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aika-avaruuden geometria maanmittareille
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Miten tarina alkaa: Pythagoras (1)
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Ylla olevassa kuvassa tuttu Pythagoraan lause (vas.) ja

sen versio suorakulmaisissa koordinaateissa (oik.):

kahden pisteen P ja Q vélista etéisyyttd |PQ| voidaan )
laskea kahdesta koordinaattierosta Ax ja Ay. S b




Pythagoras (2)
Kaava on
[PQI? = Ax? + A2 [= (AX)F + (AY)%, ne.|
missa Ax = xp — Xq, Ay = yp — yq jne.

|PQ| on invariantti: se ei riipu kaytetystd koordinaatistosta, xy
vai x'y’. Pythagoraan lauseen muoto taas, eli metriikka, kuvaa
avaruutemme geometrista kayttaytymista.

Usein kaytetty kaavan differentiaalimuoto
ds® = ax® + dy?

toimii myds kaarevalla pinnalla jos pisteiden P ja Q
valinen etéisyys ds on pieni.




Pythagoras (3)
Kolmiulotteisessa avaruudessa Pythagoras on
PO =ix® LAY2 FAZ,
ja yleisessé n-ulotteisessa avaruudessa sen yleistys olisi
|PQI? = £ (Ax)?,

misséa /i on ulottuvuuslaskuri:

Axy = Ax

AN il
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ja niin edelleen. Aakkoset loppuvat kesken.




Pythagoras ja kolmioepayhtalo

Kuvassa Pythagoras kertoo
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afb = \/c§+d2+\/c12+d22

BN CN (/2 = cit+to=c.

T&ama on kolmioepdyhtéld: lyhin matka
A:sta B:hen on suora matka ADB. Jos
d > 0 on matka ACB aina pitempi.

»




Lyhin matka ja geodeettinen viiva

Voimme soveltaa kolmioepayhtala toistuvasti eli
rekursiivisesti (katkoviivaiset pikkukolmiot)
todistaaksemme, etta epasuora kayra (sininen)
on aina pitempi kuin suora (punainen).

Lyhintd matkaa kutsutaan geodeettiseksi viivaksi,
my®&s kaarevilla pinnoilla. Tietysti silloin se ei ole

enaa suora, vaan “mahdollisimman suora”.
Esim. pallon pinnalla isoympyra on

geodeettinen viiva. Se on lentokoneen
polku joka ei ohjaudu tyyrpuuriin eika
paapuuriin.




Pythagoras aika-avaruudessa (1)

Aika-avaruudessa on koordinaatit aika ¢, paikka x (ja y, ja z). Pisteet
aika-avaruudessa kutsutaan fapahtumiksi. Esimerkki tapahtumista
on saman ihmisen sijainti aika-avaruudessa elamansa kahdella eri
ajankohdalla.

Pythagoras on nyt hieman erilainen, yleinen kaava tapahtumien P
ja Q véliselle “valille” on
|PQP = A — ¢ (Ax2+Ay2+AZ%) .

Huomaa miinusmerkki ja ¢, valon nopeus. Jos P ja Q ovat sama
ihminen eri elaméanhetkeissa, on taméa vali |PQ| hetkien valilla
kulunut elinaika.

Jos kaytamme yhteensopivia eli luonnollisia yksikéita @ﬁf’ EZL
(vuosia ja valovuosia), putoaa c pois. Silloin =l

|PQ? = A2 — Ax® — Ay? — AP



Pythagoras aika-avaruudessa (2)

Kuvassa nyt

e
0 —agrada
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atb \/cg—d2+\/c12—d2§

SNt E = ci+o=c

Eli nyt suora matka (ajassa!) N
tapahtumasta A tapahtumaan B & E!:L
X on pisin kaikista matkoista, eika .

lyhin!




