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1
Fundamentals of navigation

1.1 Introduction

”Navigation” originates from the Latin word navis, ship. In other words, navigation is
seafaring. Nowadays the meaning of navigation is approximately: finding and following a
suitable route. This includes determining one’s own location during the journey.

Navigation is related to geodesy, because location is also a theme in geodetic research.
However in geodesy the positions of points are usually treated as constants or very slowly
changing.

So, the differences between navigation and traditional geodetic positioning are that

1. in navigation the location data is needed immediately or at least after certain max-
imum delay. This is called the real time requirement.

2. in navigation the position data are variable, time dependent.

Nowadays navigation is not limited to in seafaring. Airplanes, missiles and spacecraft as
well as vehicles that move on dry land, and even pedestrians, often navigate with the aid of
modern technology. This is caused by two modern technologies: GPS (Global Positioning
System) and inertial navigation. Also processing technologies have developed: specifically
the recursive linear filter or Kalman filter should be mentioned here.

1.2 History

Old history

Humans have always been discovering the world around them and travelled often long
distances1. Navigation has always been a necessity. Before the existence of modern
technological methods of measurement and guidance, one was dependent on landmarks
and distances estimated from travel time. This is why old maps drawn on the basis of
travellers’ tales and notes, are often distorted in weird ways.

1“Navigare necesse est”.

1



2 Fundamentals of navigation

Figure 1.1: Polynesian migration routes, c© 2008 Wikimedia Commons / David Hall

Using landmarks this way requires mapping, i.e., a pre-existing description of the world
in the form of a map. The journey is then planned and executed by comparing all the
time the actual place with the target place according to the travel plan.

In case that the landmarks are missing, for example in shipping, one can use a method
called dead reckoning (http://en.wikipedia.org/wiki/Dead_reckoning). Here it is
estimated where one should be based on travel direction and speed. The sources of error
in this method apparently are sea currents (in aviation winds) and more commonly that
the forecast weakens with time.

With these primitive methods, shipping is somewhat safe only near the coast. However,
this is the way how already the Phoenicians are believed to have travelled around the
continent of Africa (http://www.bbc.co.uk/news/world-africa-11615613) and the
archipelagos of the Pacific Ocean got their human settlements (http://www.paulwaters.
com/migrate.htm, http://en.wikipedia.org/wiki/Polynesian_navigation, http:

//www.exploratorium.edu/neverlost/).

See also Diamond [1999].

Navigation with the help of landmarks, but also using hi-tech, is used by, e.g., cruise
missiles : they fly by the contour lines of a digital terrain model they have stored in their
memories.

And of course birds (http://www.scq.ubc.ca/the-compasses-of-birds/) have always
navigated.

http://en.wikipedia.org/wiki/Dead_reckoning
http://www.bbc.co.uk/news/world-africa-11615613
http://www.paulwaters.com/migrate.htm
http://www.paulwaters.com/migrate.htm
http://en.wikipedia.org/wiki/Polynesian_navigation
http://www.exploratorium.edu/neverlost/
http://www.exploratorium.edu/neverlost/
http://www.scq.ubc.ca/the-compasses-of-birds/
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Figure 1.2: Barnacle geese in autumn migration. c© 2006 Wikipedia

Navigation

Seafaring on the open ocean presupposes measurement, because there are no landmarks.

. Direction is the easiest. At night, the North Star (Polaris) shows the north direction.
In the daytime, the sun can be used, although in a more complicated way. On a
cloudy day the polarization of sky light can be used to help locate the sun.

The magnetic compass made finding North easier under all conditions. Yet the
magnetic North is not the geographical North, and the difference between them
depends on position and changes with time.

Figure 1.3: John Harrison’s chronometer H5. c© 2007 Wikipedia
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. Latitude is easy to get. The height of the celestial pole above the horizon. In the
daytime from the Sun.

. Longitude is the problem: it presupposes the use of an accurate time standard
(chronometer). Cf. Sobel [1995]. Alternatively, astronomical methods like using
the moons of Jupiter as a “clock”. Later, distribution of time signals by radio
communication, which was not possible until the 20th century.

In the 20th century radio technological methods came into use. The most common is
probably DECCA, which is based on hyperbolic positioning. One “master”-station and
two or more “slave”-stations transmit synchronized time signals modulated onto the radio
waves. The on-board receiver measures the travel time difference between the waves
received from master and slave. On the nautical chart is marked the set of points of the
same difference in travel time, as a colored curve, a hyperbole. Every slave station forms
with the master a bundle of hyperboles drawn in its own color. The intersection point
of two hyperboles gives the position of the ship. So, at least two slaves are needed in
addition to the master station.

Modern satellite positioning methods, like Transit (no longer in use) and GPS (and also
GLONASS) are based on a three-dimensional counterpart of the hyperbolic method.

The modern era

Aviation and space research have brought with them the need for automated, three-
dimensional navigation. Although the first airplanes could be flown by hand, without any
instruments, the first modern missile, the German V2, already included a gyroscope based
control system. In this case navigation is guidance.

The guidance system of the V2 was very primitive. The missile was launched vertically
into the air, where it turned to the right direction with the help of its gyroscope platform,
and accelerated until reaching a pre-determined velocity, at which point the propellant
supply was closed (“Brennschluss”). Physically the turning was done with the aid of small
“air rudders” (“control vanes”) connected to the tail, that changed the direction of the hot
gases coming from the motor. Cf. http://en.wikipedia.org/wiki/V2_rocket2.

Nowadays complete inertial navigation is used in airplanes and spacecraft. Many other
computer based technologies such as satellite positioning (GPS/GNSS) are nowadays used.

1.3 A vehicle’s movements

The attitude of a vehicle can be described relative to three axes. The motion about the
direction of travel is called roll, that about the vertical axis yaw, and that about the
horizontal (left-right) axis pitch. In photogrammetry, we use the term Euler angles.

2In fact these were dual rudders: the part sticking into the exhaust stream consisted of graphite and
burned up quickly. But by then the rocket was up to speed and the external rudders took over.

http://en.wikipedia.org/wiki/V2_rocket
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Figure 1.4: German rocket weapon V2. Photo U.S. Air Force
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Figure 1.5: The attitude angles of a vehicle
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1.4 Technologies

Technologies suitable for both navigation and geodetic position finding are:

1. GPS, Global Positioning System; today we use the term GNSS, Global Naviga-
tion Satellite Systems, to which also belong GLONASS (Russia), Compass/Beidou
(China) and the upcoming Galileo (Europe).

2. Inertial navigation

3. Kalman filtering

4. Automatic guidance, mostly for missiles and launch vehicles, but also for aircraft
and experimentally for road vehicles

1.5 The real time property

The definition of real time:

Guaranteed latency

Which means a process that has a latency of 1 month can be real time (if 1 month is
guaranteed), but another process with a latency of 1 msec is not real time (if the latency
is usually less than 1 msec, but it could sometimes be 2 msec, or 10 msec, or even more. . . )

1.6 Basic concepts

. Stochastic processes

. Linear estimation

. Kalman filtering, dynamic model, observation model, statistical model

. inertial navigation, mechanisation

. satellite orbit

In the following, these concepts will be discussed systematically.



2
Stochastic processes

2.1 Stochastic quantities

Cf. Strang and Borre [1997] pages 515-541.

An often used way to describe quantities that change in time and are uncertain, is that
of the stochastic process.

First the stochastic quantity is defined as follows (the underscore is the traditional notation
for this):

A stochastic quantity x is a series of realizations x1, x2, x3, . . . , xi, . . ., or
xi, i = 1, . . . ,∞.

For example dice throwing. Each throw is one realization. In this case xi ∈ {1, 2, 3, 4, 5, 6}.
Throwing coins. xi ∈ {0, 1}, 0 = heads, 1 = tails.

The value space of the stochastic quantity can be a discrete set (as above) or a continuous
set.

A measurement is a stochastic, usually real-valued, quantity.

A measured distance is a real-valued stochastic quantity s. Realizations si ∈ R.

Measured horizontal angle α, realizations αi ∈ [0, 2π).

A vector measurement produced by GPS from a point A to a point B is a stochastic vector
quantity x. The realizations belong to the three-dimensional vector space: xi ∈ R3.

2.2 Stochastic processes

A stochastic process is a stochastic quantity, the value space of which is a function space,
so each realization of the stochastic quantity (“throwing dice”) is a function. Most oftenly
the function’s argument is time t.

Example: The temperature of the experimental device T (t) as the function of time t
Different realizations Ti (t) are obtained by repeating the test: i = 1, . . . ,∞.

7
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x

Probability
σ σ

Expectancy

density

E {x}
Mean error

Figure 2.1: The Gaussian bell curve

In real life repeating the test can be difficult or impossible. As an example the temper-
ature of Kaisaniemi in Helsinki TKais (t). History can not be precisely repeated, so from
this stochastic process we only have one realization TKais

1 (t), the historical time series of
Kaisaniemi. Other realizations TKais

i (t) , i = 2, . . . ,∞ exist only as theoretical constructs
without any hope of observing them.

In such cases it is often assumed, that the result will be same if the same process shifted
in time is used as realization. So for example

Ti+1 (t) = Ti (t+ ∆t) ,

where ∆t is an appropriately chosen time shift, which of course will have to be large
enough. This hypothesis is called the ergodicity hypothesis.

2.3 On the sample mean

There is often a situation where some quantity x is measured several times and we have
available realizations of the stochastic measurement quantity x , which all of course differ
in different ways from the “real” value x – which we don’t know. Estimation is computing
an“as good as possible”estimate for x from the realizations of the stochastic measurement
quantity. The “real value” x is not known: if it were known, we wouldn’t have to measure
now would we?

The estimate is itself a realization of the estimator : the estimator itself is a stochastic
quantity, one realization of which is an estimate.

In the stochastic quantity’s value space (domain) x is defined a probability density function
p (x), that describes the probability, that the value of one realization happens to be x.
Often (but not always!) it can be assumed that p (x) is so called gaussian curve or normal
distribution, the “bell curve”.

The results presented below do not depend on the aussumption of a gaussian distribution
if not mentioned otherwise.
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Because x must have some value, we know that the total probability is 1:

ˆ +∞

−∞
p (x) dx = 1.

The definition of the expected value or expectancy E is:

E {x} ≡
ˆ +∞

−∞
xp (x) dx.

The expected value is not the same as average; the connection is that the average of x’s
first n realizations,

x(n) ≡ 1

n

n∑
i=1

xi , (2.1)

is probably the closer to E {x} , the bigger n is. This law based on experience is called
the (empirical) law of big numbers.

Above, the first group of n realizations is called the sample, and x(n) is the sample aver-
age.

Now that the expected value has been defined, we can next define the variance as:

Var (x) ≡ E
{

(x− E {x})2} .
The square root of variance is precisely the standard deviation or mean error σ, look at
the picture above:

σ2 = Var (x) .

Unfortunately the variance, like the expected value, can not be calculated straightfor-
wardly. Instead it is estimated from the sample xi, i = 1, . . . , n. If the sample average
x already exists, and assuming that the realizations xi are statistically independent from
each other and all have the same mean error σ1, follows the estimate of the variance σ2

as follows:

σ̂2 ≡ 1

n− 1

n∑
i=1

(xi − xn)2 .

Because the sampling can be repeated as often as one wishes, also the sample average x(n)

becomes a stochastic quantity,

x(n) =
1

n

n∑
i=1

xi,

where xi is a stochastic quantity the successive realizations of which are simply
xi, xi+n, xi+2n, . . . (a “fork variate”).

It is intuitively clear – and assumed without proof – that

∀i : E {xi} = E {x} .
1This is called the i.i.d. assumption, “independent and identically distributed”.
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The expected value of the quantity x(n) is

E
{
x(n)
}

=
1

n

n∑
i=1

E {xi} = E {x} ,

which is the same as the expectancy of x; that kind of estimator is called unbiased.

Its variance is next estimated:

V̂ar
(
x(n)
)

=
1

n(n− 1)

n∑
i=1

(
xi − x(n)

)2
=

1

n
σ̂2.

In other words, the mean error of the sample average decreases proportionally to
√

1/n
when the size of the sample n increases.

This all is presented here without strict proofs, look at a statistics text book.

2.4 Optimality of the average value

From all unbiased estimators of x based on sample xi, i = 1, . . . , n, i.e.,

x̂ =
n∑
i=1

aixi,
n∑
i=1

ai = 1,

the average

x̂ ≡ x(n) =
1

n

n∑
i=1

xi (2.2)

minimizes the variance of x̂. The variance is calculated as follows:

Var (x̂) =
n∑
i=1

a2
iVar (xi) = σ2

n∑
i=1

a2
i ,

assuming, that xi don’t correlate with each other, and that Var(xi) = σ2.

Now, minimizing the expression
n∑
i=1

a2
i

by using the additional constraint
n∑
i=1

ai = 1

yields

ai =
1

n
.

From which the claim follows.
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2.5 Computing the sample average one step at a

time

Instead of calculating the sample average directly, it can be calculated also step by step
as follows:

x(n+1) =
n

n+ 1
x(n) +

1

n+ 1
xn+1,

Var
(
x(n+1)

)
=

(
n

n+ 1

)2

Var
(
x(n)
)

+

(
1

n+ 1

)2

σ2.

This is a very simple example of sequential linear filtering, the Kalman-filter (chapter 3).
Note that, by using this procedure, it is possible to obtain a value for x(n) “on the fly”,
while observations are being collected, before all observations are in. This is precisely the
advantage of using the Kalman filter.

2.6 Covariance, correlation

When there are two stochastic quantities x and y, the covarience between them can be
calculated as

Cov
(
x, y
)
≡ E

{
(x− E {x})

(
y − E

{
y
})}

.

The covariance describes how the random variations of x and y behave similarly.

Besides covariance, correlation is defined as:

Corr
(
x, y
)
≡

Cov
(
x, y
)√

Var (x) Var
(
y
)

Correlation can never be more than 1.0 (or less than -1.0)2. Often the correlation is
expressed as a percentage, 100% is the same as 1.0.

2Eric Weisstein gives the following proof (http://mathworld.wolfram.com/
StatisticalCorrelation.html).

Define normalized variates:

ξ ≡ x√
Var (x)

, η ≡
y√

Var
(
y
) .

Then, because of linearity:

Cov
(
ξ, η
)

=
Cov

(
x, y
)√

Var (x) Var
(
y
) = Corr

(
x, y
)
.

These variances are positive:

0 ≤ Var
(
ξ+η

)
= Var

(
ξ
)

+ Var
(
η
)

+ 2Cov
(
ξ,η
)
,

0 ≤ Var
(
ξ-η
)

= Var
(
ξ
)

+ Var
(
η
)
− 2Cov

(
ξ,η
)

;

when also

Var
(
ξ
)

=
Var (x)(√
(Var (x))

2

) = 1

http://mathworld.wolfram.com/StatisticalCorrelation.html
http://mathworld.wolfram.com/StatisticalCorrelation.html
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θ

y

x z

σmax

σx

σy

σmin

Figure 2.2: Error ellipse

When dealing with two stochastic processes, we often draw an error ellipse (figure 2.2).
Compare this picture with the earlier picture of the bell curve. There the expected value
is marked as E {x} (in the middle) and mean error ±σ. In the error ellipse picture the
central point represents the expected values of x and y the ellipse itself corresponds to
the mean error values ±σ. It can be said that the measurement value will probably fall
inside the ellipse (that’s why the name is error ellipse). If the ellipse is cut by the line z,
the linear combination of x and y is obtained:

z = x cos θ + y sin θ,

the point pair of which on the tangent to the ellipse represents precisely the mean error

and similarly Var
(
η
)

= 1, it follows that

−1 ≤ Cov
(
ξ,η
)

= Corr
(
x, y
)
≤ 1.
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of the quantity z 3:

Var (z) = E
{

[z − E {z}]2
}

= E
{[

cos θ (x− E {x}) + sin θ
(
y − E

{
y
})]2}

=

= cos2 θVar (x) + 2 sin θ cos θCov
(
x, y
)

+ sin2 θVar
(
y
)
,

and from this σz =
√

Var (z). The mean error σz has two extremal values, σmin and σmax,
look at the picture.

If σmin = σmax, or the ellipse is oriented along the axes of the extremal values σmin and
σmax the correlation between x and y disappears. In that case they really are independent
from each other and knowing the real value of one doesn’t help in estimating the other.

If the correlation doesn’t vanish, the knowledge of x’s real value – or a good estimate –
helps to estimate the y better. This is called regression.

2.7 Auto- and crosscovariance of a stochastic

process

If instead of a stochastic quantity there is a stochastic process x (t), we can calculate the
derived function called the autocovarianceas follows:

Ax(t1, t2) ≡ Cov (x (t1) , x (t2)) .

Often, in case of so called stationary processes (in other words, the properties of the
process don’t depend on absolute time but they are constant), one can write

Ax (t1, t2) = Ax (t1, t2 − t1) ≡ Ax (t,∆t) = Ax(∆t) ≡ Cov (x (t) , x (t+ ∆t))

independent of the value of t.

If there are two stochastic processes x (t) and y (t), one can obtain the derived function
called cross-covariance.

Cxy(t1, t2) ≡ Cov
(
x (t1) , y (t2)

)
,

3In matrix notation we can write

z =
[

cos θ sin θ
] [ x

y

]
ja

Var

[
x
y

]
=

[
Var(x) Cov(x, y)

Cov(x, y) Var(y)

]
;

this implies

Var(z) =
[

cos θ sin θ
] [ Var(x) Cov(x, y)

Cov(x, y) Var(y)

] [
cos θ
sin θ

]
,

i.e., the same result. This illustrates the law of propagation of variances..
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and again in the case of stationary processes

Cxy(∆t) ≡ Cov
(
x (t) , y (t+ ∆t)

)
.

Often the cross-covariance is called simply

Cxy ≡ Cxy (0) .

With the covariances defined like this, one can also define the auto- and cross-correlation
functions in the familiar way.

2.8 “White noise” and “random walk”

Noise is a stochastic process with an expected value of 0:

E {n (t)} = 0.

White noise is noise that consists of all possible frequencies. The mathematical way of
describing this is saying that the autocovariance

An (∆t) = 0, ∆t 6= 0.

In other words, the process values n (t1) and n (t2) do not correlate at all, no matter how
close t2 − t1 is to zero.

Nevertheless we would have
An (0) =∞.

And furthermore it holds that
ˆ +∞

−∞
An (τ) dτ = Q.

Here we assume all the time stationarity.

Perhaps you may want to stare at the above formulas for a while. Here we have a function
An (τ) which is “almost everywhere” zero (namely if τ 6= 0) but in the only point where it
isn’t zero (namely if τ = 0) it is infinite! And furthermore, the integral function over the
τ domain produces the finite value Q!

Such a function does not actually exist. It is a matemathical auxiliary device called
distribution. It is the delta-function, named after the quantum physicist Paul Dirac:

An (τ) = Qδ (τ) . (2.3)

Intuitively we can have a mental picture of how such a “function” is built.

First the following block function is defined:

δb(τ) =

{
0 if τ > b

2
or τ < − b

2
1
b

if − b
2
≤ τ ≤ b

2
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Figure 2.3: The Dirac delta function as the limit of block functions

Obviously the integral of this functionˆ +∞

−∞
δb (τ) dτ = 1 (2.4)

and δb (τ) = 0 if |τ | is large enough.

Now let in the limit b → 0. Then δb (0) → ∞, and to every τ value τ 6= 0 there is always
a corresponding bounding value for b under which δb (τ) = 0.

The handling rule of distributions is simply, that first we integrate, and then in the result
obtained we let b → 0.

“Random walk” is obtained if white noise is integrated over time. Let the autocovariance
of the noise n be

An (∆t) = Qδ (∆t) .

Then we integrate this function:

x (t) =

ˆ t

t0

n (τ) dτ.

Note that

E {x (t)} =

ˆ t

t0

E {n (τ)} dτ = 0.

