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Esipuhe

Taman kirjan tavoitteena on esittdd yleiskuva Maan painovoimaken-
tan' tutkimuksen nykytilasta, mukaan lukien ne geofysiikan osat, jotka
liittyvét aiheeseen ldheisesti. Yksi niistd on geodynamiikka eli muut-
tuvan Maan tutkimus. Kirjan taustalla on yli kaksi vuosikymmenta
kestanyt opetustyoni kahdessa helsinkildisessd yliopistossa: Teknillisel-
14 korkeakoululla, joka on nykyisin osa Aalto-yliopistoa, ja Helsingin
yliopistolla. Kirja edustaa jokseenkin pohjoismaista perspektiivid varsin
globaaliin aiheeseen. Esitystapaan vaikuttaa myos tekijan oma tutki-
mus gravimetrisen geoidimé&arityksen alalla. Vaikka aiheesta 16ytyy jo
erinomaisia oppikirjoja, toivon, ettd tima teos 10ytdd oman innokkaan
lukijakuntansa.

Helsingissé 9. joulukuuta 2020

Martin Vermeer

*Kurssin alkuperdinen nimi Helsingin yliopistossa oli “Maan painovoimakentta”.
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Gravitaatioteorian perusteita

1.1 Yleista

Tassd luvussa esitetddn Newtonin gravitaatioteorian perusteet. Intui-
tiivisesti gravitaatioteoria on helpointa ymmartdd “kaukovaikutuksen”
(engl. action at a distance, lat. actio ad distans) ilmion4, jossa kahden mas-
san vélinen voima on verrannollinen massojen suuruuteen ja kddntden
verrannollinen massojen vélisen etdisyyden nelioon. Taméd on Newtonin

yleisen gravitaatiolain kaikille tuttu ilmaisumuoto.

Olemassa on my0s vaihtoehtoinen mutta samanarvoinen esitystapa,
kenttiteoria, joka kuvailee gravitaatiota avaruuden kautta etenevana
ilmiond, kenttdnd. Etenemistd ilmaisevat kenttiyhtilot. Kenttdteorian
lahestymistapa ei ole yhtd intuitiivinen, mutta se on tehokas teoreettinen
apuviline’.

Tassd luvussa tutustutaan kenttdteoriassa keskeiseen gravitaatiopo-
tentiaalin kdsitteeseen. Kdiymme ldpi my0s yksinkertaisen ja kaksinker-
taisen massatiheyskerroksen aiheuttamat, teoreettisesti mielenkiintoiset

* Asialla on my®os filosofinen puoli. Monelle, esimerkiksi Leibnizille, idea voimasta,
joka hyppéd kappaleesta toiseen tyhjan avaruuden kautta, oli mahdoton ajatus. Monet
yrittivat selittdd gravitaatiota — ja my06s sahkdmagnetismia ym. — “maailmaneetterin”
avulla. Vasta suhteellisuusteorian myo6té levisi kisitys, ettd fysikaalisen teorian ei
tarvitsekaan tyydyttdd ennakkoluuloamme siitd, mika on niin sanotusti jarkeva selitys
— niin kauan kuin se vain esittda fysikaaliset ilmict korrektisti.
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Kuva 1.1. Gravitaatio on universaalinen. Hubblen avaruusteleskoopin ku-
vaama gravitaatiolinssi, galaksijoukko Abell 1689 etédisyydelld 2,2
miljardia valovuotta. Benitez ym. (2003).
Kiitokset: NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew Uni-
versity), H. Ford (JHU), M. Clampin (STsclI), G. Hartig (sTScl), G.
Illingworth (UCO / Lick Observatory), ACS Science Team ja ESA.

potentiaalikentdt. Niiden sovelluksista, seké teoriassa ettd kdytannos-
sd, mainittakoon isostasia ja Helmertin kondensaatio, joita molempia

tarkastellaan myohemmissa luvuissa.



Kahden massan vilinen gravitaatio 1.2

Tutustumme keskeisiin integraalilauseisiin, kuten Gaussin ja Greenin
lauseet, joiden avulla voidaan péételld koko potentiaalikenttd ava-
ruudessa vain tietylld pinnalla annettujen kenttdarvojen perusteella.
Muut vastaavat esimerkit ovat Chaslesin lause ja Dirichletin ongelman
ratkaisu.

Luvuissa 2 ja 3 nditd potentiaaliteorian perusteita sovelletaan Maan
gravitaatiokentdn spektraaliesityksen, pallofunktiokehitelmin, johtami-
seen.

Aluksi johdamme suurehkon médran matemaattisia yhtaloitd, kuten
tunnettuja integraaliyht&loitd. Kyse on valitettavasti valttamattomasta
pohjatyostd. Yhtalot eivét kuitenkaan ole itsetarkoitus, eikd niitd kan-
nata opetella ulkoa. Yritd mieluummin ymmartdd niiden logiikka ja
miten ndihin tuloksiin on historiallisesti pdddytty, sekd hankkia itsellesi
“sormituntumaa” teorian luonteesta.

1.2 Kahden massan valinen gravitaatio

Maan painovoimakentédn tutkimus alkaa sopivasti Isaac Newtonin®
yleisestd gravitaation laista:

mpm
F=G ]gz 2, (1.1)

F on kappaleiden 1 ja 2 véilinen vetovoima, m; ja m, ovat kappaleiden

massat ja { on niiden vilinen etdisyys. Massat oletetaan pistemaisiksi.
Vakio G, universaalinen gravitaatiovakio, on arvoltaan

G =6,674-10"""m /g,

G:n arvon madritti ensimmadistéd kertaa Henry Cavendish? kayttamalla

Sir Isaac Newton PRS (1642-1727) oli englantilainen yleisnero, joka matematisoi
tahtitieteen ja suuren osan geofysiikkaa padteoksessaan Philosophiee Naturalis Principia
Mathematica eli “Fysiikan matemaattiset perusteet”.
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herkkaa torsiovaakaa eli kiertoheiluria (Cavendish, 1798).

Olkoon m pieni kappale eli koemassa, esimerkiksi satelliitti, ja M
suuri massa, kuten planeetta tai Aurinko. Silloin m; = M voidaan
kutsua vetdviksi massaksi ja m, = m vedetyksi massaksi, ja saadaan

mM

F= G-

Newtonin liikelain mukaan
F =maq,

jossa a on kappaleen m gravitaatiokiihtyvyys. Téstd seuraa

M
a = GE_Z
Tastd yhtédlostd suure m = m, on kadonnut. Kyseessd on Galilein
kuuluisa havainto, jonka mukaan kaikki kappaleet putoavat yhti nopeas-
ti* niiden massasta riippumatta. Tdma tunnetaan myo6s Einsteinin®

ekvivalenssiperiaatteena.

Sekd voima F ettd kiihtyvyys a ovat samansuuntaisia kappaleita yh-
distdvan viivan kanssa. Siksi kirjoitetaan yhtalo 1.1 usein vektorimuotoon,
jolla on suurempi ilmaisukyky:

r—R
a= —GMe—s, (1.2)

jossa vedetyn ja vetdvan massan kolmiulotteiset paikkavektorit méaéari-

telldan seuraavasti suorakulmaisissa koordinaateissa®:

3Henry Cavendish FRS (1731-1810) oli brittildinen luonnontieteilija rikkaasta aatelis-
suvusta. Han teki uraauurtavaa tyotd myos kemiassa. Han oli erittdin ujo, ja kuuluisa
neurologi Oliver Sacks retrodiagnosoi hinelle Aspergerin oireyhtymaén (Sacks, 2001).

4Ainakin tyhjiossd. Apollo-astronautit esittivit vaikuttavasti, miten héyhen ja vasara
putoavat Kuun pinnalla yhtd nopeasti! YouTube, Hammer vs. Feather.

5Albert Einstein (1879-1955) oli saksanjuutalainen teoreettinen fyysikko. Héan loi
erityisen ja yleisen suhteellisuusteorian, sovelsi viimeksi mainittua kosmologiaan ja
teki uraauurtavaa tyotd kvanttiteorian parissa, teoria joka hén ei kuitenkaan koskaan
taysin hyvaksynyt.



Pistemiisen kappaleen potentiaali 1.3

T = xi+yj + zk, R = Xi+ Yj + ZKk,

jossa yksikkovektorien kolmikko {i, jy k} on euklidisen avaruuden
ortonormaali kanta’.

b= llr =R =/(x= X2+ (y—YP+(z—2°  (13)

on massojen vélinen etdisyys Pythagoraan lauseen mukaisesti laskettu-

na.

Vektoriyhtdlossa 1.2 oleva miinusmerkki kertoo, ettd voiman suunta
on pdinvastainen kuin vektorin r — R suunta. Tdimaé vektori on vedetyn
massan m paikka vetdvdan massan M paikasta laskettuna. Toisin sanoen
tdma kertoo, ettd kyseessd on vetovoima eikd tyontévoima.

1.3 Pistemaisen kappaleen potentiaali

Gravitaatiokenttd on erikoinen kenttd: mikali se on stationaarinen eika
siis ajasta riippuvainen, se on konservatiivinen. Tama merkitsee, ettd
kappale, joka liikkuu kentén sisélld suljettua reittid pitkin, ei ole matkan
suoritettuaan menettdnyt eika voittanut energiaa. Tamén ansiosta voi
kiinnittdd jokaisen kentdn pisteelle yksiselitteisesti “tarran”, johon voi
merkitd yksikko- eli koemassan energiamédran, jonka se on voittanut tai
menettinyt matkustaessaan sovitusta lihtdpisteesti kyseiseen pisteeseen.
Tarraan kirjoitettua arvoa kutsutaan potentiaaliksi.

Huomaa, ettd 1dhtopisteen valinta on mielivaltainen. Tahdn merkitta-
vddn asiaan palataan myohemmin.

Pistemdisen kappaleen M ndin maaritelty potentiaalifunktio on

GM
V= 0 t=|r—R]. (1.4)

®Vektorin kirjoitustapana kiytetdan joko muotoa V' (nuolta kirjaimen yldpuolella) tai
v-kirjainta (lihavoituna). Tdssd kdytetddn mahdollisuuksien mukaan lihavointia.
7Tama merkitsee, ettd [|i|| = [[j| = [[k|| = 1ja(i-j) = (i-k) = (j-k) =0, jossa
normin mééritelma on ||al|| & (a-a),ja {a-b) on avaruuden vektorien a ja b
skalaaritulo.
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Vakiolla GM on maapallon tapauksessa (GRS80-jdrjestelmdn mukainen,
konventionaalinen) arvo

GMg = 3,986 005 - 10" m’/¢,
Tamaéan hetken paras mittauksiin perustuva arvo on hieman tarkempi:
GMg = 3,986004418 (8) - 10" m’/e,

Suluissa oleva luku (8) on mittausarvon epavarmuus viimeisen annetun

desimaalin yksikdissa. Suhteellinen epavarmuus on siis 2 : 107.

1.4 Pallon muotoisen kuoren potentiaali

Voimme kirjoittaa yhtdlon 1.4 perusteella laajan kappaleen M potenti-
aalin seuraavaan muotoon:

dm(R) dm(R)
V=6 [ = =6, r—R|’ (15)

Tama on integraali kappaleen massa-alkioiden dm yli, jossa jokainen

massa-alkio sijaitsee omalla paikallaan R. Potentiaali V lasketaan pai-
kalla 1 ja etdisyys { = ||r — R]].

Johdamme nyt ohuen pallon muotoisen kuoren potentiaalin yht&lon,
katso kuva 1.2, jossa olemme laittaneet pallon keskipiste origoksi O.

Koska kapean rinkulan, leveys b - d6, ympéarysmitta on 27tb sin 6, on
sen pinta-ala
(2rtbsin0) (b - dO) .

Olkoon kuoren paksuus p (pieni) ja sen ainetiheys p. Saamme rinkulan
kokonaismassaksi
27tppb? sin 0 d6.

Koska rinkulan jokainen piste on samalla etdisyydelld { pisteestd P,
voimme kirjoittaa rinkulan potentiaaliksi pisteessa P:

_ 2nGppb?sin 0 dO

Vp .
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Kuva 1.2. Pallon ohut kuori koostuu renkaista.

Kosinisaannon avulla,
0> =1% +b? —2rbcos o, (1.6)
saadaan yhtdlon 1.5 avulla koko kuoren potentiaaliksi

- 5 sin 0 dO
Vp = 27tGppb j \/rz + b2 —2rbcos O '

Tamaén integraalin laskemiseksi muutetaan integrointimuuttuja 0:sta

(:ksi. Differentioimalla yht&l6 1.6 saadaan

£d{ =1rbsin 0 do,

ja muistamalla, ettd { = v/r2 + b2 — 2rb cos 0, saadaan

Vp — 2nGppb? ;2 %.
Siind tapauksessa, ettd piste P on kuoren ulkopuolella, ovat muuttujan
{ integrointirajat {; = r — b ja {, = v + b, ja pisteen P potentiaaliksi
saadaan

L7170 4nGppb?
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Koska koko kuoren massa on M, = 4mb?pp, seuraa, ettd kuoren
potentiaali on sama kuin sen keskipisteessi O olevan samansuuruisen massan

potentiaali:
GM
Vp = Tb,
jossa T on laskentapisteen P etdisyys pallon keskipisteestd O. Ndahdédan,

ettd tdmd on identtinen yhtélon 1.4 kanssa.

Pallon kuoren aiheuttama vetovoima, tarkemmin kiihtyoyys, on®

ap — VV’P — _47.[Gppb2rp;—3ro — —GMb rP ;TO)

jossa T = ||[rp — T . Tdmad tulos on identtinen samanmassaisen, pis-

teessd O sijaitsevan, pistemassan aiheuttaman kiihtyvyyden kanssa,
yhtdlo 1.2.

Siind tapauksessa, ettd piste P on kuoren sisdpuolella, {; =b —1ja
{, = b +1,ja ylld oleva integraali muuttuu seuraavaksi:

) {=b+r

Vp = 2nGppb? [E] o 4ntGppb.

Kuten ndhdddn, timéa on wakio eikd riipu pisteen P paikasta. Siksi
VVp = 0ja vetovoima potentiaalin gradienttina haviaa.

Lopputulos on, ettd pallon muotoisen kuoren vetovoiman suuruus
on, kuoren ulkopuolella,

GM

a=la| =<3,

jossa M on kuoren kokonaismassa ja v = ||rp — ro|| havaintopisteen
etdisyys kuoren keskipisteestd. Vetovoima hédvidd kuoren sisalla.

Kuvassa 1.3 on piirretty potentiaalin ja vetovoiman — tarkemmin
kithtyvyyden, joka on vetovoima per massayksikké — kayrét. Jos
kappale koostuu monesta sisdkkdisestd pallon kuoresta, kuten melko
tarkasti maapallo ja useimmat taivaankappaleet, osallistuvat kappaleen

8Tassa kaytetdan V (nabla) -operaattoria, josta lisdd osiossa 1.5.



Vetovoiman laskeminen potentiaalista 1.5

|
|
Kiihtyvyys
. b 2
4nGpp =)
4ntGppb
b
4nGppb -
Potentiaali
0
0 b —T

Kuva 1.3. Potentiaalin ja vetovoiman riippuvuus etdisyydestd r pallokuoren
keskipisteesta.

sisdisen vetovoiman muodostukseen vain ne massakerrokset, jotka ovat
havaintopisteen “sisdpuolella”, siis ldhempéna keskipistettd. Vetovoima
on sama kuin silloin, jos kerrosten koko massa olisi keskitetty kappaleen
keskipisteeseen. Tapausta, jossa massatiheysjakauma kappaleen sisalla
riippuu ainoastaan etdisyydestd sen keskipisteestd eikd leveys- tai
pituusasteesta, kutsutaan isotrooppiseksi tiheysjakaumaksi.

1.5 Vetovoiman laskeminen potentiaalista

Kuten ylld argumentoitiin, on potentiaali V polkuintegraali. Kdantden
voidaan potentiaalista laskea gravitaation kiihtyvyysvektorin kompo-
nentit differentioimalla V(x,y, z) paikan suhteen eli soveltamalla gradientti-
operaattoria, joka on vektorioperaattori:

OV eraqy Y4, AV OV
a=VV=gradV = Lt ay]—l— aZk. (1.7)

Tassd symboli V (nabla) on usein kaytetty osittaisdifferentiaalioperaattori

I
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Kuten ennen, {i, j, k} on euklidisen avaruuden keskendan kohtisuorien
yksikkovektorien ortonormaali kanta. Vektorit ovat samansuuntaisia
(x,y,z)-akseleiden kanssa.

Kokeillaan tdtd differentiointia massapisteen M potentiaalikentdan
tapauksessa. Sijoita ylld olevat potentiaalin V ja etdisyyden { yhtdlot 1.3

ja1.4°:
ov _ovol _ 1 x=X_ ~ax—=X
- otx - M T T M
Vastaavasti lasketaan y- ja z-komponentit:
V__em¥=Y V__omz=<
B GM B 0z GM e

Nama ovat gravitaation kiihtyvyys- eli vetovoimavektorin komponen-
tit, kun kentdn ldhde on yksi massapiste M. Tdssd konkreettisessa
tapauksessa yllda annettu vektoriyhtdld 1.7 siis pétee:

a=gradV =VV.

Huomautus Fysikaalisessa geodesiassa — toisin kuin fysiikassa — po-
tentiaali lasketaan aina positiiviseksi, jos vetdvd massa M on
positiivinen, kuten tiettdvasti aina on. Kuitenkin kappaleen m po-
tentiaalienergia massan M kentdssd V on negatiivinen! Tarkemmin
esitettynd kappaleen m potentiaalienergia on

Epot - —Vm.
9Yhtalosta
1
b= x =X+ =Y+ (z—2) = (x=X7+ =¥+ (z-2?) /2
seuraa ketjusddnnon avulla
1
ot (=X 4y -V +(-2)) 8 =X _
™ (k=X + Y-+ (- 2)7) 0x
=1/2 x—X

(=X +y-V?+@-27%) 7 2x-X) =

N[—=



Kiintein kappaleen potentiaali 1.6

Gravitaation kiihtyvyysvektoria kutsutaan lyhyemmin gravitaatio- eli
vetovoimavektoriksi.

1.6 Kiintean kappaleen potentiaali

Seuraavaksi tutkitaan kiintedid kappaletta, jonka massa on jakautunut
avaruudessa eikd sitd siis ole keskitetty yhteen pisteeseen. Esimer-
kiksi maapallon massajakauma avaruudessa voidaan kuvata aineen
tiheysfunktiolla p:
dm(x,y,z)
p(x,y,2) = W%»

jossa dm on massa-alkio ja dV vastaava avaruuden tilavuusalkio. p:n
dimensio on tiheys ja yksikkd SI-jdrjestelméssé *g/m?.

Koska gravitaation kiihtyvyys 1.7 on lineaarinen lauseke potentiaa-
lissa V ja voima- tai kiihtyvyysvektorit voidaan summata lineaarisesti,
seuraa siitd, ettd myos kappaleen kokonaispotentiaali saadaan summaa-
malla kaikki sen osien potentiaalit yhteen. Esimerkiksi n massapisteen
kokoelman potentiaali on

_ nm:
T)—G; ei ZHT— IH’

josta saadaan gravitaation kiihtyvyys yksinkertaisesti soveltamalla
gradienttilausetta 1.7.

Kiintedn kappaleen potentiaali saadaan vastaavasti korvaamalla sum-

10

ma integraalilla seuraavalla tavalla

f j j kappale dm jfj kappale V. (1.8)

Symboli p integraalin sisdlld merkitsee aineen tiheyttd tilavuusalkion

dV paikalla. Suure { = ||[r — R|| = \/(x X+ y—-Y)?+(z—2)*on

'OValitettavasti potentiaalille ja tilavuudelle kéytetddn ldhes samoja symboleja Vja V.
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potentiaalin laskentapisteen ja vetdvan massa-alkion vilinen etdisyys.
Selvemmin:

V(x,y,z) = G fffkappale \/(x —X)?

p(X,Y,Z)
+y-Y?’+(z—2)

dXdydZ.

Kuten edelld nédytettiin massapisteiden tapauksessa, on myds kiintedn
kappaleen potentiaalin V ensimmdinen derivaatta paikan suhteen eli
gradientti,

gradV=VV = q, (1.9)

kappaleen vetovoiman aiheuttama kiihtyvyysvektori. Tama pétee ylei-
sesti.

1.6.1 Kayttaytyminen aarettomyydella

Jos kappale on dérellisen kokoinen — toisin sanoen kokonaan e-siteisen,
origoa ympdrdivan pallon sisdlld — ja sen tiheyskin on kaikkialla
rajallinen, seuraa, ettd

Ir]| 00 = V(r) =0,
koska kolmioepédyhtadlon mukaan
t=[lr =R[| = [lr[ = [R]| >[I} —e

ja siis
v 200 = T/g—o0.

Gravitaation kiihtyvyyden kaikille kolmelle komponentille, siis myds
vektorisuureen pituusarvolle, patee sama:

Ir]| = 00 = [VV] = o0.

Tulosta voi vield tarkentaa: jos ||| — oo, on taas kolmioepayhtadlon
mukaan
t=llr =Rl <l +[R] <l +e,



Esimerkki: Massaviivan potentiaali 1.7

ja siis

1 1 1 1 1 1 1 1

Irl[+e =€ = vl —e [Tl +e/jr) ~ € T vl —e/jr|

Nédemme taas notaatiolla r = ||r||, ettd
roo0 = /i =1/,

Kun sijoitetaan tdma integraaliin 1.8, seuraa, ettd suurille etdisyyksille

V=6 [ 297 % [ff P9 =55

jossa M, tiheyden integraali kappaleen tilavuuden yli, on juuri sen koko-

T — 00!

naismassa. Tastd ndhdddn, ettd suurella etdisyydelld darellisen kokoisen
kappaleen M kenttd on lihes identtinen sen kentdn kanssa, joka aiheu-
tuu pistemassasta, jonka massa on sama kun kappaleen kokonaismassa.
Tamaén tdrkedn havainnon teki jo Newton. IImioén ansiosta voimme
aurinkokunnan taivaanmekaniikassa késitelld Aurinkoa ja planeettoja'’
massapisteind, vaikka tiedetddn, ettd ne eivit sitd ole.

1.7 Esimerkki: Massaviivan potentiaali

Pystyasennossa olevalla massaviivalla, jonka lineaarinen massatiheys
on yksi, on potentiaali

1
P (Y =y +(Z2-2)

dz, (1.10)

V(x,1,z) GfH
%Y,2) =G | \/
(X—x)

jossa (X,Y) on massaviivan paikka tasossa, (x,y,z) on potentiaalin
laskentapisteen paikka, ja massaviiva ulottuu merenpinnalta Z = 0
korkeudelle Z = H.

' Ainoa merkittidva poikkeus ovat planeettojen ja niiden kuiden véliset voimat sekd
planeetan litistyneisyyden ettd vuorovesi-ilmion takia.
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Kirjoitetaan ensin Ax = X —x, Ay = Y —yja Az = Z —z,ja potentiaa-
lista tulee

1

d(Az).
VAX2 + Ay? + Az?

H—z
V(Ax, Ay, Az) = G L

Integraalifunktio on

ln<Az +VAX2 + Ay? + AZZ>

ja integrointirajojen sijoitus antaa

H—z+ \/Ax2+Ay2+(H—z)2
—z+ \/AX2 + Ay? + 22

V=GIn

Kehitetddn tama Taylorin sarjaksi muuttujassa H pisteen H = 0 ympéiri:
yhtdlon 1.10 ensimmaéinen derivaatta on

v _ G _G
Mo Jx—xPrv—yP+ -2

jossa {(H) = \/(X —x)* 4 (Y= y)z + (H — z)%. Toinen derivaatta saa-
daan ketjusdannon avulla:

2V _ 2 (G)ZG.OE‘ o _

dHZ ~ oH\ ¢ of OoH
_ _ H—
=G- 210" 2(H—2) =—G€—32.
Kolmas derivaatta, laskettu samalla tavalla:
¥V _ 0 (Hz)_(3H-2" 1) _
oH3 oH\ N > B)
N2 2
_ G3 (H—2z)"—1¢
€ ’
ja niin edelleen. Taylorin kehitelmd on
Y
Vl -0 A a‘24V|H:o =0
VH /1\ 1~ Z g2 | 1 322—% 3
V= 0 +G6G,-H+5365H +:G H> +--- (1.11)

lo 0 0



Laplacen ja Poissonin yhtdilot 1.8

jossa {p = \/ (X—x)*+ (Y= y)z + 22, siis tdssd kehitelmdssd kdytetyt
derivaattojen arvot saadaan sijoittamalla H = 0.

Kysymys Miten voisimme kayttdd tdtd tulosta kokonaisen, realistisen
maaston eli topografian gravitaatiopotentiaalin laskemiseen?

Vastaus Tissi kehitelméassd kertoimet 1/, % z/ (3, ..., kuten {o, riip-
puvat vain koordinaattien erotuksista Ax =X —xjaAy =Y —vy,
massaviivan paikan (X, Y) ja laskentapaikan (x,y) valillda —ja las-
kentapaikan korkeudesta z. Jos maasto on annettuna hilan muo-
dossa, voidaan arvioida ylld oleva kehitelma 1.11 termi kerrallaan
annetulle z-arvolle ja kaikille mahdollisille (Ax, Ay)-arvopareille.
Jos hilan koko on vaikkapa N x N, tarvitaan vain N laskutoimi-
tusta jokaisen kertoimen laskemiseksi. Itse Taylorin kehitelman
evaluointi raa’alla laskentavoimalla koko maastolle, siis kaikille
sekd maaston ettd laskentatason hilapisteille, vaatii sen jdlkeen
N? . N? = N* laskutoimitusta, mutta ne ovat nyt yksinkertai-
sempia: kertoimet on jo esilaskettu. Ja raaka voima ei ole edes
paras ratkaisu: kuten tulemme ndkemdédn, voidaan ylld oleva
konvoluutio laskea paljon nopeammin FFT:n (nopean Fourier'n
muunnoksen) avulla.

Palaamme tdhdn aiheeseen laajemmin maastokorjauksen yhtey-
dessd osioissa 6.3 ja 9.7.

1.8 Laplacen ja Poissonin yhtalot

Geopotentiaalin foinen derivaatta paikan suhteen eli gravitaation kiih-
tyvyysvektorin ensimmdinen paikan derivaatta eli sen divergenssi on
my0s geofysikaalisesti mielenkiintoinen. Voidaan kirjoittaa:

diva ¥ (V.a)=(V-(VV)=(V-V
aZ 2

0
V+ ayzv+ aZZV, (1.12)

)
d

:AV:aX

V =
2
2
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jossa
def _0? 02 02
A=(V-V)= ax2+6y2+azz

on tunnettu symboli nimeltd Laplacen'* operaattori.

Massapistepotentiaalin yhtdlostd 1.4 voidaan osoittaa suorittamalla
kaikki osittaisdifferentiaatiot 1.12, etta

AV =0, (1.13)

tunnettu Laplacen yhtild. Tama yhtdlo pétee pistemassan ulkopuolella
ja yleisemmin kaikkialla tyhjdssd avaruudessa: kaikkien massojenhan
voidaan limiitissd katsoa koostuvan pistemadisistd massa-alkioista. Tai
yhtélossa 1.8 voidaan suoraan differentioida kolminkertaisen integraali-
merkin sisdlld kdyttden hyviksi sitd, ettd integraalin ja osittaisderivaatan

vaihtaminen keskendén on sallittua, jos molemmat ovat olemassa.

Potentiaalikenttad, jolle Laplacen yhtdlo 1.13 pétee, kutsutaan harmo-
niseksi kentaksi.

Siind tapauksessa, ettd massatiheys ei ole kaikkialla nolla, saadaan
toisenlainen yhtilo, jossa p on massatiheys:

AV = —4AnGp. (1.14)

Tata yhtdloa kutsutaan Poissonin'3 yhtildksi.

Yhtélopari
gradV = a, diva = —4nGp

tunnetaan gravitaatiokentdn kenttiyhtdildind. Niilld on samanlainen roo-
li kuin sahkomagnetismissa Maxwellin'4 kenttdyhtdloilld. Toisin kuin

"?Pierre-Simon markiisi de Laplace (1749-1827) oli ranskalainen matematiikan ja
luonnontieteiden yleisnero. Han on yksi niista 72 ranskalaistiedemiehestd, insin6dristd
ja matemaatikosta, joiden nimet kaiverrettiin Eiffel-torniin, Eiffel Tower, 72 names.

'3Siméon Denis Poisson (1781-1840) oli ranskalainen matemaatikko, fyysikko ja
geodeetti, yksi Eiffel-tornin 72 nimestd, Eiffel Tower, 72 names.



Mittainvarianssi 1.9

Maxwellin yhtdloissé, ylld olevissa ei ole aikakoordinaattia mukana.
Téastd syystd niiden avulla ei voida johtaa yhtédlod, joka kuvaa Maxwel-
lin sahkomagneettisten aaltojen vastaavien gravitaatioaaltojen kulkua
avaruudessa.

Nykyisin tiedetddn, ettd ylld olevat “Newtonin kenttdyhtdlot” ovat
vain likimé&ardisid ja ettd tarkempi teoria on Einsteinin yleinen suhteelli-
suusteoria. Kuitenkin fysikaalisessa geodesiassa Newtonin gravitaatio-
teoria on yleensd riittdvin tarkka, ja tulemme rajoittumaan siihen.

1.9 Mittainvarianssi

Potentiaalin tdrked ominaisuus on, ettd jos siihen lisdtddan vakio C,
mikddn gravitaatioon liittyvad mitattavissa oleva suure ei muutu. Tama
on esimerkki niin kutsutusta mittainvarianssista (engl. gauge invariance).

Gravitaatio itse saadaan differentioimalla potentiaali: toimitus havit-
tad vakiotermin. Siksi potentiaalin méaarittely on mielivaltainen: kaikki
eri C:n valinnalla saadut potentiaalikentdt V ovat samanarvoisia.

Havainnoistakin saadaan vain potentiaalieroja, kuten vaaitsijat hyvin
tietavat.

Usein valittu potentiaalin méaéaritelma ldhtee siitd, ettd jos v = ||r|| —
oo, silloin myds V. — 0, mikad on fysikaalisesti jarkevd ja antaa yk-
sinkertaisia yhtdloitd. Kuitenkin maanpaéaéllisessd tyOssd jarkevampi
vaihtoehto voi olla V = 0 keskimerenpinnan kohdalla — vaikka sekddn

ei ole ongelmaton.
Esimerkiksi Maan massalle Mg, fysikaalisesti jarkevd potentiaalin

esitys on palloapproksimaatiossa

GMg

T )

V=

'4James Clerk Maxwell FRS FRSE (1831-1879) oli skotlantilainen fyysikko ja sahko-
magnetismin kenttdyhtdldiden keksijd. Han 16ysi yhtdloiden aaltomaisen ratkaisun ja
tunnisti valon sellaiseksi sen kulkunopeuden perusteella.
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joka hdvida ddrettdbmyyteen v — oo, kun taas geodeettisesti jarkeva
esitys olisi
GMg GMg

r R

jossa R = ||R|| on maapallon sdde. Jalkimmadinen potentiaali on nolla,

V=

siind missd r = R, pallon muotoisen Maan pinnalla eli “merenpinnalla”.

Limiitissd r — oo potentiaalin arvo on — GMg / R eika nolla.

1.10 Yksinkertainen massatiheyskerros
Jos kappaleen pintaan S levitetddn massan “pinnoite” massatiheydelld

« — dm
- ds
saadaan potentiaaliksi integraaliyht&l, joka on muuten samannédkdinen
kuin yhtalo 1.8, mutta pintaintegraali:

V=06 jjpinta dTm =G .J:[pinta % ds. (1.15)

Tassd taas { on etdisyys potentiaalin laskentapisteen ja integroinnissa
liikkkuvan massa-alkion dm — tai pinta-alkion dS — viililla. Massa-
pintatiheyden k dimensio on ks/m?, siis erilainen kuin tavallisen eli
tilavuuden massatiheyden dimensio, joka on k8/m?.

Tama tapaus on teoreettisesti mielenkiintoinen, vaikkakin fysikaali-
sesti epdrealistinen. Funktio V on néet kaikkialla jatkuva, myos pinnan S
kohdalla. Kuitenkin jo sen ensimmadiset derivaatat paikan suhteen ovat
epédjatkuvia. Tamé epdjatkuvuus ilmenee pinnan suhteen kohtisuorassa
olevassa suunnassa, normaaliderivaatassa.

Tutkitaan yksinkertaista tapausta, jossa pallo, sdde R, on pinnoitettu
kerroksella, jonka pintatiheys on vakio k. Laskemalla ylla oleva inte-
graali 1.15 voidaan todistaa — monimutkaisesti, katso osio 1.4 — ettd
ulkoinen potentiaali on sama, kuin jos pinnoitteen koko massa olisi
pallon keskipisteessda. Myos osiossa 1.4 tuli todistetuksi, ettd pallon
sisdinen potentiaali on vakio.



Kaksinkertainen massatiheyskerros 1.11

Siten ulkoinen vetovoima (r > R), jossa r on laskentapisteen etdisyys
pallon keskipisteestd, on

au(r) = GYM2 . G%f‘zz — 4Gk (E)Z.
Sisdinen vetovoima (r < R) on
asis (1) = 0.
Tama merkitsee, ettd pallon pinnalla, r = R, vetovoima on epdjatkuva:
auk(R) — asis(R) = 4nGk.

Tassd symmetrisessd tapauksessa ndhdaan, etta

a=aff = (1.16)

mn
jossa differentiointimuuttuja n edustaa normaalisuuntaa eli pintaan
S ndhden kohtisuorassa oleva suunta. Jos pinta S on potentiaalin V
tasapotentiaalipinta, patee yhtdlo 1.16 yleisesti. Silloin vetovoimavektori
— tarkemmin kiihtyvyysvektori — on kohtisuorassa pintaan S ndhden
ja sen suuruus on sama kuin potentiaalin normaaliderivaatta.

1.11 Kaksinkertainen massatiheyskerros

Kaksinkertainen massatiheyskerros voidaan tulkita dipolitiheyskerroksek-
si. Kerroksen dipolit ovat orientoituneet pinnan normaalin suuntaan.

Jos dipoli koostuu kahdesta ”“varauksesta” m ja —m paikoilla r; ja 1,
siten, ettd niiden vélinen sijaintierovektori on Ar = r; — 1, on dipolin
momentti d = m Ar, vektorisuure. Katso kuva 1.4.

Olkoon dipolikerroksen pintatiheys

_dp
H— ds)

jossa dD on “dipolikerrosalkio”. Tdma kerros voidaan katsoa kahden
yksinkertaisen kerroksen yhdistelméksi. Jos on positiivinen kerros
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Kuva 1.4. Kaksinkertainen massatiheyskerros.

tiheydelld « ja negatiivinen kerros tiheydelld —k ja niiden vélinen
etdisyys on §, syntyy pienilld d-arvoilla likimddrdinen vastaavuus:
U~ K. (1.17)

Edellisen osion mukaan, yhtdl6 1.15, kahden yksinkertaisen massati-
heyskerroksen yhteenlaskettu potentiaali on

V=G ffpinta : <€]_1 B 21_2) ds.

Suureiden {1, £, ja 6 vélilld pétee seuraava yhteys (funktion 1 / ¢ Taylorin

kehitelma): 1 1 5 1
T SRR T (ORI
jossa % on suureen derivaatta pinnan normaalisuuntaan.

Sijoittamalla yhtdloon saadaan

VG ijmta an( ) d5 =G jjpmta Hon (1) ds- (1.18)



Gaussin divergenssilause 1.12

Limiitissd, jossa & on mielivaltaisen pieni ja k vastaavasti suuri, tima
yhtdlo, kuten yhtdlo 1.17, patee eksaktisti.

On helppo néyttad, ettd ylla oleva potentiaali ei ole jatkuva. Epdjat-
kuvuus tapahtuu pinnalla S. Tutkitaan taas yksinkertaisuuden vuoksi
palloa, jonka sdde on R ja jossa on kaksoiskerros vakiodipolitiheydelld

L.

Ulkoinen potentiaali (r > R, T etdisyys pallon keskipisteestd) on

Ve = Gufjpmta %(%) ds =0,

koska potentiaali on kahden samankeskisen ja samanmassaisen pallo-
kuoren potentiaalien erotus.

Sisdinen potentiaali (r < R) on

valitsemalla pintaintegraalin evaluointi- eli laskentapisteeksi pallon
keskipiste ja kdyttamalld aiemmin todettua seikkaa, ettd yksinkertaisen
vakiotihedn massatiheyskerroksen peittimén pallon sisédlld potentiaali
on vakio.

Nyt limiitissd r — R tulos on erilainen ulkopuoliselle ja sisdpuoliselle
potentiaalille. Ero on

Vulk(R) - vsis(R) - 4716“

1.12 Gaussin divergenssilause

1.12.1 Esitys

Fysiikan kuuluisa Gaussin'> divergenssilause on vektorimuodossa

[[] divaav =[] (a-m)ads, (119)

*5Johann Carl Friedrich Gauss (1777-1855) oli saksalainen matemaatikko ja yleisnero.
" Princeps mathematicorum” .
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Kappaleen
pinta

Kuva 1.5. Gaussin divergenssilauseen graafinen selostus. Kenttiviivan kisite
oli Michael Faraday’n oivallus. Vo on skalaaritulo {(a - n).

jossa n on pinnan S ulkoinen normaali, nyt vektorina: vektorin pituus
oletetaan ||n| = 1. 9V on kappaleen V koko pinta.

Tama lause pétee kaikille differentioitaville vektorikentille a ja kaikille
“kunnollisille” kappaleille V, joiden pinnalla 0V on olemassa kaikkialla
normaalisuunta n. Toisin sanoen tdma ei ole gravitaation kiihtyvyys-
vektorin erikoisominaisuus, vaikka se pétee sillekin.

1.12.2 Intuitiivisesti

Huomautettakoon, etti*®

diva = AV = —4nGp

16Qlettaen, ettd vektorikentille a potentiaali V on olemassa, katso osio A 4.
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on lihdefunktio. Se edustaa, paljonko pinnan 9V sisdpuolella olevassa
osa-avaruudessa on gravitaatiokentdn positiivisten ja negatiivisten
“ldhteiden” ja “nielujen” tiheyksid (engl. sources and sinks).

Tilanne on analoginen nesteen virtauskuvion kanssa: positiiviset
varaukset vastaavat pisteisiin, joista lisdtddn nestettd virtaukseen, nega-
tiiviset varaukset'” vastaavat “nieluihin”, joiden kautta nestettd havida.
Vektori a on tdssa vertauskuvassa virtauksen nopeusvektori, joka “1&h-
teiden” ja “nielujen” puuttuessa tdyttdd ehdon div a = 0, miké ilmaisee
ainemddran sdilymisen ja kokoonpuristumattomuuden.

Toisaalta funktiota

oV
<a'“>:ﬁ

kutsutaan usein vuofunktioksi (engl. flux), joka kertoo, paljonko kenttaa
“vuotaa ulos” nestevirtauksen tavoin pinnan 9V sisdiseltd avaruuden
osalta.

Gaussin divergenssilause toteaa, ettd molemmat madrat ovat yhta
suuret: se on tavallaan kirjanpitolause, joka vaatii, ettd kaiken, mika
tuotetaan pinnan sisdlld, div a, on tultava my0s ulos pinnan kautta,
(a-n).

Kuvassa 1.5 on graafisesti selostettu, ettd “1ahteiden” summan kap-
paleen sisdisen avaruusosan yli, ) (+++---), on oltava yhtd suuri
kuin “vuon” summa ) (117 ---) koko sisdistd avaruusosaa rajoittavan

reunapinnan yli.

1.12.3 Gaussin divergenssilauseen potentiaaliversio

Kirjoitetaan Gaussin divergenssilause hieman eri tavalla kdyttamalla
potentiaalia V gravitaatiovektorin sijasta:

va AVdY = Hav % ds, (1.20)

'7Mutta gravitaation “varaukset” eli massat ovat aina positiivisia.
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Kuva 1.6. Pieni suorakulmainen laatikko.

jossa on tehty ylld annetut sijoitukset. Tassdkin ndkyy kappaleen V
pintaa tarkoittava kirjoitustapa 0V. Esitystavat 1.20 ja 1.19 yhdistavat
yhtdlot 1.12 ja 1.9 potentiaalin V ja gravitaatiovektorin a valilla.

1.12.4 Esimerkki 1: pieni laatikko

Tutkitaan pientd suorakulmaista laatikkoa, jonka sivut ovat Ax, Ay ja
Az. Laatikko on niin pieni, ettd kenttd a(x,y,z) on sen sisdlld ldhes
lineaarinen paikan funktio. Kirjoitetaan vektori a komponentteihin:

a=aqi+ aj + aszk.

Nyt tilavuusintegraali

. ~ a(11 E)az 6a3
H divadvs ( ot ot s ) AxAyAz  (1.21)

kun taas pintaintegraali

[T fa-myas ~

~(a] —a7)AyAz+ (a3 —a; ) AxAz + (a3 — a3 ) Ax Ay.
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Téassd a] on komponentin a; arvo toisella tahkolla x-suunnassaja a; sen
arvo toisella tahkolla ja niin edelleen. Esimerkiksi aj on komponentin
as arvo laatikon yld- ja a; alatahkossa. Laatikolla on tiettdavasti kuusi
tahkoa, tahko jokaisen kolmen koordinaattisuunnan “yla- ja alavirrassa”.

Silloin

-+

,Nacu

ox

9ay
ay

+ — . 0as
Ay, a3 —az = z>Az,

Ax, al —a;, ~
) 2 2 az

ja sijoittamalla ndhd&an, etta

[[NCEEEE
oa

~ %1 Ay 993 5y . 903 A, . _
. Ax - Ay Az + 3y Ay - Ax Az + 9% Az - Ax Ay =

o a(l] a(lz a(l3
= < 3 + 3y + aZ)AxAyAz,

sama lauseke kuin 1.21. Tdssd yksinkertaisessa tapauksessa Gaussin

divergenssilause siis pétee.

IImeisimmin yht&lo patee my®os, jos ndistd “Lego™-palikoista” raken-
nettaisiin suurempi kappale, koska eri palikoiden toisiinsa koskevat
vastaavat pinnat ovat vastakkaisesti orientoituneet ja kumoavat toisiaan
koko kappaleen pintaintegraalissa. Hieman vaikeampi on todistaa, etta
yhtdlo péatee myos kappaleille, joilla on vinopintoja.

1.12.5 Esimerkki 2: Poissonin yhtalo pallolle

Poissonin yhtédlén 1.14 mukaan
AV = —4nGp. (1.14)

Oletetaan pallo, sdde R, jonka sisélld massitiheys p on vakio. Tilavuusin-
tegraali pallon yli antaa

[[[,avav =—4nGo [[[ av=—4nGpV =—4nGM,  (1.22)

jossa M = pV on pallon kokonaismassa.
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Kuva 1.7. Kahdeksan yksikon kuutio.

Pallon pinnalla normaaliderivaatta on
ov _ 0 GM GM

R_ﬁr 'r:R__Rz)

vakio, ja sen integraali pallon pinnan yli on

_ GM «_ GM , o
jfav S 4S = == S = == - 4nR? = —4nGM. (1.23)

Tulokset 1.23 ja 1.22 ovat identtisid, kuten Gaussin divergenssilause 1.20
edellyttaa.

1.12.6 Esimerkki 3: pistemassa kahdeksan yksikén kokoisessa
kuutiossa

Katso kuva 1.7. Oletetaan, ettd on pistemassa kuution keskipisteessd,
jonka suuruus on GM. Kuution sivutasot ovat koordinaattitasot x = £1,
y = £1ja z = £1. Silloin tilavuusintegraali on

ﬂ LAVAY = —4nGM fﬂv §(r) dV = —4nGM,
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jossa 8(r) on Diracin'® deltafunktio avaruudessa, jolla on déreton piikki
origossa, jonka arvo on nolla muualla ja joka tuottaa arvoa 1 tilavuusin-
tegraaleissa.

Pintaintegraali on kuusi kertaa kuution yldpinnan integraali

amas e ([ s

L4y +1)72

Integrointi koordinaatin x suhteen (suurissa suluissa oleva lauseke)

antaa
+1
+1 1 B X B
f1 3/ dx =13 /2 + 12 -
x4y Y2+ 1) vx*+y>+1]
2

(Y2 +1)y2+2
Integrointi koordinaatin y suhteen antaa

+1

jH 2 dy = 2arctan —2—
1T Y+ 1) Vyr+2 Vy2+2

—1

_ J 42
= 4 arctan NG =4 g = 3™
Summaamalla kaikki kuusi tahkoa yhteen saadaan
1 1
—6-6M [ (ﬁ L dx>dy=—6-GM-§n=
AT (g2 1)%2
= —4nGM,

sama tulos kuin ylld oleva tilavuusintegraali.

18Paul Adrien Maurice Dirac (1902-1984) oli englantilainen kvanttifyysikko, elek-
tronin relativistisen aaltoyhtdlon 16ytéjd ja antiaineen teoreettinen keksija. Han oli
fysiikan nobelisti 1933 yhdessd Erwin Schrodingerin kanssa. Hanen uskotaan myos
olleen autismin kirjolla (Farmelo, 2011).
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1.13 Greenin lauseet
Kaytd Gaussin divergenssilausetta vektorikenttddn
F=UVV.

Tassa U ja V ovat kaksi eri skalaarikenttdd. Saadaan

[[f, divEav = [[[ (v-uvv))av =
= JJJ,u(v- vy vav fff (vu-vv)av =
Il waver JIf (S50 Sy < %) @
ja
J‘anv<F.n>dS:J]av<uvv'n> dSZJ‘J‘aVU<VV‘T1>dS:

— f avu—ds

Tulos on Greenin'® ensimmidinen lause:
ou E)V ouov A ouov .
fff U.AVdV—i—ffj (ax ox ay@—FO_ZG_Z) dv =

o f oV U—dS

Yhtdlo voidaan siivota, koska vasemman puolen toinen termi on symrmet-
rinen skalaarikenttien U ja V keskindisen vaihdon suhteen. Vaihdetaan
siis U ja V keskenddn ja vahennetddn saadut yhtdlot toisistaan. Tulos on
Greenin toinen lause:

[[f, uav—vawav=[[ (u$¥-vel)as.

Oletamme kaikissa toimituksissa, ettd funktiot U ja V ovat “hyvin
kayttaytyvid”: esimerkiksi kaikki tarvittavat derivaatat ovat kaikkialla
kappaleessa V olemassa.

9George Green (1793-1841) oli itseoppinut Nottinghamin ldhelld myllarina leipansa
ansainnut brittildinen matemaattinen fyysikko. Han keksi my6s sanan “potentiaali”.
Green (1828); O’Connor ja Robertson (1998); Green’s Windmill.
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Etéisyys {
- Pinta-alkio dS

Pinta-
v normaali
n

Kappale V
1 Pinta S =0V

Kuva 1.8. Geometria Greenin kolmannen lauseen johtamiseksi, jos piste P on
pinnan 0V ulkopuolella.

Hyodyllinen erikoistapaus on se, jossa funktioksi U valitaan

jossa £ on etdisyys annetusta laskentapisteestd P. Tama funktio U on
hyvékadytoksinen kaikkialla paitsi pisteessd P, jossa sitd ei ole médritelty.
Siind tapauksessa, ettd piste P on pinnan 0V ulkopuolella, tulos,

Greenin kolmas lause, saadaan nyt sijoittamalla (muista, ettd pinnan 0V
sisdlld patee AU = 0):

1T, tavav=[f, (t3e -vE (1)) as.

Tama tapaus on piirretty kuvassa 1.8.

Siind tapauksessa, ettd piste P on pinnan 0V sisdpuolella, laskenta
mutkistuu jonkin verran. Tutustutaan sithen ovelaan tekniikkaan, joka
tdssd tapauksessa — kuten muissakin — auttaa.

Muodostetaan pieni e-sdteinen pallero V, pisteen P ympari; nyt
voimme maéadrittdd muodollisesti kappaleeksi V def V1 —V,, "reikdjuusto”,
ja samalla sen pinnasta 0V tulee kaksiosainen pinta, 0V = 0V; + 0V,.
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Nyt tilavuusintegraali voidaan kirjoittaa kahteen osaan:

JIf, bavav = [ff, lavav— fff, lavav

jossa toinen termi voidaan integroida pallokoordinaateissa:
[[]. tAVaY ~ AVp [ ant? ydt = 27V, e
v, £ P Jo ¢ P&

mika menee nollaan limiitissd € — 0.

Ensimmadiseksi pintaintegraaliksi saamme Gaussin divergenssi-
lauseen 1.20 avulla:

ffavz lgx 2 fjavz = : jff AVdV ~ _AVP 3 ’

mikd my0s menee nollaan kun € — 0.
Toinen pintaintegraali (huomaa, ettd 0V,:n normaali osoittaa sisddn-

pdin P:hen):

javzv ( )ds_javzv _<_e]_> dS ~ 4me? lVP—47TVP

Yhdistamalld kaikki tulokset oikeilla etumerkeillddn saadaan tapauk-
sessa, jossa P on pinnan 0V; ~ 0V sisdpuolella:

[[[, 1AV av = —anv, + HWG W v (%)) ds.  (1.24)

Tamaén jalkeen lienee intuitiivisesti selvdd, ja siksi esitimme ilman
todistusta, etta

JIf, tavay = —zve+ ff (T3 -vE(3))as

jos piste P on juuri kappaleen V reunapinnalla 0V. Tama kuitenkin edel-
lyttdd normaaliderivaatan, ja erityisesti normaalisuunnan, olemassaoloa
pisteessa P!

Geodesiassa on tyypillinen tilanne, ettd kappale V, jonka tilavuuden
yli halutaan laskea tilavuusintegraali, on koko maapallon ulkopuolinen
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Pinta 0V, osa 1

.-Pinta 0V, osa 2
Piste P .

Kuva 1.9. Geometria Greenin kolmannen lauseen johtamiseksi, jos piste P on
pinnan 0V sisdpuolella.

avaruuden osa. Tassd tapauksessa on kdtevdsti AV = 0 ja koko ylla
esiintyva tilavuusintegraali haviaa.

Tulos 1.24 voidaan yleistda tdhan tapaukseen, jossa V on koko avaruus
pinnan 0V ulkopuolella. Tama yleistys tehddan valitsemalla pinnaksi 0V
kolmiosainen pinta 0V = 0V; 4+ 0V, 4 0V3, jossa 0V3 on suurisdteinen
pallo sekd aineellisen kappaleen ettd pisteen P ympdri. Sen sédteen
annetaan jalkeenpdin kasvaa limiitissa direttomyyteen, jolloin voidaan
ndyttdd, ettd molemmat integraalit pinnan 0V yli héavidvit.

Lopputulos on — kun n on maanpinnan ulkoinen normaali:

JI), pavay = —amvo = [ (155 ~Van(1) ) a5, )

Koska tdssd limiitissd, jossa V on maapallon koko ulkopuolinen tyhja
avaruus, jossa AV = 0, vasemmanpuoleinen tilavuusintegraali havida ja
voidaan ilmaista pisteen P potentiaaliarvo Vp kitevésti kaksitermisena
pintaintegraalina pinnan 0V yli.

1.14 Chaslesin lause

Tutkitaan ylld kuvattua tapausta, jossa “kappale” on pinnan 0V ulko-
puolinen avaruuden osa — kdytdnnossa siis maapallon ulkopuolinen

avaruus.
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Piste P . \

Integrointitila V

Reuna 0V, osa 2

Reuna 0V, osa 1

".Reuna 0V, osa 3

P

(Limiitti)

Kuva 1.10. Greenin kolmas lause kappaleen ulkoavaruudelle.

Y114 johdetusta Greenin lauseesta 1.25 voidaan johtaa harmoniselle
funktiolle V (toisin sanoen AV = 0) ulkoavaruudessa:

Ve = _%{ jfav %%V ds + 41_7'[ _[ % V% (%) ds. (1.26)

Tulkinta Mielivaltaisen pinnan ulkopuolinen, harmoninen potentiaali
voidaan esittdd pinnassa sijaitsevien, yksinkertaisen ja kaksinker-

taisen massatiheyskerroksen summana.

Selostus Yksinkertaisen massakerroksen pintatiheys saadaan yhtdlon
1.15 avulla,

_ 1 0
K= —mﬁv, (1.27)
ja kaksinkertaisen massakerroksen pintatiheys yhtdlon 1.18 avul-
la,
Vv

W= 4G
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Jos ne sijoitetaan yhtdloon 1.26, saadaan
. K 0 (1
VP =G Jfav (f + uﬁ(f)) as.

Siind tapauksessa, ettd pinta 0V on potentiaalin V tasapotentiaalipinta,

siis V = V), seuraa, ettd yksinkertainen massatiheyskerros riittdd, koska

[ Ve (§) as=vo [, an(7) as=o.

Oikeanpuoleinen integraali hdvidd Gaussin divergenssilauseen perus-

silloin

teella. Syy tdhén on, ettd funktio 1/¢, jossa € on etdisyys pisteestd P, on
harmoninen maapallon sisdlld. Maapallon pinta on 0V.

Tamd on Chaslesin® lause eli my0s Greenin vastaavan kerroksen
lause (engl. equivalent-layer theorem).

Lausetta kdytetddn hyvaksi Molodenskin®' teoriassa. Myos Maan pai-
novoimakentdn esittdminen maanalaisen massapistekerroksen avulla,
esimerkiksi Vermeer (1984), voitaisiin perustella timén lauseen avulla.

Tapaus, jossa 0V on tasapotentiaalipinta, toteutuu, jos kappale on
nestemdinen ja hakeutuu itsestddn tasapotentiaalipinnan muotoisek-
si. Maaplaneettamme tapauksessa tdma pédtee merenpinnalle. Myos
sdhkostaattisessa teoriassa johtimessa, jonka sisélld elektronit liikkuvat
vapaasti, johtimen fyysinen pinta on tasapotentiaalipinta. Johtimen
sahkovaraukset ovat aina sen ulkopinnalla®

Yhtalo 1.26, sijoituksella 1.27, yksinkertaistuu silloin seuraavaksi:

Ve = C4m fjav { aanS =G fj (1.28)

*9Michel Chasles (1793-1880) oli ranskalainen matemaatikko ja geometrikko, yksi

72:sta joiden nimet kaiverrettiin Eiffel-torniin, Eiffel Tower, 72 names.

*'Mihail Sergejevits Molodenski (1909-1991) oli maineikas vendldinen fysikaalinen
geodeetti.

*2Sdhkostaattisen potentiaalin on oltava myos johtimen sisélld vakio. Yksikin ylimé&a-
rdinen elektroni kappaleen sisélld tekisi sen mahdottomaksi.
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Yhtilo kertoo jo, ettd koko maapallon ulkopuolinen potentiaali voidaan
laskea, jos vain Maan pinnalla — jonka muoto on oltava tiedossa arvon
1/¢ laskemista varten — on annettuna potentiaalin normaali- eli pysty-
suuntainen gradientti %V. Tamad gradientti on gravitaation kiihtyvyys,
suure, joka saadaan gravimetrisista havainnoista. Koko gravimetrinen
geopotentiaalin mééritys (“geoidimaédritys”) G. G. Stokesista ldhtien
perustuu tdhdn ajatukseen.

1.15 Reuna-arvotehtavat

Reuna-arvotehtava (engl. boundary-value problem, BVP) on laskea potenti-
aali V annetun reunapinnan ulko- tai sisdpuolisessa avaruuden osassa
reunapinnalla, esimerkiksi Maan pinnalla, annetuista potentiaaliin V
liittyvistd arvoista. Yksinkertaisin reuna-arvotehtava on Dirichletin®
tehtivi: reunapinnalla on annettuna potentiaaliarvo V. Monimutkaisem-
mat reuna-arvotehtavit lahtevat potentiaalin lineaarisista funktionaaleista:
reunalla on annettuna joku lineaarinen lauseke potentiaalissa V, esi-
merkiksi derivaatta tai derivaattojen lineaariyhdistelmad, yleisesti

L{V},

jossa L{-} on lineaarinen funktionaali, katso osio 10.2.

Dirichletin reuna-arvotehtéva geodesiassa kiytetyssi muodossa on méa-
rittdd potentiaalikenttd V, jos sen arvot on annettu suljetulla pinnalla S ja
V on harmoninen (AV = 0) pinnan S ulkopuolella. Avaruuden tyhjiossa
potentiaali on aina harmoninen, kuten todettiin jo aiemmin: massa-
pisteen mp potentiaali V = GMp /¢ on harmoninen funktio kaikkialla
paitsi itse pisteessd P — ja laaja kappale koostuu limiitissd monesta
pistemassasta tai massa-alkiosta.

Yleisessd tapauksessa tdmé on teoreettisesti haastava ongelma. Rat-
kaisun olemassaolo ja yksiselitteisyys on pystytty todistamaan hyvin

*3Peter Gustav Lejeune Dirichlet (1805-1859) oli saksalainen matemaatikko, joka
tunnetaan myos lukuteoreetikkona.



Olenko ymmirtinyt tdmdin?

yleisesti, katso Heiskanen ja Moritz (1967) sivu 18.

Pinnalla S annetuista potentiaalifunktion V arvoista voidaan siis
laskea harmoninen funktio V(x,y, z) koko avaruudessa pinnan ulko-
puolella. Reuna-arvotehtidva on tehokas ja myos fysikaalisessa geode-
siassa hyvéksytty yleismenetelma. On kuitenkin syytd huomauttaa, ettei
pinnalla annetuista potentiaaliarvoista voida yksiselitteisesti ratkaista
maapallon sisdistd massajakaumaa, joka tdméan potentiaalin tuottaa.

Taméd on ilmeistd jo siind yksinkertaisessa tapauksessa, jossa po-
tentiaalin arvo on vakio pallon pinnalla. Jos lisdksi on annettu, etta
massajakauma on pallosymmetrinen, on tiheysprofiili sdteen mukaan
edelleen kokonaan auki. Kaikki massa voi olla pallon keskipisteessa
keskitettynd tai ohuena kuorena juuri pallon pinnan alla tai jossain
ndiden ddrivaihtoehtojen vélissd. [lman lisdinformaatiota, esimerkiksi
seismisestd tutkimuksesta tai geofysikaalisista tiheysmalleista, emme

voi ratkaista asiaa.

My®s ylld mainittu Chaslesin lause, yhtélo 1.26, ja sen erikoistapaus,
yhtdld 1.28, ovat esimerkkeja tadstd: lause kertoo, miten ulkopuolista
potentiaalia voidaan kuvata kappaleen pinnalla olevan massajakauman
tuottamana, vaikka tiedimme, ettd kentdn ldhde on koko kappaleen
lavitse ulottuva massajakauma!

Tamd on perustavaa laatua oleva rajoitus kaikille menetelmille, jot-
ka yrittavit saada tietoa Maan sisdisestd tilanteesta ainoastaan Maan
pinnalla tai sen ulkopuolella tehdyistd gravimetrisista mittauksista.

Olenko ymmartanyt taman?

1) Milla laitteella méaritettiin vakio G? Miksi on vaikeaa saada
tarkkaa arvoa tahan vakioon?

2) Miksi kaikki kappaleet putoavat massasta riippumatta samalla
kiihtyvyydelld, vaikka raskaampi kappale tuntee vahvempaa
gravitaation vetovoimaa?
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3) Mika on konservatiivinen voimakentta?

(a) Voimakenttd, jonka voima voidaan kirjoittaa yksiselitteisesti
potentiaalin gradienttina.

(b) Voimakenttd, jossa kappale, joka kulkee suljettua reittia pit-
kin, ei voita eikd menetd energiaa.

(c) Vetovoimakenttd, josta mikddn kappale ei pddse pakoon.
(d) Voimakenttd, jonka roottori hdvida kaikkialla.

4) Homogeenisen, pallon muotoisen pikkuplaneetan pinnalla va-
paan putoamisen kiihtyvyys on 1em/s>. Mikéd on vapaan putoami-
sen kiihtyvyys toisen pikkuplaneetan pinnalla, jos planeetta on

muuten samanlainen, mutta silld on kaksinkertainen lapimitta?
(a) 0,25em/g
(b) 1emys
(©) 2eme
(d) 4emys
5) Mikd on harmoninen potentiaali?
6) Minka kertaluvun differentiaaliyhtdlé on Laplacen yhtdls?

7) Onko lineaarinen potentiaali, V(x,y,z) = a+bx +cy +dz(a, b,
¢, d vakioita), harmoninen?

8) Jos edellisen kysymyksen potentiaali on gravitaatiopotentiaali,
laske sen kiihtyvyysvektori.

9) Milld edellytykselld on mahdollista esittdd kappaleen ulkoista
gravitaatiokenttdd kappaleen pinnalla olevan yksinkertaisen mas-
satiheyskerroksen tuottamana?

10) Dipolipintatiheys p mainitaan osiossa 1.11. Mikd on suureen
SI-yksikko?



Harjoitus 1—1: Maan ydin

Harjoitus 1—1: Maan ydin

1) Johda yhtild, joka antaa vetovoiman kiihtyvyyden g tiheydeltddn
homogeenisen pallon pinnalla. Annettuna on tiheys p ja sdde
Rydin-

2) Maan rauta-nikkeliytimen keskitiheys on 118/cm® ja sdde 3500 km.
Laske ytimen pinnalla vallitseva vetovoiman kiihtyvyys gydin-

3) Mikd on vetovoima g ytimen keskipisteessd? Mitd yleistd voit
sanoa geopotentiaalista tdssa pisteessa? Al yriti laskea!

4) Johda sateittdisen gravitaatiogradientin %g yhtalo tiheydeltddan
homogeenisen pallon pinnalla, jonka tiheys on p.

Harjoitus 1—2: llmakeha

1) Ilmakehén keskipaine on 1013,25hPa (paineen yksikko pascalin
maddritys on Pa = N/m?). Maan pinnalla painovoima on 9,81m/s.
Laske ilmakeh&dn keskim&ardinen pintatiheys ohuena kerroksena
K yksikoissd ke/m?.