Pythagoras aika-avaruudessa (3)

Kappaleen, tai ihmisen, matka olemassaolonsa aikana ajan ja
avaruuden kautta kutsutaan sen maailmanviivaksi. Ylla saatu tulos
on, ettd kahden tapahtuman vélisen maailmanviivan pituus, mat-
kassa kulunut ominaisaika, on maksimaalinen jos maailmanviiva
on suora — tai yleisemmin, geodeettinen viiva. Mutkikkaammat
matkat tapahtumasta toiseen ovat aina lyhyempid, ts. nain kuluu
vahemman ominaisaikaa matkustavalta ihmiselta tai kappaleelta —
tai tikittavalta kellolta.

Kysymys on, tapahtuuko matkan aikana kiihtymisid. Jos

matkalla kiihdytaan ja jarrutetaan, kuluu vdhemman

aikaa kuin jos matkustaja on vapaassa putoamistilassa.

Téstd seuraa kaksosparadoksi: intuitomme perustuu \ il
avaruuden Pythagoraan lauseen muotoon eli metriik- @ﬁf‘ El.l
kaan, jonka mukaan Kkiertotie on aina pitempi tie. s
Aika-avaruudessa tilanne on juuri péinvastainen, sen “en
erilaisen metriikan suorana seurauksena!




10 vuotta

Kaksosparadoksi

Aurinkokunta v. 2124

Konkretisoidaan tdma. Toinen kak-
sosveli matkustaa « Kentauriin 4
valovuoden etaisyydelld. Han kayt-

£ V5 -4 =3 wotta t44 matkaan 3 + 3 = 6 vuottaa omaa
® aikaa, ja on palatessaan matkalta
v. 2124, nelja vuotta nuorempi kuin
e Tehah a Gen kotiin jaanyt velinsa.
©
§ Matkustava veli on se joka kiihtyy

rajusti, jarruttaa, Kiihtyy ja taas jarrut-
VAL = AX2 = 3 vuotta taa. Kotiin jadvan veljen kiihtyvyydet
Nopeus: 4 = £, ovat sen verrattuna ldhes . » 1

80% valon nopeudesta olemattomia. g,\ EZL

At =

Aurinkokunta v. 2114

X




Mannerheimin patsaan maailmanviiva (1)

Mannerheimin patsas pysyy paikallaan. ..




Mannerheimin patsaan maailmanviiva (2)

... eli sen polku avaruudessa on hyvin suora.




Mannerheimin patsaan maailmanviiva (3)

Kuitenkaan se ei ole vapaassa putoamistilassa:
Maan pinta tyontaa sita jatkuvasti ylos, aiheuttaen
kiihtyvyytta 9, 8 m/s? ylospain!




Mannerheimin patsaan maailmanviiva (4)

Siksi patsaan maailmanviiva ei ole geodeettinen viiva:
se kaartuu kaarevassa aika-avaruudessa (punainen,
konseptitaidetta) lievasti yléspain, noin viisi metria yhden
sekunnin (n. 300 000 000 m) aikamatkan jalkeen.

N
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Jalkapallon maailmanviiva (1)

HOME ~OF -THE~12TH+MAN ‘F_Z’m?l”’l_..l‘!l—

Toisaalta jalkapallo on vapaassa putoamistilassa.
Ja vaikka sen polku avaruudessa on kaareva. ..




Jalkapallon maailmanviiva (2)

g a

HOME+OF+THE+12TH+MAN -9_19“!‘“!@-..5‘91_

..on sen maailmanviiva maapalloa ympardivassé kaare-

vassa aika-avaruudessa geodeettinen viiva, eli “suora”!




Kellot avaruudessa. ..

< J’/Smc inti 5

N = M- Vielakin eri
perspektiivi.
Vaapassa

avaruudessa kellot
kulkevat samaan
tahtiin, el

t N
X TQ— TP = TB — TA-




...jJa Maan pinnalla

Maan painovoima-
kentéssa kuitenkin
kellon ndennaisesti
suora maailman-
viiva kaartuu
yléspéin maan-
pinnan tyénto-
voimasta. Siksi

TQ — TP 4B =i




Miten kronometrinen vaaitus toimii (1)

Olemme nahneet, etta kellon “ominaisaika” kun se olemassa-

olonsa aikana matkustaa tulevaisuuteen, on sita lyhyempi, mita
kiemuraisempi sen maailmanviiva on. Maan pinnalla olevan

kellon maailmanviiva poikkea jatkuvasti suorasta viivasta eli
geodeettisesta viivasta painovoiman — tarkemmin,

maanpinnan vastustuksen — seurauksena, ks. ylla

Mannerheimin patsas. Siksi se menettdé aikaa verrattuna
vertauskelloa joka esim. leijaisi kaukana avaruudessa.