The autocovariance function is obtained as:

Ax (t1, t2) = E {(x (t2)− E {x (t2)}) (x (t1)− E {x (t1)})} =

= E {x (t2)x (t1)} =

= E
{´ t2

t0
n (τ2) dτ2

´ t1
t0
n (τ1) dτ1

}
=

=
´ t2
t0

[´ t1
t0
E {n (τ1)n (τ2)} dτ1

]
dτ2.
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Here

ˆ t1

t0

E {n (τ1)n (τ2)} dτ1 =

=

ˆ t1

t0

An (τ2 − τ1) dτ1 =

= Q

ˆ t1

t0

δ (τ2 − τ1) dτ1 =

{
Q if t1 > τ2

0 if t1 < τ2

From this it follows that

Ax (t1, t2) = Q

ˆ t2

t0

[ˆ t1

t0

δ (τ2 − τ1) dτ1

]
dτ2 =

= Q (t1 − t0) + 0. (t2 − t1) =

= Q (t1 − t0) . (2.5)

In this derivation it has been assumed that the autocovariance of the noise function n is
stationary, in other words, that Q is a constant. This can easily be generalized to the
case where Q (t) is a function of time:

Ax (t1, t2) =

ˆ t1

t0

Q (t) dt. (2.6)

In both equations (2.5, 2.6) it is assumed that t1 ≤ t2.

2.9 Power Spectral Density

Definition

We may also want to study these stochastic processes in terms of their spectrum, i.e., the
presence of various frequency constituents in the process. This can be done by using the
Fourier transform.

For a stationary process, the Fourier transform of the autocovariance function is called
the power spectral density function (PSD). As follows 4:

Ãx (f) = F {Ax (t)} =

ˆ +∞

−∞
Ax (t) exp (−2πift) dt, (2.7)

assuming it exists. Here, f is the frequency, which is expressed, e.g., in Hz (after Heinrich
R. Hertz) i.e., cycles/second, or s−1. Analogically we may also define the cross-PSD of
two functions:

C̃xy (f) = F {Cxy (t)} =

ˆ +∞

−∞
Cxy (t) exp (−2πift) dt.

4Note that we write here t for the time argument, which however represents a time difference. Earlier
we used ∆t.
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The inverse operation using the inverse Fourier transform yields

Ax (t) = F−1
{
Ãx (f)

}
=

ˆ +∞

−∞
Ãx (f) exp (2πift) df.

Therefore, for t = 0 we obtain

Ax (0) =

ˆ +∞

−∞
Ãx (f) df,

So the variance of process x is the same as the total surface area under its PSD curve.

Because the auto-covariance function is symmetric, i.e.

Ax (∆t) = Ax (t2 − t1) = Ax (t2, t1) = Ax (t1, t2) = Ax (t1 − t2) = Ax (−∆t) ,

it follows that the PSD is always real valued ; additionally it is always non-negative,

Ãx (f) ≥ 0 ∀f.

For cross-PSDs this does not hold: we have

Cxy (t2, t1) = Cyx (t1, t2) 6= Cxy (t1, t2) ,

as opposed to

Ax (t2, t1) = E {(x (t2)− E {x (t2)}) (x (t1)− E {x (t1)})} =

= E {(x (t1)− E {x (t1)}) (x (t2)− E {x (t2)})} = Ax (t1, t2) .

.

White noise

The PSD of white noise may be computed as follows using the expression (2.3):

An (t) = Qδ (t) ,

from which

Ãn (f) =

ˆ +∞

−∞
Qδ (t) exp (−2πitf) dt = Q exp (0) = Q ∀f,

using the δ function’s integration property (2.4). Here we see why a process with a Dirac δ
type autocovariance function is called white noise: the power spectral density is a constant
all over the spectrum, for all frequencies f , just like is the case for white light.





3
The Kalman filter

Cf. Strang and Borre [1997] pages 543-583.

Link list: http://www.cs.unc.edu/~welch/kalman/.

A good slideshow: http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_

Slides_08.pdf.

The Kalman filter is a linear, predictive filter. Like a coffee filter filters coffee from
coffee-grounds, the Kalman filter filters the signal (the state vector) from the noise of the
observation process.

The inventors of the Kalman filter were Rudolf Kalman and Richard Bucy in the years
1960-1961 (Kalman [1960]; Kalman and Bucy [1961]). The invention was extensively used
in the space programme as well as in connection with missile guidance systems. Never-
theless the Kalman filter is generally applicable and already used not only in navigation
but also in economics, meteorology and so on.

The Kalman filter consists of two parts:

1. The dynamic model ; it describes the process of motion, according to which the state
vector evolves over time.

2. The observation model ; it describes the observational quantities that tell something
about the state vector at the time of observation.

Both of these models contain statistics: the dynamic model contains statistics describ-
ing the non-determinacy of the development of the system described, e.g., the random
perturbations of a satellite orbit, while the observational model contains a description of
observational uncertainty.

The Kalman filter is special in the sense that the state vector propagates in time step
by step; also the observations are used to correct the state vector only at times when
observations are made. Because of this, the Kalman filter doesn’t demand high number
crunching power or the handling of big matrices. It can be used onboard a vehicle and in
real time.

19

http://www.cs.unc.edu/~welch/kalman/
http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_Slides_08.pdf
http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_Slides_08.pdf
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(Rk)

x−(tk+1), P−(tk+1)

x+(tk+1), P+(tk+1)

x+(tk), P
+(tk)

x−(tk), P
−(tk)

True state

Filtered state

`k = Hkxk + mk

`k = g(xk) + mk

dx
dt = f (x, t) + n(t) (Q(t))Dynamic

Observation Model

Model x(tk+1) = Φk,k+1x(tk) + Θk,k+1

Figure 3.1: The Kalman filter

3.1 The state vector

The state vector is a formal vector (element of an abstract vector space) that describes
completely the state of a dynamic system. E.g. a particle moving freely in space has three
position co-ordinates and three velocity components; the state vector becomes

x =


x
y
z
ẋ
ẏ
ż

 , (3.1)

where the position vector is
[
x y z

]T
and the velocity vector

[
ẋ ẏ ż

]T 1. In this
case the state vector has six elements or degrees of freedom.

If the particle is not a point but an extended object, also its orientation angles (Euler
angles) enter into the state vector. Then we already have nine elements. In a system
of several particles every particle contributes its own elements, three positions and three
velocities, to the state vector.

The state vector may also contain elements that model the behaviour of a mechanical
device, like an inertial navigation device.

1Alternative notation: place vector xe1 +ye2 +ze3, velocity vector ẋe1 + ẏe2 + że3, where {e1, e2, e3}
is an orthonormal base in R3.
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3.2 The dynamic model

The dynamic model characterizes the state vector’s behaviour in time. The state vector
is a (vectorial, i.e. vector valued) stochastic process as a function of time t .

The dynamic model in the linear case looks like:

d

dt
x = Φ · x + n, (3.2)

where x = x (t) is the state vector, n = n (t) is the dynamic noise (in other words, how
inaccurately the equations of motion above actually apply) and Φ (also possibly dependent
on time) is the coefficient matrix.

The more general non-linear case is:

d

dt
x = F (x) + n,

where F (·) is a (vectorial) function. The linear case is easily obtained from this by
choosing an approximate value x(0) for the state vector. We demand from this approximate
value (also a function of time!) consistency with the functional model:

d

dt
x(0) = F

(
x(0)
)
.

Now we linearize by subtraction and Taylor expansion:

d

dt

(
x− x(0)

)
= F (x) + n− F

(
x(0)
)
≈ Φ ·

(
x− x(0)

)
+ n,

which already is of the form (3.2) if we write x− x(0) → ∆x:

d

dt
∆x = Φ ·∆x + n,

from which one may drop the deltas.

The elements of the function F (·)’s Jakobi matrix F used above are Φij =
∂

∂xj
Fi (x),

where the xj are the components of x: e.g., for the example state vector given in 3.1,
x2 = y, x6 = ż, etc.

Realistic statistical attributes have to be given to the dynamic noise; often it is assumed
that it is white noise (cf. above), the autocovariance of which is

An (t1, t2) = Q (t1) δ (t2 − t1) . (3.3)

3.3 Example: a Kepler orbit

As an example the motion of a spacecraft in the Earth’s gravitational field:

d2

dt2

 x
y
z

 = − GM

(x2 + y2 + z2)
3
2

 x
y
z

+

 nx
ny
nz

 ,
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where nx, ny, nz are, e.g., the unknown effect of air drag or the irregularities of the Earth’s
gravitational field, etc.

Unfortunately this is a second order differential equation. The state vector is extended
by adding the velocities to it:

d

dt


x
y
z
ẋ
ẏ
ż

 =

 ẋ
ẏ
ż


− GM

(x2+y2+z2)
3
2

 x
y
z

 +


0
0
0
nx
ny
nz

 .

This system of equations is non-linear. Linearizing yields

d

dt


∆x
∆y
∆z
∆ẋ
∆ẏ
∆ż

 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

GM 3x2−r2
r5

GM 3xy
r5

GM 3xz
r5

0 0 0

GM 3yx
r5

GM 3y2−r2
r5

GM 3yz
r5

0 0 0

GM 3zx
r5

GM 3zy
r5

GM 3z2−r2
r5

0 0 0




∆x
∆y
∆z
∆ẋ
∆ẏ
∆ż

+


0
0
0
nx
ny
nz

 ,
(3.4)

where r =
√
x2 + y2 + z2 is the distance from the Earth’s entre. It is also assumed that

1. there is a proper set of approximate values
[
x(0) y(0) z(0) ẋ(0) ẏ(0) ż(0)

]T
, rel-

ative to which the ∆ quantities have been calculated, and that

2. the elements of the coefficient matrix are evaluated using those approximate values.

Each element in the state vector is a function of time: x(0) (t) etc.

The “partitioned” version of the formula above would be:

d

dt

[
∆x
∆v

]
=

[
0 I
M 0

] [
∆x
∆v

]
+

[
0
n

]
,

where

M =
[

∂
∂x

∂
∂y

∂
∂z

]  −GM
r3
x

−GM
r3
y

−GM
r3
z

 =

=
[

∂
∂x

∂
∂y

∂
∂z

]  ∂
∂x
∂
∂y
∂
∂z

 GM
r

=

=


∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

 GM
r

=

=
GM

r5

 3x2 − r2 3xy 3xz
3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2

 (3.5)
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is called the gravitational gradient tensor also known as the Marussi tensor.

The Marussi tensor is the partial derivatives matrix of the gravitation vector
GM

r3
x with

respect to place. Remembering that the gravitation vector is the gradient of the geopo-
tential, it follows that the tensor is also the second partial derivatives matrix of the

geopotential
GM

r
with respect to place. All these formulas assume a central gravitational

field.

The gravitational gradient tensor describes how a small perturbation in the satellite’s loca-

tion
[

∆x ∆y ∆z
]T

converts into an acceleration perturbance
d

dt

[
∆ẋ ∆ẏ ∆ż

]T
=[

∆ẍ ∆ÿ ∆z̈
]T

.

The most important thing when choosing the set of approximate values is, that it be
physically consistent, in other words it describes a really possible orbital motion inside
the assumed gravitational field.

In the case of a central gravitational field, a suitable set of approximate values is the
Kepler orbit, or, more simply, a constant circular motion. In the formula above, the set
of approximate values chosen can be precisely those of Kepler orbital motion around the
centre of the attractive force GM .

Now, if the we have a gravitational field model that is more accurate than the central field
approximation, one must integrate the approximate values using this more accurate field
model. Nevertheless the above linearized dymamic model Eq. (3.4) will still be good for
integrating the difference quantities ∆x,∆v, as long as these are numerically small. This
is one of the benefits of linearization.

3.4 State propagation

State propagation is done by integrating the formula (3.2). More precisely, the formula
integrated (again in the linear case) is

d

dt
x (t) = Φ · x (t) .

In the case of the state estimator x− 2 this is simple:

x− (t1) ≈ x− (t0) + Φ∆t · x− (t0) =

= (I + Φ∆t) x− (t0)

if ∆t = t1 − t0 is small. As we can immediately see, the elements of x(t1) are linear
combinations of the elements of x(t0). If t1 − t0 = nδt, δt small, it follows, by repeated
application of the above formula, that

x− (t1) = (I + Φδt)n x− (t0) .

2Notation used: x− is the state estimator before the (later to be described) update step; x+ is the
state estimator after this step. In the literature, also the notations x̂i−1 and x̂i, where the “hat” is the
mark of the estimator, can be found.
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The matrix

Φ1
0 = (I + Φδt)n

is called the state transition matrix between epochs t0 and t1 ; we can write

x− (t1) = Φ1
0x− (t0) .

If we write δt = ∆t/n, we obtain

Φ1
0 =

(
I +

Φ∆t

n

)n
.

For simple numbers, we have the classical formula

ex = exp (x) = lim
n→∞

(
1 +

x

n

)n
= lim

ν→∞

(
1 +

1

ν

)νx
= lim

ν→∞

[(
1 +

1

ν

)ν]x
,

where we see the definition of the number e:

e = lim
ν→∞

(
1 +

1

ν

)ν
.

For this reason we write sometimes (generalizing the exp function to square matrices):

Φ1
0 = exp

{
ln

(
I +

Φ∆t

n

)n}
= exp

{
n ln

(
I +

Φ∆t

n

)}
≈ exp

{
n

Φ∆t

n

}
= eΦ(t1−t0).

(3.6)

We can observe that for the state transition matrix the transitive property holds:

Φt2
t0 = Φt2

t1 · Φ
t1
t0 ,

in other words, to transition the state from x (t0) to x (t2), you may transition first from
t0 to t1 and then from t1 to t2.

Definition. We define as the state variance the square difference of its estimator from
its true value – itself a stochastic process to which of course we do not have access3!
– as follows:

P− (t) = Var
(
x− (t)

)
≡ E

{(
x− (t)− x (t)

) (
x− (t)− x (t)

)T}
, (3.7)

then

P− (t1) =
(
Φ1

0

)
P− (t0)

(
Φ1

0

)T
+

ˆ t1

t0

Q (t) dt, (3.8)

where we have used the formula (2.6), and assumed that the dynamic noise n is
white.

3An interesting philosophical issue. Does the sound of the wind in the trees exist when no-one is
listening?
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We may also derive differential equations that describe the development of the state
variance matrix and state transition matrix in time. If the times t0 and t are close to each
other, we may write

Φt
t0
≈ I + F (t) (t− t0) ,

where now the coefficient matrix F (t) is allowed to be a function of time. Then

d

dt

(
Φt
t0

)
= F (t) +

dF

dt
(t− t0) ≈ F (t) .

Let us now consider the situation where t and t1 are close together, but t1 and t0far apart.
Then we have

d

dt

(
Φt
t0

)
=

d

dt

(
Φt
t1

Φt1
t0

)
=

d

dt

(
Φt
t1

)
Φt1
t0 ≈ F (t) Φt1

t0 ≈ F (t) Φt
t0
. (3.9)

With the initial condition
Φt0
t0 = I

we can by numerical integration obtain the matrix Φt1
t0 . We can also write (without proof),

in full analogy with eq. (3.6):

Φt1
t0 = exp

{ˆ t1

t0

F (t) dt

}
,

which is also handy for calculation.

This is the more general case of (3.6) in the case where F depends on time. (The notation
Φt1
t0 = Φ1

0 differs a little from that used earlier.)

In order to derive a differential equation for the state variance matrix P we start from
equation (3.8):

P− (t) =
(
Φt
t0

)
P− (t0)

(
Φt
t0

)T
+

ˆ t

t0

Q (τ) dτ,

where we have substituted t → τ ja t1 → t. In case t − t0 is small, the result is using
formula (3.9)

d

dt
P− (t) =

(
d

dt
Φt
t0

)
P− (t0)

(
Φt
t0

)T
+
(
Φt
t0

)
P− (t0)

(
d

dt
Φt
t0

)T
+Q (t) =

= F (t) Φt
t0
P− (t0)

(
Φt
t0

)T
+ Φt

t0
P− (t0)

(
Φt
t0

)T
F T (t) +Q (t) =

= F (t)P−0 (t) + P−0 (t)F T (t) +Q (t) , (3.10)

in which P−0 (t):

P−0 (t) =
(
Φt
t0

)
P− (t0)

(
Φt
t0

)T
,

is computed by integrating the differential equation

d

dt
P−0 (t) = F (t)P−0 (t) + P−0 (t)F T (t) . (3.11)

The equation (3.10) is suitable for integrating the matrix P also in the case where F is
time dependent.

All this however assumes that the matrix F exists, i.e., the function F (x) can be linearised.
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3.5 Observational model

The evolution of the state vector in time would not be very interesting, unless it could be
observed in some way. The observational model (linear case) is:

` = H · x + m,

where ` is the observation quantity (vector), x is the state vector (“the real value”) and
m is the “noise”, i.e., the uncertainty, of the observation process. H is the observation
matrix 4. As the variance of the noise is given the variance matrix R; E {m} = 0 and
E
{

m mT
}

= R (as E {m} = 0, this is noise after all).

Let the observation moment be t; the estimator of the state vector propagated to this
moment is5 x− (t) = x−. From this value one can now calculate the observation quantity
as: ̂̀= Hx−.

Now a the zero quantity (a quantity the expected value E {·} is zero) is constructed as:

y = ̂̀− ` =

= H
(
x− − x

)
−m

and thus

E
{

y
}

= H
(
E
{

x−
}
− E {x}

)
− E {m} =

= H · 0− 0,

by using the assumption E {x−} = x, i.e., x− is an unbiased estimator of x.

The nonlinear case: Then, H is not a matrix but a function H (x) of the state vector. We
write

` = H (x) +m

and

̂̀= H
(
x−
)
,

after which
y = ̂̀− ` = H ·

(
x− − x

)
−m,

and the elements of the matrix H are defined by

Hij =
∂

∂xj
Hi (x) ,

the Jacobian matrix (matrix of partial derivatives) of the function H (x) .

4This is the same as in the case of least squares adjustment the A matrix or “design matrix”.
5The minus or plus sign used as a superscript is an often used notation to denote the state “before”

and “after” (a priori, a posteriori) the use of an observation in the update step. Other notations are
found as well, e.g., the subscripts i and i+ 1.
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Let us also calculate

Var
(
y
)

= E
{

yyT
}

=

= HE
{(

x− − x
) (

x− − x
)T}

HT +R =

= HP−HT +R,

while assuming that x− and m do not correlate with each other.

Also

Cov
(
y, x−

)
≡ E

{
y
(
x− − x

)T}
=

= HP−,

by assuming that m and x− – and x – do not correlate (logical assumption; usually the
observation process is physically completely independent from the orbital motion process,
an the observation processes at different epoch are independent of each other)

Also with

Cov
(
x−, y

)
= P−HT .

3.6 Updating

The update step is now exploiting optimally the fact that the difference between the
observation quantity’s value ̂̀ calculated from the estimated state vector x− and the
really observed observation quantity ` has an expected value of zero.

So an enhanced estimator is constructed

x+ = x− +Ky =

= x− +K
(
H
(
x− − x

)
+ m

)
,

so (
x+ − x

)
= (I +KH)

(
x− − x

)
+Km.

Here the matrix K is called the Kalman “gain matrix”.

Now according to the definition (3.7) we may use this to derive the propagation equation
for the state variance:

P+ = (I +KH)P− (I +KH)T +KRKT . (3.12)

“The optimal” solution is obtained by choosing

K = −P−HT
(
HP−HT +R

)−1
,
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which gives as a solution the state propagation equation

x+ = x− − P−HT
(
HP−HT +R

)−1 (
Hx− − `

)
.

if we call
Π ≡

(
HP−HT +R

)−1
,

we can re-write eq. (3.12):

P+ =
(
I − P−HTΠH

)
P−
(
I − P−HTΠH

)T
+ P−HTΠRΠHP− =

= P− − P−HTΠHP− − P−HTΠHP− +

+P−HTΠHP−HTΠHP− + P−HTΠRΠHP− =

= P− − 2P−HTΠHP− + P−HTΠHP− =

= P− − P−HTΠHP− = P− − P−HT
(
HP−HT +R

)−1
HP−.

Perhaps more intuitively summarized:

x+ = x− − Cov
(
x−, y

)
Var−1

(
y
)

y, (3.13)

Var
(
x+
)

= Var
(
x−
)
− Cov

(
x−, y

)
Var−1

(
y
)

Cov
(
y, x−

)
, (3.14)

some kind of regression of the state vector x with respect to the “closing error” y.

So the updating formulas for the Kalman-filter have been found for both the state vector
and its variance matrix.

Remark. We may still shorten the variance update equation as follows:

P+ = P− − P−HT
(
HP−HT +R

)−1
HP− = (I +KH)P−,

based on the definition of K.

In the literature we can find many ways to calculate these formulas effectively and pre-
cisely. The main issue nevertheless is, that the variance matrix of the “closing error”

Var
(
y
)

= HPHT +R

is the size of vector y. And y’s size is the amount of simultaneous observations. This is
why the Kalman-filter is also called a sequential filter, because it handles the observations
one epoch at a time not (like for example in traditional adjustment calculus) all of them
at once.