2) Laske ilmakehdn kokonaismassa kdyttden pallokuori-
approksimaatiota. Voit ottaa sen sdteeksi 6371 km.

3) Laske ilmakehdstd ldhtevad vetovoima ilmakehdn ulkopuolella,
sekd kiihtyvyysarvona ettd koko Maan painovoiman osaméaarana.

4) Mika on ilmakehaésta 1dhteva vetovoima ilmakehén sisalla?

Harjoitus 1—3: Gaussin divergenssilause

Maan alla on rautamalmin esiintymad, kuva 1.11. Esiintymé aiheut-
taa maanpinnalla vetovoimavaikutuksen, joka on piirretty a-kdyrana.
Kéaytamme littedin Maan approksimaatiota.

Todellisen vetovoiman kadyréa approksimoidaan yksinkertaisella funk-
tiolla
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Kuva 1.11. Rautamalmikappale.

ap joss<d
a =
0 joss>d

(punainen katkoviiva), jossa s on etdisyys maanpinnalla malmiesiin-
tymédn suoraan yldpuolella olevasta pisteesta. Siis alue, jossa a # 0
muodostaa d-sédteisen kiekon maanpinnalla.

1) Kayttden ylld olevaa vetovoiman a approksimaatiota, laske pin-

fle ads,

jossa £; on maanpinta, katso kuva 1.11.

taintegraali

2) Gaussin divergenssilauseen mukaan

[ o mas e JJ, (axmaas = [ff, avav=

=[], (~47Gprauta) AV = 471G Miappate

jossa L1 + L, on kaksilehtinen suljettu pinta kappaleen ympari.
Lehdet kohtaavat ddrettomyydessd. a; ja a, ovat vetovoiman



Harjoitus 1—3: Gaussin divergenssilause

vektorit Maan pinnalla ja pinnalla X,, ja n; ja n, ovat pintojen
ulkoisia normaaleja.

Olettaen, etta

JJ; (@ -m)as =[] (ax-mz)as =~ ] ads,

laske GMygppale- Ole huolellinen etumerkkien kanssa!

3) Olettaen, ettd malmiesiintymd on pallo syvyydelld d, laske GM
Newtonin vetovoimalain avulla arvosta ay suoraan esiintyméan
yldpuolella maanpinnalla.

4) Vertaa tuloksia 2 ja 3 ja tee johtopdatoksid. Onko ylld annettu
funktio a hyvad approksimaatio?






Laplacen yhtalo ja sen ratkaisuja

2.1 Laplacen yhtdlon luonne

Maan gravitaatiokentdn tutkimuksen keskeinen yhtdloé on Laplacen

yhtilo,
(2 2\,
AV = (axz tagr T a#) V=0,

Symbolia A kutsutaan Laplacen operaattoriksi. Joskus kaytetddan vaihtoeh-

toista kirjoitustapaa V2.

Tutkittaessa gravitaatiota kenttdnd Laplacen yhtélo on luonnollisempi
valinta kuin Newtonin ldhestymistapa. Newtonin yhtdlod kdytetddn, jos
massajakauma on tiedossa: yhtdlo antaa suoraan massojen aiheuttaman
gravitaatiovoiman.

Laplacen yht&l6 sen sijaan on osittaisdifferentiaaliyhtdld. Sen ratkaise-
minen antaa gravitaatiokentdn potentiaalin V(x,y, z) koko avaruudessa
tai sen osassa. Tastd potentiaalista voidaan laskea kentdn vaikutus ava-
ruudessa liikkuvaan kappaleeseen, siind paikassa misséd kappale on.
Tama on kaksivaiheinen prosessi. Késitteellisesti uutta on, etta tyhjal-
le avaruudelle kiinnitetddn tietty ominaisuus, kentti. Enda ei puhuta
kaukovaikutuksesta suoraan kahden kappaleen vililla.

Laplacen yhtélon ratkaiseminen voi olla yleisessd tapauksessa vai-
keaa. Lahestymistapa on yleensa se, ettd valitaan joku koordinaatisto:
suorakulmainen (kuten ylld), pallo- tai lieriokoordinaatisto, toroidaali-
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set koordinaatit tai miké vain sopii parhaiten ongelman geometriaan.
Sen jdlkeen muunnetaan Laplacen yhtdlo ndihin koordinaatteihin, etsi-
tddn tiettyd muotoa olevia erikoisratkaisuja, ja kootaan lopuksi yleinen
— tai ei-niin-yleinen — ratkaisu nédiden erikoisratkaisujen lineaariyhdis-

telméana eli sarjakehitelmdind.

Onneksi lineaaristen osittaisdifferentiaaliyhtdléiden teoria on hyvin
kehittynyt. Vastaavanlaisia teoreettisia ongelmia 16ytyy sahkomagneet-
tisen kentdn eli Maxwellin teoriassa ja kvanttimekaniikassa (Schrodin-
gerin' yhtdlo), nesteen- ja lammonkuljetuksesta puhumattakaan.

Tarked havainto on, ettd Laplacen yhtdlo on lineaarinen. Tama merkit-
see, ettd jos annettuna on kaksi ratkaisua

AV; =0, AV, =0,
silloin my®6s niiden lineaariyhdistelmat
V =uoaV; + BV, x P eR

ovat kelvollisia ratkaisuja: AV = 0. Tama lineaarisuuden ominaisuus
mahdollistaa yleisten ratkaisujen etsimisen perusratkaisujen lineaariyh-
distelmina tai sarjakehitelmina.

Erikoisuus, joka myos erottaa Laplacen yhtdlon Newtonin yhtélos-
td, on, ettd se on paikallinen yhtilo, joka luonnehtii potentiaalikentdn
kéayttaytymistd yhden pisteen pienessd ymparistossd. Kuitenkin ratkai-
sua etsitddn kokonaiselta alueelta. Tavallinen ldhestymistapa ratkaisua
etsittdessd on reuna-arvotehtivi. Tama merkitsee, ettd kentdn arvojen
(“reuna-arvojen”) on oltava annettuina vain kiinnostuksen kohteena

olevan avaruuden osan reunalla.

"Erwin Rudolf Josef Alexander Schrodinger (1887-1961) oli saksalainen fyysikko ja
kvanttiteoreetikko sekd hdnen nimeddn kantavan aineaaltojen aaltoyhtdlon keksija:
asia, josta hén sai fysiikan Nobel-palkinnon vuonna 1933 yhdessé Paul Diracin kanssa.
Héan on my6s hyvin tunnetun, ei-havaitun kissan keksija: kissa, joka on kahden
mahdollisen kvanttitilan, eldvdn ja kuolleen, superpositiotilassa.
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Esimerkiksi kentdn arvot ovat annettuina Maan pinnalla. Téstd las-
ketaan kentdn arvot ulkoavaruudessa, jossa Laplacen yhtalo patee —
kentdn kayttdytyminen Maan sisélld jaa tarkastelun ulkopuolelle. Ul-
koisen potentiaalin kannalta tarkkaa massajakaumaa Maan sisélld ei
tarvitse tietdd — eika sitd myoskaan saada selville vain Maan pinnalla
ja sen ulkopuolella tehtyjd mittauksia kdyttden.

2.2 Laplacen yhtalo suorakulmaisissa koordinaateissa

On opettavaista kirjoittaa ja ratkaista Laplacen yhtdlo suorakulmaisissa
koordinaateissa. Tapaus on analoginen pallokoordinaattien tilanteen
kanssa, mutta matematiikka on paljon yksinkertaisempaa.

Oletetaan, ettd maanpinta eli merenpinta on z-koordinaatin tasopinta
z = 0. Kirjoita

AV = A(V(x,y,2)) =

(o o+ e ) (X()- Vi) - 202),

jossa kokeiluratkaisu
Vix,y,z) = X(x) - Y(y) - Z(2).

Toisin sanoen kirjoitetaan kokeilumielessd V kolmen tekijafunktion
tulona, jossa jokainen tekijafunktio riippuu vain yhdestd koordinaatista.
Kyseessa on siis “muuttujien erottaminen”. Realistinen potentiaalifunk-
tio V ei tietenkddn yleensd ole tdtd muotoa. Voimme kuitenkin toivoa,
ettd se voitaisiin esittdd timan muotoisten termien lineaariyhdistelméana
Laplacen yhtdlon lineaarisuuden ansiosta.

Suorittamalla kaikki osittaisderivoinnit saadaan

0?2 02 0?2

Jako lausekkeella XYZ antaa

1 92 1 92 1 2°
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Koska tamén on oltava totta koko avaruudessa eli kaikille arvojen yh-

distelmille x, y ja z, seuraa, ettd jokaisen termin on oltava vakio. Jos

2
Yy

neksi vakioksi w2 + w}. Kirjoittamalla mééaritelma ja tulos auki seké

ensimmaiseksi ja toiseksi vakioksi otetaan —w? ja —w?, seuraa kolman-

siirtdmalld nimittaja toiselle puolelle saadaan

62
ay?

62

LX(x) = —w? X(x),

X

Y(y) = —wi Y(y),

(syy negatiivisen vakion valinnalle selvidd pian), sekd

aZ

a—ZZZ(z) = (w3 + wﬁ) Z(2).

Nyt ratkaisu 16ytyy helposti ainakin ensimmadiselle kahdelle yhtilolle:
nehdn ovat harmoniset virihtelijit, ja niiden perusratkaisut® ovat

X(x) = exp(£iwxx), Y(y) =exp(Liwyy).

Z-yhtdlon ratkaisu puolestaan on eksponentiaalinen:

Z(z) =exp (iz@ fw2 + wﬁ)

Nyt voidaan muodostaa perusratkaisuja avaruudessa:

wawy (va) Z) = exp (i’(iwxx :t wyy) :t Z\/ wi + w%l) -

Yleinen ratkaisu saadaan summaamalla termit V., ., eri arvoilla w, ja
wy eri kertoimilla.

Emme voi valita arvoparia (wy, w,y) tdysin vapaasti. Mitkd arvot ovat
sallittuja, riippuu annetuista reunaehdoista.

Oletetaan, ettd seka x- ettd y-suunnassa maailman koko on L (“kenka-
laatikkomaailma3”). Yksinkertaistetaan asiaa hieman olettamalla, etta

*Vaihtoehtoiset perusratkaisut ovat X(x) = sinwyx, X(x) = coswyx jne. Ne
ovat samanarvoisia esitettyjen kanssa, koska exp(iwxx) = cos wxx + isin wyx ja
exp(—ilwyx) = cos wxx — isin wyXx.
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kenkalaatikkomaailmamme reunapinnoilla ovat voimassa reunaehdot
V(0,y,z) = V(L,y,z) = V(x,0,z) = V(x,L,z) = 0.

Silloin seuraa, ettd ainoat parit (wy, wy), jotka antavat laatikkoon sopi-
van ratkaisun, ovat

Tj 7tk .
:T]) wy:T> )>k€Z>

ja ainoat sopivat funktiot ovat sinifunktioita. Ratkaisuksi saadaan siis

Vjx(x,y,z) = sin (nj%) sin (nk%) exp (iﬂ\/W%)

Tama yksittdinen ratkaisu voidaan nyt yleistdd kertomalla sopivilla

Wy

kertoimilla ja summaamalla eri indeksiarvojen j = 0, £1, £2, ... ja
k=0,%£1,£2,... yl.

Voidaan kuitenkin huomauttaa, ettd termit, joilla j = 0 tai k = 0,
hdvidvit aina, ja ettd termit, jotka sisdltdvitj = +njaj = -—ntaik = +n
jak =-n,n € N, ovat (etumerkkid vaille) identtisia. Siksi kdytannossa
summataan arvojenj =1,2,...jak=1,2,... yli.

Erilaiset reunaehdot antavat hieman erilaisia yleisratkaisuja. Kuiten-
kin niiden yleinen muoto on aina sama.

Yleisestd ratkaisusta saatava nollatason z = 0 kehitelma on Fourier'n*

sinikehitelma:
ijK»UJ
V(x,y,0) = Z Z Vjk sin (n%) sin(nle"), (2.1)
j=1 k=1

jossa vj ovat Fourier'n kertoimia, ja lausekkeet

Vik(x,y) 4 sin <7‘[%> sjn(ﬂkT‘J>

3. .. vaikka tosimaailman kenkéilaatikot ovat harvemmin nelion muotoisia.

“4Joseph Fourier (1768-1830) oli ranskalainen matemaatikko ja fyysikko sekd joidenkin
mukaan myos ilmastotutkija. Han oli yksi Eiffel-tornin 72 nimestd, Eiffel Tower, 72
names.
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ovat kaksiulotteisia kantafunktioita maanpinnalla, tasolla z = 0.

Viittaamme osioon B.2.2 liitteessd B, jossa kuvataan, miten yksinker-
taisen funktion Fourier'n analyysi ja synteesi tehdddn ja miten Fourier'n
kehitelmd approksimoi alkuperdistd funktiota termien maaran kasvaes-
sa.

Taydellinen kolmiulotteinen kehitelmé on taas

V(X>U)Z) = Vi (x,y)

Ve

i i Vi sm( ) sin (nkTy> exp (iﬂmL> . (2.2)

j=1 k=1

z-lausekkeen sisdlld voi olla joko positiivinen tai negatiivinen etumerkki!
Tietysti se ratkaisu, jolla on positiivinen etumerkki menee — oo, kun
z — 0o, mikd ei ole ulkoavaruudessa fysikaalisesti realistista.

Huomaa my®os, ettd V(x,y, 0) ja vjx edustavat samaa gravitaatiokenttii
kahdella olennaisesti erilaisella tavalla: avaruusdomeenissa ja spatiaali-
sessa taajuus- eli aaltolukudomeenissa. Molempien informaatiosisalto
on sama. Ne voidaan muuntaa toisikseen kadyttdmalld suoraa ja kdan-
teistd Fourier'n muunnosta ¥ ja .

Itse asiassa funktion V(x,y,0) informaatiosisédltd on periaatteessa
sama kuin funktion V(x,y, z) milld tahansa tasolla z: yhden tason poten-
tiaalin tunteminen merkitsee — Laplacen yhtdlon kautta — potentiaalin
tuntemista kautta avaruuden.

Vedetddn yhtdlot 2.1 ja 2.2 vield yhteen kommutoivaksi kaavioksi 2.2.

Taméan lopputulema on, ettd kentdn V siirto-operaatio pystysuunnas-
sa nollatasosta tasoon z, joka avaruusdomeenissa ei ole helppoa, on
yksinkertainen — niin yksinkertainen kuin kertolasku — taajuusdomee-
nissa®. Sama pédtee my0s pallokoordinaateissa, jolloin taajuusdomeeni
merkitsee pallofunktiokehitelmén kertoimia, kuten tulemme ndkemaéén.

5Syy tdhdn on, kuten tulemme myShemmin esittdméaan laajemmin, ettd pystysuuntai-
nen siirto-operaatio on konvoluutio.
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Sll’l

1
fabcemie) Ao
erenpinta

V\Z/VV\&/

Kuva 2.1. Harmonisen kentdn Fourier-aaltoilun eksponentiaalinen vaimen-

nus korkeuden mukaan. Suorakulmainen geometria, yksiulotteinen
vaakasuunnassa. Pitkit aallot (pienet aaltoluvut, punainen) vai-
mentuvat hitaammin kuin lyhyet aallot (vihred): korkeus toimii siis

alipadstosuodattimena.

Avaruusdomeeni Taajuusdomeeni
Fourier
\% (X) Y, O) Vjk
JL (vaikea) % (helppo) l

Kéaénteinen Fourier 57! .
: 21122
V(x,y,z) ¢ v]kexp< m\/j% + k L)

Kuva 2.2. Harmonisen kentdn V pystysuuntainen siirto avaruus- ja taajuus-
eli aaltolukudomeeneissa, kommutoiva kaavio. Suorakulmainen
geometria.

47
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2.3 Laplacen yhtalo napakoordinaateissa

Napakoordinaateissa, kaksiulotteisesti, Laplacen yhtdlé on

=0.

Suoritamme tdhdn samanlaisen muuttujien erottamisen kuin osiossa
2.2. Kirjoita ensin
V(e 1) = Alx) R(r)

ja jaa sitten ylla oleva yht&lo kahteen eri yhtdloon, toinen funktiolle R(r)
ja toinen funktiolle A (). Sijoitus antaa

0%R(1) n Al(o) OR(T) n R(r) 02A (o)

Ala] or? T or 2 0a? =0
Kerro lausekkeella T° JA(x) R(1):

r2 02R(r) r OR(1) 1 0%A(x) _ 0

R(r) or? R(r) Or Ala) 002 7

Molempien termien on taas oltava vakioita:

0°R(r)  OR(r)
T (r 32 5r ) —Kk?R(r) =0,
OALY) | 12 () =0,

0o

Tassd vakion k? etumerkki on valittu niin, ettd A(o) saa jaksollisen
ratkaisun. Sellainen yleinen ratkaisu olisi

Ax(a) = ax cos ko + by sin ka,

jossa, koska kulman o periodi on 27, kin on oltava ei-negatiivinen
kokonaisluku: k = 0,1,2,.... Negatiiviset k-arvot eivit anna erilaisia
ratkaisuja, koska

ay cos ko = ay cos(—ka), by sinkax = —by sin(—kax).
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Toinen, funktion R(r) yhtdlo, on vaikeampi ratkaista. Koeratkaisu on
potenssikaava:
R(r) =r9.

Sijoitus antaa
r(rq(q—1)19 % +qri ") —k*r9 =0

— ¢’ —k*=0

— g’ =K%
Tama toimii positiivisille q = 2, 3, ... ja negatiivisille q = —1, -2, ...
Arvolle q = 1 saadaan
r—k'r=0 = k*=1=q%~

Arvolle k = 0 16ytyy, paitsi triviaali vakioratkaisu, ei-triviaali ratkaisu
R(r)=Inm:

r(r-—lz+l>—kzlnrzo = k=0.
T T

Nédin saadaan yleinen ratkaisu

1 tai Int  josk =0,
Ri(r) = . )
™ tai T8 josk=1,2,....
Nahdéaan, ettd jos vaaditaan, ettd ratkaisu on olemassa origossa r = 0,
tarvitaan ensimmdiset ratkaisut, tuloksena

VoS (o, T) = ao + Z ™ (ay cos ka + by sin ka)
k=1

mutta jos halutaan, ettd ratkaisu on olemassa — tai ainakin kdyttaytyy
hyvin — ddrettdmyydessd® r — oo, tarvitaan toiset ratkaisut,

Vik(x, 1) = ap + bolnt + Z 7% (ax cos ka + by sin k) . (2.3)
k=1

Samanlaisuus kolmiulotteisen eli pallokoordinaattien tapauksen kanssa
on selvésti ndhtédvissa.

OItse asiassa limy_,o, VUK — co mutta lim,_, o %V‘ﬂk =0.
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2.4 Pallo-, geodeettiset ja ellipsoidiset koordinaatit

Fysikaalisessa geodesiassa kdytdimme geometrisia ja fysikaalisia k-
sitteitd rinnakkain. Esimerkiksi pisteen koordinaatit voidaan antaa
muodossa (X, Y, Z), joka on periaatteessa geometrinen — lukuun ot-
tamatta fysikaalista olettamusta, ettd koordinaatiston origo on Maan
massakeskipiste.

Koska maapallo ei ole tarkasti ottaen pallo, vaan litistynyt pyorahdys-
ellipsoidi, maantieteellisid koordinaatteja ei voida kdyttdd ikddn kuin ne
olisivat pallokoordinaatteja. Koska maapallo on litistynyt huomattavasti
(noin 0,3 %), ero on merkittava. Pallokoordinaattien (¢, A,r) yhteys
suorakulmaisiin koordinaatteihin (X, Y, Z) on seuraava:

X =71c0s pCcosA,
Y =rcos ¢ sinA, (2.4)
Z =rsin ¢.

Tédssd ¢ on geosentrinen leveysaste, A on (tavallinen — geosentrinen,
geodeettinen tai maantieteellinen, kaikki kolme ovat samoja) pituusaste
ja T on etdisyys Maan keskipisteestd. X-akseli osoittaa Greenwichin
meridiaanin suuntaan. Katso kuva 2.3.

Maan pinnalla ndma pallokoordinaatit eivét ole kovin kdyttokelpoisia
Maan litistyneisyyden takia, mutta avaruudessa pallokoordinaatteja
kédytetddn paljon. Maan péalld kdytetddn useimmiten geodeettisia — eli
maantieteellisid — koordinaatteja (¢, A, h):

X = (N +h)cos @ cos A,
Y = (N + h)cos @sinA, (2-5)
Z=(N+h—e’N)sin e,

jossa

a a?

V1 —e2sinf@  aZcos? @ + b2sinZ@

N(¢) (2.6)
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Napa /N Z

—————————————————————— oP

Pdivantasaaja

Greenwichin meridiaani

Kuva 2.3. Pallokoordinaattien méaéaritelma.

Yhtélon 2.6 madrittdima suure N on vertausellipsoidin lansi-itdisuunnan
eli poikittainen kaarevuussdde. Yhtdlossd a on kdytetyn vertausellipsoi-
din pédivantasaajasdde, b on napasdde,
2 _ 42
et b (27)
on ensimmidisen eksentrisyyden nelié’, ja yhtdldissd 2.5 h on pisteen
korkeus vertausellipsoidista, katso kuva 2.4.

Suorakulmaisten koordinaattien konvertointi geodeettisiksi kdy hel-
poimmin iteratiivisesti, vaikka suljettujakin kaavoja 16ytyy kirjallisuu-
desta.

Pallokoordinaatit ja geodeettiset eli maantieteelliset koordinaatit
eroavat huomattavasti toisistaan. Leveysasteessa ero on suurimmillaan

11 kaariminuuttia eli 1dhes 20 kilometrid. Maksimi saavutetaan leveys-
asteilla +45°.

7Parametri liittyy Maan litistyneisyyteen f yhtdlon e? = 2f — £ kautta.
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ANZ Ellipsoidinen
1 P /7 normaali
> “h
<(1—eZ)N+h)sin(p 7
/
/ /\ () . X) Y
O (N +h) |
Vertaus- / cos®
ellipsoidi )’

Kuva 2.4. Geodeettisten koordinaattien maaritelma.

Teoreettisessa tyossa kdytetadn myos ellipsoidisia koordinaatteja (3, A, ).
Koordinaattia 3 kutsutaan redukoiduksi leveysasteeksi. Yhteys suora-
kulmaisiin koordinaatteihin on

X =+vu?+ E2cosfcosA,

Y = vu? + E2cos 3 sin A, (2.8)

Z =usinf.

Jos Maa-ellipsoidin isoakselin puolikas on a ja sen pikkuakselin puolikas
b, seuraa tistd, ettd E2 = a? — b2. Yhtilo 2.7 kertoo, ettd E2 = a?e?.
Ensimmadinen eksentrisyys e on meridiaaniellipsin eksentrisyys,ja E = ae
on tdmdén ellipsin kahden polttopisteen etdisyys Maan keskipisteesta.
Polttopisteet sijaitsevat keskipisteen molemmilla puolilla padivantasaajan
tasossa. Yhtdlot 2.8 kertovat, ettd kaikilla meridiaanitason ellipseilld
u = vakio eri arvoille u on samat kaksi poltopistettd: ne ovat konfokaalisia.
Katso kuva 4.6.

Huomautamme vield — katso Heiskanen ja Moritz (1967) kuva 1-14 —
ettd kdyrdt 3 = vakio kuvaavat hyperbeleiti, joilla on samat polttopisteet.
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2.5 Laplacen yhtalo pallokoordinaateissa

Laplacen yht&dlé muunnettuna pallokoordinaatteihin on (geometrinen
todistus, katso liite E):

9%V 20V | 19V tanddV 1 2V

AV_W—’—?F—'—_

r29¢2 12 3d ' rZcos?p oAl 0, (29)

jossa ¢ on (geosentrinen) leveysaste eli latitudi, A on pituusaste eli
longitudi ja r on etdisyys origosta eli Maan keskipisteesta.

Emme johda tdssad yhtdlon ratkaisua muuttujien erottamisella, koska
se on suhteellisen monimutkainen. Se 16ytyy osiosta E.2 ja kirjallisuu-
desta (Heiskanen ja Moritz, 1967, osio 1-9). Merkittdvaa on, ettd ratkaisu
on hieman saman ndkoéinen kuin aiemmin esitetty ratkaisu suorakul-
maisissa koordinaateissa, osio 2.2. Laplacen yhtdlon perusratkaisut
ovat

V'?Lis((b)A)r) - TnYn((b)}\)) Vﬁlk(d))xar) = Ma n= O) ]) XS

T-Tl-+1
(2.10)

joista ensimmdinen on epéfysikaalinen ulkoavaruudessa, koska toisin
kuin todellinen geopotentiaali nimaé lausekkeet kasvavat darettomiksi
kun r — oo.

Y14 olevissa yhtdloissa funktiot Yy, (¢, A) ovat pintapallofunktioita,
kun taas funktiot V,, (b, A, 1) ovat avaruuspallofunktioita. Jalkimmadiset
ovat harmonisia kaikkialla muualla avaruudessa paitsi origossa (2.10,
oikeanpuoleinen yhtdlo) tai ddrettomyydessd (vasemmanpuoleinen
yhtalo).

Funktiot Y;,, nimeltddn Laplacen pallofunktiot, ovat

Ya(d,A) = Z Pam(sin®) (anm cos MA + by, sinmA) . (2.11)

m=0

Funktiot P,,,, ovat Legendren funktioita, joista kerrotaan myohemmin lisda.
Lausekkeen 2.11 avulla ja kdyttamalla toista fysikaalisesti realistista
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vaihtoehtoa yhtdloistd 2.10 saadaan seuraava ratkaisu eli sarjakehitelmi
ulkoavaruuden potentiaalille V:

V(p,A, 1) = Z = Z Pam(sin®) (anm cos MA + by SinmA) .
n=0 m=0

(2.12)
Kertoimia a,m ja bnm kutsutaan pallofunktiokehitelméan kertoimiksi,
lyhyesti spektraalikertoimiksi. Yhdessd ne esittdvat funktiota V, hieman
samalla tavalla kuin Fourier'n kertoimet v;, tekevit suorakulmaisissa
koordinaateissa yhtédlossd 2.2. Indeksejd n ja m kutsutaan asteluvuksi ja
jarjestysluvuksi (engl. degree and order).

Tulemme kayttamdan skaalatuille funktioille Yn / Rn+1 usein hieman
vapaampaa kirjoitustapaa. Esimerkiksi jos kehitetddn hdiridpotentiaali
T pallofunktioihin, kdytetdan kirjoitustapaa T, (¢$,A) sen pintapallo-
funktioille. Samalla tavalla Ag,($,A) on painovoima-anomalian Ag
asteluvun n pintapallofunktio, ja niin edelleen. Silloin pdtee Maan
pinnalla r = R (asteosuushajotelma):

T(h, A\, R) = ZT (4,1, g(d,\,R) = ZAgnda,

ja niin edelleen.

2.6 Riippuvuus korkeudesta

Y1la olevista yhtdldistd 2.10 ndhdédén, ettd eri asteluvuilla n funktiolla
Vi (¢, A, 1) on eri riippuvuus etdisyydestd r Maan keskipisteestd eli
vastaavasti korkeudesta H = r—R, jossa R on maapallon eli merenpinnan
sdde. Riippuvuus on

Val A7) = YN

Merenpinnalla on

Vn((b)A)R) = % déf Vn(d)>7\)



Olenko ymmirtinyt tdmdin?

Voimme siis kirjoittaa

vatoAm = () vatoon = (REH) T vion =

— (1 + %>_(n+” Vo (b, A) ~ exp(—% (n+ 1)>Vn(¢>7\)-

Nédemme, ettd potentiaalin vaimennus korkeuden mukaan on ekspo-
nentiaalinen ja asteluku n on eksponentissa, kuten oli myd6s aaltoluku
suorakulmaisessa geometriassa, katso yhtdlo 2.2 ja kuva 2.1. Analogia
pelaa.

Olenko ymmartanyt taman?

1) Milléd olennaisella tavalla Laplacen yhtdlon ldhestymistapa eroaa
Newtonin ldhestymistavasta?

2) Miten Laplacen yhtdlon lineaarisuus auttaa 16ytaméén ratkaisuja?

3) Miten muuttujien erottaminen toimii?

4) Miksi Laplacen yhtédlon ratkaiseminen vaatii reunaehtoja?

5) Naytd yhtédldiden 2.8 avulla, ettd meridiaanitason Y = 0 kéyrille
u = vakio kédyradn pisteen [ VuZ +E2cosP 0 sinf ]T ja polt-
topisteiden [ +E 0 0 ]T vélisten etdisyyksien summa on vakio
(ja ettd kdyrét siis ovat konfokaalisia ellipsejd), ja ettd kéyrille

B = vakio ndiden etdisyyksien erotus on vakio (ja ettd kayrat siis
ovat konfokaalisia hyperbeleitd). Katso kuva 4.6.






Legendren funktiot ja
pallofunktiot

3.1 Legendren funktiot

Yhtdloissd 2.11 ja 2.12 funktiot P ovat Legendren* funktioita, jotka pulpah-
tavat esiin aina, kun Laplacen kaltainen yhtdlo ratkaistaan pallokoordi-
naateissa. Niiden laskemiseen on kéytettdvissd erilaisia tehokkaita niin
sanottuja rekursiivisia algoritmeja, kuten seuraava, joka on algoritmi
vain tavallisille Legendren polynomeille P,, = P:

nPn(t) = - (TL - 1) Pn—Z (t) + (ZTL - 1) tPn—l (t) (31)

Vastaavanlaisia yhtdloitd 16ytyy myos funktioille Py, m > 0. On jopa
valinnan varaa, vaikka useimmat yhtalét ovat mutkikkaita. Niiden
ohjelmoinnissa on varottava, etteivét kertomat mene yli laidan. Jo 30:n
kertoma 30! on suurempi luku kuin tietokoneet osaavat kasitelld 64-
bittisind kokonaislukuina — luvusta 360:n kertoma 360! puhumattakaan,
johon ei edes riitd standardi 64-bittinen liukulukuformaatti. Toisin kuin
sanotaan, Heiskasen ja Moritzin (1967) yhtdld 1-62 ei suoraan kelpaa
tietokonekéayttoon!

'Adrien-Marie Legendre (1752-1833) oli ranskalainen matemaatikko ja tunnettu
tyostddn lukuteoriassa, tilastotieteess ja elliptisten funktioiden saralla. Han keksi
Gaussista riippumatta pienimmaén neliésumman menetelméan. Hanen nimensé 16ytyy
Eiffel-tornista, Eiffel Tower, 72 names.
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TAULUKKO 3.1. Legendren polynomeja. t = sin ¢.

t:n funktiona IImaistuna sineihin ja kosineihin
Po(t) =1 Po(sing) =1
Pi(t) =t Pi(sind) =sin
Po(t) =3t -1 Pa(sind) = —3 cos2¢ + &
P3(t) = 33 — 3t P3(sind) = —3 sin3¢ + %smd)
P4(t) = § (35t* — 30t2 + 3) P4(sin ) = 23 cos4dp — 2 cos2¢ + &
Ps(t) = g (63t> — 70t3 + 15¢)
Pe(t) = 7 (231t® —315t* + 105t% — 5)
Ensimmadiset Legendren polynomit luetteloidaan taulukossa 3.1. Tata
korkeampia polynomeja tarvitaan kdsilaskennassa harvoin.
Vertailun vuoksi, my6s Fourier'n kantafunktiot (kuten, monimutkai-
—90° —30° 0 —ao 30° 20°
: T POI T
\ P3 Pg - i
'\ Py — — T I Py i
0,5 ﬂ\ Ps P5 ---- P25 /,’,

1 —0,5 0 ——t 0,5 1

Kuva 3.1. Muutama Legendren polynomi Py(t), ..., P25(t) argumentin t =
sin ¢ funktioina.
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semmalla tavalla, my6s sinit ja kosinit yhdessa!)

jossa

3.1.1

(0]

Fj(x) = exp (2711]' %) ,

2:

i —1, voidaan laskea rekursiivisesti:

Fi(x) =F(x) - Fi(x).

Legendren polynomien ominaisuudet

Parilliset polynomit, joiden asteluku n on parillinen, ovat peili-
symmetrisid origon ¢ = t = 0 eli pdivdntasaajan tason kautta:
Pn(—t) = Pn(t), eli vastaavasti P, (sin(—¢)) = Pn(sin¢). Tami
merkitsee, ettd niiden arvot samalla leveysasteella pdiviantasaajan
molemmin puolin ovat identtisid. Parittomat polynomit ovat taas
antisymmetrisid: P, (—t) = —Py(t) eli P, (sin(—¢)) = —Pn(sin ),
eli niiden arvot samalla leveysasteella pdivdntasaajan pohjois- ja
eteldpuolella ovat vastakkaisia.

Kuvasta 3.1 ndhddén, ettd polynomit P, (t) menevat koko valilla
te [—1,1] eli ¢ € [—90°,90°] tarkasti n kertaa nollan l4pi.

Kun péitepisteiden t = £1, ¢ = £90° arvot ovat £1, seuraa,
ettd on tarkasti n + 1 “etumerkkivilid” eli avoimia vilejd, joilla
polynomin arvot ovat joko yksinomaan positiivisia tai yksinomaan
negatiivisia.

3.1.2 Legendren liitannédisfunktioiden ominaisuudet

Legendren liitinndisfunktioista P, m # 0 esitetddn esimerkkeind

muutama taulukossa 3.2.

Erés niitd madritteleva yhtdlo on

o

Pam(t) = (1—12) /2 FnlE), (32)

Myo6s Legendren liitdanndisfunktiot ovat joko peilisymmetrisia
origon eli pdivantasaajan tason kautta, Ppm(—t) = Pam(t) eli
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Kuva 3.2. Legendren liitinndisfunktioita. Huomaa ddrimmadisen erilainen mit-
takaava funktiolle P5 ;s5, katso yhtdlo 3.8.

vastaavasti P, (sin(—d))) = Pom(sin), tai antisymmetrisid,
Prm(—t) = —Prm(t) eli Pom (sin(—¢)) = —Pnm(sin ¢), riippuen
asteluvun n ja jarjestysluvun m lukuarvoista.

o Kuva 3.2 antaa uskoa, ettd polynomit P, (t) menevat valilla
te [-1,1] eli ¢ € [-90°,90°] tarkasti n — m kertaa nollan l4pi.
Tama pitda tosiaankin paikkansa.

TAauLukkoO 3.2. Legendren liitinndisfunktioita.

t:n funktiona Trigonometrisena funktiona
P11(t) =v1—1t2 Py1(sind) = cos ¢

Py1(t) = 3tV1 —t2 P,1(sin¢) = 3sin ¢ cos ¢

Pao(t) =3 (1—1t%) P2, (sin ) = 3cos? ¢

P31(t) =3 (5t2—1) V1 —tZ P3i(sind) =3 (5sin?p — 1) cos
P32 (t) =15t (1 —t2) P32 (sind) = 15sin ¢ cos? ¢
P33(t) =15 (1 —t2) 3/2 P33(sind) = 15cos® ¢




Legendren funktiot 3.1

o Kun my0s péitepisteiden t = +1, ¢ = +90° arvot ovat nolla,
seuraa, ettd on tarkasti n — m + 1 “etumerkkivalia”.

3.1.3 Pintapallofunktiot

Lahtien yhtdlostd 2.11 voidaan kirjoittaa
Yn (d)» A =

= Z (@nmPrm(sind) cos MA + by P (sin ) sinmA) =

m=0

= Z vannm((b) }\))

m=—n

jossa nyt m kulkee —mu:std +n:ddn. Tassa

def | Pam(sind)cosmA  josm >0
Ynm(d))x) = " . . . , (33)
Poim/(sin @) sinjm|A  jos m < 0,

def | Gnm  josm =0,
Vnm = . (34)
bnm josm <O0.

Namad ovat asteluvun n ja jirjestysluvun m pintapallofunktiot.

Pintapallofunktioita, kuten myos avaruuspallofunktioita, 16ytyy kol-
menlaisia:

Zonaalisia eli vyohykefunktioita m = 0. Funktiot riippuvat vain le-
veysasteesta.

Sektoriaalisia eli sektorifunktioita m = mn. Funktioiden etumerkki
vaihtelee vain pituus- eikéd leveysasteen mukaan. Funktiot itse
kuitenkin riippuvat seké leveys- ettd pituusasteesta!

Tesseraalisia eli ruutufunktioita 0 < m < n. Funktiot, joiden etu-
merkki vaihtelee seké leveys- ettd pituusasteen mukaan, muodos-
tavat pallon pintaan ”shakkilautamaisen” kuvion, jos positiiviset
arvot maalataan valkoisiksi ja negatiiviset harmaiksi (lat. tessera:
tiili mosaiikin tekoon).
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() (b) (c)
Vyohykefunktioita: Sektorifunktioita: Ruutufunktioita:
Ps5o(sin ¢) Pge(sin ¢) cos 6A P11,6(sin ¢) cos 6A

Kuva 3.3. Eri pallofunktioiden etumerkit Maan pinnalla. Valkoinen positiivi-
nen, harmaa negatiivinen. Funktiot ”aaltoilevat” sini- tai kosinifunk-

tioiden tavoin.

Jokainen funktio menee valillad sin ¢ € [—1 , +1] tarkasti n — m kertaa
nollan lapi. Jokainen funktio on joko symmetrinen tai antisymmetrinen
origon kautta ¢:n tai t = sin ¢:n funktiona.

Pallofunktiot edustavat siis erddnlaista aaltoilmittd. Ne eivat kui-
tenkaan ole varsinaisia aaltofunktioita (sinuksia ja kosinuksia), yhteys
ndihin on vdhintddn mutkikas. On kuitenkin mielekdstd puhua niiden
aallonpituudesta.

Kuvassa 3.3 ndkyy, miten eri pallofunktioiden etumerkit kayttaytyvat
Maan pinnalla — ja sen yldpuolella. Tamé on perspektiivikuva, eivitka
kaikki valkoiset ja harmaat alueet nay!

Yhtdlossd 2.11 esiintyvit lausekkeet cos mA ja sin mA menevit koko
ympyrélla eli pdivantasaajalla, 0° < A < 360° eli 0 < A < 27, tarkasti
2m kertaa nollan lapi. “Puoliaallonpituus” on siis

2nR R
Im = T

jossa R on maapallon sdde.

Samanlainen kaava patee myos funktioille P, (sin ¢): kun funktio
menee nollan ldpi n — m kertaa navasta napaan valillda —20° < ¢ < 90°
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KuvaA 3.4. Pintapallofunktiot karttoina. Vaaka-akseli A € [0,360°) = [0,2n),
pystyakseli ¢ € [—90°,90°] = [— 7/2, 7/2]. Kuvatut funktiot ovat

Pso(sind) Pee(sind)cos6A Pq7 6(sind)cos 6A
Pso(sin ) Pes(sind)cos5A Pro e(sind) cos6A

eli —7/2 < ¢ < T/2, seuraa, ettd tdssikin tapauksessa edustava

puoliaallonpituus on
iR
n—m’

Jos sijoitetaan tdhén eri jdrjestysluvun m ja lausekkeen n — m arvot,
saadaan tuloksena taulukko 3.3.

Tama taulukko antaa myos pallofunktiokehitelmailld saavutettavaa
erotuskykyd, eli kuinka yksityiskohtaisesti kehitelma voi kuvata Maan
painovoimakenttdd. Nykyisin kédytettdvissd olevat kehitelmit, kuten
EGM2008-malli, menevit asteluvulle n = 2159 asti. Niiden luoman
geopotentiaalikuvan “terdvyys” on siis 9 km. Satelliittiratahdirioista
johdetut mallit menevit usein vain asteluvulle 20 saakka, jolloin ndkyvit
vain mantereen kokoiset — suuruusluokkaa 1000 km — yksityiskohdat.
Toisaalta kokeelliset topografian pallofunktiokehitelmé&t menevit jopa
asteluvulle 10800 saakka (Balmino ym., 2012).
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TAULUKKO 3.3. Puoliaallonpituudet pallofunktioiden eri aste- ja jarjestys-

luvuille.
mtain —m Puoliaallonpituus (km) Asteina
10 2000 18°
40 500 455
180 1M1 1°
360 55 30" =055
1800 11 6/ =051
10800 1,85 1/=05017

3.2 Pallofunktiokehitelman symmetriaominaisuudet

Toistetaan tdssd pallofunktiokehitelma:

V(p,A, 1) Z L Z Pam(sin®) (anm cos MA + b SinmA) .

T-Tl+]
n=0 m=0
(2.12)

3.2.1 Riippuvuus leveysasteesta ¢

Néhdéaan, ettd riippuvuus leveysasteesta ¢ toimii pelkédstddan Legendren
funktion P, 1, (sin ¢) kautta. Tama funktio voi olla pohjoisen ja eteldisen
pallonpuoliskon vilisen peilisymmetrian kannalta joko symmetrinen tai
antisymmetrinen argumentissa ¢. Tama merkitsee, ettd joko (symmetri-

nen tapaus)
Pim (Sin (b) = Pnm (Sln(_d)))

tai (antisymmetrinen tapaus)
Pum(sing) = —Prm (5111(_(]))) .

Vastaavasti se merkitsee, ettd kun t = sin ¢, pdtee joko (symmetrinen
tapaus)
an(t) = an(_t)
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tai (antisymmetrinen tapaus)
Pum(t) = _an(_t) .

Kumpi tapaus pitee, riippuu molempien, n ja m, arvoista. Asian ratkai-
semiseksi tutki vaikkapa yhtdloa 3.2:

Pam(t) = (1 —2) /2 LnlY), (32)

Tarvitaan vastaus pariin kysymykseen:

1) Milld asteluvun n arvoilla polynomi P, (t) on symmetrinen, milld
arvoilla antisymmetrinen argumentissa t? Tdmén ratkaisemiseksi
voi tutkia polynomien rekursiivista laskenta-algoritmia, yhtalo 3.1.
Tieddamme jo, ettd Po(t) = 1 on symmetrinen ja P;(t) = t on anti-
symmetrinen. Muiden n-arvojen sddnto saadaan rekursiivisesti
tai voit luntata taulukosta 3.1.

2) Milld tavalla differentiointi & vaikuttaa funktion symmetrisyyteen
tai antisymmetrisyyteen?

Kertominen lausekkeella /1 — t2 = cos ¢ ei muuta mitdan, koska tima
kerroin on itse symmetrinen argumentissa t tai ¢.

Jos halutaan, ettd kehitelma 2.12 on peilisymmetrinen pohjoisen ja
eteldisen pallonpuoliskon vélilld, tulee asettaa nollaksi ne kertoimet
Gnm, bnm, joiden vastaava P,,,, on antisymmetrinen. Silloin ne termit
havidvat sarjakehitelmasta. Jaljelle jaavat silloin kertoimet ja termit,
joiden vastaava P, on symmetrinen.

Taulussa 3.4 annetaan koodipatka octave-skriptauskielelld mielivaltai-
sen pintapallofunktion piirtdimiseksi ja sen symmetriaominaisuuksien

arvioimiseksi silmamaaraisesti. Ald luule, vaan kokeile.

3.2.2 Riippuvuus pituusasteesta A

Tama riippuvuus toimii “Fourier'n kantafunktioiden” cos mA ja sin mA
kautta. Mielenkiintoisin ominaisuus tdssd on pyorihdyssymmetria: muut-
tuuko pallofunktiokehitelmd 2.12, kun pituusaste A muuttuu?
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TauLU 3.4. Pintapallofunktion kartan piirtiminen. Huomaa, ettd tdssa kaytetty
octaven Legendren liitinndisfunktioiden koodi sisdltda ylimaardisen kertoi-
men (—1)™, joten yhtélon 3.2 verrattuna kaiken parittoman jérjestysluvun
funktioilla on pdinvastainen etumerkki.

% Pintapallofunktioiden piirtaminen
phi=linspace(-90,90,72);
lab=1linspace(0,360,144);
[f,l]=meshgrid(phi, lab);

n=5; m=-3;
leg=1legendre(n,sin(phi.*pi./180));
if m>=0

cs=cos(m.xlab.*pi./180);

else

cs=sin(abs(m).x*lab.xpi./180);

end

v=leg(abs(m)+1,:) " '*cs;

contourf(l,f,v")

xlabel(’'Pituusaste’, 'FontSize’, 16)
ylabel('Leveysaste’, 'FontSize’, 16)
str=sprintf(’'Pintapallofunktio n=%d, m=%d’', n, m)%
title(str, 'FontSize’, 20)

axis ([0 360 -90 90])

colorbar()

print(’'legendre2D.jpg’,’'-djpg’)

Néaemme heti, ettd on olemassa riippuvuutta pituusasteesta A, jos
kertoimista anm, bnm, M # 0 yksikin eroaa nollasta. Saadakseen aikaan
pyorahdyssymmetriaa kaikkien kerrointen a,,, ja by arvoille m > 0
tulee nollata: a;; = by =ay; =by; =axy =byy, =---=0.

Jaljelle jadvistd kertoimista voimme sanoa, ettd jos m = 0, sinmA = 0
identtisesti, siis kertoimet b, b1o, b2o, . . . ovat yksinkertaisesti ilman
merkitystd. Niiden arvot saavat olla mitd vain, mukaan lukien nolla.
Kertoimet aoo, aio, a2, ... taas ovat merkityksellisid, koska jos m =0,
silloin cosmA = 1 identtisesti. Ndin saamme pydrihdyssymmetrisend
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kehitelmind

— 1 .
V(d, A1) =V(d,7) = Z TTHanPn(SIn $),
n=0
jossa P def P ovat tutut Legendren polynomit, ja a,, def ano-

3.3 Legendren funktioiden ortogonaalisuus

Legendren polynomit ovat ortogonaalisia: integraali — muodollisesti
vektoreiden skalaaritulo — on

P 55— josn=n'
PPy [P Pty at = § 20T " (35)
! 0 josn#n'.

Tama ortogonaalisuus on vain yksi esimerkki yleisemmaéstd tavasta
katsoa funktioita ja funktioiden integraaleja. Kyseessd on hyodyllinen
analogia vektoriavaruuden kanssa, katso liite B.

Voimme kirjoittaa vaihtoehtoisesti, yksikkdpallon o pinnalla ja kdyttden
parametrisointia® (1, ) kulmaetdisyyden ja atsimuutin mukaan, katso
kuva 10.1:

IL Pn(cos) P, (cos)do =
- IOZ" jon P,.(cos W) Py (cos ) sinh dib dx —
-1 +1
— In L] P, (t) P, (t) dt = 270 f_] P, (t) P (t) dt,

jossa t = cos ja yksikkdpallon pinta-alkio do = sin dip do, jossa
taas sin1 on (P, a)-koordinaattien Jacobin3 determinantti. Siis pétee

*Tamé parametrisointi voidaan katsoa leveys- ja pituusastekoordinaatistoksi: leveys-
aste on 90° — 1\ = 1571 —1p, pituusaste on «.
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am josn=n’
(Pn - Po) ‘“f Py (cos) Pri(cosP) do = ¢ 2n+1 ’
0 josn#n/

(3.6)

jossa P on kulmaetdisyys integrointipisteestd parametrisoinnin (1, o)
origoon P = 0. Yhtdlo 3.6 kertoo, ettd Legendren polynomit ovat
keskenddn ortogonaalisia, jos funktioiden vektoritulo on maééritetty
yksikkopallon o pintaintegraalina.

Vaihtoehtoisesti voimme maéarittdd myos tdysin normalisoituja Le-
gendren polynomeja

n(cos 1|) L VI F 1P, (cos). (3.7)
Nyt modifioitu skalaaritulo — tulon keskiarvo yksikképallon pinnan
yli —on
_ del 1 josn=n/,
(PP fef 1 jj Pa(cosy) P,/ (cosp) do = ]

0 josn#n’,
jolloin polynomit ovat ortonormaaleja*. Samanlaisia taysin normalisoituja

Legendren liitinndisfunktioita on olemassa, katso Heiskanen ja Moritz
1967, sivu 31:

P (cos) & \/2 2n+1) Ez;—nmiﬁan(cosd)), m#0. (3.8)

Téssd tapauksessa ortonormaalit funktiot ovat yhtdlén 3.3 funktiot

normalisoituina:

_ Pam(cosP)cosma  josm =0
Ynmh-l*’) O‘) - m( ll)) ) )

Primi(cos®) sin|m|a  jos m < 0.

3Carl Gustav Jacob Jacobi (1804-1851) oli saksalainen matemaatikko, joka tunnetaan
elliptisten funktioiden tutkimuksestaan.

4Ja my0s

def

<Pn '§11’>T :12

taas tulon keskiarvo integrointivalin yli.



Matalan asteluvun pallofunktiot 3.4

Vastaava skalaaritulo on

<?nm Cin/m/ dd ] fj Ynm ll)) n m/’ (lb) ) -
1 josn=n’jam=m/,

0 muuten.

3.4 Matalan asteluvun pallofunktiot

Pistemassan potentiaalikenttd on (yhtdlo 1.4):

GM
V== T

Potentiaalikehitelmin 2.12 asteluvun n = 0 vastaava termi on

1 . 1 .
Vo, A, 1) = £a00Poo (sin d) = +aooPo (sin ) = 22,

josta
Qoo = GM.

Siis agp edustaa origossa sijaitsevan massapisteen tai pallosymmetrisen
massajakauman voimakenttdd. Korkeammat pallofunktiokertoimet ovat

“hairioitd” taméan paalle.
Ensimmaisen asteen kerrointen kehitelma on seuraavan ndakdinen:
Vi(p, A1) = ] (ancoscl)cos7\+bncosd)sm?\+a1osmd))
Kirjoita tdimd vektorimuotoon kdyttamalla sijaintivektorin lauseketta
r=(rcosdcosA)i+ (rcosdpsinA)j+ (rsind) k

— jossa {i, j, k} on euklidisen avaruuden ortonormaali kanta — tulok-

sena 1
Vi(r) = r—3<(a11i+bnj + ajok) - ).

Dipolin potentiaalikenttd on
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Kuva 3.5. Monopoli, dipoli ja kvadrupoli Maan keskuksessa sekd niiden vai-
kutukset geoidiin.

jossa d on dipolimomentti. Vertailemalla saa
ani+byij+ack =Gd,

siis ensimmadisen asteluvun n = 1 pallofunktiokertoimet edustavat
Maan gravitaatiokentdn dipolimomenttia.

Jokaisen maapallomme massa-alkion dm voidaan katsoa koostuvan
o monopolista koordinaattijarjestelmén origossa, suuruus dm
o dipolista, suuruus r dm, jossa T on massa-alkion sijaintivektori.

Silloin voimme laskea koko maapallon dipolimomentin integroimalla:

fff@ rdVv
de = jjf@r dm = fff@pr dv = fff@p dv - J’H:W = Mg - Tmkp,

jossa Ty, on madritelmdn mukainen maapallon massakeskipisteen paik-
ka. Tédstd seuraa, ettd jos valitsemme koordinaattijarjestelmdmme niin,
ettd origo on Maan massakeskipisteessd, pallofunktiokertoimet a;y,
b1 ja aio hdvidvit. Jos satelliittien liikeyhtadlot on formuloitu tietyssa
koordinaattijdrjestelmaéssd, kuten GPS-satelliittien tapauksessa WGS84-
jarjestelmédssd, on jdrjestelmén origo automaattisesti Maan massakeski-
pisteessd, ja ensimmadisen asteluvun pallofunktiokertoimet ovat oikeasti
nolla.



Funktion hajottaminen asteosuuksiin 3.5

Sama logiikka patee korkeammille pallofunktioiden asteluvuille.
Asteluvun 2 kertoimet edustavat maapallon kvadrupolimomenttia — mika

vastaa sen hitaustensoria — ja niin edelleen.

3.5 Funktion hajottaminen’ asteosuuksiin

Pintapallofunktioille on olemassa hyodyllinen integraaliyhtdlo, jos
vastaava funktio f pallon pinnalla on annettu. Yhtdlo on Heiskasen ja
Moritzin (1967) yhtdlo 1-71, kdyttamalld notaatiotamme Y, — fy,:

fr (b, 2““ ﬂ (', A") Pr(cosp) d (3-9)

jossa b on geosentrinen kulmaetdisyys laskentapisteen (¢, A) ja liikku-
van data- eli integrointipisteen (¢p’,A’) vililld, katso kuva 8.2. Tassa
asteosuusyhtildssi 3.9 on tietty samanlaisuus projektio- eli kerroinlasken-
tayhtdlon B.11 kanssa. Téssd ei kuitenkaan lasketa spektraalikertoimia,
vaan ”spektraaliosuusfunktioita” f,,.

Palautamme mieleen funktioiden f,, keskeisen ominaisuuden
f(p,A) = f(d,A,R) = Zf (¢, A)

pallon r = R pinnalla.

Asteosuusyhtdlon todistamiseksi valitaan ilman yleispdtevyyden
menetystd laskentapiste (¢, A) koordinaattijarjestelmén “pohjoisnavaksi”
eli d = 90°. Silloin ¢’ = 90° — . Kirjoittamalla yhtdlon 2.12 tavoin:

= Z Z Pam costl) Anm COSMA’ + by sinmA’)

0 m=0

sijoittamalla timéa asteosuusyhtdloon 3.9 ja kdyttdmalla hyviksi Le-

5Tai hajoittaminen, katso Kolehmainen (2008).
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gendren funktioiden ortogonaalisuutta saadaan oikeaksi puoleksi:

_2n+1ﬂ d) 7\ (cosp) d
— 22171 ano IL PZ(cos) do

Seuraavaksi yhtdlon 3.6 avulla

I_2n+1a 4t
R™ " "™ m41

Ano = Ap.

Asteosuusyhtdlon vasemmaksi puoleksi saadaan, koska oletetulla poh-
joisnavalla ¢ = 90° ja siis sinp = 1:

ful(d,A) = 1 (90°A) =

n

Z (Anm cOSMA + by sinmA) = Pro(1) ano = an,

kayttamalld yhtdlod 2.11 ja

PnOU) = 1)
Pom(1) =0, m#0.

Kun tdmad patee jokaiselle pisteelle (¢, A), seuraa, ettd asteosuusyhtdlo
3.9 on yleisesti tosi. Huomaa, ettd kerrointen a,, arvot riippuvat pisteen
valinnasta!

3.6  Eri suureiden spektraaliesitykset

3.6.1 Potentiaali

Lahtien yhtdlosta 2.10 kirjoitamme geopotentiaalin V spektraaliesityksen
avaruudessa:

V(p,A 1) i ( )nﬂ (b, A), (3.10)

n=0



Eri suureiden spektraaliesitykset 3.6

jossa asteosuudet V,, ovat

= ﬁ Z Pam(sin®) (anm cos MA + by, sinmA) =

m=0 1 n
= Rt Z Vannm((by)\)°

m=—n

Tassd kantafunktiot Yy, on mééritelty yhtdlossa 3.3:

Pam(sin¢) cos mA josm > 0
Ynm(d))}\) = ] ’

Pojm/(sind) sin|m|A  jos m < 0,

ja kertoimet, yhtélo 3.4:

Qnm josm = 0,
Vaim =

bnm josm <O0.

Maan pinnalla (r = R) tdmad antaa

V($,AR) Zvn Z AT Z VamYam($, M), (3.11)

m=—n

Voimme yhdistdd 16ytyneet yhteydet kommutoivaksi kaavioksi 3.6. Ai-
van kuten osiossa 2.2 suorakulmaiselle geometrialle, ndhdaan, ettad
potentiaalifunktion V siirtdminen pallotasosta R tasoon r = R+ H on
olennaisesti helpompaa taajuusdomeenissa — asteosuudet Vy, (¢, A) —
kuin avaruusdomeenissa.

3.6.2 Gravitaatio

Neumannin® reuna-arvotehtavassa ratkaistaan funktio V, jonka normaali-
derlvaatta 5,7V on annettu suljetulla pinnalla avaruudessa, esimerkiksi
kappaleen pmnalla.

Carl Gottfried Neumann (1832-1925) oli saksalainen matemaatikko, joka tutki
Dirichletin reuna-arvotehtavaa.
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Avaruusdomeeni Taajuusdomeeni
2n+1
Valb,A) = Jf. V@', A", R) Pr(cosw)a
V($,AR) I = Zv (¢,A)
}L\j\aikoa\ X (helppo]l
2 - 1y,
V($, A7) Z (B Va(d,A)

Kuva 3.6. Harmonisen kentdn V pystysuuntainen eli siteittdinen siirto avaruus-

ja taajuus- eli astelukudomeeneissa. Pallogeometria.

Jos kappale on pallo, saa olettaa %V = %V ja kayttaa pallofunktio-
kehitelmid. Differentioimalla yht&l6 3.10 saadaan

S (B e = 3 (B

n=0

Merenpinnalla taim& merkitsee

oV

o _Zn—l—1 Voo (), A).

n=0

r=R

Jos kirjoitetaan my6s merenpinnalla gravitaatiolle

(d) 7\ R) def 6V defZg_rL d),

seuraa analogisesti, ettd

g (0, 0) = ~ "1V, (),

ja kddntden, ettd

Vn(d)a }\) = _nLngn((b) 7\)



Usein kiytetyt pallofunktiokehitelmiit 3.7

Tuloksena saadaan erddn Neumannin tehtavan ratkaisun spektraaliesitys:

Vo= 3 (8 vata = w5 (5RO

n=0

Gravitaatiolle voi kirjoittaa analogisesti potentiaalin lausekkeen 3.11

kanssa:
g(¢, A, R) i (¢,A) defZ oTEs Z IumYnm ($, ), (3.13)
ja vertailu antaa johdonmukaisesti
Grim =~ V. (314)

Tama on mielenkiintoinen ja miettimisen arvoinen tulos:

1) Ensiksikin huomaa, kuinka yksinkertainen yhteys 3.14 potentiaa-

lin v, ja gravitaation g, vélilld on taajuusdomeenissa!

2) Toisekseen, jos kéytettdvissd on koko maapallon pinnalta gravitaa-
tion kiithtyvyyden mittausarvoja g(¢, A), voisimme johtaa niistd
asteosuusfunktiot g, (¢, A) aiemmin esitetyn menetelmén avulla.
Sen jdlkeen voimme saada ratkaisun yhtédlon 3.12 avulla koko
maapallon ulkopuoliselle geopotentiaalikentélle! Tima on geopo-
tentiaalin méaarityksen — tai geoidimaéarityksen — perusajatus
spektraalindkokulmasta.

3.7 Usein kadytetyt pallofunktiokehitelmat

Tarjolla olevista globaaleista pallofunktiokehitelmistd mainittakoon
jo vanhentunut malli EGMg6. Sen kehittivat Ohion valtionyliopiston
tutkijat kdyttamalld hyvin laajaa, Yhdysvaltojen NIMAn (National Imagery
and Mapping Agency, entinen Defense Mapping Agency DMA, nykyinen
National Geospatial-Intelligence Agency NGA) kerddamdd maailmanlaajuista
ja pddasiassa gravimetrista aineistoa. Tama kehitelma menee asteluvulle
360 saakka. Sen standardiesitystapa’ on
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360 n
(1 Z( ) Z m(sind) (C mcosm7\+§nmsinm7\)>. (3.15)

Téllainen esitystapa, jossa etumerkki “+” on kehitelmén edessd, joka
alkaa asteluvusta n = 2, ykkonen suluissa, mikd edustaa origossa
olevaa, Maan kokonaismassan suuruista pistemassaa, ja kertoimet C
ja S ovat dimensiottomia ja “tdysin normalisoituina”, on teollisuus-
standardi globaalissa tutkimusyhteistssd, joka harjoittaa pallofunktio-
kehitelmien laskemista Maan gravitaatiokentdn malleiksi. Uranuurtaja
on ollut professori Richard H. Rapp Ohion valtionyliopistosta, ja siksi
malleja kutsutaan usein OSU-malleiksi.

Yleensd ndissd malleissa alemmat termit — 2 < n < 20 — johdetaan
pddasiallisesti satelliittiratojen hdirididen analysoinnista. Siksi mallit
ovat koordinaattijdrjestelméassd, jonka origo on Maan massakeskipis-
teessd. Tama selittdd ensimmadisen asteluvun kerrointen puuttumisen,
kuten aiemmin selostettiin.

Korkeammat kertoimet — 20 < n < 360 — olivat ennen vuotta 2000
pddosin sekd painovoima-aineistojen (maa-alueet) ettd satelliittialtimet-
riadatan (valtameret) analyysin tulosta. Painovoimasatelliittien CHAMP,
GRACE ja GOCE laukaisujen jdlkeen ja niiden mittausten seurauksena on
nykyisin ainakin astelukuvili 20 < n < 200 avaruusgeodesian tuotos.
Vieldkin korkeammat asteluvut tulevat edelleen maanpaéallisestd datas-
ta. Uudempi malli EGM2008 (Pavlis ym., 2012) pddsee jopa asteluvulle
2159 saakka.

Taulussa 3.5 annetaan EGMg6-mallin ensimmaisid ja viimeisid kertoi-
mia. EGMg6 on tuorein ja paras pallofunktiomalli painovoimasatelliitti-
missioiden edeltdvaltd ajalta. Taulukoidut arvot ovat n, m, Chnm, Snm ja
molempien kerrointen keskivirheet niiden laskennasta. Huomaa, etta
kaikki S,,0 hdvigvét!

