations” is

Σ̃
def= Var

([
ℓi x̂i

]T)= [ Ri 0
0 Σi

]
,

and we obtain as the solution

x̂i+1 =
[

ÃTΣ̃−1 Ã
]−1

ÃTΣ̃−1
[
ℓi
x̂i

]
=

= [
HT

i R−1
i Hi +Σ−1

i
]−1 [

HT
i R−1

i ℓi +Σ−1
i x̂i

]
. (9.2)
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As the variance we obtain

Σi+1 =
[
HT

i R−1
i Hi +Σ−1

i
]−1

. (9.3)

Ks. Kallio (1998b, ss. 63-64 ).

Now we exploit the second formula derived in appendix A:

(A+UCV )−1 = A−1 − A−1U
(
C−1 +V A−1U

)−1 V A−1.

In this way:[
HT

i R−1
i Hi +Σ−1

i
]−1 =Σi −ΣiHT

(
Ri +HiΣiHT

i
)−1

HiΣi.

Substitution yields

x̂i+1 =
[
Σi −ΣiHT

(
Ri +HiΣiHT

i
)−1

HiΣi

][
HT

i R−1
i ℓi +Σ−1

i x̂i
]=

=
[

I −ΣiHT
(
Ri +HiΣiHT

i
)−1

Hi

][
ΣiHT

i R−1
i ℓi + x̂i

]=
= [

ΣiHT
i R−1

i ℓi + x̂i
]−ΣiHT

(
Ri +HiΣiHT

i
)−1 [

HiΣiHT
i R−1

i ℓi +Hix̂i
]

= x̂i +ΣiHT
i R−1

i ℓi −ΣiHT
(
Ri +HiΣiHT

i
)−1 (

HΣiHT
i +Ri

)
R−1

i ℓi +
+ΣiHT

(
Ri +HiΣiHT

i
)−1

RiR−1
i ℓi −ΣiHT (Ri +HiΣiHT

i
)−1

Hix̂i =
= x̂i +ΣiHT

(
Ri +HiΣiHT

i
)−1 [

ℓi −Hix̂i
]
, (9.4)

and
Σi+1 =Σi −ΣiHT

(
Ri +HiΣiHT

i
)−1

HiΣi. (9.5)

The equations 9.4 and 9.5 are precisely the update equations of the
Kalman filter. Compared to the equations 9.2 and 9.3, the matrix to
be inverted has the size of the vector of observables ℓ and not that of the
state vector x. Often the matrix size is even 1×1 , i.e, a simple number3.
Being able to compute inverse matrices more quickly makes real-time
applications easier.

From the preceding we see, that sequential adjustment is the same as
Kalman filtering in the case that the state vector is constant. Although
the computation procedure in adjustment generally is parametric ad-
justment (observation equations), when in the Kalman case, condition
equations adjustment is used.

□ 9.6 Kalman “from both ends”

If we have available the observations ℓi, i = 1, . . . ,n and the functional
model is the system of differential equations

d
dt

x= Fx

3. . . or may be reduced to such, if the observations made at one epoch are sta-
tistically independent of each other. Then they may be formally processed se-
quentially, i.e., separately.
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(without dynamic noise n), we may write

x(ti)=Φi
0x(t0) ,

where Φi
0 is the state transition matrix to be computed. Thus, the obser-

vation equations may be written

ℓi +vi = Hix(ti)= HiΦ
i
0x(t0) ,

a traditional system of observation equations, where the desgin matrix
is

A =

⎡⎢⎢⎢⎢⎢⎢⎣
H0
...

HiΦ
i
0

...
HnΦ

n
0

⎤⎥⎥⎥⎥⎥⎥⎦
and the unknowns x(t0).

From this we see, that the least-squares solution can be obtained by
solving an adjustment problem.

As we saw in section 8.3, we may divide the observations into, e.g., two,
parts:

ℓ=
[
ℓb
ℓa

]
, A =

[
Ab

Aa

]
and form separate normal equations:[

AT
bΣ

−1
b Ab

]
x̂b = AT

bΣ
−1
b ℓb,

Σxx,b = [
AT

bΣ
−1
b Ab

]−1
,

and [
AT

aΣ
−1
a Aa

]
x̂a = AT

aΣ
−1
a ℓa,

Σxx,a = [
AT

aΣ
−1
a Aa

]−1
.

These separate solutions (b = before, a = after) can now be “stacked”, i.e.,
combined: [

AT
bΣ

−1
b Ab + AT

aΣ
−1
a Aa

]
x̂= [AT

bΣ
−1
b ℓb + AT

aΣ
−1
a ℓa

]
,

the original full equations system, and

Σxx =
[
Σ−1

xx,b +Σ−1
xx,a
]−1 = [AT

bΣ
−1
b Ab + AT

aΣ
−1
a Aa

]−1
,

the variance matrix of the solution from the full adjustment.

An important remark is, that the partial tasks — “before” and ”after” —
can be solved also with the help of the Kalman filter! In other words, we
may, for an arbitrary observation epoch ti, compute separately
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1. The solution of the Kalman filter from the starting epoch t0 for-
ward, by integrating the dynamical model and updating the state
vector and its variance matrix for the observations 0, . . . , i, and

2. The Kalman filter solution from the final moment tn backward in
time integrating the dynamic modal, updating the state vector and
the variance matrix using the observations n,↓, i + 1 (in reverse
order).

3. Combining the partial solutions obtained into a total solution us-
ing the above formulas.

In this way, the advantages of the Kalman method may be exploited also
in a post-processing situation.

□ 9.7 Example

Let x be an unknown constant which we are trying to estimate. x has
been observed at epoch 1, observation value 7, mean error ±2, and at
epoch 2, observation value 5, mean error ±1.

1. Formulate the observation equations of an ordinary adjustment
problem and the variance matrix of the observation vector. Com-
pute x̂.

ℓ+v= Ax̂

where ℓ=
[

7
5

]
,Σℓℓ =

[
4 0
0 1

]
, A =

[
1
1

]
. Then

x̂ = [
ATΣ−1

ℓℓ A
]−1

ATΣ−1
ℓℓℓ=

= 4
5
·[ 1

4 1
][ 7

5

]
= 27

5
= 5.4.

The variance matrix:

Σx̂x̂ =
[
ATΣ−1

ℓℓ A
]−1 = 4

5
= 0.8.

Write the dynamical equations for the Kalman filter of this exam-
ple. Remember that x is a constant.

□

Answer
:
The general dynamical equation may be written in the discrete
case

xi+1 =Φxi +w
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80 The Kalman filter

where Φ = I (unit matrix) and w = 0 (deterministic motion, dy-
namic noise absent). Thus we obtain

xi+1 = xi.

Alternatively we write the differential equation:

dx
dt

= Fx+n

Again in our example case:

dx
dt

= 0,

no dynamic noise: n = 0.

2. Write the update equations for the Kalman filter of this example:

x̂i = x̂i−1 +K i
(
ℓi −Hi x̂i−1

)
and

Σx̂x̂,i = [I −K iHi]Σx̂x̂,i−1,

where the gain matrix

K i =Σx̂x̂,i−1HT
i
(
Σℓℓ,i +HT

i Σx̂x̂,i−1Hi
)−1

.

(so, how do in this case look the H- and K matrices?)

□ Answer:
Because in his case the observation ℓi = xi (i.e., we observe directly
the state) we have Hi = [1], i.e., a 1×1 matrix, the only element of
which is 1.

K = Σx̂x̂,i−1

Σℓℓ+Σx̂x̂,i−1
.

If the original Σx̂x̂,i−1 is large, then K ∼ 1.

x̂i = x̂i−1 + Σx̂x̂

Σℓℓ+Σx̂x̂

(
ℓi − x̂i−1

)=
= Σx̂x̂,i−1

Σℓℓ,i +Σx̂x̂,i−1
ℓi +

Σℓℓ,i

Σℓℓ,i +Σx̂x̂,i−1
x̂i−1 =

Σx̂x̂,i−1ℓi +Σℓℓ,i x̂i−1

Σℓℓ,i +Σx̂x̂,i−1
.

In other words: the a posteriori state x̂i is the weighted mean of
the a priori state x̂i−1 and the observation ℓi.

Σx̂x̂,i = [1−K]Σx̂x̂,i−1 =
Σℓℓ,i

Σℓℓ,i +Σx̂x̂,i−1
Σx̂x̂,i−1.

In other words: the poorer the a priori state variance Σx̂x̂,i−1 com-
pared to the observation precision Σℓℓ,i , the more the updated
state variance Σx̂x̂,i will improve.
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3. Calculate manually through both Kalman observation events and
give the a posteriori state estimate x̂1 and its variance matrix. For
the initial value of the state x you may take 0, and for its initial
variance matrix “numerically infinite”:

Σ0 = [100] .

Answer:
First step:

K1 = 100(4+100)−1 = 100
104

.

so
x̂1 = 0+ 100

104
(7−0)= 6.73

Σ1 =
[
1− 100

104

]
100= 400

104
= 3.85.

Second step:

K2 = 3.85(1+3.85)−1 = 0.79.

x̂2 = 6.73+0.79(5−6.73)=
= 6.73−0.79 ·1.73= 5.36.

Σ2 = [1−0.79] ·3.85= 0.81.

□ Self-test questions

1. Describe (in Kalman filtering) the dynamic model.

2. What does the state transition matrix Φ1
0 describe?

3. What does the dynamic noise variance matrix Q (t) describe?

4. Describe the observation model of the Kalman filter.

5. What is the Kalman gain matrix?

6. What is the purpose of the update step in the Kalman filter?

7. Linear case. The state estimate x̂(t) at any point in time t is a
linear combination of the initial state estimate x̂(t0), and ⋆

(a) all of the observations ℓi = ℓ (ti)

(b) only the observations for which ti < t

(c) only the observations for which ti > t.

8. Describe how, in the non-real-time case, the Kalman filter “from
both ends” may be applied.
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□ 10. Approximation, interpolation,
estimation

□ 10.1 Concepts

Approximation means trying to find a function that, in a certain
sense, is “as close as possible” to the given function. E.g., a ref-
erence ellipsoid, which is as close as possible to the geoid or mean
sea surface
An often used rule is the square integral rule: if the argument of
the function is x ∈ D, we minimize the integral∫

D
(∆ f (x))2 dx,

where
∆ f (x)= f (x)− f (x) ,

the difference between the function f (x) and its approximation
f (x). Here, D is the function’s domain.

Interpolation means trying to find a function that describes the given
data points in such a way, that the function values reproduce the
given data points. This means, that the number of parameters
describing the function must be the same as the number of given
points.

Estimation is trying to find a function, that is as close as possible to
the given data points. The number of parameters describing the
function is less than the number of data points, e.g., in linear re-
gression, the number of parameters is two whereas the number of
data points may be very large indeed.
“as close as possible” is generally — but not always! — understood
in the least squares sense.

◦ Minimax rule: the greatest occurring residual is minimized

◦ L1 rule: the sum of absolute values of the residuals is mini-
mized.
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Figure 10.1. Approximation (top), interpolation (middle) and estimation (bot-
tom)

□

□ 10.2 Spline interpolation

Traditionally a “spline” has been a flexible strip of wood or ruler, used
by shipbuilders to create a smooth curve. http://en.wikipedia.org/wiki/
Flat_spline.

Nowadays a spline is a mathematical function having the same proper-
ties. The smoothness minimizes the energy contained in the bending.
The function is used for interpolating between given points. Between
every pair of neighbouring points there is one polynomial, the value of
which (and possibly the values of derivatives) are the same as that of
the polynomial in the adjoining interval. So, we speak of piecewise poly-
nomial interpolation. If the support points are (xi, ti) , i = 1, . . . ,n, the
property holds for the spline function f , that f (ti) = x (ti), the reproduc-
ing property.

There exist the following types of splines:

◦ Linear: the points are connected by straight lines. Piecewise linear
interpolation. The function is continuous but not differentiable

◦ Quadratic: between the points we place parabolas. Both the func-
tion itself and its first derivative are continuous in the support
points

◦ Cubic. These are the most common1. Itse Both function and first
and second derivatives are continuous in the support points

◦ Higher-degree splines.