3.7 The optimality of the Kalman-filter

The formulas (3.13, 3.14) are optimal in the sense of the least squares adjustment method.
Proving it can be done as follows, with a little simplification.
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We start by calculating

Cov
(
x+, y

)
= Cov

(
x−, y

)
− Cov

(
x−, y

)
Var−1

(
y
)

Var
(
y
)

= 0 (3.15)

(remember that Cov
(
y, y
)

= Var
(
y
)
). So the updated state vector x+ is orthogonal to

the “closing error vector” y .

Assume now that there was an alternative x×, that was even better than x+Write

x× = x+ + Ay.

Then, because of the formula (3.15) we would have

Var
(
x×
)

= Var
(
x+
)

+ AVar
(
y
)
AT .

So because Var
(
y
)

is positive-definite,

Var
(
x×
)
− Var

(
x+
)

is always positive-semidefinite, and

Var
(
x×
)
− Var

(
x+
)

= 0

happens if A = 0. In other words, for an arbitrary linear combination z =
∑

i cixi (so
z× = cix

×
i , z+ = cix

+
i ) it holds that

Var
(
z×
)
− Var

(
z+
)

= 0

if A = 0, and otherwise we have

Var
(
z×
)
− Var

(
z+
)
≥ 0.

The issue can be represented in the two-dimensional special case graphically like in figure
3.2. So, the variance ellipse of the optimal estimator x+ (more generally a (hyper-)
ellipsoid) is always entirely inside (or at worst, touching from the inside) the variance
ellipse of the alternative estimator x×, and the same holds also for the variances of an
arbitrary linear combination ` of the components.

3.8 An example computation

Question:

Assume the dynamical model for the state vector

x =

[
x
v

]
to be

d

dt

[
x
v

]
=

[
0 1
0 0

] [
x
v

]
+

[
0
n

]
.
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z

z+ z×

x+

x×

x1

x2

Figure 3.2: The error ellipse of the optimal estimator is completely surrounded by the
error ellipses of other estimators

Here, n is white noise with an autocovariance of Q = 1. Furthermore, assume the
initial state to be given as[

x (0)
v (0)

]
=

[
4
0

]
, P (0) =

[
2 0
0 1000

]
(i.e., no real velocity information is actually given).

(Use Matlab! )

1. Propagate this state information forward to t = 5, i.e., calculate x (5) , P (5).

2. At t = 5, a further observation, value: 3, is made:

` = x− (5) +m,

where the variance of m is given as 3. Calculate the a posteriori state
x+ (5) , P+ (5).

3. Calculate alternatively the outcome using a standard least-squares adjustment.
We have as our dynamic model

x (t) = x (0) + v (0) · t,

unknowns to be estimated x (0) and v (0), and observation equations

`1 + v1 = x (0)

`2 + v2 = x (5)

and the observation vector

` =

[
4
3

]
, Q`` =

[
2 0
0 3

]
.
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Answer:

1. x (5) = x (0) + v (0) · 5 = 4. Because the matrix F =

[
0 1
0 0

]
, we obtain the

state transition matrix as

Φ5
0 = eF∆t = e

 0 ∆t
0 0


= I +

[
0 ∆t
0 0

]
+

1

2

[
0 ∆t
0 0

]2

+ . . .

=

[
1 ∆t
0 1

]
=

[
1 5
0 1

]
,

because [
0 ∆t
0 0

]n
= 0, n > 1.

Then

P (5) = Φ5
0P (0)

(
Φ5

0

)T
+Q∆t =

=

[
1 5
0 1

] [
2 0
0 1000

] [
1 0
5 1

]
+ 5 ·

[
0 0
0 1

]
=

=

[
25002 5000
5000 1005

]
.

2. The matrix H =
[

1 0
]
. So HP−HT + R = 25002 + 3 = 25005. The K

matrix is

K = −P−HT
(
HP−HT +R

)−1
= −

[
25002
5000

]
· 1

25005
=

[
−0.999880023995201
−0.199960007998400

]
.

Next, we compute

y = Hx− (5)− ` =
[

1 0
] [ 4

0

]
− 3 = 1.

Then,

x+ (5) = x− (5) +Ky =

[
4
0

]
−
[

0.99988
0.19996

]
· 1 =

[
3.00012
−0.19996

]
.

(We can project this back to t = 0: we then find x̂ (0) = 3.00012 − 5 ·
(−0.19996) = 3.9999, and v̂ (0) = v+ (5) = −0.19996.)

For the P+ (5) matrix we find

P+ (5) = (I +KH)P− (5) =

=

[
1− 0.999880023995201 0
−0.199960007998400 1

] [
25002 5000
5000 1005

]
=

=

[
2.99964 0.59988
0.59988 5.19996

]
.
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3. The A matrix is

A =

[
1 0
1 5

]
,

and the Q`` matrix and ` vector are given. We obtain:

ATQ−1
`` A =

[
0.83333 1.66667
1.66667 8.33333

]
,

x̂ =
(
ATQ−1

`` A
)−1

ATQ−1
`` ` =

[
4.00000
−0.20000

]
.

The same, practically, as the result under point 2. For the solution variance
we find

Var (x̂) =
(
ATQ−1

`` A
)−1

=

[
2 −0.4
−0.4 0.2

]
,

which is not directly comparable to the earlier result as it refers to t = 0.
Furthermore, the Kalman solution contains the effect of the dynamic noise Q,
which is not along in the standard least-squares solution.



4
The Kalman filter in practical use

4.1 “Coloured noise”, Gauss-Markov process

Let us study the simple dynamic equation

dx

dt
= −kx+ n, (4.1)

where n is white noise, of which the autocovariance function is Qδ (t2 − t1), and k is a
constant. The solution of this differential equation is

x (t) = e−kt
{
x (t0) ekt0 +

ˆ t

t0

n (τ) ekτdτ

}
.

The solution satisfies also the initial condition.

If we assume that the initial value x (t0) is errorless, and that the autocovariance function
of n is

An (t1, t2) = Q (t1) δ (t1 − t2) ,

we obtain the autocovariance function of x:

Ax (t1, t2) =

= e−k(t1+t2)E

{ˆ t1

t0

n (τ1) ekτ1dτ1

ˆ t2

t0

n (τ2) ekτ2dτ2

}
=

= e−k(t1+t2)

ˆ t1

t0

ekτ1
[ˆ t2

t0

E {n (τ1)n (τ2)} ekτ2dτ2

]
dτ1.

Here ˆ t2

t0

E {n (τ1)n (τ2)} ekτ2dτ2 =

=

ˆ t2

t0

An (τ2 − τ1) ekτ2dτ2 =

Q

ˆ t2

t0

δ (τ2 − τ1) ekτ2dτ2 =

{
Qekτ1 jos t2 > τ1

0 jos t2 < τ1

33
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Figure 4.1: Gauss-Markov processes autocovariance function

So assuming that t2 < t1:

Ax (t1, t2) = Qe−k(t1+t2)

[ˆ t2

t0

e2kτ1dτ1 +

ˆ t1

t2

0 dτ1

]
=

=
Q

2k
e−k(t1+t2)

[
e2kt2 − e2kt0

]
.

In this case where t2 > t1 this gives:

Ax (t1, t2) = Qe−k(t1+t2)

ˆ t1

t0

e2kτ1dτ1 =

=
Q

2k
e−k(t1+t2)

[
e2kt1 − e2kt0

]
.

In both cases we get

Ax (t1, t2) =
Q

2k

[
e−k|t1−t2| − e−k(t1+t2−2t0)

]
. (4.2)

In the situation where t1, t2 � t0 (stationary state long after starting) we obtain

Ax (t2 − t1) ≡ Ax (t1, t2) ≈ Q

2k
e−k|t2−t1|. (4.3)

In this (stationary) case we talk about coloured noise and the process above is called a
(first order) Gauss-Markov process, also an autoregressive (AR(1)) process.

Let us also write

Q ≡ qk2.
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Then the surface area under the Ax (t2 − t1) curve is

ˆ +∞

−∞
Ax (τ) dτ =

qk

2
· 2
ˆ ∞

0

ekτdτ = q,

a constant if q is constant.

The extreme case k → ∞ leads to the autocovariance function Ax (t2 − t1) becoming
extremely narrow, but the surface area under the curve of the function does not change.
In other words:

Ax (t2 − t1) = qδ (t2 − t1) .

This corresponds to the formula’s (4.1) degeneration, where not only k → ∞, but also
variance of the noise n , i.e., Q→∞. So:

dx

dt
= kx− kν ⇒ x = ν − k−1dx

dt
≈ ν,

where the variance of the noise ν ≡ −n
k

is q = Qk−2.

The other borderline case case, where k → 0, is the same as the case presented above
(section 2.8). So “random walk” is a Gauss-Markov process the time constant of which is
infinitely long. In that case we have to use the whole formula (4.2):

Ax (t1, t2) =
Q

2k

[
e−k|t1−t2| − e−k(t1+t2−2t0)

]
.

In this case, if t2 ≈ t1 ≡ t, we get

Ax (t) =
Q

2k

[
1− e−2k(t−t0)

]
≈

≈ Q (t− t0) ,

which is in practice the same as in chapter 2.8.

The corresponding dynamic equation is obtained from the formula (4.1) by substituting
k = 0:

dx

dt
= n,

so x is the time-integral of the white noise n as it should be.

Summary k dynamic model autocovariance

Random walk 0
dx

dt
= n Q (t− t0)

Gauss-Markov process ∈ (0,∞)
dx

dt
= −kx+ n

Q

2k
e−k|t1−t2|

White noise ∞ x =
n

k
Qk−2δ (t1 − t2)

Often the model used to generate the “coloured” noise (4.1) or the process – in case where
we know beforehand that the properties of the process are of that type.This is easily done
by adding one unknown x to the state vector and one equation to the dynamic model of
the Kalman filter.
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Figure 4.2: Power Spectral Density (PSD) of a Gauss-Markov process

Power spectral density of a Gauss-Markov process

We have the auto-covariance function as Eq. (4.3):

Ax (t) =
Q

2k
e−k|t|.

From this follows the PSD by integration (2.7):

Ãx (f) =

ˆ +∞

−∞
Ax (t) exp (−2πift) dt =

=
Q

2k

ˆ +∞

−∞
exp (−k |t|) exp (−2πift) dt.

This integral isn’t quite easy to evaluate; it is found in tabulations of integrals and can
also be done using symbolic algebra software, like Wolfram’s on-line integrator. The result
is1

Ãx (f) =
Q

4π2f 2 + k2
=

2kAx (0)

4π2f 2 + k2
.

cf. Jekeli [2001] Eq. (6.75). In the figure are plotted values of this function for Q = 2k
– i.e., we keep the variance of x, which is equal to Ax (0) = Q/2k, at unity – with
k = 0.5, 1, 2.

4.2 Modelling of realistic statistical behaviour

Coloured noise, or Gauss-Markov processes, are very often used to model stochastic pro-
cesses found in real life. Say, for example, that we know that a measured stochastic process

1A formula of this form is sometines called a Cauchy-Lorentz distribution.
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x consists of the quantity we are interested in, s – which may be rapidly varying around
zero – , and a systematic “disturbance” which we want to get rid of. We also know that
this disturbance is slowly varying, with a time constant of τb. Let us call the disturbance

b. Then we may write the state vector as
[
s b

]T
and the dynamic equations as, e.g.,

d

dt

[
s
b

]
=

[
−1/τs 0

0 −1/τb

] [
s
b

]
+

[
ns
nb

]
.

Here, the τb is the (long) time constant of the bias process, which will thus be slowly
varying; for for τs we may choose a much shorter time constant2. However, it should be
chosen realistically. If measurements are obtained at a time interval ∆t, τs � ∆t in order
for the process s to be realistically determinable from the observations.

The observation or Kalman update equation is

` = s+ b+m,

with m (variance R) representing the observational uncertainty. If observations are ob-
tained at a sufficient density in time, we may obtain separate estimates for the signal
process s and the slowly varying noise b. In order for this to work, we should attach
realistic auto-covariances to ns and nb. Even then, it is a requirement in this case that

E {s} = 0. If it is not, the systematic part of s will end up in the b̂ estimate produced by
the filter.

This is a case of spectral filtering by Kalman filter. The low frequency part, including zero
frequency, goes to b; the high frequency part goes to s. However, the boundary between
the two spectral areas is not sharp.

Somewhat the opposite situation arises if we have a measured stochastic process consisting
of a rapidly varying noise part, and a slowly varying signal. Assume that the noise is not
white, but rather, “coloured”: let’s call it c. It has a correlation length τc. Now if we
are interested only in the signal’s s lower frequency constituents, we may again apply a
Kalman filter:

d

dt

[
s
c

]
=

[
−1/τs 0

0 −1/τc

] [
s
c

]
+

[
ns
nc

]
.

Here, we choose τs according to the part of the spectrum of s that we are interested in
(but always τs > τc); τc should be chosen realistically, to capture and remove as much as
possible the real noise in the process. Our observation or update equation is again

` = s+ c+m.

The earlier described technique (of extracting a rapidly varying signal from a background
of slowly varying bias) was used Tapley and Schutz [1975] already in 1975 for extracting
data on underground mass concentrations (mascons) on the Moon from Lunar Orbiter
tracking data. It is called “Dynamic Model Compensation”.

2We may also choose an entirely different type of model, if we know that Gauss-Markov is not realistic
for s .
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4.3 GPS observations and unknowns

GPS observations are described as pseudoranges and given by the equation

p = ρ+ c (∆t−∆T ) + dion + dtrop, (4.4)

where

ρ =
√

(x−X)2 + (y − Y )2 + (z − Z)2 is the spatial distance between satellite[
x y z

]T
and ground station

[
X Y Z

]T
,

∆t is the satellite clock error,

∆T is the receiver clock error, and

dion, dtrop are the ionospheric and tropospheric effects.

This equation can be written in different ways, depending on what we consider to be the
unknowns to be estimated by the Kalman filter. Available unknowns that can be included
in the Kalman filter are

x =
[
x y z

]T
,

X =
[
X Y Z

]T
,

∆t,∆T .

Satellite orbit determination

We can propose the following observation equation (mp representing the observational
uncertainty):

p =

√
(x−X)2 +

(
y − Y

)2
+ (z − Z)2 + c (∆t−∆T ) + dion + dtrop +mp.

This is the observation equation for orbit determination. In it, the ground station (tracking

station) position is given and treated as non-stochastic:
[
X Y Z

]T
. The satellite

position is stochastic and to be estimated by the filter. The same applies for the clocks:
the tracking station clock is assumed known relative to UTC, the deviation being ∆T .
The satellite clock, however, is being estimated.

For this situation we identify the state vector as

x =


x
v

∆t
dion

dtrop

 .
As before, we introduced the velocity vector v, so we can write the Kalman dynamical
equations as a first-order differential equation.
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Next, we have to decide how to model the time behaviour of these various state vector
elements. For the location x this is simple: we have

d

dt
x = v,

exactly. For the velocity, we use the formula for a central force field, and we linearize.
As approximate values we can use available orbital predictions, e.g., broadcast or precise
ephemeris: call these x0,v0,∆t0 (these always also contain satellite clock corrections!).
Then we may define linearized (differential) state vector elements

∆x = x− x0,

∆v = v − v0,

∆ (∆t) = ∆t−∆t0.

Now, the linearized equations for x,v are

d

dt

[
∆x
∆v

]
=

[
0 I
M 0

] [
∆x
∆v

]
+

[
0
na

]
,

where M is the earlier derived (for a central force field, Eq. (3.5)) gravity gradient tensor,
I is the 3 × 3 unit matrix, and na is here introduced as the dynamic noise of satellite
motion.

How do we model the behaviour of the satellite clock ∆t? Typically this is done as a
random walk process. As follows:

d

dt
∆t = nt. (4.5)

Modelling the tropo- and ionosphere is trickier. Note that we are here talking about the
slant delay due to these atmospheric components along the satellite-receiver path, and
most of the change in this delay will be due not to physical atmospheric changes, but
rather, satellite motion causing the path to move to a different place in the atmosphere.

First order Gauß-Markov modelling is often used in this case, with a pragmatic choice of
the time parameter τ. This could be a few hours, i.e., a fraction of the time during which
the GPS satellite is above the horizon. A significant improvement is obtained by using
residual ionosphere or troposphere corrections, i.e., differences relative to some suitable
a priori model. The notation becomes then ∆dion,∆dtrop. For the ionosphere, this could
be the model included with the satellite broadcast ephemeris (not very good), or the
published IONEX models (not available in real time). For the troposphere, the standard
Hopfield or Saastamoinen models may be considered.

Summarizing :

d

dt


∆x
∆v

∆ (∆t)
∆dion

∆dtrop

 =


I

M
0
− 1
τion

− 1
τtrop




∆x
∆v

∆ (∆t)
∆dion

∆dtrop

+


0
na
nt
nion

ntrop

 .
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Station position determination

Starting from the same equation (4.4) we construct a different observation equation, as
follows:

p =

√
(x−X)2 + (y − Y )2 + (z − Z)2 + c (∆t−∆T ) + dion + dtrop +mp.

This is the observation equation for geodetic positioning. Here, the satellite orbital ele-

ments and clock are assumed known, i.e.,
[
x y z

]T
and ∆t are known or precisely

computable from available ephemeris. Now the state vector is

x =


X
V

∆T
dion

dtrop

 ,

where V = d
dt

X. Here, the new problem is to model the behaviour of the X,V of the
ground station.

In case the ground station is fixed, we may choose as the model

V = 0,

i.e., simply
d

dt
X = 0.

In case we know that the stations are moving, but slowly and with constant velocity (e.g.,
plate tectonics, postglacial rebound), we may write

d

dt

[
X
V

]
=

[
0 I
0 0

] [
X
V

]
+

[
0
0

]
.

The Kalman filter will gradually improve the estimates X̂, V̂ over time as more obser-
vations p are being processed. Some existing GPS processing software (GYPSY/OASIS)
uses Kalman filter in this way.

For moving vehicles (aircraft, e.g.) it gets more complicated. One could use the knowledge
that the acceleration of the vehicle is bounded, and model it as a coloured noise (Gauß-
Markov) process. According to Eq. (4.3), the variance of such a process is Q/2k, when
the process equation is

d

dt
A = −kA + nA.

Now let τA = 1/k be the time constant of the motion (typically something like a second,
the time in which the vehicle can manoeuver), and α the typical scale of the accelerations
occurring. By putting

Q

2k
=

1

2
QτA = α
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we obtain for the variance of the driving noise nA:

Q =
2α

τA
.

Thus we get as the complete dynamic equation:

d

dt

 X
V
A

 =

 0 1 0
0 0 1
0 0 −1/τA

 X
V
A

+

 0
0

2α
τA

n1

 ,
where n1 stands for “unit variance white noise”, 3-vectorial in this case.

Both α and τA will depend on the kind of vehicle we are considering. Large α and short
τA is often referred to as a “high dynamic” environment, which is challenging for designing
GPS receivers.

About clock modelling

Clocks are typically modelled as random walk processes, see Eq. (4.5):

d

dt
c = nc,

where now c is the time error, i.e., the difference between clock reading and “true” time.
(We changed the notation in this section in order to prevent later mix-ups.)

From Eq. (2.5) we know that the autocovariance of random walk is

Ac (t1, t2) = Q (t1 − t0) ,

with Q the variance of the white noise process nc, and t0 some starting time at which we
have an exact value for ∆t. We see that the variance grows linearly with time.

Let us compute the difference between two values δc ≡ c (t2) − c (t1) . The variance of
this difference is

Var (δc) = Var {c (t2)}+ Var {c (t1)} − 2Cov {c (t1) , c (t2)} =

= Q (t2 − t0) +Q (t1 − t0)− 2Q (t1 − t0) =

= Q (t2 − t1) ,

as was to be expected3. Obviously also, the expected value of δc vanishes:

E {δc} = 0.

Now, suppose we have a time series of values

c (ti) , i = 1, . . . , n,

with constant
δt = ti+1 − ti.

3Why?
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Then one can show that the expression

AVδt (c) =
1

n− 1

n−1∑
i=1

[c (ti+1)− c (ti)]
2 (4.6)

has the expected value of, and is thus an unbiased estimator of, the variance Qδt. This
empirically computable quantity is called the Allan variance, after David W. Allan
(http://www.allanstime.com/AllanVariance/)4. For true random walk behaviour,
Qδt, and thus AVδt (c), should be strictly proportional to δt, and Q follows as the propor-
tionality constant.