7Kaytetyt symbolit ovat a = ag, joka merkitsee Maan vertausellipsoidin péivantasaaja-
sddettd eikd R, ja ¢, joka merkitsee geosentristi leveysastetta. Koordinaatit (¢, A, )
muodostavat pallokoordinaattijdrjestelman.
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Joskus my®s ei-normalisoituja kertoimia kéytetddn ja kirjoitetaan

V= Gl:‘/l@( _i( ) i P (sin ) ]nmcosmA+Knmsinm7\)).

n=2 m=0

Silloin kirjoitetaan J,, def Jno. Kerroin ], on tidrkein, maapallon litis-
tyneisyyttd ilmaiseva Maan painovoimakentdn pallofunktiokerroin.
Yhtilodiden 3.7 ja 3.8 perusteella yhteys parametreihin C, S on

()]}

KnO no
Inm o (n—m)' Enm

3.8 Ellipsoidifunktiot

(3-17)

Laplacen differentiaaliyhtdlé 1.13 voidaan kirjoittaa ja ratkaista pallo-
koordinaattien sijaan ellipsoidisiin koordinaatteihin. Tulos tunnetaan
ellipsoidifunktiokehitelmana® (engl. ellipsoidal harmonics). Menetelméai
kédytetddn vahdn, koska tarvittava matematiikka on monimutkaisempaa.
Myos ellipsoidiset koordinaatit ovat ldhinna teoreettisesti kiinnostavia

eivdtkd geodesiassa laajassa kaytossa.

Esitystapa on
V(B,Au) =
Z Z lgg m(sin B) (A%, cosmA + BS,, sinmA), (3.18)
n=0m=0 (i

jossa Qnm (z) ovat toisen lajin Legendren funktiot, joista pieni ndyte 10ytyy
taulukosta 3.6. Vaikka yleinen argumentti z on kompleksinen, yhtalo

8Tama kehitelma pyorahdysellipsoidille eroaa Lamén funktioihin perustuvasta kehi-
telmastd, joka patee kolmiakselisen ellipsoidin tapauksessa.

(3.16)
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TauLU 3.5. EGMg6-pallofunktiokehitelmén kertoimia ja keskivirheita.

n m Cpm Stm Cnm:n Sam:n
keskivirhe keskivirhe
—0.484165371736E—03 0.000000000000E+00 0.35610635E—10  0.00000000E~+00

OO0 00 00NV O U PR PR, PR, RPROWWWDNNNDN
LN R W NR OO PRWNROPRWNROWNDNRONRDO

36c; 358
360 1359
360 360

—0.186987635955E—09
0.243914352398E—05
0.957254173792E—06
0.904627768605E—06
0.904627768605E—06
0.721072657057E—06
0.539873863789E—06

—0.536321616971E—06
0.350694105785E—06
0.990771803829E—06

—0.188560802735E—06
0.685323475630E—07

—0.621012128528E—07
0.652438297612E—06

—0.451955406071E—06

—0.295301647654E—06
0.174971983203E—06

—0.149957994714E—06

—0.760879384947E—07
0.481732442832E—07
0.571730990516E—07

—0.862142660109E—07

—0.267133325490E—06
0.967616121092E—08

0.709604781531E—10
0.183971631467E—10
—0.447516389678E—24

0.119528012031E—08
—0.140016683654E—05
0.000000000000E+-00
0.248513158716E—06
—0.619025944205E—06
0.141435626958E—05
0.000000000000E+00
—0.473440265853E—06
0.662671572540E—06
—0.200928369177E—06
0.308853169333E—06
0.000000000000E+00
—0.944226127525E—07
—0.323349612668E—06
—0.214847190624E—06
0.496658876769E—07
—0.669384278219E—06
0.000000000000E+00
0.262890545501E—07
—0.373728201347E—06
0.902694517163E—08
—0.471408154267E—06
—0.536488432483E—06
—0.237192006935E—06

0.691761006753E—10
—0.310123632209E—10
—0.830224945525E—10

0.10000000E—29
0.53739154E—10
0.18094237E—10
0.13965165E—09
0.10962329E—09
0.95156281E—10
0.10423678E—09
0.85674404E—10
0.16000186E—09
0.84657802E—10
0.87315359E—10
0.54383090E—10
0.27996887E—09
0.23747375E—09
0.17111636E—09
0.11981266E—09
0.11642563E—09
0.14497863E—09
0.22415138E—09
0.27697363E—09
0.19432407E—09
0.15229150E—09
0.89838470E—10
0.11332010E—09

0.50033977E—10
0.50033977E—10
0.50033977E—10

0.10000000E—29
0.54353269E—10
0.00000000E+00
0.13645882E—09
0.11182866E—09
0.93285090E—10
0.00000000E+00
0.82408489E—10
0.16390576E—09
0.82662506E—10
0.87852819E—10
0.00000000E+00
0.28082882E—09
0.24356998E—09
0.16810647E—09
0.11849793E—09
0.11590031E—09
0.00000000E+00
0.21957296E—09
0.28105811E—09
0.18682712E—09
0.15328004E—09
0.87820905E—10
0.11518036E—09

0.50033977E—10
0.50033977E—10
0.50033977E—10

3.18 antaa reaaliarvoisen tuloksen reaaliarvoisten kerrointen AS,

tapauksessa.

e
nm/ Bnm

Ylld olevan yhtdlén 3.18 johtamisesta kiinnostuneet l16ytdvit sen

kirjasta Heiskanenja Moritz (1967) osio 1-20 tai muista potentiaaliteorian

oppikirjoista.
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TauLukko 3.6. Toisen lajin Legendren funktioita.

Qolz) = 1In 211
ZZ_—1—11 (M +1)Qn+1(2) = (2n+1)2Qn(2) + nQn-1(2) =0
Qi(z) = 3zl 2_1—1+1
_ (3,2 _1yip 2T 3 m
Q2(z) = (32 4)lnz_11 2% Qnm(z):(l—zz)m/z ;ZimQ“(z)
Qslz) = (327~ 42)In_ 5~ 327 +3

3.8.1 Kehitelman skaalaus standardimuotoon

Oletetaan, ettd origo on Maan massakeskipisteessd, jolloin Aj, ~ 0,
AS, = 0,Bj; =0.
Voidaan my0s ndyttads, ettd kehitelméssd 3.18 ensimmadinen kerroin
on oltava
Ajp = Aj = GII\_:A@ arctan%

ja kehitelma erikoistuneena pyorahdyssymmetriselle kentélle on

ViB,u) =) VilBw =) Q“<§>A$:‘o Pa(sinB).  (3.19)
n=0

= Qnlig)

Myos
— Qo (15) GMg arctan E
Qo(ig) E

b )
gravitaatiopotentiaali, joka liittyy kentdn osuuteen, jonka ellipsoidinen

Vo(u) = Vg (u)

asteluku on nolla.

Sijoituksilla (Heiskanen ja Moritz, 1967, sivu 66)

u\ E by . E
Qo (1E) = —iarctan 7, Qo <1E> = —larctan b (3.20)
saadaan oM
Vo(u) = Vi(u) = T ® arctan LEL (3.21)

T4mai vastaa pallofunktiokehitelmén “keskeiskenttdd” GMa /3, jonka
avulla voidaan skaalata yhtdlo 3.18 sijoittamalla ylld olevat identiteetit
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3.20. Kertoimet tulee jakaa vakiolausekkeella
]E/l@ arctan %,
kun keskeiskenttd, lauseke 3.21, siirretddn kehitelmén ulkopuolelle.
Tulos on
V(B,Au) = G]I\:_/l® arctanLEL -

- i i arctan% Qnm (i

%) = . —e e .
Pm(sin <Cnm cosmA+ S, ., sin m7\> )
arctan E Qunm (i%) (sin ) ’

n=2 m=0

jossa olemme samalla siirtyneet tdysin normalisoituihin kertoimiin C,,,

S: .. ja Legendren funktioihin P, (sin ).

Tama on ellipsoidifunktiokehitelmd, joka vastaa standardimuotoista
pallofunktiokehitelmé&d 3.15, jossa Maan kokonaismassa on sulkujen
ulkopuolella ja kertoimet dimensiottomia. Tatd yhtélod ei ole tiettavasti
kdytetty kdytdannon geopotentiaalilaskentaan missaan.

3.8.2 Rappin ja ellipsoidisen kehitelman vastaavuus

Voimme osoittaa pallofunktiokehitelmien 3.15 ja 3.16 sekd ellipsoidisen
kehitelmdn 3.18 vastaavuuden, jos Maan litistyneisyys — 0 ja siis myds
b —a, B — ¢jau — 1. Oletamme, ettd Heiskasen ja Moritzin (1967)

(3

yhtalo 1-112,

© n n+1
— Z Z <%> Pam(sin @) (A5, cosmA + B, sinmA), (3.22)
n=0 m=0
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mikd identifioimalla A, = GMe /q, AS; = AS; = BS, = 0ja yhteyk-
sien 3.17 kanssa saa kirjoittamaan

AS GM In GM Cn
0 s R T E A

Al _ GMg Jam |
B?Lm a Knm

GM m—m)! | Cam
:T@\/2(2n+1)—{ 5 }, m # 0.

(n+m)!

Sijoitus yhtdloon 3.22 vahvistaa sen vastavuutta pallofunktioiden yhta-
16iden 3.15 ja 3.16 kanssa.

3.8.3 Ellipsoidifunktiokehitelman kaytén edut

o Normaaligravitaatiopotentiaalin ilmaisu on tédssé esitystavassa
yksinkertainen, katso Heiskanen ja Moritz (1967) yhtélo 2-56.
Saman kentdn pallofunktiokehitelma sen sijaan vaatii teoreettisesti
ddrettdomdn monta kerrointa — vaikka kdytdnnossd vain 3—4.
Kehitelma kertoimiin J¢ tai Jg saakka riittaa.

o Litistyneella maapallolla suppenemiskéyttdytyminen on parem-
pi. Tama siksi, ettd Maan litistyneisyyden takia pdivdntasaaja
on noin 21 km kauempana Maan keskipisteestd kuin navat. Eri-
tyisesti korkean asteluvun pallofunktioilla on vaikeuksia supeta
tehokkaasti yhtaikaa sekd napa- ettd pdivdntasaaja-alueille. Tama
ongelma on pahin erittdin korkea-asteisille pallofunktiokehitel-
mille (esimerkiksi Wenzel, 1998). Jo asteluvun 360 pallofunktion
puoliaallonpituus on vain 55 km!

3.8.4 Ellipsoidifunktiokehitelman kayton huono puoli

Ellipsoidifunktiokehitelmédn laskeminen on pallofunktiokehitelmé&a
selvasti tydladmpdd ja siis kalliimpaa mitattuna tietokoneresursseissa.



82 3

LEGENDREN FUNKTIOT JA PALLOFUNKTIOT

Olenko ymmartanyt taman?

1)

2)

3)

4)

5)

6)
7)

Mikéd ovat asteluku ja jarjestysluku pallofunktiokehitelmé&ssa?
Miten ne liittyvéat kehitelméan erotuskykyyn Maan pinnalla?

Mita pallofunktioiden tyyppejd on olemassa? Kuvaile niiden
riippuvuutta leveys- ja pituusasteista.

Montako kertaa pintapallofunktio Y, (¢, A) vaihtaa etumerkki-
dan, kun matkustetaan meridiaania pitkin eteldnavalta pohjoisna-
valle? Ja montako kertaa se vaihtaa etumerkkidan, kun matkuste-
taan maapallon ympaéri pdivintasaajaa pitkin?

Mitd merkitsee sanonta, ettd funktiopari on keskendan ortogo-
naali? Anna kahden funktion vélisen skalaaritulon mahdollinen
madritelmad.

Miten pallofunktioiden vaimennus korkeuden mukaan kayttdy-
tyy? Miksi painovoimasatelliitti, joka yrittdd kartoittaa Maan pai-
novoimakenttdd suurella erotuskyvylld, lentdd mahdollisimman
matalalla radalla?

Mitd asteosuusyhtilo kertoo?

Mitka pallofunktiokertoimet liittyvat Maan massajakauman dipoli-
momenttiin? Miksi ne puuttuvat taulusta 3.5?

Harjoitus 3—1: Pallofunktiokehitelman vaimennus

Jos

korkeuden mukaan

o0

V(A1) Zv (A7) Z (R)M Vi (b, M),

voidaan kutsua

Vi (b, A, 1) _ (R)“H

Va(d,N) T

potentiaalin vaimennuskertoimeksi korkeuden mukaan.



Harjoitus 3—2: Pallofunktioiden symmetriat

Differentioimalla sdteen r suhteen saadaan

OV (b, A, T 1 /R\“2
(g)r ) = _n]—g (?) Vn((byx)) (323)
eli koska merenpinnalla vastaavasti
OVn(d,A,r 1
(g)T‘ ) = _T\.]—zf— Va(d,A), (324)
r=R

seuraa, ettd vetovoiman vaimennuskerroin on lausekkeiden 3.23 ja 3.24

suhde: (R)“*Z
T .

1) Piirra loglineaarinen grafitkka sekd potentiaalin ettd vetovoiman
vaimennuskertoimista arvoille n = 0, 1, 2, ..., 100 joko kasin
tai koneellisesti. Valitse R = 6378 km, r = 7378 km — korkeus
1000 km maanpinnan yldpuolella.

2) Tamén perusteella, jos satelliitti on 1000 km maanpinnan yldpuolel-
la, milld asteluvulla n ovat vetovoiman kiihtyvyydet %Vn(d), A1)
satelliitin korkeudella pienemmat kuin 1% siitd, mitd ne ovat
Maan pinnalla?

3) Milld asteluvulla n ne ovat pienemmaét kuin 10~* x siitd, mité ne
ovat Maan pinnalla?

Harjoitus 3—2: Pallofunktioiden symmetriat

Katso yhtdlo 2.12. Siind P,y (sin$) = P (t) on vain leveysasteen ¢
funktio. Kun ¢ kulkee eteldnavalta ekvaattorin kautta pohjoisnavalle,
—90° < ¢ < +90°, saavuttaa t arvot —1 <t < +1.

Legendren funktioille on olemassa suljettu lauseke 3.2:

an(t) = (1 _t2> m/Z d(i_”; n(t)»

jossa P, (t) ovat tavallisia Legendren polynomeja:

Pa(t) = 2%!% (t2—1)".

Voidaan havaita seuraavat ominaisuudet:
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o Symmetrisen t-funktion differentiointi tuottaa antisymmetrisen
funktion ja toisinpdin.

o funktio (t* — 1) ja sen potenssit ovat symmetrisia.

o Siis parillisille n-arvoille Py, (t) = P, (—t): Py, on symmetrinen poh-
joisen ja eteldisen pallonpuoliskon vililld, ja parittomille n-arvoille
P, (t) = —Pn(—t): Py onantisymmetrinen pallonpuoliskojen valill4.

o Vastaavasti parillisille n, P, (sin ¢) = P, (sin(—¢)) ja parittomille
n, Pn(sind) = =Py (sin(—¢)).

Kysymyksia
1) Mika on vastaava saanto P, ,,-funktioille, siis milld arvoilla
N ja m se on symmetrinen ja milld arvoilla antisymmetrinen?
2) Taytd kaavio(n =0,...,5, m =0, ..., n) merkeilld joko 'S’
(symmetrinen) tai ‘A" (antisymmetrinen) jokaiselle lokerolle:

n=0 12 3 4 5

m=20

g1 =~ W N r

3) Mikéd on symmetrisyyden logiikka?

4) Jos kenttd on peilisymmetrinen pohjoisen ja eteldisen pal-
lonpuoliskon valilld, siis V($,A,r) = V(—d,A, 1), mitka
pallofunktiokertoimista a,, ja bnm putoavat pois sarjake-
hitelmasta? Miksi?

Vihje: katso tdiméan luvun P, (sin ¢) esimerkkiyhtaloita ja
-graafeja ja yritd arvata yleinen sddnto. Sen jalkeen verifioit.

5) Sama kysymys, jos potentiaali on pydrihdyssymmetrinen

Maan pyorahdysakselin ymparillda: V(d, A, 1) = V(P, 7).



Harjoitus 3—3: Pallofunktioiden etumerkkialueet

Harjoitus 3—3: Pallofunktioiden etumerkkialueet

Osiossa 3.1 ndhtiin, ettd Legendren liitdinndisfunktioilla P, (t) on
tarkasti n — m + 1 etumerkkivilid madrittelyvililldan ¢ € [—90°,90°].
Voimme néyttdd, ettd molemmat funktiot cos mA ja sin mA menevit 2m
kertaa nollan ldpi ja niilld on 2m etumerkkivilid méarittelyvalillaan
A € [0,360°), jonka oletaan olevan suljettu kehd. Montako etumerkki-
aluetta — harmaita tai valkoisia, ndkyvissa tai peitossa — on kuvassa
3.3 olemassa jokaiselle pintapallofunktiolle

Pam(sind)cosmA  josm >0,
Ynm(d)) }\) = . ) .
Poim/(sin d) sinfm|A josm < 0

Harjoitus 3—4: Pakonopeus

1) Annettuna pallosymmetrinen planeetta, massa GM, sdde R, jon-
ka pinnalta tykki ampuu luoteja lentonopeudella v. Mikd on
nopeuden v minimiarvo eli pakonopeus, jos halutaan, ettd luoti
saavuttaa mielivaltaisen suuria etdisyyksid poispdin planeetan
pinnalta eikd koskaan endd putoa takaisin? Luodin liike-energia

on By, = %mvz, jossa m on luodin massa.

2) Annettuna kaksiulotteisessa geometriassa ympyrasymmetrinen pla-
neetta, massa GM, sdde R. Planeetan gravitaatiokenttds esittaa
osion 2.3 mukainen potentiaali V. Minkd muotoinen V on ilmais-

tuna ndissa parametreissa? Tee valistunut arvaus.

3) Ympyrdplaneetan reunalla on taas tykki. Mitd voit sanoa nyt
pakonopeudesta v? Al yriti laskea sité!






Normaalipainovoimakentta

4.1 Normaalikentan perusajatus

Samalla tavalla kuin Maan muoto voidaan approksimoida pyorahdysel-
lipsoidilla, voidaan Maan painovoimakenttd approksimoida kentalld,
jonka erds tasapotentiaalipinta on juuri pydrahdysellipsoidi eli vertaus-
ellipsoidi.

Tama tuo mieleen loogisen ajatuksen: miksei méddritelld keskendén yh-
teensopiva vertausellipsoidi ja malligeopotentiaali eli normaalipotentiaali,
jonka erds tasapotentiaalipinta vertausellipsoidi on? Sen jdlkeen saadaan
painovoimakaava normaalipotentiaalista ottamalla sen gradientti.

Tamaén jalkeen voimme madritelld anomaalisia suureita, kuten héirio-
potentiaali ja painovoima-anomalia, jotka ovat keskenddn yhteensopivia
— ja numeerisesti paljon pienempis.

Olkoon normaalipotentiaali U(x, Yy, z). Silloin normaalipainovoima

on
ou

Y 0ou,2) = [yl = VU] = ~(y n) = -3,
jossa % merkitsee differentiointia normaalikentédn tasapotentiaalipin-
nan — sekin ellipsoidipinta — ulkoisen normaalin n suuntaan, katso
kuva 4.1. Tdmé suunta poikkeaa painovoimakentdn tasapotentiaalipin-
tojen normaalin eli luotiviivan suunnasta luotiviivan poikkeaman verran.
Tama luotiviivan poikkeama on myds hyvin pieni kulma.
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Kuva 4.1. Maan normaalipainovoimakentta.

Seuraavassa osiossa ndhdéan, ettd Maan pyordahdysliikkeen aiheutta-
ma ndenndisvoima voidaan Maan mukana pyorivassa jarjestelméssa ku-
vata pydrihdyspotentiaalin — keskipakoispotentiaalin — @ avulla. Myos
normaalipotentiaali U mééritellddn niin, ettd pyordhdyspotentiaali ®
on sen osa: normaalipotentiaali on painovoimakentin eikd gravitaatioken-
tin vertauspotentiaali. Jos kdytetddn normaaligravitaatiopotentiaalille
merkintdd V* — harvoin kéytetty suure geodesiassa — normaalipairno-
voimapotentiaali eli normaalipotentiaali U on

U=V*+0,

jossa @ on keskipakoispotentiaali. Siis V* kuten V, on médritelty ei-
pyorivéssa eli inertiaalisessa jarjestelmassd, kun taas U, kuten W, on



Keskipakoisvoima ja sen potentiaali 4.2

Keskipakois-
~ voima

Kuva 4.2. Gravitaatio ja keskipakoisvoima.

madritelty maapallon mukana pyorivdssa (ei-inertiaalisessa) jarjestel-
maéssd. Samalla tavalla kuin sana painovoima viittaa maapallon mukana
pyOrivédssd jarjestelmdssd toimivaan voimaan, inertiaalisessa jdrjestel-

maéssd kdytetddn sanaa gravitaatio eli vetovoima.

4.2 Keskipakoisvoima ja sen potentiaali

Maan pyorahdysliike vaikuttaa painovoimakenttddn. Inertiaalisessa ver-
tausjdrjestelmdssd puhutaan gravitaatiosta ja gravitaatiopotentiaalista V,
kun Maan pinnalla, ei-inertiaalisessa eli mukana pyérivissi jarjestelméssa,
puhutaan painovoimasta ja painovoimapotentiaalista W. Pyorahdysliikkeen
ja sen keskipakoisvoiman takia kyse on eri asioista. Katso kuva 4.2.

Keskipakoisvoiman yht&dlon johtamiseksi kirjoita ensin
pP=Xi+Yij.

Vektorit {i, jy k} muodostavat (X, Y, Z)-akseleiden kanssa samansuun-
taisen ortonormaalin kannan. Seuraa, ettd

p=lpl=\/(p p)= VX1V
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Nyt keskipakoisvoima — tarkemmin keskipakoiskiihtyvyys — on
fo=wip=wi (Xi+Yj), (4.1)

jossa wg on Maan pyorahdysnopeus radiaaneina aikayksikdssd. Jos X
ja’ Y ovat metreind ja wg, radiaaneina sekunnissa, saadaan f, yksikossa
m/g,

T4dllda Maan pinnalla painovoimamittaukset tehddan yleensa kojeella,
joka on levossa Maan pintaan ndhden: se seuraa maapallon pyorimislii-
kettd. Jos koje liikkuu, on keskipakoisvoiman lisdksi otettava huomioon
my0s toinen ndenndisvoima: coriolisvoima'. Myos nesteet — vesi ja
ilma — tuntevat Maan pinnalla, jos ne ovat levossa, vain painovoi-
maa, joka siséltdd keskipakoisvoiman. Virtaukset tuntevat tdimén lisdksi
myds coriolisvoiman, joka kdantdd ne sivuun ja aiheuttaa tunnettuja
pyorreilmiGitd valtamerilld ja ilmakehdssd, kuten pyorremyrskyja.

Keskipakoisvoima voidaan kuvata erdédnlaisen potentiaalin gradien-
tiksi. Jos kirjoitetaan keskipakoispotentiaaliksi

1.2 (2 | \2
O =swg (X2 +Y?),
voidaan suoraan laskea gradientti

om0, D, 2D,
fo=VO = S5i+ 5uj+ 5k =

=lwd 2X-i4lwd 2V j+0=w? (Xi+Yj),

mika vastaa ylld annettua keskipakoisvoimayht&lod 4.1.

Jos gravitaatiopotentiaaliin V lisdtdén keskipakoispotentiaali @, tulos
on painovoimapotentiaali eli geopotentiaali W:

W=V+4 Q.

'Gaspard-Gustave Coriolis (1792-1843) oli ranskalainen matemaatikko, fyysikko ja
koneinsindori. Hanen nimensa on kaiverrettu Eiffel-torniin, Eiffel Tower, 72 names.
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Voimme johtaa keskipakoispotentiaalista ® my6s seuraavan yhtalon
differentioimalla se kahdesti:

d d d
AD = V2D = (V-f,) = ngx + ngawr 370 = 203,  (4-2)

josta seuraa, Poissonin yhtdlon 1.14 kanssa,
AW = —4nGp + 2w}, (4.3)

geopotentiaalin eli painovoimapotentiaalin Poissonin yht&lo.

Ero gravitaation ja painovoiman vélilld on olennainen. Gravitaatio-
voima eli gravitaation kiihtyvyys g* = VV on pelkké vetovoima, kun
painovoiman kiihtyvyys g = VW on gravitaation ja keskipakoisvoi-
man vektorisumma. Vetovoima ja keskipakoisvoima toimivat samalla
tavalla: voima on verrannollinen koekappaleen massaan. Toisin sanoen
kiihtyvyys on aina sama koekappaleen massasta riippumatta. Tama on
kuuluisa ekvivalenssiperiaate (Galilei, Einstein), joka on todettu tarkasti
paikkansa pitdvéksi. Erityisesti voidaan mainita unkarilaisen Lordnd
Eo6tvosin® neuvokkaat kokeet.

Maan péélld olevat vesimassat, samoin kuin ilmakehé ja suunnatto-
masti pidemmalla aikaskaalalla Maan “kiinted” kallio, joka muodostaa
vuoristoja ja valtameren syvénteitd, tottelevat painovoimaa tekematta
eroa vetovoiman ja keskipakoisvoiman vililld. Siksi merenpinta yhtyy
noin metrin tarkkuudella geopotentiaalin W tasapotentiaalipintaan. Myos
Maan paaélld korkeudet mitataan tédstd pinnasta eli geoidista. Geoidi on

Gaussin mukaan “Maan matemaattinen muoto”.

4.3 Tasapotentiaalipinnat ja luotiviivat

Painovoimapotentiaali eli geopotentiaali on vakio tasapotentiaalipinnoilla:

W(x,y, z) = vakio.

*Lordnd paroni E6tvos de Vasarosnamény (1848-1919) oli unkarilainen fyysikko ja
gravitaation tutkija.
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Olkoon {i,j,k} (x,y, z)-akseleiden suuntainen ortonormaali kanta.
Silloin potentiaali muuttuu yksikkévektorin

e = e]i+€2j —|—€3k

suuntaan seuraavasti:

ow oW ow ow ‘
E—€1W+eza+ega—z—<e VW>,

joka on nolla, jos ja vain jos vektorit e ja VW ovat kohtisuorassa toisiinsa
ndhden. Toisin sanoen potentiaali on stationaarinen vaan suuntiin, jotka
ovat kohtisuoria Maan painovoimavektoria

VW =g

kohtaan.

Tasapotentiaalipinnat ja painovoimavektorit eli luotiviivat ovat aina
kohtisuorassa toisiinsa néihden.

4.3.1 Tasapotentiaalipintojen kaarevuus

Taso, joka on pisteessd P samansuuntainen tasapotentiaalipinnan kans-
sa kutsutaan sen tangenttitasoksi, kuva 4.3. Jos tasapotentiaalipinnan
paikallinen kaarevuus x-suunnassa on py, ja pisteen P x-koordinaatti on
Xo, voidaan kehittdd pintojen vélinen etdisyys Taylorin sarjaksi:

1 2
(St K (x —xo0)
Téstd seuraa W-arvojen erotukseksi pintojen vililld (g = ||g|| = ||[VW|)):
~—ea~ —(x —xa)2 9
W~ —eg~ — (x —x0) T

Differentioimalla (W on tdssad geopotentiaali tangentti- eli vaakatasolla)
saadaan?



Tasapotentiaalipinnat ja luotiviivat 4.3

Tangenttitaso

Tasapotentiaali-
pinta W = Wp
x-akseli
Kaarevuus-
sdade pyx
Kuva 4.3. Tasapotentiaalipintojen kaarevuus.
0? RV _ 9
W‘SW = WW = 0xxW = —o0
josta
—__9
T T w
Madérittdmalld kaarevuus x- ja y-suunnassa
OyyW
deﬁfl__axxw K d_efl:_ vy (44)

kg Yy g
saadaan keski- eli Germainin* kaarevuus, joka on useimmissa paikoissa
positiivinen luku:

oKt Ky W3y, W
-T2~ 29 ’

3Tassd kdytetddn kompaktia Eulerin osittaisderivaattien kirjoitustapaa, 9xx, 0yy, 02,
joka on usein kéiteva.
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Luotiviiva ...,

p. Kaarevuussadepx

AW/ |

KaarevuuSSéide px}

Kuva 4.4. Luotiviivan kaarevuus.

ja kdyttamalla Poissonin yhtdlod 4.3,
AW = 0, W + dyy W + 0, W = —47ntGp + 2w},

saadaan
—2g] + 0., W = —4nGp + 2w3.

Kayttamalla

__09__0g
0::W'=—57 = ~3ip

jossa H on korkeuskoordinaatti, saadaan painovoiman pystygradientiksi
(Heiskanen ja Moritz, 1967, yhtélo 2-20):

9g
3~ —2g] +4nGp — 2w},

Ernst Heinrich Brunsin 16ytdma yhtdlo (Bruns, 1878, sivu 13).

4.3.2 Luotiviivojen kaarevuus

Luotiviivat ovat kaarevia, koska painovoima ei ole vakio vaakasuunnas-
sa. Jos painovoima kasvaa vaakasuunnassa, my0s tasapotentiaalipinnat

4Marie-Sophie Germain (1776-1831) oli nerokas ranskalainen matemaatikko, lukuteo-
reetikko ja elastisuuden tutkija. Han kédvi kirjeenvaihtoa Gaussin kanssa lukuteoriasta
(Friedelmeyer, 2014) ja teki arvokasta pohjatyotd Fermat'n suuren lauseen todistusta
varten. Hanen nimensd puuttuu Eiffel-tornista.
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tulevat ldhemmaksi toisiaan eivdtkd ole samansuuntaisia. Tiama merkit-
see, ettd luotiviivojen, jotka ovat kohtisuorassa kaikkiin tasapotentiaali-
pintohin ndhden, on oltava kaarevia samaan suuntaan.

Tarkastellaan kahta tasapotentiaalipintaa, toinen potentiaalille W5 ja
toinen potentiaalille Wp+AW. Niiden vélinen etdisyys on AH = AW /¢

Koordinaatin x suuntainen pintojen vélinen suhteellinen kallistus on
O Ati(x) = 0 (AW) __AW3dg
g(x)

ax M) =5x
Jos lahtoetdisyys pintojen vililld on AH, tarvitaan matkaa

oo/ 2 (43 / (Low3e) _ g0

saadakseen tangentit kohtaamaan, katso kuva 4.4. Luotiviivan kaare-

g2 ox’

vuus on tdiman kddnteisluku seké x- ettd y-koordinaatin suunnassa:
1 _1d 1 _1dg
Px  gox’ Y py goy
Voimme johtaa normaalipainovoimakentdn kenttéaviivojen eli normaali-
luotiviivojen kaarevuuden samalla tavalla. Ero on kuitenkin, ettd paino-
voimalle vertausellipsoidin pinnalla 16ytyy yksinkertainen matemaatti-

nen lauseke, esimerkiksi yhtdlo 4.8. Hyva approksimaatio on

Y(@) & vqcos® @ + vy sin? @.
Ketjusdannon avulla

oy _ 0y de _ 10y

ax — 3¢ ax — R (—2vqcos @sin @ + 2y, sin @ cos @) =

_ Yo —Ya _;
=% sin 2¢.

Tama merkitsee x- eli eteld-pohjoissuunnassa ja y- eli lansi-itdsuunnassa:

=19y 1¥e—Ya 10y
X Yox R Ya vy Yoy )
Tama merkitsee my0s, ettd normaaliluotiviivan suunta korkeudella h

7| =

sin2¢p, K

on ¢(h) = @(0) + k}h, jossa numeerisesti k; = 0,171”km™"! - sin 2¢
(Heiskanen ja Moritz, 1967, yhtalo 5-34).
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Tahtitieteelliset
koordinaatit @, A
/

/ . .o
/- Luotiviiva

Greenwich¢

Kuva 4.5. Luonnolliset koordinaatit @ ja A. Nadiden lisdksi tarvitaan luonnolli-
nen korkeuskoordinaatti, esimerkiksi geopotentiaali W.

4.4 Luonnolliset koordinaatit

Ennen satelliittiaikakautta geosentrisid koordinaatteja X, Y ja Z oli
mahdotonta mitata suoraan. Nykyisin tdima on mahdollista, ja samalla
saadaan korkeus h vertausellipsoidista, joka on puhtaasti geometrinen

suure.

Aiemmin voitiin mitata vain kuvassa 4.5 ndkyva luotiviivan suunta
sekd havaintopisteen ja keskimerenpinnan potentiaalien vélinen ero.
Luotiviivan suunta n mitattiin tdhtitieteellisesti: tdhtitieteellinen leveys-
aste on @ ja pituusaste A. Kolmas koordinaatti, painovoimapotentiaalin
ero W(x,y,z) — W, merenpinnan potentiaalin W, kanssa, méaritet-
tiin vaaitsemalla. Koordinaatteja ®, A ja W kutsutaan luonnollisiksi
koordinaateiksi.
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Potentiaalin sijasta voidaan kdyttaa ortometrista korkeutta H. Sen maa-
ritelmé on helppo ymmartaa, jos kirjoittaa

ow _ 1 N AL
=9 = dH=—gdW = Hp=— [ s @)
jossa integraali otetaan pisteen P luotiviivaa pitkin. % = % on pai-

kallinen tasapotentiaalipintojen normaalin eli luotiviivan suuntainen
derivaatta. g on painovoiman kiihtyvyys luotiviivalla paikan — tai
geopotentiaalitason — funktiona. Tdssd ortometristen korkeuksien ta-
pauksessa g on todellinen, kallion sisdlld oleva painovoima, joka on
paikan epdlineaarinen funktio ja riippuu my®os kallion tiheydestd. Maa-
rittdmisen hankaluus on ortometrisille korkeuksille ominaista. Tahdn
palataan myohemmin (Heiskanen ja Moritz, 1967 luku 4).

Myo6s koordinaatit @, A ja H muodostavat luonnollisen koordinaatti-
jdrjestelmén.

4.5 Normaalipotentiaali ellipsoidisissa koordinaateissa

Olemme jo esittdneet yhtdlod 3.18, geopotentiaalin kehitelma ellipsoi-
difunktioihin. Normaalipotentiaalilta U vaaditaan, ettd se on vakio
vertausellipsoidin pinnalla u = b. Kehitetdan keskipakoispotentiaali @
ellipsoidifunktioihin. Saadaan
O(B,u) = yw3 (x* +y?) = Tw3, (u? + E?) cos? p =
= Jwi (W +E?) (1—sin’ B) =
= Jwg (u? + E?) (—2P,(sin B) + 2Po(sinB)) =
= —Jw (u? + E2) (P2(sin B) — Po(sin B)) .

Taman lisdksi on yhtdlon 3.19 perusteella pyordhdyssymmetriselle
normaaligravitaatiopotentiaalille V*:

ViBw =Y Vigw =Y g”?
n=0 n=0 <n

ulls

) AsoPn(sin ). (3.19)

)

1

m|c
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Nyt
U(B,u) = V*(B,u) + (B, u).

Vertausellipsoidin pinnalla u = b vaatimuksena on U({3, b) = Uy, mika

on mahdollinen vain, jos (A$; & ASH):

Uo =AY + 3w} (b2 + E?) = AT + Jwid?,
0= AY,
0=A% — 3wz (b* +E?) =AY — swiad?,
0=AS, n=3,4,5....
Suure U, on laskettavissa yksiselitteisesti, jos maapallon massa GMg ja

vertausellipsoidin mitat a ja b ovat tiedossa. Tulos, Heiskanen ja Moritz
(1967) yhtdlo 2-61, on

Uy = GT]\:—A@ arctan% + 1wz a’. (4.6)

Seuraa oM
ex __ 1.2 2 52 E
Ay =Up —ywgza® = Farctan .

Painovoimakentin normaalipotentiaali U saadaan seuraavasti:

Vi (u)

A

U(B,w) = V(B w) + OB, 1w) = M@ arctan £+

E u
Ay . Palsing) ®(B,u)
lZZQZ(lf 73240 AN, 12 (2 12 2
+jw3a = (3sin ) + sw3 (U + E?) cos® B =
Q2(i¢)

= Co(u) + Cy(u)sin® B + C,(u) cos® B,

jossa Co, C; ja C, ovat sopivia w:n funktioita. Funktio V§ on termin =0
kehitelmaéssa 3.19, yhtdlo 3.21.

Vertausellipsoidin pinnalla (u = b), kdyttien a? = b? + E2:

U(B,b) =
Vs (b) AS* P (sin B) ®(B,b)
GM 1 . A
=== 2 arctan% +1wia’sin® B — twia® + Jwia’cos® B =




Normaalipainovoima vertausellipsoidin pinnalla 4.6

- - " Hyperbeli 3 = vakio

Kuva 4.6. Meridiaaniellipsin geometria ja eri leveysastetyypit sekéd polttopis-
teet Fy ja F.

M
_G e arctan% + 1wz a?,

vakio Uy (yhtdld 4.6), kuten sopii ollakin!

4.6 Normaalipainovoima vertausellipsoidin pinnalla

Ilman todistusta mainittakoon, ettd normaalipainovoimalle, suureelle
Y= —aihu, pétee vertausellipsoidin pinnalla seuraava yhtalo:

| = Y sin? B + by, cos? B

N VaZsin? B+ b2cos? B 47)

Y(B

Nahdé&an, ettd v, on normaalipainovoima pdivéantasaajalla (3 = 0) ja
Y» normaalipainovoima navoilla (3 = £90°).

99
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Yhtdlot 2.5 ja 2.8 antavat

sinp. 4« Z a
tan3 = = = = = —tan¢
cos 3 ‘/X2+Y2/a b,/x2+vy2 b
ja
: Z/(1—e2)N 2
tan @ = sing /( ) 1 VA a tan o,

cos ¢ \/W/N = 1—62\/W:ﬁ
jossa ¢ on geosentrinen leveysaste, katso yhtalot 2.4. Tastd seuraa suoraan
tan 3 = g tan @,

jossa leveyskulma ¢ on geodeettinen eli maantieteellinen leveysaste.
Kulma 3 on edelleen redukoitu leveysaste. Nyt voidaan osoittaa (harjoi-
tus!), etta

ayq cos? @ + byp sin? @
Va2 cos? ¢ + bZsin? @
Tama on kuuluisa Somiglianan ja Pizzettin> yhtédlo. Kyseiset geodeetit

Y(p) = (4.8)

osoittivat ensimmaisind, ettd “ellipsoidinen” normaalipainovoimakent-
td, jonka erds tasapotentiaalipinta on vertausellipsoidi, on tarkasti ole-
massa ja ettd myos maantieteellisissd koordinaateissa painovoimakaava
on suljettu lauseke leveysasteessa.

4.7 Numeeriset arvot ja laskentakaavat

Kun vertausellipsoidi on valittu, voidaan laskea sen vastaava normaali-
potentiaali ja normaalipainovoima. Perussuureet ovat

a pyordahdysellipsoidin pédivantasaajasdde eli isoakselin puolikas
f litistyneisyys

def a— Db
f = ,
a

jossa b on napasdde eli pikkuakselin puolikas

5Carlo Somigliana (1860-1955) oli italialainen matemaatikko ja fyysikko. Paolo Pizzetti
(1860-1918) oli italialainen geodeetti.



Numeeriset arvot ja laskentakaavat 4.7

Wwg  Maan pytriahdysnopeus

GMg Maan kokonaismassa, mukaan lukien ilmakeha.

Nykyisin kdytetyin vertausellipsoidi normaalipotentiaaleineen on Geo-
detic Reference System 1980 eli GRS8o:

= 6378137 m, We =7292115-10" s 1,
= 298,257 222101, GMg = 3986005 - 103 m*/e2,

== 0O

Oikeastaan f ei ole GRS80:n mddrittelevd vakio, vaan kédytetddn vakiota
]2, joka on erds gravitaatiokentdn méérittelevd suure, katso yhtalo 3.16.

GPS-jdrjestelmén kayttdma wGs84 (World Geodetic System 1984) si-
séltdd vertausellipsoidin, joka on melkein identtinen GRS8o:n vertausel-
lipsoidin kanssa.

Normaalipotentiaali on (Heikkinen, 1981), SI-jdrjestelman yksikoissa:

U ~ 62636 860,8500 +
( —9,78032677 — 0,051 630 75sin? ¢ — ) .-
—0,00022761sin* @ — 0,000 001 23 sin® ¢
. <+0,01543899 107 — 0,000 02195 - 10~*sin? @ —) W
—0,00000010- 10" *sin* ¢
+ (—0,00002422- 1078 4 0,00000007 - 10~ % sin @) h?, (4.9)

ja normaalipainovoima (huomaa miinusmerkki: U on positiivinen ja
vihenee ylospdin):

v=-9Y © 1978032677 +0,05163075sin ¢ +

oh
+0,000227 61sin* @ + 0,000 001 23 sin® ¢ +
B <+ 0,03087798 - 10~% — 0,000 04390 - 10~* sin? ¢ — ) -
—0,00000020-10"*sin* ¢
— (—0,00007265 - 10 + 0,00000021 - 10~® sin”* ) h*. (4.10)
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Téssd potentiaalin yksikké on m’/s ja painovoiman yksikko m/s2. ¢
on geodeettinen leveysaste ja h on korkeus metreind vertausellipsoi-
dista. Tarkemmat yhtalot 16ytyvit raportista Heikkinen (1981). Naissa
yhtdloissd kerroin 9,78032...m/s2 on pdivdntasaajan painovoima ja
—0,03087...-107*s7% on painovoiman pystygradientti piivintasaajal-
la.

Muut vield kdytossa olevat, vaikkakin hitaasti vdistyvit, painovoima-
kaavat ja vertausellipsoidit ovat Helmertin vuoden 1906 ellipsoidi,
Krasovskyn ellipsoidi eli SK-42 Itd-Euroopan maissa, Kansainvéilinen
eli Hayfordin ellipsoidi (1924) ja sen painovoimakaava sekd Geodetic
Reference System 1967.

4.7.1  Numeroesimerkki

Yhtélon 4.9 mukaan pdivdntasaajan yldpuolella on normaalipotentiaali

U = 62636860,8500 — 9,780326 77 h +0,01543899 - 10~* h? —
—0,00002422 1073 h3.

o Piirrd tdma funktio h-arvoille vélilla 0-7000 km.
o Piirrd vertailun vuoksi neli6llinen versio, josta viimeinen termi on
jatetty pois.
Kysymyksia
1) Miké on neli6llisen funktion minimi?

2) Kuinka realistinen tdma on fysikaalisesti?

Vastauksia

1) Katso kuva 4.7. Neliollisen funktion minimi on korkeudella
3000 km. Kuutiollisella funktiolla ei ole minimia.

2) Ei kovin realistinen: potentiaalin U (Maan mukana py®&ri-
vén jdrjestelmadn normaalipotentiaali) stationaarisen pisteen
tulisi sijaita noin 36 000 km korkeudella geostationaarisella
radalla.



Normaalipotentiaali pallofunktiokehitelmdind 4.8 10 3

3. potenssi - - - -
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Kuva 4.7. Normaalikentdn potentiaali pdivantasaajan ylapuolella. Korkeudet

kilometreissé, potentiaali yksikossd m?/s2.

Tama kertoo, ettd polynomiapproksimaatiota ei voida ekstra-
poloida kovin pitkélle. Tassd tapauksessa ekstrapolointivéli on
samaa luokkaa kuin Maan sdde, eiki se enda toimi.

4.8 Normaalipotentiaali pallofunktiokehitelmana

Ellipsoidisen gravitaatiokentdn pallofunktiokehitelma sisiltda toisen
asteen lisdksi korkeamman asteen pallofunktioita. Jos kirjoitetaan, kuten
on tapana, potentiaali maapallon ulkopuolella seuraavaan muotoon
(Heiskanen ja Moritz, 1967 yhtdlo 2-39, my6s yhtdlo 3.16):

V(p,A\, 1) = G]}A@ (1 — Z <%)n Z Prm(sin®) (Jnm cos mA + Ky, sinm7\)>,
m=0

n=2

voidaan myds normaaligravitaatiopotentiaali V* kirjoittaa muotoon

V() = Mo (1— > T (%)“Pn(sinda)),
n=2

parill_inen

joka sisdltdd vain parillisia kertoimia J, o Ji o, koska normaalikentta
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TAULUKKO 4.1. GRS8o-normaalipotentiaalin pallofunktiokertoimia (Heikkinen,
1981; Heiskanen ja Moritz, 1967).

Ei-normalisoidut Taysin normalisoidut

J5 =730 =1082,63 1076 T = —c2 o = 484,166 854 896 - 1076
Ji=Jio= —237091222-107° J, = —C4,O = —0,790304073-107¢
Je =Jco= +0,00608347-107° Tg = —c6 o= 40,001687251-10°
J5=T50= —0,00001427-107¢ Jg=—Cgo= —0,000003461-107°

on symmetrinen pdivantasaajan tasoon ndhden.

GRS80:n normaaligravitaatiopotentiaalin kertoimet 16ytyvét® taulu-
kosta 4.1. Korkeampia termejd ei yleensa tarvita. Tdysin normalisoitujen
ja ei-normalisoitujen kerrointen vililli on yhteys J* = J, v/2n + 1.

Vertailun vuoksi: osiossa 4.5 osoitettiin, ettd saman kentén ellipsoidi-
funktiokehitelmissi vain kertoimet asteluvuille o ja 2 eroavat nollasta!
Tama on yksi syy miksi ellipsoidifunktioita ylipddnsa kaytetaan.

Normaalipainovoimapotentiaalikaavana voidaan kdyttda ellipsoidi-
funktiomallin sijaan todellisen geopotentiaalin pallofunktiokehitelman
ensimmadisid paria kolmea termid. Silloin saadaan, kun otetaan keski-
pakoispotentiaali mukaan:

Yo YZ((I) }\)

u= +—+%wé(X2+Y2),

vastaava tasapotentiaalipinta U = Uy on “Brunsin sferoidi”, tai

Yo YZ(CI)»)\) + Y4((b)}\)

+ 1w (X2 +Y?),

”"Helmertin sferoidi”. Tassa Y, e Mg ja funktiot Y2(d, A) ja Ya(p, A)
otetaan todellisesta geopotentiaalista.

®Ne voidaan laskea my6s Heiskasen ja Moritzin (1967) antamalla yhtalslla 2-92:

. i 3(e?)" J2
Jon = (1) N Znt 1) (2n+3) (1 n+5m-—= )

lahtien arvoista J, ja e2. Tulokset ovat samat kuin taulukon vasemmassa sarakkeessa.



Hiiridpotentiaali 4.9

Nama yhtélot on helppo laskea, mutta niiden tasapotentiaalipinnat
eivit ole pyordahdysellipsoideja eivitkd edes pyordhdyssymmetrisia.
Ne ovat oikeastaan hyvin monimutkaisia pintoja (Heiskanen ja Moritz,
1967, 0sio 2-12)!

Kuitenkin geometrisessa geodesiassa kaytetddn aina vertausellipsoi-
dia, joten kannattaa tehdéd se myds fysikaalisessa geodesiassa.

Kirjoita painovoimapotentiaali
W=V+0,
jossa @ on keskipakoisvoiman potentiaali (katso ylld), ja normaalipo-

tentiaali
Uu=Vv"4 .

Niiden vélinen erotus on hdiridpotentiaali

TW-u=v-v.

Sekd V ettd V* voidaan kehittdd pallofunktiokehitelmiksi. Jos kirjoite-

taan painovoimapotentiaali
W=V+4+0 =0+

+ G]:‘/l@( i ( > i an smd) Inmcosm}\"i‘Knm Sinm}\)))

n=2 m=0

ja normaalipotentiaali

U= ®+GM@ (1— EOO (%)nliPn(sincb)))
n=2
parillinen

saadaan vdhentdmalld ne toisistaan hairidpotentiaaliksi

T—W-U=— GT%Z( ) ipnm (sin &) 5]nmcosm7\+KnmSinm?\))>
=0

(4.11)
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jossa
8Jno = Jno —Ji jos m parillinen,
dnm = Jam muuten.

Y114 oleva yhtdlo hdiridpotentiaalille T lyhennetddn seuraavasti (Heiska-
nen ja Moritz, 1967, yhtdlo 2-152):

s n+1
ToAD =Y ($) Taldn), (4.12)
n=2
jossa jokaisessa termissd asteosuudella T,, on sama dimensio kuin T, ja
To(dyA) = — GZA@ > Pum(sind) (8nm cos mA + Ky sinmA) .
m=0

Nyt a-sdteisen “vertauspallon” pinnalla’:

(e ¢]

T(d,A) =T(d, A a) = ) Tuld, M),
n=2
josta ndhdéaan, ettd vertaustasolla termit T, (¢, A) ovat todella hairiopo-
tentiaalin T tietyn asteluvun n asteosuudet.

Y114 olevista kehitelmistd puuttuvat termit n = 0, 1. Naistd To(d, A) =
To on vakio — hdiriopotentiaalin maailmanlaajuinen keskiarvo — ja
Ty (¢, A) on dipolikentdn muotoinen. Sen arvo on verrannollinen lasken-
tapisteen geosentrisen paikkavektorin ja dipolivektorin vélisen kulman
kosiniin. Molemmat arvot haviavat, koska

o Normaalikentdan olettama Maan kokonaismassa GMg on realisti-
nen.

o Koordinaattijirjestelmén origon oletetaan yhtyvan Maan massa-
keskipisteeseen.

Osiossa 3.4 16ytyy asiasta lisda.

7 Aiemmin télle vertausséteelle on kéytetty palloapproksimaatiossa myos symbolia R.



Olenko ymmirtinyt tdmdin?

Olenko ymmartanyt taman?

1) Mikd on normaalipainovoimakentdn kédyton perusajatus?
2) Miké on ero painovoiman ja gravitaation valilla?

3) Kun annettuna on keskipakoispotentiaali
@ = 1w (¢ +7?),

johda keskipakoiskiihtyvyys vektorina. (X, Y, Z) ovat vertauske-
hyksen suorakulmaiset koordinaatit. Kehys pyorii kulmanopeu-
della wg Z-akselin ympari.

4) Kuvassa 4.1 on piirretty normaalipainovoimakentédn tasapotenti-
aalipinnat. Ndhdéén, ettd ne ovat pdiviantasaajan yli kauempana
toisistaan kuin napojen yli, koska normaalipainovoima péaivénta-
saajalla on pienempi kuin navoilla.

Millainen tilanne olisi normaaligravitaatiokentdlld, eli ilman keski-
pakoisvoimaa? Selitd perustelusi.

5) Selosta luonnollisten koordinaattien idea.

6) Minkdlainen oli M. Le Blancin ja C. F. Gaussin vélinen suhde?
Kayta Googlea.

7) Johda Somiglianan ja Pizzettin yht&lo 4.8 yhtdlosta 4.7. Mika tekee
yhtdlostd arvokkaan?

8) Mitka ovat Geodetic Reference System 1980 -jarjestelmén maérittele-
vat parametrit?

9) Miksi normaalipotentiaalin pallofunktiokehitelm4 sisédltdad vain

pienen méadrdn termejd ja kertoimia?

10) Miksi normaalipotentiaalin pallofunktiokehitelmai ei sisélld ter-
mejd, joiden jdrjestysluku m # 0?

11) Miksi normaalipotentiaalin pallofunktiokehitelma siséltda vain
termejd, joiden asteluku n on parillinen?
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Harjoitus 4—1: Somiglianan ja Pizzettin yhtalo

1) Annettuna on painovoima pdivéantasaajalla v, ja navoilla yy. Mi-
kd on painovoima geodeettisella leveysasteella ¢ = 45°? Johda
lauseke, joka saa sisdltdd myos a:n ja b:n.

2) Mika on painovoima redukoidulla leveysasteella 3 = 45°? Vertaa
edellisen kanssa.

3) Annettuna on isoakselin puolikas a ja pikkuakselin puolikas b.
Mitkd ovat saman paikan erityyppisten leveysasteiden (geodeet-
tinen ¢, geosentrinen ¢ ja redukoitu (3) erotukset maksimissaan
kaariminuutteina? Oleta, ettd maksimi tapahtuu leveysasteilla
+45°,

4) Laske sekd geodeettiselle ettd redukoidulle leveysasteelle 45° pai-
novoiman numeeriset arvot GRS8o-vertausellipsoidin tapauksessa.
Paljonko ne eroavat toisistaan?

Harjoitus 4—2: Keskipakoisvoima

Annettuna on Maan pyorahdysnopeus yksikdssa radiaanit sekunnissa:
Wg =7292115-10"""s7 1,

1) Laske (karkeasti) Maan pyorahdysliikkeen keskipakoisvoima Etela-
Suomen kohdalla (¢ = 60°, R = 6378 km, Maa pallona). Mihin
suuntaan voima osoittaa? Piirra!

2) Miten suuri osa paikallisesta painovoimasta on keskipakoisvoi-
ma eli paljonko keskipakoisvoima muuttaa painovoimaa seka
kiithtyvyysarvona ettd prosentteina?

3) Laske ylld annetusta wg-arvosta maapallon pyordhdysaika tun-
teina ja minuutteina. Miksei se ole tarkasti 24"?



Painovoimakentan anomaaliset
suureet

5.1 Hairiopotentiaali, geoidin korkeus ja luotiviivan
poikkeamat
Ensimmadinen anomaalinen suure, josta puhuttiin jo, on ero todellisen

painovoimapotentiaalin W ja normaalipainovoimapotentiaalin U vlilld,
niin sanottu hdiridpotentiaali:

TEwW_u.

Kaikki muut anomaaliset suureet ovat hdiridpotentiaalin erilaisia funk-
tioita, kuten geoidin korkeus N ja luotiviivan poikkeamat & ja 1. Ne
saadaan yleisesti vahentdmalla toisistaan

o luonnollinen, Maan todelliseen painovoimakenttddn liittyva suure,
ja

o vastaava Maan vertausellipsoidin normaalipainovoimakenttdan
liittyva suure.

Esimerkiksi luotiviivan poikkeamat:

LD, % (A=) cose.

Tassa (@, A) ovat tdhtitieteellinen leveys ja pituus, jotka yhdessa muo-
dostavat paikallisen luotiviivan suunnan, ja (@, A) ovat geodeettinen



110 5 PAINOVOIMAKENTAN ANOMAALISET SUUREET

Luotiviivan .-~
poikkeamat (&,m) -

Topografia

Geoidi Geoidikorkeus N

/\V Vertausellipsoidi

Kuva 5.1. Geoidiundulaatiot N ja luotiviivan poikkeamat & ja .

leveys ja pituus, jotka samalla tavalla muodostavat normaalipainovoi-

mavektorin eli “normaaliluotiviivan” suunnan'. Katso kuva 5.1.
Geoidin korkeus eli geoidiundulaatio on

N H
jossa H on ortometrinen korkeus — laskettuna keskimerenpinnasta —
ja h on korkeus vertausellipsoidista.

Luotiviivan poikkeamat ovat Suomessa muutaman kaarisekunnin
(") luokkaa ja geoidiundulaatiot vélilld 15-32m, jos kdytetddn ver-
tauspintana GRS8o-ellipsoidia. Vertailun vuoksi: maailmanlaajuisesti
vaihtelu on —107 m:n ja +85 m:n vililld. Merenpinnan tasolla luotivii-
van poikkeamat — yksikkond radiaani — ovat geoidin korkeuksien
vaakagradientteja. Katso kuvat 5.1 ja 5.2.

Vertausellipsoidille, esimerkiksi GRS8o-ellipsoidille, on olemassa oma,
matemaattisesti eksakti standardi- eli normaalipainovoimakenttd, jonka
erds tasapotentiaalipinta kyseinen vertausellipsoidi on. Taméan ken-
tan avulla voi laskea jokaiselle painovoimakentdn suureelle vastaavan
normaalisuureen. Vahentdmailld normaalisuure alkuperdissuureesta
saadaan vastaava anomaalinen suure.

'Tamad olettaa, ettd @ ja A ovat redukoituja merenpinnan tasolle luotiviivan kaarevuu-
den takia, osio 4.3.2, ja ettd ¢ ja A ovat laskettuja vertausellipsoidilla.
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Kuva 5.2. Suomen geoidimalli vuodesta 1984. Punaisella havainnoista lasketut

luotiviivan poikkeamat (Vermeer, 1984).

Korkeuksille vertausellipsoidista 16ytyy lauseke, joka on analoginen

ortometristen korkeuksien vastaavan lausekkeen 4.5 kanssa. Olkoon U
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normaalipotentiaali ja y normaalipainovoima®:

u
dU=—ydh = hp=-— u:ﬁdu.

Pisteen P geoidin korkeus on nyt

No —ho —Ho = (71 qw— (" _qu-=
p=he—He = [ oW f Sl =

_ PL - PL B ]— L .

= o g™ = e v by
We y(W) — g(W) w1 Wy

wo  g(W)y(W) aw jwp v(U.)du+ Wo y(u)du—

_(trgz)—vylz) U W 1]

- fo v(z) dz pr v(UW) dtl+ Iwo y(U) du, 5.1)
uudelleen nimittdmalld integrointimuuttuja U — W ja vaihtamalla se
pituudeksi: dW = —g dz.

Yhtdlossd 5.1 viimeinen termi havids, jos oletetaan® Uy = W,. Ensim-
madinen ja toinen termi ovat molemmat rippuvaisia pisteen P korkeu-
desta, mutta niiden erotus Ny ei ole. Siksi pisteen P sijaan kdytetdan
sen projektiota P’ keskimerenpinnan — kédytetyn korkeusjirjestelman

nollan — tasolle. Silloin myds ensimmdinen termi havida: Hp, = 0. Siis

o Upr NL B _h
Nor == fuy U= 3 (%o ~Ur) =75

mihin olemme sijoittaneet T = W — U: héiridpotentiaali. Kaikki suureet

ovat nyt merenpinnan tasolla. Tiiviimmin:

N = Y (5.2)

Tama on kuuluisa Brunsin* yhtdlo (Heiskanen ja Moritz, 1967, yhtdlo

>Tama4 ei ole tarkasti totta, koska "normaaliluotiviiva” ei ole sama kuin vertausellip-
soidin normaali. Tehty virhe on pikkuruinen.

3Tama ei ole itsestddn selvad! Paikallisessa korkeusdatumissa nollapisteen potentiaali
voi hyvinkin poiketa jopa metrid vastaavalla méaralld globaalin vertausellipsoidin
normaalipotentiaalista.



Painovoimahdiriot 5.2

Geoidi -

Kuva 5.3. Painovoimakentdn (W) ja normaalipainovoimakentdn (U) tasa-

potentiaalipintoja.

2-144).

Tilannetta luonnehtii vieldkin paremmin kuva 5.3. Tdssd kuvassa
normaalipainovoimavektorin y = grad U pituus ony = |ly| = —2-1,
josta seuraa, yhtdlon T = W — U kanssa, ettd “vastaavien” pintojen
W = Wp ja U = Ug vilinen etdisyys, kun Wp = Ug, on

uQ_uP :WP—UP _I

N =~

Y Y Y

5.2 Painovoimahairiot

Todellisen painovoiman ja normaalipainovoiman kiihtyvyysarvojen
erotusta kutsutaan painovoimahdirioksi,

def ow ou
59 g—v=lgl-Ivl~— (55— 55)

4Ernst Heinrich Bruns (1848-1919) oli saksalainen matemaatikko ja matemaattinen
geodeetti.
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jossa differentioidaan W luotiviivaa pitkin ja U — hieman epéatarkasti
— vertausellipsoidin normaalia pitkin. Luotiviivan ja ellipsoidin pinta-
normaalin suunnat ovat itse asiassa hyvin ldhelld toisiaan. Siksi hyva
approksimaatio on

Palloapproksimaatiossa saadaan

oT
o9~ —a (5-3)

Hairidpotentiaali T kehitettiin jo eri pallofunktioiden asteluvun osuuk-
siin, yhtdld 4.12, ja nyt saadaan differentioimalla m:n suhteen:

() o) -

_y nt] (§>n+1 TN =Y nsl <§>n+2 Ta(0,N), (5.4)

ja merenpinnalla (r = R):

[o¢]

¢AR=Z A).

Tamad on painovoimahdirion spektraaliesitys merenpinnalla eli R-sdteisen
maapallon pinnalla. Vertaussidteen R arvoksi voi ottaa Maan vertausel-
lipsoidin pdivdntasaajasdde a = ag,.

Painovoimahadiriditd voidaan maarittdd havainnoista vain, jos on keino
mitata pisteen P painovoimakiihtyvyyden gp (= —5%W/|,,) liséksi Pn
sijainti avaruudessa suhteessa Maan keskipisteeseen, jotta voisi laskea
normaalipainovoima yp = —%U! » samassa pisteessd. Nykyisin tdimé
on jopa helppoa GNSS:n avulla. Ennen se ei kuitenkaan ollut mahdollista.
Siksi painovoimahdirioitd kdytetddn vahan. Niiden sijaan kdytetddn

mieluummin painovoima-anomalioita, joista lisdd seuraavassa osiossa.



Painovoima-anomaliat 5.3

Topografia Luotiviiva
Telluroidi . Q

P (mittauspiste)

Keskimerenpinta\"\
(geoidi)

Ellipsoidi

Kuva 5.4. Vertausellipsoidi, keskimerenpinta (geoidi), telluroidi ja painovoima-

mittaus.

5.3 Painovoima-anomaliat

Normaalipainovoima lasketaan paikan geodeettisten koordinaattien
(@, A, h) funktiona. Kuitenkin perinteisessa gravimetrian kenttatyossa
ennen satelliittipaikannuksen aikakautta olivat saatavilla kartan geo-
deettiset koordinaatit ¢ ja A, muttei tarkkaa korkeutta h vertausellipsoi-
dista. Saatavilla oli korkeus H keskimerenpinnan (geoidin) ylapuolella
madritettynd esimerkiksi valtakunnallisen vaaitusverkon kautta — tai
pahimmassa tapauksessa ilmapuntarin avulla.

Tama merkitsee, ettd vaikka todellinen painovoima g mitataan pis-
teessd P, jonka korkeus meren pinnasta on Hp, normaalipainovoima y
on pakko laskea toisessa pisteessi Q, jonka korkeus vertausellipsoidista on
ho = Hp. Katso kuva 5.4.

Toisin sanoen pisteen P mitattu korkeus keskimerenpinnasta sijoitetaan
raa’asti normaalipainovoimakaavaan, joka kuitenkin odottaa korkeutta
vertausellipsoidista! Tatd erikoista piirrettd painovoima-anomalioiden

madritelmdssd voidaan kutsua “vapaan reunan reuna-arvotehtavaksi”.