1Cubic splines are also used in computer typography to describe the shapes of
characters, so-called BÉZIER curves.
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Figure 10.2. Linear spline.
□

□ 10.2.1 Linear splines

Linear splines are defined in the following way: let a function be given
in the form

f i = f (ti) , i = 1, . . . , N,

where N is the number of support points. Now in the interval [ti, ti+1],
the function f (t) can be approximated by linear interpolation

f (t)= A i (t) f i +Bi (t) f i+1,

where
A i (t)= ti+1 − t

ti+1 − ti
Bi (t)= t− ti

ti+1 − ti
.

The function A i (t) is a linear function of t, the value of which is 1 in the
point ti and 0 in the point ti+1. The function Bi (t) = 1− A i (t) again is 0
in point ti and 1 in point ti+1.

Cf. figure 10.2. If we now define for the whole interval [t1, tN] the func-
tions

Si (t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 jos t < ti−1

Bi−1 = t−ti−1
ti−ti−1

jos ti−1 < t < ti

A i = ti+1−t
ti+1−ti

jos ti < t < ti+1

0 jos t > ti+1

,

the graph of which is also drawn (figure 10.2 below). Of course, if i is a
border point, half of this “pyramid function” falls away.

Now we may write the function f (t) as the approximation:

f (t)=
N∑

i=1

f iSi (t) ,

a piecewise linear function.

□ 10.2.2 Cubic splines

Ks. http://mathworld.wolfram.com/CubicSpline.html.
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86 Approximation, interpolation, estimation

Assume given again the values

f i = f (ti) .

In the interval [ti, ti+1] we again approximate the function f (t) by the
function

f (t)= A i (t) f i +Bi (t) f i+1 +Ci (t) g i +D i (t) g i+1, (10.1)

in which g i will still be discussed, and

Ci = 1
6

(
A3

i − A i
)

(ti+1 − ti)2 D i = 1
6

(
B3

i −Bi
)

(ti+1 − ti)2 .

We see immediately, that A3
i − A i = B3

i −Bi = 0 both in point ti and in
point ti+1 (because both A i and Bi are either 0 or 1 in both points). So,
still

f (ti)= f (ti)

in the support points.

The values g i, i = 1, . . . , N are fixed by requiring the second derivative of
the function f (t) to be continuous in all support points, and zero2 in the
terminal points 1 and N. Let us derivate equation (10.1):

f ′′ (t)= f i
d2A i (t)

dt2 + f i+1
d2Bi (t)

dt2 + g i
d2Ci (t)

dt2 + g i+1
d2D i (t)

dt2 .

Here apparently the first two terms on the right hand side valish, be-
cause both A i and Bi are linear functions in t. We obtain

d2Ci (t)
dt2 = d

dt

[
1
2

A2
i (t)

dA i

dt
− 1

6
dA i

dt

]
(ti+1 − ti)2 =

= − d
dt

[1
2

A2
i (t)− 1

6

]
(ti+1 − ti)=

= +A i (t) .

Similarly
d2D i (t)

dt2 = Bi (t) ,

and we obtain
f ′′ (t)= A i (t) g i +Bi (t) g i+1.

So, the parameters g i are the second derivatives in the support points!

g i = f ′′ (ti) .

2Alternatives: given (fixed)values, continuity condition f ′′ (tN )= f ′′ (t1), . . .
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Now, the continuity conditions. The first derivative is

f ′ (t) = f i
dA i

dt
+ f i+1

dBi

dt
+ g i

dCi

dt
+ g i+1

dD i

dt
=

= f i
−1

ti+1 − ti
+ f i+1

+1
ti+1 − ti

−g i

[1
2

A2
i −

1
6

]
(ti+1 − ti)+

+g i+1

[1
2

B2
i −

1
6

]
(ti+1 − ti)=

= f i+1 − f i

ti+1 − ti
+ (ti+1 − ti)

(
−g i

[1
2

A2
i −

1
6

]
+ g i+1

[1
2

B2
i −

1
6

])
.

Let us specialize this to the point t = ti, in the interval [ti, ti+1]:

f ′ (ti)= f i+1 − f i

ti+1 − ti
−
(1

3
g i + 1

6
g i+1

)
(ti+1 − ti) (10.2)

and in the interval [ti−1, ti]:

f ′ (ti)= f i − f i−1

ti − ti−1
+
(1

6
g i−1 + 1

3
g i

)
(ti − ti−1) . (10.3)

By assuming these to be equal in size, and subtracting them from each
other, we obtain

1
6

(ti − ti−1) g i−1+ 1
3

(ti+1 − ti−1) g i+ 1
6

(ti+1 − ti) g i+1 = f i+1 − f i

ti+1 − ti
− f i − f i−1

ti − ti−1
.

Here the number of unknowns is N: g i, i = 1, . . . , N. The number of equa-
tions is N −2. Additional equations are obtained from the edges, e.g.,
g1 = gN = 0. Then, all g i can be solved for:

1
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(t2−t1) t2−t1

t2−t1 2(t3−t1) t3−t2

t3−t2 2(t4−t2) t4−t3

t4−t3 2(t5−t3) t5−t4
. . . . . . . . .

tN−1−tN−2 2(tN−tN−2) tN−tN−1

tN−tN−1 2(tN−tN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

g4
...

gN−1

gN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4
...

bN−1

bN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

bi = f i+1 − f i

ti+1 − ti
− f i − f i−1

ti − ti−1
, i = 2, . . . , N −1; b1 = f2 − f1

t2 − t1
,bN =− fN − fN−1

tN − tN−1
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0

∂D1

∂D4∂D2 D

0 1

1
∂D3

x

y

Figure 10.3. A simple domain
□

This is a so-called tridiagonal matrix, for the solution of the associated
system of equations of which exist efficient special algorithms.

In case the support points are equidistant, i.e., ti+1 − ti =∆t, we obtain3

∆t2

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 4 1

1 4 1
1 4 1

. . . . . . . . .
1 4 1

1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

g4
...

gN−1

gN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2 − f1

f3 −2 f2 + f1

f4 −2 f3 + f2
...

fN−1 −2 fN−2 + fN−3

fN −2 fN−1 + fN−2

− fN + fN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

□ 10.3 Finite element method

The finite element method is used to solve multidimensional field prob-
lems, so-called boundary value problems, that can be described by partial
differential equations. In geodesy, this means mostly the gravity field.

□ 10.3.1 Example

Let us first study a simple example. The problem domain is

D : [0,1]× [0,1]= {(x, y) ,0≤ x < 1,0≤ y< 1} .

I.e., a square of size unity in the plane. The boundary of the domain may
be called ∂D and it consists of four parts ∂D1 . . .∂D4, see figure.

Let g now be a real-valued function on D Our problem is finding a func-
tion u (x, y), i.e., a solution, with the following properties:

3In case of a circular boundary condition, the 2 in the corners of the matrix
change into 4, and b1 and bN are modified correspondingly.
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1. Twice differentiable on D. Let us call the set of all such functions
by the name V .

2. uxx +uyy = g on the domain D

3. Periodical boundary conditions, i.e.,

(a) u (x, y)= u (x+1, y) and

(b) u (x, y)= u (x, y+1).

We may visualize this by rolling up D into a torus, i.e., the topology
of a torus.

The expression

uxx +uyy = ∂2u
∂x2 + ∂u

∂y2

is often called ∆u where the delta operator

∆≡ ∂2

∂x2 + ∂2

∂y2

is referred to as the LAPLACE operator in two dimensions. E.g., the
gravitational field in vacuum or the flow of an incompressible fluid can
be described by

∆u = 0.

In the case of our example
∆u = g,

and g is called the source function, e.g., in the case of the gravitational
field 4πGρ, where G is Newton’s gravitational constant and ρ the density
of matter.

□ 10.3.2 The “weak” formulation of the problem

The problem ∆u = g can also be formulated in the following form. Let φ
be a functional in V — i.e., a map producing for every function v ∈ V a
real value φ (v) —, so, that

φ (tu+v)= tφ (u)+φ (v) ,

nimelläi.e., a linear functional. Let us call the set of all such linear
functionals V∗.

Then, the following statements are equivalent:

∆u = g

and
∀φ ∈V∗ :φ (∆u)=φ (g) .

This is called the weak formulation of the problem ∆u = g.
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□ 10.3.3 The bilinear form of the delta operator

In fact we don’t have to investigate the whole set V∗, it suffices to look
at all functionals of form

φv ( f )
def=
∫ 1

0

∫ 1

0
v (x, y) f (x, y)dxdy,

where v (x, y) satisfies the (periodical) boundary conditions that were al-
ready presented.

So now the problem is formulated as that of finding a u ∈V so that

φv (∆u)=φv (g) (10.4)

for all v ∈V .

Using integration by parts we may write∫ 1

0

∫ 1

0
vuxxdxdy =

∫ 1

0
[vux]1

0 d y−
∫ 1

0

∫ 1

0
vxuxdxdy,∫ 1

0

∫ 1

0
vuyydxdy =

∫ 1

0

[
vuy
]1

0 dx−
∫ 1

0

∫ 1

0
vyuydxdy.

Because of the periodical boundary condition, the first terms on the right
hand side vanish, and by summation we obtain∫ 1

0

∫ 1

0
v
(
uxx +uyy

)
dxdy=−

∫ 1

0

∫ 1

0

(
vxux +vyuy

)
dxdy.

Thus we find, that

φv (∆u)=−
∫ 1

0

∫ 1

0

(
vxux +vyuy

)
dxdy.

Let us call this4

ψ (u,v)
def= φv (∆u)=φv (g)=

∫ 1

0

∫ 1

0
v (x, y) g (x, y)dxdy.

Now we obtain the weak formulation (10.4) of the problem as the integral
equation

−
∫ 1

0

∫ 1

0

(
vxux +vyuy

)
dxdy=

∫ 1

0

∫ 1

0
vgdxd y.

In this equation appear only the first derivatives with respect to place of
the functions u,v: if we write

∇v def=
[ ∂v

∂x
∂v
∂y

]
,∇u def=

[ ∂u
∂x
∂u
∂y

]
,

(where ∇, or nabla, is the gradient operator) we can write

−
∫ 1

0

∫ 1

0
〈∇v ·∇u〉dxdy=

∫ 1

0

∫ 1

0
vgdxd y.

4This is the bilinear form of the operator ∆.
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1 2 3 4 5

6
9

87
10

11...

...24 25

Figure 10.4. Triangulation of the domain and numbers of nodes
□

□ 10.3.4 Test functions

Next, we specialize the function ν as a series of test functions. Let the
set of suitable test functions (countably infinite) be

E def= {e1, e2, e3, . . .} .

Let us demand that for all e i

ψ (u, e i)=
∫ 1

0

∫ 1

0
ge idxdy. (10.5)

In order to solve this problem we write

u = u1e1 +u2e2 + . . .=
∞∑

i=1

ui e i.

In practice we use from the infinite set E only a finite subset En =
{e1, e2, . . . , en} ⊂ E, and also the expansion of u is truncated. Now
the problem has been reduced to the determination of n coefficients
u1,u2, . . .un from n equations:

u =
∑

ui e i, (10.6)

g =
∑

g i e i. (10.7)

Now we discretise the domain D in the following way: we divide it into
triangles having common borders and corner points, see figure.

To every nodal point i we attach one test function e i, which looks as
follows:
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8

0

1

Figure 10.5. Test function e8

□

1. Inside every triangle it is linear

2. It is 1 in node i and 0 in all other nodes

3. It is continuous and “piecewise” differentiable.

See figure.

Now the above set of equations (10.5) after the substitutions (10.6, 10.7)
has the following form:

n∑
j=1

ψ
(
e j, e i

)
u j =

n∑
j=1

g j

∫ 1

0

∫ 1

0
e j e idxdy, i = 1, . . . ,n,

or as a matric equation:
Pu=Qg,

where

u=

⎡⎢⎢⎢⎣
u1

u2
...

un

⎤⎥⎥⎥⎦ jag=

⎡⎢⎢⎢⎣
g1

g2
...

gn

⎤⎥⎥⎥⎦ .

The matrices are

P ji = ψ
(
e j, e i

)=−
∫ 1

0

∫ 1

0

⟨∇e j ·∇e i
⟩

dxdy,

Q ji =
∫ 1

0

∫ 1

0
e j e idxdy.

The P matrix is called the stiffness matrix and the Q matrix the mass
matrix.

