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Miten tarina alkaa: Pythagoras (1)
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Yllä olevassa kuvassa tuttu Pythagoraan lause (vas.) ja
sen versio suorakulmaisissa koordinaateissa (oik.):
kahden pisteen P ja Q välistä etäisyyttä |PQ| voidaan
laskea kahdesta koordinaattierosta ∆x ja ∆y .



Pythagoras (2)

Kaava on

|PQ|2 = ∆x2 + ∆y2
[
=
(
∆x ′

)2
+
(
∆y ′

)2
, jne.

]
,

missä ∆x = xP − xQ, ∆y = yP − yQ jne.

|PQ| on invariantti: se ei riipu käytetystä koordinaatistosta, xy
vai x ′y ′. Pythagoraan lauseen muoto taas, eli metriikka, kuvaa
avaruutemme geometrista käyttäytymistä.

Usein käytetty kaavan differentiaalimuoto

ds2 = dx2 + dy2

toimii myös kaarevalla pinnalla jos pisteiden P ja Q
välinen etäisyys ds on pieni.



Pythagoras (3)

Kolmiulotteisessa avaruudessa Pythagoras on

|PQ|2 = ∆x2 + ∆y2 + ∆z2,

ja yleisessä n-ulotteisessa avaruudessa sen yleistys olisi

|PQ|2 = Σn
i=1 (∆xi)

2 ,

missä i on ulottuvuuslaskuri:

∆x1 = ∆x

∆x2 = ∆y

∆x3 = ∆z

ja niin edelleen. Aakkoset loppuvat kesken.



Pythagoras ja kolmioepäyhtälö
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Kuvassa Pythagoras kertoo
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√

d2 + c2
2 ,
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1 ,

c = c1 + c2,

siis
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2 +

√
c2

1 = c1 + c2 = c.

Tämä on kolmioepäyhtälö: lyhin matka
A:sta B:hen on suora matka ADB. Jos
d > 0 on matka ACB aina pitempi.



Lyhin matka ja geodeettinen viiva
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Voimme soveltaa kolmioepäyhtälöä toistuvasti eli
rekursiivisesti (katkoviivaiset pikkukolmiot)
todistaaksemme, että epäsuora käyrä (sininen)
on aina pitempi kuin suora (punainen).
Lyhintä matkaa kutsutaan geodeettiseksi viivaksi,
myös kaarevilla pinnoilla. Tietysti silloin se ei ole
enää suora, vaan “mahdollisimman suora”.
Esim. pallon pinnalla isoympyrä on
geodeettinen viiva. Se on lentokoneen
polku joka ei ohjaudu tyyrpuuriin eikä
paapuuriin.



Pythagoras aika-avaruudessa (1)
Aika-avaruudessa on koordinaatit aika t , paikka x (ja y , ja z). Pisteet
aika-avaruudessa kutsutaan tapahtumiksi. Esimerkki tapahtumista
on saman ihmisen sijainti aika-avaruudessa elämänsä kahdella eri
ajankohdalla.

Pythagoras on nyt hieman erilainen, yleinen kaava tapahtumien P
ja Q väliselle “välille” on

|PQ|2 = ∆t2 − c−2 (∆x2+∆y2+∆z2
)
.

Huomaa miinusmerkki ja c, valon nopeus. Jos P ja Q ovat sama
ihminen eri elämänhetkeissä, on tämä väli |PQ| hetkien välillä
kulunut elinaika.

Jos käytämme yhteensopivia eli luonnollisia yksiköitä
(vuosia ja valovuosia), putoaa c pois. Silloin

|PQ|2 = ∆t2 −∆x2 −∆y2 −∆z2.



Pythagoras aika-avaruudessa (2)
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Kuvassa nyt

a2 = c2
2 − d2,

b2 = c2
1 − d2,

c = c1 + c2,

ja

a + b =
√

c2
2 − d2 +

√
c2

1 − d2≤

≤
√

c2
1 +

√
c2

2 = c1 + c2 = c.
Eli nyt suora matka (ajassa!)
tapahtumasta A tapahtumaan B
on pisin kaikista matkoista, eikä
lyhin!