Teoria kertoo, ettd menetetty aika on suoraan

verrannollinen mittauspaikan geopotentiaaliin, Maan
painovoimakentan potentiaaliin. Painovoima on Maan

gravitaation (vetovoiman) ja Maan rotaation aiheuttaman i
keskipakoisvoiman yhteisvaikutus. Nain ollen voidaan i gﬁ El:L
tarkoilla kelloilla mitata pisteiden valisia

geopotentiaalieroja, eli suorittaa vaaitus.



http://gk.fgi.fi/sites/default/files/H1/H1_Vermeer.pdf

Miten kronometrinen vaaitus toimii (2)

Kaava on (Bjerhammar 1986, Vermeer 1983):

A _ AW

T 2’

jossa 7 on kellon mittaama aika, At kellojen valinen
aikaero, AW pisteiden vélinen geopotentiaaliero ja ¢
valon nopeus. Saadaan suoraan, etta geopotentiaalieron
1 m2/s2, eli korkeuseron 10 cm, mittaamiseksi tarvitaan
kellojen suhteellista tarkkuutta 10~'7. Vuonna 1983 taméa
kuulosti viela aika haastavalta, mutta viime vuosina on
kehitetty ns. optiset hilakellot joiden tarkkuus on jopa
luokkaa 1018,




Optinen hilakello

OPTICAL LATTICE CLOCK

six Jsar bams et 2 patirn uf standing waves that traps strontium atoms in energy ok,
The trapping laser frequency is one that does not interfere with the atoms, which tick at abou
429 terahertz, providing = darpamed timekeeping accuracy

Teknologinen uutuus optisissa hilakelloissa on, etta
kaytetty aallonpituus on optisella alueella eika
mikroaaltoalueella kuten perinteisempien atomikellojen
aallonpituudet. Nopeammat varahtelyt mahdollistavat
tarkempaa ajanpitoa.

Optinen hila — Nature — Physics World



http://en.wikipedia.org/wiki/Optical_lattice
http://www.nature.com/news/precise-atomic-clock-may-redefine-time-1.13363
http://physicsworld.com/cws/article/news/2013/aug/27/new-atomic-clock-sets-the-record-for-stability

Ajansiirto valokuidulla

Potentiaalierojen mittaaminen edellyttaa
kellojen vertailua. Etenkin suuremmilla
etaisyyksilla tdma on télla tarkkuustasolla
haasteellista.

Saksassa Physikalisch-Technische Bundesanstalt ja
Max-Planck-Institut fiir Quantenphysik ovat kehittdneet
menetelman, jolla voidaan kayttéda jo olemassa olevat,
Internetin kayttamat optiset kuituverkot. Kokeilut
(PTB/MPQ 2012) ovat osoittaneet tdman toimivaksi
ratkaisuksi jopa 920 km:n matkalla. Kuitenkin
kuitukaapeleissa saanndllisin vélein olevat vahvistimet
on vaihdettava erikoisvalmisteisiin.



https://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2012/pitext/pi120427.html

Sovelluksia

Optisten hilakellojen sovelluksia on monta. Jo tietoliikenteen
sovelluksissa tarkka ajanpito voi olla kriittinen, ja siella uusia

kelloja tullaan varmaan kayttdmaan.
Teoreettisen fysiikan kannalta kellot mahdollistavat entista

tarkempia yleisen suhteellisuusteorian testeja.