□ 10.3.5 Computing the matrices

In order to calculate the elements of the matrix P, we look at the triangle
ABC. The test functions are in this case the, already earlier presented,
barycentric co-ordinates:
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eA =

⏐⏐⏐⏐⏐⏐
xB xC x
yB yC y
1 1 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
, eB =

⏐⏐⏐⏐⏐⏐
xC xA x
yC yA y
1 1 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
, eC =

⏐⏐⏐⏐⏐⏐
xA xB x
yA yB y
1 1 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
.

These can be computed straightforwardly. The gradients again are

∇eA =
[ ∂

∂x
∂
∂y

]
eA =

⎛⎝⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
⎞⎠−1

⎡⎢⎢⎢⎣
⏐⏐⏐⏐ yB yC

1 1

⏐⏐⏐⏐
−
⏐⏐⏐⏐ xB xC

1 1

⏐⏐⏐⏐
⎤⎥⎥⎥⎦=

=
⎛⎝⏐⏐⏐⏐⏐⏐

xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
⎞⎠−1[

yB − yC

xC − xB

]
,

and so on for the gradients ∇eB and ∇eC, cyclically changing the names
A,B,C. We obtain

〈∇eA ·∇eA〉 =
⎛⎝⏐⏐⏐⏐⏐⏐

xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
⎞⎠−2−−→BC

2

and

〈∇eA ·∇eB〉 =
⎛⎝⏐⏐⏐⏐⏐⏐

xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐
⎞⎠−2⟨−−→

BC ·−−→CA
⟩

,

and so forth.

The gradients are constants, so we can compute the integral over the
whole triangle by multiplying it by the surface are, which happens to be

1
2

⏐⏐⏐⏐⏐⏐
xA xB xC

yA yB yC

1 1 1

⏐⏐⏐⏐⏐⏐.When we have computed

∫∫
∆

⟨∇e j ·∇e i
⟩

dxdy

over all triangles — six values for every triangle —, the elements of P
are easily computed by summing over all the triangles belonging to the
test function. Because these triangles are only small in number, is the
matrix P in practice sparse, which is a substantial numerical advantage.

Computing, and integrating over the triangle, the terms eA eB etc. for
the computation of the Q matrix is left as an exercise.
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□ 10.3.6 Solving the problem

As follows:

1. Compute (generate) the matrices P and Q. Matlab offers ready
tools for this

2. Compute (solve) from the function g (x, y) the coefficients g i, i.e.,
the elements of the vector g, from the equations∫ 1

0

∫ 1

0
g (x, y) e j (x, y)dxdy=

∑
i

g i

∫ 1

0

∫ 1

0
e i (x, y) e j (x, y)dxdy, j = 1, . . . ,n.

3. Solve the matric equation Pu = Qg for the unknown u and its ele-
ments ui

4. Compute u (x, y)=∑ui e i. Draw on paper or plot on screen.

□ 10.3.7 Different boundary conditions

If the boundary conditions are such, that in the key integration by parts∫ 1

0
[vux]1

0 d y+
∫ 1

0

[
vuy
]1

0 dx =

=
∫ 1

0
(v (1, y)ux (1, y)−v (0, y)ux (0, y))d y+

+
∫ 1

0

(
v (x,1)uy (x,1)−v (x,0)uy (x,0)

)
dx

do not vanish, then those integrals too must be evaluated over boundary
elements: we obtain integrals shaped like∫ 1

0
e j (0, y)

∂

∂x
e i (0, y)d y,

∫ 1

0
e j (1, y)

∂

∂x
e i (1, y)d y,∫ 1

0
e j (x,0)

∂

∂y
e i (x,0)dx,

∫ 1

0
e j (x,1)

∂

∂y
e i (x,1)dx (10.8)

i.e., one-dimensional integrals along the edge of the domain. In this case
we must distinguish internal nodes and elements from boundary nodes
and elements. The above integrals differ from zero only if e i and e j are
both boundary elements. The boundary condition is often given in the
following form:

u (x, y)= h (x, y) at the domain edge∂D.

This is a so-called DIRICHLET boundary value problem. Write

h (x, y)=
∑

hi e i (x, y)

like earlier for the u and g functions.
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Alternatively, the NEUMANN- problem, where given is the normal
derivative of the solution function on the boundary:

∂

∂n
u (x, y)= h (x, y) at the domain edge∂D.

In case the edge is not a nice square, we can use the Green theorem in
order to do integration by parts. Then we will again find integrals on
the boundary that contain both the test functions e i themselves and their
first derivatives in the normal direction ∂

∂n e j. Just like we already saw
above (equation 10.8).

Also the generalization to three dimensional problems and problems de-
veloping in time, where we have the additional dimension of time t, must
be obvious. In that case we have, instead of, or in addition to, boundary
conditions, initial conditions.

□ 10.4 Function spaces and Fourier theory

In an abstract vector space we may create a base, with the help of which
any vector can be written as a linear combination of the base vectors: if
the base is {e1,e2,e3}, we may write an arbitrary vector r in the form:

r= r1e1 + r2e2 + r3e3 =
3∑

i=1

r iei.

Because three base vectors are always enough, we call ordinary space
three-dimensional.

We can define to a vector space a scalar product, which is a linear map
from two vectors to one number (“bilinear form”):

〈r ·s〉 .

Linearity means, that⟨
αr1 +βr2 ·s

⟩=α〈r1 ·s〉+β〈r2 ·s〉 ,

and symmetry means, that

〈r ·s〉 = 〈s ·r〉

If the base vectors are mutually orthogonal, i.e.,
⟨
ei ·e j

⟩ = 0 if i ̸= j, we
can simply calculate the coefficients r i:

r=
3∑

i=1

〈r ·ei〉
〈ei ·ei〉

ei =
3∑

i=1

r iei (10.9)
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If additionally still 〈ei ·ei〉 = ∥ei∥2 = 1 ∀i ∈ {1,2,3}, in other words, the
base vectors are orthonormal – the quantity ∥r∥ is called the norm of the
vector r – then equation 10.9 simplifies even further:

r=
3∑

i=1

〈r ·ei〉ei. (10.10)

Here, the coefficients r i = 〈r ·ei〉.
Also functions can be considered as elements of a vector space. If we
define the scalar product of two functions f , g as the following integral:

⟨−→
f ·−→g

⟩
def= 1
π

∫ 2π

0
f (x) g (x)dx,

it is easy to show that the above requirements for a scalar product are
met.

One particular base of this vector space (a function space) is formed by
the so-called FOURIER functions,

−→e0 = 1
2

p
2 (k = 0)

−→ek = coskx, k = 1,2,3, ...
−−→e−k = sinkx, k = 1,2,3, ...

This base is orthonormal (proof: exercise). It is also a complete basis,
which we shall not prove. Now every function f (x) that satifies certain
conditions, can be expanded according to equation (10.10) , i.e.,

f (x)= a0
1
2

p
2+

∞∑
k=1

(ak coskx+bk sinkx) ,

– the familiar Fourier expansion – where the coefficients are

a0 =
⟨−→

f ·−→e0

⟩
= 1
π

∫ 2π

0
f (x)

1
2

p
2dx =

p
2 · f (x)

ak =
⟨−→

f ·−→ek

⟩
= 1
π

∫ π

0
f (x)coskxdx

bk =
⟨−→

f ·−−→e−k

⟩
= 1
π

∫ 2π

0
f (x)sinkxdx

This is the familiar way in which the coefficients of a FOURIER series
are computed.

□ 10.5 Wavelets

The disadvantage of the base functions, i.e., sines and cosines, used in
Fourier analysis, is that they extend over the whole domain of study, as
function values differing from zero.
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Figure 10.6. Haar wavelets
□

Often we would wish to use base functions, that are different from zero
only on a bounded area. Of course the base functions of finite elements
presented above are of such nature. They are however not “wave-like”
by their nature.

The solution is given by wavelets. A wavelet is a wave-like function that
is of bounded support. There are wavelets of different levels; higher level
wavelets have a smaller area of support, but within it, offers a higher
resolution. A higher level wavelet is obtained from a lower level one by
scaling and shifting.

The simplest of all “mother wavelets”, and a good example, is the so-
called HAAR wavelet. Its form is

ψ (x)=
⎧⎨⎩

1 if 0< x < 1
2

−1 if 1
2 < x < 1

0 elsewhere .

From this, we can then obtain all other necessary wavelets as follows:

ψ j,k (x)= 2 j/2ψ
(
2 jx−k

)
.

So, the wavelet ψ j,k is 2 j times narrower than ψ,
p

2 j times taller, and
shifted along the horizontal axis by an amount k to the right.

The number j is called the resolution level, the number k the location
number.

From one mother wavelet we obtain 2 first level, 4 second level, 8 third
level daughters, etc.
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It can be easily verified that wavelets are orthonormal: the “dot product”
of the function space is⟨

ψ j,k ·ψ j′.k′
⟩= ∫ 1

0
ψ j,k (x)ψ j′,k′ (x)dx =

{
1 if j = j′ and k = k′

0 otherwise .

For this reason we may write an arbitrary function as the following se-
ries expansion:

f (x)=
∞∑
j=0

2 j−1∑
k=0

f j,kψ j,k (x) ,

where the coefficients are

f j,k =
∫ 1

0
f (x)ψ j,k (x)dx

i.e, again, the dot product in function space
⟨

f ·ψ j,k
⟩
, the projection of f

on the axis ψ j,k.

Try the function
f (x)= sin2πx.

Compute ⟨
f ·ψ0,0

⟩ =
∫ 0.5

0
sin2πx−

∫ 1

0.5
sin2πx =

= 2
∫ 0.5

0
sin2πx =−1

π
[cos2πx]0.5

0 =

= 2
π
≈ 0.6366.

Also (symmetry) ⟨
f ·ψ1,0

⟩= ⟨ f ·ψ1,1
⟩= 0

and ⟨
f ·ψ2,0

⟩ = 2
∫ 0.125

0
sin2πx ·2dx−2

∫ 0.25

0.125
sin2πx ·2dx =

= −1
π

[cos2πx]0.125
0 + 1

π
[cos2πx]0.25

0.125 =

= −1
π

(
cos

π

4
−cos0

)
+ 1
π

(
cos

π

2
−cos

π

4

)
=

= 1
π

(
1− 1

2

p
2+0− 1

2

p
2
)
=

= 1
π

(
1−

p
2
)≈−0.1318.

Using the symmetry argument, we now obtain⟨
f ·ψ2,1

⟩ = 1
π

(p
2−1

)≈+0.1318,⟨
f ·ψ2,2

⟩ = 1
π

(p
2−1

)≈+0.1318,⟨
f ·ψ2,3

⟩ = 1
π

(
1−

p
2
)≈−0.1318.
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Figure 10.7. A sine function expanded into Haar wavelets
□

With the aid of this we may perform a synthesis: the result is a stepping
function, as drawn in the figure.

The result is somewhat blocky; in the literature, much more “wave-like”
wavelets can be found.The stepwise, hierarchically bisecting improve-
ment of the Haar wavelets resembles, how a GIF image is built up step-
wise on a computer screen, if it arrives over a slow line. In fact, one large
application area for wavelets is precisely the compression of imagery.

□ 10.6 Legendre and Chebyshev approximation

□ 10.6.1 Polynomial fit

If we are asked to approximate a function given by measurement values
on the interval [−1,1], a logical approach is to try and use polynomial fit.
We describe the function byon

f (x)=
∞∑

i=0

aixi,

and estimate the coefficients ai from the data. In practice, the series is
truncated at i = I: the approximation obtained is then

f̃ (x)=
I∑

i=0

aixi.

This can be written as an observation equation as:

f̃ (x)=
[

1 x x2 · · · xI
]
⎡⎢⎢⎢⎢⎢⎣

a0

a1

a2
...

aI

⎤⎥⎥⎥⎥⎥⎦ .

Now, let us have observations regularly spread out over the interval
[−1,1], e.g., at the points −1,−0.5,0,+0.5 and +1. Let us also assume,
for the sake of example, that I = 3. Then the set of observation equations
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becomes ⎡⎢⎢⎢⎢⎢⎣
f̃ (−1)

f̃ (−0.5)
f̃ (0)

f̃ (0.5)
f̃ (1)

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 −1 1 −1
1 −0.5 0.25 −0.125
1 0 0 0
1 0.5 0.25 0.125
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a0

a1

a2

a3

⎤⎥⎥⎥⎦ .

The matrix in the above equation is A, the design matrix. From it, the
normal matrix is calculated as

N = AT A =

⎡⎢⎢⎢⎣
5 0 2.5 0
0 2.5 0 2.125

2.5 0 2.125 0
0 2.125 0 2.03125

⎤⎥⎥⎥⎦ .