Pythagoras aika-avaruudessa (3)
Kappaleen, tai ihmisen, matka olemassaolonsa aikana ajan ja
avaruuden kautta kutsutaan sen maailmanviivaksi. Yllä saatu tulos
on, että kahden tapahtuman välisen maailmanviivan pituus, mat-
kassa kulunut ominaisaika, on maksimaalinen jos maailmanviiva
on suora – tai yleisemmin, geodeettinen viiva. Mutkikkaammat
matkat tapahtumasta toiseen ovat aina lyhyempiä, ts. näin kuluu
vähemmän ominaisaikaa matkustavalta ihmiseltä tai kappaleelta –
tai tikittävältä kellolta.

Kysymys on, tapahtuuko matkan aikana kiihtymisiä. Jos
matkalla kiihdytään ja jarrutetaan, kuluu vähemmän
aikaa kuin jos matkustaja on vapaassa putoamistilassa.
Tästä seuraa kaksosparadoksi: intuitiomme perustuu
avaruuden Pythagoraan lauseen muotoon eli metriik-
kaan, jonka mukaan kiertotie on aina pitempi tie.
Aika-avaruudessa tilanne on juuri päinvastainen, sen
erilaisen metriikan suorana seurauksena!



Kaksosparadoksi
Aurinkokunta v. 2124

x

t

10
vu

ot
ta

α Cen

√
52 − 42 = 3 vuotta

Aurinkokunta v. 2114

4 valovuotta

5
vu

ot
ta

∆x =

∆
t

=
5

vu
ot

ta

80% valon nopeudesta

√
∆t2 −∆x2 = 3 vuotta

Nopeus: ∆x
∆t = 4

5,

Konkretisoidaan tämä. Toinen kak-
sosveli matkustaa α Kentauriin 4
valovuoden etäisyydellä. Hän käyt-
tää matkaan 3 + 3 = 6 vuottaa omaa
aikaa, ja on palatessaan matkalta
v. 2124, neljä vuotta nuorempi kuin
kotiin jäänyt velinsä.

Matkustava veli on se joka kiihtyy
rajusti, jarruttaa, kiihtyy ja taas jarrut-
taa. Kotiin jäävän veljen kiihtyvyydet
ovat sen verrattuna lähes
olemattomia.



Mannerheimin patsaan maailmanviiva (1)

Mannerheimin patsas pysyy paikallaan. . .



Mannerheimin patsaan maailmanviiva (2)

. . . eli sen polku avaruudessa on hyvin suora.



Mannerheimin patsaan maailmanviiva (3)

Kuitenkaan se ei ole vapaassa putoamistilassa:
Maan pinta työntää sitä jatkuvasti ylös, aiheuttaen
kiihtyvyyttä 9, 8 m/s2 ylöspäin!



Mannerheimin patsaan maailmanviiva (4)

Siksi patsaan maailmanviiva ei ole geodeettinen viiva:
se kaartuu kaarevassa aika-avaruudessa (punainen,
konseptitaidetta) lievästi ylöspäin, noin viisi metriä yhden
sekunnin (n. 300 000 000 m) aikamatkan jälkeen.



Jalkapallon maailmanviiva (1)

Toisaalta jalkapallo on vapaassa putoamistilassa.
Ja vaikka sen polku avaruudessa on kaareva. . .



Jalkapallon maailmanviiva (2)

. . . on sen maailmanviiva maapalloa ympäröivässä kaare-
vassa aika-avaruudessa geodeettinen viiva, eli “suora”!



Kellot avaruudessa. . .
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. . . ja Maan pinnalla
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Maan painovoima-
kentässä kuitenkin
kellon näennäisesti
suora maailman-
viiva kaartuu
ylöspäin maan-
pinnan työntö-
voimasta. Siksi

τQ − τP < τB − τA!