Sen mukaan johdetaan painovoima-anomalian lauseke seuraavasti:
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Agp =gp —YQ = (gp —vp) + (YP—YQ) =

_<%\_]/_\[/P_g_hlp)+('YP_'YQ)%
x——a(V\a/]_Tu)P—l—(h hQ)gﬁ —
e - ()|

kayttamalld melkein kaikkia ylléi olevia kaavo]a. Tama yhtalo,

_oT 10y
A9="3H TyaH" (5:5)

tunnetaan nimella fysikaalisen geodesian perusyhtilo eli fundamental equa-
tion of physical geodesy. Se on kolmannen reuna-arvotehtivin reunaehto
(Heiskanen ja Moritz, 1967, osio 1-17). Se antaa mahdollisuuden ratkais-
ta T ulkoavaruudessa, jos Ag on annettu kaikkialla Maan pinnalla.

Jos oletetaan, ettd Maa on R-sédteinen pallo ja ettd normaalipaino-

voimakenttd on pallosymmetrinen, voidaan approksimoida:

oT 2
Ag = “or ?T> (56)

jossa v = R + H on etdisyys maapallon keskipisteesta.

Sijoittamalla tdhdn 6g:n yhtdlo 5.3 saadaan
Ag = 89— 2T.

Sijoittamalla tdhdn spektraaliesitykset 3.10 (mutta T:lle) ja 5.4 dg:lle
saadaan

Aglp ) = 3 (ML 2Y (RY g g -
R
T

) e = Y e (R e -

= i ( )n+2A9n (d,7), (5.7)

n=2



Painovoima-anomalioihin kiytetyt yksikot 5.4

kirjoitustavalla
Agn(d,2) = Ta(d,A). (5-8)

Tekijan n — 1 ldsnédolo nayttds, ettd pamovmma-anomaliat eivat voi
sisaltaad asteluvun n = 1 osuuksia, vaikka T sisaltdisi. Koordinaatiston
origo kannattaa aina sijoittaa Maan massakeskipisteeseen, mutta jos

ndin ei tehdé, ainakaan painovoima-anomaliat eivdat muutu.

Merenpinnalla r = R saadaan
g(d,A,R) Z Agn (P, ),

eli Ag,, ovat painovoima-anomalian Ag asteosuudet.

Havaitse, ettd termi n = 1 puuttuu: Ag; = 0. Oletetaan my®0s, ettd
Ago= —To / R =0, siis todellinen ulkoinen potentiaali on globaalina
keskiarvona sama kuin normaalipotentiaali. My6s Maan kokonaismas-
sa GMg ja sen geoidin tilavuus® ovat normaalipotentiaalin olettama
kokonaismassa ja vertausellipsoidin tilavuus. Oletus on enemman tai
vihemman oikeutettu, koska GMg on satelliittien avulla hyvin tarkasti
madritettdvissd ja mddritettykin, ja modernit normaalipotentiaalimallit,
kuten GRS80, perustuvat ndihin maéarityksiin®.

5.4 Painovoima-anomalioihin kaytetyt yksikot

Painovoiman vaihtelujen suosittu mittayksikko on milligal. Yhteys SI-
jarjestelmdan on 1 mGal = 107> m/2. My®6s yksikkod pGal eli 1078 m/e2
kaytetdadn. Nykykirjoissa kdytetddn myos suoraan yksikkoja #m/s? ja
nm/s2, jotka kuuluvat muodollisesti Sl-jarjestelméan. Kuitenkin milligallit

5Itse asiassa ilmakehd mutkistaa titd asiaa.

®Kuitenkin GRS80:n péivéntasaajaside on 6378 137,0 m, kun uudemmat mallit, kuten
EGM2008, antavat pienemmaén arvon 6 378 136,3 m globaalin keskimerenpinnan keski-
sijainniksi. Tdméa on hyva huomioida kéytettdessd mallia tuotantotydssd. Epavarmuus
on edelleen desimetrin luokkaa.
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TAuLUKKO 5.1. Painovoiman vaihtelujen suuruusluokat.

IImi6 Koko painovoimasta  SI-yksikoissa mGal
Koko painovoima 1 9,81 981000
Paikallinen vaihtelu +10—4 +103 +100
Ero pdiviantasaajan ja napojen valilla 0,5% 0,05 5000
Ero merenpinnan ja 10 km korkeuden valilla 0,3% 0,03 3000
Gravimetrin mittaustarkkuus +1078-10"7 £107-107° +0,01-0,1

ja mikrogallit ovat tutumpia, ja ldhelld maanpintaa niiden suuruus
on vastaavasti noin 1 ppm (miljoonasosa) ja 1 ppb (miljardisosa) koko
painovoimasta.

Taulukossa 5.1 on annettu muutama arvo ilmididen suuruusluokan
hahmottamiseksi.

Suosittu painovoiman gradientin mittauksen yksikko on e6tvos, sym-
boli E. Sl-yksikossd se on 1077 s72, miki vastaa arvoa 10~* mGal/m. Maan

pinnalla painovoiman pystygradientin %g arvo on keskimédérin noin
—0,3 mGal/m = —3000 E.

5.5 Fysikaalisen geodesian reuna-arvotehtava

Kuten edellisessd osiossa selitettiin, painovoimamittaus on monimut-
kaisempaa kuin se, ettd mitataan vain suure —%W ~ —%W. Kun
mitataan geopotentiaalin korkeussuuntainen derivaatta, se tehddan
paikalla, jota ei tarkasti tunneta. Vaikka mittauspaikan korkeus tunnettai-
siin merenpinnan yldpuolella, se ei vield anna mittauspisteen sijaintia
avaruudessa. Se riippuu ndet myds merenpinnan eli geoidin paikasta
avaruudessa, tarkemmin sen korkeudesta vertausellipsoidin ylé- tai

alapuolella.

Néin pdddytddn kolmanteen reuna-arvotehtavaan’. Fysikaalisen geode-
sian reuna-arvotehtivi on madrittdd kappaleen ulkopuolinen potentiaali

7Kolmannen eli sekareuna-arvotehtdvian yhteydessd mainitaan Victor Gustave Robi-



Fysikaalisen geodesian reuna-arvotehtivd 5.5

V, jos sen pinnalla on annettu lineaariyhdistelma

A%
C]V—l— Czﬁ,

jossa cj ja ¢, ovat sopivat kertoimet. Muuttuja n merkitsee tdssd reuna-
pinnan normaalin suuntaista differentiointia, kdytdnnossd samaa kuin
H tai .

Fysikaalisessa geodesiassa on annettu seuraava lineaariyhdistelma

reunaehtona: 5T 10
__9ol 1oy
A9="3H TyoH" (5:5)
Nahdddn, ettd c; = —Tjacy; =y~ %y. Tama yhtdlo on painovoima-

anomalioiden médritelma 5.5 ja se tunnetaan nimella fysikaalisen geode-
sian perusyhtilé.

Taas palloapproksimaatiossa yhtélon 5.8 kddntdminen antaa

Tu(®,) = S Aga(d, ).

Muista, ettd funktiot Agy, (¢, A) voidaan laskea asteosuusyhtdlon 3.9
avulla, kun Ag(¢,A) on tiedossa kaikkialla maapallolla.

Néin saadaan tdimédnkin reuna-arvotehtdvin ratkaisu spektraaliesi-
tyksessd, joka siis pétee koko ulkoavaruudessa:

n—1

T =3 () e =3 (B) R Agu(o -
2

n=2 n=
o R - n + 1 /R nt ARV ’
=2 2 (3) ). A9(¢ N, R) Palcos ) do’. (5.9)
Tamad on juuri se reuna-arvotehtdvd, joka syntyy, jos kaikkialla Maan pin-
nalla, merenpinta mukaan lukien, on annettu painovoima-anomalioita.

Integraaliyhtild, joka vastaa ylld olevaa spektraaliyhtdléd 5.9, tunne-
taan Stokesin® yhtalona:

nin (1855-1897), ranskalaisen matemaatikon, nimi. Silloin Dirichletin ongelma olisi
ensimmadinen ja Neumannin ongelma toinen reuna-arvotehtava.
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(A1) = 5 [ s, 1, R) Ag (', 1, R) do

jossa Stokesin ydin on

3

S(, 1, R) ( >n+] P.(cos). (5.10)

Osiossa 8.1 annetaan tdméan funktion suljettu muoto 8.3 ja grafiikka
tapaukselle r = R.

5.6 Telluroidikuvaus ja "kvasigeoidi”

Kun mitataan tdhtitieteellinen leveys- ja pituusaste (®, A) seka tulkitaan
ne geodeettisiksi (ellipsoidisiksi, maantieteellisiksi) koordinaateiksi
(@, A) ja samalla my0s potentiaaliero — (W — W,)) pisteen korkeuden h
mitaksi vertausellipsoidista, suoritetaan tavallaan kuvaus. Tama kuvaus
lisd4 jokaiselle pisteelle P vastinpisteen Q, jonka geodeettiset koordinaatit
ovat samat kuin pisteen P luonnolliset koordinaatit.

Tatd menettelytapaa kutsutaan telluroidikuvaukseksi. Telluroidi on pin-
ta, joka seuraa Maan topografisen pinnan muotoja, mutta on kaikkialla
topografian alapuolella médaralla ¢ tai sen yldpuolella maaralla —(, riip-
puen siitd, onko C positiivinen tai negatiivinen. Suuretta ¢ kutsutaan
korkeusanomaliaksi.

Telluroidikuvaus on tédrked apuviline Molodenskin painovoima-
kenttiteoriassa. Se on kuitenkin aika abstrakti kdsite. Voidaan sanoa,
ettd telluroidi on Maan pinnan malli, joka saadaan olettamalla, etta

o Maan todellinen potentiaalikenttd on normaalipotentiaali.

o Matemaattinen keskimerenpinta eli geoidi eli korkeudenmittausten
ldhtotaso yhtyy vertausellipsoidiin.

Toisin sanoen telluroidi on Maan topografisen pinnan malli, joka saa-
daan jos tulkitaan vaaitut korkeudet — tarkemmin, vaaituksesta saadut

8Sir George Gabriel Stokes PRS (1819-1903) oli irlantilaissyntyinen ja Cambridgessa
toiminut, lahjakas matemaatikko ja fyysikko.



[Ima-anomaliat 5.7

geopotentiaaliluvut — normaalipotentiaalin erotuksiksi vertausellipsoi-
din normaalipotentiaaliin verrattuna.

Kaytannossa kutsutaan usein (-arvojen karttaa “kvasigeoidin mal-
liksi”. Kvasigeoidi on yleensd ldhelld geoidia, paitsi vuoristossa, jossa

poikkeamat voivat nousta yli metriin.

On kuitenkin muistettava, ettd korkeusanomalia ¢ on maéaritelty
topografian pinnalle, joka on monessa paikassa hyvin rosoinen. Tama
merkitsee, ettd kaikki topografian korkeuden vaihtelut heijastuvat myos
tamédn kvasigeoidin vaihteluiksi silld tavalla, ettd kvasigeoidi korreloi
vahvasti topografian pienten yksityiskohtien kanssa. Ei siis voida sanoa,
ettd kvasigeoidin muoto ilmaisee ainoastaan Maan potentiaalikentdn
muotoa. Siind sotketaan geopotentiaalin ja maastokorkeuden vaihtelut
yhdeksi sopaksi.

Siksi kvasigeoidin késite on onnettomasti valittu kompromissi, myon-
nytys ”vertauspinta-ajattelulle”, joka on oikeasti toimiva vain klassisen
geoidikdsitteen puitteissa. Paras pitdytyd Molodenskin teorian puit-
teissa késitteessd korkeusanomalia, joka on kolmiulotteinen funktio eli
kentta

C(X,Y,Z) = (e, A\ h).

5.7 llma-anomaliat

Jos mitataan painovoima g pisteessd P, jonka korkeus “merenpinnan
yldpuolella” on H ja jonka leveysaste on @, voidaan laskea painovoima-
anomalia Ag pisteessd seuraavasti:

def
Ag = g—v(D,H),

jossa y(®, H) on normaalipainovoima laskettuna sen muodollisen mé&a-
ritelmdn mukaan, mutta korkeudella H ja leveysasteella ®.

Néin madritellddan ilma-anomalioita (engl. free-air anomalies).
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Linearisoidaan tama seuraavasti:
oy oy
Ag=9g—v(O,H)~g— Y(@»h)‘F(CD—(P)%—F(H—h)ﬁ ~

~ oy o7\ _ oy
~g- (V(cp,O) +hap +(H=Nh) ﬁ> =9 —v(,0) —Hz,
jossa teemme approksimaation, ettd normaalipainovoiman pystygra-
. .9 .
dientti 51y on vakio®.
Naéin ollen ilma-anomaliat voidaan laskea yksinkertaisemmin. Nor-
maalikentdn painovoimakaava 4.10 antaa leveysasteelle 60°:

v = 981917,838 — 0,308449 4 H + - - - mGal.

Siis lineaarisessa approksimaatiossa Maan pinnan ldhelld painovoima
heikkenee noin 0,3 mGal jokaista korkeuden metrid kohti. Tdima arvo
on hyva muistaa.

Likiméardinen yhtédlo ilma-anomalioiden laskemiseksi on silloin
Agr = gr —Yo(@) +0,3084 mGal /m H, (5.11)

jossa yo(@) def (@, 0), normaalipainovoima merenpinnalla, on ainoas-
taan leveysasteen funktio. Suomen tapaisessa maassa yhtalo 5.11 on
usein riittdvan tarkka, vaikka myos alkuperdisen yhtdlon 4.10 laskemi-
nen on helppoa.

IIma-anomalioita kdytetddn laajasti. Yleensd kun puhutaan
painovoima-anomalioista, tarkoitetaan juuri ilma-anomalioita. Ne
ilmaisevat maapallon ulkopuolista painovoimakenttdd vuorineen ja
laaksoineen.

9Tarkasti ottaen pitdd huomioida, ettd leveysaste @ ei vilttamattd ole leveysaste
geosentriseen vertausellipsoidiin ndhden. Se voi olla téhtitieteellinen leveysaste tai
leveysaste jossakin vanhassa kansallisessa koordinaattijarjestelméassé, joka kayttad
epdgeosentristd vertausellipsoidia, kuten Suomessa Kartastokoordinaattijérjestelma
KKJ ja Hayfordin ellipsoidi. Timéan aiheuttama virhe on kuitenkin pari kolme suuruus-
luokkaa pienempi kuin erotuksen H — h aiheuttama efekti.
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Kuva 5.5. Painovoiman ilma-anomalioita Eteld-Suomessa laskettuina pallo-

funktiokehitelmédstd EGM2008. Data © Bureau Gravimétrique Inter-
national (BGI) / International Association of Geodesy. Verkkopalvelu
BGI, EGM2008.

Kysymyksia

1) Jos painovoima merenpinnalla on 9,81m/s>, milld korkeudel-

la painovoima hévidd, laskettuna ylld mainitun painovoiman
pystygradientin —0,3 mGal/m mukaan?

2) Kuinka realistista tdma on fysikaalisesti?
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Vastauksia

1) Jos gradientti on —0,3mGal/m, tarvitaan (9,81 : 105/03) m =
3270 km saavuttaakseen arvo nolla.

2) Ei kovin realistista. Itse painovoimagradientti putoaa no-
peasti alkuarvosta —0,3 mGal/m, kun siirrytdan ylospdin, ja
siksi tdmé lineaarinen ekstrapolointi on yksinkertaisesti

vaarin.

Olenko ymmartanyt taman?

1) Miten luotiviivan poikkeamat ja geoidikorkeudet liittyvat toisiin-
sa?

2) Mika on fysikaalisen geodesian perusyhtélo palloapproksimaa-
tiossa?

3) Milld tavalla painovoimahdiri6 eroaa painovoima-anomaliasta?

4) Mité yksikoitd kdytetddn painovoima-anomalioiden ja painovoi-
magradientin mittaamiseksi? Miten ne liittyvét SI-jarjestelmddan?

5) Miten geoidikorkeus ja hdiridpotentiaali liittyvat toisiinsa?

6) Selosta telluroidikuvaus ja korkeusanomaliat.

Harjoitus 5—1: Painovoima-anomalioiden spektri

Kéytad yhtdlod 5.8. Jos oletetaan, ettd painovoima-anomalioiden aste-
osuuksien Ag;,, nelidllinen keskiarvo,

def 1
I8galls /5 [ Agk (0,0 do,

ei riipu valitusta asteluvusta n, miten samalla tavalla méaaritetty || T, ||

riippuu asteluvusta n?



Harjoitus 5—2: Luotiviivan poikkeamat ja geoidin kaltevuus

Toisin sanoen, mitkd painovoimakentdn asteluvut ovat suhteessa vah-
vimmin edustettuina hdiriopotentiaalissa ja mitka asteluvut painovoima-

anomalioissa?

Harjoitus 5—2: Luotiviivan poikkeamat ja geoidin

kaltevuus

Jos maan luotiviivan poikkeamien eteld-pohjoiskomponentissa on yh-
den kaarisekunnin systemaattinen virhe, minkalaisen virheen se aiheut-
taa geoidikorkeuksien erossa N, — N; pisteiden 1 ja 2 vilill4, joiden
etdisyys toisistaan on noin 1000 km eteld-pohjoissuunnassa? Katso ku-
vat 5.1 ja 5.2.

Harjoitus 5—3: Painovoima-anomalia ja geoidin korkeus

Erddssd paikassa Suomessa painovoima-anomalia (ilma-anomalia) on
Ag = 100mGal = 10~3m/s2. Samassa paikassa hdiriopotentiaali T on
200m?/s2.

1) Kéyttamalla fysikaalisen geodesian perusyhtiloa 5.6:

oT 2

Ag=—5-—%T,

laske %T ja vertaa sitd suureen 2T/ r kanssa. Oleta r ~ R. Kumpi
termi, =T vai 2T /v, dominoi?
2) Oleta, ettd piste on ldhelld merenpintaa. Kadyttdmalla Brunsin

yhtaloa
+
s ﬂ?)
jossa y on keskimdardinen painovoima 9,81m/s2, laske pisteen

N

geoidikorkeus N.






Geofysikaaliset reduktiot

6.1 Yleista

Nadimme, ettd integraaliyhtdlot, kuten Greenin kolmas lause 1.25, tar-
joavat mahdollisuuden laskea Maan koko ulkopuolinen potentiaali
sekd kaikki potentiaalista laskettavat suureet, kuten gravitaatiokiihty-
vyyden, kdyttdmalld reunapinnalla havaittujen suureiden V tai %V —
tai niiden lineaariyhdistelmdn — arvoja. Edellytys on, ettd rajapinnan
ulkopuolella ei ole massoja.

Greenin kolmas lause on vain yksi esimerkki monesta: jokainen
integraalilause on erddn reuna-arvotehtivin ratkaisu.

Reunapinnan valinnalle on kolme vaihtoehtoa:
1) Valitaan Maan topografinen pinta.

2) Valitaan keskimerenpinta, tarkemmin keskimerenpinnan ldhella
oleva tasapotentiaalipinta eli geoidi.

3) Valitaan vertausellipsoidi.

o Vaihtoehdon 1 on kehittanyt etenkin Molodenskin (Molodenski
ym., 1962) koulukunta entisessd Neuvostoliitossa. Menetelmén
etuna on, ettd painovoimareduktiota ei tarvita, koska kaikki massat
ovatjo reunapinnan sisdlld. Haittana on, ettd topografian usein mo-
nimutkainen muoto on otettava huomioon, kun reuna-arvotehtava
formuloidaan ja ratkaistaan.
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o Vaihtoehto 2 on klassinen geoidi- tai geopotentiaaliméaaritys. Tassa

6.2

tapauksessa tarvitaan painovoimadatan geofysikaalisia reduktioita,
koska Maan massoista osa on laskentapinnan ulkopuolella: ne on
laskennallisesti poistettava tai siirrettdvd pinnan sisdpuolelle. Vain
silloin Laplacen yht&l6 1.13 patee Maan ulkopuolisessa avaruu-
dessa, kuten fysikaalisen geodesian reuna-arvotehtdva edellyttad,
katso osio 5.5.

Silloin saatu geopotentiaali- tai geoidiratkaisu ei ole enda alku-
perdisen massajakauman potentiaali tai geoidi, vain redukoidun
massajakauman. Tatd pintaa kutsutaan kogeoidiksi. Tarvitaan “pa-
lautusaskel”, jossa médritetddn ja peruutetaan timén reduktio-
vaiheen vaikutus geopotentiaaliin ja geoidiin. Tatd vaikutusta
kutsutaan “epasuoraksi vaikutukseksi”.

Kirjallisuudessa tdtd menetelmdd kutsutaan myds poistamis-
entistamis- eli remove-restore-menetelmaksi.

Vaihtoehtoa 3 on kéytetty harvoin, koska painovoimamittauksia
ei ole ollut perinteisesti mahdollista tehdd absoluuttisesti, siis
geosentrisesti tai vertausellipsoidin suhteen, tunnetussa paikassa.
Nykyisin tdma onnistuu GNSS:n avulla: esimerkiksi Eteldimante-
reella ja Gronlannin sisdmaassa néin voisi tehdd, koska kaytossa
ei ole merenpintaan sidottua korkeusjarjestelmaa.

Odotettavissa on, ettd menetelmén suosio kasvaa, kun gravimetris-
ten asemien korkeudet mitataan yhd enemmén suoraan GNsS:114.
Katso esimerkiksi Mérdla (2017).

Bouguer-anomaliat

IIma-anomaliat riippuvat topografiasta, koska itse painovoima sisdltaa

topografisten massojen vetovoimavaikutuksen. Ilma-anomaliakartasta

nikyy samoja pienid yksityiskohtia kuin topografiasta. Yksi tapa poistaa

topografian vaikutus on niin sanottu Bouguer'-reduktio.
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Kuva 6.1. Bouguer-laatan vetovoima.

6.2.1 Bouguer-reduktion laskenta

Lasketaan homogeenisen laatan vaikutus painovoimaan. Oletetaan, etta
laatta on ddrettdmén kokoinen: paksuus d, ainetiheys p ja pisteen P
korkeus H laatan alapinnasta. Katso kuva 6.1. Vetovoima pisteessa P,
joka osoittaa symmetrian takia suoraan alaspéin, saadaan integroimalla.
Laskettavalla tilavuusintegraalilla on tilavuusalkio

dV=ds-dz-sdx

lieriokoordinaateissa (s,z,«). Muunnetaan tima koordinaatteihin
(B, z, ®). Unohdetaan « ja tutkitaan pinta-ala-alkio (kuva 6.1, ylhaalla
oikealla)

0
dsdz = mdﬁ dZ,

jossa tarvittava Jacobin determinantti, ¢ / cos (3, nékyy.

*Pierre Bouguer (1698—1758) oli ranskalainen hydrografiaprofessori, joka osallistui
Maan muotoa koskevaan yhteiskunnalliseen keskusteluun. Vuosina 1735-1743 hdn
johti Perussa Eteld-Amerikassa Ranskan Tiedeakatemian astemittausta suorittavaa
retkikuntaa samaan aikaan, kun De Maupertuis suoritti vastaavan Tornionlaakson
astemittauksen Lapissa. Geodesian lisdksi han harrasti myos tdhtitiedetta.
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Integroidaan:

aégnmp:GJI[“;devzchj”ﬁfo“ﬁﬁ.dsmpsda:
:Gpﬁfj:ﬁfbaﬁﬁ-aégdﬁ¢psda:

= 2nGp fod joﬂ/z %dﬁ dz = 2nGp fod (fon/z sin 3 dB) dz.

Tassd integraali

joﬂ/z sinB dp = [—cos B};T/z =1,

ja lopputulos on
a = 2nGpd. (6.1)

Tama on Bouguer-laatan vetovoiman yhtilo. Sivutuloksena saadaan
r-sdteisen ympyrdn muotoisen levyn vetovoima:

joBO(Z) sin B dp = [—cos B]{f"m =1 —cos(Bo(2)),

ja koko integraali cos(Bo(2))

d _
a:ZHprO (1— H-z ) dz.
(H

—2)? 412

Integraalifunktio on

j H-z dz = —
\/ (H—2)" +12

Integraalirajojen sijoitus antaa

jj<1_ (HH—Z >dz=d+\/m_d)2+rz_m.

—2)% 412

A/ (H=2)? +12.

Saadaan koko integraaliksi
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I Bouguer-laatta

Topografia

Kuva 6.2. Bouguer-laatta topografian approksimaationa.

Limiitissd v — 00, ja siis

V(H=d)? 412 —H24+12 >0,

tdma on identtinen yht&loén 6.1 kanssa.

Bouguer-anomalioita lasketaan merenpinnan eli geoidin yldpuolella
olevien maankuoren massojen vetovoiman poistamiseksi. Todellinen
topografia approksimoidaan Bouguer-laatalla, katso kuva 6.2.

Ei ole sovittu tapa késitelld meren peittamid alueita:

o Joillakin kartoilla on Bouguer-anomalioita maa-alueilla ja ilma-
anomalioita merialueilla. Tima on vaihtoehto, jos ei ole kaytetta-
vissd laadukasta syvyystietoa.

o Oikeampi tapa on korvata merivettd kallioisella Bouguer-laatalla,
jonka paksuus on yhtd suuri kuin meren paikallinen syvyys eli
batymetria.

Laskenta tapahtuu seuraavasti:
Agg = Agpa — 2tGpH = Agpa — 0,1119 H, (6.2)
jossa oletetaan laatan tiheydeksi usein kdytetty maankuoren keskitihey-
den arvo, p = 2670kg/m?. Sijoittamalla tdhdn yhtadlo 5.11, saadaan

Ags = gp — Yo(®) + (0,3084 — 0,1119)H = gp — Yo(¢) + 0,1965 H.
(6.3)
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Topografia

- Ilma-anomalia ks —
—

Bouguer-anomalia
Kuva 6.3. Eri anomaliatyyppien kédyttdytyminen vuoristoisessa maastossa.

Suuretta Agg kutsutaan (yksinkertaiseksi) Bouguer-anomaliaksi.

Erotusta Bouguer-laatan vetovoiman ja todellisen topografian veto-
voiman valilld kutsutaan maastokorjaukseksi TC (kuvassa 6.2 tilavuudet I
ja II). Sen laskentaan palataan myShemmin.

6.2.2 Ominaisuudet

Toisin kuin ilma-anomaliat, jotka vaihtelevat nollan molemmin puo-
lin, Bouguer-anomaliat ovat vahvasti negatiivisia etenkin vuoristossa.
Esimerkiksi jos vuoriston keskikorkeus on H = 1000 m, alueen Bouguer-
anomaliat siséltavat systematitkan 1000 x (—0,1119 mGal) = —112mGal,
noin —100 mGal jokaista korkeuskilometrid kohti.

Bouguer-anomalioiden etuna on niiden pienempi vaihtelu paikasta
toiseen. Siksi ne soveltuvat etenkin painovoima-arvojen interpolointiin ja
prediktioon, tilanteissa joissa kdytettdvissa oleva gravimetrinen aineisto
on maantieteellisesti harva. Tama edellyttas, ettd topografian korkeudet
tunnetaan paremmalla spatiaalisella tiheydella.

6.3 Maastoefektit ja maastokorjaus

Yksinkertainen Bouguer-reduktio ei poista painovoima-anomalioista
koko topografian vetovoimavaikutusta tarkasti. Kuvasta 6.2 nikyy, ettad
tapahtuu kahdenlaisia virheita:
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18° 20° 22° 24° 32°
F — 3

¥ 5 %

64° 64°

62° 62°

60°

18° 32°

2015 Mar 23 16:56:09

Kuva 6.4. Maastokorjattuja Bouguer-anomalioita Eteld-Suomessa, laskettu-
na pallofunktiokehitelméstda EGM2008. Aineisto © Bureau Gravi-
métrique International (BGI) / International Association of Geodesy.
Verkkopalvelu BGI, EGM2008. Kuvaan 5.5 sivulla 123 verrattuna
Bouguer-anomaliat ovat vahvasti systemaattisesti negatiivisia, vaik-
ka tdma on osittain postglasiaalisen isostaattisen epédtasapainon ai-
heuttamaa ja ndkyy my0s ilma-anomaliakartalla. Bouguer-anomaliat
ovat my0s siledampid, vaikka sitd on tadstd vaikeampi ndhdd, koska

Eteld-Suomi on aika tasainen.

133



134

6 (GEOFYSIKAALISET REDUKTIOT

o Tilavuuksien I vetovoima lasketaan mukaan, vaikka ne tilavuudet
eivat sisilld ainetta.

o Tilavuuksien II vetovoima jatetddn huomioimatta, vaikka tilavuu-
det siséltdvat ainetta.

Molemmat virheet toimivat samaan suuntaan! Koska tilavuudet I ovat las-
kentapisteen P alapuolella, niiden vetovoima — jonka yksinkertainen
Bouguer-reduktio korjaa pois — toimii alaspdin. Ja koska tilavuudet
IT ovat laskentapisteen yldpuolella, niiden vetovoima — jota ei yksin-
kertaisessa Bouguer-reduktiossa korjata pois — toimii ylospédin. Tehty
virhe on samansuuntainen kuin edellisessd tapauksessa.

Maastokorjaus on aina positiivinen.

Kirjoitetaan
Agp = Agp + TC,

jossa TC — "terrain correction” eli maastokorjaus — on positiivinen.
uuretta utsutaan maastokorjatuksi Bouguer-anomaliaksi.
Suuretta Ag} kutsut tokorjatuksi B liak

Maastokorjaus lasketaan numeerisen integroinnin avulla. Kuvassa
6.5 ndkyy prismamenetelmd ja miten molemmat prismat, I ja II, tuottavat
positiivisen korjauksen, koska prisma I lisdtdédn ja prisma II poistetaan
laskennallisesti. Tarvitaan digitaalinen maastomalli, DTM, jonka on olta-
va varsinkin laskentapisteen ympari erittdin tihed: kokemuksen mukaan
500 m on suurin sallittu pistevéli Suomen kaltaisessa maastossa; vuoris-
tossa tarvitaan jopa 50 m. Maastokorjauksen systemaattisen luonteen ta-
kia liian harvan digitaalisen maastomallin kaytto aiheuttaa jopa vakavia
systemaattisia virheiti vajavaisesti korjatuissa painovoima-anomalioissa.

Maastokorjauksen laskennassa prismamenetelmalld kédytetdan seu-
raavaa yhtdlod, jossa oletuksina ovat maankuoren vakiotiheys p ja litted
Maa, suorakulmaisissa karttakoordinaateissa x, y:

+D ]

TC(x,y) = %Gpjjsj_D G (H(x’,y’) — H(x,y))2 dx' dy’,
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H (X_/ »_y_’l _

/ /

x5y XY x5y

Kuva 6.5. Klassisen maastokorjauksen laskeminen prismamenetelmalla.

jossa

0= \/(x—xf)z Fly =y (SHeey) - Rixy) )

on etdisyys laskentapisteen

[X Y H(x,y)}T

ja prisman keskiakselin keskipisteen

[x/ y’ %(H(x@y’)%—H(x,y)) ]T

vélilla. Tietenkin tdiméa on vain approksimaatio, mutta se toimii riittavan
tarkasti maastossa, jossa kaltevuudet eivét yleensa ylitd 45°. Y114 olevassa
integraalissa raja-arvo D on tavallisesti kymmenid tai satoja kilometreja.
Jalkimmaisessd tapauksessa Maan kaarevuus alkaa jo vaikuttaa, mita
yhtalo ei ota huomioon.

Maastokorjauksen TC arvot vaihtelevat milligalin murto-osasta (Eteld-
Suomessa) satoihin milligalleihin (korkeassa vuoristossa). Suomen
kédsivarressa maastokorjaukset voivat olla kymmenia milligalleja.

Kuvassa 6.6 esitetddn Bouguer-anomalian laskennan vaiheet pai-
novoimahavainnosta maastokorjauksen, Bouguer-laattakorjauksen ja
ilmareduktion kautta.
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Annettuna: painovoima g

maastossa Maasto- E;ltltil-ler-
korjaus ° korjaus
— =

Ilma-

reduktio Merenpinnan
. meren-  hormaalipainovoiman
| pintaan viahennys, —yo (@)
ki o

Kuva 6.6. Bouguer-anomalian laskennan vaiheet. Reduktio merenpintaan kayt-
tdd painovoiman ilmagradientin standardiarvoa —0,3084 mGal/m , nor-
maalipainovoiman pystygradienttia.

6.3.1 Esimerkki: Maastokorjauksen soveltaminen
erikoistapauksessa
Annettuna on erikoinen maaston muoto, kuvassa 6.7 kolmiulotteisvai-

kutteisesti esitettynad. Korkeuserot ovat PQ’ = 300m ja QQ’ = 200 m.
Kallion tiheys on maankuoren standarditiheys 2670kg/m?.

300m

I
200m |
I
I

Q' Merenpinta

Kuva 6.7. Erikoinen maaston muoto. Pystysuora kallioseindmé kohdalla PQ
on myos kartalla suora ja ulottuu molemmissa suunnissa ddretto-

myyteen.
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Kysymyksia
1) Laske pisteessd P maastokorjaus. Vihje: kdytda Bouguer-
laatan vetovoimakaavaa. Mikd on etumerkki?

2) Laske pisteessd Q maastokorjaus. Mikd on etumerkki?

3) Jos pisteessd P on annettuna, ettd ilma-anomalia on 50 mGal,
paljonko on pisteen Bouguer-anomalia?

4) Jos pisteessd Q on annettuna, ettd Bouguer-anomalia on
22mGal, paljonko on pisteen ilma-anomalia?

Vastauksia

1) Pisteen P maastokorjaus on painovoiman muutos, kun maas-
to tdytetddn pisteen vasemmalla puolella 300 metriin saakka.
Tama merkitsee puolinaisen Bouguer-laatan, paksuus 100 m,
lisddmistd P:n tason alapuolelle. Vaikutus pystysuunnalle

projisoituna on

TC:%-ZT(Gp~H:
— % -0,1119 mGal/py, . T00 m = 5,595 mGal.

2) Pisteen Q maastokorjaus on painovoiman muutos, jos ote-
taan pois pisteen oikealla puolella ja sen yldpuolella oleva
100 m paksu puolinainen Bouguer-laatta. Sen pystysuuntainen
painovoimavaikutus on, kuten ylla laskettu,

TC = 5,595 mGal,

ja koska pisteen Q tason ylipuolella oleva puolilaatta otetaan
pois, on TC:n etumerkki taas positiivinen.

3) Ilma-anomaliasta Bouguer-anomaliaan:
Agea(P) 50,000 mGal
TC +5,595 mGal
Bouguer-laatan poisto, 300 m —33,570 mGal
Agg(P) 22,025 mGal
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Agepn  +T1C —Laatta Agsg

I i

4) Bouguer-anomaliasta ilma-anomaliaan:

Agp(Q) 22,000 mGal

Bouguer-laatan lisdys, 200 m 422,380 mGal

TC:n poisto —5,595 mGal

Agra(Q) 38,785 mGal
Agp +Laatta —TC  Aggpa

6.4 Bouguer-palloanomaliat

Viime aikoina on laskettu my6s Bouguer-palloanomalioita, esimerkiksi
Balmino ym. (2012); Kuhn ym. (2009); Hirt ja Kuhn (2014). Tassa las-
kennassa koko maapallon topografia ja meren syvyydet eli batymetria
otetaan huomioon pallogeometriassa. Maan litistyneisyys aiheuttaa las-
kennassa olemattoman pienen virheen. Bouguer-palloanomaliat eroavat
Bouguer-laatta-anomalioista neljdlla tavalla:

1) Bouguer-pallokuoren, paksuus H, vetovoima on 47tGpH eli kaksi
kertaa vastaavan Bouguer-laatan vetovoima. Kuoren kaukainen
osa tuottaa yhtd paljon vetovoimaa kuin laskentapisteen ympaéris-
to!

2) Valtamerten syvyydet eli batymetria otetaan huomioon® korvaa-
malla merivettd maankuoren standardikalliolla. Tama vaikuttaa
anomalioihin positiivisesti.

>Ndin voi tehdd my6s Bouguer-laattakorjauksen yhteydesss, ja usein tehdédédnkin.
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3) My6s maapallon kaukaisten alueiden topografia- ja syvyystiedot
otetaan huomioon realistisesti. Koska Maan pinnasta valtaosa on
syvien valtamerten peitossa, aiheutuu vahva positiivinen yleissyste-
matiikka, my0s alavilla alueilla, joilla Bouguer-laattareduktio on
tavallisesti pieni.

4) Myo6s maastokorjaus lasketaan nyt pallogeometriassa koko maa-
pallon yli — vaikkakin vain topografialle. Siksi sddnto, jonka
mukaan sen kaikki osuudet ovat positiivisia, ei endd pade: Abreh-
dary ym. (2016) raportoivat, ettd paikoissa ldhelld paikallisen
horisontin alapuolella olevia vuoristoja, pallomaastokorjaus voi
olla niinkin negatiivinen kuin —200 mGal.

Laatta- ja pallo-Bouguer-anomalioiden vélilld on olemassa suuri sys-
temaattinen ero, joka on kuitenkin hyvin pitkdaaltoinen ja Australian
kokoisella alueella ldhes vakio: —18,6 mGal muutaman milligallin vaih-
teluvilin sisdlld. Yksityiskohdat Bouguer-anomalioiden kartoissa ovat
samanndkoisid (Kuhn ym., 2009).

Huvin vuoksi lasketaan globaalin ja tdydellisen Bouguer-
palloreduktion netto massaefekti. Mantereiden topografian kes-
kikorkeus on 800 m, kun mantereiden kokonaispinta-ala on 29 % koko
maapallon pinta-alasta. Valtamerten keskisyvyys on 3700 m, mika
vastaa tdytettdavad kalliota vastaavaa syvyytta

2670 — 1030
2670

jos maankuoren kallion oletettu tiheys on 2670 k8/m?, meriveden tiheys

3700 x m = 2272 m,

1030k8/m* ja valtameren kokonaispinta-ala on 71 % koko maapallon
pinta-alasta. Aluepainotettu summa on siis

(0,29 x 800 — 0,71 x 2272) m = —1381 m.

Tulkinta Topografiaa ei ole tarpeeksi tdyttdimaan valtamerta, silloin-
kaan jos saamme puristaa merivettd standardikallioksi. Jos yri-
tdimme tdtd puskutraktorikoetta, meiltd jad uupumaan 1381 m
nykymerenpintaan verrattuna.
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Jos sen sijaan lisdtddn standardikalliota nykyiseen merenpintaan
saakka — ndinhdn on Bouguer-palloreduktio méaritelty — lisa-
tddn avaruudesta kdsin havaittavaan Maan vetovoimaan méaéara
4nGp x 1381 m = 309 mGal.

Maailmanlaajuinen keskiméardinen Bouguer-laattareduktio, ku-
ten my6s ero Bouguer-pallo- ja laattareduktioiden vililld maa-
ilmanlaajuisesti keskimd&drin, on nyt puolet tdstd arvosta eli
~ 155 mGal. Koska ilma-anomalioiden globaali keskiarvo on nol-
la, on globaali pallo-Bouguer-anomalioiden keskiarvo 309 mGal,
ja positiivisuudesta valtaosa 16ytyy syvédn valtameren ylla.

6.5 Helmertin kondensaatio

Usein kéytetty, Friedrich Robert Helmertin® ehdottama keino poistaa
geoidin ulkopuolisten massojen vaikutus on kondensaatio. Tassda me-
netelmdssd kaikki mannermassat siirretddn matemaattisesti suoraan
alaspdin keskimerenpintaan yksinkertaiseksi massatiheyskerrokseksi

szH,

jossa H on topografian korkeus merenpinnasta ja p sen keskimddrdinen
ainetiheys. Tdmd massapintatiheys voidaan tulkita patsaan massa-

integraaliksi:
_(R+H 4
K=p IR z.
Pallon muotoisen Maan tapauksessa vastaava integraali on
R+H /2 1 r1_37R+H H 1H?2

jossa ymmarretddn, ettd massaa siirretddn patsaan poikkileikkauksesta,
jonka pinta-ala on 12 /R? merenpintaan, jossa pinta-ala on 1.

3Friedrich Robert Helmert (1843-1917) oli saksalaisgeodeetti sekd matemaattisen ja
tilastollisen geodesian tutkija.



Helmertin kondensaatio 6.5

Tasapotentiaalipinta

Topografia

| AR - v

Kondensaatiokerros

Kuva 6.8. Helmertin kondensaatio ja sen aiheuttamat muutokset painovoima-

kentéssa.

Helmertin kondensaation etu Bouguer-reduktioon verrattuna on, etta
massaa ei poisteta. Bouguer-reduktiohan on topografisten massojen laaja-
mittainen laskennallinen poisto. Siksi toisin kuin Bouguer-reduktiossa,
Helmertin kondensaatiossa painovoima-anomaliat eivdt muutu syste-
maattisesti.

Liitteessd D johdetaan sarjakehitelmit pallogeometriassa, jotka ilmai-
sevat topografian sekd ulkoista ettd sisdistd potentiaalia itse topografian
H(d,A) ja sen eri potenssien “asteosuuksien” funktioina. Liitteessa
laajahkosti esitettyd johtamistapaa kdytetddn Maan painovoimakentdn
teoriassa paljon topografian painovoimavaikutuksen mallintamiseksi.
Teoriassa suppenemiskysymykset ovat vaikeita, vaikka emme tdssa

kiinnitd niihin erityistd huomiota.
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otk L i, Bk

TR Hotmat~
Kuva 6.9. Friedrich Robert Helmert. Humboldt University Berlin (2017).

6.6 Isostasia

6.6.1 Klassisia hypoteeseja

Jo 1700- ja 1800-luvun aikana, muun muassa Bouguer'n tyon ansiosta
Eteld-Amerikassa ja brittigeodeettien tyon ansiosta Intian Himalajalla,
oltiin tietoisia siitd, ettd vuoristot eivét ole vain kivikasoja maankuoren
paalla. Vuoria ymparoiva painovoimakenttd, tarkemmin luotiviivan
poikkeamat, voitiin selittdd vain olettamalla, ettd jokaisen vuoriston
alla on kevyemmadstd kiviaineesta koostuva “juuri”. Tdmén juuren ai-
heuttajaksi arveltiin maankuoren ldhes hydrostaattinen kdyttdytyminen
geologisella aikaskaalalla. Tata hydrostaattisen tasapainon oletusta
kutsuttiin isostasiahypoteesiksi, my0s isostaattiseksi kompensaatioksi.

Silloin, toisin kuin nykyisin, ei vield ollut mahdollista saada fysikaali-
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Luotiviiva- poikkeamat

Geoidi

Maankuori

Maan vaippa

Kuva 6.10. Isostasia ja luotiviivojen taipuminen vuoreen péin.

sin menetelmin eli seismologialla tarkkaa tai edes oikeaa kuvaa siitd,
minkd muotoisia ndma vuoristojen juuret oikeasti ovat. Siksi kehiteltiin
yksinkertaistettuja tyohypoteeseja.

Yksi klassinen isostaattinen hypoteesi on Prattin ja Hayfordin hypo-
teesi. Sen ehdotti J. H. Pratt* 1800-luvun keskivaiheilla (Pratt, 1855, 1859,
1864), ja J. F. Hayford> kehitti laskentaan tarvittavat matemaattiset apu-
vélineet. Hypoteesin mukaan vuoren alla olevan “juuren” ainetiheys
vaihtelee vuoren korkeuden mukaan niin, ettd korkeimpien vuorten alla
on kevyin materiaali, ja raja timdn kevyen juuriaineen ja ttheimman
Maan vaipan materiaalin vililld on vakiosyvyydelld. Taméa malli, jota
nykyisin ei endd paljon kaytetd, ndkyy kuvassa 6.11.

Toinen klassinen isostaattinen hypoteesi on G. B. Airyn® kisialaa.

4John Henry Pratt (1809-1871) oli brittildinen pappismies ja matemaatikko, joka toimi
Kolkatassa Intiassa arkkidiakonina. Wikipedia, John Pratt.

5John Fillmore Hayford (1868-1925) oli yhdysvaltalainen geodeetti, joka tutki isostasiaa
ja Maan muotoa.

4
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Vuoristo

D 02020 ) —
Meri
Kompen-
saatio- Maankuori

SyVyys

V. R e Kompen-

saatiotaso

Vaippa

Kuva 6.11. Prattin ja Hayfordin isostaattinen hypoteesi.

Koska V. A. Heiskanen” kéytti sitd laajasti ja kehitti sen matemaattista
muotoa, sitd kutsutaan Airyn ja Heiskasen malliksi. Tdssd mallissa
oletetaan, ettd “juuren” ainetiheys on vakio ja ettd isostaattinen kompen-
saatio saadaan aikaan vaihtelemalla juuren uppoamissyvyyttd Maan
vaippaan. Nykytietojen mukaan tdmad vastaa paremmin sitd, mitd Maan
sisdlld todella tapahtuu. Tama hypoteesi ndkyy kuvassa 6.12.

6.6.2 Laskentakaavoja

Airyn isostaattinen hypoteesi olettaa, ettd aineen pystypylvdan koko-
naismassa on jokaisessa paikassa sama. Siis olkoon maankuoren tiheys
p., vaipan tiheys p,, meriveden tiheys p,, meren syvyys d, kuoren

George Biddell Airy PRS (1801-1892) oli englantilainen matemaatikko ja tahtitieteilija,
“Astronomer Royal” 1835-1881.

7Veikko Aleksanteri Heiskanen (1895-1971), “the great Heiskanen” (Hermans, 2007) oli
suomalainen geodeetti, joka toimi my6s Ohiossa Yhdysvalloissa. Hanet tunnetaan
isostasian ja maailman geoidin tutkimuksistaan ("Columbuksen geoidi”). Katso
Kakkuri (2008).
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Maankuori

Kompensaatiosyvyys to
Pe

Vastajuuri Kompen-

saatiotaso

Vuoriston juuri

Kuva 6.12. Airyn ja Heiskasen isostaattinen hypoteesi.

paksuus t ja topografian korkeus H. Saadaan

d(pm — pw) +¢
Pm — Pc

tpc +dpw —(t+d)pm=c = t=-—

Kuva 6.13. Isostaattisen kompensaation suureita.

=M BUXE O
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merelld ja

Hpm —c¢

Pm — Pc

mantereella. ¢ on sopiva vakio®. T4ssé on jitetty huomioimatta Maan

tpc_(t_H)pm:C — t=

kaarevuus ja kdytetddn “littedin Maan mallia”.

Mantereen alla vuoriston juuren syvyys on

Hpm —¢  Hpm—hp. _ Hpc—c
Pm — Pc Pm — Pc _pm_pc.

r=t—H=

Samoin meren alla

B ~d(pm—pw)F+c | dpm—dp.  d(pc—pw)+cC
T—t—l—d— pm_pc T pm_pc o pm_pc ’

Yhtdloissa vakio ¢ on, ainakin isostaattisen tasapainon kannalta, mie-
livaltainen ja ilmaisee sitd tosiasiaa, ettd taso, josta lasketaan juuren
syvyys — vdhemman tarkasti “kuoren keskimé&ardinen paksuus” —
voidaan valita mielivaltaisesti.

Eri lahestymistapa: c:n sijasta kdytetddn “nollatopografian kompen-
saatiotasoa”, lyhyesti kompensaatiosyvyys, to, joka lasketaan ylld olevista
yhtdloista asettamalla H = d = 0:

to (pc - pm) = C.

Tastd saadaan mantereen alla juuren syvyydeksi

_ Hpe—to (pc —Pm) _ Pe
= Pm — Pc _to—i_Hpm_pc’ (65)
ja meren alla
T:_d(pc_pw)+t0(pc_pm):to_dpc_pw (6.6)

Pm — Pc Pm — P’
yhtél6t, jotka ovat jonkin verran yksinkertaisempia ja my6s intuitiivi-

sempia.

8Sen dimensio, maanpinnan painovoiman g kanssa kertomisen jilkeen, on paine:
Arkhimedeen lain mukainen maankuoren ja meriveden patsaan paine vahennettynd
syrjdytetyn vaippa-aineen patsaan paineella.
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Vieldkin kolmas kirjoitustapa:

Hpe + (=7 (pm — pe) = ¢,

(=d) (pe = pw) + (=7) (Pm — Pe) = ¢.

Siis
Z (poikkeama x tiheyskontrasti) = vakio.
rajapinnat

Eri isostaattisten hypoteesien vaikutus painovoimaan on aika lailla sa-
manlaista: painovoimamittausten perusteella hypoteeseja ei voi erottaa
toisistaan. Hypoteesin valinnan vaikutus geoidiin on vahvempi.

6.6.3 Esimerkki: Norja

Eteld-Norjan Hardangerin ylinké (Hardangervidda) on keskimdarin 1100 m
merenpinnan yldpuolella. Se on kansallispuisto, suosittu turistikohde
ja Euroopan laajin puolitasanko. Sen lapi kulkee Bergensbanen, joka on
Pohjois-Euroopan korkein linjarautatie.

Norjanmeri on Atlantin valtameren osa Norjan rannikon edessa. Se ei
kuulu mannerjalustaan ja on keskiméaéarin 2 km syva.

Kysymyksia
1) Kuinka syvilla Hardangerin ylangon juuri on kompensaa-
tiotason t, alapuolella?

2) Paljonko on Norjanmeren vastajuuren negatiivinen syvyys
saman kompensaatiotason suhteen?

3) Paljonko on Hardangerin ylangon juuren suhteellinen syvyys
verrattuna ldhelld olevaan Norjanmereen?

Vastauksia
1) Kéyta yhtédload 6.5, joka antaa

P _
Pm — Pc

=1100m X

r—ty = H
2670k8/m?
(3370 — 2670) k&/m’

= 4196 m.
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Téassd kdytettiin standardiarvoja maankuoren ja Maan vaipan
kallion tiheydeksi.

2) Kaytd yhtdloa 6.6, joka antaa

e
2670 — 1030) ke/m
— 2000m x | V¥/m_ 4es6m,

(3370 — 2670) k8/m

jossa on lisdksi kdytetty meriveden tiheyden standardiarvoa.

3) Syvyyskontrasti juuren ja vastajuuren vililld on 4196 —
(—4686) m = 8882 m. Vertailun vuoksi Mount Everestin
korkeus on 8848 m merenpinnan yldpuolella.

6.6.4 Isostasian nykykasitys

Nykyisin meilld on paljon parempi késitys Maan sisdisestd tilasta. Isosta-
sian késite on kuitenkin edelleen péteva. Realistisemman ymmaérryksen
Maan sisdisestd rakenteesta antaa kuva 6.14.

Nykytutkimuksen tdrked kiinnostuksen kohde on Maan jadmassojen,
kuten mannerjaatikoiden, kasvamisen ja sulamisen vaikutus maankuo-
ren pystyliikkeisiin. Tahén sisdltyy sekd jadmassojen vaihtelun suora
vaikutus ettd vilillinen valtameren vesimassojen vaihtelun vaikutus. Pa-
leotutkimus kohdistuu jadkausisyklin vaihteluihin, kun moderni jaatikoi-
den vetdytyminen, esimerkiksi Alaskassa ja Huippuvuorilla, aiheuttaa
omaa, havaittavissa olevaa paikallisen maankuoren kohoamista. Lisda
luvussa 12.

6.6.5 Esimerkki: Fennoskandian maannousu

Viime jadkauden maksimin aikana noin 20000 vuotta sitten Fenno-

skandian péalld oli mannerjdétikko, jonka paksuus oli maksimissaan
3 km.
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Valtameren keskiselanne
Laattaliike .
: Syvanmeren hauta ~ Conradin

> ; : - rajapinta
Meri X - : -

- ----Maankuori __|~

Mohoroviciéin
rajapinta
Alityonto Litosfadrin

alapinta
Astenosfaari

Benioffinivyohyke

660 km:n rajapinta

Kuva 6.14. Isostasian ja laattatektoniikan nykykasitys. Syvanmeren haudat
22 ovat tiettdvasti isostaattisessa epdtasapainossa.

Kysymyksia
1) Kuinka syvi oli jddkuorman jattima lommo Maan pinnalla,
olettaen ettd se oli isostaattisesti kompensoitu?
2) Talla hetkellda maa nousee Fennoskandian keskella sielld,
missd jaan paksuus oli suurimmillaan, nopeudella 10mm/a.
Kauanko lommon hédvidminen kestdisi tdlld tahdilla?
Vastauksia
1) Oletetaan jadn tiheydeksi 920kg/m’. Jos yldvaipan tiheys on
3370kg/m?, saamme lommon syvyydeksi
920kg/m?

=819m.

Huomaa, ettd jaa syrjayttdd Maan vaipan ainetta ja maan-
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kuori vain valittdd kuormitusta! Katso kuva 12.1a.

2) Nousunopeudella 10mm/a lommon hédvidminen kestdd
819m/0,01 m/a = 81900 vuotta. Osa tdstd noususta on jo
toteutunut viime jadkauden pddttymisen jalkeen.
Todellisuudessa nousu on tietenkin hidastunut huomatta-
vasti ajan myo6té ja tulee hidastumaan vastaisuudessakin.

6.7 Isostaattiset reduktiot

Seké topografian ettd sen isostaattisen kompensaation laskennallista
poistoa painovoimakentdn mitatuista suureista kutsutaan isostaattiseksi
reduktioksi. Silla on kaksi tavoitetta:

o Poistamalla mahdollisimman paljon “pinnallisia” efektejad pai-
novoimakentdltd jad sellainen kenttd, jossa vain Maan syvien
kerrosten vaikutus on jdljelld. Tastd on hyotya geofysikaalisessa
tutkimuksessa.

o Namad “pinnalliset” efektit ovat yleensd my6s hyvin paikallisia:
spektraalikielelld hyvin lyhytaaltoisia. Poistamalla niitd saadaan
jadnnoskenttd, joka on sileimpi ja joka voidaan interpoloida eli
predikoida paremmin. Tdmad on tdrke&d etenkin alueilla, joilla todel-
lisesta mittausaineistosta on pulaa, kuten valtamerilld, aavikoilla
ja napa-alueilla.

Isostaattiset painovoima-anomaliat eli ilma-anomaliat, joihin on sovel-
lettu isostaattista reduktiota, ovat hyvin sileitd, kuten myos Bouguer-
anomaliat: niiden prediktio-ominaisuudet ovat hyvit. Toisin kuin Bouguer-
anomaliat, isostaattiset anomaliat ovat keskimddrin nolla. Niistd puut-
tuu se suuri systematiikka, joka tekee Bouguer-anomalioista vahvasti
negatiivisia etenkin vuoristoalueilla, osio 6.2. Tdma johtuu tietysti sii-
td, ettd isostaattinen reduktio on vain massojen siirtimisti paikasta
toiseen eikd massojen poistamista, kuten Bouguer-reduktion tapauk-
sessa. Isostaattisessa reduktiossa vuoristosta siirtyy massaa sen alla
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Kuva 6.15. Isostaattisia painovoima-anomalioita Eteld-Suomessa. Airyn ja
Heiskasen hypoteesi, kompensaatiosyvyys 30 km. Data © Bureau
Gravimétrique International (BGI) / International Association of
Geodesy, World Gravity Map -hanke. Verkkopalvelu BGI, WGMz2o012.
Paksun ja jaykdn Fennoskandian kilven pailld topografian paikalli-
set yksityiskohdat eivit ole isostaattisesti kompensoituja ja kartta
ndyttdd aika samanlaiselta kuin ilma-anomaliakartta 5.5 sivulla 123.

olevaan juureen, jonka massavaje on melko tarkasti sama kuin korkealle

merenpinnan yldpuolelle nousevan vuoriston oma massa.
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Isostaattisessa reduktiolaskennassa kédytetyt reduktiomenetelmét ovat
samanlaisia kuin muissa reduktioissa. Ne késitellddn myohemmin: nu-
meerinen integrointi avaruusdomeenissa — hilaintegrointi, pallokalotti-
integrointi, pienimmaén neliésumman kollokaatio, elementtimenetelma
ja niin edelleen — tai spektraalidomeenissa, esimerkiksi FFT ja ”Fast
Collocation”.

Kaytetty hypoteesi on mielenkiintoisempi kysymys. Perinteisesti on
kaytetty Prattin tai Airyn hypoteeseja, jotka Hayford, Heiskanen ja
Vening Meinesz® ovat kehittdneet kvantitatiivisiksi menetelmiksi. Uu-
dempi kehityssuunta on kéyttda oikeaa mittausdataa seismisesti tomogra-
fiasta Maan sisdisen rakenteen mallintamiseksi. Oikeiden mittaustietojen
avulla, jos ne ovat luotettavia, pitdisi paastd parempiin tuloksiin.

6.8 ’lsostaattinen geoidi”

Tutkitaan, miten “isostaattinen geoidi”, tarkemmin isostaattisen reduktion
kogeoidi, lasketaan. Isostaattinen reduktio on yksi menetelmévaihtoehto,
jolla poistetaan laskennallisesti geoidin ulkopuoliset massat reuna-
arvotehtdavan muodostamista varten geoidin pinnalla.

Voidaan néyttdd (Heiskanen ja Moritz, 1967 sivu 142), ettd isostaatti-
nen kogeoidi on mannerten alla jopa metrejd geoidin alapuolella. Toisin
sanoen epdsuora vaikutus (“restore”-vaihe) on tatd luokkaa. Valtamerelld
isostaattinen ko-geoidi on vastaavasti metrejd geoidin yldpuolella.

Koska yksi geoidiméddritysmenetelmélle asetettava vaatimus on pieni
epdsuora vaikutus, seuraa ettd isostaattiset menetelmit eivit liene par-
haita mahdollisia, jos tarkoitus on laskea ulkoista potentiaalia edustava
geoidi tai kvasigeoidi'®. Heiskanen ja Moritz huomauttavat sivulla 152,

9Felix Andries Vening Meinesz (1887-1966) oli hollantilainen geofyysikko, geodeetti
ja gravimetrikko. Hén laati yhdessd W. A. Heiskasen kanssa oppikirjan The Earth and
its Gravity Field (1958).

'9Tietenkin Bouguer-reduktio on vieldkin pahempi! Epédsuora vaikutus voi olla jopa
satoja metrejd.
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ettd epdsuora vaikutus on “moderate”.

Isostaattiset menetelmaét soveltuvat kuitenkin hyvin Maan sisdisen
rakenteen selvittimiseen, koska sekd topografia ettd sen aiheuttama
painauma Maan vaippaan, isostaattinen kompensaatio, poistetaan las-
kennallisesti.

Tutkimus on osoittanut, ettd maapallon suuret topografiset piirteet
ovatnoin 85-90 % isostaattisesti kompensoituja (Heiskanen, 1960). Tama
on arvokas hypoteesi, jos muuta tietoa ei ole saatavilla.

Toinen syy, miksi isostaattinen geoidi on kiinnostava, on se, ettd Maan
painovoimakenttd, josta vuoristojen vaikutus on poistettu kokonaan
juurineen kaikkineen, voi paljastaa syvempien kerroksien fysikaalisia
epdtasapainoja ja niitd aiheuttavia prosesseja. Sellaisia prosesseja ovat
etenkin konvektioliikkeet Maan vaipassa sekd Maan sulan ulkoytimen
mahdollinen vaikutus ndihin virtauksiin. Mielenkiintoisia korrelaatioita
on l6ydetty vaipan konvektiokuvioiden, geoidin globaalin kuvion ja
Maan magneettikenttdd generoivien ytimen sahkovirtakuvioiden valilla
(Wen ja Anderson, 1997; Prutkin, 2008; Kogan ym., 1985).

Isostaattinen reduktio koostuu kahdesta osasta:

o topografian laskennallinen poisto

o topografian isostaattisen kompensaation laskennallinen poisto.

On mahdollista laskea molemmat osat eksaktisti prismaintegrointime-
netelmén avulla, katso osio 6.3. Tassd kuitenkin pyritddn ymmaérta-
maéédn asia laadullisesti. Approksimoidaan molemmat osat yksinkertaisilla
massatiheyskerroksilla. Tiheys on esimerkiksi topografian tapauksessa
k = pH. Laitamme ensimmadisen kerroksen tasolle H = 0, ja toisen,

~(X5)

kompensaatiosyvyydelle D. Tama valinta sdilyttdd maapallon kokonais-

jonka tiheys on

massan. Tilanne on esitetty — littedin Maan approksimaatiossa — ku-
vassa 6.16.
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Seuraavassa kdytetddn “generoivan funktion” yhtiloa 8.7,

RS e

n=0

yhdessa yksinkertaisen massatiheyskerroksen yhtdlon 1.15 kanssa:

Vool fas=or ] fao

Merenpinnan massatiheyskerroksen potentiaalikentédksi saadaan, kun
my0s laskentapiste sijoittuu merenpinnalle, siis H =0 = r =R:

Viop = GRIL K i P.(cos{) do
n=0

ja kun tiheyskerros on kompensaatiosyvyydella (ldhteiden taso R — D,
laskentataso R):

Viomp =
=60 [, (x(xp)) X ()" teosi o=
n=0

o] x5 (552 e

josta reduktion yhteisvaikutus on (n = 0 putoaa pois):
6\/iso = (Vtop + Vkomp) =

- —GRIL Ki (1 - (%)n) Pn(cos)o. (6.7)

Tadssd massan pintatiheys k on

pcH jos H >0,
K =

(pc_pw)H jOS H < 0)

siis korvataan merten syvyydet vastaavilla “kuivilla” syvyyksilla"*. Nyt
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Kuva 6.16. Isostaattinen reduktio kahtena pintatiheyskerroksena.

kdytdimme taas asteosuusyhtdlod, Heiskanen ja Moritz (1967) yhtélo
1-71, eli yhtalodmme 3.9, seuraavassa muodossa:

cnldA) 2L ([ (V) Py fcos ) do

Kertomalla molemmat puolet tekijalld
4ntGR R—D\"
T In+1 (1 B ( R ) )
ja siirtdimalla se integraalin sisddn saadaan
4ntGR R—D\" _
T Int (1_( ) )K“(¢’7‘)_
= —GRII (b’ A) ( (RRD) )Pn(cosd))dcr’

Summaus antaa ylld annetun lausekkeen 6.7:
— 47GR R—D\" B
N Z] It <1 -(5%) ) “n(A) =

"'Tama toimii kuivalla maalla ja valtamerelld. Jarvet, jaatikot ja Kuolleenmeren

tyyppiset alueet ovat mutkikkaampia.
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- — GRJJ (p' A\ i ( <¥)n> P, (cos) do’ = dVig,.