About ambiguity resolution

We may write the observation equation of carrier phase as (metric units):

P = ρ+ c (∆t−∆T ) +Dion +Dtrop + λN. (4.7)

Here, N identifies the ambiguity, an integer value identifying the number of whole wave-
lengths that cannot be determined from carrier phase measurements alone.

The way to handle the ambiguity in a Kalman filter may be to introduce an ambiguity
unknown N to the state vector, but make it a real-valued state initially. As the filter
progresses in time, the state variance attached to N will become smaller and smaller,
until it become possible to identify the real-valued ambiguity with confidence with a
single integer value.

Note, however, that in a practical situation you will not have just one equation (4.7), but
as many as there are useable GPS satellites in the sky, i.e., 4-12. This means that we will
have not one, but several N i, i = 1, . . . , n, with n the number of satellites. This set of
ambiguities will have a variance-covariance matrix of size n×n. Now one should analyse
if the whole set of N i lies close enough to a set of integer values, which forms a grid of
points in the abstract vector space Rn. “Close enough” should be understood in terms of
this variance-covariance matrix. Generally, this resolution of all ambiguities together will
succeed well before any single one will be resolved successfully. Sophisticated algorithms
have been developed for this – e.g., the LAMBDA technique (http://www.lr.tudelft.
nl/live/pagina.jsp?id=acd3da86-7b14-44e7-9de2-0d04c7c1a316&lang=en).

4.4 Examples

Kalman filter (2)

Question:

In an industrial machine there is a wheel with radius r spinning at an angular velocity
ω (t), where t is the time. The instantaneous angular velocity varies randomly: the
angular acceleration has the properties of “white noise”.

4Undoubtedly students of spatial information analysis will recognise this as very similar to the semi-
variogram used in connection with the Kriging technique.

http://www.allanstime.com/AllanVariance/
http://www.lr.tudelft.nl/live/pagina.jsp?id=acd3da86-7b14-44e7-9de2-0d04c7c1a316&lang=en
http://www.lr.tudelft.nl/live/pagina.jsp?id=acd3da86-7b14-44e7-9de2-0d04c7c1a316&lang=en
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N1

N2

3

2 3

.

3

3

N2
N1

(Left) Resolution of multiple ambiguities works better than doing it one-by-one. The
one-by-one method fails to resolveN1 to 3, while the combined method resolves
(N1, N2) to (3, 3).

(Right) multiple Ni variance ellipsoids are often very elongated “cigars” as depicted.
In the LAMDA method, the ambiguities are transformed to integer linear
combinations that change the error ellipse to (almost) a circle. In this picture,
the correct solution is easily seen to be the one nearest to the point (N1, N2).

1. Write the state vector of this system. How many elements are needed?

2. Write the dynamical model of the system.

3. A reflective prism is attached to the edge of the wheel in order to do measure-
ments. The rotation is monitored by using laser distance measurement. The
measuring device is at a great distance from the machine, within the plane of
the wheel.

Write the observational model.

4. Linearize the observational model.

Answer:

1. The state vector of this system contains the angular position α (t). However, it
is given that the angular acceleration d

dt
ω (t) has the properties of white noise.

We shall see in question 2 that this makes it a good idea to include also the
angular velocity into the state vector.

Thus we obtain for the state vector:

x (t) =

[
α (t)
ω (t)

]
.

2. The dynamical model in the Kalman filter is a system of equations of the form

d

dt
x (t) = F (x (t)) + n,
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where x is the system’s state vector and n is the dynamical noise vector.

In our case we have the state vector above. We can write

d

dt

[
α
ω

]
=

[
ω
0

]
+

[
0
nω

]
,

where the first equation d
dt
α = ω expresses the definition of angular velocity

ω, and the second equation d
dt
ω = nω expresses the given fact that the angular

acceleration has the properties of white noise.

We observe that the dynamical model found is linear.

3. If we observe the distance to a prism on the edge of the wheel from far away,
we can write for the observation equation:

` = d+ r cosα +m

(if we count α from the prism position furthest away from the observing in-
strument). Here, d is the distance between the instrument and the centre of
the wheel. (We may assume for simplicity that it is known. If not, d should
be added to the state vector with a dynamical equation of d

dt
d = 0 – aside

remark.)

4. This model is non-linear, i.e., the dependence of the observation quantity on
the state vector element is a cosine.

We linearize as follows: define consistent approximate values for which

`0 = d+ r cosα0

and subtract this from the above, yielding (Taylor expansion into the first,
linear term in ∆α):

∆` = r
∂

∂α
cosα

∣∣∣∣
α=α0

·∆α +m,

where the logical definitions ∆` = `− `0 and ∆α = α− α0 have been applied.

Doing the partial differentiation yields

∆` = −r sinα0∆α +m,

which is a linear equation of the standard Kalman observation equation type

` = Hx +m,

if we write formally

` = [∆`] ,

H =
[
−r sinα0 0

]
,

x =

[
∆α
∆ω

]
.
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Kalman filter (3)

Question:

1. Write the dynamic equations for a parachute jumper in one dimension (only
the height co-ordinate z). The gravity acceleration g is a constant, the braking
acceleration caused by air drag is proportional to the velocity of falling and the
air density, which can be described by the formula

ρ = ρ0e
−z/σ

(the constant σ is the scale height of the atmosphere, ρ0 is air density at sea
level).

2. A reflective tag is attached to the jumper in order to obtain measurements.
A tacheometer on the ground measures the distance to this reflector. The
horizontal distance between tacheometer and touch-down point is given. The
jumper comes down vertically, there is no wind.

Write the observational model.

Answer:

1. The dynamic model is (k a constant5):

d2

dt2
z = −g + kżρ+ n = −g + kżρ0e

−z/σ + n.

Define the state vector as
[
z ż

]T
and obtain as the dynamic model (first

order differential equations):

d

dt

[
z
ż

]
=

[
ż

−g + kżρ0e
−z/σ

]
+

[
0
n

]
.

This is non-linear; if we write[
z
ż

]
=

[
z0

ż0

]
+

[
∆z
∆ż

]
,

where (completely computable if initial conditions are given)

d

dt

[
z0

ż0

]
=

[
ż0

−g + kρ0ż0e
−z0/σ

]
,

we obtain (remember that (linearization) ∆
(
że−z/σ

)
≈ − ż

σ
e−z/σ∆z+e−z/σ∆ż):

d

dt

[
∆z
∆ż

]
≈

[
∆ż

−kρ0
σ
ż0e
−z0/σ∆z + kρ0e

−z0σ∆ż

]
+

[
0
n

]
=

=

[
0 1

−kρ0
σ
ż0e
−z0/σ kρ0e

−z0σ

] [
∆z
∆ż

]
+

[
0
n

]
,

the linearized version of the dynamic model.
5A negative constant, because ż is negative as well when z grows upward.
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2. Let the horizontal distance between the touch-down point of the parachutist
and the tacheometer be `. Then the measured distance is

s =
√
`2 + z2

and the observation equation

s =
√
`2 + z2 +m.

Linearization (s = s0 + ∆s where s0 =
√
`2 + z2

0) yields

∆s =
z0

s0

∆z +m =
[

z0
s0

0
] [ ∆z

∆ż

]
+m.



5
Inertial navigation

5.1 Principle

In inertial navigation, the following quantities are measured continuously:

1. the three-dimensional acceleration of the object (vehicle):

d2x′ (t)

dt2
=


d2x′(t)
dt2

d2y′(t)
dt2

d2z′(t)
dt2

 ;

here x′ ≡
[
x′ (t) y′ (t) z′ (t)

]T
is the object’s three dimensional coordinates in

the object coordinate system.

2. The attitude of the vehicle:

R = R3 (α3)R2 (α2)R1 (α1) =

 cosα3 sinα3 0
− sinα3 cosα3 0

0 0 1

 cosα2 0 − sinα2

0 1 0
sinα2 0 cosα2

 1 0 0
0 cosα1 sinα1

0 − sinα1 cosα1



=

 cosα2 cosα3 cosα1 sinα3 + sinα1 sinα2 cosα3 sinα1 sinα3 − cosα1 sinα2 cosα3

− cosα2 sinα3 cosα1 cosα3 − sinα1 sinα2 sinα3 sinα1 cosα3 + cosα1 sinα2 sinα3

sinα2 − sinα1 cosα2 cosα1 cosα2

 ,
so the transformation matrix between the global and object coordinates is:

x′ (t0) = R (t0) x (t0) ,

at the moment of beginning of the journey t0, where x and x′ are global (often inertial) and
object coordinates, respectively. The attitude is described by three unknowns, αi (t) , i =
1, . . . , 3, that are functions of time and vary with the movements of the vehicle.

47
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Before the journey begins, the matrix R(t0), or equivalently, the attitude angles
αi (t0) , i = 1, . . . , 3, have to be determined with sufficient accuracy. During the jour-

ney the attitude changes
dαi
dt

are measured with the help of three gyroscopes as discussed

later, and are integrated in order to obtain the instantaneous position α(t), and thus R(t).

Generally one measures continuously six parameters, three linear accelerations and three
angular velocities.

Now the data processing unit of the inertial device integrates the accelerations a =[
d2x
dt2

d2y
dt2

d2z
dt2

]T
after the transformation

a = R−1a′

in three dimensions, and twice. The first integration produces the object’s (vehicle’s)
velocity vector, the second the position of the object.

As follows:

x (t) = x (t0) +

ˆ t

t0

[
v (t0) +

ˆ θ

t0

a (τ) dτ

]
dθ, (5.1)

where x (t0) and v (t0) are integration constants.

As shown in the formula (5.1) the accuracy of position x (t) gets progressively poorer with
time, because the acceleration measurements a (τ) are imprecise and the error in them
accumulates through integration. This accumulation happens even twice, because there
are two integrals inside each other.

An often used trick to preserve the precision of inertial navigation is to halt regularly
(“zero velocity update”). Then we obtain v (t1) = 0, t1 > t0 and the inner (velocity)
integral starts again from a known starting value.

5.2 Parts of a inertial device

An inertial device contains the following measuring parts:

1. Gyroscopes

2. Accelerometers

Gyroscope

A gyroscope is a rapidly spinning flywheel that tries not to change its axis of rotation.
We can write the Euler equation as follows:

N =
dL

dt
= J

d−→ω
dt

, (5.2)

where
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Frame

Rotor

Axis

Gimbal

Figure 5.1: A gyroscope. On the right, a ring-laser gyro used in aviation. Wikipedia

N torque

L angular momentum

−→ω angular velocity

J Inertial tensor: J ≡

 Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz


(a 3× 3 sized matrix! This matrix is symmetric and positive definite.)

The faster the gyroscope rotates, the more torque is needed to turn its axis of revolution.

Building a good gyroscope is a difficult engineering art. A gyroscope consists of a wheel
and an axis that is mounted in bearings on both ends onto a frame, also called table,
surrounding the wheel.

The above equation (5.2) can be remembered by analogy to the Newtonian Second Law
of Motion:

F =
d

dt
p = m

dv

dt
,

where F is the (linear) force and v is the (linear) velocity. p = mv is the momentum or
amount of (linear) motion. m, the mass, corresponds to the inertial tensor J above, but
is in this case a scalar. We assume all the time (which is natural for a flywheel, but not,
e.g., for the whole Earth, which may change shape) that J (and m) is a constant.
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The inertial tensor J of an object can be computed:

Jxx =

˚
ρ (x, y, z)

(
y2 + z2

)
dxdydz,

Jyy =

˚
ρ (x, y, z)

(
x2 + z2

)
dxdydz,

Jzz =

˚
ρ (x, y, z)

(
x2 + y2

)
dxdydz,

Jxy = −
˚

ρ (x, y, z)xydxdydz,

Jxz = −
˚

ρ (x, y, z)xzdxdydz,

Jyz = −
˚

ρ (x, y, z) yzdxdydz.

The result obviously depends on the choice of co-ordinate system (x, y, z). The origin has
a large influence: by choosing it to lie far outside the object, we can make the elements
of J arbitrarily large! Therefore, when talking about the inertial tensor of an object, we
always choose the origin in the centre of mass:

xcom =

˚
ρ (x) xdV,

or

xcom =

˚
ρ (x, y, z)xdxdydz,

ycom =

˚
ρ (x, y, z) ydxdydz,

zcom =

˚
ρ (x, y, z) zdxdydz,

after which we use in the computations

x′ = x− xcom.

As for the axes orientation, it is well known that a symmetric matrix can always be rotated
– i.e., a co-ordinate system transformation – to main axes. In this case the inertial tensor
assumes the diagonal form

J =

 J1 0 0
0 J2 0
0 0 J3

 .
The Ji are called the moments of inertia.
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x (J1)

h

R

y (J2)

z (J3)

Figure 5.2: A gyro wheel and its moments of inertia

For a cylinder of radius R, one can show that the moment of inertia about the axis of the
cylinder is

J3 =

ˆ h

0

¨
ympyrä

ρ
(
x2 + y2

)
dxdy dz

= 2πhρ ·
¨

ympyrä
r2 rdr =

=
1

2
πρhR4 =

1

2
MR2, (5.3)

where M = ρ · πR2 · h is the total mass. For a flat cilinder (h, and thus z, are small) we
may also calculate

J1 =

ˆ h/2

−h/2

ˆ +R

−R

ˆ +
√
R2−x2

−
√
R2−x2

ρ
(
y2 + z2

)
dydxdz ≈

≈
ˆ h/2

−h/2

ˆ +R

−R

ˆ +
√
R2−x2

−
√
R2−x2

ρy2dydxdz =

=
hρ

3

ˆ +R

−R

[(
R2 − x2

) 3
2 +

(
R2 − x2

) 3
2

]
dx =

=
2hρ

3

ˆ +R

−R

(
R2 − x2

) 3
2 dx =

=
2hρ

3

[
x
(
5R2 − 2x2

)√
R2 − x2 +

3

8
R4 arctan

x√
R2 − x2

]+R

−R
=

=
1

4
hρ ·R4

[π
2

+
π

2

]
=

1

4

(
πρhR2

)
R2 =

1

4
MR2. (5.4)

Also of course J2 = J1 = 1
4
MR2 = 1

2
J3.

Accelerometer

A primitive accelerometer can easily be built by combining a spring, a scale and test mass.
The stretching of the spring is proportional to the test mass, and the acceleration can be
read from the scale.
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a

Figure 5.3: Accelerometer principle
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Figure 5.4: Pendulous accelerometer

Automatic read-out is possible, e.g., capacitively or with the aid of a piezo-sensor1.

The accelerometers are attached to the same frame in which also the gyroscopes are
suspended. The measurement axes are made as parallel as possible.

Modern accelerometers are very sensitive, e.g., 10 ppm. If they are based on the elasticity
of matter, they demand careful, regular calibration. They age (so called drift). Desirable
traits, besides sensitivity, are linearityand good behaviour under circumstances of large
variations of acceleration, or vibration(missile launch!)

An alternative type of accelerometer is the so-called pendulous type. Here, a mass is
attached excentrically to a beam. Acceleration makes the beam deflect, which is sensed
by a sensor. The signal goes to an actuator on the pendulum’s axis, which restores the
deflection to zero. It is thus a nulling sensor, which is necessary to guarantee linear
behaviour. Pendulous accelerometers are used in the highest precision devices. They do
not suffer from drift.

Because of the strategic importance of inertial navigation (missiles), good accelerometers,
like good gyroscopes, were long hard to obtain and expensive. Nowadays the situation is
better.

5.3 Implementation

There are two, very different, general approaches for implementing an inertial measure-
ment unit:

1In fact, micromechanical acceleration sensors (MEMS) work in precisely this way.
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Figure 5.5: Sagnac-interferometer

1. Strapdown solution

2. Stabilized platform solution

Strapdown solution

In a Strapdown solution the gyroscope platform is rigidly connected to the vehicle’s body.
When the vehicle turns, the ends of the axes of the gyroscope push against its frame with
a force that is accurately measured with a force sensor. From the force F we obtain the
torque N with the following formula:

N = F ∧
−→
` ,

where
−→
` is the length of the gyroscope’s axis as a vector: “torque is force times arm”.

The symbol ∧ is the exterior vector product.

An alternative solution is to use a so called ring laser gyroscope that is based on the
interference of light (the Sagnac phenomenon, 1913). In the device monochromatic laser
light travels in a ring in two opposite directions. Without rotation, the light forms a
“standing wave” where the nodes don’t move. However, even a small rotation will cause
the nodes to move to the opposite direction relative to the ring. The simplest way to build
a ring laser is to use stationary mirrors; nowadays often a long optical fibre is used that
is wound around the ring thousands of times. So the effect multiplies many thousands of
times and the sensitivity improves. Nowadays the sensitivity can be as high as 0.00001
degrees per hour. (http://www.mathpages.com/rr/s2-07/2-07.htm).

http://www.mathpages.com/rr/s2-07/2-07.htm
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Stabilized platform -solution

In this solution the whole gyroscope system is suspended inside a three-axis, freely turning
cardanic ring system. Because of this, although the attitude of the vehicle changes, the
gyroscopic frame (gyroscope table) retains its position in (inertial) space.

In practice one often uses instead of an inertial reference frame, a local frame connected
to the solid Earth. One tries to keep the three axes of the gyroscope aligned with the
topocentric axes triad:

1. North direction x

2. East direction y

3. Up direction z

To achieve this goal, appropriate torques are applied to the frame of the gyroscope with
the help of torquers. The needed torques can be calculated anologically or digitally in
connection with solving for the position of the device.

5.4 Inertial navigation in the system of the solid

Earth

Cf. Cooper [1987] p. 104-107 (a slightly different approach)

Earth rotation

We can write the vector of place in inertial space as a function of the vector of place in a
co-ordinate system co-rotating with the Earth, as follows:

xi = R (θ) x,

where θ is the sidereal time. Its time derivative ω = θ̇ is the angular velocity of the
Earth’s rotation. The matrix

R (θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
For the velocity we find by differentiation:

vi = R (θ) v + Ṙ (θ) x =

=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

v +

 − sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

 dθ
dt

 x
y
z

 =

= R (θ) v +R (θ) 〈−→ω ∧ x〉 ,
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if we define2

−→ω ≡ dθ

dt

 0
0
1

 .
By suitably choosing t = θ = 0, we get

vi = v +−→ω ∧ x.

By repeating the differentiation we obtain the accelerations:

ai = R (θ) a + Ṙ (θ) v +
d

dt
{R (θ) 〈−→ω ∧ x〉} =

= R (θ) a +R (θ) 〈−→ω ∧ v〉+
(
R (θ) 〈−→ω ∧ v〉+ Ṙ (θ) 〈−→ω ∧ x〉

)
=

= R (θ) {a + 2 〈−→ω ∧ v〉+ 〈−→ω ∧ 〈−→ω ∧ x〉〉} .

By putting again θ = 0 we find

ai = a + 2 〈−→ω ∧ v〉+ 〈−→ω ∧ 〈−→ω ∧ x〉〉 .

Acceleration

The problem is that on the rotating Earth the before mentioned three-dimensional coor-
dinate system (x, y, z) is not inertial. We can write:

ai = a + 2 〈−→ω ∧ v〉+ 〈−→ω ∧ 〈−→ω ∧ x〉〉 ,

where

2. . . because for an arbitrary vector x

Ṙ (θ)x =

 − sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

 dθ
dt

 x
y
z

 =
dθ

dt

 −x sin θ − y cos θ
x cos θ − y sin θ

0


and also

R (θ) 〈−→ω ∧ x〉 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 0

0
ω

 ∧
 x
y
z

 =

=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 −ωyωx
0

 =

= ω

 −x sin θ − y cos θ
x cos θ − y sin θ

0

 ,
in other words, the same result. Thus we can conclude:

The effect of rotational motion on the time derivative of a vector can be presented as the
cross product of the rotation vector −→ω with this vector.
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ai acceleration in inertial system

a acceleration relative to the Earth’s surface, in other words, in an Earth-fixed,
“co-rotating” system

−→ω Earth’s rotation vector (constant)

v velocity in the Earth-fixed system

x the geocentric location of the vehicle

In the above formula the second term on the right side is the so called Coriolis-force and
the third term is the centrifugal force.

Fundamental formula of inertia navigation

Linear accelerometers measure in general the combined effect of the acceleration of the
vehicle and the local gravitation. In other words, the measured acceleration is

t = a + 2 〈−→ω ∧ v〉+ 〈−→ω ∧ 〈−→ω ∧ x〉〉 − gi (x) , (5.5)

where

t measured acceleration vector (three components)

gi gravitational acceleration as the function of place x.