The condition number of this matrix is λmax/λmin ≈ 50. It is clearly non-
diagonal. On the basis of experience we may say, that polynomial fit in
these cases is a suitable method only for low polynomial degree num-
bers I. Already for values I > 12 the solution begins to be so poorly
conditioned, that numerical precision begins to suffer.

□ 10.6.2 Legendre interpolation

See http://en.wikipedia.org/wiki/Legendre_polynomials.

We can choose as base functions, instead of simple polynomials
1, x, x2, x3, . . ., Legendre5 polynomials, which have the useful property of
orthogonality on the interval [−1,1]: if we formally define the inner prod-
uct of two functions f (x) and g (x) as the integral⟨−→

f ·−→g
⟩
=
∫ +1

−1
f (x) g (x)dx,

then we can say for the Legendre polynomials Pn (x) , that

〈Pn ·Pm〉 =
∫ +1

−1
Pn (x)Pm (x)dx =

{
0 m ̸= n
2

2n+1 m = n
.

The Legendre polynomials are most easily generated by the following
recursive relationship:

nPn (x)=− (n−1)Pn−2 (x)+ (2n−1) xPn−1 (x) .

In this way we find

P0 (x) = 1,

P1 (x) = x,

P2 (x) = 3
2

x2 − 1
2

,

P3 (x) = 5
2

x3 − 3
2

x,

etcetera.
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Figure 10.8. Examples of Legendre polynomials.
□

Now if we write our approximation of function f (x) as follows:

f̃ (x)=
I∑

i=0

aiPi (x) ,

we obtain again for a row of our observation equation:

f̃ (x)=
[

P0 (x) P1 (x) P2 (x) · · · PI (x)
]
⎡⎢⎢⎢⎢⎢⎣

a0

a1

a2
...

aI

⎤⎥⎥⎥⎥⎥⎦ .

Again choosing the values −1,−0.5,0,0.5 and 1 yields⎡⎢⎢⎢⎢⎢⎣
f̃ (−1.0)
f̃ (−0.5)
f̃ (0.0)
f̃ (0.5)
f̃ (1.0)

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 −1 1 −1
1 −0.5 −0.125 0.4375
1 0 −0.5 0
1 0.5 −0.125 −0.4375
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a0

a1

a2

a3

⎤⎥⎥⎥⎦ ,

and the corresponding normal matrix is

N = AT A =

⎡⎢⎢⎢⎣
5 0 1.25 0
0 2.5 0 1.5625

1.25 0 2.28125 0
0 1.5625 0 2.38281

⎤⎥⎥⎥⎦ .

5Adrien-Marie Legendre, 1752 – 1833, was a French mathematician.
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Now, the condition number λmax/λmin is 6.25, a lot better than for simple
polynomials!

The normal matrix looks approximately, but not precisely, diagonal. If
we had a larger number of support points, all spread uniformly over the
interval [−1,1], we would see the N matrix become very nearly a diag-
onal matrix. (And even if some of the support points would be missing,
the matrix would still be close to diagonal.)

What this means is that the polynomial approximation done this way is
more stable even for very high polynomial degree numbers. Evaluating
each polynomial Pn (x) for a given support point argument x can be done
very efficiently using the above given recurrence relationship.

□ 10.6.3 Chebyshev interpolation

See http://en.wikipedia.org/wiki/Chebyshev_approximation#
Chebyshev_approximation, http://en.wikipedia.org/wiki/Chebyshev_
polynomials.

Another kind of polynomials often used for interpolation are Chebyshev6

polynomials of the first kind. They can be formally defined as7

Tn (x)= cos(narccos x) . (10.11)

Like Legendre’s polynomials, they are easily computed recursively:

Tn+1 (x)= 2xTn (x)−Tn−1 (x) ,

starting from T0 (x)= 1 and T1 (x)= x. The first few polynomials are

T0 (x) = 1,

T1 (x) = x,

T2 (x) = 2x2 −1,

T3 (x) = 4x3 −3x,

and so on.

Like Legendre’s polynomials, also Chevyshev’s polynomials satisfy an
orthogonality relationship, but for a different inner product: if we define⟨−→

f ·−→g
⟩
=
∫ +1

−1

f (x) g (x)p
1− x2

dx, (10.12)

6Pafnuty Lvovich Chebyshev, 1821 – 1894, was a Russian mathematician.
7T like in the French transliteration Tshebyshev.
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Figure 10.9. Examples of Chebyshev polynomials.
□

where we call
(
1− x2

)−1/2 the weighting factor, we have

〈Tn ·Tm〉 =
∫ +1

−1

Tn (x)Tm (x)p
1− x2

dx =
⎧⎨⎩

0 n ̸= m
π n = m = 0
π/2 n = m ̸= 0

.

Again, we may approximate a function f as follows:

f̃ (x)=
I∑

i=0

aiTi (x) , (10.13)

from which the observation equation for the coefficients ai becomes

f̃ (x)=
[

T0 (x) T1 (x) T2 (x) · · · TI (x)
]
⎡⎢⎢⎢⎢⎢⎣

a0

a1

a2
...

aI

⎤⎥⎥⎥⎥⎥⎦ .

For the same case of observed function values in support points
−1,−0.5,0,0.5 and 1 we obtain⎡⎢⎢⎢⎢⎢⎣

f̃ (−1.0)
f̃ (−0.5)
f̃ (0.0)
f̃ (0.5)
f̃ (1.0)

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1 −1 1 −1
1 −0.5 −0.5 1
1 0 −1 0
1 0.5 −0.5 −1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a0

a1

a2

a3

⎤⎥⎥⎥⎦ .
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The normal matrix is

N = AT A =

⎡⎢⎢⎢⎣
5 0 0 0
0 2.5 0 1
0 0 3.5 0
0 1 0 4

⎤⎥⎥⎥⎦ ,

with a condition number of λmax/λmin = 2.5, which is pretty good!

This all looks very interesting. . . but what is the advantage of using
Chebyshev approximation? To understand that, look at the figure 10.9.
Or look at equation (10.11). Each polynomial oscillates between the ex-
tremal values +1 and −1. Compare this to Legendre polynomials, which
also oscillate, and at the ends of the interval ±1 assume values ±1 as
well. . . but in-between they oscillate a lot less.

If we assume for a moment that the Chebyshev expansion (10.13) con-
verges rapidly, then we may say approximately, that the error is equal
to the first neglected term:

f (x)− f̃ (x)=
∞∑

i=I+1

aiTi (x)≈ aI+1TI+1 (x) .

Here, aI+1 is a constant, and TI+1 (x) a function that is uniformly
bounded from above by +1 and from below by −1 on the domain [−1,1].

This demonstrates what Chebyshev approximation is useful for: it con-
stitutes uniform approximation, where the error is absolutely bounded
to the same value |aI+1| all over the domain [−1,1]. For this reason it
is used, e.g., in pocket calculators, or numerical libraries, for evaluating
standard functions like sines and cosines and logarithms. It is a way to
guarantee that always the same number of computed decimals is correct,
irrespective of the argument value of the function chosen.

For comparison: if you look at the Legendre polynomials drawn in figure
10.8, they are oscillating much less in the middle than towards the end
points ±1. This means by the same argument, that the error of approx-
imation will also be larger towards the end points when using Legendre
approximation. The weight function

(
1− x2

)−1/2 which is present in the
Chebychev inner product definition (10.12) serves just to “force” the ap-
proximation to become more precise there. The “floppy loose ends” of the
approximation are suppressed.

□ 10.7 “Inversion-free” interpolation

Inversion-free interpolation works generally in this way, that from the
neightbourhood of the prediction point we pick a suitable set of data
points and calculate from them a weighted average. The weighting
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is generally done according to some power of the distance of the data
points.

A robust method is formed by taking from the neighbourhood of the pre-
diction point one data point – the nearest point –from every quadrant.

□ 10.8 Regridding

If some geophysical field has been given on a regular grid with point
spacing ∆x, than in the signal contained in this grid are found only the
“frequencies” under a certain limit. The shortest possible wavelength,
that the grid still is able to represent somewhat reliably, is 2∆x. This is
called the Nyquist limit.

□ 10.9 Spatial interpolation, spectral statistics

Literature:
Bailey and Gatrell (1995, s. 141-203)
Mikhail and Ackermann (1976, s. 393-426)
Shibili (2000)
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□ 11. Least squares collocation

Literature:
Heiskanen and Moritz (1967) pages 251-286.

□ 11.1 Stochastic processes

Collocation is a statistical estimation technique which is used to pre-
dict a stochastic process, of which we have available certain realization
values.

Let s (t) be a stochastic process having an autocovariance function
C (t1, t2). Let this process also be stationary, i.e., C (t1, t2) = C (t2 − t1).
The argument t generally is time, but it can be almost any parameter,
e.g., travelled distance.

Let now be given n observations of this process, s (t1) , s (t2) , . . . , s (tn);
then the variance matrix of these realizations, or stochastic quantities,
may be written as follows:

Var
(
si
)=
⎡⎢⎢⎢⎢⎣

C (t1, t1) C (t2, t1) · · · C (t1, tn)

C (t1, t2) C (t2, t2) · · · ...
...

... . . . ...
C (t1, tn) C (t2, tn) · · · C (tn, tn)

⎤⎥⎥⎥⎥⎦ .

Let us use for this the symbol Ci j. Both for a single element
of the matrix, Ci j = C

(
ti, t j

)
, and for the whole matrix, Ci j =[

C
(
ti, t j

)
, i, j = 1, . . . ,n

]
. The symbol si again means a vector composed

of the observations s (ti) , i = 1, . . . ,n – or its element s (ti).

Note that, if the function C (t2 − t1) is known, we can compute the whole
matrix and all of its elements as long as all ti are known.

Let the problem now be formulated as that of estimating the value of the
process s at the moment (epoch) T. We have available observations of
the process at times ti, i.e., s (ti) , i = 1, . . . ,n.
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In the same way as we earlier computed the covariances between s (ti):n
and s

(
t j
)

(the elements of the variance matrix Ci j), we can also compute
the covariances between s (T)and all the s (ti) , i = 1, . . . ,n. We obtain

Cov
(
s (T) , s (ti)

)=
⎡⎢⎢⎢⎣

C (T, t1)
C (T, t2)

...
C (T, tn)

⎤⎥⎥⎥⎦ .

For this we may again use the notation CT j.

□ 11.2 Signal and noise

It is good to remember here, that the process s (t) is a physical phe-
nomenon in which we are interested. Such a stochastic process is called
a signal. There exist also stochastic processes that behave in the same
way, but in which we are not interested. Such stochastic processes we
call noise.

When we make an observation, the goal of which it is to obtain a value
for the quantity s (ti), we obtain in reality a value which is not absolutely
exact. We thus obtain

ℓi = s (ti)+ni.

Here, ni is a stochastic quantity called observational error or noise. Let
its variance be D i j; this is quite a similar matrix as the above Ci j. The
only difference is, that D describes a phenomenon in which we have no
interest. Generally it is safe to assume, that the errors in two differ-
ent observations ℓi,ℓ j do not correlate, in which case D i j is a diagonal
matrix.

□ 11.3 An estimator and its error variance

Now we construct an estimator

ŝ (T)
def=
∑

j

ΛT jℓ j,

a linear combination of the available observations ℓi. The mission in life
of this estimator is to get as close as possible to s (T). SSo, the quantity
to be minimized is the difference

ŝ (T)− s (T)=ΛT jℓ j − s (T)=Λt j
(
s
(
t j
)+n j

)− s (T) .

Here we left, for the sake of writing convenience, the summation symbol∑
off (Einstein summation convention).
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Let us study the variance of this difference, i.e.,

ΣTT
def= Var

(
ŝ (T)− s (T)

)
.

This is called the variance of estimation. We use the law of propagation
of variances, the notations given above, and our knowledge, that it is
highly unlikely that between the observation process ni and the signal s
there would be any kind of physical connection or correlation. So:

ΣTT =ΛT j
(
C jk +D jk

)
ΛT

kT +CTT −ΛT jCT
jT −CTiΛ

T
iT . (11.1)

□ 11.4 The optimal and an alternative estimator

Now choose
ΛT j

def= CTi
(
Ci j +D i j

)−1 .