= 5 319 (1 (52 Yo -
-5 R (i (552 -

= 2 R—D\"
_;anR(] -(5%) )(AB)“
Tassa on kdytetty kirjoitustapaa Ag = 27tGk. Tdma edustaa massatiheys-
kerrosta k vastaavan Bouguer-laatan vetovoimaa ja sen asteosuudet
ovat (Ag), = 2nGky,.

Tutkitaan ensin osuutta*?> 1 <n < N def R / D. Silloin, koska

(R—D)“N1_£
R ) 7R

seuraava approksimaatio pétee:

N
2nD ~
Viso ™ — ) 57 (As ZD Ap),, ~ —DAs,
n=1
ja
ONiso = Wiso _DAs _DAB- (6.8)

y - vy 7Y
Tama on isostaattisen reduktion epdsuora vaikutus.

Sijoitetaan tdhén realistisia arvoja. Olkoon Mohorovici¢in'3 rajapinnan

2 Astelukujen n > R/ D osuus on

2R
Viso & — Z e GO
n=N-+1
jossa termit ovat pienid ja putoavat nopeasti nollaan. Talla astevalilld topografian ja
sen kompensaation pintakerrosapproksimaatio ei ole endd realistinen, mutta siind ei
ole vilid kun ndin lyhyet aallonpituudet eivét ole edes isostaattisesti kompensoituja.
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syvyys keskimddrin ~ 20 km'4.
Maalla H ~ 0,8km, Maan keskimddrdinen topografian korkeus, ja
saadaan dNjso, maa ~ —1,8 m.

Merelld H ~ —3,7 km keskimd&arin. Kerrotaan vield suhdeluvun
Pc— Pw _ 2670 — 1030

Pe 2670

kanssa, veden huomioon ottamiseksi. Saadaan ONis, meri ~
+5,1m.

Toisin sanoen tama efekti voi olla mittava.

Huomaa kuitenkin, ettd ylld oleva laskenta kdytti vastaavan Bouguer-
laatan vetovoimaa N
Ap =) 2nGkn,
n=0

kun taas yhtalo 6.8 siséltaa

N
~ n

Ap = I +127’[GKn R Z 2nGKy,

n=1

josta nollannen asteen osuus ko puuttuu. Toisin sanoin /N\B:n, ja nain
ollen 6N;s,:n, globaalinen keskiarvo mantereiden ja valtamerten yli olisi
oltava nolla, koska oletettiin, ettd isostaattinen reduktio ei muuta Maan
kokonaismassaa. Laskettujen arvojen keskiarvo on kuitenkin

6Niso = 0329 : 6‘Niso,maa + O>7] : 6Niso, meri — 3)] m.
Tamaén korjausarvon kanssa saadaan

ONiso, maa ~ —1,8m —3,1m = —4,9m,
5Niso, meri ~ +5,1 m — 3,] m = —|—2,0 m.

'3 Andrija Mohorovic¢i¢ (1857-1936) oli kroatialainen séétieteilijd ja modernin seismo-
logian pioneereja.

4 Mantereiden alla syvyys on 35 km ja valtamerien alla 7 km merenpohjasta (Encyclo-
paedia Britannica, Moho).
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Namad arvot ovat edustavia laajemmille manner- tai valtamerialueille, ja
vain suunta-antavia. Tarkka laskenta on oltava numeerinen.

Yhtalo 6.8 on Bouguer-laatan vetovoiman Ag kautta lineaarinen kor-
keudessa H. Tdma merkitsee, ettd jokainen topografian kilometrin lisdys
aiheuttaa noin —2,2 m suureessa 0Niso, maa, ja jokainen batymetrin kilo-
metrin lisdys samalla tavalla +1,4 m suureessa 8Nisy, meri- VOImme myos
paételld, ettd isostaattisen reduktion vaikutuksessa geoidiin — ainakin pi-
temmilld aallonpituuksilla 27R /1, , pidempia kuin kompensaatiosyvyys
D — kaikki aallonpituudet ovat edustettuina spektrissd noin samassa
suhteessa kuin itse topografiassa, ja efekti on itse asiassa verrannollinen
topografiaan.

Olenko ymmartanyt taman?

1) Mitka vaikutukset poistetaan laskennallisesti
(a) yksinkertaisella Bouguer-reduktiolla?
(b) maastokorjatulla Bouguer-reduktiolla?
(c) isostaattisella reduktiolla?

2) Miksi maastokorjaus on aina positiivinen?

3) Miksi Bouguer-anomalioilla on hyvit interpolointiominaisuudet
ja milld ehdoilla? Toisin sanoen, mitd lisdiinformaatiota tarvitaan
interpoloinnin yhteydessa?

4) Miten keksittiin, ettd vuoristoilla on juuret?

5) Selitd Prattin ja Hayfordin sekd Airyn ja Heiskasen isostaattiset
hypoteesit.

Harjoitus 6—1: Painovoima-anomalia

Annettuna on piste P, jonka korkeus merenpinnasta on H = 500 m.
Paikallinen painovoima on gp = 9,82m/s2. Paikan leveysasteella ¢ ja
merenpinnalla laskettu normaalipainovoima on yo(¢) = 9,820 192m/s2.



Harjoitus 6—2: Bouguer-reduktio

S
300m | |
|

600 m

Q’ Merenpinta

Kuva 6.17. Maaston muoto.

1) Laske pisteen P ilma-anomalia Ag.

2) Laske pisteen P Bouguer-anomalia ilman maastokorjausta Agg.

Harjoitus 6 —2: Bouguer-reduktio

1) Piste P on 500 m merenpinnan yldpuolella. Sen ilma-anomalia on
Agra = 25 mGal. Laske pisteen Bouguer-anomalia Agg. Unohda
maastokorjaus.

2) Katso osio 6.2: Bouguer-anomaliat. Johda yhtdlét 6.2 ja 6.3 uudel-
leen olettamalla, ettd maankuoren keskitiheys on p = 3370kg/m?.

Harjoitus 6—3: Maastokorjaus ja Bouguer-reduktio

Annettuna on maaston muoto, kuva 6.17.
Pystysuora kallioseindma PQ on myds kartalla suora ja kulkee mo-
lemmissa suunnissa (“paperiin” ja “paperista”) ddrettomyyteen.
Korkeuserot: PQ’ = 600m, QQ’ = 300 m.
1) Laske pisteessd P maastokorjaus.

Vihje: kdyta Bouguer-laatan vetovoiman yhtals. Tassd on puolikas
Bouguer-laatta, jonka vetovoima on vain puolet tdyden laatan
vetovoimasta.

2) Laske pisteessda Q maastokorjaus. Miki on etumerkki?
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3) Jos pisteessd P on annettuna, ettd ilma-anomalia on 60 mGal,
paljonko on pisteen Bouguer-anomalia? Kéyta taydellistd Bouguer-
reduktiota.

4) Jos on annettuna, ettd pisteessd Q Bouguer-anomalia on 10 mGal,

paljonko on pisteen ilma-anomalia?

Harjoitus 6—4: Isostasia

Oleta Airyn ja Heiskasen isostaattinen kompensaatio (kuva 6.12). Maan-
kuoren tiheys p. = 2670k8/m*, vaipan tiheys p,, = 3370k8/m?, siis kuoren
ja vaipan vilinen tiheyskontrasti on 700ks/m*. Olkoon nollatopografiaa

vastaavan rajapinnan vertaustaso —25km, siis to = 25km.
1) Laske 8 km korkean vuoren “juuren” syvyys vertaustason —25 km
alapuolella olettaen, ettd se on isostaattisesti kompensoitu.

2) Tulivuori Mauna Kea, Havaji, on 4 km merenpinnan yldapuolella,
mutta sitd ympéroivd meri on 5 km syva. Kuinka syvalld vertaus-
tason alapuolella on Mauna Kean juuri?

3) Kuinka paljon ympéaréivdan meren ”vastajuuri” on vertaustason

ylapuolella? Olkoon meriveden tiheys 1030ks/m?.

4) Siis kuinka syvalld on Mauna Kean juuri ympiristoonsdi nihden?
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7-1 Vaaitus, ortometriset korkeudet ja geoidi

Korkeuksia on perinteisesti méadritetty vaaitsemalla. Vaaitus on menetel-
md, jossa mitataan korkeuseroja vaaituskojeen ja kahden latan avulla.
Vaaituskoje sisédltdd kaukoputken ja vesivaa’an, ja mittaustilanteessa
kaukoputken optinen akseli eli tdhtdysakseli osoittaa paikallisen hori-
sontin suuntaisesti. Kahdelle mittauspisteelle asetetaan vaaituslatat ja
luetaan mittauskaukoputken kautta niistd mittausarvot. Kahden arvon
erotus antaa pisteiden vilisen korkeuseron metreina.

E _Vaaituslatat Vazika:.s.uora

= | tahtays

= Vaaituskoje N 10
=t ] . 2 el

= \\

Kuva 7.1. Vaaituksen periaate.

- 161 —



162

7 KORKEUSJARJESTELMAT

Etédisyys vaaituskojeen ja lattojen vililla on 40-70m, koska suurem-
milla etdisyyksilld ilmakehédn refraktio aiheuttaa liian suuria virheita.
Pidemmit etdisyydet mitataan toistamalla mittaus useammalla kojease-
malla ja vélipisteella.

Néin saadut korkeuserot AH eivit ole suoraan kéyttokelpoisia. Kah-
den pisteen P ja Q vélinen suoraan korkeuseroja AH summaamalla
saatu "korkeusero” riippuu néet valitusta vaaitusmatkasta pisteestd P
pisteeseen Q. My®6s suljetun silmukan korkeuserojen summa )~ AH ei
(yleisesti) hivid.

Geometrinen korkeus ei ole konservatiivinen kenttd.

Siksi tarkkavaaituksessa muunnetaan korkeuserot aina potentiaalieroiksi:
AW = —AH - g, jossa g on paikallinen painovoima, joka joko mitataan
tai — esimerkiksi Suomessa — interpoloidaan olemassa olevasta pai-
novoimakartoitusmittausten tietokannasta. Potentiaalierojen summa
suljetun silmukan ympéri on aina nolla: }_~ AW = 0.

Mielivaltaisen maastopisteen P potentiaaliksi saadaan

P
Wp =W, — Z (AH-g),
merenpinta
jossa summaus suoritetaan merenpinnasta (potentiaali W,) pisteeseen
P. Suuretta

P
Cp=—(Wp—-Wy) = Z (AH - g),
merenpinta

joka on positiivinen merenpinnan yldpuolella, kutsutaan pisteen P
geopotentiaaliluvuksi.

W, on valtakunnallisen korkeusvertaustason geopotentiaali. Suo-
messa vanhan N6o-jdrjestelmén vertaustaso on periaatteessa Helsingin
sataman keskimerenpinta vuoden 1960 alussa, ja siksi jdrjestelmaa
kutsutaankin nimelld N6o. Kuitenkin vertaustason tarkka realisaatio
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on erikoispilari Helsingin observatorion puutarhassa Kaivopuistossa'.
Suomen uuden korkeusjdrjestelmédn nimi on N200o, ja sen vertausta-
son realisaatio on pilari Metsdhovin tutkimusasemalla. Kdytdnnossa
N2ooo-jdrjestelmédn korkeudet ovat noin desimetrin tarkkuustasolla
Amsterdamin NAP-datumin korkeuksia.

Muilla mailla on omat, samanlaiset, korkeusvertaus- eli datumipis-
teet: Vendjalla Kronstadt, Lansi-Euroopassa laajasti kdytetty Amsterdam
NAP, Eteld-Euroopassa vanha itdvaltalais-unkarilainen satamakaupunki
Trieste, Pohjois-Amerikassa NAVD88 (North American Vertical Datum
1988) datumipisteend Pointe-au-Pére* Rimouskissa Quebecissd Kana-
dassa, ja niin edelleen.

7.2 Ortometriset korkeudet

Kun halutaan luoda korkeusjdrjestelmad, olisi kaikkein yksinkertaisinta
kayttdd alkuperdisid geopotentiaalieroja merenpinnasta ja ylld méari-
tettyjd geopotentiaalilukuja C = — (W — W, ) suoraan korkeuslukuina.
Psykologisesti ja kdytinnoén kannalta se on kuitenkin hankalaa: ihmiset
haluavat, ettd korkeudet ovat metreissa.

Geopotentiaaliluvuilla on selvid etuja: ne edustavat energian mdirid,
joka tarvitaan yhden massayksikén koemassan siirtdmiseksi pisteeseen
vertaustasosta. Neste — merivesi, ilma tai geologisella aikaskaalalla
jopa peruskallio — virtaa aina alaspdin ja etsiytyy minimienergiatilaan.

Suomessa, kuten monessa muussa maassa, kdytossa ovat olleet jo pit-
kédan ortometriset korkeudet. Ne ovat fysikaalisesti madritettyjd korkeuksia

*Kuitenkin pilariin kaiverrettu korkeusarvo on vieldkin vanhemman jarjestelman NN
eikd N6o:n vertauskorkeus. Taméan patsaan oikea N6o-vertausarvo, 30,513 76 m, 16ytyy
julkaisusta Kdaridinen (1966), sivu 49.

*Rimouskin kaupunginosa Pointe-au-Pére nimettiin jesuiittapappi Isa Henri Nouvelin
(1621?—1701?) mukaan. Han palveli 40 vuotta Uuden Ranskan alkuperdisvdeston
parissa. Pointe-au-Pére tunnetaan myos RMS Empress of Ireland -laivan haaksirikon
paikkana vuonna 1914. Haverissa menehtyi yli tuhat matkustajaa.
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Kuva 7.2. Korkeuden péaékiintopiste Helsingin observatorion puutarhassa

Kaivopuistossa, Kadridinen (1966). Teksti:

Suomen Utgdngspunkt for
tarkka- precisionsnivellementet
vaakituksen i Finland
piadkiintopiste 30,4652 m dfver noll

30,4652 m yli nollan
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Kuva 7.3. Vaaitut korkeudet ja geopotentiaaliluvut. Korkeus, joka saadaan

summaamalla vaaitut korkeuserot, Zf:] AHyj, ei ole oikea korkeus
geoidista eli Y 3_, AH! laskettuna luotiviivaa pitkin.
Geopotentiaalin tasapotentiaalipinnat eivit ole yhdensuuntaisia: siksi
matka Maan pintaa pitkin voi hyvinkin viedd ”ylospdin”, siis kasva-
viin korkeuksiin geoidista, vaikka geopotentiaaliluku vdhenee. Vesi
voi siis “virrata ylospdin”.

Painovoimavektori g on kaikkialla kohtisuora tasapotentiaali-
pintoihin ndhden, ja sen pituus on kdédntden verrannollinen pintojen

viliseen etdisyyteen.

“keskimerenpinnan” eli geoidin yldpuolella. Katso kuva 7.3.

Klassinen geoidi on méaritelménsd mukaan

”Se Maan painovoimakentin tasapotentiaalipinta, joka yhtyy keskimiid-
rin parhaiten keskimerenpintaan.”

Pisteen P ortometrinen korkeus H on mddéritelty korkeudeksi, joka
saadaan mittaamalla pisteen P etdisyys geoidista luotiviivaa pitkin.

Tama on hyvin fysikaalinen méaritelmd, muttei kovin operationaali-
nen, koska emme (yleensd) pddse mittaamaan luotiviivaa pitkin maan-

kuoren sisélld eikd geoidi edes ndy sielld. Siksi ortometrisia korkeuksia
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Eteld

Pohjoinen x
= l Piijanne: C = — (W — W,) = 76,9 GPU 9E

gr

Piijinne

Geoidi: W = W,

Kuva 7.4. Ortometrisissa korkeuksissa vesi voi joskus virrata “ylospdin”. Vaik-
ka Pdijanteen pohjois- ja eteldpdat ovat samalla geopotentiaalita-
solla — 76,9 geopotentiaaliyksikkod keskimerenpinnan potentiaa-
lia alempana — eteldpddn ortometrinen korkeus Hg on suurempi
kuin pohjoispddn Hp, koska paikallinen painovoima g on pohjoises-
sa vahvempi kuin eteldssd. Korkeusero on Pédijanteen tapauksessa
8 mm (Jaakko Mdkinen, henkilokohtainen viesti). Normaalipaino-
voimakentdn avulla laskettuna saadaan 6 mm. Loput 2 mm tulevat
painovoima-anomalioiden erosta jirven pohjois- ja eteldpdan valilla.

lasketaan geopotentiaaliluvuista: jos pisteen P geopotentiaaliluku on
Cp, lasketaan ortometrinen korkeus yhtdlolla

jossa g, keskimddrdinen painovoima luotiviivaa pitkin, on

—__ 1 H
9=11), 9194z,
ja z on luotiviivaa pitkin mitattu etdisyys geoidista. Koska g:n yht&lo
sisdltdd H:n, saadaan ratkaisu iteratiivisesti kdyttdmalld ensin karkeaa
H:n arvoa. Iterointi suppenee nopeasti.
Tulemme nidkemadén, ettd tarkkojen ortometristen korkeuksien méaa-
rittdminen on hankalaa, etenkin vuoristossa.

7-3 Normaalikorkeudet

Suomessa kdytetddn tdlla hetkelld N2ooo-korkeusjdrjestelmdn mukaisia
normaalikorkeuksia. Kuten ortometriset korkeudet, ne ovat korkeuksia
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keskimerenpinnasta. Keskimerenpinnan matemaattinen esitys on tdssa
tapauksessa kvasigeoidi. Merialueilla kvasigeoidi on identtinen geoidin
kanssa. Manneralueilla se eroaa hieman geoidista ja vuoristossa ero voi
olla huomattava.

7.3.1 Molodenskin teoria

Maineikas teoreetikko M. S. Molodenski (kuva 7.5) kehitti teorian, jossa
pisteen korkeus “keskimerenpinnasta” méaritellddn seuraavan yhtdlon
mukaan:

el C

You'’

jossa Yon on keskimddrdinen normaalipainovoima laskettuna nolla-

tason (vertausellipsoidin) ja H*:n valilla ellipsoidista normaalia pitkin.
Laskentatapa on siis sama kuin ortometristen korkeuksien tapauksessa,
mutta kaytetadn normaalipainovoimakenttdi todellisen painovoimakentan
sijaan.

Korkeudet “merenpinnasta” annetaan kdytinnon syistd metreina.
Suurissa mantereen kokoisissa kolmioverkoissa korkeudet halutaan
antaa laskennallisesta vertausellipsoidista metreind, ja siksi my6s kor-
keuksien merenpinnasta on oltava metreina.

Molodenski ehdotti, ettd geoidin sijaan kéytettdisiin korkeusanomalioita,

joiden médritelma on

def T
¢= Yrn’ (7.1)

jossa nyt Y, on keskiméardinen normaalipainovoima topografian kor-

keudella. Tarkemmin ilmaistuna se on normaalipainovoiman keskiarvo
ellipsoidista normaalia pitkin vélilld z € [H*, h], jossa H* on pisteen
normaalikorkeus ja h pisteen korkeus vertausellipsoidista. Parametri
z on etdisyys vertausellipsoidista laskettuna ellipsoidista normaalia
pitkin. T on pisteen héiriopotentiaali.

Néiden oletusten perusteella Molodenski néytti, ettd

H*+ {=h.
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Kuva 7.5. Mihail Sergejevits Molodenski (1909-1991), ldhde tuntematon. Lisa-
kuvia ja taustainformaatiota Brovar ym. (2000).

Tama yhtélo on hyvin samanlainen kuin ortometristen korkeuksien ja
geoidin korkeuksien vastaava yhtilo

H+ N =h.

Muutenkin (, korkeusanomalia eli my6s “kvasigeoidin korkeus”, on hyvin
lahelld N:44, ja vastaavasti H* on ldhelld H:ta.

7.3.2 Molodenskin oivallus

Molodenskin koulukunnan oivallus oli, ettd koska normaalipainovoima
on luotiviivaa pitkin hyvin lahelld lineaarista paikan funktiota, voitaisiin
madritelld korkeustyppi, joka olisi suoraan laskettavissa geopotentiaali-
luvuista ja joka olisi yhteensopiva samalla tavalla méaériteltyjen niin
sanottujen korkeusanomalioiden seké vertausellipsoidista laskettujen
geometristen korkeuksien h kanssa.

Geometrinen korkeus h vertausellipsoidista voidaan kytked normaali-
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painovoimakentdn potentiaaliin U seuraavan integraaliyhtdlon kautta:

h
U="u,— jo v(z) dz.

Tassd U on normaalipotentiaali ja y normaalipainovoima. U:n erds
tasapotentiaalipinta U = U, on samalla vertausellipsoidi. Muuttuja z
on matka ellipsoidista sen paikallista normaalia pitkin?.

Madérittelemallad T~
def
Yon =1 Jo v(z) dz (7:2)
saadaan
h=_ Yo
Yon
Kayttamalla W = U + T ja jakamalla suureella Yo, saadaan
W-W,_ T
Yon Yon

olettaen, ettd W, = U, vertausellipsoidin pinnan normaalipotentiaali.

Seuraavaksi voitaisiin maaritella

Ht 2 W Wo
Yon
uudeksi korkeustyypiksi ja
Nt ZhoH' =
Yon

vastaavaksi uudeksi geoidikorkeustyypiksi. Tdssd on kuitenkin se kau-
neusvirhe, ettd jako suoritetaan normaalipainovoiman keskiarvolla
laskettuna tasojen 0 ja h valillda. Tdiméa suure ei ole operationaalinen
ilman keinoa maarittdd korkeus h ellipsoidista.

Siksi tehdddn seuraava parannus, joka hyodyntéa sitd seikkaa, ettd
Y(z) on ldhes lineaarinen funktio. Timéa merkitsee, ettd pystyderivaatta
%y on ldhes vakio kyseessa olevalla korkeusvalilla.

3Téssd jatetddn huomiotta, ettd normaalipainovoimavektori y(z) ei ole arvoille z # 0
tarkasti samansuuntainen ellipsoidin normaalin kanssa: normaalipainovoimakentin
kenttdviivojen eli normaaliluotiviivojen kaarevuus, osio 4.3.2.
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Maéaéritellaan yhtalon 7.2 lisdksi:

def 1 (H° def 1 (M
You = 7 jo Y(2) dz, Yrn = N7 )i v(z) dz.
Nyt
. d S N+
Yor = Yon — %N+—Z ~ Yon (1 + T) y (7-3)
d (. H*
YHh = Yoh + %H+d—z ~ Yon (1 - T) . (7-4)

R on Maan séde palloapproksimaatiossa: =y ~ <=y ~ — 2Y/R.

Seuraavaksi hyodynnetddan myos, ettd seka N™ /R etta H' /R ovat
< 1, siis

+\ ! + +\ ! +
(4) =08) () ()

ja yhtdloiden 7.3, 7.4 ja ylld olevien suureiden H* ja N* méaritelmien
avulla,

def T T  Yon _ n+ HTY) s  NFHT
C_YHh_YOh YHhNN (]—'_R =N"+ R
pordef _W-_Wo _ W-_Wo Yon e (1_N°
YoH Yon YoH R

NTH*

— Y4+
=H R

Koska jo muutenkin pienet korjaustermit N"H" /R kumoutuvat, saa-
daan lopuksi
H*+(=H"+N*"=h. (7.5)

Suure Yon, ja siis myds normaalikorkeus H*, voidaan, toisin kuin Yoy,
laskea kayttamalld ainoastaan (vesi- tai trigonometrisesta) vaaituksesta
saatuja tietoja, ilman ettd tarvitsee tuntea korkeutta vertausellipsoidista
h. Tuo tieto edellyttdisi paikallisen geoidin tuntemista.
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Kuva 7.6. Molodenskin oivalluksen todistuksen graafinen aasinsilta. Siniset
ja punaiset alueet, jotka ovat yhtd suuria, edustavat korjaustermeja,
jotka muuntavat suureen N suureeksi ¢ ja suureen H* suureeksi
H*. Siniset ja punaiset nuolet edustavat muunnosprosessia. Pallerot
esittavat funktion y(z) keskiarvostamisvalien keskipisteet.

Tamad oli Molodenskin oivallus (Molodenski ym., 1962) jo vuonna
1945, kauan ennen globaalin paikannusjarjestelmén GPS:n tai maailman-
laajuisen geosentrisen vertausellipsoidin olemassaoloa. Silloin lasket-
tiin mannerlaajuiset kolmioverkot, kuten Neuvostoliiton kolmioverkko,
omilla alueellisesti méaéritetyilld vertausellipsoideillaan.

Korjaustermin N"H™ /R suuruus on, kun globaalit geoidin korkeu-
det ovat maksimissaan 110 m, 17 mm jokaista maastokorkeuskilometria
kohti. Tamén termin kdyton jdlkeen jaavét virheet ovat mikroskooppi-
sen pienid, koska normaalipainovoima on todellisesta painovoimasta
poiketen erittiin lineaarinen luotiviivaa pitkin — kuten yhtéloissd 7.3 ja
7.4 jo oletettiin.

Kuva 7.6 yrittdd visualisoida yhtdldiden johtamista.
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Topografia

Telluroidi

Geoidi Vertausellipsoidi Kvasigeoidi

Kuva 7.7. Geoidi, kvasigeoidi, telluroidi ja topografia. Huomaa korrelaatio
kvasigeoidin ja topografian vililla. Kuvattu on alue, jossa N > 0.
Geoidin ja kvasigeoidin vélinen etdisyys on liioiteltu.

7.3.3 Normaalikorkeus ja korkeusanomalia
Normaalikorkeus

g = _w (7.6)

<2
<2

jossa (rekursiivinen méaritelma!)

- 1
Y =YoH = & j v(z) dz.

Korkeusanomalia
_ w-—-u _ T
YHh YHh

G

)

jossa
h

Yhn = % H*y(z) dz.
Korkeusanomalia ¢, joka on muuten samanlainen suure kuin
geoidin korkeus N, sijoittuu fopografian eikd merenpinnan tasoon.
Pintaa, joka muodostuu pisteistd, jotka ovat matkan H* verran
vertausellipsoidin yldpuolella ja siis etdisyyden ( verran topo-
grafian ala- tai etdisyyden —( verran sen yldpuolella, kutsutaan
telluroidiksi. Se on topografisen pinnan eras kuvaus: pisteiden Q
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joukko, joiden normaalipotentiaali Ug on sama kuin topografian
vastaavan pisteen P oikea geopotentiaali Wp. Katso kuva 5.4.
Usein myonnytyksend vanhoihin tapoihin konstruoidaan pinta,
joka on etdisyyden ( verran vertausellipsoidin yla- tai etdisyyden
—( verran sen alapuolella. Tatd pintaa kutsutaan kvasigeoidiksi.
Siltd puuttuu fysikaalinen merkitys: se ei ole tasapotentiaalipinta,
vaikka merelld se yhtyy geoidiin. Sen lyhytaaltoiset muodot, toisin
kuin geoidin, korreloivat topografian lyhytaaltoisten muotojen
kanssa.

Korkeus ellipsoidista (oletus Uy = W)

jossa

Yhteys kolmen suureen vililld on
h=H*+C.

Kaikessa kolmessa tapauksessa suure méaaritelldan jakamalla potentiaali-
ero jonkinlaisella “keskiméaardiselld normaalipainovoimalla”, laskettuna
sopivaa paikallisen luotiviivan segmenttid pitkin. Korkeusanomalian
¢ tapauksessa kdytetdan luotiviivan patkaa korkealla topografian pinnan
lihelld tason H* (telluroidin) ja tason h (topografian) valilla.

7-4 Erotus geoidin korkeuden ja korkeusanomalian

valilla

Normaalikorkeudet ovat hyvin operationaalisia. Niita kdytetdan aina
“kvasigeoidin” korkeuksien — oikeammin korkeusanomalioiden — ¢
kanssa. Sen sijaan ortometrisia korkeuksia — esimerkiksi Helmertin
korkeuksia H — kédytetddn aina geoidin korkeuksien N kanssa. Molem-
pien, Hja N, laskemiseksi tarvitaan topografian massatiheys p, jonka
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oletetaan usein olevan standardi vakioarvo (2670ks/m*) sekd paikallinen

painovoiman pystygradientti, joksi yleensé oletetaan normaalipainovoi-

man pystygradientti (—0,3084 mGal/m).

Erotus korkeusanomalian ja geoidikorkeuden vililld lasketaan seu-

raavasti.

1)

Ensin lasketaan erotus kvasigeoidin ja “ilmageoidin” valilla. II-
mageoidi on harmonisesti alaspdin jatketun ulkoisen potentiaalin
tasapotentiaalipinta. Jos Tga on ulkoisen, harmonisesti alaspdin
jatketun kentdn héiridpotentiaali, on sen ero topografian ja me-

renpinnan tasojen valilla:

H dTpa(z
Tea(H) — Tra(0) = fo ffz( )dZ ~ —AgraH, (7.7)

ja kdyttamalld Brunsin yhtdlod kahdesti, ¢ = T(H) /y = Tra(H) /y,
(korkeusanomalia eli kvasigeoidin korkeus) ja Nga = Tra(0) /y
("ilmageoidin” korkeus, FA = Free Air), saadaan*

AgpaH
C— Npa =~ _g%. (7.8)

Nain on saatu erotus korkeusanomalioiden ja ilmageoidin kor-
keuksien vélilld. Jad méadritettdviksi ero ilmageoidin ja geoidin
valissa.
Approksimoidaan topografia Bouguer-laatalla. Silloin
o Ilmageoidin Npa tapauksessa tdmén laatan paksuus on pis-
teen P korkeus H, sen takia, ettd ilmageoidi perustuu alas-
péin jatkettuun ulkoiseen kenttddn, mikd merkitsee, ettd myos
Bouguer-laatan vetovoiman pisteessé P on jatkettava alaspdin
eli se on otettava huomioon kokonaan.
Koska laatan pintamassatiheys on Hp, on sen oletettu vetovoi-
ma kaikkialla pisteen P luotiviivalla:

2ntGp H. (7.9)

4Téssd tehtiin approksimaatio, ettd y on sama topografian ja merenpinnan tasolla.
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o Geoidikorkeuden N = T(0) /3 tapauksessa meidan on oltava
tysikaalisesti realistisia: mielivaltaisessa pisteen P luotiviivan
paikassa z Bouguer-laatasta osa on paikan alapuolella ja osa
sen yldpuolella. Vetovoima on silloin vain

2nGpz —2nGp (H—2z) = 2nGp (2z —H). (7.10)

Integroimalla yhtédldiden 7.9 ja 7.10 vélinen erotus yhtdlén 7.7
tapaan saadaan

T(0) — Tea (0) = 271G fOH((z.z “H)—H)dz=

— 2nGp [22 — 2Hz]?~, = —2nGpH? = —AgH,

jossa Ag on Bouguer-laatan vetovoima, jos laatan paksuus on H.
Jakamalla yhtdlo normaalipainovoimalla saadaan

AgH
Y

Vahentdmalld tdma viimeinen tulos yhtédlostd 7.8 saadaan

. (_AQFA + AB) H . AgBH
C—N= Y N Y

Katso my6s Heiskanen ja Moritz (1967), sivut 327-328. Koska vuo-

N —Npy =—

(7.11)

ristossa Bouguer-anomalia Agg on vahvasti negatiivinen, seuraa etta
kvasigeoidi on sielld aina geoidin yldpuolella: likimdarin yhtdlod 6.2

kayttden:

0,1119mGal/m 7.1 142

Eli jos H on yksikdssd km ja ¢ — N yksikossd m:

(— N~

C—N = 0,Tm/m> - H?.

7-5 Erotus ortometristen korkeuksien ja

normaalikorkeuksien valilla

Geoidi on ortometristen korkeuksien ldhtétaso. Siksi voimme kirjoittaa

h=H+N,
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jossa h on korkeus vertausellipsoidista ja H on ortometrinen korkeus.

Toisaalta voimme palauttaa muistiin yht&lo 7.5:
h=H"+(,

jossa ¢ on korkeusanomalia ja H* on normaalikorkeus.
Saadaan yksinkertaisesti

_AgBH

H-H = (- N=-=22,

(7.12)

kayttden yhtdlod 7.11.

7.6  Ortometristen korkeuksien tarkka laskenta

Ortometriset korkeudet ovat perinteinen tapa ilmaista korkeutta meren-
pinnan yldpuolella. Ortometriset korkeudet ovat korkeuksia todellisen
geoidin — Maan sisill4 sijaitsevan ja keskimerenpinnan kanssa keski-
madrin samalla tasolla olevan ekivipotentiaalipinnan — yldpuolella.

Voidaan kirjoittaa
H
W =W, — | glz) dz,

jossa g on todellinen painovoima topografisten massojen sisalla. Tastd
saadaan

c_-—W-W,)
9 g
jossa keskimddrdinen painovoima luotiviivaa pitkin on

_ 1 (H
g= ﬁfo g(z) dz.

Maééritelmd on rekursiivinen: H esiintyy sekd vasemmalla ettd oikealla

H =

)

puolella. Tdamé ei ole ongelma: sekd H ettd g saadaan iteroimalla.
Suppeneminen on nopea.

Kéaytdnnossd ortometrinen korkeus lasketaan likimééardiselld kaavalla.
Suomessa on pitkdan kaytetty Helmertin ortometrisia korkeuksia, jossa mi-
tattu painovoima Maan pinnalla, g(H), ekstrapoloidaan alaspéin kayt-
tamalld arvioitua kalliomassojen sisdistd painovoiman pystygradienttia.
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Oletetaan, ettd sen kallion ulkopuolinen standardiarvo, —0,3084 mGal/m
(ilmagradientti), kasvaa mdaralld 0,2238 mGal/, (kaksinkertainen stan-
darditiheyden 2670k8/m* Bouguer-laatan efekti): lopputulos on kallion
sisdinen kokonaispainovoimagradientti, —0,0846mGal/m_

Tata kutsutaan PreyS-reduktioksi. Lopputuloksena saadaan seuraavat
kaavat, joissa kerroin on puolet painovoimagradientista, siis keskimaarai-
nen painovoima luotiviivaa pitkin on sama kuin luotiviivan keskipisteen

painovoima:
g = g(H) — 0,0846mGal/m (—3H) = g(H) + 0,0423mGal/m - H,
siis

S ¢ (7.13)
g g(H)+0,0423mGal/p, . H’ '

jossa C on geopotentiaaliluku (potentiaaliero keskimerenpinnan kanssa)
ja g(H) painovoima Maan pinnalla. Katso myos Heiskanen ja Moritz
(1967) sivut 163-167. Termi 0,0423 mGal/m, - H on tavallisesti paljon pienempi
kuin g(H), joka on noin 9,81m/> = 981 000 mGal! Siis iterointi, jossa
nimittdjd lasketaan ensin karkean H-arvon avulla, suppenee varsin
nopeasti.

Helmertin korkeuksien kdytto ortometristen korkeuksien approksi-
maationa on epétarkka seuraavista syista:

o Oletus, ettd painovoima muuttuu lineaarisesti luotiviivaa pitkin,
ei pidd paikkaansa, erityisesti ympéardivan maaston vaikutuksen
takia. Tarkassa ortometristen korkeuksien laskennassa tdimén vai-
kutuksen laskemiseen tulisi kdyttda riittdvdada maaraa tukipisteita
luotiviivaa pitkin.

o Oletus, ettd painovoiman ilman pystygradientti on kaikkialla sama,
—0,3084 mGal/n . Todellinen gradientti voi vaihdella hyvinkin +10 %
taméan arvon ymparilla.

5Adalbert Prey (1873-1949) oli itdvaltalainen téhtitieteilijd ja geodeetti sekd oppi-
kirjojen laatija.
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o Oletus, ettd kallion tiheys p = 2670%8/m?. Tiheyden todellinen arvo
voi vaihdella hyvinkin £10 % tai enemmaén tdmé&n oletusarvon
ymparilla.

Ensimmadinen approksimaatio, maastoefektin huomiotta jattdminen,
voidaan korjata kdyttaméalld Niethammerin® menetelméad, katso Heis-
kanen ja Moritz (1967) sivu 167. Se edellyttdd, ettd maasto otetaan
vastaavasti huomioon my6s geoidilaskussa.

Kolmas approksimaatio, tiheysongelma, voidaan poistaa sopimalla,
ettd my0s vastaavassa geoidin madrityksessd kdytetdaan vakiotiheyttd p =
2670ke/m?. Saatu pinta ei silloin ole endé oikea geoidi, vaan “valegeoidi”,
jolle on vaikea keksid sopivaa nimed.

Toinen approksimaatio voitaisiin poistaa kdyttamalla todellista paino-
voiman ilmagradienttia standardiarvon sijasta. Gradientin laskemiseen
tarjoutuu osiossa 8.6 esitetty integraaliyhtalo.

Ortometristen korkeuksien tarkka laskenta on siis tyolédstd, yhta
tyolasta kuin geoidin tarkka maédaritys ja samoista syistd. Onneksi ei-
vuoristoisissa maissa Helmertin korkeudet ovat riittdvan hyvid. Suo-
messa niitd laskettiin aikoinaan jopa kayttamalld p-arvoina “todellisia”
maankuoren tiheyksid geologisen kartan mukaan (Kaaridinen, 1966,
sivu 32).

7-7 Normaalikorkeuksien tarkka laskenta
Tahan kdytetddn yhtdloa 7.6:

E = _w) (7.6)

jossa normaalipainovoiman keskiarvo luotiviivaa pitkin on

I
Y =Yon = 1 fo v(z) dz.

®Theodor Niethammer (1876-1947) oli sveitsildinen tahtitieteilijd ja geodeetti, joka loi
Sveitsin gravimetrisen runkoverkon.
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Koska normaalipainovoima on varsin tarkasti lineaarinen z:n funktio,

voimme Kkirjoittaa

= _ IR LS a‘Y

Y=Yo+3H 5,
jossa a%y = —0,3084mGal/m ja yo () def (@, 0) on normaalipainovoima
laskettuna nollakorkeudella. Saadaan

Y =Yo— 0)]542mGal/m -H*.

Ratkaisu saadaan taas iteratiivisesti:
H C C

T ¥ T Yo —0,1542mGal /g - H¥ (7:14)

jossa vo(¢@) on laskettavissa eksaktisti, kun paikallinen leveysaste
@ on tiedossa. H* on yhtdlén molemmilla puolilla, mutta iteratiivi-
nen ratkaisu suppenee nopeasti, koska nimittdjan ensimmaéinen ter-
mi Yo, noin 9,81m/2 = 981 000 mGal, on huomattavasti toista termia
0,1542mGal/y - H* suurempi.

Normaalikorkeuksien laskenta, toisin kuin ortometristen korkeuksien
laskenta, ei ole altis maankuoren tiheyshypoteeseille. Se on kuitenkin
riippuvainen valitusta normaalipainovoimakentésta eli vertausellipsoi-
dista.

7.8 Korkeuksien laskentaesimerkki
Pisteelld P on potentiaaliero keskimerenpinnan kanssa C = 5000m?/s2.
Paikallinen painovoima on g = 9,820 000m/s>.

Normaalipainovoima laskettuna nollakorkeudella pisteen P alapuo-
lella on yo = 9,821 500m/s2.

Kysymyksia
1) Laske pisteen P ortometrinen korkeus.
2) Laske pisteen P ilma-anomalia Agga.

3) Laske pisteen P Bouguer-anomalia (ilman maastokorjausta)
AgB.
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4) Laske pisteen P normaalikorkeus.

5) Jos geoidin korkeus pisteen P kohdalla on N = 25,000 m,
paljonko on korkeusanomalia ("kvasigeoidin korkeus”) ¢?

Vastauksia
1) Ensimmadinen yritys:

o C 5000
=9 -9%

Toinen yritys (yhtalo 7.13):

m = 519,165 m.

B 5000 /52 B
= 9,820000m/ +0,0423- 1055 2-519,165m
= 509,154 m.

H(U

Sen jdlkeen millimetrit eivdt endd muutu.

2) Ilma-anomalia on

AgFA = 9,820 OOOm/s,2 —
— (9,821 500 — 0,3084 - 10~ ~509,154) m/2 —
= 7,023 mGal.
3) Bouguer-anomalia on (yht&lo 6.2):
AgB = AQFA — 0,1 1 ]QmGal/m -H= —49,951 mGal.

4) Ensimmdinen yritys on taas

C

«0) _ € _
H*Y = Yo 509,087 m.
Toinen, yhtalo 7.14:
L) 5000m° /2 B
~9,821500m/s2 — 0,1542 - 10~°572-509,087m

— 509,128 m,

my0s lopullinen millimetritasolla.
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5) Erotuskaava 7.12 antaa

AgBH
Y

My®os (tarkistus) H — H* = 0,026 m. Eli

{—N=-— = 0,026 m.

¢ =N +0,026m = 25,026 m.

7.9 Ortometrinen korjaus ja normaalikorjaus

Kéaytannon ortometristen korkeuksien laskennassa lasketaan usein
yhteen ensin vaaituksella mitatut korkeuserot (”lattalukemien erot™)
AH pisteiden A ja B valilla alustavaksi eli raa’aksi korkeuseroksi

B—1 B
Z AHj 41 oo Z AH,
i—A A

vaaituslinja

jonka jdlkeen menetelmdn epdeksaktisuus otetaan huomioon sovelta-
malla ”ortometrista korjausta” (OC):

B
Hp :HA+ZAH+OCAB.
A

Tosiasia, ettd kahden pisteen A ja B vilinen ortometristen korkeuksien
ero ei ole sama kuin vaaittujen korkeuserojen summa, on seurausta siitd,
ettd painovoima ei ole kaikkialla sama.

Jos Ca, Cg ja AC ovat geopotentiaaliluvut pisteissd A ja B ja geopo-
tentiaalierot vaaituslinjaa pitkin, patee Cg — Ca — ZE\ AC =0, koska
geopotentiaali on konservatiivinen kenttd. Jakaminen vakiolla v, antaa

Cs _Ca_ §y AC_,
Yo Yo — Yo

Toisaalta

@)

B B
C A
OCAB=HB—HA—§ AH:g_B_g_A_Z gC)
A B A A
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jossa g ja gg ovat painovoiman keskiarvoja pisteiden A ja B luotiviivoja
pitkin ja g on painovoima vaaituslinjaa pitkin. Tédssd lausekkeessa
verrataan Y_5 AH, naiivisti laskettu vaaittujen korkeuserojen summa,
ja ortometristen korkeuksien erotus linjan pddtepisteiden A ja B valilld

laskettuna maaritelman mukaan.

Vdhennys antaa

B
o= (S _Ce)_(Ca_Ca)_y (AC_AC
OCap — 0= (gB VO) (g/\ ,YO) ;( g YO))

jossa
Ce Cp_ (Yo—98\Cs _ (Yo—0s H
§B Yo Yo §B Y ’
Ca_Ca_ (Yo—=9a)\y
QA Yo Yo As
AC _AC _ (yo—g
g Yo _< Yo )AH’

tuloksena ortometrinen korjaus

oo =3 (5530 ans (B2 e (B2 . 25
A

identtinen Heiskasen ja Moritzin (1967) yhtdlon 4-33 kanssa.

Vakion vy, valinta on mielivaltainen. On viisasta valita arvo ldheltd kes-
kim&ardistd painovoimaa vaaituslinjan AB alueella, jolloin laskennassa
liikkkuvat luvut jaavat pieniksi.

Vastaavasti voidaan laskea my6s normaalikorjaus (NC) normaalikor-
keuksien laskennan yhteydessd. Lahdetdan yhtalosta

B B
X « Cg Ca AC
NCAB:HB_HA_ZAH:______Z_) (716)
~ Y8  Ya ~ g9

josta, samalla tavalla kuin yll4, saa vihentamalla:

B _ —
NCap = Z (9 ;OY()) AH + (YAYO YO) H*A o (YB’YO’YO) HE- (717)
A
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Identtinen ensimmainen termi yhtdldissd 7.15 ja 7.17 polveutuu termista

B B

AC
> =2 AH,
A A

korkeuserojen AH naiivi summaus sekd ortometrisen korjauksen etta
normaalikorjauksen tapauksessa, mihin tdimé& yleinen korjauskasite
perustuu.

Yhtdlo 7.16 antaa

B
Hy =Hj + ) AH+ NCag.
A

Erilaista ortometrisen korjauksen ja normaalikorjauksen vililld on
korkeuksien méaritelma: H:n sijasta H* eli jaetaan normaalipainovoiman
keskiarvolla luotiviivaa pitkin y eikd todellisen painovoiman vastaavalla
keskiarvolla g.

Sekd ortometrinen korjaus 7.15 ettd normaalikorjaus 7.17 lasketaan
kiintopistevali kerrallaan: on tunnettava vaaitun korkeuseron AH lisdksi
paikallinen painovoima g vaaituslinjaa pitkin. Lisdksi on tunnettava
g(H) tai y(0) molemmissa pééatepisteissd, jotta voidaan laskea keskipai-
novoima g taiy pédatepisteiden luotiviivoja pitkin. Kaikki tdiméa onnistuu
hyvin ylld mainittujen yhtdloiden avulla. Muista, ettd painovoima g
vaaituslinjaa pitkin tarvitaan myos, jos halutaan redukoida yksittdiset
vaaitut korkeuserot AH geopotentiaalilukueroiksi AC. Tama reduk-
tio on osana sekd ortometrisen korjauksen ettd normaalikorjauksen
laskentaa.

7-10 Tulevaisuuden nakyma: suhteellisuusteoreettinen
vaaitus
Yleisen suhteellisuusteorian mukaan kello kulkee sitd hitaammin, mitd

syvemmalld se on massojen potentiaalikuopan sisilld. Tama néakyy hel-
poiten tutkimalla pallosymmetrisen kentdn Schwarzschildin” metriikka:
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c?dt? =
2GM 2GM !
= (1-220 ) ea = (1= 2220 dr? =12 (dg? + cos” § dN?) =
—1
= (1-20)2ae— (1-27) ar? — 2 (d9? + cos”  dN2),

pallokoordinaateissa plus aika (¢, A, 1, ). Tassd ndkyy, miten ominais-
ajan T kulku hidastuu stationaarisen koordinaattiajan t (aika ddrettomyy-
dessd v — o0) verrattuna, kun geopotentiaali W kasvaa ldhestyttdessa
massaa. Hidastussuhde on

ot _ W W

ot c? c?’

Nyt ¢?, valon nopeuden nelis, on tavallisissa ihmisten yksikoissd val-
tavan iso luku: 107 m*/2. Tomé& merkitsee, ettd potentiaalieron 1m%/s2 —
miké vastaa korkeuseroa 10 cm — mittaamiseksi timdn menetelméan
avulla mittaustarkkuuden olisi oltava 1: 10'7. Perinteisemmit, mikro-
aaltoalueella toimivat atomikellot pystyvit tarkkuuksiin 10~ '2-10~"*
(Vermeer, 1983a). Uusille optisille kelloille tavoitteen pitdisi olla saavu-
tettavissa, ja relativistinen vaaitus voisi toteutua.

Kello toimii silléd tavalla, ettd atomien ddrimmaiselld jadhdytykselld
aikaansaama niin sanottu Bosen ja Einsteinin kondensaatti on vangittuna
kuuden lasersdteen muodostamassa valohilassa: seisovien aaltojen
sdhkdmagneettisessa kuviossa. Kellovdrdhtelylld on eri taajuus. Bosen ja
Einsteinin kondensaatille ominaista on, ettd kaikki atomit ovat tarkasti
samassa kvanttitilassa — kuten fotonit toimivassa laserissa: niiden
aineaallot ovat koherentteja. Tavallaan kaikki atomit toimivat yhdessa
yhtend virtuaalisena atomina. Kondensaatti voi koostua miljoonista

atomeista.

7Karl Schwarzschild (1873-1916) oli saksalaisfyysikko, joka johti vuonna 1915 ase-
palveluksessa Vendjan rintamalla ollessaan ensimmaisend Albert Einsteinin yleisen
suhteellisuusteorian kenttdyhtdlon suljetun pallosymmetrisen, ei-pyorivan ratkaisun,
Schwarzschildin metriikan.
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Braunschweig

100 km

Garching

Kuva 7.8. Valohilakello: tulevaisuuden ultratarkka atomikello toimii optisella
alueella. Oikealla, julkaisun Predehl ym. (2012) kokeen reitti.

Valitettavasti ei riitd, ettd aikaa osataan mitata darimmaisen tarkasti
vain yhdessa laboratoriossa. On osattava verrata eri atomikellojen tiki-
tysnopeuksia yli maantieteellisten etdisyyksien. Tahdnkin on 16ytynyt
ratkaisu: olemassa olevat valokuitukaapelit, joita Internet ja puhelinlii-
kenne kayttavat jo maailmanlaajuisesti, soveltuvat tihdn pienin muu-
toksin. Muutokset koskevat kaapeleissa olevia vilivahvistimia, jotka
on sijoitettu noin 100 km:n vélein. Vahvistimet pitdd korvata modifioi-
duilla laitteilla (Predehl ym., 2012). Tdlld huipputeknologian ja -tieteen
ratkaisulla voidaan korvata sekd perinteisid tarkkavaaitusverkkoja etta
GNSs-teknologiaan ja geoidimééritykseen perustuvia korkeusjdrjestel-
mid.

135



186 7 KORKEUSJARJESTELMAT

Olenko ymmartanyt taman?
1) Miksi suoraan vaaituista korkeuseroista lasketut korkeudet eivat
kelpaa korkeusjirjestelmdksi?
2) Mikd on geopotentiaaliluku?
3) Mitkéd ovat ortometrisia korkeuksia?
4) Mitka ovat normaalikorkeuksia?
5) Miké on klassinen geoidin méaritelma?
6) Mika on korkeusanomalia?
7) Mika on kvasigeoidi?

8) Miksi vesi voi joskus virrata “vddrddn” suuntaan, niin sanotusti

suurempaan korkeuteen?
9) Mika on telluroidi?

10) Mitkd ovat ortometrinen korjaus ja normaalikorjaus?

Harjoitus 7—1: Ortometristen korkeuksien laskenta

Pisteen P potentiaaliero merenpinnan kanssa, — (W — W), on 1000 m? /g2,
Painovoima pisteessd on gp = 9,820 000m/s2. Laske pisteen ortometrinen
korkeus. Pyri millimetrin tarkkuuteen.

Harjoitus 7—2: Normaalikorkeuksien laskenta

Pisteessd P potentiaaliero merenpinnan kanssa on
— (W —W,) = 5000m*/s2.

Pisteen alapuolella merenpinnan tasolla normaalipainovoima on y, =

9,821 500m/s2. Laske pisteen normaalikorkeus.
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Harjoitus 7—3: Erotus ortometrisen korkeuden ja
normaalikorkeuden valilla
Pisteessd P Bouguer-anomalia on Agg = —120 mGal. Pisteen ortometri-
nen korkeus on 1150 m.
1) Laske pisteen P normaalikorkeus.

2) Jos geoidikorkeus pisteessa P on N = 21,75m, laske pisteen
korkeusanomalia (.






Stokesin yhtalo ja muut
integraaliyhtalot

8.1 Stokesin yhtalo ja Stokesin integraaliydin

Oletetaan, ettd Maa on pallon muotoinen. Sopivasti yhdistdimalld osion
5.3 yhtdloitd saadaan merenpinnan tasolla

:iTn:RinAg
n=2 n=2

jossa T, = T (¢, A) ovat hdiriopotentiaalikentdn T = T(¢$,A) ja Agn =

Agn(d,A) painovoima-anomaliakentdn Ag = Ag(¢,A) asteosuudet.
Summaus alkaa asteluvulta n = 2: asteluvuille n = 0, 1 oletetaan, etta
Agn héviavit, koska Agy # 0 edustaa Maan kokonaismassan erotusta
normaalikentdn kokonaismassasta ja Ag; # 0 koordinaatiston origon
poikkeamaa Maan massakeskipisteestd, katso osio 3.4.

Tama on nyt Stokesin yhtalon spektraalimuoto.

Sijoittamalla tdhdn asteosuusyhtdlo 3.9 saadaan integraaliyht&lo

_%Zzn—F]jj Ag( (b/ 7\/) P, (cos ) do’ =

4nﬂ< an (cos¢))A9(¢’,7\’)do:

4WH S(h) Ag(d’,A") do’, (8.1)
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Massa-ylijadama

Massa-
alijgama

C
Q

Kuva 8.1. Gravimetrisen geoidiméaérityksen periaate.

jossa

S()=)_ —i?_ﬂ] Pn(cosp),

n=2
Stokesin ydinfunktio. Kulma 1 on laskentapisteen ja liikkuvan data-
pisteen vilinen geosentrinen kulmaetdisyys, katso kuva 8.2. Tdaméan
yhtédlon avulla voi maailmanlaajuisesta painovoima-aineistosta laskea
jokaiselle maapallon pinnan pisteelle hédiridpotentiaalin T ja siitd geoidin
korkeuden N Brunsin yhtdlén 5.2, N = T /y, mukaan. Tulos on

N(d,\) = T(d;’ = Iy H S() Ag(¢’,\') do”, (8.2)



Stokesin yhtilo ja Stokesin integraaliydin 8.1

Ag(cb N') do

\ L11kkuva data eli

Kuva 8.2. Stokesin yhtdlon integroinnin geometria.

jossa (d,A) ja (¢’,A") ovat laskentapiste ja liikkuva piste (“datapis-
te”) sekd \ on niiden vélinen kulmaetéisyys. Yhtélo 8.2 on klassinen
gravimetrisen geoidiméaarityksen Stokesin integraaliyhtalo.

Ylld oleva on esimerkki integraaliyhtéloiden ja spektraalikehitelmien
vastaavuudesta. Tastd 16ytyy muitakin esimerkkejd, kuten funktion 1/¢
spektraaliesitys eli yhtdlo 8.7, Heiskanen ja Moritz (1967) yhtdlo 1-81. Tie-
tysti 1 /¢ on myds integraaliyhtilon ydinfunktio, yhtalo 1.28. Yhtalosta
saa potentiaalin V, jos annettuna on yksinkertainen massatiheyskerros
K.

On olemassa myos Stokesin yhtdlon versio ulkoavaruudelle. Se annettiin
jo aiemmin, yhtdlo 5.9. Sen ydinfunktion spektraalimuoto on yht&lo
5.10:

[e¢]

S(,,R) Z < )““ an +11 n(cos). (5.10)

Stokesin ydinfunktio Maan pinnalla esitetddn kuvassa 8.3, jossa kulma
1P on radiaaneina (1rad ~ 57529578...). Kdyréd laskettiin seuraavan
suljetun lausekkeen avulla (Heiskanen ja Moritz, 1967, osio 2-16, yht&lo
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25
— S(¥)
20 - 1
sin %11)
5 e —6sin%11)—|—1—5costl)
---- —3cosyIn(sin 31 + sin? 1)
10 q
5 -
0 60° 900 — 180°
_5 e - '\"—‘—.—7 I I 1 1
1 1,5 2 2,5 3 3,5

Kuva 8.3. Stokesin ydinfunktio S(i). Argumentti ) on radiaaneina [0, 7).
Kuva ndyttda myos analyyttisen lausekkeen 8.3 kolme eri osaa eri

asymptoottisine kadyttdytymisineen.

2-164):

S(Y) = ]1 —6sin%1|)+1 —5cosy —

sin 7
—3cospln (sin %1]) + sin? % ) . (8.3)

Suljettu lauseke auttaa ymmartamaan paremmin, miten funktio kayttay-
tyy origon { = 0 lahelld: ensimmadinen termi 1/sin %q) menee ddretto-
myyteen, kun 1\ — 0. Seuraavat kolme termid, — 6sin %ll) +1—5cos),
ovat kaikki rajallisia koko vélilld [0,7) ja arvo tapauksessa { = 0 on

—4. Viimeinen ja samalla monimutkainen termi — 3 cos\{ In (sin %11) +

sin? %1])) menee positiiviseen ddrettomyyteen, kun { — 0, mutta logarit-

min ansiosta paljon hitaammin.
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8.2 Esimerkki: Stokesin yhtdlo napakoordinaateissa

Osiossa 2.3 johdimme kaksiulotteisen napakoordinaattien Laplacen
yhtédlon yleisen ratkaisun. Alla kehitetddn yksinkertainen laskentakehys
kaksiulotteiselle gravimetriselle geoidimé&éaritykselle, joka mahdollistaa
yksinkertaisten numeeristen ratkaisujen laskemisen. Tavoitteena on
saada ndppituntumaa ndihin asioihin.

Ensin johdetaan héiriopotentiaali, painovoima-anomalia ja Stokesin
integraaliydin ratkaisua varten yhtélosté 2.3, olettaen ettd normaalipo-
tentiaali on U(r) = ap + boInr.

o Hairidpotentiaali:
T(o, 1) = V'™(o, 1) — (ap + boInT) =

= Z % (ay cos ko + by sin ka) .
=1

o Normaalipainovoima:

o Normaalipainovoimagradientti:

dy _ 0 _bo
or  orz 12

o Painovoima-anomalia, yhtal6 5.5:

0T | 10y
Aglo,T) = — r + Vﬁ—l—
= Z %r‘k (ay cos kot + by sin kot) —
k=1
%Z (ax cosko + by sinka) =
k=1

Z k= (ax coska + by sinke) .
k=

N
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Nékyy ettd, jos kirjoitamme

x® k
T(,7) = Z (5) Tel(e)y, Tl def Rk (ax cos ko + by sinka) ,

k=1

seuraa, etta

Agla,t) =) <§>k+1 Agy(a),
k=2

Agy () def (k — 1) RV (a, cos ka + by sinka) ,

ja kuten pallokoordinaattien tapauksessa

Agil) = XA T (). (8.4

Fourier’'n teorian mukaan kantafunktiot cos ko ja sin ko ovat ortonormaa-
leja ympyridlld r = R, kun valitaan seuraava integraali skalaarituloksi:

2 27 0 josk#m

%f ﬁcoskoccos modx = %J sinkxsinmo do = ] 7 m,
0 0 1 josk=m,

1 (27 . )

— fo coskasinmadox =0 aina.

Tama merkitsee, ettd saamme kehittda
Ag(a, R) = Z Agy (o)
k=2

Fourier'n termeihinsa seuraavasti:

Agy (o) df (k — 1) R~ D (q, cos ke + by sinka) =

Ak Bk
N\ N\

= (k—1)R™*Va, coska + (k— 1) R~ Vb, sin k.

Tama antaa seuraavat Fourier'n kertoimet:

{Ak}Z(k—UR(k“){ak}, k=23,
By by



Esimerkki: Stokesin yhtilé napakoordinaateissa 8.2 1 9 5

ja ympyrélld r = R kehitelméa on

R) = Z Agy(a) = Z (Ax coska + By sinka) .

k=2
Sijoitukset
Ay _ Rk+1 Ax
b [ k—=1] B,
antavat
Z T (o Z * (ax coskot + by sinko) =
k=2
= Rk+1
=> R° k( Akcoskoc—i-k_]Bksink(x):

= Z % (Ay coska + By sinka) .

Kéyttden Fourier'n kertoimien yhtdlot,

A |1 2 cos ka
{ By }_ﬁjo Ag(oc,R){ sin ko }doc,

ja kosinin eroyhtéléd (Wolfram Demonstrations, Difference formula for

cosine) saadaan

T(CX, R) -

Zk-] (coskocf Ag(o/,R) coska' dot +smkocf Ag(a’,R) sin k' doc) =

= ﬁZ mfonAg(oc’,R) -cos(k (¢ —a')) do’.
k=2

Maéritellddn Stokesin ydin tdhdn kaksiulotteiseen tilanteeseen:

N(x) = T((;C/R) TWI Ag(a/,R) S(ox — o) dox’,
jossa S(ot— ') % Z cos(kk(i]— x ))_

k=2
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Kuva 8.4. Stokesin ydinfunktio kaksiulotteisessa geometriassa ympyralld r =
R. Huomaa symmetria ja jaksollisuus. Vertaa pallokoordinaattien
Stokesin ytimen kanssa, kuva 8.3.

Pienille arvoille & — &’ saa approksimoida (Wolfram Functions,

ZOKO,] COSka):

Sl —a') = i COS((k/Jr]B (& — ) ~ i cos (k' (kof— o))
k=1

k/=1

_1 1 o~ o
_Zln(2(1—cos(oc—oc’)))N Infoe = o).

Abstraktimmin yhteys 8.4 voidaan kirjoittaa my6s diskreetin Fourier'n
muunnoksen ja sen kddnteismuunnoksen avulla seuraavasti:

7{agh =151 = T=7"{235{ag}}.

Tassd F{f} edustaa ympyrén spatiaalisen koordinaatin « funktion
f(«) Fourier'n muunnosta spatiaalisen aaltoluvun (aaltoilujen méaara
ympyran ympdri) k funktioksi.

Tamaén esitystavan hyva puoli on, ettd se voi hyodyntda mitd tahansa
standardia FFT-ohjelmakirjastoa, jossa on sekd itse Fourier'n muunnok-
sen F{-} ettd sen kddnteismuunnoksen F~'{-} yhteensopivat versiot.