Miten kronometrinen vaaitus toimii (1)

Olemme nähneet, että kellon “ominaisaika” kun se olemassa-
olonsa aikana matkustaa tulevaisuuteen, on sitä lyhyempi, mitä
kiemuraisempi sen maailmanviiva on. Maan pinnalla olevan
kellon maailmanviiva poikkea jatkuvasti suorasta viivasta eli
geodeettisesta viivasta painovoiman — tarkemmin,
maanpinnan vastustuksen — seurauksena, ks. yllä
Mannerheimin patsas. Siksi se menettää aikaa verrattuna
vertauskelloa joka esim. leijaisi kaukana avaruudessa.
Teoria kertoo, että menetetty aika on suoraan
verrannollinen mittauspaikan geopotentiaaliin, Maan
painovoimakentän potentiaaliin. Painovoima on Maan
gravitaation (vetovoiman) ja Maan rotaation aiheuttaman
keskipakoisvoiman yhteisvaikutus. Näin ollen voidaan
tarkoilla kelloilla mitata pisteiden välisiä
geopotentiaalieroja, eli suorittaa vaaitus.

http://gk.fgi.fi/sites/default/files/H1/H1_Vermeer.pdf


Miten kronometrinen vaaitus toimii (2)

Kaava on (Bjerhammar 1986, Vermeer 1983):

∆τ

τ
=

∆W
c2 ,

jossa τ on kellon mittaama aika, ∆τ kellojen välinen
aikaero, ∆W pisteiden välinen geopotentiaaliero ja c
valon nopeus. Saadaan suoraan, että geopotentiaalieron
1 m2/s2, eli korkeuseron 10 cm, mittaamiseksi tarvitaan
kellojen suhteellista tarkkuutta 10−17. Vuonna 1983 tämä
kuulosti vielä aika haastavalta, mutta viime vuosina on
kehitetty ns. optiset hilakellot joiden tarkkuus on jopa
luokkaa 10−18.



Optinen hilakello

Teknologinen uutuus optisissa hilakelloissa on, että
käytetty aallonpituus on optisella alueella eikä
mikroaaltoalueella kuten perinteisempien atomikellojen
aallonpituudet. Nopeammat värähtelyt mahdollistavat
tarkempaa ajanpitoa.
Optinen hila – Nature – Physics World

http://en.wikipedia.org/wiki/Optical_lattice
http://www.nature.com/news/precise-atomic-clock-may-redefine-time-1.13363
http://physicsworld.com/cws/article/news/2013/aug/27/new-atomic-clock-sets-the-record-for-stability


Ajansiirto valokuidulla

Potentiaalierojen mittaaminen edellyttää
kellojen vertailua. Etenkin suuremmilla
etäisyyksillä tämä on tällä tarkkuustasolla
haasteellista.

Saksassa Physikalisch-Technische Bundesanstalt ja
Max-Planck-Institut für Quantenphysik ovat kehittäneet
menetelmän, jolla voidaan käyttää jo olemassa olevat,
Internetin käyttämät optiset kuituverkot. Kokeilut
(PTB/MPQ 2012) ovat osoittaneet tämän toimivaksi
ratkaisuksi jopa 920 km:n matkalla. Kuitenkin
kuitukaapeleissa säännöllisin välein olevat vahvistimet
on vaihdettava erikoisvalmisteisiin.

https://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2012/pitext/pi120427.html


Sovelluksia

Optisten hilakellojen sovelluksia on monta. Jo tietoliikenteen
sovelluksissa tarkka ajanpito voi olla kriittinen, ja siellä uusia
kelloja tullaan varmaan käyttämään.
Teoreettisen fysiikan kannalta kellot mahdollistavat entistä
tarkempia yleisen suhteellisuusteorian testejä.
Kaiken mielenkiintoisin sovellusala on kuitenkin
geodesia. On merkille pantavaa, että, vaikka teknologia
yleensä on mennyt eteenpäin, kaiken tarkin tekniikka
korkeuserojen mittaamiseksi on edelleen tarkkavaaitus
perinteisillä vaaituskojeilla. Tekniikalla on monta
vaikeasti hallittavissa olevaa virhelähdettä, osin
systemaattisia. Ehkä nyt uuden, hyvin erilaisen
vaaitusteknologian aika on koitunut.
Suomessa MIKES tutkii optisia hilakelloja.