Then, from equation (11.1):

ΣTT = CTi
(
Ci j +D i j

)−1 CT
jT +CTT −

− CTi
(
Ci j +D i j

)−1 CT
jT −CTi

(
Ci j +D i j

)−1 CT
jT =

= CTT −CTi
(
Ci j +D i j

)−1 CT
jT . (11.2)

Next, we investigate the alternative choice

ΛT j = CTi
(
Ci j +D i j

)−1 +δΛT j.

In this case we obtain

Σ′
TT = CTT −CTi

(
Ci j +D i j

)−1 CT
jT +

+ δΛi jCT
jT +CTiδΛ

T
iT −δΛT jCT

jT −CTiδΛ
T
iT +

+ δΛT j
(
Ci j +D i j

)
δΛT

jT =
= CTT −CTi

(
Ci j +D i j

)−1 CT
jT +δΛT j

(
Ci j +D i j

)
δΛT

jT .

Here the last term is positive, because the matrices Ci j ja D i j are posi-
tive definite. In other words, Σ′

TT >ΣTT , except if δΛT j = 0.

In other words, the already given solution

ΛT j = CTi
(
Ci j +D i j

)−1 =⇒ ŝ (T)= CTi
(
Ci j +D i j

)−1
ℓ j

is truly optimal in the sense of least squares (more precisely, in the sense
of minimising ΣTT).

□ 11.5 Stochastic processes on the Earth’s surface

Least squares collocation is much used on the Earth surface for opti-
mally estimating gravity values and values of other functionals of the
gravity field.
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110 Least squares collocation

If the gravity anomaly in the point Pi – location
(
ϕi,λi

)
– is written as

∆g i, then the covariance between two gravity anomalies is

Cov
(
∆gi,∆g j

)
= Ci j.

Generally Ci j depends only on the distance ψ between points Pi,P j; if
this is the case, we speak of an isotropic process ∆g

(
ϕ,λ

)
.

A popular covariance function that is used for gravity anomalies, is Hir-
vonen’s formula:

C
(
ψ
)= C0

1+ ψ2

ψ2
0

= C0

1+ s2

d2

, (11.3)

where C0 = C (0) and d are descriptive parameters for the behaviour
of the gravity field. C0 is called the signal variance, d the correlation
length. d is the typical distance over which there is still significant cor-
relation between the gravity anomalies in different points. The metric
distance s ≈ Rψ and d ≈ Rψ0.

If now we have given n points Pi, i = 1, . . . ,n, where have been measured
gravity values (anomalies) ∆g i, we may, like above, construct a variance
matrix

Var
(
∆gi

) =

⎡⎢⎢⎢⎣
C0 C

(
ψ21
) · · · C

(
ψn1

)
C
(
ψ12
)

C0 · · · C
(
ψn2

)
...

... . . . ...
C
(
ψ1n

)
C
(
ψ2n

) · · · C0

⎤⎥⎥⎥⎦=

=

⎡⎢⎢⎢⎣
C0 C21 · · · Cn1

C12 C0 · · · Cn2
...

... . . . ...
C1n C2n · · · C0

⎤⎥⎥⎥⎦ def= Ci j,

where all C
(
ψi j
)

are computed with the aid of the above given formula
(11.3).

If we still also compute for the point Q the gravity of which is unknown:

Cov
(
∆gQ ,∆g i

)=
⎡⎢⎢⎢⎣

C
(
ψQ1

)
C
(
ψQ2

)
...

C
(
ψQn

)
⎤⎥⎥⎥⎦ def= CQ j,

we obtain, in precisely the same way as before, as the least squares col-
location solution:

∆̂gQ = CQ j
(
C jk +D jk

)−1
∆gk,

where the ∆gk are the results of gravity anomaly observations made
in the points Pk, k = 1, . . . ,n. The matrix D jk again describes the ran-
dom observation error (imprecision) occurring when making these ob-
servations. Generally on may assume, that D jk is a diagonal matrix
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(the observations are uncorrelated) and furthermore, that D jk ≪ C jk:
The precision of gravity observations is nowadays better than 0.1 mGal,
whereas the variability of the gravity field itself is of order 50-100 mGal
(i.e., C0 ∼ 2500−10000mGal2).

□ 11.6 The gravity field and applications of collocation

The method of least squares collocation as presented above is applied,
e.g., for computing gravity anomalies in a point where no measurements
have been made, but where there are measurement points in the vicin-
ity. E.g., if a processing method requires, that gravity anomalies must
be available at the nodes of a regular grid, but the really available mea-
surement values refer to freely chosen points – then one ends up having
to use the collocation technique.

Collocation may also be used to estimate quantities of different types:
e.g., geoid undulations or deflections of the vertical from gravity anoma-
lies. This requires a much more developed theory than the one that
was presented here. See, e.g., http://www.uni-stuttgart.de/gi/research/
schriftenreihe/kotsakis.pdf.

□ 11.7 Kriging

Kriging is a form of least squares collocation, an interpolation technique.

Starting from the above Hirvonen covariance function (11.3), we can
compute the variance of the difference between two gravity anomalies
in points Pand Q, as follows:

Var
{
∆gP −∆gQ

}
= Var

{
∆gP

}+Var
{
∆gQ

}
−2Cov

{
∆gP ,∆gQ

}
=

= 2C0 −2
C0

1+
(

ψ
ψ0

)2 =
2C0

(
ψ
ψ0

)2

1+
(

ψ
ψ0

)2 =

= 2C0ψ
2

ψ2 +ψ2
0

.

In the situation where ψ≪ψ0, we get

Var
{
∆gP −∆gQ

}
≈ 2C0

ψ2

ψ2
0

.

On the other hand, for ψ≫ψ0, we get

Var
{
∆gP −∆gQ

}
≈ 2C0.

We can identify half of this expression, 1
2 Var

{
∆gP −∆gQ

}
, with the

semi-variance of ∆g. We also recognize ψ0, or perhaps a few times ψ0,
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Figure 11.1. Hirvonen’s covariance function (for parameter values C0 = ψ0 =
1) and the associated semi-variance function. Markov-type co-
variance function and semi-variance

□

as the “sill” at which the semi-variance levels off to the constant value
C0.

For the alternative Markov-type covariance function, defined as:

C
(
ψ
)= C0 exp

(
− ψ

ψ0

)
,

we get

1
2

Var
{
∆gP −∆gQ

}
= C0 −C0 exp

(
− ψ

ψ0

)
=

= C0

(
1−exp

(
− ψ

ψ0

))
.

Now, for ψ≪ψ0 this becomes C0
ψ

ψ0
, while for ψ≫ψ0 we obtain again

C0. Note the linear behaviour for small ψ, which differs from the
quadratic behaviour of the Hirvonen function and is typical for a “ran-
dom walk” type process .

Kriging is a form of least-squares collocation described within this semi-
variance formalism.

□ 11.8 An example of collocation on the time axis

Given is, that the covariance function of the signal function s (t) between
two moments t1 and t2 is

C (t2 − t1)= C0(
1+ ∥t2−t1∥

∆t

) ,

where the constants are C0 = 100mGal and ∆t = 10s. Also given are the
values of the observation quantity

ℓi = s (ti)+ni
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: t1 = 25s, ℓ1 = 25mGal and t2 = 35s, ℓ2 = 12mGal. Compute by least-
squares collocation ŝ (t3), if t3 = 50s. You may assume that ni = 0, i.e.,
the observations are exact.

Answer:

ŝ3 =
[

C31 C32
][ C11 C21

C12 C22

]−1[
ℓ1

ℓ2

]
,

where
C11 = C22 = 100mGal,

C12 = C21 = 100
1+ 10

10
mGal= 50mGal,

C31 = 100
1+ 25

10
mGal= 1000

35
mGal= 28.57mGal

C32 = 100
1+ 15

10
mGal= 40mGal,

i.e.:

ŝ3 = [
28.57 40

][ 100 50
50 100

]−1[
25
12

]
=

= 1
150

[
28.57 40

][ 2 −1
−1 2

][
25
12

]
=

= 1045.86
150

= 6.97mGal.

□ Self-test questions

1. In what ways does kriging differ from (general) least-squares col-
location?

2. How is the variance of estimation defined and what does it de-
scribe?

3. The least-squares collocation solution may be written as

∆̂gQ = CQ j
(
C jk +D jk

)−1
∆gk.

Explain the meaning of every symbol.

□ Exercise 11 – 1: Hirvonen’s covariance formula

Hirvonen’s covariance formula is

C(sPQ)= C0

1+( sPQ
d

)2 ,
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in which (in the case of Ohio) C0 = 337mGal2 and d = 40km. The for-
mula gives the covariance between the gravity anomalies in two points
P and Q:

C
(
sPQ

)= Cov
(
∆gP ,∆gQ

)
.

sPQ is the inter-point distance.

1. Compute Var
(
∆gP

)
and V ar

(
∆gQ

)
[Hint: remember that accord-

ing to the definition, V ar (x)= Cov (x, x)].

2. Compute Cov
(
∆gP ,∆gQ

)
if sPQ = 10km.

3. Compute the correlation

Corr
(
∆gP ,∆gQ

)
def=

Cov
(
∆gP ,∆gQ

)
√

Var
(
∆gp

)
Var

(
∆gQ

) .

4. Repeat the computations (sub-problems) 2 and 3 if sPQ = 80km.

□ Exercise 11 – 2: Prediction of gravity anomalies

Let us have given the measured gravity anomalies for two points 1 and
2, ∆g1 and ∆g2. The distance between the points is 80 km and between
them, at the same distance of 40 km from both, is located point P. Com-
pute the gravity anomaly ∆gP of point P using the prediction method.
The prediction formula is

∆̂gP = CPi
(
Ci j +D i j

)−1
∆g j,

where ∆g j =
[
∆g1 ∆g2

]T
is the vector of observed anomalies,

Ci j =
⎡⎣ Var

(
∆g i

)
Cov

(
∆g i,∆g j

)
Cov

(
∆g i,∆g j

)
Var

(
∆g j

) ⎤⎦
is its variance matrix, and CPi =

[
Cov

(
∆gp,∆g1

)
Cov

(
∆gP ,∆g2

) ]
the covariance matrix between it and ∆gP . D i j is the variance matrix of
the observation process of ∆g1,∆g2.

1. Compute (as a formula) the matrix Ci j, assuming Hirvonen’s co-
variance formula (previous problem) and parameter values.

2. Compute (as a formula) CPi.

3. Compute (as a formula, but fully written out) ∆̂gP . Assume that
D i j = 0. (Inverting the Ci j matrix is possible on paper, but rather
use Matlab or similar.)

4. Compute (as a formula) the variance of prediction (Note C jP = CT
Pi):

σ2
PP = CPP −CPiC−1

i j C jP
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□ Exercise 11 – 3: Prediction of gravity (2)

Let us again have the gravity anomalies ∆g1 and ∆g2 measured at
points 1 and 2. This time, however, the points 1, 2 and P are lying
on a rectangular triangle, so, that the right angle is at point P, and the
distances of point P from the points 1 and 2 are, just like before, 40 km.
The distance between points 1 and 2 is now only 40

p
2 km.

1. Compute Ci j, CPi, ∆̂gP and σ2
PP .

2. Compare with the earlier result. Conclusion?
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□ 12. Various useful analysis techniques

In many practical adjustment and related problems, especially large
ones, one is faced with the need to manipulate large systems of equa-
tions. Also in geophysical applications, one needs adjustment or anal-
ysis techniques to extract information that is significant, while leaving
out unimportant information. Also, the methods used should be numer-
ically stable.

In these cases, the following techniques may be useful. We describe them
here from a practical viewpoint; they are typically available in rapid pro-
totyping languages such as Matlab or Octave. It is always advisable to
use these for proof of principle before coding a production-quality appli-
cation.

□ 12.1 Computing eigenvalues and eigenvectors

An eigenvalue problem is formulated as

[A−λI]x= 0, (12.1)

to be determined all values λi — eigenvalues — and associated vectors
xi — eigenvectors — for which this holds. The matrix A on n×n and the
vector x, dimension n.

Determining the λi is done formally by taking the determinant:

det[A−λI]= 0.

This is an n-th degree equation that has n roots — which may well be
complex. After they are solved for, they are back substituted, each pro-
ducing a linear system of equations

[A−λi I]xi = 0

to be solved for xi.