It is often assumed that g can be calculated straight from Newton’s gravitation formula:

gi ≈ −GM
x

‖x‖3 ,

but also more complex models are used, such as the normal field of an ellipsoid of revo-
lution (where the Earth’s oblateness and the influence of its rotation are included) and
even very detailed Earth gravitational field models, such as EGM96 (Earth Gravity Model
1996).

Often we write still
g ≡ gi − 〈−→ω ∧ 〈−→ω ∧ x〉〉 ,

where g is the gravity vector, the resultant of gravitation and centrifugal force. Then

t = a + 2 〈−→ω ∧ v〉 − g (x) . (5.6)

With the help of the formula (5.6) we can compute from the acceleration measurements t
and place x and velocity v (dynamically, “on the fly”) the acceleration a in the Earth-fixed
system, and after that integrating first v, and then x, both also in the Earth-fixed system.
Formulas (5.5, 5.6) are both referred to as the fundamental formula of inertial navigation.

Note that in the Earth-fixed system, the Earth’s rotation causes a slow turning in the
East-West direction of the vector of gravity sensed by the accelerometers, relative to the
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Figure 5.6: The principle of a stable table. The driving signal produces a precessional
motion that keeps the gyro’s axis within the horizon plane

inertial directions defined by the gyros, even though the vehicle is standing still on the
ground. This phenomenon may be used to orient the gyroscope frame correctly relative
to the local North direction (or equivalently, to solve the local North direction in the
gyroscope frame’s system!) before, e.g., the take-off of an aeroplane or launch of a missile.
On the other hand, the accelerometers give right away the direction of local gravity, the
vertical. Together, the two directions are enough to orient the whole frame – except on
the North or South pole.

5.5 Stable table with one axis

Let us first look at the stable table, i.e., a gyroscope that is attached to a frame, which
is kept aligned with the local horizon. In the stable table solution one uses a feedback
loop to control the gyroscope axis’ direction so that it, and the inner ring it is mounted
in, remain in the horizontal plane. This happens in such a way that trying to rotate the
gyroscope frame in the horizontal plane (around the vertical axis) causes the gyroscope
to precess. The rotational axis of the gyroscope turns up- or downwards. The stable table
requires a suitable sensor that detects that the gyro’s axis is out of the horizontal plane
(angle θ), which sends a signal through the feedback loop to the motor, or actuator, of
the vertical axis (cf. picture 5.6). More about this later.
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We write as a formula, that the torque about the vertical axis is made proportional to
the sensed axis deviation θ from the horizontal plane. Then the change of θ with time is

dθ

dt
= −k1θ

i.e.

θ (t) = θ (t0) e−k1(t−t0),

in other words, the deviation goes to zero exponentially. By tuning the constant of
feedback (or equivalently the constant k1 in the formula) we can make this happen with
suitable speed.

5.6 The gyro compass

The feedback loop visible in the gyrocompass picture again makes use of Earth rotation.
Because the Earth rotates around its axis, the horizontal plane is tilting all the time. The
Eastern horizon sinks, the Western rises. A freely suspended, spinning gyroscope, which
initially was in the horizontal plane, wouldn’t be any more after an elapse of time.

If the rotational velocity of the Earth is ω, then the time derivative of the angle θ will be,
because of this phenomenon,

dθ

dt
= ω cosϕ sinα,

where ϕ is the latitude and α the azimuth of the gyroscope axis.

The feedback loop takes from the sensor the angle θ’s time derivative and feeds it, after
suitable amplification, into the actuator. As it tries to turn the gyroscope’s axis toward
the vertical direction, the end effect will be precession about the vertical axis: α changes.
We write the formula

dα

dt
= −k2

dθ

dt
= −k2 ω cosϕ sinα.

If α is small enough, we have sinα ≈ α and the solution is

α (t) ≈ α (t0) e−k2ω cosϕ(t−t0).

I.e., α goes exponentially to zero and the gyroscope axis to the North. Thus we have
invented the gyro compass. Of course this assumes that the table remains horizontal and
that the whole device stays in the same spot (or in practice moves only slowly, e.g., a
ship.)

Another way to build a working gyrocompass uses θ itself rather than its time derivative;
if we write

dα

dt
= −k3θ,

we obtain by differentiation

d2α

dt2
= −k3

dθ

dt
= −k3 ω cosϕ sinα ≈ −k3 ω cosϕ · α.
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Figure 5.7: The principle of the gyro compass. The feedback loop produces a preces-
sional motion that makes the gyro’s axis turn to the North

This is a harmonic oscillator, some of the solutions of which are

α (t) = cos
(
t
√
k3 ω cosϕ

)
,

α (t) = sin
(
t
√
k3 ω cosϕ

)
.

Unfortunately these solutions are periodic and do not converge to the North direction
(α = 0). The best solution is obtained by combining θ and dθ

dt
in the following way:

d2α

dt2
= −k2 ω cosϕ

dα

dt
− k3 ω cosϕ · α,

leading to the following differential equation

d2α

dt2
+ ω cosϕ

[
k2
dα

dt
+ k3α

]
= 0.

This is a general second order ordinary differential equation. Depending on the coeffi-
cients k2 and k3, it will have periodic, exponentially (over-)damped and critically damped
solutions3. The last mentioned is the best for a functioning compass.

3Cf. https://en.wikipedia.org/wiki/Damping.

https://en.wikipedia.org/wiki/Damping
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If we write the inverse of the oscillation time τ =
√
k3 ω cosϕ, and

k2 =
2τ

ω cosϕ
,

we obtain
d2α

dt2
+ 2τ

dα

dt
+ τ 2 = 0

and the general solution in this case is

α (t) = (a+ bt) e−τt,

where a and b are arbitrary constants (given by the initial conditions).

Often k3 (the harmonic restoration coefficient) is implemented by attaching rigidly a semi-
ring to the inner ring of the gyroscope, which extends downward and to which a weight is
attached. This tries then to pull the rotation axis of the gyroscope back to the horizontal
plane. k2 (the damping factor) again is implemented traditionally by using a viscous fluid
in the bearings of the inner ring.

5.7 Schuler pendulum

Principle

A Schuler 4 pendulum is a pendulum, the length of which is the same as the Earth’s radius
R = 6378 km. If that kind of pendulum was physically possible, for example as a mass
at the end of a long rod, its period would be (in a one-g gravity field!)

TS = 2π

√
R

g
,

where g is gravity on the Earth’s surface.

“By coincidence” this period, TS = 84.4 min, is the same as the orbital period of an Earth
satellite near the Earth surface.

Although it is impossible to build a pendulum this long, it is very well possible to build a
pendulum with a period of TS. For example an extended object suspended from a point
very close to its centre of mass.

Let the length of a simple pendulum (i.e., a test mass on the end of a massless bar) be `.
If the pendulum swings out of the vertical by an angle θ then the back pulling force will
be

F = −mg sin θ,

and as its mass is m, it follows that the acceleration is

d2`θ

dt2
= −mg sin θ

m
⇒ d2θ

dt2
≈ −g

`
θ,

4Max Schuler (1882–1972), saksalainen insinööri, https://en.wikipedia.org/wiki/Max_Schuler

https://en.wikipedia.org/wiki/Max_Schuler
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Figure 5.8: Schuler response loop

the oscillation equation, of which one solution is

θ (t) = sin

(
t

√
g

`

)
,

from which it follows that the period is

T = 2π

√
`

g
.

The pendulum on a carriage

If this pendulum is put on a carriage that accelerates linearly in the horizontal direction
with an acceleration a, the test mass will, in the system of the carriage, experience a
equally large but oppositely directed acceleration −a. Because the length of the pendulum
is `, it follows that the angular acceleration is

d2θ

dt2
=
a

`
,
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x

α = θ

θ

a
v

Figure 5.9: One-dimensional carriage with a Schuler pendulum on the curved Earth
surface

and after a certain time ∆t the reached angular deviation is

θ =
1

2

a

`
∆t2. (5.7)

The distance that the carriage has travelled after this same time is

s =
1

2
a∆t2

and this distance expressed as an angle viewed from the centre of the Earth is

α =
1

2

a

R
∆t2. (5.8)

By comparing the formulas (5.7) and (5.8) we can see that if ` = R, then α = θ. So,

Even though the carriage moves in a horizontal direction, the pen-
dulum points all the time to the centre of the Earth.

This is the so called Schuler pendulum’s essential property.

Implementation in an inertial device

In a stabilized-platform inertial device feedback loops (Schuler loop) are implemented that
make the whole gyroscope frame act like a Schuler pendulum. Every time the frame turns
out of the horizontal level, the accelerometers of the horizontal directions (x, y) measure
the projection of gravity g onto the tilting plane, and send correcting impulses to the
corresponding gyroscope frame’s actuators. This is how the frame always tracks the local
horizontal level.



5.7. Schuler pendulum 63

According to the pendulum formula

d2

dt2
θ =

a

`
, (5.9)

where a is the accelerometer’s measured acceleration in the x direction.

We may write geometrically for the deviation of the gyro spin axis out of the horizontal
plane θ

dθ

dt
=

d

dt

(ωz
ω̃

)
=

1

ω̃

d

dt
ωz.

The angular acceleration is now

d2

dt2
θ =

1

ω̃

d

dt

d

dt
ωz, (5.10)

the acceleration of turning the rotational velocity vector of the gyroscope5 ω̃ in the z
direction.

Now substituting Eq. (5.9) into Eq. (5.10) and integration yields

d

dt
ωz =

ω̃

`

ˆ
adt.

Using Euler’s equation

According to Euler’s formula (5.2)

N = J
d−→ω
dt

,

where J is the inertial tensor; due to the symmetry of the gyro wheel, it is (in the standard
orientation) a diagonal matrix:

J =

 Jxx 0 0
0 Jyy 0
0 0 Jzz

 ,
where Jyy = Jzz ≈ 1

2
Jxx for a thin circular disk (cf. Eqs. 5.3, 5.4). Then the third Euler

equation is

Nz = Jzz
dωz
dt

= Jzz
ω̃

`

ˆ
adt,

where Jzz is the gyro wheel’s moment of inertia around its z axis, and Nz the needed
torque around the z axis (cf. figure 5.8). Now

Nz = Jzzω̃

ˆ
a

`
dt ≈ L̃

R

ˆ
adt, (5.11)

where R is the radius of the Earth, approximately 6378 km, and L̃ = Jzzω̃ is a quantity
of dimension “angular momentum”, formula (5.2).

5Here we talk about the spinning of the gyrocope, not the Earth!
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According to formula (5.11) the Schuler loop is implemented either on the hardware-level

(older equipment; the factor
L̃

R
is a device constant, and integration is done by hardware),

or in the software of an inertial device. There are always two Schuler-loops, one for the x
direction and one for the y direction.

5.8 Mechanisation

Cf., e.g., http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/kalman_V2.pdf, http:
//www.frc.ri.cmu.edu/~alonzo/pubs/reports/nav.pdf.

Because a real life inertial device is quite a lot more complicated than simple principles,
the modelling of the behaviour of all the parts is to be done carefully. This model is called
the mechanisation of the inertial device.

As a simple example of mechanisation is treated a one dimensional carriage on the surface
of a spherical Earth. Cf. figure 5.9.

First it can be pointed out that according to the definition, the velocity is

dx

dt
= v.

Acceleration is measured continuously by an acceleration sensor; the measured value is
a (t). However this measured quantity (function of time) consists of two parts,

1. the geometric acceleration
d2x

dt2
=
dv

dt
, and

2. the component of gravity projected onto the accelerometer’s axis, θg, where θ (t) is
the angle of tilt of the carriage from the local vertical.

The final outcome is
dv

dt
= a− θg,

or (remember that a differential equation is a statement on the properties of functions):

dv (t)

dt
= a (t)− θ (t) g,

where the quantity a (t) is the result of a continuous measurement process.

Finally we treat the Schuler loop. The angle of deflection θ behaves like a Schuler pendu-
lum and tries to revert to zero according to the following formula:

d2θ

dt2
= − g

R
θ. (5.12)

Let’s determine the approximate values (functions of time) x0 (t) , v0 (t) , θ0 (t) ≡ 0, and
∆x = x− x0, ∆v = v − v0 (linearization). Then

dx0

dt
= v0

dv0

dt
= a

http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/kalman_V2.pdf
http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/nav.pdf
http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/nav.pdf
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(continuously measured!) and

d∆x

dt
= ∆v

d∆v

dt
= −θg.

Now into the formula (5.12) can be substituted

gθ = −d∆v

dt
,

with the result
d2θ

dt2
=

1

R

d∆v

dt
.

By integrating (leaving out one
d

dt
from each side) we obtain

dθ

dt
=

1

R
∆v,

and as the complete Kalman formula we obtain:

d

dt

 ∆x
∆v
θ

 =

 0 1 0
0 0 −g
0 1

R
0

 ∆x
∆v
θ

+

 0
na
ng

 ,
where we have added the possible noise terms na, ng of the acceleration sensor and the
gyro stabilization mechanism.

This solution works in this way, that we continuously integrate the real time approximate
values x0 (t) and v0 (t), and with the help of the Kalman filter ∆x,∆v and θ.

This is easily generalizised to two dimensions. In this way, a “navigator” may be built on
the surface of the Earth. Note that in the solution both the angle of deflection θ of the
carriage and the speed disturbance ∆v (and also the position disturbance ∆x) “oscillate”
harmonically like the Schuler pendulum6, with the period TS = 84.4 min. The height has
to be obtained in another way, for example in an airplane by means of an atmospheric
pressure sensor.

6If the angle θ has, e.g., an amplitude Aθ = 1′′ = 4.8 · 10−6 rad, it follows from formula

d∆v

dt
= −gθ,

that

. ∆v’s amplitude is A∆v = −g
√

R
g Aθ = 4 cm s−1, and

. ∆x’s amplitude is A∆x =
√

R
g A∆v = 3 km.
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5.9 Initialization of an inertial device

In all the previous theory we assume, that the Earth is a sphere and does not rotate. A
physically more realistic theory is very complicated.

Interesting is also, how one levels and orients an inertial platform. In a state of no
motion, the inertial device behaves approximately like a stable table. In this case the
accelerometers act as inclinometers and through feedback loops we make the gyroscope
axes turn into the horizontal plane.

The North orientation is obtained by using the device as a gyro compass, i.e., observing
how the local vector of gravity slowly turns about the South-North axis.

On airports one often sees a tableau giving the precise (±0′.1) geographic latitude and
longitude of the gate. This is in fact used to initialize the co-ordinates in the inertial
navigation platform used on a jetliner. Also levelling and orientation is performed while
standing at the gate.



6
Navigation and satellite orbits

The subjects of this chapter are more extensively presented in the books Poutanen [1998],
chapter 3, and Hofmann-Wellenhof et al. [1997], chapter 4. A good understanding of
satellite orbits and their geometry is needed, if the Kalman-filter is used to improve the
satellite orbit with the help of observations made in real time.

Also in the context of terrestrial GPS navigation this helps to understand how the locations
of the GPS-satellites can be calculated from the orbital elements, first in space and then
in the observer’s orb of heaven.

6.1 Kepler orbit

If it is assumed that the satellite moves in a central force field (i.e. a point-like or the
sphere-like Earth gravitational field), it follows that the satellite’s orbit is a Kepler or-
bit. Johannes Kepler (1571-1630) discovered it based on the observation material on the
orbit of Mars by Tycho Brahe (1546-1601) (http://www.cvc.org/science/kepler.htm;
http://www.glenbrook.k12.il.us/gbssci/phys/Class/circles/u6l4a.html).

As we have seen, we can describe the satellite’s motion in rectangular coordinates like
this:

d

dt
x = v;

d

dt
v = −GM

‖x‖3 x.

Here x and v are the position and velocity vectors in three-dimensional space. The

combined vector x ≡
[

x v
]T

=
[
x y z ẋ ẏ ż

]T
is the state vector of the system.

Elements of the Kepler-orbit are only an alternative way of writing the state vector. See
http://www.orbitessera.com/html/body_orbital_description.html, where is found
a good description of all the Kepler elements, as well as useful links.

Ω Right ascension of the ascending node, i.e., astronomical longitude. The zero
point of this longitude is the place on celestial sphere where the ecliptic plane
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http://www.cvc.org/science/kepler.htm
http://www.glenbrook.k12.il.us/gbssci/phys/Class/circles/u6l4a.html
http://www.orbitessera.com/html/body_orbital_description.html
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and the equatoral plane intersect, the “vernal equinox point”: the place of the
Sun at the start of spring, when it goes from the Southern hemisphere to the
Northern hemisphere.

i Inclination, the orbital plane’s tilt angle relative to the equator. The inclina-
tion of the orbital plane for the GPS-satellites is 55◦.

ω Argument of perigee. The angular distance between the ascending node and
the perigee of the satellite orbit.

a The semi-major axis of the satellite orbit.

e The eccentricity of the satellite orbit.1 − e2 = b2

a2
, where b is the semi-minor

axis.

ν, E,M The position of the satellite in its orbit as the function of time:

ν (t) true anomaly

E (t) eccentric anomaly

M (t) mean anomaly

The connections between them:

E (t) = M (t) + e sinE(t) (6.1)

tan 1
2
ν(t)

tan 1
2
E(t)

=

√
1 + e

1− e
Cf. figure 6.1. The mean anomaly M is only a linear measure of elapsed time, scaled to
the period P of the satellite and referred to the moment of its passage through the perigee
τ :

M (t) ≡ 2π
t− τ
P

.

E and ν are purely geometrical quantities.

In the figure the angle θ is the sidereal time of Greenwich, which describes the globe’s
attitude relative to the starry sky. Greenwich sidereal time consists of annual and daily
components1, that are caused by the Earth’s rotation and orbit movements, respectively.

1Greenwich sidereal time is calculated as follows:

1. Take the month value from the following table:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

6 37 8 40 10 30 12 32 14 31 16 33 18 31 20 33 22 36 0 34 2 36 4 34

2. Add to this 4 (four) minutes for every day of the month;

3. Add to this the clock time (UTC or Greenwich mean time);

If you want to compute the local time, you have to add to this the longitude East of your location
converted to time units: 15◦ = 1h, 1◦ = 4m, 15′ = 1m.

The precision of your result will be ±4m, because this table is not really constant from year to year:
it varies with the leap year cycle.
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Figure 6.1: Kepler’s orbital elements

So we have obtained an alternative way of presenting the state vector:

a =


a
e
M
i
ω
Ω


In a central force field the elements of this state vector are constants except M (t), cf.
above. In case the force field is not central, also the other orbital elements can change
slowly with time. For example the Earth’s flattening causes the slow turning of the
ascending node Ω . This kind of time dependent Kepler elements (like for example Ω (t))
are called osculating elements2.

6.2 Computing rectangular coordinates from the

orbital elements

We can calculate the satellite’s instantaneous radius

r = a (1− e cosE) =
a (1− e2)

1 + e cos ν
,

2from Latin ōsculār̄ı, to kiss
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where E can be calculated from M by iterating the formula 6.1.

The time derivative of r is

dr

dt
= ae sinE

dE

dt
;

from Eq. (6.1), the definintion of E, we get

dE

dt
=

dM

dt
+ e cosE

dE

dt
=

2π

P
+ e cosE

dE

dt
⇒

⇒ dE

dt
=

2π

P (1− e cosE)
,

yielding upon substitution

dr

dt
=

2πae sinE

P (1− e cosE)
=

2πa2e sinE

Pr
.

After that in the orbital plane [
x
y

]
= r

[
cos ν
sin ν

]
.

After this we can transform this two-dimensional vector into a three-dimensional space
vector by using the rotation angles ω, i,Ω. If we write

x =

 x
y
0

 =

 r cos ν
r sin ν

0

 ,
we get geocentrically

X =

 X
Y
Z

 = Rx,

where

R =



cos Ω cosω − cos Ω sinω sin Ω sin i
− sin Ω sinω cos i − sin Ω cosω cos i

sin Ω cosω − sin Ω sinω − cos Ω sin i
+ cos Ω sinω cos i + cos Ω cosω cos i

sinω sin i cosω sin i cos i


.

The geocentric coordinates thus obtained are in an inertial (i.e., astronomical) system.
The origin of the longitudes is the direction to the vernal equinox. In case the satellite’s
coordinates are sought in a system co-rotating with the Earth (the origin of longitudes
being Greenwich) we calculate

` = Ω− θ0,

where θ0 is Greenwich sidereal time, and put in the matrix formula above ` instead of Ω.
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The velocity vector is obtained by differentiating with respect to time:

d

dt
x =

 −r sin ν
r cos ν

0

 dν

dM

dM

dt
+
dr

dt

 cos ν
sin ν

0


=

2π

P

 −r sin ν
r cos ν

0

 dν

dM
+

2πae sinE

P (1− e cosE)

 cos ν
sin ν

0

;

finding the derivative dν
dM

is left as a (hard) exercise, and note, that in case of a circular
orbit M = ν i.e., dν

dM
= 1.