Lisda FFT:std kerrotaan liitteessa C.
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TauLu 8.1. Stokesin yhtélo kahdessa ulottuvuudessa, octave-koodi.

o°

Stokesin yhtdldn emulaattori kahdessa ulottuvuudessa
= 6378137;

= 0.8;
ak(1:180)
bk(1:180) =
dg(1:360)
T(1:360) = 0.0;

for i=1:359

% Gauss-Markov

dg(i+l) = 0.8*dg(i) + 50%(rand()-0.5);

«

.0;
.0;
.0;

’

|
[cl oM o]

end
dgsum = 0.0;
for i=1:360

% Pakota jaksollisuus

dg(i) = dg(i) - (dg(360) - dg(l)) =* (i/359);
dgsum = dgsum + dg(i);

end

for i = 1:360

% Pakota odotusarvo nolla
dg(i) = dg(i) - dgsum/360;
for k = 2:180
ak (k) ak(k) + dg(i) * cos(kxixpi/180)/180;
bk (k) bk(k) + dg(i) * sin(kxixpi/180)/180;
end
end
dg(1:360)
for i=1:360
for k = 2:180
T(i) = T(i) + (ak(k)*cos(k+xixpi/180) + bk(k)*sin(kxixpi/180))*R/(k-1);
% Ilman astelukua yksi
dg(i) = dg(i) + ak(k)*cos(k*i*pi/180) + bk(k)*sin(kxixpi/180);
end
end
hold on
plot(1:360, dg, 'b’) plot(1:360, 0.00001xT/g, 'm’)
print -dpdf stokes2D-out.pdf

0.0;



198 8 STOKESIN YHTALO JA MUUT INTEGRAALIYHTALOT

200

-~ — Ag (mGal)
: — N (m)

100

—100

—200 L —«& ‘ ‘ ‘
0° 90° 180° 270° 360°

Kuva 8.5. Painovoima-anomalioiden (Gaussin ja Markovin prosessi) ja geoidi-
korkeuksien (sininen) simulaatio kaksiulotteisesti ympyralla. Huo-

maa molempien spektraalikdyttdytyminen.

Kuva 8.5 ndyttdd simuloinnin tuloksen, jossa satunnaisesti generoituja
painovoima-anomalioita ympyralld r = R on kéytetty geoidikorkeuk-
sien laskemiseksi samalla ympyralla. Molemmat kayrat kayttaytyvat
tilastollisesti melko realistisesti. Kaytetty koodi 16ytyy taulusta 8.1.

8.3 Luotiviivan poikkeamat ja Vening Meineszin
yhtalot

Differentioimalla Stokesin yhtél6 paikan suhteen saadaan luotiviivan
poikkeamien komponenttien integraaliyhtdlot (Heiskanen ja Moritz,

1967, yhtdlo 2-210"):

DA | 1 ;1 dS(p) | cosa ,
{n(w) }—mﬂ;mw Mgy { sin o }d“ -

1 , +,dS(P) | cosa i
- Wfchg(d) A )W{ o }smp dad, (8.5)



Poissonin integraaliyhtilo 8.4

Kuva 8.6. Legendren polynomien generoivan funktion geometria.

jossa & ja m ovat eteld-pohjois- ja lansi-itdsuuntaiset luotiviivan poik-
keamat. Yksikkopallon pinta-alkio on do’ = sin d« dip, jossa sin on
(U, «)-koordinaatien Jacobin determinantti.

Nama yhtalot johti ensimmaéisend hollantilainen geofyysikko F. A.
Vening Meinesz. Kulma o on atsimuutti eli suuntakulma laskenta- eli
evaluointipisteen (¢, A) ja liikkkuvan integrointi- eli datapisteen (¢’,A’)
vélilla. Yhtdlot on paljon vaikeampi kirjoittaa spektraalimuotoon, koska
ydinfunktiot ovat nyt myds atsimuuttisuunnan o funktioita eli an-
isotrooppisia.

Hairidpotentiaali, painovoimahdiri6 ja painovoima-anomalia ovat
kaikki niin sanottuja isotrooppisia suureita: ne eivit riipu atsimuutis-
ta ja siksi spektraaliesityksessd niiden viliset muunnokset ovat vain
asteluvun n funktioita.

8.4 Poissonin integraaliyhtalo

Katso kuva 8.6. Kappaleen piste Q on paikassa R ja havaintopiste P
paikassa r. Kahden paikkavektorin vdlinen geosentrinen kulmaetéisyys
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eli kulmaetdisyys origosta katsottuna on 1. Pisteiden P ja Q vélinen
etdisyys on {.

Kun maaritelldéan R & IR|ljar oo ||r|l, saa kirjoittaa (kosinisdanto):
0> =12+ R% — 2rRcos . (8.6)

Saa myos kirjoittaa funktion | /¢ seuraavaksi kehitelméksi (Heiskanen
ja Moritz, 1967 yhtdlo 1-81):

1 B 1 _l oo n+1
t /r?+RZ—2Rrcosp R Z < ) nleosw) 67)

n=0

jossa 1 ja R ovat pisteiden P ja Q etdisyydet origosta O eli tavallisesti
Maan keskipisteestd. Funktiota 1/¢ kutsutaan Legendren polynomien
generoivaksi funktioksi.

Differentioimalla yhtdlo 8.7 r:n suhteen saadaan

. x n+1
—rke%‘“'):—%zonf] (®)" Pulcosw).

Tama kerrotaan 2r:n kanssa:

2 o] n+1
_2r 2g2R cos\p _ _% Z(Zn +2) (5) P..(cos).

n=0

Lasketaan yhteen tdimd yht&lo ja yhtdlo 8.7:

(e¢]

—2r2 + 2rRcos Y + 22 1
3

2n+1 ()nHPn(cosxb).

n:O
Sijoitetaan tihan €2 yhtalostd 8.6:

—2r2 + 2rRcosp + ¢  R? —1?2
IE =B

tuloksena, —R:n kanssa kerrottuna,

M:i n+1) ( )n+1 P (cos). (8.8)
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Jos sovelletaan asteosuusyhtdlod 3.9 harmoniselle potentiaalikentélle V
R-sédteisen maapallon pinnalla:

Vi (b, Zn—H H (¢",A',R) Pn(cos ) do’

sekd kentdn spektraa11e51tys avaruudessa 3.10:

viern =3 (8) Vo,

n=0

saadaan

= 41—7[ i <$)n+1 (2n+1) ff V($', A, R) Pr(cosp) do’ =
_ Z11_Ttﬂ6v(q>',7\',lz) [i 2n—+1) (§>n+1 Pn(cosﬂ))] o

n=0

1 R (12 — R? , )
:Eﬂ;—( T )V(d)’,A,R)dG

korvaamalla hakasulkeissa oleva lauseke yhtalolla 8.8.

Néin on saatu Poissonin integraali harmonisen kentdn V laskemiseksi
maapallon pinnalla annetuista arvoista:

= o jj i Rz RO =R dog, (8.9)

jossa £ on taas suoraviivainen etdisyys laskentapisteen P, jossa Vp laske-
taan, ja pallon pinnalla olevan liikkuvan datapisteen Q (Vg integraalin
sisdlld) valilla. Tassd yhtdlossa pisteille on annettu symbolisia nimid: las-
kentapisteen P koordinaatit ovat (¢, A, 1), ja datapisteen Q koordinaatit
ovat (¢p’, A, R).

Saman yhtélon kolmas kirjoitusmuoto, joka soveltuu kaytettaviksi sil-
loin, kun harmoninen funktio eli kenttd V ei ole varsinaisesti méaéritelty

Maan topografisen pinnan ja merenpinnan valilld, on

Ve g Jf, e
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Tassa V* tarkoittaa harmonisesti alaspdin jatketun funktion V arvoa. Funk-
tio on siis jatkettu alaspdin koko matkan topografian sisddn aina me-
renpintaan saakka: palloapproksimaatiossa pallon pintaan r = R asti.
Tama funktio, joka on topografian yldpuolella sama kuin V, on harmo-
ninen ja olemassa myds topografian ja merenpinnan vélilld. Tallaisen
funktion olemassaolon kysymys on ollut kauan klassinen teoreettinen
pahkina. . ..

Yhtilo 8.9 ratkaisee tdssa erikoistapauksessa niin sanotun Dirichle-
tin reuna-arvotehtivin eli harmonisen funktion 16ytdmisen avaruuden
alueelta, kun funktion arvo alueen reunalla on annettuna.

8.5 Painovoima-anomalioita ulkoavaruudessa

Edellisessa osiossa 8.4 johdettu yhtdlo 8.9 patee mielivaltaiselle harmo-
niselle kentdlle V, siis kentille, jolle AV = 0. Yhtdl6 soveltuu katevésti
lausekkeelle r Ag: painovoima-anomalia kerrottuna geosentrisen siteen
kanssa. Sekin on harmoninen kenttd. Ndin voimme ilmaista ulkoa-
varuuden painovoima-anomalian Ag(¢, A, ) R-sdteisen vertauspallon
painovoima-anomalioiden Ag(¢’,A’,R) funktioksi. Funktio rAg on
harmoninen, koska yhtédlon 5.7 mukaan

ag=1y m-n (&),

n=2

siis

ag=Y (B) monm =y (B
n=2

n=2
jossa T (d,A) = (n — 1) T (¢, A) on tdysin laillinen pintapallofunktio,
aivan kuten Ty, (¢, A) itse: riippuvuus séteestd r, kerroin (R/r) " on
sama kuin (harmonisen) potentiaalin tapauksessa. Poissonin integraa-
liyhtdlo 8.9 pétee siis funktiolle rAg:
1

rag(e,AT)] = 4[] w [RAG(¢/,N,R)| do”
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eli
RR(r* —R?) ) )
Aglo A1) = o ] 2 Ag(¢\N,R) Ao’ (8.10)

Vaihtoehtoinen kirjoitustapa on

R (12 — R?
Ag = j R%Ag do,

jossa Ag* merkitsee painovoima-anomaliaa merenpinnan tasolla, taas
laskettuna jatkamalla ulkoista kenttdd, tdssd tapauksessa lauseketta rAg,
harmonisesti alaspdin.

Yhtdlostd 8.10 voidaan poimia ytimen suljettu muoto, joka on dimen-

sioton:
R (r? —R?)
—

=~

K¢ r,R) =
jolloin
Ag(dA1) = 2 {] K(r,,R) Ag(¢, A, R) do

Approksimoimalla v + R ~ 2r saadaan vield

gl A1) ~ ij” RAg(¢',A'R) do

Vaihtoehtoisesti johdetaan spektraalimuoto:

Ag(d, A1) =
1y (B) = Taon = )N (%)™ Aguio,n.
n—2 n=2
Asteosuusyhtdlo 3.9 antaa funktiot Agy:
Agn (b, ) 2"“ []. Agl',\',R) Py (cos ) do”

joiden avulla

Ag(d)) }\a T) =
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= 4]_71 i (E)n+2 2n+1) IL Ag(d', A ,R)Pr(cos) do’ =

n—=—

(R

n=

n+2

(2n+1) Pn(cosd))) Ag(d',A,R)do’ =

_ %T HU Kinoa Ag(d’, A, R) do”

N

jossa

Kamoa(W, 1, R) < 3~ (§>n+2 (2n+1) Py (cos )

n=2
on modifioitu Poissonin ytimen spektraaliversio painovoima-
anomalioille. Ytimestd on poistettu astelukujen o ja 1 osuudet, katso
Heiskanen ja Moritz (1967) yhtdld 2-159.

Stokesin ytimeen verrattuna Poissonin ydin putoaa nopeasti nollaan
kasvaville etdisyyksille £. Toisin sanoen integraaliyhtdlon evaluoinnin
saa rajoittaa hyvin paikalliseen alueeseen, esimerkiksi kalottiin, jonka
sdde on 1°. Katso kuva 8.7. Poissonin ytimen pé&dasiallinen kaytto
on painovoima-anomalioiden harmoninen jatkaminen ylos- tai alaspdin,
jotta eri korkeuksilla mitatut ja lasketut painovoima-anomaliat saadaan
samaan vertaustasoon.

Limiitissa  — R (laskentatasoksi merenpinta) tdma ydinfunktio
menee asymptoottisesti Diracin kaksiulotteiseen 6-funktioon. Tima on
vdistdmatontd ytimelle, joka laskee painovoima-anomaliat painovoima-

anomalioista.

8.6 Painovoima-anomalian pystygradientti

Differentioidaan yhtéloistd 5.8 ja 5.7 saatu yhtélo:

- (R\? A 1 v (Ry™
n=2 n=2

Tama yhtdlo on eksakti palloapproksimaatiossa. Sen ydinfunktio on
hyvin lokalisoitu, toisin sanoen se putoaa hyvin nopeasti nollaan. Myos
tdssd laskennassa pieni “kalotti” riittaa.
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2 Poissonin ydinfunktio K

10 Tkm — K _1r*—FR?
______________ 2km - RZ 1 3

O ‘‘‘‘‘‘‘‘‘

Painovoima-anomaliagradientin ydinfunktio K’

1km —— 2
K1 ( (r2 —R2) )
1.25 km =237
3 3 2 292
1.5 km R ¢ ret
2km -------
Etdisyys (km) —
| | | | | |
0 1 2 3 4 5 6 7

Kuva 8.7. Poissonin ydinfunktio painovoima-anomalioille sekd anomaalisen
painovoiman pystygradientin ytimet eri korkeuseroille r — R. Naita
ydinfunktioita kdytetddn pintaintegrointiin karttakoordinaateissa
(x,y) kilometreina.

Agy, ilmaistaan asteosuusyhtdlon 3.9 avulla integraaliksi merenpin-
nan anomaliakentdn yli:

Aga(d,A) = 2251 ([ Ag(/, N, R) Pu(costh) do,

T _ _4L i ( )nH n+1)(n+2) HG Ag(¢',\',R) Py (cosp) do’ =

= ﬁ {] K/, 1R Ag(¢", N, R) do, (8.11)
jossa (dimensioton) ydinfunktio on

]

K’ (W, 7, R) Z( )M (2n 4+ 1) (N +2) Pr(cos ).
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TauLU 8.2. Painovoima-anomalian pystygradientin ydinfunktion K’ johtaminen.
Kéytetty on {:n méadritelmd, yhtdlo 8.6, sekd Poissonin integraaliyhtalo 8.10.

249, ), . o
opsral L (1 (i) airina) -
R? 2 (1 B o ,
‘ffcar(r'(fz—Rz)'ﬁ ) 890N, R) ao’ =
R? PO 2y 1 ()2 a2 ,
:47[H< )'esJFT'(TZ—RZ)-(d()EZ)- | Ag(¢/,V',R) a0’ =
RZ TZ*RZ
:4ﬂjf< ( >+ - .(_ge5).(Zr—ZRcosd)))Ag(q)/))\/)R) do’ —
1 2T [P =R L )
47’tff 3<2 3r T gZ rT )Ag((l),)\,R)dO‘ -
RR(r* —R?) —R2
r 47’[jjc u Ag(d’,\',R)do’ =
r?—R? r? —R?) (r? —R? N ;]
47‘[ij (3 ( _% T2 _%( T)zéz )>A9(¢ ,A',R) do _;A9(¢>7\>T) =

r2 —R2)? 13
205 (2—2T2€2> 29(&" N, R) 80 = (1 + 3 ) Aol A1) =
5 (r _Rz)z
fjg 23 2 1242

Ag(¢’,A',R) do’ — ZSrAg(d),?\,r). (8.12)

Vaihtoehtoisesti johdetaan suljettu lauseke. Lihdetddn Poissonin yh-

talostd 8.10 painovoima-anomalioille ja differentioidaan r:n suhteen.
Katso taulu 8.2.

Tuloksessa viimeinen termi on pieni verrattuna edelliseen termiin:
alle tuhannesosa.

Hakasulkeissa olevat termit vaativat omaa tarkastelua. Paikallisella
alueella { ~ r — R termit ovat samaa suuruusluokkaa; toinen termi
kuitenkin menee nopeasti nollaan kun ¢ >> r — R. Kuitenkin kerroin
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1 /3 tekee ndin vield nopeammin.

Kirjoita
A 7\/
agb ) _ R (1 AIONR) g5 pgpa ), (509
madritelmalla
2 2
def ™ —R

Kuva 8.7 nédyttdd, ettd Poissonin ydin K kapenee suhteessa v — R ja
sen huippu nousee suhteessa (r —R) . Koska integraali Poissonin
ytimen yli on kaksiulotteinen ja skaalautuu leveyden nelion mukaan,
se pysyy vakiona kun r — R, ja itse asiassa ydin suppenee Diracin
kaksiulotteiseen d-funktioon.

Painovoima-anomalian pystygradientin ydin K’ kdyttaytyy ikdavam-
min: se kapenee samalla tavalla, mutta kuten kuva 8.7 nédyttdd, sen
huippu nousee suhteessa (r — R)>. Siksi sen pallointegraali hajaantuu

suhteessa (r—R) ™.

Regularisointi onnistuu havaitsemalla, ettd globaalisti vakiolla

painovoima-anomaliakentdlld

—~ — 2
Ago(b, A1) = Ago(r) = (3 ) Ago

on gradientti

QAT 2 Rg0 (0,007, (8.15)

mutta my0s, kuten yhtals 8.13:

dAg ¢ A7) U Agq d>’ Ago(d',\\R) 4 ' 2 Ags(d N 7). (8.16)

Vahennetddn yhtalo 8.16 yhtadlostd 8.13 ja sijoita yhtdlo 8.15, tuloksena

089(¢, A1) _ (Ag(d A1) — Ago(9,AT)) | 0AGe(d,AT) _

or or or
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H Ag(¢p’,N',R) — - Ago(d’, N R)dc,

— 2 (AN, 1) — Agol, A, 1)) — 28gy(d, A, ) =

N .
R_ZJ:[ KAg ¢ »Ae»gR) A90 do’

— % (Ag(([),?\,r) — <$>2Ago) —% <$>ZA90-

Valitaan vakio Agg def Ag(d, A, R), laskentapisteen merenpinnan tason

anomalia:
aqun\r H Ag(d’,N,R )e Ag(d,AR)
er (Ag(cb,A - (%) g, R)) ~2(%) aglo AR
R Ag(¢",X'.R ) A MR) g 2 <§>2Ag(¢,7\,R).

(8.17)

Jos k = 2, tdma vastaisi Heiskanen ja Moritz (1967) yht&lod 2-217, kui-
tenkin laskentapisteelle tasolla r # R. Hyvin kdyttdytyvalle painovoima-
anomaliakentélle

Ag(d', N, R) — Ag(d, A, R) "B%0  kun (¢',A)) = (d,A),

ja integraali 8.17 suppenee kun r — R. Esitamme ilman todistusta, ettd
tapauksessa r — R suppeneminen tapahtuu samaan raja-arvoon kuin
Heiskasen ja Moritzin yht&lg, toisin sanoen lausekkeen 8.14 toinen termi
katoaa ja tehollisesti k — 2.

Jos integrointi suoritetaan maapallon pinnan (sdde R) eikd yksik-
kopallon o’ (sdde 1) yli — tai samanarvoisesti paikallisissa metrisissa
koordinaateissa (x,y) — voidaan tehda sijoitus dS = R? do, jossa dS on
pinta-alkio R-séteiselld pallolla. TAma poistaa kertoimen R? integraali-
yhtédldistd, kuten 8.10, 8.12ja 8.17.

Molodenskin menetelmdssd tima tai vastaavat yhtdlot voidaan eva-
luoida nopeasti hyvin paikallisesta painovoimadatasta.
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Heiskasen ja Moritzin (1967) antama suljettu lauseke 2-217 on ano-
maalinen pystygradientti evaluoituna merenpinnalla (vertauspallolla).
Yhtdloissimme 8.17 ja 8.11 tarvitaan my0s painovoima-anomalioita
merenpinnalla. Saatavilla ovat kuitenkin vain anomaliat topografian
pinnalla. Kaytannossad voi menetelld iteratiivisesti aluksi olettamalla,
ettd topografian tasolla mitatut anomalia-arvot ovatkin merenpinnan
tasolla:

AQ(O) (d))}\) R) ~ Ag (d),)\,T) = Ag (d)>7\> R+ H))

jossa H = H(d,A) on pisteen (¢, A) topografian korkeus. Kun karkea
anomaalinen gradientti on laskettu esimerkiksi yhtélolla 8.17, voidaan
suorittaa oikea reduktio merenpintaan lineaarisessa approksimaatiossa:

0AgY (A, z
A9 (0,AR) ~ Ag(, A1) — — a(f’ LA

Z=T

Tatd voidaan iteroida.

8.7 Painovoimareduktiot geoidimaarityksessa

8.7.1 Klassiset menetelmat

Stokesin yhtélon kaytto gravimetriseen geoidilaskentaan edellyttés, etta
kaikki massat ovat geoidin sisilli — ja ulkoinen kenttd on siis harmoni-
nen. Siksi topografiset massat siirretddn laskennallisesti geoidin sisddn
tavalla, jonka tulee spesifioida. Olemassa olevat klassiset menetelmat
ovat

o Helmertin (toinen) kondensaatiomenetelmd, osio 6.5: Massat siir-
retddn suoraan alaspdin geoidille massatiheyskerrokseksi. Tamén
jdlkeen mitatun painovoiman siirtdiminen alaspéin topografian
pinnalta merenpintaan on helppoa. Epdsuora vaikutus (massasiir-
ron vaikutus geoidiin, entistdimisvaihe) on pieni.

o Isostaattinen reduktio, jossa poistetaan laskennallisesti seké to-
pografian ettd sen isostaattisen kompensaation eli vuoristojen
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merenpinnan alapuolella olevien “juurten” vaikutus. Timéan me-
netelmdn epdsuora vaikutus on suurempi. Katso osio 6.7 ja yhtdlo
6.8.

o Bouguer-reduktio, osio 6.2: topografisten massojen vaikutus pois-
tetaan raa’asti havaitusta painovoimadatasta ja palautetaan geoi-
dilaskun jdlkeen yhtd raa’asti laskettuun tulokseen.
Bouguer-anomaliat siséltdvit vuoristossa suurta negatiivista sys-
tematiikkaa, ja sen takia Bouguer-reduktion epédsuora vaikutus
on ylen suuri ja ulottuu laajalle alueelle. Tastad syystd Bouguer-
reduktiota kdytetddn harvemmin.

8.7.2 Alaspain jatkaminen lineaarisessa approksimaatiossa

Y1l kuvattu ldhestymistapa voidaan linearisoida Molodenskin mukaan:
Ag (o)

/ , 0T
H' | S()do +a—Z HH. (8.18)

z=H’ z=

T*(d,A)
Siis ensin redukoidaan maaston pinnalla mitattu ja laskettu Ag me-
renpintaan kdyttamalld painovoiman anomaalista pystygradienttia ja
mittauspisteen korkeutta H’. Tuloksena

ES / / i ! / aA d)/’A/)Z
Ag* (9, N) = Bg (!, Ny 1) — 229180 A02)

z=H’
Sen jdlkeen sovelletaan merenpinnalla Stokesin yhtdlod ja saadaan

merenpinnan hdiridpotentiaali T*. Taman jélkeen hdiriopotentiaali ”an-
tiredukoidaan” takaisin maaston tasoon, evaluointipisteeseen, yhtalolla

oT(d, A, 2)

T(d))A)H) :T*((b)?\) + Oz
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Nadissd yhtéloissd koko ajan T, sen pystyderivaatta %T, Ag ja sen pysty-
derivaatta %Ag kuuluvat aina ulkoiseen harmoniseen painovoimakent-
tdadn. Niiden vélinen yhteys on fysikaalisen geodesian perusyhtalé 5.5,

pallogeometriassa
oT 2
Ag=—7-—%h (5.6)
jossat = R+ H. Tdssd tarvitaan ensin hdiridpotentiaalin pystyderivaatta.
Se on helppoa:
oT _ oT _ 2
oH - ar — 297 %h

jossa oikean puolen ensimmadinen termi on suoraan mitattu ja toisen

termin T saadaan iteratiivisesti ratkaisuprosessin paatuotteena.

Painovoima-anomalioiden pystygradientin eli painovoiman anomaa-
lisen pystygradientin laskeminen on vaikeampaa. Tehtdvaan tarjoutuu
osiossa 8.6 esitetyt laskentavaihtoehdot. Kdytannon laskennan onneksi
integraaliyhtdloiden ytimet ovat hyvin lokalisoituja, eikd painovoima-
anomalioita tarvita kovin laajalta alueelta.

8.7.3 Laskentapiste vertaustasoksi

Ylld olevassa yhtélossa 8.18 vertaustasona on kéytetty merenpintaa.
Taméa on mielivaltaista: voimme kayttdd mitd tahansa vertaustasoa,
esimerkiksi Ho, jolloin

R+H0H (

Mikali nyt valitaan Hy = H, viimeinen termi putoaa pois ja saadaan

R+Hfj ( aAg

Tassd tapauksessa reduktio tapahtuu Ag-mittauspisteen korkeudes-

(H’—H)) S(V) do”.

z=H'

ta T-laskentapisteen korkeuteen. Tdméa on luultavasti lyhyempi mat-
ka kuin merenpinnasta laskentakorkeuteen, varsinkin laskentapisteen
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valittomassa laheisyydessd. Tama merkitsee, ettd linearisointivirhe jid
pienemmiksi'. Huonoa toisaalta on, ettd suluissa oleva lauseke on nyt
jokaiselle evaluointipisteelle erilainen. Timéa mutkistaa FFT-pohjaisen
laskentatekniikan kdyttod, josta lisdd myShemmin.

Téassd puhuttiin koko ajan hdiridpotentiaalin T(d, A, H) madrittaimisestd,
mikéd on kdytdnnossd sama asia kuin korkeusanomalian

T(o,AH)  T(d,AH)

madrittdminen, yhtalo 7.1. Tassd y on pisteen leveysasteelle® ¢ ja topo-
grafian korkeudelle % (H+h)~H+ %C laskettu normaalipainovoima.

8.7.4 Jaannésmaastomallinnusmenetelma (residual terrain

modelling)

Kuvittele, ettd topografiset massat siirretddn kasitteellisesti geoidin
alapuolelle tavalla, joka ei muuta ulkopuolista kenttii. Tdama on olennaisesti
sama asia, kuin jos médritettdisiin harmonisesti alaspédin jatketun kentén
geoidi.

Ongelmana tdssé on, ettd tédllaista merenpinnan alaista massajakau-
maa, joka tuottaisi harmonisesti alaspdin jatkettua ulkoista potentiaalia
topografian pinnan ja geoidin vililld, ei tarkasti ottaen aina ole olemas-
sakaan. Fysikaalisesti epdrealistista olisi my0s, jos sopiva massajakauma
sisdltdisi hyvin suuria positiivisia ja negatiivisia massoja lahekkain.

Sanotaan, ettd ongelma on huonosti asetettu (”ill posed”). Téllaisissa
tapauksissa kdytetddn regularisointia: ulkopuolista kenttdd muutetaan,
mutta mahdollisimman vihén, niin ettd siitd tulee jarkeva kenttd, joka

'Linearisointivirhe voitaisiin edelleen virittdd pienemmaksi valitsemalla pystygra-
dientin evaluointitasoksi z =  (H’ + H).

*Oikeassa laskennassa laskettaisiiin Y1, kdyttden todellista geodeettista leveysastetta
¢ ja yhtdloa 4.10. Korkeuden % (H + h) on oltava oikein muutaman metrin sisalld
millimetritarkkuuden saavuttamiseksi korkeusanomaliassa C.
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voidaan harmonisesti jatkaa topografian sisdan. Silloin on olemassa myos
jarkevd geoidin sisdinen massajakauma tdmén kentdn ldhteena.

Aluksi voidaan esimerkiksi suodattaa Maan pinnan painovoimaken-
tastd pois topografian aiheuttamat lyhytaaltoiset osat korkean erotusky-
vyn digitaalisen maastomallin avulla. Tatd kutsutaan RTM-menetelméksi
(jddnnosmaastomallinnus, residual terrain modelling).

Tassa menetelmaéssa ei oikeasti siirretd kaikkia maaston massoja geoi-
din alapuolelle. Sen sijaan kdytamme puskutraktorin kaltaista menetel-
mad (kuva 8.8), jolla joko poistamme tai lisidmme massoja topografian
pinnan ldhelle, tavalla, jolla saavutetaan korvaava siled topografia, joka
sisdltdd vain pitkdt aallonpituudet. Korvaavan topografian ulkoinen
kenttd ei sisdlld, toisin kuin alkuperdisen topografian kenttd, kaikkein
lyhyimpia aallonpituuksia. Siksi sitd voidaan jatkaa riittavalla tarkkuu-
della alaspdin geoidin tasoon.

Ensin poistetaan laskennallisesti topografiasta vain lyhyet aallonpituu-
det (alle 30 km) siirtdmaélld huippujen massat laaksoihin. Toisin sanoen
suoritetaan alipddstosuodatus. Poiston vaikutus mittauksista laskettui-
hin ilma-anomalioihin Ag lasketaan ja otetaan huomioon: poistamis-
eli remove-vaihe.

Tarkemmin:

1) Jokaisessa pisteessd P sovelletaan painovoima-anomalioihin maas-
tokorjaus osiossa 6.3 kuvatulla tavalla.

2) Seuraavaksi poistetaan Bouguer-laatan vetovoima. Laatan pak-
suus on H — Hgpy, jossa H on maaston korkeus pisteessd P ja
Hrrm silotetun eli alipddstosuodatetun maaston korkeus pisteen P
vaakasijainnilla. Vaikutus on yhtdlon 6.1 mukaan

2nGp (H — Hgrrwm)

jossa p on laskennassa oletettu kallion tiheysarvo.
3) Taman jdlkeen painovoima-anomalian sijainti siirretddn (alas- tai
ylospdin!) — “alaspdin jatkaminen” — alkuperdisestd maaston
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P oy v . .
O ey Vi O e P’
T et —_==0-== ‘ TR et
i -~ Bouguer-laatta, alas- -7 Kéaanteinen
Maastokorjaus péin jatkaminen maastokorjaus

Kuva 8.8. Jadannosmaastomallinnus eli residual terrain modelling (RTM). Maastos-

4)

ta poistetaan laskennallisesti lyhyet aallonpituudet eli poikkeamat
punaisesta katkoviivasta: sen yldpuolella nousevat maaston massat
poistetaan, alapuolelle jaavat laaksot tdytetdan. Reduktion jalkeen
punainen katkoviiva, joka on sileimpi kuin alkuperdinen maasto,
on maaston uusi pinta. Uuden massajakauman ulkoinen potentiaali
eroaa vain vahdn alkuperdisestd, mutta sitd voidaan harmonisesti
jatkaa alaspdin merenpintaan asti.

Vasemmalla pisteen P maastokorjaus, keskelld Bouguer-laatta-
reduktio ja gradienttireduktio siledn maaston pisteen P’ tasoon.
Oikealla pisteen P’ kddnteinen maastokorjaus.

tasosta H uuden siledin maaston pinnan tasoon Hgry. Tdhédn tar-
koitukseen voi kédyttda ilma-anomalian pystygradientin yhtdloa
8.17.

Jos tdméd anomaalinen pystygradientti jatetddn huomioimatta, ku-
ten usein tehdddn, maastokorjatun ulkoisen kentdn painovoiman
pystygradientti oletetaan olevan normaalipainovoiman pystygra-
dientti — osion 5.4 mukaan —0,3 mGal/m, — ja tdimd toimenpide ei
aiheuta muutosta painovoima-anomaliaan.

Tarkasti ottaen seuraavaksi pitdisi vield suorittaa kddnteinen maas-
tokorjaus, jotta painovoima-anomaliat olisivat realistisia uudelle
korvaavalle topografialle. Usein tdimékin askel jatetdédn pois, koska
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efekti on pieni.

5) Sen jdlkeen ulkoisen kentdn harmoninen alaspdin jatkaminen
onnistuu: ulkopuolisessa kentdssa on jdljelld ldhinnéa vain pitkaét
aallonpituudet.

Koska RTM-menetelmdn massojen siirrot ovat niin pienid, siirtoetdisyy-
det niin lyhyitd ja siirtokuviot niin lyhytaaltoisia, on episuora vaikutus
eli entistdimisvaihe niin pieni, ettd sen voi usein jattdd huomioimatta.
Kyseessd on siis massasiirtojen aiheuttama geopotentiaalin muutos,
jonka vaikutus on sovellettava kddnteisend lopullisen geopotentiaali-
tai geoidiratkaisun saavuttamiseksi. Samasta syystd myos topografian
tuntemattoman tiheyden vaikutus jda pieneksi.

Lopuksi huomautetaan, ettd koska RTM-menetelmad poistaa lyhytaal-
toisen topografian vaikutuksen, menetelma soveltuu myds painovoima-
anomalioiden interpolointimenetelmiksi. Katso Mardla (2017).

8.8 Poistamis-entistamismenetelma

Kaikki nykyiset geoidimddritysmenetelmit ovat tavalla tai toisella
poistamis-entistamis- eli remove-restore-menetelmid, jopa usealla eri
tavalla.

1) Havaituista painovoima-arvoista poistetaan ensin globaalin pai-
novoimakenttdmallin vaikutus. Malli on yleensd annettu pallo-
funktiokehitelménd. Néin saadaan jddnndspainovoimakenttd,

o jonka numeeriset arvot ovat pienempid ja helpompia késitella

o joka on paikallisempi: pitkdt “aallonpituudet”, suurten aluei-
den yli ulottuvat kuviot, on jddnndskentdsta poistettu, ja vain
paikalliset yksityiskohdat ovat jaljella.

2) Havaitusta painovoimasta poistetaan kaikkien geoidin ulkopuolella
olevien massojen — kdytdnnossd topografian — vaikutukset.

Tamaén tarkoituksena on saada jadnnospainovoimakenttd,

o johon Stokesin yhtdlod voidaan kdyttdd, koska reunapinnan
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“Poistaminen” ”Entistdiminen”
Ag Raaka voima N
_l Globaali painovoima- Globaali painovoima- T
kentdn malli kentdn malli
A Jloc Nioc
Ulkopuoliset massat Ulkopuoliset massat
(topografia) (topografia)
Stokes
Ared Nred

Kuva 8.9. Poistamis-entistamis- eli remove-restore-menetelmd kommutoivana

kaaviona.

ulkopuolella ei ole massoja jdljelld

o josta erityisesti maaston aiheuttamat painovoimakentan ly-
hyimmat “aallonpituudet” eli yksityiskohdat, joiden suuruus-
luokka on muutama kilometri, ovat poissa. Taman jdlkeen
painovoima-arvojen prediktio harvoista mittausarvoista sujuu

paremmin.

Joitakin painovoiman reduktiomenetelmid, jotka poistavat laskennalli-
sesti ulkopuolisten massojen painovoimavaikutuksen ja joilla on hyvia
prediktio-ominaisuuksia, esitettiin jo alaosiossa 8.7.1: Bouguer-reduktio
ja isostaattinen reduktio. Mainitaan myos Helmertin kondensaatio vaik-

ka sen prediktio-ominaisuudet ovat heikompia.

Voimme havainnollistaa poistamis-entistamis- eli remove-restore-
menetelmaa kommutoivalla kaaviolla 8.9. Tassa kaaviossa mustat nuolet
teksteineen tarkoittavat laskutoimituksia, jotka ovat suositeltavia, koska
ne ovat helppoja ja tarkkoja. Harmaa nuoli teksteineen viittaa suoraan
laskentaan, joka on puolestaan laskentaintensiivistd ja numeerisesti

hankalaa.
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8.9 Ydinfunktion modifikaatio

Ylld kuvatussa poistamis-entistamismenetelméssd redukoitujen pai-
novoima-anomalioiden Ag,eq4 ja geoidin korkeuksien N4 késittely ta-
pahtuu tavallisesti pienen alueen sisdlld. Esimerkiksi FFT-menetelmé&a
kdytettdessd on laskenta-alue usein suorakulmainen alue karttapro-
jektiotasossa piirrettynd reilusti sen maan tai alueen ympirille, jonka
geoidimalli ollaan laskemassa.

Lisédksi jos lasketaan geoidimalli suoraan Stokesin yhtél6d integroi-
malla, evaluoidaan tdima integraali — sen jdlkeen kun globaalin mallin
vaikutus on poistettu annetusta painovoima-aineistosta — vain rajatun
alueen eli kalotin yli: lasketaan yhtdlo

H 1) Agrea($',A") d (8.19)

jossa 0y on yksikkdpallon kalotti, jonka sdde on vaikkapa 1.

Oletus tdméan takana on, ettd Ag,.q kalotin ulkopuolella on seké pieni
ettd nopeasti vaihteleva, koska pidemmait aallonpituudet ovat siita
poistuneet globaalin mallin reduktion mukaan. Tdima saattaa kuitenkin

olla vaarallinen olettamus.

Kirjoitetaan yhtdlon 8.19 molemmat integrandin osat spektraalimuo-

toon: N
. n+1
S(p) = ; 1 Pa(cos )
ja o
Agrea(',\') = Z Agn($’,\)

n=L+1
olettaen, ettd L on aineistosta vidhennetyn globaalin pallofunktiokehi-
telman eli painovoimamallin suurin mukana oleva asteluku — ja etta
malli on tarkka siihen astelukuun saakka.

Koska Ag,, on pintapallofunktioiden
Phm(cosp)cosma  josm =0,...,n,

Yim (ll)) O() =

Primi(cos®) sin|m|a josm = -—m,...,—1,
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erds lineaariyhdistelma, vaikkapa télla tavoin, vertaile yhtdlo 3.13:

1 n
Agn(q)) O() = W Z Agannm(ll)> (X),

m=—n

ja myos
Pn(cos) = Pro(cos) cos(0 - ) = Yno (W, &),
seuraa Y-funktioiden ortogonaalisuuden perusteella, ettd
jfo P.(cos)Agn/(d',A)do’ =0 josn#n'.

Nyt voi kirjoittaa (termit n < L putoavat pois):
jf Agred d) A )

(5 2pim)(£ ) o

n=L+1

_H ( 1] (OS‘P)> ( i Agn(d>’,7\’)> do’ =

n=L+1

= [J_ " (W) Agreale’, ) a0,

jossa

st) = Y ZEIP(cosy)

w1
on niin sanottu modifioitu Stokesin ydinfunktio. Astelukua L kutsutaan
modifiointiasteeksi. Laskenta-alueen o, koko valitaan yhteensopivaksi
tdmén kanssa.

Tassd kuvattua modifiointimenetelmédd, S-funktion Legendren po-
lynomikehitelmén rajoittaminen korkeampiin astelukuihin, kutsutaan
Wong-Gore*-modifikaatioksi (Wong ja Gore, 1969). Uuden ydinfunktion
S™ toivottava ominaisuus on, etti se olisi ainakin alkuperéisfunktioon S

3L. Wong ja R. C. Gore tyoskentelivit Aerospace Corporationilla, joka on Kaliforniassa
sijaitseva avaruusteknologian tutkimuslaitos. Wikipedia, The Aerospace Corporation.
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Kuva 8.10. Modifioituja Stokesin ydinfunktioita. Huomaa, miten ytimen ar-
vot korkeammilla modifiointiasteen L arvoilla ldhestyvét nollaa
paikallisen alueen ulkopuolella. Punainen kdyrd on modifioitu
"pehmedsti” modifiointiasteilla 2—5 kosini-ikkunan avulla.

verrattuna pieni kalottialueen o, ulkopuolella. Siind tapauksessa inte-
graalin rajoittaminen kalottiin koko yksikkopallon sijasta (yhtdlo 8.19)
ei tee suurta vahinkoa. Selvida on, ettd St on paljon kapeampi kuin S,
ovathan siind edustettuina vain korkeammat harmoniset asteluvut. Tata
voidaan verifioida piirtdimalld molempien kéyrien grafiikka (kuva 8.10).
Kéyra ei mene kuitenkaan tdysin nollaan kalotin ulkopuolella, vaan
aaltoilee jonkin verran.

Syy aaltoiluun on, ettd modifioidun ydinfunktion katkaisu taajuus-
eli astelukudomeenissa on hyvin dkkindinen. Téllaisen terdvan reu-
nan muuntaminen avaruus- ja taajuusdomeenien vililld tuottaa aina
varahtelyd, joka liittyy niin sanottuun Gibbsin* ilmidon.

4Josiah Willard Gibbs (1839-1903) oli amerikkalainen fyysikko, kemisti, termodynaa-
mikko, matemaatikko ja insingori.
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Kuvassa 8.10 on piiirretty punaisena Stokesin ydin, joka on modifioitu

"pehmedsti”: ytimen termit asteluvuilla 5 — 2 on pakotettu véhitellen

nollaan sen sijaan ettd ne poistettaisiin kokonaan. Kuten nikyy, kdyra

menee nollaan jopa siistimmin kuin “terdvésti” modifioidut ytimet.

8.10 Edistyneita ydinfunktion modifikaatioita

Kirjallisuudesta 16ytyy muitakin ydinfunktion modifiointikeinoja. Nii-
den yleinen muoto on

0 L

ZSn

jossa modifiointikertoimet s, n = 2, ..., L voidaan valita®. Ne valitaan

n(cos¥), (8.20)

ytimen S™ arvojen minimoimiseksi kalotin ulkopuolisella alueella 0 — 0.
Télla tavoin voi eliminoida yhtédlon 8.19 katkaisuvirheen ja Wong-Gore-
modifikaation aaltoilut ldhes kokonaan. Molodenski ym. (1962) kehitti
jo varhain sellaisen menetelmén. Katso my6s Bucha ym. (2019).

Y114 olevassa yhtdlossé 8.20 haluamme minimoida funktiota
SH) Z Snan n(cos)

paikallisen kalotin ulkopuolisen alueen o — oy yli. Kerrotaan tama
lauseke jokaisen Legendren polynomin P,,(cos{), n =2, ..., L kanssa
vuorollaan, integroidaan paikallisen kalotin ulkopuolisen alueen o — oy
yli ja vaaditaan, ettd tulos havida: \{

| S@)Pulcosp) do—

5Valinta s,, = 1 antaa taas yksinkertaisesti (Wong-Gore-menetelmailld) modifioidun
Stokesin ytimen, josta matalat asteosuudet on kokonaan poistettu.
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L /
- Z Sn/Zn/_—l—l P./(cos) Pn(cos) do =0,

n’ —1 o—0p
n=2...,L

L — 1 yhtdlon ryhméd L — 1 tuntemattomassa sy,

L
2n’ +1
Z ' —1 Cnn' Sn/ = QTU
n’'=2

n
jossa
Qu =) . SW)Pulcostp) do = [T S() Pulcos ) sin dy
ja
enn’ = 5 G_GOPn(cosd)) P./(cos)do =

- L: P, (cos 1) P/ (cos 1) sin dip.

Kertoimet Q,, tunnetaan Molodenskin katkaisukertoimina, e;,,,» Paulin
(1973) kertoimina.

Téastd voimme ratkaista s,, jokaiselle asteluvulle n arvojen 2 ja L valilla.

Tama ratkaisu nollaa lausekkeet
(St Pn>0,70,0 =] UOSLN)) P.(cos) do, (8.21)
my0s kaikille n-arvoille 2:n ja L:n valilla.

Lausekkeet 8.21 voidaan tulkita skalaarituloina funktioiden S* ja P, va-
lilld. Samalla tavalla matriisin e, s alkiot sisdltdvat funktioiden P, ja P,/
véliset skalaaritulot. Nama skalaaritulot eivadt hdvia: kun integroidaan
alueen o — oy eikd koko pallon o yli, Legendren polynomit eivit ole kes-
kenddn ortogonaaleja. Siksi e on tdysi matriisi eikd paalavistdjamatriisi,
kuten silloin kun integroidaan koko yksikkopallon o yli.

Legendren polynomit ovat keskenddn riippumattomia integrointialu-
eella 0 — 0y ja virittdvat yhdessd L — 1 -ulotteisen lineaarisen vektori-
avaruuden.
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Po-sdteisen kalotin o ulkopuolella Stokesin ydinfunktio S(1) on vi-
suaalisen tarkastelun perusteella “siled”. Riippuen tietysti kalotin sdteen
o ja modifiointiasteen L arvoista se voi olla niin siled, ettd se ei sisdlla
mitddn merkittdvad osuutta asteluvuista, jotka ovat modifiointiastetta
L suurempia. Jos tdmaé pétee funktiolle S, se pitee myos funktiolle S*.
Tama merkitsee, ettd ST on polynomien P, n =2, ..., L lineaariyhdis-
telma3 eli niiden virittdimén vektoriavaruuden alkio. Mutta jos ndin on,
ja skalaaritulot 8.21 jokaisen kantavektorin kanssa hdvidvit, on ytimen
St oltava nollafunktio alueella o — oy.

Katso myds Featherstone (2003).

Liitteen A osio A.1 selittdd lisdd lineaarisista vektoriavaruuksista ja
vektoreiden vélisestd skalaaritulosta.

8.11 Blokki-integrointi

Gravimetrisen geoidin numeerisessa laskennassa kdytetddn anoma-
lioiden keskiarvoja laskettuina standardikokoisille soluille eli blokeille,
yleensda 5’ x 5, 10" x 107, 30" x 30" ynnd muita. Euroopan leveysasteilla
kaytetddn usein kokoja 3’ x 5/, 5" x 10/, 6’ x 10’ ynnd muita, jotka ovat
likimdarin nelidn muotoisia.

Seuraava yhtdlo pédtee integraalin laskennassa blokkien keskiarvoja
kdyttden:

N6 ~ g 3 Sild,) By, (8:22)
jossa Ag; on blokin i keskiarvo:
A9 0 ] Ag, N do =g [ Agd,A)cos dd a,
ja Stokesin ydinfunktion blokki-integraali vastaavasti
Si(@,N) = [ S(b(4,1¢",\)) cos ¢’ A’ N,

jossa o on blokin i alue ja sen pinta-ala yksikkopallolla on

def

w; & f L do= HG cos d dd dA.



Paikallisen vyohykkeen vaikutus 8.12

Sellaisen integraalin arvon numeerinen laskenta eli kvadratuuri tapahtuu
kitevéasti Simpsonin sddnnén® avulla:

S(W(dy A d'\A)) cos d” ddp’ AN ~

1 1
~ Ad AN Z wWj Z wkS{k,

j=—1  k=—1

Si(p,A) = j)\ﬁm‘/z f¢i+A¢/2

VRS

jossa AA ja A ovat blokkien pituus- ja leveyssuuntaiset kootjaw_; =

wy = %, Wy = % ovat painot.

SI(,0) = S(W ()X i + 31 A, A + 3k AN) ) cos (@ + 1 Ad),
j) k=—1 y O> 1
ovat lausekkeen S(ll)((b,?\;d)’ JA )) cos ¢’ arvot laskennassa kaytetty-

jen solmupisteiden kohdilla, 3x3 kappaletta. Katso kuva 8.11. Myos
monimutkaisempia kaavoja (toistettu Simpson tai Romberg) voi kayttaa.

8.12 Paikallisen vyohykkeen vaikutus

Voi néyttdd, ettd paikallisen (sisdisen) vyohykkeen vaikutus geoidin
korkeuteen laskentapisteessd (¢,A) on verrannollinen itse pisteen
painovoima-anomaliaan Ag(¢,A). Jos ldhdetddn Stokesin yhtdlosta
8.2, jolloin S() ~ 1/gin %11) ~ 2 /1, saadaan, jos ympyran muotoisen
sisdisen vyohykkeen sdde on \y:

5Ng — 4mf f‘"’ 2 Ag(, o) sipddrdip dox ~

- Yo NB J— _S_O_
~;jo (Ejo Ag(w,cx)do«) dp ~ 3 o - Agy = 0Ag,.

®Thomas Simpson FRS (1710-1761) oli englantilainen matemaatikko ja oppikirjojen
laatija. Simpsonin sdantod kaytti itse asiassa jo Johannes Kepler sata vuotta aiemmin.
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4 -
a1 36 1=
36 ¢ ® 036 4

16
4 36 4
%‘ Q@ ‘% 0
1 @ @ ® 1 -1
36 4 36

36

k= -1 0 1

Kuva 8.11. Simpsonin integroinnin solmupistepainot kahdessa ulottuvuudes-

sa.

Téassd sp = R on paikallisen blokin (”kalotin”) sdde pituusyksikoissa.
Suure

- dif 1 Yo '] 27 .
Agy, = llTofo (7’( . Ag(s, o) doc) dy =

L L (R G do) d
=50 Jo (2m)s g(s,a) dx | ds

on painovoima-anomalian erikoinen keskiarvo, “rengaskeskiarvojen”
keskiarvo sdteiden s = 0ja s = s vélilld. Jos sy on pieni, keskiarvon saa
korvata keskipisteen anomalia-arvolla Ag(¢,A) ilman suurta virhetta.

Luotiviivan poikkeamien paikalliset osuudet ovat puolestaan ver-
rannollisia painovoima-anomalioiden vaakagradientteihin. Lahdetaan
Vening Meineszin yhtéloistd 8.5, joihin sijoitetaan tdiméa approksimaatio
paikalliselle kalotille, tarkemmin

SW)~ 2 — msub):—éz

86 | 1 (wo p2m/ 2 ;o) cosa | .
{ - }NWL I <_W> Ag(d ,7\){ o }s1n1bdocd1b.

Kehitetddn Ag paikallisille lineaarisille suorakulmaisille koordinaateille
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N 0Ag 0Ag
~ Ago + RV (cosocW + sin x——= 3y ) ,

ja sijoitetaan:

S0 | L1
61’]0 47T'Y

Vo 2 2 0Ag 0Ag cosx | .
.fo jo 2 <A90+Rll)<cosoc—a + sin x——~ 3y )){ . }smﬂ)docdxl).

sSm «

Tassd termit, joissa on Agp, putoavat pois a-integroinnissa, koska
2n . 2 . ) o

[y sinacdo = [ cos e doe = 0. Nin tekevit myds sekatermit, joissa

sin « cos . Ainoat nollasta eroavat termit sisaltavét [; " sin’ a da =
27 2

Jy "cos? audor = m:

1 (e (2w 2 dAg . N
58 ~ Iy jo fo }?ZR)KCOS =57 Cos asinp do dp ~

R (%o (270 Ripo 0Ag
7y Jo f —cos adoadp ~ ——— Ty ox
P 27
dmo ~ 47Wj Of };R;{fsmaaa% sin a sinp doc dp =~
o (27 Ag . R dAg
27TY j Sln OCdOCdIl) ~ —WW

Integraalien laskenta olettaa, ettd osittaisderivaatat ovat vakioita kalotin
alueella. Kdyttden R\ = so saadaan nyt

§Eg Ao — S0 94g ~ _ 50 %
2y ox’ 2y dy
Yhtdlot saattavat olla hyodyllisid kun standardi blokki-integrointi, yhtdlo
8.22, on numeerisesti huonokéaytoksinen laskentapisteen valittoméassa
ympdristossd jos ydinfunktio on singulaarinen origossa \ = 0. Seka
Stokesin 8.2 ettd Vening Meineszin 8.5 ytimet ovat titad tyyppid.
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Olenko ymmartanyt taman?

1) Minkd n&koisid ovat Stokesin yhtalo ja sen spektraalimuoto?

2) Minkd ndkéinen on Stokesin ydinfunktio S(1) kehitettyna Le-
gendren polynomeihin?

3) Miké on Stokesin ytimen sopiva approksimaatio, kun 1\ on pieni?

4) Mikd on isotrooppinen ja mikd anisotrooppinen suure Maan
pinnalla? Anna jalkimmaisestd esimerkKki.

5) Mitd Poissonin integraaliyhtdlo kertoo?

6) Miksi painovoimareduktiot ovat tarpeen, kun geoidimallin laske-
miseksi kdytetddn Stokesin yhtdlod?

7) Mitka eri painovoimareduktiomenetelmié on tarjolla?

8) Selitd jadnnosmaastomallintamenetelma eli residual terrain model-
ling -menetelma (RTM).

9) Selitd poistamis-entistamis- eli remove-restore-lahestymistapa.

10) Miksi Stokesin ydinfunktio modifioidaan usein geoidilaskennassa?
Minkéa ndkoéinen sellainen modifikaatio on?

11) Miké on Gibbsin ilmi6?

Harjoitus 8—1: Stokesin yhtdlo lahialueella

1) Johda Stokesin yhtédlén S(1) yksinkertaisempi muoto, joka pétee,
kun kulmaetéisyys 1\ on pieni. Oikeasti tdimé yksinkertaistettu
muoto siséltdd vain yhden termin!

2) Kayttden tdatd muotoa, kirjoita integraaliyht&lo

- AWRV []. stw)agdo

napakoordinaatteihin, siis integraaliksi muotoa

N



Harjoitus 8—1: Stokesin yhtilé lihialueella

jossa s = R on lineaarinen etdisyys laskentapisteestd ja o« on atsi-
muuttikulma (suuntakulma) geoidikorkeuden N laskentapisteesta
liikkkuvaan painovoima-anomalian Ag datapisteeseen.

Vihje: tassd on otettava huomioon napakoordinaattien (s, «) Jaco-
bin determinantti.

3) Laske N (yhtdlond), jos Ag = Ago vain ympyrdn muotoisen alueen
sisdlld, s < so, ja sen ulkopuolella Ag = 0. Oleta, ettd so on pieni.






Spektraalimenetelmat, FFT

9.1 Stokesin yhtdlo konvoluutiona

Lahdetdan liikkeelle Stokesin yhtdlosta 8.1,

TN = o [ sw) Ag(e',1) o,

jossa (¢, A’) on liikkuvan integrointi- eli datapisteen sijainti ja (¢, A)
laskentapisteen sijainti, molemmat merenpinnan tasolla eli pallon muo-
toisen Maan pinnalla. Molempien pisteiden sijainnit annetaan siis pal-
lokoordinaatteina. Integrointi suoritetaan yksikkdpallon o pinnan yli:
pinta-alkio on do = cos ¢ d¢d dA, jossa cos ¢ on pallokoordinaattien
(¢, A) Jacobin determinantti.

Paikallisesti riittdvan pienelld alueella voidaan kuitenkin kirjoittaa
pisteiden koordinaatit my6s suorakulmaisina ja ilmaista integraali
suorakulmaisissa koordinaateissa. Sopivat suorakulmaiset koordinaatit
ovat esimerkiksi karttaprojektiokoordinaatit, katso kuva 9.1.

Yksinkertainen tangenttitason suorakulmaisten koordinaattien esi-

merkki olisi
x =1PRcos, y=1YPRsinax, (9.1)

jossa & on laskentapisteen ja liikkuvan datapisteen vélisen yhdysviivan
atsimuutti. Timéan projektion keskus on tangenttitason kosketuspiste.
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- \.\Dqt:aplste

Kuva g.1. Karttaprojektiokoordinaatit x,y paikallisessa tangenttitasossa.

Muiden pisteiden sijainnit mitataan Maan keskipisteen kulmalla eli
geosentriselld kulmaetdisyydelli \p ja tangenttitason suuntakulmalla eli
atsimuutilla .

Realistisempi esimerkki kayttdd suosittua konformista karttaprojek-
tiota nimelta stereografinen projektio:

Y Y

x:Ztaancosoc, y =2tan7Rsinoc.

Pienten \-arvojen limiitissd timé on sama kuin yhtalét 9.1.

Laskemalla yhtdldiden 9.1 nelitt, summaamalla ne ja jakamalla tulos
R2:11d saadaan .
11)2 ~ X+ y
N

Yleisemmin 1 on laskenta- eli evaluointipisteen (x,y) ja data-,

integrointi- eli liikkuvan pisteen (x’,y’) vélinen kulmaetdisyys
maapallon keskustasta ndhtynd, likiméarin

e ()02
R R )




Stokesin yhtilo konvoluutiona 9.1

Lisiksi on otettava huomioon projektion Jacobin determinantti R~%:
do =R ?dxdy <= dxdy=R?*do,

ja Stokesin yhtélosta tulee nyt

T~ g [[ S(c—xy—y) Ag(¥,y') ax’ dy',  (92)

kaksiulotteinen konvoluutio*.

Konvoluutioilla on mukavia ominaisuuksia Fourier-teoriassa. Jos
kutsutaan Fourier'n muunnosta symbolilla J ja konvoluutiota symbolil-
la ®, voidaan ylld oleva yht&l6 lyhentdad seuraavaksi:

1

ja konvoluutiolauseen mukaan (”Fourier muuntaa konvoluution kerto-
laskuksi”): ]
HT} = %_R?{S} - H{Ag}.

Taméd approksimaatio (x,y)-tasossa toimii vain, jos integroinnin voi
rajoittaa paikalliseen alueeseen, jossa Maan pinnan kaarevuuden voi
jattdd huomiotta. Se onnistuu globaalien pallofunktiokehitelmien
ansiosta, koska ne edustavat Maan painovoimakentdn spatiaali-
sen vaihtelun pitkdaaltoista osuutta. Sen jdlkeen kun havaituista
painovoima-anomalioista Ag on poistettu globaalin pallofunktiomallin
vaikutus (poistamis- eli remove-vaihe), voi laskentapisteestd kaukana
olevien alueiden vaikutuksen unohtaa turvallisesti: poiston jdlkeen
anomaliakenttd Agj, sisdltdd vain loput lyhytaaltoiset osat, joiden
vaikutus kumoutuu pidemmaéan matkan péassa.

'Integrointi kulkee miinus &ddrettomyydestd plus ddrettomyyteen sekd x- ettd y-
koordinaatissa. Tama voi olla kaarevalla maapallolla realistinen vain, jos ydinfunktiolla
S on rajoitettu kantaja: se eroaa nollasta vain rajoitetulla alueella, joka on pieni osa koko
maapallon pinta-alasta. Tdma pitdd paikkansa osiossa 8.9 esitetyille modifioiduille
ydinfunktioille.
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Tietenkin kun integraali on laskettu ja paikallinen hdiridpotentiaali
Tioc ja vastaava geoidin korkeus Nj,. on saatu, on muistettava, ettd ndihin
olisi lisdttdva jédlleen globaalin pallofunktiomallin erikseen laskettava
vaikutus hdiriopotentiaaliin T ja geoidikorkeuteen N. Tdmé on laskennan
entistimisvaihe, katso kommutoiva kaavio 8.9.

9.2 Integrointi FFT:lla

Konvoluutiolauseen tarvitsema Fourier'n muunnos lasketaan diskreet-
tina Fourier'n muunnoksena. Tahdn on tarjolla laskennallisesti erittdin
tehokas menetelmaé: nopea Fourier'n muunnos, Fast Fourier Transform eli
FFT, esimerkiksi Vermeer (1993). Kirjallisuudesta 16ytyy useita hieman
erilaisia Fourier'n muunnoksen yhtdloita. Valinnalla ei ole merkitysta,
kunhan Fourier'n muunnos J ja Fourier'n kddnteismuunnos 5! ovat

keskenddn yhteensopivia.

Esivalmisteluna rakennetaan ensin funktion Ag(x,y) diskreetti hila-
esitys, suorakulmainen Ag-arvojen taulukko tasaisen pistevalin (x;,y;)-
hilalla. Arvot voivat olla vaikkapa funktioarvot itse hilapisteissa*:

Agii = Ag (Xi)y]')»
jossa hilapisteiden koordinaatit ovat
xi =18x, y; =jdy, 1,5=0,1,...,N—1,

sopiviksi valituilla hilan véleilld (6x,dy). Kokonaisluku N on hilan
koko, joka on oletettu yksinkertaisuuden vuoksi samaksi x:n ja y:n

suunnassa.

Seuraavaksi tehdddn samoin ydinfunktiolle

S() = S(X_X/>y _y,) = S(AX»AH))

>Vaihtoehtoisesti voitaisiin esimerkiksi laskea jokaiselle hilapisteelle pistettd ympéaroi-
van nelion muotoisen solun keskiarvo.



Integrointi FFT:1li 9.2
siis kirjoitetaan
Sij =S (AXi, ij),
jossa taas
Ax; =1i0x, Ay; =jdy, 1,j=0,1,...,N—1.

Nyt ydinfunktion S origon huippu — S(Ax, Ay) — oo kun (Ax, Ay) —
(0,0) — sijoittuu funktioarvojen hilan S;; origoon i = j = 0, yhteen
nurkkaan, ja hila sisédltdd vain huipun yhden kvadrantin. Tama ei ole

hyvéaksyttava.

Diskreetille Fourier'n muunnokselle ominainen jaksollisuus merkit-
see, ettd arvot i = %N, ..., N — 1 saa korvata negatiivisilla arvoilla
i N = —%N, ..., —1 ilman, ettd muodollisesti mikdan muuttuu:

katso alaviite 1 liitteessd C. Tassa tulkinnassa
Axi =1'8x, Ayy =j'dy, i,j'=—2N,...

ja nyt origo on hilan keskelld. Tdmé& on oikea tapa laskea todellisen,
eijaksollisen ytimen arvot, kédyttden sekd positiivisia ettd negatiivisia
arvoja Ax ja Ay origon symmetrisesti ympdroivaltd alueelta.

Seuraavaksi:

1) Néin saadut funktioiden Ag ja S hilaesitykset Agyj ja Si; muun-
netaan faajuusdomeeniin. Niistd tulee siten kahden “taajuuden”,
X- ja Y- suuntaisten aaltoindeksien u ja v, funktiot 8,,, = F {Si)'}
ja Guv = F{Agy; }. Spatiaalitaajuudet eli aaltoluvut® ¥V ja spatiaa-
liaallonpituudet A ovat v, = A' = W/, ¥, = Ay =V /L, jossa
L = N&x = N &y on nelion muotoiseksi oletetun alueen koko.

2) Ne kerrotaan keskenddn “taajuuspari kerrallaan”: lasketaan

3Tama on niin sanottu lineaarinen aaltoluku, joka laskee, montako kokonaisia aaltoja
on pituusyksikkod kohti. Syklinen eli pyored aaltoluku on k = 27V, ja se laskee,
montako vaihekulman radiaaneja on pituusyksikkod kohti.
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Havaintopisteet R
. Interpolointi Saannollinen
omissa o
. pistehila
paikoissaan
\
l Suora ratkaisu FFTl
Vapaa ratkaisu- Interpolointi Saannollinen
pistevalinta pistehila

Kuva 9.2. FFT-menetelmédn kommutoiva kaavio.