– 117 –
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□ 12.1.1 The symmetric (self-adjoint) case

If A is symmetric, i.e., A = AT, or self-adjoint, i.e., 〈Ax ·y〉 = 〈x · Ay〉,
or equivalently, in matrix language, xTATy = xTAy for all x,y, we can
show that the eigenvalues are real and the corresponding eigenvectors
mutually orthogonal. As follows: say we have λi with xi and λ j with x j.
Then from the above

λixi = Axi,

λ jx j = Ax j.

Multiply the first equation from the left with x j,and the second from the
right with xi The result:

λi
⟨
x j ·xi

⟩ = ⟨
x j · Axi

⟩
,

λ j
⟨
x j ·xi

⟩ = ⟨
Ax j ·xi

⟩
.

Subtract these: (
λi −λ j

)⟨
x j ·xi

⟩= 0

using the self-adjoint nature of A. Now if we have two different eigen-
values λi ̸=λ j, we must have ⟨

x j ·xi
⟩= 0,

in other words, xi ⊥ x j. If λi = λ j, we have a degeneracy, but still we
will be able to find two vectors xi and x j spanning the two-dimensional
subspace of vectors satisfying this eigenvalue. The same is several eigen-
values are identical.

We can put all these eigenvectors xi, i = 1, . . . ,n into a matrix R as
columns:

R = [ x1 · · · xi · · · xn
]
.

Because then ⟨
xi ·x j

⟩= xT
i x j = δi j =

{
1 i = j
0 i ̸= j

we also have
RTR = I,

i.e., R is an orthogonal matrix.

Because all columns of R satisfy Eq. (12.1), albeit for different values of
λi, we may write

[A−Λ]R = 0,

Λ is the diagonal matrix made up of the eigenvalues: Λ =
diag(λ1,λ2, · · · ,λn). Multiply from the left with RT :

RTAR = RTΛR =Λ,
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12.2. Singular value decomposition (SVD) 119

because of the orthogonality property of the matrix R. So now we have
found the rotation matrix that brings A on principal axes:

A = RΛRT,

readily obtained by multiplying from the left with R and from the right
with RT, and observing that RRT = I.

□ 12.1.2 The power method

Often we are interested in computing only the biggest eigenvalue of a
matrix. In this case a recommendable method is the “power method”.

If our matrix is A, we choose a starting vector x and multiply it repeat-
edly by A, obtaining

Anx, n →∞.

This will converge to the eigenvector x1 associated with the largest
eigenvalue λ1, which is then obtained by

λ1 = lim
n→∞

An+1x


∥Anx∥ .

The smallest eigenvalue can be similarly obtained by applying the pro-
cess to the inverse matrix A−1 instead.

Note that An may become numerically uncomputable for large n: it may
overflow (leading to a crash) or underflow (leading to loss of precision).
Therefore one should re-scale the product Anx for every step.

□ 12.2 Singular value decomposition (SVD)

□ 12.2.1 Principle

Singular value decomposition writes an arbitrary matrix A as the prod-
uct of three matrices:

A =USVT.

Here, the matrix S represents the size of the components of a phe-
nomenon, wheras the matrices U and V represent rotations – they are
both orthogonal1. S is a diagonal matrix (more precisely, a diagonal ma-
trix to which may have been added “borders” consisting of columns or
rows containing zeroes.).

Note that this works for an arbitrary matrix. A may be rectangular, i.e.,
the numbers of columns and rows may differ, and there may be a rank
defect. If the dimensions of A are n×m, then U is of size n×n and V of
size m×m . The matrix S has the same size as A.

1I.e., UTU =UUT = I and the same for V .
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□ 12.2.2 Square matrix

If A is square, then we can compute its determinant:

det A = detU detS detV ,

and because the determinant of an orthogonal matrix is always ±1, we
obtain

det A =±detS.

The elements of S on the main diagonal are at the same time its eigen-
values:

detS =
n∏

i=1

λi,

where n is the size, i.e., the number of columns and rows of S.

From this we see, that if some eigenvalue of S vanishes, then we have
detS = 0 and therefore necessarily also det A = 0, i.e., A is singular.

Calculating the inverse matrix:

A−1 = = (USVT
)−1 = (VT

)−1
S−1U−1 =V S−1UT.

In other words: the SVD of the inverse matrix has the same U and V as
the SVD of the original matrix – only their roles have been interchanged.
Computing the matrix S−1 is trivial: every diagonal element is the in-
verse number of the corresponding diagonal element of S. Of course this
presupposes, that all are ̸= 0!

□ 12.2.3 General matrix

Geometrically we can say, that the rotation matrices U and V turn the
matrix A “upon principal axes”, after which every axis is independent of
the others: every axis has its own factor λi. More precisely, the columns
of U are the eigenvectors of AAT , while those of V are the eigenvectors
of AT A. Both latter matrices are square and symmetric.

We can write ATA = (USVT
)TUSVT = V STUTUSVT = V STSVT,

showing the eigenvectors of this matrix to be the columns of V and
the eigenvalues, those of the matrix STS, which has m× m elements.
They are the squares of the eigenvalues of S itself. Proving that the
eigenvectors of AAT are the columns of U is done similarly. Note that if
m > n, then AAT will have |m−n| vanishing eigenvalues, and the same
for ATA if m < n.

In the general case the form of the matrix S will be one of the following,
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12.2. Singular value decomposition (SVD) 121

depending on whether n < m or n > m:

[
Λ

;

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
. . .

λn

0 · · · 0
...

...
0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
[
Λ ; ]=

⎡⎢⎣ λ1 0 · · · 0
. . . ...

...
λn 0 · · · 0

⎤⎥⎦ .

Then, when we write also U and V out in column vectors,

U = [ u1 u2 · · · un
]
, V = [ v1 v2 · · · vm

]
,

we may write

A =
min(m,n)∑

i=1

λiuivi.

This expansion explains the name “singular value decomposition”: λi

are the eigenvalues or singular values, organised in descending order of
absolute size.

□ 12.2.4 Applications

In applications often the A matrix contains observation values: the
element A i j = A

(
xi, t j

)
,where xi, i = 1 . . .n is the place, and t j, j = 1 . . .m

the time. In this case the columns of V , Vki =Vk (xi) , i = 1 . . .n are differ-
ent patterns of place, one for each value of k, and Uk j =Uk

(
t j
)

, j = 1 . . .m
are correspondingly different time series, also one for each k. Every spa-
tial pattern has its own time series, having the same k value and ampli-
tude Skk.

Thus SVD is useful for analysing geophysical phenomena, which depend
both on place and on time. The corresponding element of the S matrix,
Skk =λk describes the strength of the pattern in question as a part of the
total phenomenon.

Example: the ocean tide. A i j is the total amplitude of the tide at place
xi (which thus is two-dimensional, xi =

(
ϕ,λ

)
i ∈ R2), at the moment t j.

The solutions are the various tidal constituents, e.g., k = 1 semidiurnal
lunar tide, k = 2 semidiurnal solar tide, etc.

□ 12.2.5 SVD as a compression technique

Only components making a significant contribution to the total signal
have Skk ≇ 0. Those elements of S that are in practice zero, can be re-
moved from the S matrix, and correspondingly the meaningless columns
in the rotation matrices U and V . In fact, this is an often used compres-
sion technique: A i j = A

(
xi, t j

)
can be a video clip, and U ,V and S may

together be considerably smaller than the original A!
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□

We can also look at the expansion

A =
min(n,m)∑

i=1

λiuivi.

In a realistic case, many of the eigenvalues are very close to zero, if not
precisely zero. If they are not zero, this will generally be due to the
data being used containig noise. By removing all eigenvalues that are
absolutely smaller than some suitable limit, we also filter the matrix A
for this noise. Thus, SVD is also a data cleansing method.

□ 12.2.6 Example (1)

We use here the example of a one-dimensional oscillating mirrored cav-
ity. The spatial dimension in x ∈ [0,2π). The temporal dimension t could
extend to infinity, but we limit it here also to t ∈ [0,2π). We assume the
wave function to be the sum of two oscillations:

f (x, t)= sin
1
2

xsin
1
2

t+sin xsin t.

The matrix A describing the wave motion now becomes, choosing 5×5
support points on the square domain:

A =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 −0.500 0.707 1.500 0
0 0.707 1.000 0.707 0
0 1.500 0.707 −0.500 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
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Here we have retained three decimals (the value 0.707 is a truncation of
1
2

p
2).

Doing an SVD on this matrix produces

U =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1.00000 0

−0.70711 −0.50000 0.50000 0 0
0 −0.70711 −0.70711 0 0

0.70711 −0.50000 0.99992 0 0
0 0 0 0 1.00000

⎤⎥⎥⎥⎥⎥⎦ ,

S =

⎡⎢⎢⎢⎢⎢⎣
2.00000 0 0 0 0

0 1.99985 0 0 0
0 0 0.00015 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

and

V =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1.00000 0

0.70711 −0.50000 0.50000 0 0
0 −0.70711 −0.70711 0 0

−0.70711 −0.50000 0.99992 0 0
0 0 0 0 1.00000

⎤⎥⎥⎥⎥⎥⎦
Inspecting the S matrix, we see two large eigenvalues 2 and 1.99985, fol-
lowed by the much smaller 0.00015. This smaller value is due to numer-
ical rounding error, as can be readily verified by repeating the process
with a larger number of decimals in A.

Retaining only the first two terms, we can compute

A =US̃V T =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 −0.50004 0.70705 1.49996 0
0 0.70705 0.99992 0.70705 0
0 1.49996 0.70705 −0.50004 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

close to the original matrix.

□ 12.2.7 Example (2)

We start from the tide gauge data of the Finnish Institute of Marine
Research 1943 – 1968, see table 12.2.

On this data, written as an array A, we have performed a sigular value
decomposition. The singular values, the diagonal elements of the S ma-
trix, are given in table 12.3 in descending order of magnitude.

It can be seen that there are some three dominant values, the rest being

C F T A B IC F T A B I

https://users.aalto.fi/~mvermeer/tasj-fi.pdf#subsection.12.2.7


124 Various useful analysis techniques

□

Table 12.1. Finnish tide gauges.

Tide gauge Latitude Longitude
1 Hamina 60.56 27.17
2 Helsinki 60.15 24.97
3 Hanko 59.83 22.97
4 Degerby 60.03 20.39
5 Turku 60.41 22.10
6 Rauma 61.13 21.48
7 Mäntyluoto 61.60 21.48
8 Kaskinen 62.39 21.22
9 Vaasa 63.10 21.57

10 Pietarsaari 63.72 22.70
11 Raahe 64.70 24.50
12 Oulu 65.03 25.43
13 Kemi 65.75 24.55

□
Table 12.2. Tide-gauge data from the Finnish coast, years 1943-86. Yearly av-

erages. Years 1949 and 1953 are missing, being incomplete.

A = [2083,2060,2035,1994,2030,1972,1972,1970,1964,1938,1969,1996,2011; %1943

1998,1987,1973,1933,1964,1896,1899,1894,1885,1856,1880,1906,1936; %1944

1986,1978,1971,1928,1933,1880,1877,1858,1849,1810,1827,1850,1850; %1945

1952,1935,1922,1882,1893,1849,1848,1839,1819,1799,1827,1869,1867; %1946

1832,1827,1807,1763,1767,1725,1718,1701,1700,1656,1686,1720,1722; %1947

2042,2006,1992,1942,1955,1908,1902,1885,1869,1849,1885,1906,1929; %1948

1977,1972,1955,1914,1920,1872,1866,1854,1820,1810,1829,1862,1862; %1950

1847,1830,1812,1782,1786,1742,1737,1732,1701,1699,1730,1769,1769; %1951

1997,1963,1959,1912,1919,1870,1850,1831,1801,1781,1808,1845,1848; %1952

1933,1912,1888,1835,1847,1795,1784,1779,1742,1712,1759,1801,1794; %1954

1996,1975,1945,1883,1896,1830,1814,1786,1764,1726,1765,1807,1786; %1955

1966,1951,1923,1871,1876,1811,1793,1768,1747,1697,1740,1762,1753; %1956

2008,1985,1953,1887,1900,1840,1822,1795,1768,1725,1777,1812,1799; %1957

1914,1900,1881,1824,1832,1769,1745,1717,1690,1647,1689,1741,1721; %1958

1853,1842,1824,1767,1768,1711,1688,1663,1644,1603,1656,1692,1683; %1959

1772,1778,1770,1721,1723,1669,1635,1608,1573,1530,1572,1605,1590; %1960

2036,2004,1977,1922,1943,1873,1851,1824,1799,1764,1817,1852,1843; %1961

2004,1980,1951,1882,1891,1825,1802,1772,1750,1708,1786,1819,1786; %1962

1860,1829,1804,1738,1750,1683,1661,1626,1603,1569,1610,1662,1637; %1963

1964,1930,1894,1824,1843,1762,1747,1720,1696,1675,1719,1766,1759; %1964

1895,1891,1865,1798,1804,1733,1702,1670,1638,1607,1637,1693,1657; %1965

1857,1847,1825,1761,1778,1709,1684,1655,1627,1597,1639,1712,1670; %1966

2024,2012,1980,1916,1927,1860,1841,1806,1782,1748,1796,1850,1834; %1967

1886,1868,1840,1768,1776,1700,1648,1642,1615,1578,1616,1658,1645]; %1968
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□

Table 12.3. Singular values from SVD in descending order.