6.3 Exercises

Kepler orbit

1. The Kepler state vector’s dynamic model. Assuming that the force field is central,
write explicitly the following dynamic model equation:

d

dt
∆a = F ·∆a,

where a =
[
a e M i ω Ω

]T
. For this you need to linearize: the delta quan-

tities are referred to suitable approximate values. You also need Kepler’s third law :

GM · P 2 = 4π2a3.

2. Due to flattening of the Earth, the ascending node’s right ascension Ω changes slowly
according to the following formula (circular orbit assumed, e ≈ 0):

Ω̇ = −3

2

√
GM

a3

(ae
a

)2

J2 cos i.

ae is the equatorial radius of the Earth J2 the so called dynamic flattening (a di-
mensionless number).

How does this affect the above matrix F?

3. [Difficult.] How does one transform a rectangular state vector x into a Kepler vector
a and the reverse? In other words, we want in the following equation

x = Aa

the matrix A written out in components (Linearization!). For simplicity assume
that e is small.

Hint : write first x as a function of a and calculate the partial derivatives.



72 Navigation and satellite orbits

4. In a central force field, if we write

x (t1) = Φ1
0x (t0) ,

find the matrix Φ1
0 approximately (series expansion), if ∆t = t1−t0 is small. (Consult

the literature.)

5. Observation station. How does one model the station’s three-dimensional trajectory[
X (t) Y (t) Z (t)

]T
in space as a result of the Earth’s rotation? Assuming that the Earth’s rotation is
uniform and the place of the station fixed, write a dynamic model for the station
co-ordinates.

6. Write the observation equations for the case, where we measure from the ground sta-
tion the distance using a laser range finder. In other words, write the observational
quantity as a function of the elements of the state vector x, and linearize.

7. Write the observation equations for the case of GPS, where the observation quantity
is the pseudo-range (pseudorandom code measurement) to the satellite. What new
problem comes up?

8. What new problem comes up in the case, that the observational quantity is the
carrier phase?



7
Use of Hill co-ordinates

The Hill co-ordinate frame was invented by George W. Hill1 in connection with the study
of the motion of the Moon. The idea is to describe the motion, instead of in an inertial co-
ordinate system (x, y, z) centred on the centre of motion (i.e., the Sun), in a co-rotating,
non-inertial frame (u, v, w), the origin of which is centred on the Earth and which rotates
at the same mean rate as the Earth, i.e., one rotation per year. As the distance of the
Moon from the Earth is only 0.3% of that between Earth and Sun, the mathematics of at
least the Solar influence can be effectively linearized.

A modification of the method models the motion of an Earth satellite relative to a fictitious

1George William Hill (1838-1914) was an American astronomer and mathematician who studied the
three-body problem. Lunar motion is a classical three-body problem where the effects of Earth and Sun
are of similar magnitude.

y′

v

u

θ

z

w

y

x
x′

u0

Figure 7.1: Hill co-ordinate frame
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point orbiting the Earth in a circular orbit with the same period as the satellite. This
approach has been fruitful for studying orbital perturbations and the rendez-vous problem.

Write
u = Rx− u0

where u =
[
u v w

]T
, x =

[
x y z

]T
, u0 =

[
r0 0 0

]T
and the rotation matrix

R =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
x is in the inertial system, u is in the system co-rotating with the satellite; the u axis
points outward (“upward”), the v axis forward in the direction of flight, and the w axis
(i.e., the z axis) perpendicularly out of the orbital plane to “port”.

The satellite moves at constant velocity in a circular orbit: the angular velocity in ac-
cording to Kepler’s third law

n =
dθ

dt
=

√
GM

r3
0

.

r0 is the orbital radius and also the distance of the (u, v, w) system’s origin from that of
the (x, y, z) system.

We can invert the above formula as

x = R−1 (u + u0) = RT (u + u0) ,

because for an orthogonal matrix RRT = I ⇔ R−1 = RT .

7.1 Transformation from inertial system to Hill

system

Derive formulas for the vector x and the matrix R’s first and second derivatives and
substitute. After that, multiply both sides of the equation with the matrix R.

We obtain by differentiation (product rule):

ẋ = ṘT (u + u0) +RT u̇,

ẍ = R̈T (u + u0) + 2ṘT u̇ +RT ü.

Here the derivatives of matrix R are (chain rule):

Ṙ =
dR

dt
=
dR

dθ

dθ

dt
=

 − sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

n
and

R̈ =
d2R

dθ2

(
dθ

dt

)2

=

 − cos θ sin θ 0
− sin θ − cos θ 0

0 0 0

n2.
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Substitution yields:

 ẍ
ÿ
z̈

 =

 − cos θ − sin θ 0
sin θ − cos θ 0

0 0 0

n2

 u+ r0

v
w

+

+ 2

 − sin θ cos θ 0
− cos θ − sin θ 0

0 0 0

n
 u̇
v̇
ẇ

+

+

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ü
v̈
ẅ

 .
By multiplying from the left with the R matrix we obtain2:

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ẍ
ÿ
z̈

 =

 −1 0 0
0 −1 0
0 0 0

n2

 u+ r0

v
w

+

+ 2

 0 1 0
−1 0 0
0 0 0

n
 u̇
v̇
ẇ

+

 ü
v̈
ẅ

 . (7.1)

7.2 Series expansion for a central force field

The formula for a central force field in the (x, y, z) system is

ẍ = −GM
‖x‖3 x,

i.e., (multiplying from the left by the R matrix): cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ẍ
ÿ
z̈

 = −GM
‖x‖3

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
z

 =

= −GM
‖x‖3

 u+ r0

v
w

 = −GM
‖x‖3 (u + u0) ,

2Sometimes we use the notation α
β
γ

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
z

 =

 u+ r0

v
w

 .
This is a co-ordinate system with the same origin as (x, y, z) , but whose (α, β) axes turn with
the satellite and remain in the same direction as the axes (u, v).
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where

‖x‖ =
√
x2 + y2 + z2 = ‖u + u0‖ =

√
(u+ r0)2 + v2 + w2.

The Taylor expansion about the origin of the (u, v, w) system now yields cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ẍ
ÿ
z̈

 = −GM
r3

0

u0 +M · u =

= −GM
r3

0

 r0

0
0

+M ·

 u
v
w

 ,
where the gravity gradient matrix M consists of the partial derivatives:

M =
[

∂
∂u

∂
∂v

∂
∂w

] −GM
‖x‖3

 u+ r0

v
w

∣∣∣∣∣∣
u,v,w=0

=

= −GM
r30

 −2 0 0
0 1 0
0 0 1


(see eq. (3.5) applied to the situation x = r0, y = 0, z = 0), and

GM

r3
0

= n2

according to Kepler III.

By combining we obtain cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ẍ
ÿ
z̈

 = −n2


 r0

0
0

+

 −2 0 0
0 1 0
0 0 1

 u
v
w

 . (7.2)

7.3 Equations of motion in the Hill system

By combining the equations (7.1) and (7.2) we obtain the result (in the absence of external
forces)

0 = n2


 r0

0
0

+

 −2 0 0
0 1 0
0 0 1

 u
v
w

+

+

 −1 0 0
0 −1 0
0 0 0

n2

 u+ r0

v
w

+

+ 2

 0 1 0
−1 0 0
0 0 0

n
 u̇
v̇
ẇ

+

 ü
v̈
ẅ

 .
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Simplifying

0 = n2

 −3 0 0
0 0 0
0 0 1

 u
v
w

+ 2

 0 1 0
−1 0 0
0 0 0

n
 u̇
v̇
ẇ

+

 ü
v̈
ẅ

 .
As the end result, by extracting separately the equations for the u, v and w components3:

ü = 2nv̇ + 3n2u

v̈ = −2nu̇

ẅ = −n2w

where the last is a classical harmonic oscillator.

7.4 Solving the Hill equations

Skip over this at first reading; complicated math.

w equation

We attempt first the easiest equation, the third one:

ẅ = −n2w.

Let us first try the general periodic solution,

w (t) = A sin (Bt+ C) .

Substitution yields

A ·B2 · − sin (Bt+ C) = −n2 · A sin (Bt+ C) ,

from which we conclude that
B = ±n.

Thus the solution is
w (t) = A sin (±nt+ C) ,

where A,C are arbitrary constants. The sine decomposition formula

sin (±nt+ C) = sin (±nt) cosC + cos (±nt) sinC

yields (show)
w (t) = A1 sinnt+ A2 cosnt,

where A1 = ±A cosC and A2 = A sinC, again arbitrary constants.

3We can spot here the pseudo-forces occurring in a rotating co-ordinate frame, the centrifugal contri-
butions (slightly hidden) n2u and n2v, dependent upon place only, and the Coriolis terms 2nv̇ and −2nu̇
which are velocity dependent.
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u, v equations

ü = 2nv̇ + 3n2u

v̈ = −2nu̇

These are to be solved together. Let’s try again a periodic solution:

u (t) = A sinnt+B cosnt,

v (t) = C sinnt+D cosnt.

Substitution yields

−n2 (A sinnt+B cosnt) = 2n2 (C cosnt−D sinnt) + 3n2 (A sinnt+B cosnt)

−n2 (C sinnt+D cosnt) = −2n · n (A cosnt−B sinnt)

Consider now the sine and cosine terms separately and express C and D into A and B.

We find the general solution

u (t) = A sinnt+B cosnt,

v (t) = −2B sinnt+ 2A cosnt.

In matrix form: [
u (t)
v (t)

]
=

[
A B
−2B 2A

] [
sinnt
cosnt

]
.

This solution we call the libration movement, a periodic movement, the centre of which
is the origin u = v = 0. In fact, the satellite describes a Kepler orbit that is elliptical,
although the period is the same as that of the Hill system, 2π/n.

7.5 Another solution

This isn’t however end of story. Let’s try for a change a linear non-periodic solution:

u (t) = Et+ F,

v (t) = Gt+H.

Substitute this into the original differential equation set and express E and G into F and
H.

0 = 2nG+ 3n2 (Et+ F )

0 = −2nE

from which

E = 0,

G = −3

2
nF.
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Libration
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Hill
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v Orbital
motion

Figure 7.2: Libration

We obtain as the solution

u (t) = F,

v (t) = −3

2
Fnt+H,

F and H arbitrary constants. This represents an orbital motion with a period different
from 2π

n
. The orbital radius is r0 + F , the orbit’s angular velocity n− 3

2
Fn (Kepler III!)

and the satellite is at the moment t = 0 in its orbit ahead of the origin of the (u, v, w)
system by an amount H.

Combining solutions

Because the system of differential equations is linear, we may freely combine the above
periodic and linear solutions.

7.6 The state transition matrix

The general case

Let us look only at the (u, v) plane. Then the general solution is

u (t) = A sinnt+B cosnt+ F,

v (t) = −2B sinnt+ 2A cosnt− 3

2
Fnt+H. (7.3)
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x
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system
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Figure 7.3: Linear drift

We obtain the velocity components too by differentiating:

u̇ (t) = nA cosnt− nB sinnt,

v̇ (t) = −2nA sinnt− 2nB cosnt− 3

2
Fn. (7.4)

We write for the initial epoch t0:

u (t0) = A sinnt0 +B cosnt0 + F,

v (t0) = −2B sinnt0 + 2A cosnt0 −
3

2
Fnt0 +H,

u̇ (t0) = nA cosnt0 − nB sinnt0,

v̇ (t0) = −2nA sinnt0 − 2nB cosnt0 −
3

2
Fn.

We write for the epoch t1, using the sum formulas for sine and cosine:

u (t1) = u (t0 + ∆t) =

= A sinn (t0 + ∆t) +B cosn (t0 + ∆t) + F =

= A sinnt0 cosn∆t+ A cosnt0 sinn∆t+B cosnt0 cosn∆t−B sinnt0 sinn∆t+ F =

= cosn∆t · (A sinnt0 +B cosnt0) + F + sinn∆t · (A cosnt0 −B sinnt0) =

= u (t0) + (cosn∆t− 1) (A sinnt0 +B cosnt0) + sinn∆t · (A cosnt0 −B sinnt0) =

= u (t0) + (cosn∆t− 1) (A sinnt0 +B cosnt0) + sinn∆t · 1

n
u̇ (t0) .
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Similarly

v (t1) = 2A cosn (t0 + ∆t)− 2B sinn (t0 + ∆t)− 3

2
Fnt1 +H =

= 2A cosnt0 cosn∆t− 2A sinnt0 sinn∆t− 2B sinnt0 cosn∆t− 2B cosnt0 sinn∆t−

−3

2
Fnt1 +H =

= cosn∆t · (2A cosnt0 − 2B sinnt0)− sinn∆t · (2A sinnt0 + 2B cosnt0)− 3

2
Fnt1 +H =

= v (t0) + (cosn∆t− 1) (2A cosnt0 − 2B sinnt0)− sinn∆t · (2A sinnt0 + 2B cosnt0)−

−3

2
Fn∆t =

= v (t0) + (cosn∆t− 1)
2

n
u̇ (t0)− sinn∆t · (2A sinnt0 + 2B cosnt0)− 3

2
Fn∆t.

Substituting into this from the u (t) formula

F = u (t0)− A sinnt0 −B cosnt0

we obtain

v (t1) = v (t0) + (cosn∆t− 1)
2

n
u̇ (t0)− sinn∆t · (2A sinnt0 + 2B cosnt0)− 3

2
u (t0)n∆t

+
3

2
n∆t · (A sinnt0 +B cosnt0) =

= v (t0) + (cosn∆t− 1)
2

n
u̇ (t0) +

(
3

2
n∆t− 2 sinn∆t

)
(A sinnt0 +B cosnt0)−

−3

2
u (t0)n∆t.

Next:

u̇ (t1) = nA (cosnt0 cosn∆t− sinnt0 sinn∆t)− nB (sinnt0 cosn∆t+ cosnt0 sinn∆t) =

= cosn∆t · (nA cosnt0 − nB sinnt0)− sinn∆t · (nA sinnt0 + nB cosnt0) =

= cosn∆t · u̇ (t0)− sinn∆t · (nA sinnt0 + nB cosnt0)

and

v̇ (t1) = −2nA · (sinnt0 cosn∆t+ cosnt0 sinn∆t)− 2nB · (cosnt0 cosn∆t− sinnt0 sinn∆t)−

−3

2
Fn =

= cosn∆t · (−2nA sinnt0 − 2nB cosnt0) + sinn∆t · (−2nA cosnt0 + 2nB sinnt0)−

−3

2
Fn =

= v̇ (t0)− (cosn∆t− 1) (2nA sinnt0 + 2nB cosnt0)− 2 sinn∆t · u̇ (t0) .

Calculate now by combining the u (t0)- and v̇ (t0)- formulas:

3

2
nu (t0) + v̇ (t0) = −1

2
n (A sinnt0 +B cosnt0) ⇒

⇒ A sinnt0 +B cosnt0 = −
(

3u (t0) +
2

n
v̇ (t0)

)
.
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We obtain by substitution

u (t1) = u (t0)− (cosn∆t− 1)

(
3u (t0) +

2

n
v̇ (t0)

)
+ sinn∆t · 1

n
u̇ (t0) ,

v (t1) = v (t0)− (cosn∆t− 1)

(
2

n
u̇ (t0)

)
−
(

3

2
n∆t− 2 sinn∆t

)
·
(

3u (t0) +
2

n
v̇ (t0)

)
−

−3

2
u (t0)n∆t,

u̇ (t1) = cosn∆t · u̇ (t0) + sinn∆t · (3nu (t0) + 2v̇ (t0)) ,

v̇ (t1) = v̇ (t0) + (cosn∆t− 1) (6nu̇ (t0) + 4v̇ (t0))− 2 sinn∆t · u̇ (t0) .

As a matrix formula:


u
v
u̇
v̇

(t1) =



4− 3 cosn∆t 0
sinn∆t

n
(cosn∆t− 1)

2

n
6 sinn∆t−
−6n∆t

1 − (cosn∆t− 1)
2

n
(4 sinn∆t− 3n∆t)

1

n
3n sinn∆t 0 cosn∆t 2 sinn∆t

0 0
6 (cosn∆t− 1)−
−2 sinn∆t

4 cosn∆t− 3



u
v
u̇
v̇

(t0) .

The case of small ∆t

Write the system of differential equations

ü = 2nv̇ + 3n2u

v̈ = −2nu̇

as follows:

d

dt


u
v
u̇
v̇

 =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0



u
v
u̇
v̇


i.e., for a small time step4 ∆t:

u
v
u̇
v̇

 (t1) =


u
v
u̇
v̇

 (t0) + ∆t


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0



u
v
u̇
v̇

 (t0) =

=


1 0 ∆t 0
0 1 0 ∆t

3n2∆t 0 1 2n∆t
0 0 −2n∆t 1



u
v
u̇
v̇

 (t0) .

You may verify, for each matrix element, that this is the same as the above in the limit
∆t → 0.

4“Small” in relation to the orbital period, i.e., n∆t� 1.
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Airborne gravimetry and gradiometry

The saying is well known:

“one guy’s noise is the other guy’s signal”.

Inertial navigation is based on assuming the Earth’s gravity field as known. Then from
the starting position x (t0) and the starting velocity v (t0) we can calculate forward to
get the instantaneous position and speed x (t) ,v (t). However, if there is a independent
source of information that gives the current place and velocity precisely enough – such as
GPS – then we can harness inertial technology to survey the Earth’s gravity field.

With the help of a well working GPS navigation system it is nowadays possible to perform
gravimetric measurements from the air. Also the study of the gravity field with the aid
of satellites is based on the use of the GPS system, continuously tracking the satellite’s
accurate three dimensional position.

Let the airplane’s or satellite’s position as a function of time be x (t), and its discrete mea-
surement time series xi ≡ x (ti). Then the geometrical acceleration can be approximated
as follows:

d2

dt2
x

∣∣∣∣
ti

≈ xi+1 + xi−1 − 2xi
∆t2

,

where ∆t is the interval between successive epochs ti+1 − ti.
Let us assume that at the same time the airplane’s sensed acceleration a is measured
(“gravity”) for example with acceleration sensors. At this point, for simplicity, we also
assume that x and a are given in the same coordinate system, i.e., the directions of the
acceleration measurement axes are the same as those of the location co-ordinate axes.

Then in an inertial reference system it holds that:

g =
d2

dt2
x + a, (8.1)

so:

gravitation g is the sum of the “gravity” a felt inside of a vehicle, and geomet-
rical acceleration.
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8.1 Vectorial airborne gravimetry

If an airplane carries both an inertial device and a GPS receiver, we can measure both
d2

dt2
x

∣∣∣∣
ti

and a (ti), and we can calculate g (ti). This is a method to survey the gravity field

from the air. In practice the data streams generated from both the GPS device and the
inertial device are fed into a Kalman filter, which outputs the plane’s precise route and
gravity profile. The gravity comes as a three-dimensional vector; the data rate is typically
high, many epochs per second. Because of the airplane’s motions, the differences in time

of both
d2

dt2
x and a are large (thousands of milligals), but the final determination precision

of g can be as good as a couple of mGals.

However, it must be said that this technique, vectorial airborne gravimetry, is not as
good in precision as the next technique to be introduced, scalar airborne gravimetry. The
reason is that the accelerometers in the inertial device, as precise as they are, suffer more
from systematic problems, such as drift, than the best gravimeters.

8.2 Scalar airborne gravimetry

In this technique, a traditional gravimeter (a device for measuring gravity) is used. The
gravimeter is modified in a way that makes it possible to make measurements in strongly
varying gravitational acceleration environments. The modification, damping, is the same
as the one that is made to make measurements at sea possible. The gravimeter is mounted
on a stabilized table; the stabilization is done with the aid of gyroscopes.

The gravimeter measures the gravity acceleration “felt” inside the vehicle, but only in
the direction of the local vertical (plumbline). If the direction of the local vertical is n
(downwards), the measured quantity is 〈n · a〉.

We can write

〈n · g〉 =
d2

dt2
〈n · x〉+ 〈n · a〉 = ‖g‖ ≡ g, (8.2)

because the plumbline is in the direction of gravity.