Geodeettinen infrastruktuuri

Kun teknologia kypsyy, tullaan varmaan rakentamaan jatkuvasti
toimivia, optisella kuitukaapeliverkolla yhteen kytkettyjä
korkeudenmittausasemia, samalla tavalla kuin on jo olemassa
maailmanlaajuisesti pysyviä GNSS-verkkoja. Näin saataisiin
aikaan “nollannen luokan” korkeusverkko, joka toimisi ei vain
korkeusvertausrunkona, vain mahdollistaisi myös maankuoren
vertikaaliliikkeiden seurantaa.
Pieni ongelma on saaripisteet kaukana
valokuituverkosta, kuten myös eri mantereiden
kytkeminen yhteen: välivahvistimien installointi jo
olemassa oleviin merenalaisiin kaapeleihin ei ole aivan
helppoa. Ehkä tähän tarjoutuu synkronointi
GNSS-järjestelmien avulla, kuten Vermeer (1983)
alunperin ehdotti. Sellaiset mittaukset kestäisivät vuosia.



Saksalainen aloite
Saksassa käynnistettiin v. 2014 ns. Collaborative Research Centre
(Sonderforschungsbereich)

Geo-Q, “Relativistic geodesy and gravimetry with quantum sensors”

liittovaltion rahoituksella C11 miljoonaa ensimmäisen neljän vuoden
aikana. Kronometrisen vaaitusmenetelmän kehittäminen on osana
tätä projektia.

Valitettavasti v. 2018 ei ole saatu jatkoa tähän.

DFG:n ilmoitus - Leibniz-yliopisto Hannover - PTB:n teksti

http://www.arbeitsplatz-erde.de/

http://www.dfg.de/en/research_funding/programmes/list/projectdetails/index.jsp?id=239994235
http://www.uni-hannover.de/en/aktuell/online-aktuell/news/15085/index.php?action=print
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2014/pitext/pi140519.html
http://www.arbeitsplatz-erde.de/


Kiitos kiinnostuksesta!
“What good is a newborn baby?”

– Benjamin Franklin, 1783, ilmapallokokeilusta
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Epilogi: Einsteinin pitkä varjo
Fermat keksi periaatetta, jonka mukaan valo kulkee kahden

pisteen välillä nopeinta mahdollista polkua pitkin.

Gauss keksi, samanaikaisesti János Bolyai’n ja Nikolai

Lobatševskin kanssa, epä-euklidista geometriaa ja kehitti

kaarevien avaruuksien matemaattista teoriaa.

Hamilton yleisti Fermatin periaatetta koskemaan kappaleiden

liikettä .Hamiltonin mekaniikka. Hän ei vielä ymmärtänyt miksi

tämä oli mahdollinen. . .

De Broglie ymmärsi: myös aine on aaltoliike (ja kääntäen valo

koostuu fotoneista) . kvanttiteoria, hiukkas–aalto–dualismi.

Myös suhteellisuusteorian geodeettiset viivat ovat Hamiltonin,

tai Fermatin, periaatteen mukaisia polkuja. Ne liittyvät

absoluuttisen derivaatan käsitteeseen

kaarevassa aika-avaruudessa, mitä oli

Levi-Civita’n kuningasajatus.

Tähän voisi lisätä vielä Pythagoras,

Riemann, Maxwell, . . .