1 32163.6050
2 377.3280
3 99.2063
4 52.3408
5 37.3715
6 32.1409
7 29.5212
8 26.3864
9 22.2418

10 19.6933
11 17.5263
12 10.6901
13 9.1831

uniformly much smaller.

In order to identify what patterns in the data these singular values rep-
resent, we have plotted the corresponding columns of V , representing
spatial patterns over all 13 tide gauges. The length of each of these
columns is 13. The plots are in figure 12.2 and 12.3.

−0.4

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

−0.5
 0  2  4  6  8  10  12  14

 mode 1

 mode 2

 mode 3

Figure 12.2. The spatial patterns of the first three singular values found by
SVD. Horizontal scale is tide gauge number.

□
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Degerby
HelsinkiHanko

Hamina

Figure 12.3. The spatial patterns of the first three singular values found by
SVD. Geographic plot.

□

We can see that the first singular value, a horizontal line, represents the
common mode of all the tide gauges: the waters of the Baltic Sea moving
up and down together, in almost the same way at each location. This
mode represents the total water volume of the Baltic, influenced mostly
by in- and outflow through the Danish straits, inflow of river water, and
precipitation (evaporation being negligible).

The second and third modes are very similar, though different-looking.
They represent (plane) tilts of the water surface, the so-called “bathtub
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Figure 12.4. Residuals after removal of the first three singular values. Unit:
mm.
Below: a gross error of 50 mm was introduced into Mäntyluoto
epoch 12.

□

modes”. As was argued in Vermeer et al. (1988), these three modes to-
gether describe pretty much all the vertical motion of the water surface
of the Baltic.

This hypothesis can be tested. We can retain, in the S matrix, only the
first three singular values (diagonal elements), setting the remainder
to 0. Then, we compute A −US̃VT, where S̃ is the thus truncated S
matrix. These residuals, which represent all signal unexplained by the
three first modes, are given in table 12.4.

The unit in this figure is millimetres. We see that the largest residu-
als are ±21mm. Most residuals are within ±10mm. For comparison,
removal of only the first singular value (common mode) leaves many
residuals of over ±50mm, especially in the ends of the Gulfs of Bothnia
and Finland.
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Figure 12.5. Common mode, Hanko and Kemi tide gauge time series.
□

The right hand side of the figure shows an experiment where a gross er-
ror was added to one observation value. It shows up as an outlier. Nev-
ertheless, one should be careful when using SVD as an outlier detection
technique: if there are many singular values included in the reconstruc-
tion, one of them may “absorb” the gross error and the whole solution
will be deformed by it.

We still plot the common mode as a function of time, computed as

h (ti)Ui1S11
1
m

m∑
k=1

Vk1.

See figure 12.5, with, for comparison, the time series of Hanko and Kemi.
We see that the general behaviour of the Baltic water masses is captured
well.

□ 12.3 Principal Component Analysis (PCA) or Empirical
Orthogonal Functions (EOF)

This method is closely related to SVD. If we look at an observation ma-
trix A i j = A

(
xi, t j

)
, and consider that it contains, instead of raw obser-

vations, deviations from some average value or simple model, then we
can generate an (empirical) variance-covariance matrix by the following
simple operation:

Q = ATA

or

Q ik =
n∑

j=1

A
(
xi, t j

)
A
(
xk, t j

)
.
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□
Table 12.4. Eigenvalues of the PCA variance-covariance matrix Q, descending

order.

1 98762.0346
2 3398.0554
3 419.6834
4 92.7742
5 57.5507
6 43.4691
7 37.7828
8 27.1429
9 18.6642

10 16.3040
11 11.9502
12 4.7022
13 3.2739

Here we have averaged over time to get spatial covariances. Q will be a
square, positive-definite matrix on which we can do SVD, or more simply,
we can bring it on principal axes:

Q = RΛRT,

where R is an orthogonal rotation matrix and Λ the diagonal matrix of
eigenvalues. Every column of R now represents a spatial pattern; the
corresponding eigenvalue λi from the Λ matrix represents its strength.
As the spatial patterns are uncorrelated (i.e., the columns of R are or-
thogonal) the name “empirical orthogonal functions” becomes obvious.

In a practical situation, often only those few eigenvalues significantly
different from zero are retained; the others are thrown away, reducing
the dimensions of Λ and R (which now becomes rectangular). This will
represent the original data to good accuracy, but retaining only a fraction
of the original data. So, again, we have a compression method.

We analyze the same tide gauge data as above for SVD. This time we
give the eigenvalues of the variance-covariance matrix, and the residu-
als of this matrix with respect to the reconstruction using only the three
dominant eigenvalues. This is the “energy” in the signal that remains
“unexplained” by these principal components.

Choosing how many principal components to retain – i.e., what is
counted as signal, and what as noise – is somewhat arbitrary and de-
pends on the intended use.
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Figure 12.6. The spatial patterns of the first three singular values found by
PCA. Horizontal scale is tide gauge number. It is seen that the
result is very similar as for SVD.

□

□ 12.4 The RegEM method

RegEM (Regularized Expectation-Maximation) is a variant of Princi-
pal Component Analysis, where data may be arbitrarily missing, and is
filled in – “imputed” – in an optimal way using the variance-covariance
matrix from the non-missing data. Then, the variance-covariance ma-
trix is recomputed with the filled-in data included, carefully taking into
account the uncertainty of filling in, and the procedure repeated itera-
tively until convergence.

□
Table 12.5. Residual covariance matrix after removal of the first three singular

values. Unit: mm2

23 -6 -6 -6 -9 -3 0 4 12 8 0 -21 0

-6 16 0 -4 -3 -9 -3 1 11 1 0 0 -3

-6 0 8 4 -1 0 -3 -3 -3 1 -1 3 3

-6 -4 4 11 0 4 -1 -2 -14 0 2 4 3

-9 -3 -1 0 27 0 -8 -4 -4 -1 -8 5 9

-3 -9 0 4 0 15 5 0 -15 -9 2 9 0

0 -3 -3 -1 -8 5 27 -2 -9 -10 1 13 -8

4 1 -3 -2 -4 0 -2 14 -4 0 0 -2 -2

12 11 -3 -14 -4 -15 -9 -4 43 0 2 -18 -2

8 1 1 0 -1 -9 -10 0 0 30 -12 -10 0

0 0 -1 2 -8 2 1 0 2 -12 27 -6 -8

-21 0 3 4 5 9 13 -2 -18 -10 -6 42 -15

0 -3 3 3 9 0 -8 -2 -2 0 -8 -15 23
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The Matlab code for this is found on Tapio Schneider’s web site, http:
//climate-dynamics.org/software/#regem. Schneider (2001).

□ 12.5 Matrix methods

□ 12.5.1 Cholesky decomposition

Cholesky decomposition applies to a symmetric positive definite matrix:
it means, for a given matrix A, to compute a matrix Γ where

A =ΓΓT.

In the general case the complex matrix A must be hermitic, meaning
A† = AT = A, where † is the hermitian operator: the combination of
complex conjugate and transpose.In that case the decomposition is

A =ΓΓ† =ΓΓT.

□ 12.5.2 LU-decomposition

This means decomposing a given matrix A into an upper and lower tri-
angle matrix:

A = LU ,

or
A = LDU ,

where D is a diagonal matrix.

http://en.wikipedia.org/wiki/LU_decomposition.

We can study what happens in the simple case of a 3×3 matrix:

A =
⎡⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ .

We reduce this matrix by subtracting from the second row, a21/a11 times
the first row, and from the third row, a31/a11 times the first row. This is
equivalent to multiplying by

L1 =

⎡⎢⎣ 1 0 0
−a21

a11
1 0

−a31
a11

0 1

⎤⎥⎦ .

Next, we reduce by subtracting from the third row, the second row mul-
tiplied by ã32/ã22, where the tilde indicates that these elements are from
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the first reduction step: ã32 = a32 − a31
a11

a12 and ã22 = a22 − a21
a11

a12. This is
equivalent to a multiplication by

L2 =

⎡⎢⎣ 1 0 0
0 1 0
0 − ã32

ã22
1

⎤⎥⎦ .

It can be seen that L = L2L1 is again a lower triangular matrix:

L =

⎡⎢⎣ 1 0 0
−a21

a11
1 0

−a31
a11

+ a21
a11

ã32
ã22

− ã32
ã22

1

⎤⎥⎦ .

The reduced A matrix will look like

U =

⎡⎢⎣ a11 a12 a13

0 a22 − a21
a11

a12 a23 − a21
a11

a13

0 0 a33 − a31
a11

a13 − a32−a31a13/a11
a22−a21a12/a11

(
a23 − a21

a11
a13

)
⎤⎥⎦ .

This looks very complicated, but numerically it is straightforward. It
works just as well for larger dimensions than 32. So we now have

A = LU .

Note that the diagonal elements of the L matrix are 1, while those of the
U matrix are not, we can still write

U = DU ,

where D is a diagonal matrix, and U has ones on the main diagonal.
Now we have

A = LDU .

LU-decomposition is a way to solve the system of equations

Ax= LUx=b :

one first solves
Ly=b,

for y, which can be done one element at a time by back substitution;
then, we solve

Ux= y

similarly for x, but starting from the last element backwards.

For a symmetrix matrix A, we have

A = LDU =ΓΓT,

where L = UT and Γ = L
p

D = (pDU
)T

. The square root of a diagonal
matrix is trivially defined.

2Although for a stable reduction one should re-arrange the rows and columns
in descending order of magnitude of the diagonal element – “pivoting”.
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□ 12.6 Information criteria

Often we wish to know what is the “best” way to model a given body of
observational data. What often complicates the answer to that question
is, that strongly autocorrelated time series contain significantly less in-
dependent information than they on the surface, based on the number
of data points, appear to contain. This begs the question, how one can
judge the amount of meaningful information a data set really contains,
i.e., especially in the context of statistical inference, how well one can
model, i.e., describe, the data using a minimum of free parameters.

This contains two issues:

1. goodness of fit of the model to the data, typically using the metric
of sum of squares of residuals of fit;

2. number of free parameters needed.

There are different ways of combining these two aspects in building cri-
teria for model selection.

□ 12.6.1 Akaike

The Akaike information criterion is (http://en.wikipedia.org/wiki/
Akaike_information_criterion):

AIC= 2k−2lnL,

where k is the number of model parameters or unknowns, and L is the
value of the likelihood function for the model to be maximized.

In the common case of normally and independently distributed observa-
tions, this becomes

AIC= 2k+n
[

ln
2π
∑n

i=1 v2
i

n
+1
]

,

where vi are the residuals, and n the number of observations.

Typically the information criterion is used to intercompare alternative
models for the same data, i.e., the same n. Then, we may drop any
constants and write

AIC= 2k+n ln
∑n

i=1 v2
i

n
.

In the more general case of possibly interdependent, i.e., correlated,
data, we may write

AIC= 2k+n ln
E

n
,

E = vTΣ−1v=
n∑

i=1

n∑
j=1

viv j
(
Σ−1)

i j ,
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the weighted sum of squared residuals. Here, Σ is the observational
variance-covariance matrix. The quantity E is χ2

n−k distributed, with
n−k the number of degrees of freedom, or redundancy.

□ 12.6.2 Akaike for small samples

In case n is small, or k is not negligibly small compared to n, a “small-
sample correction” is often used:

AICc =AIC+ 2k (k+1)
n−k−1

.

□ 12.6.3 Bayesian

The alternative Schwarz or Bayesian information criterion (http://en.
wikipedia.org/wiki/Bayesian_information_criterion) is

BIC= k lnn−2lnL,

and again in the normally and independently distributed case

BIC= k lnn+n ln
∑n

i=1 v2
i

n
.