T = g Suv Guvy  WV=01,. ,N=1.  (9.3)

3) Muunnetaan tulos T, = F{Ty; } takaisin avaruusdomeeniin: Ty; =

F"{Tw}, hdiridpotentiaalin T pistehila T;; = T(x;, y;). Mielival-

taisen pisteen héiridpotentiaali saadaan tésté hilasta interpoloimal-

la. Koordinaatit x;,y; kulkevat indeksien 1, j funktioina samalla
tavalla kuin on kuvattu ylld Ag:n tapauksessa.

Esitetty menetelma kelpaa hdiriGpotentiaalin T — ja vastaavasti geoidi-
korkeuden N = T/, — laskentaan painovoima-anomalioista Stokesin
yhtélon avulla. Yhtd hyvin se kelpaa muiden suureiden, kuten esimerkik-
si painovoima-anomalian pystygradientin, evaluoimiseen yhtdlon 8.17
avulla. Ainoa vaatimus on, ettd yhtalo olisi kirjoitettavissa konvoluutioksi.

My®6s inversiolasku on helppoa, kuten tulemme ndkemaan: taajuusdo-
meenissa se on vain yksinkertainen jakolasku.

Diskreetin Fourier'n muunnoksen kaytto edellyttadd, ettd syottodata
eli integroitavana oleva kenttd — esimerkissd painovoima-anomalioiden
kenttd — on annettu laskenta-alueen peittdviand, sidnnollisend hilana,
tai on muunnettava sellaiseksi. Tulos — esimerkissd hdiriopotentiaali —
saadaan saman muotoisena sddnnolliselld hilalla. Arvoja voi interpoloida
hilasta haluttuihin pisteisiin.

FFT-menetelmé&a voidaan kuvata kommutoivana kaaviona, kuva 9.2.

Liitteestd C 16ytyy lyhyt selostus, miksi FFT toimii ja miksi se on niin
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tehokas kuin se on.

9.3 Ratkaisu leveys- ja pituusasteissa

Yl1la olevassa yhtdldssd 9.2 hilan koordinaatit x ja y ovat suorakulmai-
sia. Kdytdnnon syistd kdytetddn hilan koordinaatteina mieluummin
leveys- ja pituusastetta (¢,A). Ndin véistyy uuden (x,y)-pistehilan
rakentamisen tarve interpoloimalla annetusta (@, A)-hilasta karttapro-
jektiolaskennan kautta. Maantieteellisten koordinaattien kédytto joh-
taa kuitenkin meridiaanikonvergenssin aiheuttamiin lisdvirheisiin. Eihdn
leveys- ja pituusastejdrjestelma ole suorakulmainen. Hieman sopivampi
olisi koordinaattipari (¢, A cos @).

Ongelma on ratkaistu myos késitteellisemmalla tasolla.

9.3.1 Strang van Heesin menetelma

Stokesin ydinfunktio S(1) riippuu vain laskentapisteen (¢, A) ja data-
pisteen (¢’,A’) vélisestd geosentrisestd kulmaetdisyydesta \. Kulma-
etdisyyden voi kirjoittaa seuraavasti (kosinisddnt6 pallolla):

cos = sin psind’ + cos ¢ cos ¢’ cos(A —A’).

Sijoitetaan

A—N
2

cos(A—A") =1—2sin?
cos\p = 1 — 2sin? %I),

cos(¢p —¢’) =1—2sin’ cb_Td)I,

ja saadaan puolikulman kosinisdidnto:

cosp = cos(p — ¢') — 2 cos $ cos ¢’ sin’ }\_2}\/
29—’

Y,
— sinz%l):sin 5 +Cosd)cosd>’sin27\ A

2
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Tassa seuraava approksimaatio lienee sallittu:
cos ¢’ cos ¢ ~ cos ¢y,

jossa ¢ on vertausleveysaste laskenta-alueen keskelld. Nyt ylld olevasta
yhtélosta tulee

zlpzsinzd)—d) 2 A=A

/
sin” 5 S+ cos? ¢ sin = (9.4)

joka riippuu vain eroista A¢p Lo — ¢ ja AA LA
Tamdn jalkeen FFT-menetelmé&a voidaan soveltaa kdyttamalla koordi-
naatteja (¢, A)* ja Stokesin ydinfunktiota kirjoitettuna muotoon

S(P) = S(Adp,AN) =S (2 arcsin \/sin2 ATd) + cos? ¢y sin? %) :

joka on nyt ainoastaan erotusten A¢ ja AA funktio, kuten konvoluutio-
lause edellyttdd. Tamén ovelan tavan kdyttdd FFT-menetelmdd maan-
tieteellisissd koordinaateissa keksi hollantilainen G. Strang van Hees®

vuonna 1990.

9.3.2  "Spherical FFT” / monivyéhykemalli

Jaetaan alue useaan kapeaan vyodhykkeeseen leveysasteen mukaan.
Jokaisen vyohykkeen sisdlld sovelletaan Strang van Hees -menetelmadéa
omalla optimaalisella keskusleveysasteella.

Kirjoitetaan Stokesin yhtdlo seuraavasti:

N(d,A) = %ffs(Aq),AA;d)) Ag(¢',\) cos¢'| Ao’ dN,  (9:5)

4Kéytannossa kdytetddn geodeettista eli maantieteellistd leveysastetta ¢ geosentrisen
¢ sijasta ilman merkittdvaa virhetta.

5Govert L. Strang van Hees (1932-2012) oli hollantilainen gravimetrisen geodesian
tutkija.
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jossa olemme ilmaisseet S leveysaste-eron, pituusaste-eron ja laskenta-
leveysasteen funktiona. Nyt valitaan kaksi tukileveysastetta, ¢; ja ¢pi1.
Lisédksi oletetaan, ettd S on niiden valilld riittdvan lineaarinen ¢:n
funktio. Siind tapauksessa voimme Kkirjoittaa

(b — di) Siz1(AP, AN) + (Pir1 — §) Si(Ad, AN)
bir1 — by ’

S(Ad, AN d) =
jossaAp =d — ', AN=A—Aja

SI(A(I))A)\) = S(d) - q)la)\ - )\/; ¢i)>
Si1(Ad, AN =S(d — ', A=A dir1).

Integraaliyhtdloon 9.5 sijoittamalla saadaan

N(p,A) = & (d)i*“d)m b —ds Ii+1)> (0.6)

R A IR Gi1 — b

jossa
L = [[ suag,an) [Ag(q)’,x') cos q>’] dd’ dn/,
Lt = [[ Sear(ag, AN [Ag(d)’,?\’) cos q>’} dd’ dn'.

Yhtdlo 9.6 on kahden konvoluution lineaariyhdistelma. Molemmat
evaluoidaan FFT:n avulla. Yhtidlo muodostaa saaduista ratkaisuista
painotetun keskiarvon.

Tassd menetelmédssd kdytdimme likiyhtdlon 9.4 sijasta tarkkaa yhtdlod,
jossa ¢’ on ilmaistu ¢:hin ja Ad:hin:

Y Y
sinZ%:sinz(b 243 1 cos ¢ cos ' sin? > 2}\ =
:sinzAz—d)+cosc|>cos(d)—Ad))sin2 %

Lasketaan S; ja Si; tukileveysasteen arvoille ¢; ja ¢pi,1, evaluoidaan
integraalit konvoluutiolauseen avulla ja interpoloidaan N(¢, A) yhtédlon
9.6 mukaan, kun ¢; < ¢ < Piy7. Tdmankddn jalkeen ratkaisu ei ole
eksakti, koska jokaisen vyohykkeen sisdlld kdytetdan edelleen lineaarista
interpolointia. Kaventamalla vyohykkeitd saadaan virhe pysymaéaan
mielivaltaisen pienenad.
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9.3.3 "Spherical FFT” / Taylorin kehitelmamalli

Tamd on hieman monimutkaisempi, mutta myds monipuolisempi ldhes-
tymistapa, joka kehittda Stokesin ytimen Taylorin sarjaksi leveysasteen
suhteen keskelld laskenta-aluetta sijaitsevan vertausleveysasteen molem-
min puolin®. Kehitelmin jokainen termi riippuu vain leveysasteiden
erosta. Laskettava integraali hajoaa vastaavasti termeihin, joista jokainen
sisdltdd puhtaan konvoluution.

Kirjoitetaan yleinen ongelma seuraavasti:
2n e+ 7/2
U = || fﬂ/z C(4,¢',A0) [m(¢',\) cos ¢’ d’ an,
jossa { sisdltdd laskettavat ja m annetut suureet ja C on kerroin- eli
ydinfunktio. Tdssa oletetaan vain geometrian pydrihdyssymmetriaa Maan

akselin ympdri: ydinfunktio riippuu vain pituusasteiden erotuksesta
AN eikéd absoluuttisista pituuksista A ja A’

Konkreettisessa tapauksessa m sisdltdd esimerkiksi painovoima-
anomalia-arvoja Ag eri pisteissa (¢p’,A’), { sisdltdd geoidikorkeuksia N
eri pisteissd (¢, A) ja C sisdltdd Stokesin ydinfunktion avulla laskettuja

kertoimien arvoja.

Muunnetaan ensin riippuvuus suureista ¢ ja ¢’ riippuvuudeksi
suureista ¢ ja Ad:

C=C(d,¢’,AN) = C(Ad, AN; D).
Linearisoidaan:
C = Co(Ad,AN) + (¢ — do) Coy (AP, AN) + - - -
jossa maadritellddn sopivalle vertausleveysasteelle ¢:
def

CO(A(I)) AN) = C(A(b) AN (bO))

Co(AD, AN X 2 cap, AN ¢)| .
ad) d=do

®Kirjallisuudessa menetelma on yleistetty kehittimalld ydin myos korkeuden suhteen.
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Tama kahden termin kehitelmé on tarkka vain rajallisella A¢p-vilillg, ja
ydinfunktiolla C oletetaan olevan rajoitettu kantaja. Silloin integraalit
voidaan laskea rajallisen alueen sisélld koko Maan sijasta.

Sijoittamalla saadaan

Ub,A) = [[ ClAG, AN ) - m(¢/,\) cos §’ A’ Ay’ =
- H(CO + (= o) Cy) - mcos ' ddp’ ddp’ =
- H Co-mcosd’ dd’ dN + (b — do) H Cy-mecosd’ dd’ d\'.
9-7)

Tarkeda tdssd on se, ettd ensimmaisen ja toisen termin integraalit,

j Co(Ad, AN) [m(d)’,?\’) cos d)’] dd’ dA = Co ® [mcos ¢],
fj Co(Ad,AN) [m(¢/>7\/) cos d)l] dp'dA' =Cy ® [mcos cb],

ovat molemmat konvoluutioita: molemmat C-funktiot riippuvat vain erois-
ta Ad ja AA. Molemmat integraalit ovat laskettavissa, jos datahila
mcos ¢ ja kerroinhilat Cy ja Cy, lasketaan ensin valmiiksi. Tamén pe-
riaatteessa kalliin, mutta FFT:n ja konvoluutiolauseen ansiosta paljon
edullisemman integroinnin jilkeen on yhdistelmén 9.7 laskeminen no-
peaa: yksi kertolasku ja yksi yhteenlasku jokaista laskentapistettd (¢, A)
kohtaan.

Esimerkki Olkoon laskenta-alue leveysasteella 60° kooltaan 10° x 20°.

Jos hilan silmékoko on 5’ x 10’, on solujen maara 120 x 120.
Valitaan vaikkapa 256 x 256 -kokoinen hila (siis N = 256) ja
taytetddn puuttuvat arvot ekstrapoloimalla.
Myo6s ydinfunktioiden Cy ja C4 arvot lasketaan 256 x 256
-kokoisella (A, AA)-hilalla. Niitd on siis my6s 65 536. Konvo-
luutioiden Co ® [mcos $| ja Cy ® [mcos ¢| laskeminen FFT:n
avulla — siis’
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H Co(Ad, AN) m (', A") cos b’ ddp’ AN’ =

= Co® [meos¢] =5 ' {F{Co} - Ffmcos o} },
ﬂ Co(Ad, AN) m(b',\) cos ¢’ ddp’ dA =

= Cyp @ [meos¢] =5 '{F{Cy} - Ffmcos o} |,

vaatii N2 x 2log(N?) = 65536 x 16 = reilu miljoona ”standar-

dilaskutoimitusta®”

. Kertominen kerrointen (¢ — ¢) kanssa ja
yhteenlasku taas vaativat yhdessé 65 536 standardilaskutoimitus-

ta.

Ydinfunktioiden Cy ja C4 vastaavat hilamatriisit saadaan seu-
raavasti: kolmelle vertausleveysasteelle ¢_1, ¢o, ¢ 1 lasketaan
numeerisesti hilat

C71 = C(Ad)»A}\/ ¢71))
Co = C(Ad, AN; do),
Ci = C(Ad)»AA/ (b—H))

jossa Co on suoraan tarjolla ja

Cy1—C

Cop~ ——.
*Thi— by

My®s inversiolasku on ndin suoraan mahdollinen. Olkoon annettuna ¢
sopivassa pistehilassa. Lasketaan vektorin m ensimmaéinen approksi-
maatio seuraavasti’:

F{Co} - F{mcos¢} =F{t} = [mcosd)}(o):?_1{%}.

7Fourier'n muunnokset kerrotaan kertomalla vastaavat alkiot, katso osio 9.2 yht&lo
9.3.
8Standardilaskutoimitus on kertolasku plus joko yhteen- tai vdhennyslasku.

9Fourier'n muunnos jaetaan toisella jakamalla vastaavat alkiot, katso osio 9.2.
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Toinen approksimaatio saadaan laskemalla ensin
119 = Co ® [mcos ¢] © 4 (b — o) - Ce ® [mcos ¢ )

jonka jalkeen tehddan parannus

B )

ja niin edelleen, iteratiivisesti. Pari kolme askelta riittdd. Tatd me-
netelmdd on kéytetty maanalaisten massapisteiden laskemiseksi
painovoima-anomalioista esittdimddn Maan ulkopuolista painovoima-
kenttdd'®. Enemman on selostettu julkaisuissa Forsberg ja Vermeer
(1992); Vermeer (1992).

9.3.4 "t-D-FFT"

Tama on edellisten rajatapaus, jossa kdytetddn FFT-menetelmé&d vain
pituusasteen suuntaan. Toisin sanoen tdiméa on vyohykemenetelm4, jossa
vyohykkeet ovat vain yhden hilarivin leveitd. Menetelmé on eksakti, jos
laskentaan otetaan mukaan kaikki pituusasteet 0° < A < 360°. Se vaatii
edellisiin menetelmiin verrattuna hieman enemman laskenta-aikaa. Itse
asiassa se on identtinen Fourier-muunnoksen kanssa muuttujassa A

eli pituusasteessa. Yksityiskohdat 1oytyvét julkaisusta Haagmans ym.
(1993).

9.4 Data-alueen reunustaminen ja ikkunointi

Diskreetti Fourier'n muunnos olettaa, ettd data on jaksollisesti jatkuva.
Toisin sanoen oletetaan, ettd jos yhdistetddn data-alueen itdreuna sen
lansireunaan ja pohjoisreuna sen eteldreunaan, datan on oltava jatkuva
ndiden reunojen yli*'. Kdytannossa tdma ei pidd paikkaansa. On kyse

'9Koska yhteys massapisteiden ja Maan pinnalla mitattujen painovoima-anomalioiden
valilld voidaan kuvata eksaktisti geodeettisissa koordinaateissa, voidaan menetel-
maéssd korvata geosentrinen leveysaste ¢ geodeettisella leveysasteella ¢. Télld tavalla
vdltetddn virheet, jotka aiheutuvat Maan litistyneisyyden sivuuttamisesta.
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kahdesta eri vaatimuksesta:

o

e}

Reunan toisella puolella olevan datan on oltava niin kaukana, ettd
se ei vaikuta reunan yli merkittdvasti laskennan tulokseen.

Datan on oltava jatkuva reunojen yli.

Siksi aina kun kéytetddn FFT-menetelmdd konvoluutiolauseen kanssa,

tarvitaan kaksi toimenpidetta.

1)

Dataa jatketaan lisidmalld reunus data-alueelle, niin sanottu reu-
nustaminen (engl. bordering). Usein reunuksen leveys on 25 % data-
alueen koosta, jolloin laskenta-alueen pinta-ala on neljad kertaa
data-alueen pinta-ala. Reunus tdytetdan mitatuilla arvoilla siina,
missd niitd on, muuten predikoiduilla (inter- tai ekstrapoloiduilla)
arvoilla.

My®6s ydinfunktion laskenta-alue tehddédn vastaavasti neljd kertaa
suuremmaksi. Tdssd tapauksessa koko hila, reunus mukaan lukien,
taytetddn oikeilla (lasketuilla) arvoilla.

Ydinfunktion hila on tédytettdva siten, ettd indeksiarvot i,j > N / 2
tulkitaan negatiivisiksi arvoiksii—N ja j—N, jotka edustavat myos
negatiivisia Ax; ja Ayj. Silloin funktion huippu on hilan keskella.
Jos funktio on symmetrinen, hilan nelja kvadranttia nadyttavat
toistensa peilikuvilta. Silloin hila on automaattisesti jaksollisesti
jatkuva.

Koska diskreetti Fourier'n muunnos olettaa jaksollisuutta, on huo-
lehdittava siitd, ettd data on jatkuva reunojen yli. Jos reunojen
arvot eivit ole nolla, voidaan pakottaa ne nollaan kertomalla koko
laskenta-alue niin sanotulla ikkunointifunktiolla (engl. tapering func-
tion), joka menee siledsti nollaan reunoihin mennessa. Sellaisen
funktion voi rakentaa helposti: esimerkit ovat kolmannen asteen
splinipolynomi tai Tukey'n eli kosini-ikkuna. Katso kuva 9.3, jossa

"Topologisesti yhteen kytketty data-alue on sama kuin torus eli donitsi, ja data

oletetaan jatkuvaksi toruksen pinnalla.
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Data-alue

Kuva 9.3. ”Ikkunointi” 25 %.

on 25 %:n ikkunointifunktio, sekd esimerkkikuvat 9.4, josta nikyy,
miten ei-jatkuvuus — jyrkét erot vasemman ja oikean reunan seka
ala- ja ylareunan vilillda — aiheuttavat vaaka- ja pystysuuntai-
set artefaktit Fourier'n muunnoksessa. Nama artefaktit liittyvat
Gibbsin ilmiéon, joka on mainittu osiossa 8.9: terdva leikkaus eli
reuna avaruusdomeenissa tuottaa signaalia kaikilla taajuuksilla

aina korkeimpiin saakka.

Ammattikirjallisuudessa on julkaistu paljon aiheen teknisistd puolista.
Monet tutkimusryhmat ovat osallistuneet FFT-geoidimddritystekniikan
kehittdmiseen jo 198o-luvulla: Forsbergin ryhmé Kéopenhaminassa,
Klaus-Peter Schwarzin ja Michael Sideriksen ryhmd Calgaryssa Ka-
nadassa, Delftin ryhmaé (Strang van Hees, Haagmans, De Min, Van
Gelderen), Milanon ryhmaé (Sanso, Barzaghi, Brovelli), Heiner Denker
Hannoverin Leibniz-yliopiston laitoksessa "Institut fiir Erdmessung” ja
monet muut.

9.5 Geoidimallin laskenta FFT:lla

Nykyisin geoidi- tai kvasigeoidimallin laskeminen on lisddntyneen tie-
tokonetehon ansiosta helppoa, erityisesti FFT:n avulla. Toisaalta tarkan
geodeettisen satelliittipaikannuksen kédyton levidminen on tehnyt tar-
koista geoidimalleista haluttua tavaraa, jotta GNSS-teknologiaa voitaisiin
kayttdd korkeuksien nopeaan ja kustannustehokkaaseen maaritykseen.
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Kuva 9.4. FFT-muunnoksen esimerkkikuvia ilman ikkunointia (ylh&alld) ja
ikkunoinnin kanssa (alhaalla). Kdytetty on FFT-online-palvelua Watts
(2004). Kuvat ovat harmaasdvyn amplitudispektreja |F,, |, piirretty
niin, ettd origo u = v = 0 on keskell4, katso liite C.

9.5.1  GRAVSOFT-ohjelmisto

GRAVSOFT-geoidilaskentaohjelmisto on tehty pddosin Tanskassa. Teki-
joind ovat toimineet muun muassa Carl Christian Tscherning'?, René

'2Carl Christian Tscherning (1942—2014) oli tunnettu tanskalainen fysikaalinen geo-
deetti ja Maan painovoimakentin tutkija. Han teki uraauurtavaa tyota tilastollisten
laskentamenetelmien parissa Maan painovoimakentdn mallintamiseksi erityyppisistd
mittauksista.
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Forsberg, Per Knudsen, norjalainen Dag Solheim ja kreikkalainen Di-
mitris Arabelos. Ohjelmiston késikirja on Forsberg ja Tscherning (2008).

Tama paketti on laajassa kaytossd ja tarjoaa FFT-geoidiméadrityksen
varianttien lisdksi esimerkiksi pienimmén nelidsumman kollokaatio-
menetelmén sekd eri maastoefektien laskentaan soveltuvia rutiineja.
Sen levinneisyyttd selittdd osittain, ettd se on tieteelliseen kdyttoon
ilmainen ja toimitetaan ldhdekoodin muodossa. Se on myos hyvin do-
kumentoitu. Sille on 16ytynyt my6s kaupallisia kaytt&djid, esimerkiksi
oljyteollisuudessa.

GRAVSOFTia on kéytetty paljon myos opetuksessa, esimerkiksi mo-
nessa IAG:n (Kansainvilisen geodeettisen assosiaation) jarjestdamassa
tutkijakoulussa eri maissa. ISG, Geoid Schools.

9.5.2 Suomen FIN2000-geoidi

Téalld hetkelld Suomessa on kdytossd kaksi geoidimallia: FIN2000 (ku-
va 9.5) ja FIN2oosNoo (Bilker-Koivula ja Ollikainen, 2009). Ensim-
madinen malli on vertauspinta N6o-korkeusjdrjestelmalle: sen kaytto
GNss-paikannuksen kanssa mahdollistaa pisteiden N6o-korkeuden
madrityksen. Malli antaa geoidin korkeuksia GRS8o-vertausellipsoidin
yldpuolella. Toinen malli on vastaavasti vertauspinta uudelle N2ooo-
korkeusjarjestelmaille. Sekin antaa korkeuksia GRS8o-ellipsoidista.

Mallien FIN2000 ja FIN2005Noo tarkkuudet (keskivirheet) ovat tasolla
+ 2-3cm.

9.6 FFT-laskennan kaytto muissa yhteyksissa

9.6.1 Satelliittialtimetria

Tanskalaistutkijat Per Knudsen ja Ole Balthasar Andersen ovat las-
keneet maailman valtameren altimetrisen painovoimakartan invertoi-
malla satelliittialtimetriasta saatuja ”“geoidikorkeuksia” painovoima-
anomalioiksi (Andersen ym., 2010). Tamdn menetelméan kdyton edellaka-



SPEKTRAALIMENETELMAT, FFT

200 I\\\\\\\\\W O zo

@)/// l’/ ?
63° ¥ \w ‘ ))//m. %ﬁ%//////.( -‘\: 68°

: %//

.%xx\\mn \J/\\))\

Kuva 9.5. Suomen FIN2000-geoidi. Aineisto © Geodeettinen laitos.

%



Maastokorjausten laskenta FFT:1li 9.7

vijd on ollut Kaliforniassa sijaitsevan Scrippsin merentutkimuslaitoksen
David Sandwell, esimerkiksi Garcia ym. (2014). Kartan lyhytaaltoiset
piirteet kertovat merenpohjan muodoista.

9.6.2 Satelliittipainovoimamissiot ja ilmagravimetria

My®s painovoimasatelliittien, kuten CHAMP, GRACE ja GOCE, antamia ai-
neistoja voidaan késitelld FFT-menetelmailld alueellisesti: GOCE:n tapauk-
sessa gradiometristen mittausten inversiolasku tuottaa satelliittitason
mittauksista geoidin korkeuksia Maan pinnalla. My0s ilmagravimetria-
mittaukset kisitellddn tdlla tavoin kayttden FFT:td. Tatd tehtdvaa kutsu-
taan nimelld “harmonisesti alaspdin jatkaminen” (”harmonic downwards
continuation”), ja se on periaatteessa epéstabiili.

IImagravimetria on kédypa laajojen alueiden gravimetrisen kartoituk-
sen menetelmd. Pioneeriaikana kartoitettiin Gronlannin painovoima-
kenttd ja monta aluetta Arktiksen ja Etelimantereen ymparilld. Myo6-
hemmin mitattiin Brasilian Amazonaksen, Mongolian ja Etiopian (Be-
dada, 2010) kaltaisia alueita, joista ei ollut olemassa kattavaa terrestristd
painovoima-aineistoa. [lmagravimetrian vahvuutena on, ettd laajoja

alueita saadaan mitattua nopeasti ja homogeenisesti.

9.7 Maastokorjausten laskenta FFT:lla

Maastokorjaus on hyvin paikallinen ilmid, jonka laskentaan tarvitaan
korkean erotuskyvyn maastotietoa suhteellisen pieneltd alueelta lasken-
tapisteen ympadri. Nédin ollen maastokorjauksen laskeminen on kuin
luotu FFT-menetelmédé varten.

Naytetddn, miten maastokorjaus voidaan laskea FFT:n avulla yksin-
kertaisella ja tehokkaalla tavalla. Tehdddn seuraavat yksinkertaistavat
oletukset:

o Maaston kaltevuudet ovat suhteellisen loivia.

o Maankuoren tiheys p on vakio.
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o Maa on litteda — “kenkailaatikkomaailma”.

Nama oletukset eivét ole valttiméattomia. Yleinen tapaus johtaa kuiten-
kin yhtdloiden viidakkoon eikd auta késitteellistd ymmarrysta.

Maastokorjaus, laskentapisteen korkeustason H yld- ja alapuolella
olevien tai puuttuvien topografisten massojen yhteisvaikutuksen poisto,
lasketaan ndilld oletuksilla seuraavalla suorakulmaisella yht&lolld, joka
antaa kalliopatsaiden vetovoiman pystysuuntaisen komponentin (kuva

6.5):

TC(x,y) = fjf: Ge (H x ’iz) — H(x,y)) cos 0 dx’ dy’ =
+o00o Gp (H'— H H' —H
=] Pl | Ay’ =
+o (H'— H
= 3Go [[ (' H) dy’. (9.8)

Tassa Gp (H'—H) /92 on patsaan vetovoima ja % (H"— H)/e on voima-
vektorin — jonka oletetaan tulevan kalliopatsaan keskipisteeltd — ja
pystysuunnan vélisen kulman 6 kosini. Tdim& on niin sanottu prismame-
netelmi.

Tehdéddn lineaarinen approksimaatio, jossa {, vinoetdisyys laskenta-
pisteen (x,y) ja liikkkuvan datapisteen (x’,y’) vililld, on samalla vaaka-
etdisyys:

P (x—x)+y—y)’.
Yhtdlo 9.8 seuraa suoraan Newtonin gravitaatiolaista. Kun on oletettu,
ettd maasto on suhteellisen loivaa, £ on suuri korkeuseron H’ — H
verrattuna.

Yhtalostd 9.8 saadaan kehittamallad termeihin:
TC(x,y) = ]Gsz ff dx dy’ — GpH jj dx dy’ +

exeeff

dx dy’, (9.9)



Maastokorjausten laskenta FFT:1li 0.7

jossa jokainen integraali on konvoluutio ytimend { ja integroitavina
funktioina 1, H' ja (H’)Z.

Valitettavasti ylla implisiittisesti méaaritellylld funktiolla £~ ei ole
olemassa Fourier'n muunnosta. Siksi muutetaan ylld olevaa maaritelmaa
hieman lisddmalla pieni termi:

=x—x)"+y—y)?+8%. (9.10)

Y1ld olevassa yhtdlossd 9.9 termit ovat suuria lukuja, jotka melkein
kumoutuvat, antaen ldhes oikean tuloksen. Numeerisesti tima ei ole
miellyttavaa. Tahdn 16ytyy seuraavaksi esitetty ratkaisu.

Jos { miéritellddn yhtdlon 9.10 mukaisesti, ytimen £~3 Fourier'n
muunnos on (Harrison ja Dickinson, 1989; Forsberg, 1984):

252 2
?{2*3} — %[exp(—Znéq) = 277( (1 — 27mdq + 47-[]#2(1 _) :

jossa q def V2 —|—V§ = Vur+v2 /1y ja v ovat aaltoindeksejd ja
Vx = U/l ja ¥y, = V/L ovat (lineaarisia) “spatiaalitaajuuksia” eli aal-
tolukuja x- ja y-suunnissa (x,y)-tasossa. Jos tdima sijoitetaan yhtaloon
9.9, huomataan, ettd termit, joissa on 1 / 5 summautuvat nollaksi, ja
tietenkin my0s termit, joissa on suureen d positiiviset potenssit haviavit,
kun 8 — 0. Saadaan (Harrison ja Dickinson, 1989):

F{rc} ~ L1GpH? F{1} - ( (1-2m80) ) —
—GpH"f{H}( (1 - 2m8q) ) +
+16pT{(}- (3 (1 -2m8q))

jattamalla kaikki 8:n korkeampien potenssien termit pois.

Laita termit toiseen jarjestykseen:

F{rc} = 2Gp (32T {1} = HIF{H'} + 3F{(H)*}) -
—2nGp - 2mq - (SHEF{1} — HI{H'} + 3F{(H)?}).

249
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Koska F{1} = 0jos q # 0, toisen termin sisdinen ensimmaéinen termi
hévidd aina. Kun muistetaan, ettd laskentapisteen korkeus H on vakio,
saadaan

F{1c} = 2Gp (J{H2 — HH' + L (H)*}) +
+21Gp - 2mq - (HF{H'} = 3F{(H)*})
ja kddnteinen Fourier'n muunnos antaa
T = TG (HZ _2HH + (H’)2> +
+2nGp F {an (HF{H} = J5{Y) }
Ensimmadisessd termissa
H2 —2H'H+ (H)? = (H-H)* =0

pisteessd (x,y), jossa H" = H, ja saadaan
TC = 4m2Gp F {q . (H F{H'} — %?{(H’)z}) }

josta nyt murheenkryyni 1/ on havinnyt.

Tamén “regularisoinnin” tai “renormalisoinnin” edellytyksendi on, ettad
pisteen (x,y) kohdalla H' = H, eli evaluointi tapahtuu Maan pinnalla.
Y14 olevat Fourier'n muunnokset evaluoidaan FFT-menetelmalla.

Maastokorjauksen TC laskemiseksi maaston ulkoisessa tilassa — esi-
merkit ovat ilmagravimetria, merenpohjan vaikutus merenpinnalla ja
Mohoroviciéin rajapinnan vaikutus Maan pinnalla — I6ytyvat tekniikat,
jotka ilmaisevat TC konvoluutioiden summaksi, Taylorin sarjakehitel-
madksi. Varhainen artikkeli tdstd aiheesta on Parker (1972).

Olenko ymmartanyt taman?

1) Mika on konvoluution maéaritelma?



Olenko ymmirtinyt tdmdin?

2) Selosta konvoluutiolause.

3) Varmista, ettd yhtdlon 9.2 molempien puolien dimensiot tdsméaa-
vat.

4) Mika on spatiaalitaajuus? Mika on lineaarisen ja pyOredn spatiaa-
litaajuuden vilinen ero?

5) Selosta Strang van Heesin menetelmén perusajatus.

6) Mitkd muut ldhestymistavat ovat olemassa FFT-menetelmén sovel-
tamiseksi kaarevalla pallo- tai ellipsoidisella pinnalla?

7) Miksi data-alueen reunustamista ja laskenta-alueen ikkunointia
tarvitaan?

8) Geoidimadrityksen lisdksi, missa fysikaalisessa geodesiassa kéy-
tetddn FFT-menetelmda?

9) Kun lasketaan maastokorjaus Maan pinnalla, selitd derivoinnissa
kdytetty ”d-temppu”. Miksi se on tarpeen ja miten 0 saadaan
havidamaan?






Tilastolliset menetelmat

10

10.1 Epavarmuuden rooli geofysiikassa

Geofysiikassa tuloksia saadaan usein epavarman, epatdydellisen tai
muuten puutteellisen havaintoaineiston perusteella. Sama pitdéd paik-
kansa Maan painovoimakentdn tutkimuksessa: esimerkiksi painovoi-
mahavaintojen tiheys Maan pinnalla vaihtelee suuresti, ja laajat alueet
valtamerilld ja napa-alueilla ovat vain hyvin harvan mittausverkon
peittdmid. Puhutaan vajavaisesta spatiaalisesta otannasta (”spatial under-
sampling”).

Toisaalta avaruudesta késin toimivat mittausteknologiat kattavat
tavallisesti koko maapallon valtamerineen kaikkineen. Ne eivét kuiten-
kaan aina mittaa kovin suurella erotuskyvylli. Menetelméan erotuskyky
voi olla rajallinen, mika pétee esimerkiksi satelliittiratojen héiridista las-
ketuille painovoimakentdn parametreille, tai havaintolaitteet mittaavat
vain suoraan satelliittiradan alla, kuten satelliittialtimetria.

Toinen usein relevantti epdvarmuustekijd on, ettd Maan pinnalla
voidaan tehdéd tarkkoja havaintoja mutta Maan sisdlld epavarmuus on
paljon suurempi ja tiedot saadaan paljon epasuoremmalla tavalla.

Edellisissd luvuissa kuvailtiin tekniikoita, joiden avulla voitaisiin
laskea Maan painovoimakentédn haluttuja arvoja tai parametreja olettaen,
ettd esimerkiksi painovoima-anomaliat olisivat saatavissa kaikkialta
Maan pinnalta mielivaltaisen korkealla erotuskyvylld. Tassd luvussa
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katsotaan, minké&laisia matemaattisia apuvélineitd voidaan kayttaa
reaalimaailman tilanteissa, joissa néin ei ole.

10.2 Lineaariset funktionaalit

Kuvausta, joka liittdd jokaiseen funktioavaruuteen kuuluvaan funktioon
tietyn numeerisen arvon, kutsutaan matematiikassa funktionaaliksi. Sel-
lainen on esimerkiksi osittaisderivaatta tietyssd pisteessd x,:

f— if(x)

dX X=Xy
Triviaali funktionaali on myos evaluointifunktionaali, funktioarvo itse
(siis “nollas derivaatta”), tietylle argumenttiarvolle,
fi— f(Xo).
Toiset funktionaalit ovat esimerkiksi integraali tietyn alueen o yli:

f— L f(x) dx,

ja niin edelleen.

Voimme kirjoittaa symbolisesti

d

L:&

. merkityksella  L{f} = f(x)

X=X0 X=X0

Funktionaali tai operaattori on lineaarinen, jos

L{af+Bg} = «L{f} + BL{g}, o, B €R.

Muista, ettd kaikki osittaisderivaatat, kuten my6s Laplacen operaattori A,

ovat lineaarisia.

Fysikaalisessa geodesiassa mielenkiintoiset funktionaalit ovat kaik-
ki funktion T(¢,A,R) = T(P,A,1)|,_g, siis pallon muotoisen Maan
pinnan héiridpotentiaalin, funktionaaleja. Teoriassa kéytetddn siis pal-
loapproksimaatiota’, ja pallon pinta, sdde R, vastaa keskimerenpintaa.
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Esimerkiksi pisteen P hédiriopotentiaali Tp LT, A\ R) merenpinnan
tasolla paikalla (¢, A) on sellainen funktionaali:
T(--yR) = T(dp,A,R).
Sopiva funktionaali 16ytyy myos, jos piste P ei ole merenpinnan tasolla:
T(:y -, R) = T(dp, A, 7).

Jos suure ei ole hdiriopotentiaali, vaan vaikkapa painovoima-anomalia
tai luotiviivan poikkeama:

T(') ) R) = E(d)»}\»r)»

T(-,-,R)HAQN},)\,T), T( ' R)i—>1’](d) 7\1’)

Kaikki ndmaé ovat my®0s lineaarisia funktionaaleja. Itse asiassa jos kirjoi-

tetaan
o0 n
T(b,A, 1) :Z — Zan sin®) (apm cos MA + by, SiINMA)
n=2 m=0

jopa pallofunktiokehitelmén kertoimet a,,m, bnm ovat kaikki hdiriopo-
tentiaalin T lineaarisia funktionaaleja:

T('>'>R) = Qnm, T(')')R) '_>bnm-
Tassa T(+, -, R) on lyhenne koko funktiolle

T(G,AR), b€ [-T/2,+7/2], A€ [0,2n).

10.3 Tilastotiede Maan pinnalla

Tilastotieteessd maéadritellddn stokastinen prosessi stokastiseksi suureeksi
eli satunnaissuureeksi, jonka arvojoukko eli kodomeeni on funktioava-

ruus. Toisin sanoen se on satunnaissuure, jonka realisaatioarvot ovat

'Tamad ei ole valttdmatontd, mutta approksimaation aiheuttama virhe on tavallisesti
pieni.
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funktioita. Stokastinen prosessi voi olla ajassa kehittyva suure, jonka
tarkka kayttaytyminen on epdvarmaa. Hyva esimerkki tdstd on satellii-
tin rata. Samalla tavalla kuin reaaliarvoiselle stokastiselle suureelle x
voidaan madritelld odotusarvo E{x} ja varianssi

Lo = Var{x} = E{ <z - E{>_<}>2},

voidaan ndin tehdd myos stokastiselle prosessille. Ainoa ero on, ettd
ndin saadaan funktioita.

Olkoon esimerkiksi stokastinen prosessi x(t) ajan funktio. Silloin
voidaan mddritelld sen varianssifunktio seuraavasti:

def

Cxx (t) = Var{&(t) }

Stokastiselle prosessille voidaan kuitenkin méaritelld paljon enemmaén,
esimerkiksi saman prosessin arvojen kovarianssi eri ajanhetkien vélilla
eli autokovarianssi:

Ax(thtZ) = Cxx (thtZ) d:ef COV{X(t”)E(tZ)} =

= E{ (x(t) = E{x(tn)}) (x(t2) — E{x(t2)}) }

Samalla tavalla, jos on kéytettdvissa kaksi eri prosessia, voidaan niiden
valille méaritella ristikovarianssi:

ny (t] y tz) d:ef COV{X('ﬁ ), E(tZ)} =

— e (sttn) — E{xtn)}) (uit2) ~ Efute}) .

Stokastisen prosessin argumentti on tavallisesti aika t. Geofysiikassa
tutkitaan kuitenkin stokastisia prosesseja, joiden argumentit ovat paik-
koja Maan pinnalla: puhutaan prosesseista, jotka ovat muotoa x(, A).
Auto- ja ristikovarianssien médrittiminen tapahtuu muuten samalla
tavalla, mutta maapallon tapauksessa on olemassa erikoinen ongel-
ma. Stokastinen suure méaritellddn yleisesti suureena x, josta saadaan
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realisaatioita x1,x,, X3, ..., joilla yhdessd on tiettyjd tilastollisia ominai-
suuksia.

Klassinen esimerkki on nopan heitto. Nopan voi heittdd yha uudelleen
ja uudelleen, ja heittojen tuloksilla voi harrastaa tilastotiedettd. Toinen
klassinen esimerkki on mittaus. Saman suureen mittaus voidaan toistaa,

ja toistetaankin, tarkkuuden parantamiseksi.

Maapallon pinnalla méaéritellyn stokastisen prosessin osalta tilanne

on toinen.

Meilléd on vain yksi maapallo.

Téstd syysta tilastotiedettd pitdd harrastaa hieman eri tavalla.

Kun annettuna on stokastinen prosessi — vaikkapa joku geofysi-
kaalinen suure — Maan pinnalla, x(¢$,A), méaaritellddn tilastollisen
odotusarvon E{ } vastineeksi maantieteellinen keskiarvo

M{x} & L] <o, d0—4ﬂf2ﬂj+ﬂ/2 (¢, A) cos b dep dA.

(10.1)
Tassa x(¢, A) on prosessin x yksi ja ainoa realisaatio, joka on olemassa
talla maapallolla.

IImeisesti méaritelmd on jarkevéd vain siind tapauksessa, ettd pro-
sessin x(, A) tilastollinen kdyttdytyminen on samanlainen kaikkialla
Maan pinnalla, sijainnista (¢, A) riippumatta. Tatd kutsutaan homo-
geenisuusolettamukseksi. Se on itse asiassa olettamus, ettd maapallon
pallosymmetria ulottuu kentédn x tilastolliseen kdyttdytymiseen.

Samalla tavalla kuin tilastollinen varianssi méaéariteltiin odotusarvon
perusteella, voimme maaritelld maantieteellisen varianssin:

Cox(d,A) = Var{x(¢, \) defM{(x—M{x}>2}. (10.2)

Painovoima-anomalioiden Ag(¢, A) globaali keskiarvo hividd* niiden
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madritelman perusteella:
M{Ag} =0.
Silloin yhtdlo 10.2 yksinkertaistuu seuraavaksi:

Cagns(drA) = Var{Ag(h,N)} = M{Ag?} = =[] (Ag(0,)* do.

Tdssd annettu maantieteellisen keskiarvon M{-} méaritelmd perustuu
yhden ja ainoan realisaation integrointiin koko maapallon pinnan yli.
Kuten nihtiin, tilastotieteessi keskiarvo maaritellddn hieman eri tavalla,
stokastisen prosessin odotusarvona. Painovoima-anomalioiden tapauk-
sessa se on E{ g }, jossa % on anomalia stokastisena prosessina. Toisin
sanoen se Ag:n arvojen sarja, joka syntyy, jos tarkastellaan loputonta
satunnaisesti syntyneiden maapallojen sarjaa. Ei kovin kdytannollista!

Siind tapauksessa, ettd stokastisen prosessin odotusarvo on sama
kuin integrointimenetelmalld laskettu yhden realisaation keskiarvo —
ja muutkin tilastolliset ominaisuudet ovat vastaavasti samoja — puhu-
taan ergodisesta prosessista. Ergodisuuden todistaminen empiirisesti on
geofysiikassa tavallisesti hankalaa tai mahdotonta.

10.4 Painovoimakentan kovarianssifunktio

Kovarianssifunktion madrittiminen pisteiden P ja Q valilld on monimut-
kaisempaa. Yhtédloiden 10.1 ja 10.2 tapaista ldhestymistapaa ei voida
kédyttdd suoraan, koska sekd Agp ettd Agq:

Agp = Ag(dp,Ap), Agg = Ag(bq,Aq),

voivat liikkkua toisistaan riippumatta koko Maan pinnan yli.

Seuraavassa oletetaan, ettd laskettava kovarianssi riippuu vain pistei-
den Pja Q suhteellisesta sijainnista. Homogeenisessa painovoimakentdssa

*Tdma ei pid4 tarkasti ottaen paikkaansa, jos esimerkiksi anomalioiden laskennassa
kdytetty normaalipainovoimakenttd sisdltdd ilmakehdn massan, mutta merenpinnan
lahelld mitatut painovoima-arvot eivat sisdlld ilmakehan vetovoimaa.
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Kuva 10.1. Geosentrisen kulmaetdisyyden ja atsimuuttikulman méaéaritelma.

kovarianssifunktio ei riipu pisteiden absoluuttisesta sijainnista, vaan
ainoastaan pisteiden P ja Q vilisestd sijaintierosta.

Kirjoitetaan

b = b (dr, Ap, Wrg,xpq), Aq =Aq(dr,Ap, Prg, axprq).

¢ ja Aq ovat laskettavissa’, jos tunnetaan ¢p ja Ap sekd geosentrinen
kulmaetdisyys \pq ja atsimuuttikulma «pq. Katso kuva 10.1.

Nyt voi kirjoittaa
Aga = Agaq (9o (&r) Ar, bra, apa)s Aq (Pr, Aps o, apq) ) =
= Agq (d)P) Ap, PpQ, ‘XPQ))
ja voi madritelld kovarianssifunktioksi

Cagag(Wrq, xpq) ot M{AQP(¢P,7\P) Agq (dr,Ap, Wro, OCPQ)} =

= é%r LAQP(CDPJ\P)AQQ((DPJPJI)PQ’“PQ) dop. (103)

My®s tdssd M on maantieteellinen keskiarvo-operaattori. Ensin kiinni-
tetddn piste Q suhteessa pisteeseen P: sekd atsimuutti apq ettd etdisyys

259
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Ppq pidetddn vakioina“. Piste P, ja piste Q sen mukana, liikutetaan koko
Maan pinnan yli. Lasketaan vastaava integraali koko yksikkopallon op
yli ja jaetaan arvolla 47t

1
Cagag(brg,apq) = M{Agp Agqp) } = o= JL Agp Agq(p) do =

1 (2 (+7/2
= Hrjo fﬂ/z Agp Agqgp) cos ¢ dd dA,

jossa kéytetddn do = cos ¢ d dA, ja cos ¢ on yksikkdpallon koordinaat-
tien (p,A) = (bp, Ap) Jacobin determinantti.

Homogeenisuusolettamuksen lisdksi teemme vield isotropiaolettamuk-
sen: kovarianssifunktio — yleisemmin painovoimakentén tilastollinen
kayttaytyminen — ei riipu pisteparin (P, Q) valisestd suunnasta eli at-
simuutista opg, vaan ainoastaan niiden viélisestd kulmaetdisyydesta
Ppq. Tdamékin on homogeenisuuden lailla maapallon pallosymmetrian
erds ilmenemismuoto. Tdssd tapauksessa voimme laskea maantieteel-
lisen keskiarvon hieman eri tavalla, keskiarvostamalla my6s kaikkien
atsimuuttikulmien apq € [0,27) yli:

Cagag(hrq) = M'{Agr Ago(r} =

1 27
=5 fo M{Agr Agq(r } dopq =

1 2t 27 +7T/2
:Wfo jo _[_71/2 Agp Agq(p) cosd ddp dAdapq. (10.4)

3Puhutaan geodeettisesta pddtehtivisti pallolla.

#Kriittinen lukija voi huomauttaa, ettd vaikka kulmaetdisyys o g on olemassa riippu-
matta maantieteellisten koordinaattien maaritelmaéstd, ndin ei ole atsimuuttikulman
aap tapauksessa: se riippuu meridiaanin paikallisesta suunnasta. Jos yhtélossa 10.3
kulma xag on tavallinen geodeettinen atsimuutti, se ottaa huomioon vain tietyn
mahdollisen atsimuuttiriippuvuuden kuvion. Tdstd syntyy ajatus yleistyksestd atsi-
muuttikulmiin, jotka ovat madriteltyja suhteessa Maan pinnan yleisiin kaarevalinjaisiin
koordinaatteihin.

My®s isotropia tulisi silloin ymmartdd atsimuuttiriippuvuuden puuttumisena ei vain
maantieteellisissd koordinaateissa vaan kaikissa mahdollisissa kaarevalinjaisissa
koordinaateissa.
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Huomautus Maan todellinen painovoimakenttd ei ole kovin homo-
geeninen eikd kovin isotrooppinenkaan, mutta siitd huolimatta
molempia hypoteeseja kdytetddn laajasti.

10.5 Pienimman neliosumman kollokaatio

10.5.1 Stokastiset prosessit yhdessa ulottuvuudessa

Kollokaatio on tilastollinen estimointitekniikka, jota kdytetddn stokastisen
prosessin arvojen estimoimiseksi ja estimaattien epavarmuuden, kuten
keskivirheiden, laskemiseksi.

Olkoon s(t) stokastinen prosessi ja C(ti, t;) sen autokovarianssifunk-
tio. Olkoon lisdksi prosessi stationaarinen, toisin sanoen mille tahansa
kahdelle aikahetkelle t;, t; patee C(t,t;) = C(t; —t;) = C(At). Argu-
mentti t on yleensd aika, mutta se voi olla mikd tahansa parametri,
esimerkiksi kuljettu matka.

Téastd prosessista on tehty havaintoja ajan hetkilld t;, t5, ..., tn, kun
prosessin vastaavat arvot ndilld hetkilld ovat s(t1), s(t2), ..., s(tn).
Oletetaan aluksi, ettd nima arvot ovat virheettomid havaintoarvoja. Silloin
havainnot ovat prosessin s funktioarvot, stokastiset suureet, joiden
varianssi-kovarianssimatriisi voidaan kirjoittaa seuraavasti:

C(ti,t1) C(tr,t2) - C(ti,tn)
Var{s,} = C(tzz,h) C(tzs,tz) C(tz;tN)
C(tnyt1) Cltnyt2) -+ C(tn,tn)

Tatda autokovarianssimatriisia kutsutaan myos s:n signaalivarianssimat-
riisiksi. Tahan kdytetddan symbolia Cyj, sekd matriisin yhdelle alkiolle
Ciy; = C(ti,t;) ettd koko matriisille: Cy; = [C(ti,t),1,j = 1,...,N].
Symboli s; taas merkitsee prosessin arvoista [g (ty),i=1,..., N} koos-
tuvaa vektoria — tai yhtd sen alkioista s(t;).

Huomaa, ettd jos funktio C(t,t’) tai C(At) on tiedossa, koko matriisi
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ja kaikki sen alkiot voidaan laskea silld ehdolla, ettd kaikki argumentti-
arvot eli havaintojen ajanhetket t; ovat myos tiedossa.

Olkoon ongelman asettelu se, ettd pitda estimoida eli predikoida pro-
sessin s arvo ajan hetkelld T, siis s(T), kdyttden hyvaksi ylla kuvattuja
havaintoja s(ti),i=1,..., N.

Samalla tavalla, kun ylla laskettiin s(t;)mn ja s(t;)m véliset kovarians-
sit — signaalivarianssimatriisin Cj; alkiot — lasketaan my®6s s(T):n ja
kaikkien s(t;),i =1, ..., N viliset kovarianssit. Saadaan

Cov{s(T),s(t)} = | C(T,t1) C(Tta) -~ C(Ttn) |-

Tahédn voidaan kayttdd merkintdd Crj. On oletettu, ettd on vain yksi
aikahetki T, johon estimointi kohdistuu. Yleistys tilanteeseen, jossa on
useita T,, p =1, ..., M, on suoraviivainen. Silloin signaalikovarianssi-
matriisista tulee M x N -kokoinen:

C(Ti,t1) C(T,t2) -+ C(Ty,tn)
COV{§<TP))§M}: C(Tzz,h) C(Tz:,tz) C(Tzz,tN)
C(Twvyt1) C(Tmyt2) -+ C(Twm,tn)

Tahédn voidaan kayttdd yleisempdd merkintdd C,;.

10.5.2 Signaali ja kohina

Prosessia s(t) kutsutaan signaaliksi, joka on fysikaalinen ilmio, josta
olemme kiinnostuneita. On my0ds olemassa fysikaalisia ilmi6itd, jotka
ovat muuten samanlaisia, mutta joista me emme ole kiinnostuneita:
painvastoin haluamme poistaa niiden vaikutuksen. Sellaisia stokastisia
prosesseja kutsutaan kohinaksi.

Kun suoritetaan havainto, jonka tarkoitus on saada arvo suureelle
s(ti), saamme todellisuudessa arvon, joka ei ole absoluuttisen tarkka.
Todellinen havainto on siis

€ = s(ty) +n;. (10.5)
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Tassd n; on stokastinen suure: havaintovirhe eli kohina. Olkoon sen
varianssi, tai tarkemmin useiden havaintojen yhteinen kohinavarianssi-
matriisi, Di;. Tdméd on samanlainen matriisi kuin ylld C;;: molemmat
ovat symmetrisid ja positiivisesti definiittejd. Ainoa ero on, ettd Dj;
edustaa kohinaa, ilmiotd, josta emme ole kiinnostuneita. Usein saa olet-
taa, ettd kahden eri havainnon ¢, ja {; virheet n, ja n; eivét korreloidu,

jolloin Dj; on ldvistdjamatriisi.

10.5.3 Estimaattori ja ennustusvarianssi

Nyt rakennetaan estimaattori
~ def
S(Tp) = Z Apils,
i

kaytettavissd olevien havaintojen {; lineaariyhdistelmand. Taman esti-
maattorin eldmén tarkoitus on paéstd mahdollisimman lahelle s(T,).
Siis minimoitava suure on erotus

S(Tp) —5(Tp) = Apils —5(Tp) = Api (s(ti) + 1) —5(Tp).

Téssa jatettiin kirjoitusmukavuuden vuoksi summausmerkki ) pois
(Einsteinin summauskonventio): Summaamme aina vierekkaisten, ident-
tisten indeksien, tdssd tapauksessa i:n, yli.

Tutkitaan tdméan erotuksen varianssi, niin sanottu ennustusvarianssi:

Lpp = Var{ (Tp) _§(TP)}°

Kaytamme hyvéaksi varianssien kasautumislakea, ylla annettuja notaatioita
sekd tietoamme, ettd tuskinpa havaintoprosessin kohinan n ja signaalin
s valilld on olemassa fysikaalista yhteyttd eli korrelaatiota:

COV{(§(ti)+ﬂi))( J)}

= Cov{s(’t1 } + COV{TII,TIJ} CIJ + Dl])

ja°
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Zpa = Cov{ (3(1) = (1)), (3(7) ~5(72)) | -
= Api Cov{(s(ti) +n-), (s (tJ) +n; )}qu + COV{§(Tp))§(Tq)} —
— Ayi Cov { } _ COV{g(Tp),g(tj)}/\jq -
=Api (Cy + Dn) NAjq + Cpq — ApiCiq — CpjAjq. (10.6)
Varianssit eli matriisin paalavistijan alkiot £, saadaan nyt asettamalla
q=pr
10.5.4 Optimaalisuuden osoitus

Tédssd osoitetaan, ettd optimaalinen estimaattori on todella se, joka
tuottaa pienimmaét mahdolliset varianssit. Valitse

def
/\p] - Cp1 (Cm] + Dl))

Silloin, yhtélostd 10.6 ja kdyttden hyviksi matriisien C ja D symmetri-
syyttd, saadaan
Lpp = Cpi (Ci)' + Dii)_] Cip + Cpp —
— Cpi (Cyj +Dyy) ™' Cjp — Cpi (Cyy + D) ™' Gy =
= Cpp — Cpi (Cij + Dij)_] ij. (10.7)
Tutkitaan seuraavaksi vaihtoehtoinen valinta
Ap; = Cpi (Cij + D) " + 8A,,;.

Tassd tapauksessa saadaan sijoittamalla

I I I

A\ A

Zhop = Api (Cij + Dij) Ajp + Cpp — ApiCjp — CpiAip,

jossa

SMatriisi Ciq on matriisin Cp;, matriisi Ajq matriisin A, transpoosi.
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I=Api (Cy +Dy) Ajp =
- (cpi (Cyy +Dy) '+ SAPj) (Cy + Dyj) ((Cjk +Dj) " Crp + 5/\kp) -
= Cpi (C=+Bi) ' Cjp T EpdAyy +8A57ET + 5A,: (Cij + Dyj) §A,

II=—ApCjp = — (Cpi (Cy+Dy) ' + 6/\pi) Cip =
= — Cpi [Cy+Di) " Cjp —BAET
ja
= — CpiAip = — Cpi ((Cyy+Dig) ™' Cip + 0, ) =
= — Cpi (Cij + Dyj) ' Cjp=EptdAiy,
lopputuloksena

1 I

Z;p = CPP - Cpi (Cii + Dijr1 Cip + 6Api (Cij + Dij) 5/\jp.

Tédssd viimeinen termi — ainoa ero tulokseen 10.7 verrattuna — on
positiivinen, koska matriisit Cy; ja Dy; ovat positiivisesti definiitteja:
L., > Lpp, paitsijos 8/, = 0. Toisin sanoen ylld annettu ratkaisu

Api = Cpi (Cy + Di)’)il = §(Tp) = Cpi (Cyj + Dii)i] 4

on optimaalinen pienimmaén nelidsumman — tarkemmin, ennustusva-

rianssin X,, minimoimisen — merkityksessa.

10.5.5 Painovoima-anomalioiden kovarianssifunktio

Pienimman neliosumman kollokaatiota kdytetddn paljon maanpinnan
painovoima-arvojen ja painovoimakentdn muiden funktionaaliarvojen
optimaaliseksi estimoimiseksi.
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Jos on kaksi pistettd P ja Q, joiden mitatut painovoima-anomaliat ovat
Ag, = Ag(dp,Ap) ja ﬂQ = Ag(¢q,Aq), ndiden kahden anomalian
vdlinen kovarianssin

Cov{Ag,, Ag, |
madrittdiminen kiinnostaa. Kuten jo argumentoitiin osiossa 10.4, voim-
me empiirisesti saada sellaisen kovarianssin vain tutkimalla kaikki
pisteparit (P, Q), jotka ovat samassa keskindisessd asennossa maailman
ympdri, ja ottamalla niiden keskiarvon kéyttden operaattoria M tai M'.

Tavallisesti kovarianssin oletetaan riippuvan vain pisteiden P ja Q
vélisestd geosentrisestd kulmaetdisyydestd . Silloin puhutaan isotroop-
pisesta prosessista Ag(, A). Kovarianssi on

Cov{Agp,Agq} = M'{AgpAgqr } = C(WPrq).

Usein kéytetty painovoima-anomalioiden kovarianssifunktio on Hirvo-
sen® kovarianssifunktio:
Co
R RECTIN
jossa Co = C(0) ja Yo ovat painovoimakentan kayttdytymistd kuvaa-
via parametreja. Suuretta Co = Var{Ag(¢,A)} = M{Ag?} kutsutaan
signaalivarianssiksi ja suuretta o korrelaatiopituudeksi. o on se etdi-

(10.8)

syys, jolla eri pisteiden painovoima-anomalioiden vaélilld on vield 50 %
korrelaatiota?.
Paikallisissa sovelluksissa kdytetddan kulmaetdisyyden 1 sijasta line-

aarista etdisyytta
s = R,

®Reino Antero Hirvonen (1908-1989) oli suomalainen geodeetti ja Maan painovoima-
kentén tutkija.

7Korrelaatio on Co
Cov{AgyAge} 14 (Vfpe)®

Jarfag Parfag ) YOS 1k (b))
joka on 0,5 kun P = y.

Corr{ﬁp, EQ} =
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Kuva 10.2. Hirvosen kovarianssifunktio kahdessa ulottuvuudessa. Oletettu
onCo=1vpo=1.

jossa R on maapallon sdde. Silloin

_ —CO .
) G

Tama yhtalo johdettiin Yhdysvaltain Ohion osavaltion painovoima-ai-
neistosta, mutta se patee laajemminkin. C(0) = C,, signaalivarianssi.
My®os suuretta d = R, kutsutaan korrelaatiopituudeksi. Se on etdisyys
d,jolla C(d) = %Co, kuten yhtdlostd nakyy.

Suure C, vaihtelee huomattavasti alueesta toiseen, sadoista tuhansiin
mGal?, ja on yleensa suurimmillaan vuoristoalueilla. Suure d on yleensi
muutaman kymmenen kilometrin suuruusluokkaa.

Vaihtoehtoiset funktiot, joita kdytetddn usein paikallisissa sovelluk-
sissa ovat esimerkiksi stationaarisen Gaussin ja Markovin prosessin
kovarianssifunktio sekd sen kvadraattinen variantti:

C(y) = Co exp(—%), C(h) = Coexp (_ (%f)
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Kuva 10.3. Esimerkki pienimmén neliésumman kollokaatiosta. Tdssd on an-
nettuna kaksi datapistg’icé Ag, ja Ag, (tdhtid), ja piirretty pinta
antaa estimoitua arvoa Agp alueen jokaiselle pisteelle P. Kadytetdan
siis pienimman nelidsumman kollokaatiota painovoimadatan inter-

ja ekstrapolointiin.

10.5.6  Pienimman nelibsumman kollokaatio

painovoima-anomalioille

Jos onannettuna N pistettd P;,i = 1,...,N,joissa on mitattu painovoima-
g($1,Ai), voidaan, kuten ylld,

arvot ja laskettu anomaliat Ag. =
rakentaa signaalivarianssimatriisi

Cyj def Var{ﬂi} =

Co C(12) -+ C(Pin) Co Ciz -+ Cin
_ C(W21) Co - C(Wan) _ Ca G -+ Con
C(bn1) C(Wnz2) -+ Co Cnt Cn2 - G

jossa kaikki alkiot C(1p;;) lasketaan ylld annetun kovarianssifunktion

10.8 avulla.
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Jos lasketaan my®s painovoimaltaan tuntemattomalle pisteelle P:

Cov{Ag, Ag,} = [ Cwm) Clra) - Clbpn) |

saadaan samalla tavalla kuin ennen pienimmdin nelidsumman kollokaation

def
- CPi)

ratkaisuksi
A\gp = Cpi (Cij + Dij)il gj ~ CPiCi_j]g)w

jossa ¢ = &j + n; on pisteissd j = 1, ..., N suoritetut painovoima-
anomaliahavainnot. Matriisi Djj, joka jatetddn huomiotta, kuvailee ha-
vaintojen tekemisen yhteydessd esiintyvda satunnaista havaintovirhettd,
mittausepdavarmuutta eli kohinaa n;. Usein Dy; on lavistdjamatriisi eli
havainnot ovat tilastollisesti riippumattomia toisistaan eivatka korreloi
keskenddn.

Voimme laskea myos ratkaisun tarkkuusarvion, ennustusvarianssin,
yhtdld 10.11:

Zpp = Co — Cpi (Cyj + Dyy) ' Cjp ~ Co — CpiCy' Cyp
yhden tuntemattoman pisteen P tapauksessa. Sen nelidjuuri

Oagr =V Xpp

on estimaattorin &;p keskivirhe.