In practice the equation (8.2) is written in a system rotating with the solid Earth, so we
obtain:

g = 〈n · a〉+
d2

dt2
〈n · x〉+

(
ve

Re + h
+ 2ω cosϕ

)
ve +

v2
n

Rn + h
=

= ad −
d

dt
vu +

(
ve

Re + h
+ 2ω cosϕ

)
ve +

v2
n

Rn + h
,

where vu, ve, vn are the velocity’s “up”, “east”, “north” components, ad is the measured
acceleration inside the vehicle in the “down” direction, ω is the angular velocity of the
Earth’s rotational motion, and Rn and Re are the Earth’s radii of curvature in the merid-
ional (North-South) and East-West directions. h and ϕ are the height and latitude. In the
formula above, the two last terms are called the Eötvös correction. Cf. Wei and Schwarz
[1997].
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8.3 The research of gravitation in space

In the formula (8.1) the quantity a is about the magnitude of the Earth’s surface gravity

(about 10 m s−2), while the geometrical acceleration
d2

dt2
x is much smaller. In the ideal

case this acceleration would be zero, which corresponds to measurements on the surface
of the Earth. In both shipborne and airborne gravimetry this geometrical acceleration
differs from zero and makes accurate measurement of gravity difficult. The movements of
the vehicle are disturbances from the viewpoint of measuring.

In the measurement of the gravity field from space, the situation is the opposite. The
local gravity a acting inside the satellite is zero (weightlessness) or very close to zero. The

geometrical acceleration
d2

dt2
x is almost the magnitude of gravity at the Earth surface,

because the satellite “falls” freely the whole time while flying in orbit. The geometrical
acceleration is all the time being measured with the help of the GPS system – so-called
“high-low satellite-to-satellite tracking” – and also the satellite’s own, non-inertial motion
a is measured with the aid of acceleration measurement devices (accelerometers). Its
largest cause is atmospheric friction (drag), because the orbit of a satellite for measuring
the gravity field is chosen to be as low as possible, the typical height of the orbit being
250-400 km.

At this moment there are three different gravity missions in flight or completed: CHAMP,
GRACE and GOCE.

. CHAMP (http://op.gfz-potsdam.de/champ/index_CHAMP.html), a small Ger-
man satellite, operated from 2000 to 2010 and produced a large amount of data.

. GRACE (http://www.csr.utexas.edu/grace/), a small American-German satel-
lite pair, measures with its special equipment the accurate distance between two
satellites (“Tom” and “Jerry”) flying in tandem, in order to survey the Earth’s
gravity field’s temporal changes. It has been a great success already. An an-
imation of its results can be found here:http://en.wikipedia.org/wiki/File:
Global_Gravity_Anomaly_Animation_over_LAND.gif.

. GOCE (Gravity Field and Ocean Circulation Explorer) surveyed the Earth’s gravity
field 2009-2013 in great detail with the help of a so called gravity gradiometer,
cf. http://www.esa.int/esaLP/LPgoce.html. The GOCE satellite contained a
so-called ionic engine in order to compensate the air drag and make a low orbit
possible. It was quite a challenge to separate the gravity gradient measurements
from the effects of air drag and the satellite’s own rotation as it circled the Earth.

In all the satellites there are a GPS navigation system and accelerometers included, in
the case of GOCE even an array – a gradiometer – counting six extremely sensitive
accelerometers.

http://op.gfz-potsdam.de/champ/index_CHAMP.html
http://www.csr.utexas.edu/grace/
http://en.wikipedia.org/wiki/File:Global_Gravity_Anomaly_Animation_over_LAND.gif
http://en.wikipedia.org/wiki/File:Global_Gravity_Anomaly_Animation_over_LAND.gif
http://www.esa.int/esaLP/LPgoce.html


86 Airborne gravimetry and gradiometry

8.4 Using the Kalman filter in airborne gravimetry

Let’s start with formula (8.1). We can write (including the “dynamic noise” n):

d2

dt2
x = a− g + n,

i.e.,
d

dt

[
v
x

]
=

[
a− g

v

]
+

[
na
0

]
.

Here a = a (t) is a measured quantity, but g is not.

Write
g = −→γ + δg,

where −→γ is a suitable reference value (e.g., normal gravity) and δg the gravity disturbance.
We can model δg empirically as a Gauss-Markov process, eq. (4.1), so we can write

d

dt
δg = −δg

τ
+ ng,

where τ is a suitable empirical time constant, the choice of which depends on the behaviour
of the local gravity field (correlation length) and the flying speed and height. Now the
Kalman filter’s dynamic equations are:

d

dt

 v
x
δg

 =

 03,3 03,3 −I3

I3 03,3 03,3

03,3 03,3 − 1
τ
I3

 v
x
δg

+

 a−−→γ
0
0

+

 na
0
ng

 .
So the length of the state vector is 9. Note that the matrix is a 3 × 3 matrix consisting
of 3× 3 sized elements, i.e., a 9× 9 matrix in total.

A more sophisticated way of handling takes into consideration that the gravity g is a
function of place x, which we don’t actually know:

g (x) = −→γ (x0) +M∆x + δg

or
−→γ (x) = −→γ (x0) +M∆x,

Where x0 is the approximate position, given us by the linearization, see below. Here
appears the gradient matrix M, Equation 3.5. Then also x and v must be linearized, and
the difference states ∆x ≡ x − x0, ∆v = v − v0 must be used in the state vector, the
equations being

d

dt

[
v0

x0

]
=

[
03,3 03,3

I3 03,3

] [
v0

x0

]
+

[
a (t)−−→γ (x0)

0

]
.

Final result:

d

dt

 ∆v
∆x
δg

 =

 03,3 −M −I3

I3 03,3 03,3

03,3 03,3 − 1
τ
I3

 ∆v
∆x
δg

+

 na
0
ng

 .
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Figure 8.1: Lockheed Hercules C-120 taking off from Camp Summit, Greenland, 3,216
m above sea level. Note the JATO (Jet-Assisted Take-Off) bottles helping
out. c© 109th Airlift Wing, Air National Guard

The observation equations (updating equations) are again `1

`2

`3


i

= x(ti) + m,

where the “noise vector” m describes the statistical uncertainty of GPS navigation. For
both na and m we have to find suitable statistical models (variance matrices Q and R)
based on the properties of the measurement devices.

8.5 Present state of airborne gravimetry

One of the first successful airborne gravimetric projects was Brozena [1991] , Greenland’s
gravity survey.

Many later measurements, often in Arctic or Antarctic locations, can be mentioned [Fors-
berg et al., 1996, 2011]. The logistics requirements of working there are typically “chal-
lenging”, see figure 8.1.

Airborne gravimetry is a suitable technique, if the area to be surveyed is large and there are
no earlier gravity surveys available. Homogeneity is one of airborne and space gravimetry’s
advantages: the quality of the measurement is the same over large areas and systematic
errors over long distances are small. This is important expecially if the gravimetric data
is meant for the determination of a geoid.

Recent examples of airborne gravity surveys include Ethiopia (Bedada 2010), Mongolia
(Munkhtsetseg 2009), Indonesia (2010), and many more.
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Figure 8.2: Ethiopian airborne gravity survey; measurement points. Gravity anomaly
values in mGal
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GPS-navigation and base stations

About the subject GPS and Navigation, cf. e.g. Strang and Borre [1997] pages 495-514.

9.1 Differential navigation

Differential GPS is widely used also in traditional geodetic GPS processing. Every time
when software is used that builds so called double-difference observables, the differential
method is being used. Double differences are calculated by subtracting from each other
not only the observations of two satellites but also the observations of two ground stations.
This is how many of the sources of error in the inter-station vector solution are eliminated.
The sources of error are in principle substantial, but change only slowly with place, such
as:

. Orbit errors, satellite clocks

. Atmosphere (ionosphere, troposphere) errors

. Errors caused by the antenna’s phase delay pattern, depending on the direction
(azimuth, elevation) and thus on the local vertical.

A radio link is used in real time differential methods to transfer the original observations
or corrections from one ground station (the position of which is assumed to be known) to
another (unknown, often moving) ground station. The various methods

. use either the phase of the carrier wave, or the delay of the PRN code modulated
on the carrier wave, and

. can use one reference station for a whole area, or more stations to make interpolation
possible; and those

. can interpolate a ready result for the user (on a known position; 1-to-1 method) or
let the user interpolate himself (1-to-many method).

. Coverage can be local (the commercial services TrimNet VRS and Leica SmartNet
in Finland) or global (IDGS, Jet Propulsion Lab).

89
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. A radio broadcast network, a radio-modem pair, or a cell phone can provide the
data link.

9.2 RTCM-standard

Radio Technical Commission for Maritime Services (RTCM, http://www.rtcm.org/) SC-
104 has defined a standard group for GPS differential corrections. Message types are listed
below.

Message Type Message Title

1 DGPS corrections
2 Delta DGPS corrections
3 Reference station parameters
4 Carrier surveying information
5 Constellation health
6 Null frame
7 Marine radiobeacon almanacs
8 Pseudolite almanacs
9 High rate DGPS corrections
10 P code DGPS corrections
11 C/A code L1/L2 delta corrections
12 Pseudolite station parameters
13 Ground transmitter parameters
14 Surveying auxiliary message
15 Ionospheric/tropospheric message
16 Special message
17 Ephemeris almanac

18 Uncorrected carrier phase measurements
19 Uncorrected pseudorange measurements
20 RTK Carrier phase corrections
21 RTK pseudorange corrections

22-59 Undefined
60-63 Differential Loran C messages

There are many devices on the market that send and can use the message types above
in differential navigation either by using the phases of the carrier waves (RTK technique)
or the pseudo random codes modulated to the carrier waves (DGPS-technique). In both
cases the navigation is real time, the “age” of the position solution stays always below the
specified limiting value.

9.3 Pseudorange smoothing

In many kinematic applications of GPS, it is advantageous to smooth the raw pseudo-
range code observables by using the much more smooth and noise-free, but ambiguous,

http://www.rtcm.org/
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carrier phase measurements.

Let us assume we have as observations the code measurements p1 and p2 (metric units)
and the carrier phases φ1 and φ2 (angular units i.e., radians), at a time t.

Firstly, we can construct a prediction equation for the current (a priori) pseudo-range
from the previous one, by

p− (ti) = p (ti−1) +
λ

2π
(φ (ti)− φ (ti−1)) . (9.1)

This equation is valid for both frequencies 1 and 2, and also for the widelane observables
defined as:

pWL =
f1p1 − f2p2

f1 − f2

, φWL = φ1 − φ2.

Note that eq. (9.1) can be interpreted as a Kalman filter dynamic equation: the state
is p (t) and its variance matrix can be modelled as P− (t). The phase correction term
φ (ti) − φ (ti−1) may be considered known, which is justified given its superior precision
compared to code measurements.

Next, we add to this Kalman filter an observation equation: it is simply the current p (ti)
observation, the precision of which can be given as Ri. Now the correction equation is

p+ (ti) = p− (ti) +KH
(
p− (ti)− p (ti)

)
,

where H = [1] , K = −P−HT
(
HP−HT +R

)−1
= −P−/ (P− +R) , and thus

p+ (ti) =
Ri

P− (ti) +Ri

p− (ti) +
P− (ti)

P− (ti) +Ri

p (ti) .

So: the a posteriori pseudo-range is a weighted linear combination of the predicted and
carrier-smoothed one and the currently observed one.

For the variance propagation we find

P+ (ti) = (I +KH)P− (ti) =
Ri

P− (ti) +Ri

P− (ti) .

(For the variance propagation in the dynamic model, between epochs, we have simply:
P− (ti) = P+ (ti−1).)

It is possible to include cycle slip detection into the procedure: the testing variate is the
difference (

p− (ti)− p (ti)
)
,

of which we know the mean error to be:

σ =
√
HP−HT +R =

√
P− +R.

This will work best for the wide lane linear combination because of its large effective
wavelength, 86 cm.

This Kalman filter can run as a continuous process in the receiver (or post-processing
software, but then without the real time advantage). The output p+ (t) is significantly
smoothed compared to the input one p (t).
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9.4 Base station and corrections

The base station, the position of which is measured precisely using static geodetic position-
ing, sends the RTCM-messages. Because the position is known, its possible to calculate
what the pseudo distance to each satellite should be with the help of the satellite orbits.
By subtracting this from the measured values we get the correction to be coded into the
message (message types 1, 2, 20 and 21).1 The transmitted corrections are valid at the
base station and a small area around it. The size of the area depends on the desired
accuracy. Metre accuracy is obtained even hundreds of kilometres from the base station,
but cm-accuracy (only RTK-method) succeeds only out to about twenty kilometers.

The transmission of the correction messages can be done using many different techniques:
radio, cellular phone, Internet (NTRIP,Networked Transport of RTCM via Internet Pro-
tocol). Ala kehittyy nopeasti.

9.5 RTK-measurements

RTK = Real Time Kinematic.

The kinematic measuring method was invented by the American Benjamin Remondi. It
is based on the idea, that the receiver is “locked” to the phase of the GPS carrier wave
and as long as the lock holds (no “cycle slip” happens), the integer value of the phase of
the carrier wave is known. Cf. figure.
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ρ1

Known point

ρ2

ρ3

Unknown point

Moving
receiver

Moving
receiverreceiver

Reference

1In the case of RTK, often one rather transmits the original phase observations, types 18 and 19, but
conceptually the matter is the same.
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First, we measure the phase of the carrier wave with both receivers on the known point:

ϕSR1
= −f ρ1

c
− f∆δ1 +N1,

ϕSR2
= −f ρ2

c
− f∆δ2 +N2,

where

∆δ1 = δR1 − δS(1) ,

∆δ2 = δR2 − δS(1)

are the differences between the receiver’s (R1 reference receiver, R2 moving receiver) clock
offset and the simultaneous satellite clock offset δS(1) . The index (1) refers to the initial
situation with both receivers on the known point.

the quantity Ni is an unknown integer value, the ambiguity, chosen so that the ϕ values
are always in the interval [0, 1).

After that, the moving receiver is moved to the unknown point R3 and we obtain

ϕSR3
= −f ρ3

c
− f∆δ3 +N3,

where (now (2) refers to the new situation, on the unknown point):

∆δ3 = δR2 − δS(2) .

The following assumptions:

1. There hasn’t happened a “cycle slip”, so N3 = N2.

2. the time elapsed is so short that both δS(1) = δS(2) and δR2 = δR1 +∆δ12, where ∆δ12

is a constant difference (clock error difference of the clocks of the two receivers); so

∆δ2 = ∆δ1 + ∆δ12 and ∆δ3 = ∆δ2 = ∆δ1 + ∆δ12;

3. The reference and moving receivers are in the same place on the known point2, so
that ρ1 = ρ2.

Then
∆ϕSR1R2

≡ ϕSR2
− ϕSR1

= (N2 −N1) + f∆δ12 (9.2)

and

∆ϕSR1R3
≡ ϕSR3

− ϕSR1
=

= −f (ρ3 − ρ1)

c
+ (N2 −N1) + f∆δ12 . (9.3)

In formula (9.2) the left hand side is measured. We get immediately (N2 −N1) + f∆δ12

to be substituted into the formula (9.3), and as the observation equation we get:

∆ϕSR1R3
− (N2 −N1)− f∆δ12 = −f ρ3 − ρ1

c
,

2more generally, their difference in location is precisely known
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where the left hand side is an “observed” quantity, and on the right hand side ρ3 is
a function of the unknown point’s coordinates (i.e., the unknowns in this adjustment
problem). The linearization gives an observation equation to be used either by a least
squares adjustment routine or by a Kalman-filter.

Note that the quantity N2 − N1 + f∆δ12 is a real number, but N2 − N1 is an integer
number. If there are many satellites to be used instead of just one, the satellite being Sk,
, several quantities can be calculated on the known point

νSk ≡ NSk
2 −N

Sk
1 + f∆δ12 (9.4)

where however there is one and the same ∆δ12. Let’s choose the integer NS1
2 − NS1

1 so
that f∆δ12 is minimized (for example!). After that we can calculate

NSk
2 −N

Sk
1 , k = 2, 3, . . .

and they too have to be integers. If not, we have an adjustment condition that can be
used to slightly improve the value ∆δ12, for example we can minimize the

(
Nk

2 −Nk
1

)
:n’s

sum of squared differences (k = 1, 2, . . .) from among the nearest integers. After this the
values Nk

2 −Nk
1 can be rounded to the nearest integers.

As the final solution of this whole operation we get more accurate observation quantities,
so also more accurate estimators of the unknowns. But unfortunately it works only if the
distance is relatively short, 10-20 km at the most. Otherwise the values Nk

2 − Nk
1 are

affected by the uncertainties of the atmosphere and satellite orbits, and will not be close
enough to integers.

Other sources of error

In the most general case the quantities νk include not only the clock errors but also delays
caused by the ionosphere and neutral atmosphere ( “troposphere”). In that case we can
write

νSk = Nk
2 −Nk

1 + f (δR2 − δR1) +
dion

12

λ
+
dtrop

12

λ
.

In real time application both the clock error δRi
and the delays of the ionosphere and

troposphere are modelled with suitable parameters as Gauss-Markov or random walk
processes, suitably parametrized. Then all the parameters, also the co-ordinates of the
moving receiver, are estimated in real time with the help of the Kalman-filter and they
are ready to be used immediately.

Using double differences

In the geometry above it is tempting to use double differences, in other words, observation
quantities obtained by taking the difference between two satellites. Then at the base
station we get

∇∆ϕS1S2
R1R2

≡
(
ϕS2
R2
− ϕS2

R1

)
−
(
ϕS1
R2
− ϕS1

R1

)
=

=
(
N2

2 −N2
1

)
−
(
N1

2 −N1
1

)
+ f∆δ12,
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where

∆δ12 = ∆δ2
12 −∆δ1

12 =

=
{(
δR2 − δS2

)
−
(
δR1 − δS2

)}
−

−
{(
δR2 − δS1

)
−
(
δR1 − δS1

)}
=

= 0,

and similarly

∇∆ϕS1S2
R1R3

≡
(
ϕS2
R3
− ϕS2

R1

)
−
(
ϕS1
R3
− ϕS1

R1

)
=

= −f (ρ2
3 − ρ2

1)− (ρ1
3 − ρ1

1)

c
+

+
(
N2

2 −N2
1

)
−
(
N1

2 −N1
1

)
+ f∆δ12, (9.5)

where again ∆δ12 = 0.

In this case the “ν quantity”, that is solved by putting the reference receiver and the
moving receiver side by side is

νS1S2 =
(
N2

2 −N2
1

)
−
(
N1

2 −N1
1

)
for two satellites S1 and S2. This is an integer. We observe the quantity ∇∆ϕSkSm

R1R2
to all

satellite pairs (k = 1, . . . n, m = k + 1, . . . , n) , where n is the number of satellites, and
we round to the nearest integer. The values found after that can be used to compute the

quantities
(
ρSk

3 − ρ
Sk
1

)
−
(
ρSm

3 − ρSm
1

)
from the observations ∇∆ϕSkSm

R1R3
.

Fast ambiguity resolution

The measurement method described above before requires, that before field measurement
(i.e., the movement of the moving receiver in the field and its occupation of the points to
be measured) and in order to check also after measurement, the moving receiver can be
placed next to the reference receiver (so called co-location).

Often this is somewhat difficult: the reference receiver may be outside the measurement
area and be run by the a “service provider”. This is why fast ambiguity resolution was
invented. It works best if the distance between the reference and moving receivers is so
small that the differential atmosphere and orbit errors between them can be ignored. In
this case the formula (9.5) is

∇∆ϕk1k2R1R3
≡

(
ϕk2R3
− ϕk2R1

)
−
(
ϕk1R3
− ϕk1R1

)
=

= −f
(
ρk23 − ρk21

)
−
(
ρk13 − ρk11

)
c

+
(
Nk2

2 −Nk2
1

)
−
(
Nk1

2 −Nk1
1

)
.

Here the quantities
∇∆ρk1k3R1R3

≡
(
ρk23 − ρk21

)
−
(
ρk13 − ρk11

)
are purely geometric. If we write

ρki3 =

√
(Xki −XR3)

2 + (Y ki − YR3)
2 + (Zki − ZR3)

2, i = 1, 2,
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we can see, that the only unknowns here are the position of the moving receiver[
XR3 YR3 ZR3

]T
.

The position of the moving receiver is always known with the accuracy of couple of metres
with the help of the GPS-code measurement, when there is no ambiguity problem. Then
it’s sufficient, if we find from all the possible positions of the receivers (Searching space,
belonging to the set R3) only the places for which all the values

∇∆Nk1k2
12 ≡

(
Nk2

2 −Nk2
1

)
−
(
Nk1

2 −Nk1
1

)
are integers.