The idea with all of this is, that the parameter should be minimized,
leading to as small as possible residuals, but not at the expense of using
a large number of free parameters.

□ 12.7 Statistical tricks

□ 12.7.1 Monte Carlo, Resampling, Jackknife, Bootstrap

Monte Carlo simulation techniques have become popular. The idea is
the generate a large number of realizations of the model computation
for a physical process studied, by, e.g., adding synthetic noise of the right
properties to a single solution for the process.

Statistical properties of the generated set of solutions or ensemble are
then studied empirically, as one would with real observation data. The
number of ensemble members can be very large, many tens of thousands;
in fact often much larger than the empirically available data on the pro-
cess studied.

A variant of the method generates realizations by, at random, picking
elements from a pre-existing, observed set of realizations. The picking
process has to be properly random; one technique, sampling with place-
back, allows the generation of very large ensembles nevertheless sharing
the statistical properties of the original set of observations. This tech-
nique is referred to as bootstrapping.
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A primitive, early version of this technique was, if not invented, made
useful by John Tukey, also known for his role in inventing FFT. It is
called the jackknife, for its simplicity and wide applicability. It works
as follows: if you have a method M to compute useful parameters from
observational data, you apply the method leaving out one observation, in
turn for each of your observations.

Then, you compute the mean and variance for any estimated parameter
from these n results: M−1, M−2, . . . , M−(n−1), M−n. It turns out that the
mean is an unbiased estimator of the parameter mean, and the jackknife
variance, after scaling, a pretty good estimator of its variance.

In table 12.6 you find a Matlab script doing linear regression the tra-
ditional, ordinary least quares, way, but also computing Jackknife esti-
mates for both intercept and trend parameters and their mean errors.
The advantage of the jackknife is that we do not have to have an insight
in the mechanism used for estimating our parameters. In this case we
have, so we can compare.

□ 12.7.2 Parzen windowing

http://en.wikipedia.org/wiki/Kernel_density_estimation

This is a technique to create a continuous function from discrete values
given at realizations, e.g., by a Monte Carlo simulation. It amounts to
multiplying every discrete probability value with a bell-shaped distribu-
tion function centred at its location, and then summing these up.

If the values given are (xi, y (xi)) , i = 1, . . . ,n, the constructed function
may look like

ỹ (x)=
n∑

i=1

y (xi)
(
∆
p

2π
)−1

exp
(
−1

2
(x− xi)2

∆2

)
,

for Gaussian base functions. The width ∆ of the base function must be
chosen judiciously, which is a problem all of its own.

□ 12.7.3 Bayesian inference

This is a very broad subject. To get started, an example from the Inter-
net.

This example is from Yudkowsky (2003):

◦ 1.0% of women (age 40) contract breast cancer.

◦ 80% of women with breast cancer test positive in routine mammog-
raphy.

◦ 9.6% of women without breast cancer also test positive.
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What is the probability that a woman who tested positive, has breast
cancer?

In this case, Bayesian analysis looks at frequencies3. Say, we have 1000
women. Let the parameter be P, having two possible values, P = 0 no
cancer, P = 1 cancer. Let the observation be the test Q, 0 meaning testing
negative, 1 testing positive. Then we can draw the following PQ diagram
of frequencies:

Q = 0 Q = 1
P = 0 895 95
P = 1 2 8

From this we see that of the 95+8 women who test positive, 8, or slightly
under 8%, actually have breast cancer.

We can abstract this from the size of the population by dividing by it,
yielding percentages:

Q = 0 Q = 1
P = 0 89.5 9.5
P = 1 0.2 0.8

We can now define the following probabilities:

p (P) the probability of having (p (P = 1)= 1%) or not having (p (P = 0)=
99%) cancer.

p (Q) the probability of testing positive (p(Q = 1) = 10.3%) or negative
(p (Q = 0)= 89.7%).

p (Q|P) conditional probability of Q given P: e.g., 9.5%/(89.5%+9.5%) =
9.6% for getting Q = 1 if P = 0, i.e., getting a false positive.

p (P|Q) conditional probability of P given Q: e.g., 0.8%/(0.8%+9.5%) =
7.7% for getting P = 1 when Q = 1, i.e. having cancer if testing
positive.

Now, Bayes’ theorem says (and this is easy to prove in this case where
we have complete frequency population data):

p (P|Q)= p(Q|P)p (P)
p(Q)

.

The interesting case arises where we don’t have access to such complete
data. E.g., we have observations Q and knowledge of which distribution
of observations will be produced by any given parameter value P; and we

3In the literature, you will often see Bayesian opposed to “frequentist” ap-
proaches. There is a substantial body of underlying philosophy connected with
this apparent contradiction.
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want to know, or infer, what the probability distribution is of P given our
observations Q. This is called reverse inference, and the above theorem
allows us to do just that. . . provided we have access to the distribution
p (P), the so-called prior distribution of the parameter P. In many real-
life situations, the only source of such a prior is educated guessing.
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□ A. Useful matric equations

□ The first equation:

(A+B)−1 = [
A
(
I + A−1B

)]−1 = [A (B−1 + A−1)B
]−1 =

= B−1 [A−1 +B−1]−1 A−1.

Substitute
B−1 = (A−1 +B−1)− A−1

and obtain

(A+B)−1 = [(
A−1 +B−1)− A−1][A−1 +B−1]−1 A−1 =

= A−1 − A−1 [A−1 +B−1]−1 A−1.

□ The second equation:

We write
B =UCV .

Study the following partitioned equation:[
A U
V −C−1

][
D11 D12

D21 D22

]
=
[

I 0
0 I

]
.

This may be written out as four matric equations:

AD11 +UD21 = I, (A.1)

AD12 +UD22 = 0,

V D11 −C−1D21 = 0, (A.2)

V D12 −C−1D22 = I.

Of these four equations, we only need the first and the third in the se-
quel.

Add equation A.2 multiplied by UC to equation A.1:

(A+UCV )D11 = I ⇒ D11 = (A+UCV )−1 . (A.3)
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142 Useful matric equations

Subtract equation A.1 multiplied by V A−1 from equation A.2:(
C−1 −V A−1U

)
D21 =−V A−1 ⇒ D21 =−(C−1 −V A−1U

)−1 V A−1.

Substitute back into equation A.1:

AD11−U
(
C−1 −V A−1U

)−1 V A−1 = I ⇒ D11 = A−1+A−1U
(
C−1 −V A−1U

)−1 V A−1.
(A.4)

Now we have two different expressions for the sub-matrix D11, which
have to be identical. Thus we obtain

(A+UCV )−1 = A−1 + A−1U
(
C−1 −V A−1U

)−1 V A−1, (A.5)

the Woodbury matrix identity (K. Inkilä, personal comm.), (http://en.
wikipedia.org/wiki/Woodbury_matrix_identity).
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□ B. The Gauss reduction scheme

Already from the age of K.F. Gauss we have a very simple and handy
reduction procedure for solving a system of linear equations.

Let the system of equations to be solved be the following:

AX = B.

Its solution is obviously
X = A−1B.

Let’s write this out:

⎡⎢⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m
...

... . . . ...
an1 an2 · · · anm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x11 x12 · · · x1k

x21 x22 · · · x2k
...

... . . . ...
xm1 xm2 · · · xmk

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
b11 b12 · · · b1k

b21 x22 · · · b2k
...

... . . . ...
bn1 bn2 · · · bnk

⎤⎥⎥⎥⎦ .

The solution matrix X of this system of equations won’t change, even if

1. a given row of both A and B is multiplied with a constant c, or

2. a given row of both A and B is added to another row of both A and
B.

Let’s now leave the matrices and use the notation:⎡⎢⎢⎢⎣
a11 a12 · · · a1m b11 b12 · · · b1k

a21 a22 · · · a2m b21 b22 · · · b2k
...

... . . . ...
...

... . . . ...
an1 an2 · · · anm bn1 bn2 · · · bnk

⎤⎥⎥⎥⎦
In this notation we may now, in the same way as we listed above, multi-
ply rows with a contant or add a row to another row, element by element.

We proceed as follows:

1. Multiply the first row by the factor a−1
11 .
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2. Subtract it from all other rows i after multiplying it with the factor
ai1 (Gauss reduction).
The end result:⎡⎢⎢⎢⎢⎣

1 a−1
11 a12 · · · a−1

11 a1m a−1
11 b11 a−1

11 b12 · · · a−1
11 b1k

0 a22 −a21a−1
11 a12 · · · a2m −a21a−1

11 a1m b21 −a21a−1
11 b11 b22 −a21a−1

11 b12 · · · b2k −a21a−1
11 b12

...
...

. . .
...

...
...

. . .
...

0 an2 −an1a−1
11 a12 · · · anm −an1a−1

11 a1m bn1 −an1a−1
11 b11 bn2 −an1a−1

11 b12 · · · bnk −an1a−1
11 b1k

⎤⎥⎥⎥⎥⎦ .

Write symbolically⎡⎢⎢⎢⎣
1 a(1)

12 · · · a(1)
1m b(1)

11 b(1)
12 · · · b(1)

1k
0 a(1)

22 · · · a(1)
2m b(1)

21 b(1)
22 · · · b(1)

2k
...

... . . . ...
...

... . . . ...
0 a(1)

n2 · · · a(1)
nm b(1)

n1 b(2)
n2 · · · b(1)

nk

⎤⎥⎥⎥⎦
The element (1) is called the pivot of this operation.

3. Repeat operations 1,2 with the element a(1)
22 . The end result will

look like this:⎡⎢⎢⎢⎢⎢⎢⎣
1 0 a(2)

13 · · · a(2)
1m b(2)

11 b(2)
12 b(2)

13 · · · b(2)
1k

0 1 a(2)
23 · · · a(2)

2m b(2)
21 b(2)

22 b(2)
23 · · · b(2)

2k
0 0 a(2)

33 · · · a(2)
3m b(2)

31 b(2)
32 b(2)

33 · · · b(2)
3k

...
...

... . . . ...
...

...
... . . . ...

0 0 a(2)
n3 · · · a(2)

nm b(1)
n1 b(2)

n2 b(2)
n3 · · · b(2)

nk

⎤⎥⎥⎥⎥⎥⎥⎦
Note the appearance of a unit matrix in the top left corner.

4. The above reduction procedure may be executed, except one row
at a time, also for a block of rows at a time. Let us partition the
equation: [

A11 A12

A21 A22

][
X11 X12

X21 X22

]
=
[

B11 B12

B21 B22

]
.

A partial reduction yields in this case[
A11 A12 B11 B12

A21 A22 B21 B22

]
⇒

[
I A−1

11 A12 A−1
11 B11 A−1

11 B12

0 A22 − A21A−1
11 A12 B21 − A21A−1

11 B11 B22 − A21A−1
11 B12

]
From this it is seen that, if one wants to compute the matric ex-
pression P −UQ−1V — an often occurring need — one may just
place the four sub-matrices into a calculating table in the follow-
ing way:

Q V
U P

. . . and reduce this table a row at a time, until at the place of sub-
matrix Q a unit matrix appears:

I Q−1V
0 P −UQ−1V
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Now we may “pluck” from the place of sub-matrix P the expression
P −UQ−1V .

5. An application example: the solution of the parametric adjustment
problem is

x̂ = [
ATQ−1

ℓℓ A
]−1

ATQ−1
ℓℓ ℓ,

Qxx = [
ATQ−1

ℓℓ A
]−1

.

Form the following table:

Qℓℓ A ℓ

AT 0 0
.

Reduction yields:

I Q−1
ℓℓ A Q−1

ℓℓ ℓ

0 −ATQ−1
ℓℓ A −ATQ−1

ℓℓ ℓ

We remove from this diagram the first row and column and add a
column to the right:

−ATQ−1
ℓℓ A −ATQ−1

ℓℓ ℓ −I

We continue the reduction:

I
[
ATQ−1

ℓℓ A
]−1 ATQ−1

ℓℓ ℓ
[
ATQ−1

ℓℓ A
]−1

As seen are both the solution x̂ and its weight coefficient matrix Qxx

ready for the picking!

This approach is easily extended, e.g., to calculating residuals and the
variance of unit weight. Also least-squares collocation and the equa-
tions for the Kalman filter can be calculated in this way, which is easily
implemented on a computer.
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