Kaiken mielenkiintoisin sovellusala on kuitenkin

geodesia. On merkille pantavaa, ettd, vaikka teknologia

yleensa on mennyt eteenpain, kaiken tarkin tekniikka

korkeuserojen mittaamiseksi on edelleen tarkkavaaitus

perinteisilla vaaituskojeilla. Tekniikalla on monta

vaikeasti hallittavissa olevaa virhelahdettd, osin

systemaattisia. Ehka nyt uuden, hyvin erilaisen & i
vaaitusteknologian aika on koitunut. ?‘3} Bl
Suomessa MIKES tutkii optisia hilakelloja. ==




Geodeettinen infrastruktuuri

Kun teknologia kypsyy, tullaan varmaan rakentamaan jatkuvasti
toimivia, optisella kuitukaapeliverkolla yhteen kytkettyja
korkeudenmittausasemia, samalla tavalla kuin on jo olemassa
maailmanlaajuisesti pysyvia GNSS-verkkoja. Nain saataisiin
aikaan “nollannen luokan” korkeusverkko, joka toimisi ei vain
korkeusvertausrunkona, vain mahdollistaisi myds maankuoren

vertikaalilikkeiden seurantaa.
Pieni ongelma on saaripisteet kaukana

valokuituverkosta, kuten myds eri mantereiden
kytkeminen yhteen: valivahvistimien installointi jo
olemassa oleviin merenalaisiin kaapeleihin ei ole aivan
helppoa. Ehké tahan tarjoutuu synkronointi -~ i
GNSS-jarjestelmien avulla, kuten Vermeer (1983) ;
alunperin ehdotti. Sellaiset mittaukset kestéisivat vuosia.




Saksalainen aloite
Saksassa kaynnistettiin v. 2014 ns. Collaborative Research Centre
(Sonderforschungsbereich)

Geo-Q, “Relativistic geodesy and gravimetry with quantum sensors”

liittovaltion rahoituksella €11 miljoonaa ensimmaisen neljan vuoden
aikana. Kronometrisen vaaitusmenetelman kehittdminen on osana
tata projektia.

Valitettavasti v. 2018 ei ole saatu jatkoa tahan.

DFG:n ilmoitus - Leibniz-yliopisto Hannover - PTB:n teksti
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arbeitsplatz-erde.de

http://www.arbeitsplatz-erde.de/


http://www.dfg.de/en/research_funding/programmes/list/projectdetails/index.jsp?id=239994235
http://www.uni-hannover.de/en/aktuell/online-aktuell/news/15085/index.php?action=print
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2014/pitext/pi140519.html
http://www.arbeitsplatz-erde.de/

Kiitos kiinnostuksestal

“What good is a newborn baby?”
— Benjamin Franklin, 1783, ilmapallokokeilusta
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Epilogi: Einsteinin pitka varjo

" DIERRE DEFERMAT [ === Fermat keksi periaatetta, jonka mukaan valo kulkee kahden

pisteen vélilla nopeinta mahdollista polkua pitkin.
Gauss keksi, samanaikaisesti Janos Bolyai'n ja Nikolai
LobatSevskin kanssa, epa-euklidista geometriaa ja kehitti

.. kaarevien avaruuksien matemaattista teoriaa.
MALDIVES Rf5
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Hamilton yleisti Fermatin periaatetta koskemaan kappaleiden

liikettéd > Hamiltonin mekaniikka. Han ei vield ymmartanyt miksi
tama oli mahdollinen. ..
De Broglie ymmarsi: myds aine on aaltoliike (ja kdantaen valo

koostuu fotoneista) > kvanttiteoria, hiukkas—aalto—dualismi.

My@s suhteellisuusteorian geodeettiset viivat ovat Hamiltonin,

Louls V. de Broglie 1929 Physics, France.

_"_____"___-__.__5 tai Fermatin, periaatteen mukaisia polkuja. Ne liittyvéat
absoluuttisen derivaatan késitteeseen
kaarevassa aika-avaruudessa, mité oli
Levi-Civita’n kuningasajatus.

Tahan voisi lisété viela Pythagoras,

Riemann, Maxwell, ...