Cf. figure 9.1. Conversely, if there are n satellites, there are n−1 different ambiguity values
∇∆N . The ambiguity combinations are thus the elements of a n− 1 dimensional space.
In case each ambiguity has, say, 10 different possible values that are compatible with
the approximate position obtained from the code measurement, this already gives 10n−1

different ambiguity combinations. If there are 8 satellites, this number is 10 million. Too
many possibillities to search in real time in a device that has limited calculating capacity.

However we can remark that of all the ambiguity alternatives only a very small fraction
is consistent with a particular position of the moving receiver: the consistent ambigu-
ity combinations belong to the a three-dimensional subspace of ambiguity space, one

parametrization of which is the co-ordinates
[
XR3 YR3 ZR3

]T
, as already remarked

earlier.

In recent years there have been developed smart and efficient methods to resolve ambigu-
ities in this consistent subspace, like the LAMBDA method (LAMBDA = Least-squares
Ambiguity Decorrelation Adjustment, Teunissen et al. [1997]).

The introduced ambiguity resolution method succeeds only if the distance between the
comparison and moving receivers is short enough, in general under 10-20 km. In that
case we can take advantage of the fact that the GPS satellites send their signal in two
different frequencies, L1 (1575.42 MHz) and L2 (1227.60 MHz). The ambiguity resolution
is obtained immediately or after only a couple of epochs.

Ambiguity resolution is also possible for longer vectors, but a lot more difficult, more
laborious time consuming, because the errors caused by the atmosphere etc. have to be
taken into account.

9.6 Network RTK

Tests are ongoing and already done, to implement a network RTK solution: here several
base stations are used, and in some way the corrections are interpolated to the location
of the user.

Two basic methods:

1. Broadcastmethod: corrections are sent to many users at the same time. Can use for
example a radio transmission’s FM sideband (RDS, Radio Data System).
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Figure 9.1: Ambiguity resolution

2. One-to-one (“singlecast”) method: the corrections are computed for one user and
sent to him, e.g., by mobile phone or Internet. The content of the correction message
can be different for each user.

One of the variants of the one-to-one method is the virtual base station method, where the
calculation is done by interpolating base station corrections into a “virtual base station”
in the vicinity of the observer.

Various interpolation techniques:

1. Brute force: here is assumed that the correction is continuous as a function of
position on Earth. If assumed that this function is linear, three base stations around
the measurement area are adequate.

2. modelling of the atmosphere etc. In principle this could improve the interpolation
results, if the model is good.

In many places, like in Germany, is used Spectra Precision Terrasat GPS-Network soft-
ware (http://www.terrasat.de/applications/refvirtual.htm), that is based on the
virtual base station concept. Also in Finland this system is used in Geotrim’s GNSSnet
network.

http://www.terrasat.de/applications/refvirtual.htm


98 GPS-navigation and base stations

9.7 Global DGPS

This system was invented and implemented by the Jet Propulsion Laboratory. The cor-
rections sent via the Internet are globally valid.

IGDG, Internet-based Global Differential GPS. http://gipsy.jpl.nasa.gov/igdg/.

The system works as follows:

Each second a 560 bit message is send to the user. The message includes the three
dimensional satellite position corrections (XY Z) and meter level satellite clock corrections
to four (4) satellites, and a cm-level residual corrections to 32 satellites.

Thanks to this it is possible after 8 seconds, at the most, to reconstruct all the starting
values of orbit and clock corrections to 32 satellites.

The resolution of the clock corrections is 1.5625 cm, the resolution of the orbit corrections
is 6.25 cm.

The corrections are sent via Internet to the user using the TCP-protocol.

9.8 RTCM-over-Internet (NTRIP protocol)

“Networked Transport of RTCM via Internet Protocol”.

Cf. http://igs.bkg.bund.de/pdf/NtripPaper.pdf. This is a promising method which
has also been tested in Finland. From 2012 on, Indagon Oy offers the @Focus service
based on NTRIP.

http://gipsy.jpl.nasa.gov/igdg/
http://igs.bkg.bund.de/pdf/NtripPaper.pdf
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Real time systems and networks

Technological navigation will often depend on obtaining external data in real time from
a communication network, as well as on on-board processing by equipment and software
suitable for real time use. We shall consider those requirements next.

10.1 Communication networks

Broadcasting networks

Broadcasting networks, one-to-many communication networks, are almost as old as the
discovery of radio waves. Radio waves (carrier waves) can be used to carry signals in
digital form, e.g., by using the Morse code (radio telegraphy), or in analogue form, like
sound (radio telephony), images (television), or analogue or digital measurement data
(telemetry).

Information is carried on radio waves by modulation. Modulation techniques used include
amplitude modulation, frequency modulation and phase modulation.

Example: amplitude modulation

In Figure 10.1 we see how amplitude modulation places a signal (the dashed curve, e.g.,
a sound wave) on top of the carrier wave. To the right we see what the spectrum of the
modulated wave looks like.

If we call the carrier frequency F and the modulating signal (sound) frequency f , we can
write the modulated signal as

A (t) = cos (2πF ) · cos (2πf) =

=
1

2
[cos (2π [F + f ]) + cos (2π [F − f ])] ,

so we see that the new wave can be represented as the sum of two frequencies, F + f and
F − f .

Now, if the modulating wave contains a large number of different frequencies, 0 < f <
fmax, the resulting spectrum will contain signal in the full range (F − fmax, F + fmax).
We say that the band width consumption is 2fmax.

99
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Modulation is the envelope

FrequencyAmplitude modulation

Band
width

Figure 10.1: Amplitude modulation and bandwidth.

For broadcasting networks, bandwidth is a scarce and valuable resource, to be carefully
allocated.

The Nyqvist theorem

One can show that in order to represent a function of time by sample points, the distance
∆t between the sample points should never be more than than one-half the shortest period
present in the function. This is called the Nyqvist Theorem. For a function satisfying
Nyqvist’s condition, it is possible to transform it back and forth from the time domain A (t)

representation to the frequency domain Ã (f) representation using the discrete Fourier
transform. Numerically, typically the Fast Fourier Transform (FFT) is used.

Now, if we have a modulating function a (t), that has as its highest contained frequency
fmax, then its shortest contained period is 1/fmax.The number of samples transmitted
using amplitude modulation will then be max 2fmax, i.e., precisely the effective bandwidth
occupied by the modulated signal.

Switched connection networks

History

The first, still existing and wildly successful switched, or many-to-many, connection net-
work is the telephone network.

The invention of the telephone is usually credited to Alexander Graham Bell. In reality,
like with the steam engine, the telescope and many other inventions, the time was ripe
for it and many people, like Elisha Gray (who filed his patent a mere two hours after
Bell!), Antonio Meucci and Thomas Edison, contributed valuable ideas before a working
implementation became the basis of the first telephone network.

For many years, American Telephone and Telegraph held a monopoly on telephone tech-
nology. Off and on, there were anti-trust proceedings against the company, which is also
credited with laying the first trans-atlantic phone cable, launching the first communica-
tions satellite (Telstar), and inventing Unix. . .
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01

Figure 10.2: FSK-modulation.

Telephone is based on transmitting sound in electric form over a copper cable. This is still
the way it happens for the few metres nearest to the consumer, although all in-between
equipment is nowadays fully digital. Making a connections between two telephone cus-
tomers was originally done by hand; already before 1900, the first, mechanical automatic
switches were built. A number was dialled using a round disc, sending as many pulses as
the number being encoded. This is called “pulse dialling”. Today, faster tone dialling has
completely replaced it.

The number system for telephones is a three-layer, hierarchical system that is not con-
trolled from a single point: a remarkable invention. It has aged well in spite of being
extraordinarily user-hostile: Looking up telephone numbers is done manually using thick
paper books. The world is divided into national domains having country codes. The
United States has code 1, most larger countries have two-digit codes (e.g., Germany 49),
while smaller, poorer countries like Finland have settled for three-digit codes (358). Un-
der the national domains are trunk codes, typically (but not necessarily) for cities, within
which individual subscribers have their numbers.

Attempts to make phone numbers “mnemonic”, so they can be easier remembered, have
pretty much failed; new telephone concepts such as Internet telephony, may soon change
this.

The digitization of the telephone network has also made possible to offer customers
“always-on” data connections, even over last-few-metres copper, which use frequencies
above those used for audible sound. Using a low-pass filter in-between, it is even possible
to use voice and data on the same line (Digital Subscriber Line, DSL).

Modems

Given that the phone network is designed for the transport of sound, it is necessary, in
order to transport data on it, to convert this to and from the form of (analogue) sound
waves. This is done with a device called a modem (modulator-demodulator).

The picture 10.2 shows one technique (Frequency Shift Keying) often used for modulation:
a logical 1 is encoded as a short (high frequency) wave, a logical 0 as a long (low frequency
wave. This is a simple, somewhat wasteful, but effective and robust modulation technique.
Additionally, checksums are transmitted as well, in order to verify that the data received
equals the data sent (Parity check, Cyclic Redundancy Check) even over noisy lines.
Compression is used if possible and speeds up especially the transfer of textual material.

There are a number of standards for modems, mostly created by the International
Telecommunications Union. Over a good quality analogue line, 56k bits/second is the
best achievable.
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Figure 10.3: An example of a protocol stack

Using a modem to transfer data over a network designed for sound only is an example of
a protocol stack : the lowest layer is sound transfer, upon which digital data transfer, in
the form of a bit stream, is layered. Other layers can still be placed on top of this: the
Internet Protocol and TCP to be discussed later, advanced protocols such as the Web
service HTTP, and so on. Establishing such a connection requires bringing up every layer
of the stack in succession, from the ground up.

In a protocol stack, typically the higher layers are implemented in software, whereas the
lowest layers are hardwired. E.g., telephone sound is transmitted traditionally as voltage
fluctuations in a copper wire. As digital technology develops, however, the software comes
down in the stack: for all but the last few metres, nowadays telephone sound moves as
digital bit patterns, often in optic fibre cables.

This creeping down of software is leading to devices that previously were very different,
to become almost the same on the hardware level. E.g., a telephone and a television
set are becoming mostly just general purpose computers, differently programmed. This
phenomenon is known as convergence.

Mobile phones

Mobile phones based on GSM (Global System for Mobile Communications) can also be
used for data transfer; data rates achievable are 9600-14400 bits/second. As GSM is a
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natively digital telephony system, it wouldn’t be correct to talk about “GSM modems”,
as is often done.

However, there is a development towards more advanced protocols such as GPRS (General
Packet Radio Services) which allow an always-on digital connection with much higher data
rates. This brings us to the following subject: packet switching networks.

Packet forwarding networks

With this we mean the Internet. Also this is a many-to-many communication network;
but there the similarity with the telephone network ends. The internet is based on the
transfer of packets made up of data bytes and accompanying information. There is no
way of telling how a particular packet will reach its destination (or, indeed, whether it
will at all, and, if so, how quickly).

The functioning of the Internet, IP addresses, and domain name services is explained in
many places (e.g., http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/

ip.htm) and we will not repeat it here. There are a number of protocols built upon
the Internet Protocol, the most important of which are

. ICMP (Internet Control Message Protocol), e.g., the well-known “ping” command
for checking network connectivity.

. UDP (User Datagram Protocol) is a connectionless protocol. Essentially, a trans-
mitter sends out packets, and a receiver receives them – most of the time. There is
no check on successful reception, and not even if packets purported to come from the
same source actually do. But UDP’s overhead is low, which is why it is sometimes
used. E.g., the Network Time Protocol uses UDP. A time server just sprays packets
around for clients to pick up and synchronize their clocks to.

. TCP (Transmission Control Protocol) is a connection based protocol. It establishes
a connection between two hosts on the Internet, and then exchanges packets in both
directions, until the connection is closed. It is thus a bidirectional protocol, but is
always initiated from one side, typically the client side.

The packets may travel from one host to the other over many different paths; the
receiver places them in the proper order based on a sequence number contained in
every packet. If a packet is missing and has timed out, a request to re-send is issued.
Thus, TCP is reliable.

The security of the connection is safeguarded by each host randomly choosing the
starting value of its packet counter for this connection. Such a connection could be
hijacked in principle – a so-called “man-in-the-middle attack” – but it is not easy.

Every packet contains two data fields called source port and destination port. These are
numbers between 1 and 65535 which are used to distinguish various service types from
each other. E.g., HTTP uses port 80 – usually1. It is important to understand that these
ports are purely software things; it is the networking software layer in the operating system

1There is a list of all services in the file /etc/services.

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ip.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ip.htm
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that distinguishes these port numbers from each other and directs packets to appropriate
server/client processes. Nothing like a (hardware) serial or parallel or USB port!

Note that one thing that none of these Internet protocols is, is real time. They are
sometimes used in a real time fashion, assuming that the latency on a transmission will
never become very large, but that is a gamble; a fairly harmless one, e.g., for music
streaming. But already modest congestion – locally or upstream – will make transmission
times totally unpredictable.

10.2 Real time systems

Hardware

In real time systems used for navigation, digital hardware included will typically have a
rather low processing capacity. Think, e.g., of mobile phones: the dictate of low power
consumption and small form factor limits what kinds of circuitry one can use, and how
much of it.

Another limitation may be, that no full-blown keyboard may be used, and instead of a
mouse, a stylus and touch screen – of limited size – is indicated. Also ruggedness may be
required depending on the navigation environment.

Operating systems

The hardware limitations mentioned obviously also limit what operating system software
can be used. Typically found are “embedded” operating systems, like in mobile phones
Symbian, in PDAs (Personal Digital Assistants) PalmOS, and more and more Windows
CE, e.g., in the iPaq and friends, which however consume significantly more power.

In high-reliability operations, e.g., on spacecraft, also systems like the QNX and Wind
River Systems2 real time embedded operating systems are being used. In “hard” real time
applications, the operating system should preferably not crash3.

Linux/Unix variants are also being used and have become recently quite popular, e.g.,
Android and the iPhone’s OS X.

It will be clear that, for interfacing with various devices such as GPS and other sensors,
the availability – or easy development – of device drivers is critical.

As hardware capability grows while size and power consumption drops, more and more
“general” consumer grade operating systems, slightly adapted, are finding their way also
into these constrained mobile platforms.

Interrupts, masking, latency

A typical operating system functions in the following way: upon start-up, after operating
system, file system and device driver functions have been enabled, the initial process goes

2The Mars rovers Spirit and Opportunity use the Wind River Systems software.
3. . . which however the Spirit’s system did, due to running out of file handles. But it came beautifully

back up again.
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into multi-user mode and spawns all the background service processes (deamons) that are
supposed to run on this system. Then it loads a login process, presenting it to the user
on one or more consoles connected to the system. When a user logs in, he is presented
with a shell or command interpreter, allowing him to start his own user processes.

On consumer grade OSes, a windowing GUI or Graphical User Interface is started up
as well at this stage, making possible operation by lightly trained personnel. This is
however quite demanding in resources. Also from the GUI, user processes can be started
in addition to the system processes underlying OS and GUI operation.

The defining property of an operating system is, that it manages the system’s various
resources in a way that is transparent to the user. Device drivers are one example of this.
And, e.g., CPU resources are managed through the scheduler.

If we look at a single process4, we can say that the path of execution is linear. This means
that execution either proceeds to the next statement, or to a statement pointed to by a
branching (if, switch, . . . ) statement. This makes it easy to keep track of the current
state of the process: it can only be changed by statements that we have executed.

Looking at a procedure or subroutine or method, it is only executed because another
procedure, and ultimately the main program, called it in the course of its linear execution.
The way a procedure is executed is as follows: when it is called, it places a return address
– the current Program Counter in the calling procedure – on the stack. Next, any locally
defined variables are also located on the top of the stack, which thus grows. When the
flow of control meets the end of the procedure, first the local variables are deallocated,
and then the top of the stack is moved back into the Program Counter of the CPU again,
and we have returned to the calling procedure.

Interrupts change this whole picture. Computer hardware provides for a number of dif-
ferent interrupts, and they can happen at any time. When they happen, it is their
responsibility not to change anything that could interfere with the processes that are cur-
rently executing. Interrupts are used, e.g., to service input/output devices that cannot
wait. Every interrupt is connected to an interrupt service routine, which is executed when
it is triggered.

Take the clock interrupt routine, for example. It is triggered 50 times a second, and its
main function is to increment the software time register kept by the operating system
software. But it is typically also responsible for task switching, allowing the running
of multiple tasks apparently simultaneously. At every task switch, the context of the
currently running process – the set of data, including CPU registers, that it will need to
continue running – is saved, and another process, with its context data, is allowed to run
during the next “time slice” of 0.02 s.

The decision which process to schedule next, is a subject on which thick books have been
written. It should be a process that is “runnable” – and not, e.g., waiting for user input
–, and should have a high priority.

Every process – but especially kernel or system level processes – have pieces in their code
where it would be wrong or disastrous to be interrupted. We humans know this all too
well: there are certain tasks that we simply cannot do if we are not left in peace to do

4. . . and ignoring threading!
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them, and if we are interrupted, we may just have to start from the beginning again, if not
worse. Computers are no different. This is why it is possible for interrupts to be masked.
Critical kernel routines will mask the clock interrupt, and unmask it again when finished.

Now, the requirements for real time use are:

1. We should know in advance which processes will be running on our system. An
environment like a multi-user server into which people can log in and start user
processes at will, is not acceptable

2. We should know in advance what are the longest pieces of code, execution time wise,
that the various runnable processes contain during which they can not be interrupted.
These durations should all be acceptably short

3. The real-time critical processes should receive the highest priority, all others a lower
priority

4. The time interval for task switching should be suitably short; 0.02 s may be too long

5. The total processing capacity of the system should be sufficient

a) on average for all processes, and

b) at every point in time for all the real-time processes taken together.
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Nowadays RTK-navigation is a widely used data collection method for mapping surveying
work and GIS. If the accuracy demands are on the level of 1-2 meters, even code based
DGPS is suitable, expecially now that the encryption of the GPS system is switched off.

This is how the “navigation solution” can be used in mapping surveying. The accuracy is
not at the same level as in static measurement, but often this is completely acceptable.
As benefit, there is no post-measurement work (office work), so it’s work extensive. The
collected data – which can be fairly voluminous, millions of points – goes directly into a
GIS after a minimal amount of manual work (type coding for example).

11.1 Geocentric co-ordinate systems

In accurate navigation one has to be a accurate with the co-ordinate system. As itself the
GPS gives the coordinates in the WGS84system, which is the system that the GPS system
itself uses. More accurate geocentric systems, like ITRF-xx and ETRF-xx, are provided by
IERS (International Earth Rotation Service) (IRTF = International Terrestrial Reference
Frame; ETRF = European Terrestrial Reference Frame). At the accuracy level of about
one decimetre, these systems are identical to WGS84.

The ETRF systems have as a useful practical property, that the coordinates of the conti-
nental platform of Eurasia, so the system moves with the platform. In many countries, as
well as in scientific circles, the ETRF-89, also known as EUREF-89is used. Its moment
of definition (epoch) is the beginning of 1989.

Geocentric system is a system for which:

. the origin is in the Earth’s centre of mass (or very close to it);

. The z axis points in the direction of the Earth’s rotation axis;

. The x axis points either to the vernal equinox point in the sky (astronomical co-
ordinate system, inertial) or lies in the plane of the Greenwich meridian (terrestrial
co-ordinate system, attached to the solid Earth and “co-rotating”)
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11.2 Non-geocentric systems

When we want to work in a local or national, non-geocentric system, like kkj (Map Grid
Co-ordinate System) in Finland, things get a lot more difficult if we want to retain the
accuracy obtained from the GPS system. Some RTK-GPS systems enable the following
way of measuring:

. Measure several points known in kkj on the edge of the measurement area, and feed
in their kkj -coordinates;

. Measure the points to be measured in the area;

. Return to the known point to check if there has been some jump of the total value
in the phase of the carrier wave (“cycle slip”).

. The device calculates itself the transformation formula (Helmert transformation
in space) with the help of the known points and transforms all regular measuring
points to kkj with it.

The disadvantage of this system is, that the original accuracy of the measurement data
drops irreversibly in kkj almost every time to the weakest local accuracy. If this is accept-
able, it is a good general solution in local surveying.

11.3 Elevation systems

When GPS – or any other system that doesn’t directly depend on the Earth’s gravity
field, like also inertial navigation (INS) or GPS-INS integration – is used in height deter-
mination, there arises the problem that also the heights are geocentric, in other words,
they are elevation above the geocentric, mathematically defined reference ellipsoid. Tra-
ditional elevations on the other hand are above “the mean sea level”, more precisely, the
geoid. Cf. figure 11.1.
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