10.5.7 Laskuesimerkki

Katso kuva 10.4. Annettuna on kaksi pistettd, joissa painovoima on mitat-
tu ja painovoima-anomaliat laskettu: Ag, = 15mGal, Ag, = 20 mGal.
Koordinaatit x- ja y-suunnassa ovat kilometreissa. Oletetaan, ettd eri
pisteiden painovoima-anomalioiden vélilld on voimassa Hirvosen kova-

rianssifunktio,
Co

T (s/a)”
jossa d = 20km ja Cy = £1000 mGal?. Tadmaén lisdksi oletetaan, ettd suo-

C(s)

ritetut painovoimamittaukset — mukaan lukien painovoimapisteiden
korkeuksien méaritys — ovat virheettomid. Siis Di; =0,1,j =1, 2.
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X
30| xl (15 mGal)
. oP/
7 20 mGal)
20 /// --------- )(2(
10| °p
Y

10 20 30
Kuva 10.4. Pienimman neliésumman kollokaation laskuesimerkki.

Kysymys Laske pisteen P painovoima-anomalian estimaatti &]P ja sen
keskivirhe oag, = v2Zpp.

Vastaus Lasketaan ensin etdisyydet s ja vastaavat kovarianssit C.

st = (130 20)% + (20 - 30)2) kan® = 200kn?,

Cry = Cay = % — 666,66. .. mGal’,
s2p = ((30 —10)% + (20— 10)2> km? = 500 km?,
Cip = % _ 444,44 ... mGal,

s2p = ((zo —10)% + (30 — 10)2) km? = 500 km?,
Cap = % _ 444,44 ... mGal.

Téasta seuraa

Cii C 1000 666,66
~Cy=| T TP = % | mGal?,
Cai Cx2 666,66 1000
ja sen kdanteismatriisi
_ 0,0018 —0,0012
(Cij + Dyj) "= [ ’ ’ mGal 2.

—0,0012  0,0018
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Lisédksi
Cri=| Cpi Cpa | = | 444,44 444,44 | mGar®
Kun havaintojen vektori on

Ag,

Ag. = Gal
9 Ag, misal,

—)

IRRE
120

saadaan tuloksena

—~

Agp =
0,0018 —0,0012 1 [ 15 B
— [ 444,44 444,44] [_0)0012 0’0018] lzolmcal_
— 9,333 mGal.

Tarkkuus, ennustusvarianssi, yhtdlo 10.11:

Zpp = Cpp — Cpi (Cyy + D*'Ll'r1 Cip =
0,0018 —0,0012 444,44
—0,0012  0,0018 444,44

= 762,96 mGal?,

—Co— [ 444,44 444,44 } [ ] mGal? =

siis
O'AgP = v/ pr = :|:27,622 mGal.

Tuloksen yhteenveto:
Agp = 9,333 & 27,622 mGal.

Havaitaan, ettd 16ytynyt painovoima-anomalian estimaatti on
paljon pienempi kuin sen oma epdvarmuus, eli se ei eroa mer-
kittdvisti nollasta. itse asiassa kun jatetddn havainnot kokonaan
kayttamattd, a priori estimaatti on

Agp = 0 £ v/1000mGal = 0 + 31,623 mGal,
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melkein yhté hyva.
Jos sen sijaan olisimme kayttdneet pistettd P’ pisteiden 1 ja 2
valilld, paikassa (25 km, 25 km), silloin

Cpriy = Cpry — 1000 mGa12/(1 +50/400) = 888,89 mGal’

ja Agp, = 18,667 + 7,201 mGal, miki on selvasti parempi kuin 4
priori nolla-estimaatti.
Jos olisi valittu kaytettdviksi Gaussin ja Markovin kovarianssi-
funktio

C = Coexp(— 5/a),
olisi saatu tuloksiksi Egp = 7,664 £ 29,272 mGal alkuperiéiselle
pistesijainnille ja Agp, = 16,460 & 18,426 mGal siirretylle sijain-
nille.

10.5.8 Pienimman nelibsumman kollokaation teoria

Y1la esitettiin erds pienimmaéan neliGsumman kollokaation (LSC, least-
squares collocation) suosittu sovellus. Tassa tutkitaan menetelmaa ylei-
semmaltd kannalta. Perusyhtélo on

f=Ciy(Cyq+Dgg) ' (g+n). (10.9)

Vektori g sisdltdd havaintosuureita g, vektori n sisdltdd havaintojen

virheet eli epdvarmuuden tai kohinan ja f on predikoitavana olevien
suureiden f, vektori.

Molemmat vektorit g ja T voivat olla esimerkiksi painovoima-anoma-
lioita, jolloin on kyseessa homogeeninen prediktio, erddnlainen inter- tai
ekstrapolaatio. Yleisemmin /f\ja g ovat keskendén erityyppisid, esimer-
kiksi f koostuu geoidin korkeuksista N, ja g painovoima-anomalioista
Ag,. Jalkimmadisessd tapauksessa Stokesin yhtild on “piilevdnd” mukana
C-matriisien rakenteessa.

Matriisit rakennetaan kovarianssifunktioista. Niiden alkiot voidaan
esittdd seuraavasti®:
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[Cfg}pi =M {fp9:}, [ng]ij =M {gig;}, [Dgg]ij =E{nmny},
jossa n;, vektorin n alkio, edustaa havaintoyhtdldssd 10.5 esiintyvda

havaintoprosessin epdvarmuutta:
¢, =gi +n,;, elivastaavasti £=g+n.

{ on itse havaintoarvojen vektori, mukaan lukien havaitsemisen epévar-
muus n.

D-matriisi on havaintojen epdvarmuuden eli kohinan varianssimatriisi,
joka kuvaa siis havaintoprosessia eikd painovoimakentdn ominaisuutta.
Varianssimatriisin M'{Ag; Ag; } arvot voivat olla niinkin suuria kuin
1200 mGal®. Painovoimahavaintojen varianssimatriisin E{ nn, } arvot
voivat puolestaan olla mittaustekniikasta riippuen paljon pienempid,
esimerkiksi niinkin pienid kuin 0,01 mGal®.

Tama ei pade blokkikeskiarvojen tapauksessa — esimerkiksi 1° x 1°
-kokoisten blokkien keskiarvot hajanaisista havaintopisteistd laskettuina

— koska arvot ovat usein hyvin epéatarkkoja.

Pienimmaén nelidsumman kollokaatiomenetelmén suurin vahvuus on
sen joustavuus. Eri havaintotyypit voidaan késitelld yhden yhtendisen
teorian ja menetelmén avulla, havaintopisteiden paikat ovat vapaita
ja tulos saadaan suoraan vapaasti valittaviksi suureiksi ja paikkoihin,
joihin niitd halutaan.

10.6 Painovoima-anomalioiden prediktio

Jos laskettavana eli estimoitavana oleva suure f on samantyyppinen
kuin havaittu suure g, puhutaan homogeenisesta prediktiosta. Esimerkiksi
alaosiossa 10.5.6 jo esitetty painovoima-anomalioiden prediktion yhtdlo
saadaan yhtdlostd 10.9 sijoittamalla:

Agp = Cpi (Cyj + Dyj) ' 4. (10.10)

8Signaalikovarianssien evaluoimiseksi kiytetaan tassa maantieteellisti keskiarvon M'{-}.
Nidin ollen funktioita f ja g ei endd katsota stokastisiksi. Oletetaan, ettd niiden globaali
maantieteellinen keskiarvo hiviaa: M{f} = M{g} =0.
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Tassd on useita pisteitd j, joissa painovoima on mitattuna: vaikkapa N
havaintoa ﬁj = ﬂj +n,j = 1, ..., N. Predikoitavia pisteitd voi olla
yksi eli P tai useita. Matriisit Cy; ja Dy; ovat nelion muotoisia, ja niiden
summan kadnteismatriisi on olemassa. Cp; on suorakulmainen matriisi.
Jos on vain yksi piste P, Cp; on 1 x N -kokoinen rivimatriisi.

Prediktion virhe on nyt erotussuure’ Agp — Ag,,, ja sen varianssi
("ennustusvarianssi”) on

Lpp < Var{&)l’ _ﬂp} =
— Var{Agy } + Var{gp} - COV{AgP,gp} - Cov{%), AAgP}.
Téassd (varianssien kasautumislaki sovellettuna yhtdloon 10.10):

Var{g\gp} — Cpi (Cij + Dij) " (Cire + Dji) (Cug + Die) ™' Cop =
= Cpy (Cy + Dij)_1 Cjp

ja
COV{&JP,EP} = COV{CPi (Cyj + Dij)*1 (ﬂ] +n]~>,ﬁp} —
= Cpi (Cyj +Dyy) ! <Cov{£j,ﬂp} + o) _
= Cpi (Cyy + Dijr1 Cip,
ja my0s

COV{%p)&JP} = Cpi(Cij + Di]‘)71c]’p

sekéd lopuksi signaalin varianssi Var{ Ag P} = Cpp.
Tassa Cip (eli Cjp, elijopa C¢p) on matriisin Cp; transpoosi. Matriisi
(Cy; + Dy )" on symmetrisend oma transpoosinsa.

90le tietoinen, etta tissd AgP on painovoima-anomalian todellinen arvo pisteessd P,
jota emme tunne empiirisesti. Mitattu arvo olisi {p = Ag,, + np, jossa np on paino-
voimahavainnon satunnainen virhe eli “kohina”.
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Lopputulos on

Zpp = Cpi(Cyj + Dij)i] Cip + Cpp —
— Cpi(Ci)- + Dij)_1 CjP - CPi(Ci]’ =+ Dij)_1 C)’P =
= Cpp — Cpi(Cy5 + Dij)” Cjp.

Siind tapauksessa, ettd Di; < Cij, saadaan yksinkertaisempi ja usein
kaytetty tulos:
Spp ~ Cpp — CpiC;j1 ij. (10.11)

Rajatapauksia
o Piste P on kaukana kaikista pisteistd i. Silloin Cp; =~ 0 ja
2pp ~ Cpp, siis prediktio on kdytdnnossd mahdoton ja pre-
diktion yhtdlo 10.10 antaa arvon nolla. Prediktion keskivirhe
Oagr = V/Zpp On sama kuin painovoima-anomaliasignaalin
vaihtelevuus 1/Cpp, signaalivarianssin nelijuuri.

o Piste P on identtinen erddn pisteen i kanssa. Silloin jos
kédytetddn vain tuota pistettd i, saadaan

Zpp = Cpp — CppCppCpp =0,

ei prediktiovirhettd laisinkaan. Prediktiopisteen arvo kun
oli jo tiedossa!

Kuitenkin jos Dpp # 0 (mutta pieni), on tulos Zpp ~ Dpp.

10.7 Kovarianssifunktio ja astevarianssit

10.7.1 Hairiépotentiaalin kovarianssifunktio

Teoreettisessa tyossd kdytetddn painovoima-anomalioiden sijasta mie-
luummin hdiridpotentiaalin T kovarianssifunktiota Maan pinnalla:

def

K(P,Q) = K(Wpq, arg) = M{TpTop) },



276

10 TILASTOLLISET MENETELMAT

tai vaihtoehtoisesti kdyttden yhtdloa 10.4:

K(P,Q) =K(Wpq) = M {TrTop)} =

1 27t 27 +7‘[/2
:Wfo fo f_n/z TrTopycos ¢ dp dAdapq. (10.12)

Tassd on oletettu, ettd hdiridpotentiaali on isotrooppinen: K ei riipu ousta
vaan ainoastaan 1:sta.

Valitaan yksikkopallon pinnalla koordinaattijdrjestelm4, jossa piste
P on “napa”. Tdssd jdrjestelmdssa parametrit apg ja Ppg ovat pis-
teen Q pallokoordinaatit. Kovarianssifunktio kehitetddn seuraavaksi
summaksi: o
K) = Z Z k—annm(ll)v )
n=2m=—-n

jossa Ynm on médritelty yhtdlon 3.3 tavoin:

Pam(cos) cos ma josm >0,
Yom(, o) = . . (10-13)
Phimi(cos)sin|m|oc jos m < 0.

Isotropian perusteella kaikki kertoimet, joiden jdrjestysluku m # O,
havidvit: yhtdlon 10.13 oikealla puolella olevat lausekkeet voivat olla
vain riippumattomia a:sta, jos m = 0. Siis

KW) =D knoYno(h) = ) knPn(cosp). (10.14)
n=2 n=2

Kertoimia k,, kutsutaan (hdiridpotentiaalin) astevariansseiksi. Isotroop-

piselle kovarianssifunktiolle K(1{) astevarianssien k,, n = 2, 3, ...

informaatiosisdltd on sama kuin itse funktion, ja se on itse asiassa sen

spektraaliesitys.
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10.7.2 Astevarianssit ja pallofunktiokertoimet

Kerro yhtdlo 10.14 lausekkeen P,/ (cos 1) sin kanssa ja integroi:

[TKO) Pslcos ) sinth dip =
=) kn fon P (cos ) Pys(cos ) sinp dip =

n=2 0 +1 2
= an 1 Pr(t) Pn(t) dt:kn’m)
kdyttden ortogonaalisuusehtoa 3.5. Seuraa, ettd
kn = an—i— L ) Pn(cos V) siny d, (10.15)

siis jos K(1)) on annettuna, voimme laskea kaikki k.
Sijoittamalla K(1pq ) yhtdlostd 10.12 saadaan, lyhennyksilld = 1Ppg,
X = XpQ:

K()

A

2 1 27 27 +7’[/2 ‘
n+ f 82 j f f TpTo(p)cos ¢ dd dA da Py (cos ) sinp dp =
I

27 7T 27
- 2;16:2] f+n//22 j f Tqp) Pn(cos) sin dip daccos ¢ d dA.

Tassd olemme vaihtaneet integraalien jdrjestystd, kuten on sallittu, ja

siirtdneet Tp:n toiseen paikkaan.

Lauseke I on yksikkopallon pintaintegraali:
27
I= j j TQ COS'll)pQ) Slnll)pQ dll)pQ dO(pQ =
4m

= ff To(p) Pn(cospq) dog = T

jossa T p = Tr(Pp,Ap) = T (P, A). T,, on hédiriopotentiaalin T harmo-
nisen asteluvun n osuus, vertaile asteosuusyhtdld 3.9. Sijoittamalla
saadaan

= J"ZHJM/Z ToTo.p cos b ddp dA =

= [ TTado = M{TT} = L [[ 1200 =m{12},
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M-operaattorin mddritelmdn mukaan ja ottaen huomioon funktioiden
T, keskindinen ortogonaalisuus.

Astevarianssit ovat hiiridpotentiaalin asteosuuksien maantieteelliset
varianssit.

Kirjoitetaan yhtdlod 4.11 seuraten, mutta kdyttden yhtdlon 3.15 méari-

telmia:
T(d,A 1) =
GM & R\™H!
- R - T; <?>

jossa normaalikenttd, kertoimet C,, on poistettu vihentamalla:

n

Prm(sin @) (8Cnm coSMA + Sy sinmA)
0

m

66nO - EnO - C*

~ josn parillinen,

5Chm = Cnm muuten.
Nahdaan, etta
GMg v« = . — _——_—
Tul(d,A) = —% Prm(sin @) (8Cnm cosmA + Sy sinmA) .
m=0
Saadaan
2 n
1 5 - ([ GMg —2 -2
kn — E J:[O_ Tn do- — <Tn : Tn>6 - ( R Z (écnm + Snm) :

m=0

Tassd on kédytetty hyvéksi tdysin normalisoitujen kantafunktioiden
Prm(sin &) cos mA ja P, (sin ¢) sin mA ortonormaaliutta yksikkpal-
lon o pinnalla. Siis

Hiiriépotentiaalin astevarianssit k., voidaan laskea suoraan pallo-
funktiokehitelmin kertoimista.

Kirjallisuudesta 16ytyy monia vaihtoehtoisia kirjoitustapoja, kuten
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10.8 Kovarianssien kasautumislaki eri suureiden valilla

Yl1l4 johdettua héiriopotentiaalin kovarianssifunktiota K voidaan kayt-
tad myos muiden suureiden kovarianssifunktioiden johtamiseksi. Tama
toimii periaatteessa suureille, jotka ovat maapallon pinnan héiriépo-
tentiaalin T(-, -, R) lineaarisia funktionaaleja, kuten esitettiin osiossa
10.2.

10.8.1 Esimerkki: potentiaalin jatkaminen ylospain

Kirjoitetaan héiriopotentiaali avaruudessa T(, A, ) pintahdiridpotenti-
aalin T(¢,A,R) = T(-, -, R) funktionaaliksi. Asteosuuksien T,, madritel-
mén perusteella,

o¢]

T(,AR) = > Tl ),

n=2

patee o

T(p,AT) = Z()n“ (7).

Symbolisesti
T(d)) A, T‘) = L{T() R R)}

Tassa L on lineaarinen funktionaali

L = Z (B .,

jossa funktiot f,, on asteosuusyhtdlon 3.9 mukaisesti mééritelty, niin
ettd pallon muotoisen Maan merenpinnalla

f=> fu.
n=2
Symbolisesti

L{f} = iL”fn,
n=2

jossa
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on funktionaalin L spektraaliesitys.

Voimme kirjoittaa tietylli pisteelli P, paikka (¢p,Ap, Tp) avaruudessa:

Lp{f} - ZLBfﬂ-,P)
n=2

b= (2

Konkreettisesti hdiridpotentiaalille T(¢p, Ap, Tp) pisteesséd P tima mer-

jossa

kitsee
i o R n+1
(& Apy ) = Lo{T(, R} =Y LiTap =D () Tal®r,Ae)-
n=2 n=2

Hairiopotentiaalin T kovarianssifunktio auaruudessa on

K(re,7q, Wpq) = M'{T(d’P»?‘PWP) T(¢Q(P)>7\Q(P>»TQ)} =
= M{Lo{T(, 5 R} Loy (T, R} =

_ M’{Z Tr) Y (LB’TH,)Q(P))} _

n=2 n’'=2
o0 o
=Y ) LLyMA{TupTuqm}-
n=2n’=2

Ortogonaalisuuden perusteella’ M'{T, p T/ q(p)} = 0josn # n'. Siis

o0

K(rp, Ty bpq) = ) LRLEM{TupTu q(r }- (10.16)
n=2

Nyt merenpinnan tasolla kaikki Ly = L% =1, eli

K(¥po) Z M {To p T q(p) }-

Vertaamalla yhtdlon 10.14

K(bpg) Zk P,.(cos) (10.14)

=2
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kanssa ndhdéan, etta
M {T,pTo,Q(p) } = KnPrlcoshrq).

Tama ei tule yllatyksend: jos spatiaalinen kovarianssifunktio on
isotrooppinen, sen yleisen muodon on oltava

(o]

K(rp, T, ¥pq) Z (rpyTq) K¥ (Wrq),

ja K¥(Ppq) on oltava samaa muotoa kuin K() yhtilsséd 10.14, ja
samasta syysta:

K¥ (Wpq) = knPn(cos¥pq).
Merenpinnalla K7, (R, R) = Tja yhtil$ 10.15 antaa kertoimet k,.
Yhtélostd 10.16 tulee nyt"”

19Kuten osion 8.5 lausekkeen r Ag harmonisuuden todistuksessa, on otettava mukaan
kolmas ulottuvuus.

1 2
M/{Tn,PTn’,Q(P)} = 3 J;) " M{Tn,P TTI’,Q(P)} d(xPQ —

1 27
- M{Tn,P 3o jo Tor.0(P) doch} — M{Tn pTO P}

madritelmalla

TQ P = ﬂ 0 Tn’,Q(P] d(XPQ.

Kolmiulotteisesti r:n kanssa:

1 27

TS,P(T) =7 Jo

1 2 s\ +1
Thqee) (1) d“PQ:ﬂfo (ﬁ) T q(p) (R) dapq =

r\n'+1 1 2= ryn/+1
~(R) zh Tem®dae=(g) TR

Tama osoittaa, ettad TT?, ’P(T) on tdysin laillinen asteluvun n’ avaruuspallofunktio,
TO P = T » p(R) laillinen pintapallofunktio ja pallofunktioiden ortogonaalisuus
pétee:

M {Top T} =M{Tup O} =0 josn#n'.
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K(rp, Ty Wro) = ) LpLGknPn(cosbrq) =

n=2

=3 (B)7 () rafeosna) =

00 Rz n+1
= Z (T‘PTQ> knPn(cosd)pQ). (10.17)

Tassd olemme ilmaisseet avaruuden héiriopotentiaalin T(¢, A, r) kova-
rianssifunktion vastaavan merenpinnan héiriépotentiaalin T(¢, A, R) as-
tevarianssien k, kehitelmina. Sovelsimme kovarianssien kasautumislakea
funktion K kehitelmé&an 10.14. Ndin olemme saaneet hdiridpotentiaa-
lille kolmiulotteisen kovarianssifunktion, jollainen tarvitaan esimerkiksi
vuoristomaissa ja ilma- ja avaruussovelluksissa.

10.8.2 Esimerkki: painovoima-anomalioiden kovarianssifunktio

Tieddamme yhtdlon 5.7 perusteella, ettd painovoima-anomalioiden ja
héiriopotentiaalin vililld on olemassa seuraava yhteys:

sa= 3 2L (5)

symbolisesti: Ag = Lag{T} sopivalle operaattorille Lg:

x N N —1/R n+1
Lag{f} = Z Lagfn, Ag — = T <?) :
n=2

Taas konkreettisessa pisteessd P,

Ag(bp,Ap, ) = Lagp{T(,R)} =

x® " x© n— ] R n+1
- Z LAgpTnp = Z Tp (ﬁ) Tnp.
n=2

n=2

" Tamad toimii niin siististi, koska tdsséd tapauksessa operaattori L™ on luonteeltaan
. R n+1
kerroin, (R/+)"".
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2873

Voidaan ndyttdd samalla tavalla kuin yll4, ettd
Cov{Agr,Agq} = M'{AgrAgqer } =

= Z LZg,PLTAlg,QM,{Tn>PT“xQ(P)} =
n=2

_ i nT—P] <T]i)n+1 n—1 < R >n+1knPn(COSIpr) _

.
n=2 Q

00 2 n+2 . 2
- Z (rErQ) (n—R]> Kn P (05 Prq)-

Usein kirjoitetaan

C(rp, o, bro) & Cov{Age, Ago} = M'{Agr Ago(r} =

e8] Rz n+2
_ Z <TPTQ) cnPn(cosPpq),
n=2

jossa painovoima-anomalioiden astevarianssit ovat

o= (") o

Vastaavasti lasketaan myos “sekakovarianssit” hdiridpotentiaalin ja

painovoima-anomalian vilille:

COV{TP, AgQ} =

=M {TeAgqp)} =D LpLA, oM {TupTu o} =
n=2

=3 () () aleosine) -

T
n=2 Q

e n-1/( R s
_; T (h:ﬁg) knPn (cosPpo).

Kaikki ndma ovat kovarianssien kulkeutumisen eli kasautumisen esimerk-

kejd sovellettuna sarjakehitelméaan:

Cov{Li{Toh, Lo {To}} = 3 11 L3 M {Tup T i)} =
) =) LT pLZqknPn(cosbrg),
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mielivaltaisille lineaarisille funktionaaleille
Li{Tp} = ZL?,an,m L{To} = ZLE,QTn,@

jossa T p = T (dp,Ap) ja Tn,o = Tn(do,Aq) ovat Maan pinnan héirio-
potentiaalin asteosuuksia. Haaste jokaisessa tapauksessa on identifioida
taman lineaarisen funktionaalin spektraalimuoto. Tama tehdadan kehit-
tamalld kyseessd oleva suure funktioihin T, ja poimimalla 16ytyneet
kertoimet kehitelméstd. Namaé kertoimet on vérjatty ylld punaisiksi ja
sinisiksi.

10.9 Globaalit kovarianssifunktiot

Empiirisid kovarianssifunktioita on laskettu paljon, vaikka koko maa-
palloa koskevia empiirisid kovarianssifunktioita on olemassa vain muu-
tama. Tavallisesti ne annetaan astevarianssikaavan muodossa. Kuuluisin
on William Kaulan'* havaitsema nyrkkisdanto (Rapp, 1989):

2n+1
n4 -

Cn = <n_gl>2 Kn,

jossa ¢y, ovat painovoima-anomalioiden astevarianssit, saadaan

kn = o

Kirjoittamalla

Cn:o(2n+1 <n—1>2N 2u

n4 R ~ nR2’
Téassd oo on planeettakohtainen vakio, Kaulan arvion mukaan o =
10719 (GMa/a, ).

Kaulan sdanto ei pidd paikkaansa kovin tarkasti. Se patee aika hyvin
myos Marsin painovoimakentille, tietenkin eri vakioarvolla (Yuan ym.,
2001).

?William M. Kaula (1926—2000) oli amerikkalainen geofyysikko ja avaruusgeodeetti,
joka tutki Maan painovoimakentdn maédritystd satelliittigeodesian keinoin.
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Toinen kuuluisa sdént6 on Tscherningin ja Rappin kaava (Tscherning
ja Rapp, 1974):

¢ = An—1) :<n—1>zkn.

(n—2) (n+B) R

Vakiot ovat tekijoiden mukaan A = 425.28 mGal® ja B = 24 (tarkasti).
Teknisend yksityiskohtana valitaan tavallisesti R = Rg = 0.999R, Maan
sisdlld olevan Bjerhammarin®3 pallon side (R on Maan keskisdde). Kaavan
muoto on valittu sen mukaan, ettd eri suureiden kovarianssifunktioiksi
saataisiin suljettuja lausekkeita.

10.10 Kollokaatio ja spektraalinakokohta

My0s pienimmaén nelidsumman kollokaation laskennat voidaan suorit-
taa tehokkaasti FFT:n keinoin. Tdtd varten pitdd tarkastella geometriassa
olevia symmetrioita, ldhinna pydrihdyssymmetriaa, joka on olemassa
esimerkiksi pituusastesuunnassa koko maapallolla, kun kollokaatio-
yhtdlot riippuvat vain pisteiden vilisistd pituusaste-eroista A\ eivatka
absoluuttisista pituusasteista A.

Seuraavassa késitellddn yksinkertaistettua esimerkkid yhdessa ulot-
tuvuudessa. Olkoon kentén g(y), P € [O, 271) havaintoja {; = g, 1y
annettuna ympyrin reunalla pisteissd \; def i /N,i=0,1,2,...,N—1.
Oletetaan, ettd myos laskentatulokset, tulosfunktion f(1) estimaatit ﬂ,
halutaan samoihin pisteisiin. Silloin on yhtald 10.9:

= Crg (Cgg + Dgg)_1 (g + ﬂ) , (10.9)
jossa
[Cfng = Cig(f(W1), g(3)) = Cig (s, 5),

[ng}ij = Cgq(g(W1), g(W;)) = Cgq (Wi, ¥;),
[Dgg)i; = Dag(9(wi), g(W;)) = Dgg (i, ;).

*3Arne Bjerhammar (1917—2011) oli ruotsalainen geodeetti.
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T T T T T T T
Kaula — — EGMg6 ——

Tscherning-Rapp —— EGM2008 — o ]
GOCE, Gatti ym. (2014) ——

EGMog6 virhevarianssit — —

EGMZ2008 virhevarianssit - - -o

GOCE virhevarianssit ------ 7

50 100 150 200 250 300 350 400
Harmoninen asteluku n

Kuva 10.5. Globaalit kovarianssifunktiot astevariansseina. GOCE-malli menee
vain astelukuun 280 saakka.

Mikali koko tilanteen fysiikka, mukaan lukien mittausprosessin fysiikka,
on pyordhdyssymmetrinen, on oltava

N—-1

(ol s) = Mo{f(¢i) 9(¢j(i))} = % Z (o) 9(Wy0) = [Calyy

i=0
jossaj(i) = (i + k) mod N. Téassd operaattori M on funktion “ympyra-
keskiarvo”,

N—1
Mo{h} & &3 hiw),
i=0

mika, kuten maantieteellinen keskiarvo osiossa 10.4, korvaa tilastollisen
keskiarvon.
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Samalla tavalla saadaan

[ng}i,j(i) - MO{QN’J 9(¢J’(1))} =
N—1

- % > g g(bi) = [Coql

i=0

Nyt Cig, Cgq ovat ainoastaan k:n funktiot, ja ne voidaan kirjoittaa

[Cig]y; = Cig(Wi, W) = Cg(Ahi) = [Crg],,
[ng}i]’ = Cog (u’i»‘l’i) = Cog(Ay) = [ng}w

joissa Ay def (P; —1i) mod 2mrjak = (j — i) mod N.

Lisaksi
[Dgg)i; = Dgg (Wi, ¥5) = Dgg(Abic) = [Dygg,, = E{minys) ,

havaintokohinan perinteinen tilastollinen varianssi. Koska havainnot
eivéit yleensa korreloi keskenddn, on'#

_ 2

02 (havaintojen varianssi, oletettu samaksi kaikille) kerrottuna N x N
-kokoisella yksikkdmatriisilla.

Taméan muotoisia matriiseja kutsutaan Toeplitz-sirkulanteiksi'>. Omi-
naisuuden ansiosta yhtdlo 10.9 koostuu konvoluutioista.

4]tse asiassa yksikko- eli identiteettimatriisi tunnetaan myos Kroneckerin deltana.
Toeplitzin matriisina se voidaan tulkita Diracin deltafunktion diskreettina versiona.
Sen diskreetti Fourier'n muunnos on “valkoinen”:

1
F{In} = N’

ja sisdltdd saman tehon kaikille taajuuksille.

'50tto Toeplitz (1881-1940) oli saksanjuutalainen matemaatikko ja funktionaali-
analyysin tutkija.



288 10 TILASTOLLISET MENETELMAT

Kuva 10.6. Kehdmdinen geometria.

Ilman todistusta esitetddn, ettd yhtdlon 10.9 spektraalivastine on
seuraavan ndkoinen:

g{cfg} {

Fig+n
99} + 97{DQQ}

Tama on helppo ja nopea tapa laskea ratkaisu FFT:n avulla. Jos sopivalla

}: F{Cyq} {

9{?}:9{(: g{cgg}”z/Nsr g-+n}.

operaattorilla L patee f = L{g}, yhtdlosta tulee

T _?{L}-&‘"{ng}. n
0 o T2

Limiitiss4, jossa havainnot ovat eksakteja, 02 = 0 ja siis n = 0, pétee
F{f} =F{L} F{g} <= t=L{g}.

Esimerkiksi jos g ovat painovoima-anomalioita ja f hdiriopotentiaalin
arvoja, on'®
R
F{L} = —.
Lahestymistapaa kutsutaan Fast Collocationiksi, esimerkiksi Bottoni ja

Barzaghi (1993). Luonnollisesti sitd kdytetddn Maan pinnan kahdessa

16Kaytannon laskennassa yhtilsd on kuitenkin muutettava kayttdimaan globaaliin
pallogeometriaan viittaavan asteluvun n sijasta kédytetyn laskentahilan Fourier'n
aaltolukua.



Olenko ymmirtinyt tdmdin?

ulottuvuudessa, vaikka esimerkkimme on yksiulotteinen. Kuten aina
se edellyttad, ettd havaintoaineisto on annettu hilan muodossa, ja tassa
tapauksessa my0s aineiston tarkkuuden alueella pitdd olla homogeeninen
— kaikkialla sama. Tama vaatimus tédyttyy tuskin koskaan tarkasti.

Olenko ymmartanyt taman?

1) Miki on signaalin ja kohinan vélinen ero?

2) Mika on funktionaali?

3) Mika on lineaarinen funktionaali?

4) Maan pinnalla médaritellyn stokastisen prosessin tilastollinen kayt-
tdytyminen on samanlaista riippumatta siitd, misséd paikassa maa-

pallolla ollaan. Tim&dn ominaisuuden nimi on isotrooppisuus |

ergodisuus | homogeenisuus | stationaarisuus.

5) Ajan stokastisen prosessin tilastollinen kdyttdytyminen on sa-
manlaista rippumatta siitd, missd kohdassa aika-akselilla ollaan.
Taméan ominaisuuden nimi on isotrooppisuus | ergodisuus |
homogeenisuus | stationaarisuus.

6) Miksi Maan painovoimakentdn tutkimuksessa kédytetddn maantie-
teellistd keskiarvoa tilastollisen keskiarvon sijaan?

7) Mitd kahta eri kovarianssifunktion tyyppia kdytetddan Maan pin-
nan painovoima-anomalioille? Anna yht&l6t ja nimed vapaat pa-
rametrit.

8) Selosta astevarianssit. Mikd on astevarianssien k, ja c,, védlinen
ero?

9) Mitéd Kaulan saanto ilmaisee?

10) Miké on Toeplitz-sirkulantti matriisi?
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Harjoitus 10—1: Ennustusvarianssi
Pisteen P ennustusvarianssin yhtdlo on
Zpp = Cpp — Cpi(Cyj + Dyy) ' Cyp,

jossa havaintopisteet ovati =1, ..., N. Oleta, ettd on vain yksi havain-
topiste, piste P. Silloin

Zpp = Cpp — Cpp(Cpp + Dpp) ™' Cpp.
Naytd, ettd jos Dy; # 0, mutta Dy; < Cyj,

Lpp ~ Dpp.

Harjoitus 10—2: Hirvosen kovarianssiyhtdlo ja prediktio

Hirvosen kovarianssiyht&lo on

S) ]-}—(S/d)z’

jossa Ohion parametrit ovat Cy = 337 mGal® ja d = 40 km (Heiskanen ja

(10.18)

Moritz, 1967, yhtéld 7-9). Yhtdlo antaa kahden pisteen P ja Q painovoima-
anomalioiden vilisen kovarianssin

C (SPQ) - COV{%P’ %Q }
spq on pisteiden vilinen lineaarinen etdisyys.

1) Laske Var{ Ag, } ja Var{ Ag 9 } Muista, ettd maaritelman mukaan
Var{x} = Cov{x,x}!

2) Laske Cov{ﬂp,ﬂcz} jos spq = 20 km.

3) Laske korrelaatio

Corr{gp,ﬂ(}} def COV{EP’EQ} '
\/Var{ﬂp} Var{ﬂQ }




Harjoitus 10—3: Painovoima-anomalioiden prediktio

4) Oleta nyt, ettd ainoa mittauspiste on P. Mikd on painovoima-
anomalian “ennustusvarianssi” pisteessd Q, joka on tarkasti spg =
10 km matkan pddssd annetun anomalian pisteestd P? Sovella yh-

tiloa 10.11 seuraavasti:
-1
2qq = Cqq — CarlppCra.

5) Entd kohta 4, jos etdisyys on spg = 80 km?

Harjoitus 10—3: Painovoima-anomalioiden prediktio

Olkoon annettuna kahdessa pisteessé 1 ja 2 mitatut painovoima-ano-
maliat {; = Ag, + n, ja {, = Ag, + n,. Pisteiden vilinen etéisyys
on 80km, ja niiden vélissd 40 km etdisyydelld molemmista pisteista
sijaitsee piste P. Laske pisteen P painovoima-anomalia Agp prediktion
avulla. Prediktion yhtdl6 on

3EJP = Cpi (Cy + Dijr] &,

jossa ; = ﬂi + n; on painovoima-anomalioiden havaintojen (abstrakti)
vektori,

Var{Ag,}  Cov{Ag, Ag,}
Cov{ag,,Ag,}  Var{ag,}

on vektorin Ag. signaalivarianssimatriisi ja

Cij =

Cpi = [ COV{%P,£1} Cov{ﬂp’ﬂz} ]

on signaalikovarianssimatriisi Ag,,:m ja Ag.:n valilld. Dy; on havaintojen
satunnaisen epavarmuuden eli kohinan n;, i = 1, 2 varianssimatriisi:

Var{n,}  Cov{n,n,} ]
Dij = .

Cov{n;,n,}  Var{n,}

1) Laske matriisi Cy; olettamalla taas Hirvosen kovarianssiyhtdlo

10.18 ja parametriarvo d = 40 km.
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2) Laske Cp;.

3) Laske &;P ilmaistuna havaittuihin arvoihin ¢, ja £,. Oleta Di; = 0
(ja siis n; = 0). Matriisin C;; kddntdminen kdsin on mahdollista,

mutta kdytd mieluummin Matlab tai octave.

4) Laske ennustusvarianssi (huomaa C;p = CJ;) yhtalslla

Lpp = Cpp — CPiCS1 Cjp.

Harjoitus 10—4: Painovoima-anomalioiden prediktio (2)

Olkoon taas annettuna pisteet 1 ja 2, joissa on mitatut painovoima-
anomaliat £; = Ag, ja{, = Ag,. Nyt kuitenkin pisteet 1, 2 ja P muodos-
tavat kolmion, jossa pisteen P kohdalla on suora kulma. Etdisyys P:sta
pisteisiin 1 ja 2 on edelleen 40 km. Pisteiden 1 ja 2 vélinen etdisyys on
nyt vain 40v/2 km.

1) Laske Cyj, Cpy, &;P ja Zpp.

2) Vertaa tulosta edellisen tuloksen kanssa. Miké on johtop&atos?

Harjoitus 10—5: Kovarianssien kasautuminen

Annettuna on héiridpotentiaalin kovarianssifunktio 10.17:

00 2 n+1
Cov{Tp, To} =Y (rer) KnPn (cos o).
n=2

1) Johda painovoimahdirion dg (yhtald 5.4) kovarianssifunktio. Vihje:
kirjoita ensin kehitelmad muotoa

5g=) LyTa
n=2

kertoimen L, lausekkeen l6ytdmiseksi. Sen jdlkeen

Cov{8g,,80, } = D L pLisqknPn(coswrq)-
n=2



Harjoitus 10—6: Kaulan siinto painovoima-anomalioille

2) Johda painovoiman hdiiriégradientin
(.
oz = Tor’

eli painovoimahdirién pystygradientin, kovarianssifunktio.

Harjoitus 10—6: Kaulan saanto painovoima-anomalioille

Hairiopotentiaalille
o R n+1
ToAN =Y (3) TaléN
n=2

eli Maan pinnalla (r = R):

T(p,\R) = i

n=2
Kaulan sdanto péatee astevariansseilla

2n+1

k. =«
n n4

Naéistd voi laskea varianssien kasautumislain avulla painovoima-anomali-

oiden
9(d,A,R) = ZL @) =3 (") Tl
n=2
astevarianssit:

182
Cn = (LZQ(R))ZkH = (n—R1> Kn ~ %

Differentioi analogisella tavalla painovoima-anomalian kehitelma 5.7

agtron = Y (R e,

n=2

— (m—1)(n+2) /R\""'
=y ()

tuloksena
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spektraaliyhteys hdiriopotentiaalin ja anomaalisen painovoimagradientin
valilla.

Maan pinnalla r = R:

dA = N—1)(M+2). def & (n
2 == T E ) LRg(R)Tald,A)
r=R n=2 n=2
jossa
N 1 (n+2
IRUELEULLES)

1) Johda likim&drdinen yhtdlo anomaalisen painovoimagradientin as-
tevariansseille. Merkitse ne symbolilla c;, samalla analogisella
tavalla kuin ylld painovoima-anomalioiden astevariansseille c,,:

Loyda lauseke x(n) ja vakiot y ja z maapallon tapauksessa.

2) Miké on johtopaatods?

Harjoitus 10—7: Maanalaiset massapisteet

1) Jos massapiste sijoitetaan Maan sisddn syvyyteen D havainto-
pisteen P alapuolella, mikd on sen Maan pinnalla aiheuttaman
koko painovoiman g muutoksen korrelaatiopituus eli arvo s, jolla
C(s) = 1Co?

2) Siis jos haluamme rakentaa massapistemallin, jossa jokaisen ha-
vaintopisteen Agp alapuolella on yksi massapiste, kuinka syville
ne pitdd laittaa, jos korrelaatiopituus d on annettu?



Gravimetriset mittalaitteet

11.1 Historia

Ensimmadinen mittalaite, joka rakennettiin heilurin perusteella oli kello.

¢
P=2m /=
a0

kertoo, ettd tietyn pituisen heilurin heilahdusaika eli periodi P on vakio,

Heiluriyhtalo

joka riippuu vain heilurin pituudesta { ja paikallisesta painovoimasta
g silld edellytykselld, ettd heilahdukset ovat pienid. Alankomaalai-
nen Christiaan Huygens' rakensi vuonna 1657 ensimmadisen tdhin
peraatteeseen perustuvan kayttdkelpoisen heilurikellon (Wikipedia,
Heilurikello).

Kun nuori ranskalaistutkija Jean Richer® kdvi Ranskan Guyanassa
vuonna 1671 heilurikello mukanaan, han huomasi, ettd kello kulki sel-
vésti hitaammin. Asia saatiin korjatuksi yksinkertaisesti lyhentdmalla
heiluria. [Imidn syy ei voinut olla esimerkiksi heilurin lampd&laajenemi-

nen trooppisissa ilmasto-olosuhteissa. Oikea selitys oli, ettd tropiikissa

'Christiaan Huygens FRS (1629-1695) oli aikansa johtava hollantilainen tiedemies ja
matemaatikko. Heilurikellon keksimisen lisdksi hdn oli ensimmdinen, joka oivalsi
vuonna 1655, ettd Saturnus-planeetalla on rengas.

*Jean Richer (1630?-1696) oli ranskalainen tahtitieteilijd, joka muistetaan oikeasti vain
heiluriloydostaan.
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OBSERVATIONS PHYSIQUES.
R, ] C L L L

De in longuenr du pendule 4 [econdes de temps.

»yxe des plus confiderables Obfervations que jay faites, eft
L celle de la longucur du pendale a fecondes de temps, laquel-
Je seft trouvée plus courte en Caienne qu'a Paris: carla mefme
mefure qui avoit efté marquée en ce lit::u-lé fur une verge d.e fer,
fujvant la longueur qui s’eftoit trouvce neceflaire pour faire un

pendule 3 fecondes de temps , ayant efté apportée en France , &
coms=
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38 OBSERVATIONS ASTRONOMIQUES-

_ comparée avec celle de Paris, leur difference a efté trouvée d’une
- ligne & un quart,, dont celle de Caienne eft moindre que celle

de Paris, laquelle eft de 3. pieds 8. lignes . Cette Obfervation
2 efté réiterée pendant dix mois entiers , ol il ne s’eft point paffé
de femaine qu’elle n’ait efté faite plufieurs fois avee beaucoup de
foin. Les vibrations du pendule fimple dont on fe fervoit,
eftoient fort petites, & duroient fore fenfibles jufques 4 cinquans
te-deux minutes de temps, & ont efté comparées a celles d’une
horloge tres-excellente, dont les vibrations marquoient les fecon-
des de temps.

Kuva 11.1. Jean Richer’n raportti.

painovoima g on heikompi kuin Euroopassa. Palattuaan Ranskaan

vuonna 1673 Richer joutui taas pidentdimédn heiluriaan. Havainnosta

on merkintd raportissa ”Observations astronomiques et physiques faites en
lUisle de Caienne”, Richer (1731), sivuilla 87-88.

Nain keksittiin heilurigravimetri. Mybhemmin rakennettiin varta vas-

ten paljon tarkempia laitteita, esimerkiksi Katerin® reversioheiluri ja

neljan heilurin Von Sterneckin* koje, jota kéytettiin myds Suomessa

1920- ja 1930-luvuilla (Pesonen, 1930; Hirvonen, 1937).

Mainittavia ovat myos hollantilaisen F. A. Vening Meineszin sukel-

lusvenemittaukset muun muassa Jaavanmerella. Niissa havaittiin, etta

merenpohjalla olevien syvanmeren hautojen yldpuolella vallitsee tun-

tuva painovoimavaje ja ettd syvinteet ovat ndin ollen isostaattisessa

epdtasapainossa (Vening Meinesz, 1928).

Tuotantomielessa heilurigravimetrit ovat painovoimamittauksiin liian

hankalia ja hitaita. Kenttdmittauksia varten on kehitetty jousigravimetri,

katso osio 11.2.

3Henry Kater FRS FRAS (1777-1835) oli brittildisfyysikko, joka tyoskenteli tieteellisten

kojeiden ja metrologian parissa.

4Robert Freiherr (paroni) Daublebsky von Sterneck (1839-1910) oli itdvaltalais-

unkarilaisen armejan kenraalimajuri seké geofyysikko, tdhtitieteilijd ja geodeetti.



Relatiivinen eli jousigravimetri 11.2

Kuva 11.2. Autograv™ CG-5 -jousigravimetri Scintrexiltd. Kuva Monniaux
(2011).

Heilurigravimetri on periaatteessa absoluuttinen mittauskoje, koska
painovoima saadaan sen avulla suoraan kiihtyvyyslukuna. Olemassa
on kuitenkin heilurin kiinnitykseen eli tukipisteeseen liittyvid syste-
maattisia efektejd, joiden takia mittauksen absoluuttisuuteen ei voi
luottaa. Yksi kokeiltu ratkaisu on hyvin pitki lankaheiluri, esimerkik-
si Hytonen (1972). Nykyisin absoluuttimittaukset tehddan kuitenkin
mieluummin ballistisilla gravimetreilla, katso osio 11.3. On havaittu,
ettd vanhemmat, heilurikojeilla saadut mittausarvot niin sanotussa
Potsdamin jarjestelméssa ovat systemaattisesti 14 mGal liian korkeita.

11.2 Relatiivinen eli jousigravimetri

Jousigravimetri on yksinkertaisimmillaan sama kuin jousivaaka.

297
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Lineaarisen jousivaa’an koemassan liikeyht&l6 on

m(j—if— ) =—k(—14), (11.1)

jossa m on koemassa, g paikallinen (mitattava) painovoima ja k jousi-
vakio. Suure {, on jousen “lepopituus”, joka jousella olisi, jos sithen
ei kohdistuisi ulkopuolisia voimia. £ on jousen todellinen hetkellinen
pituus.
Tasapaino jousen voiman ja painovoiman vélilld on
a2
dt?

jossa { on jousen keskiméardinen pituus heilahtelun aikana ja samalla

=0 = mg=k({l—0&)=k(l—10), (11.2)

tasapainopituus, jos heilahtelua ei ole.

Kun koemassaa hiiritdan, se alkaa heilahdella tasapainopaikkansa
ympdri. Vardhtely-yhtalo, joka saadaan summaamalla yhteen yhtdlot
11.1ja11.2, 0n

Le-n=-L0-0.

Heilahdusaika on

PZZ?‘(\/%:ZW\/Q_TQO:ZHH%, (11.3)

jossa 8¢ = { — £, on tasapainotilassa ja lepotilassa olevan jousen pituuk-
sien valinen ero: jousen pidennys painovoiman vaikutuksesta.

Kojeen herkkyys saadaan differentioimalla yhtdlo 11.2 muodossa
mg =k ({— o) =k&¢

tuloksena o ds p2

.@:j?:%zﬁf (11.4)
Sijoittamalla esimerkiksi 8¢ = 5cm ja g = 10™/s2 yhtdloon 11.3 saadaan
P = 0,44 s. Yhden milligalin muutos painovoimassa g tuottaa yhtalon
11.4 mukaan pidennysté vain 5- 1078 m = 50 nm (tarkista!), yksi kahdes-
toistaosa helium-neonlaserin aallonpituudesta. Liikkeen havaitsevan
tai liikettd kompensoivan anturin on selvasti oltava erittdin herkka!



Relatiivinen eli jousigravimetri

11.2.1 Astatisointi

11.2

Astatisoitu gravimetri hyddyntda erilaista mittausgeometriaa. Esimerkki

on pitkddn suosiota nauttinut LaCoste-Romberg-gravimetri. Sen sisélla

koemassa on vivun eli puomin pddssd, katso kuva 11.3. Vipuun kohdis-

tuu kaksi vaantod, jotka ovat tasapainossa. Jousen aiheuttama vaanto

on
1, =k ({ — ) bsin B,

jossa { on jousen todellinen venytetty tasapainopituus ja £, teoreettinen

pituus ilman kuormitusta eli lepopituus.

Sinisddannén mukaan
{sin B = csin(90° + €) = ccos e,
jonka sijoitus edelliseen yhtdloon antaa
T =k ({— &) %cose.
Massaa vetdva painovoima on mg ja vastaava vaanto
Ty = M(P COS €.
Niiden valilld on oltava tasapaino:

cose =0

Tg—’tszmgpcose—k(f—ﬂo)%

eli
mgpl — kbc (f — Eo) =0.
Differentioimalla
mpldg + mgp dl — kbc dl = 0,
ja sijoittamalla siihen yht&lo 11.5 antaa herkkyyskaavan:

dt mpl mpl

_ L
dg  mgp —kbe mgp—mgpﬁ/(z—eo) J

(11.5)
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Todellisuus

Jousi, pituus ¢

Pituus

Koemassan puomi

mg

Kuva 11.3. Jousigravimetrin toimintaperiaate. Oikealla ndytetddn, miten toteu-

tetaan "nollapituusjousi”.

Tastd ndkyy, ettd herkkyyttd voidaan kasvattaa mielivaltaisesti valitse-
malla ¢, mahdollisimman lyhyeksi, ldhes nollaksi. Tama ratkaisu on
nimeltdan nollapituusjousi (Wikipedia, Zero-length springs).

Tietenkin kojeen fasaus kdyttamalld sisidnrakennettua rasiatasainta

ja kolmea jalkaruuvia on kriittisen tarkeda.
Esimerkiksi oletukset { = 5cm, ¢, = 0,1 cm, g = 10m/s2 antavat
g—é = 2,5 . 1076m/mGal,

50 kertaa® paremman tuloksen kuin aiemmin! Parannus- eli astatisointi-
suhde on juuri (t— Eo)/eo )

5Vertailukelpoisuuden vuoksi pitdd kertoa lausekkeen P /b sin p kanssa, jos koemas-
san paikka mitataan.



Relatiivinen eli jousigravimetri 11.2

Tamad on astatisoidun gravimetrin, kuten LaCoste-Romberg-
gravimetrin®, toimintaperiaate.

11.2.2 Heilahtelun periodi

Aihetta voi tarkastella my6s hieman toisella tavalla. Jos laite ei ole tasa-
painotilassa, puomi heilahtelee hitaasti tasapainoasennon molemmin
puolin. Lihdetdan yhtdlostd 11.5:

mgpl —kbe (€ — ) =0, (11.6)

mutta sovellettuna epédtasapainotilaan. Silloin koemassalla on kiihty-
Vyys a, positiivinen alaspdin, ja patee

m(g—a)pl—kbc (L —1£) =0,

jossa jousen tasapainopituuden { sijaan on laitettu sen hetkellinen pituus
(. Vahentdamalla ylld olevat kaksi yhtdlod toisistaan saadaan

mgp (£ — ) + mapl — kbe ({—¢€) = 0.

Kaytetddn yhtdlod 11.6 lausekkeen kbc eliminoimiseksi, tuloksena

mgp ({—¢) + mapf—mgpﬁ_eeO (t—10) =o.

Termien uudelleenjérjestys antaa

map{ = mgpzf—o% (t—10)

eli

9 b (g_g
@=t5g (7Y

®Lucien LaCoste (1908-1995) oli amerikkalainen fyysikko ja metrologi, joka keksi
ylioppilaana yhdessé fysiikkaprofessorinsa Arnold Rombergin (1882-1974) kanssa
astatisoidun gravimetrin ja nollapituusjousen periaatteen.
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Tahéan ilmaantuu jdlleen “astatisointisuhde” (€—¢) /€y, joka nollapi-
tuusjouselle (¢, ~ 0) on hyvin suuri.

Nyt jousen pituuden epétasapaino { — £ on yhteydessd koemassan
pystysijainnin poikkeamaan z (alaspédin kasvava) seuraavasti:

z= (-0 bs?nﬁ'

Taman avulla saadaan

_d*__ g ( bsinp
Tat T i, P~

Tama on vardhtely-yhtdlé muuttujassa z. Vardhtelyaika on

_ L p =40
P_Zﬂ\/gbsinﬁ b

a

Samoille arvoille kuin yll&, ¢, = 0,Tcm, { = 5cm ~ £, g = 10™/? ja
P / bsinp = 2, 1dyddmme
P =4,4s.

Tama pitkd vardhtelyaika merkitsee, ettd laite on vdhemmaén herkka
korkeataajuuksisille vardhtelyille, joita syntyy esimerkiksi ohikulkevasta
liikkenteestd tai mikroseismiikasta. Tdméa on merkittdva toiminallinen
etu.

11.2.3 Kaytannon mittaus

Tavallinen jousigravimetri perustuu elastisuuteen. Koska mikdan aine ei
ole tdysin elastista, vaan aina my0s plastista’, gravimetri itse muuttuu
mittausprosessin aikana. Tatd muutosta kutsutaan kiynniksi. Kdynti
otetaan huomioon kdytdnnoén mittauksissa seuraavilla toimenpiteilla:

7Metallikiteen plastinen deformaatio tapahtuu kidehilan virheiden, dislokaatioiden,
vilitykselld. Kun dislokaatiot kulkevat hilan ldpi kiteen kuormittuessa, metallin omi-
naisuudet muuttuvat, mistd voi seurata metallivisymys, joka on tunnettu ongelma
esimerkiksi ilmailussa. Wikipedia, Dislokaatio. Metallurgian keskeinen kéaytannon
tehtava on metallien vahvistaminen estimalld dislokaatioiden liikettd, esimerkiksi
lisdadmalla hiiltd rautaan terdksen valmistuksessa. Wikipedia, Strengthening mecha-

nisms of materials.
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mg

mg

Kuva 11.4. Astatisoinnin idea. Tavallisen jousen elastinen voima kasvaa jyrkasti
jousen venyessd (vasemmalla), kun taas koemassan paino on vakio.
Puomi- ja diagonaaliasetelman ansiosta (oikea) jousen voiman
osuus puomin liikkkumissuunnassa (punainen) pienenee jousen
venymisen myotd, kun taas jousen voima kasvaa ldhes samalla
tavalla, kun jousi venyy. Tama likimédéardinen kumoaminen nostaa
herkkyyttd. Kéytetty jousi on nollapituusjousi.

o Mitataan pitkin linjoja, jotka ldhtevat tunnetusta pisteestd ja paat-
tyvat tunnettuun pisteeseen. Silloin saadaan sulkuvirhe. Mittaus
etenee linjaa pitkin mahdollisimman nopeasti. Sulkuvirhe pois-
tetaan tasoittamalla mittauksesta saadut arvot suhteessa niiden

mittausaikoihin.
o Gravimetria kuljetetaan varovasti sitd kolhimatta.

o Kuljetuksen aikana muistetaan aina arretoida (laittaa puomi liikku-
mattomaksi)!

o Koskajousen elastiset ominaisuudetja laitteen geometria riippuvat
lampétilasta, tarkkuusgravimetrit ovat aina termostoituja.

Merigravimetri eroaa tavallisesta (maa-)gravimetrista siind, ettd se on
tehokkaasti vaimennettu. Sama patee myos ilmagravimetrille. Molemmat
asennetaan vakautetulle alustalle, jolloin mittausakseli osoittaa aina
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paikallisen luotiviivan suuntaan kulkuneuvon liikkeistd huolimatta.

11.3 Absoluuttinen eli ballistinen gravimetri

Ballistinen eli absoluuttinen gravimetri on paluuta perusteisiin eli
painovoiman maddritelméédn: koje mittaa suoraan vapaan putoamisen
kithtyoyytti. Laite sisdltdd tyhjidputken, jonka sisédlld kappale, valoa
heijastava prisma, putoaa vapaasti. Katso kuva 11.5.

Téassd kuvataan lyhyesti Boulderissa Coloradon yliopistossa Jim Falle-
rin® ryhmén rakentama JILA-gravimetri, joita Geodeettinen laitos on
hankkinut kaksi. Kuvassa 11.6 ndkyy uudempi saman ryhmaén rakenta-
ma laite, FG5. Suomessa tdmad laite, jonka sarjanumero on 221, on toi-
minut vapaan putoamisen kiihtyvyyden kansallisena mittanormaalina.
Vuonna 2012 laite pdivitettiin FG5X-tyyppiseksi.

Prisman putoamisen aikana “h&kki”, jonka pohjassa on ikkuna, liik-
kuu hikin sisélld olevan prisman mukana sithen kuitenkaan koskematta.
Haékin paatarkoitus on estdd jéljelld olevia ilmahivenid vaikuttamasta
prisman kulkuun. Putken pohjan ldhelld hikki, joka kulkee tietokone-
ohjattuna raidetta pitkin, jarruttaa, ja prisma laskeutuu suhteellisen
pehmedsti hdkin pohjaan. Sen jdlkeen hakki kulkee takaisin putken
yldpddhén ja uusi mittausjakso alkaa.

Laserinterferometri mittaa prisman paikat matkan varrella. Mittauk-
set toistetaan tuhansia kertoja hyvin tarkkuuden aikaansaamiseksi.
Kyse on siis keskiarvostuksesta. Toinen prisma, vertausprisma, on ripus-
tettu toisessa putkessa hyvin 10yséstd jousesta (oikeastaan elektronisesti

simuloitu “superjousi”), mikd suojaa prismaa mikroseismiikalta.

Laite on suunniteltu niin, ettd on mahdollista saavuttaa suurin mah-
dollinen tarkkuus. Esimerkiksi pudottamisen aiheuttama tdrind on
saatu hallintaan hyvin suunnitellun jalustan avulla. Tarkkuudet ovat

8James E. Faller (synt. 1934) on amerikkalainen fyysikko, metrologi, geodeetti ja
gravitaation tutkija. Han ehdotti, ettéd laserheijastimia asennettaisiin Kuun pinnalle
Apollo-projektissa Kuun etdisyyden mittaamiseksi — LLR, lunar laser ranging.



Absoluuttinen eli ballistinen gravimetri 11.3 30 5

!Tyhj idpumppujdrjestelma

I - Suojahikin kuljetusjérjestelma
I| .. Prisman suojahdkki
AI ...~ Putoava prisma
Sk |
I . ... "Superjousi”
I T
g : 5
A Vertausprisma
I AN p
I
: Puolilépdiseva peili
\ ) Laser
Peili "\ | |

- Interferenssin havaintolaite

Kuva 11.5. Ballistisen absoluuttigravimetrin toimintaperiaate.

muutaman mikrogalin luokkaa eli samaa kuin mihin LaCoste-Romberg-
relatiivigravimetrit pystyvat.

Laite on kuitenkin kookas, ja vaikka sen voi kuljettaa paikasta toi-
seen, sitd ei voi kutsua kenttdkojeeksi. Viime aikoina kehitys on mennyt
pienempien laitteiden suuntaan, koska niiden kuljetettavuus on olen-
naisesti parempi.

Vapaasti putoavan massan liike saadaan yhtdlosta

dZ
EZ = g(z),
jossa on oletettu — realistisesti — ettd painovoima g riippuu paikasta
z pudotusputken sisdlld, alaspdin kasvava. Jos kuitenkin oletetaan g
vakioksi, saadaan integroimalla

d 1
atz = Yot b z =20 +vot + 39t%,
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Kuva 11.6. FG5-tyyppinen absoluuttinen gravimetri. Valokuva Yhdysvaltojen
National Oceanic and Atmospheric Administration (NOAA).

josta saadaan mittausprosessin havaintoyhtilot

Z0
zo=[1 t 3] | v |+n.
g

Téssd estimoitavissa olevat tuntemattomat® ovat zo, vo ja g. Suureet z;
ovat putoavan prisman interferometrisesti mitatut pystysuuntaiset pai-
katja n; mittausvirheet eli “kohina”. Vastaavan mittaushetken eli epookin
t; tarkka maaéritys laskettuna prisman vapauttamisen hetken ldhelld
olevasta nollahetkestd on tietenkin olennaista. Jokaisessa yksittdisessa
pudotuksessa kerdttdvien mittausarvojen lukuméara on mittava.

90lisi helppo (harjoitus!) lisdta tdhdn painovoiman pystygradienttia edustava tunte-
maton. Se, voidaanko télle tuntemattomalle saada kéyttokelpoinen arvo mittauksista,

on hyvéd kysymys.
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Havaintoyhtdlot kirjoitetaan matriisimuotoon:

L=Ax+n,
jossa
Z ny T 4 %t%
T P e N - N
Z, n, 1 th 1t2 J

Ratkaisu seuraa tdstd pienimmaén nelidsumman tasoituksen menetelmén
mukaisesti normaaliyhtildisti

ATAX=ATL,
antaen ratkaisun eli estimaatin
x=(ATA) " ATE.
Estimaattien epdvarmuus on vektorin varianssimatriisi
Var{x} = o2 (ATA) "',

jossa o on yhden havainnon z; epdvarmuus eli keskivirhe, “painoyksi-
kon keskivirhe”.

Vaihtoehtoinen absoluuttigravimetrityyppi heittii prisman ylds put-
ken sisdlld, minka jdlkeen prisma kulkee symmetristéd rataa. Téllainen
"rise-and-fall” -laite on esimerkiksi italialainen IMGC-02 (d’Agostino ym.,
2008). Teoreettisesti tdlld menetelmailld saataisiin tarkempia mittaustu-
loksia, mutta sen tekniset haasteet ovat suurempia kuin pudotusmene-
telmassa. Laitetyyppien véliset vertailut ovat auttaneet identifioimaan
virheldhteita.

Viime aikoina on rakennettu myds niin sanottuja atomi- eli kvant-
tigravimetreja, joilla mitataan interferometrisesti yksittdisten atomien
putoamisliikettd (de Angelis ym., 2009).
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Laitteen idea on, ettd painovoiman vaikutus putoavien atomien aine-
aallon vaihekulmaan mitataan. Ensin valmistetaan niin sanottu Bosen ja
Einsteinin kondensaatti ddrimmadiselld jadhdytykselld. Kondensaatissa
on ehkd miljoona atomia, jotka kaikki ovat identtisessa kvanttitilassa.
Atomien vaihekulmat liikkuvat yhdessd, ikddn kuin ne olisivat yhdessa
marssivat sotilaat.

Laservalon ja atomien vélinen vuorovaikutus perustuu Raman-
ilmioon, epéelastiseen sirontaprosessiin, jossa atomit vaihtavat seka
energiaa ettd lilkemd&drdd lasersdteen fotonien kanssa samalla kun
ne siirtyvat kvanttitilasta toiseen. Sirontaan osallistuu kaksi fotonia:
kyseessda on "kielletty" siirtymd, jolla on hyvin tarkasti mdéritelty
energian ja liikemddrdn muutos.

Kondensaatin annetaan pudota, ja ensimmadinen laserpulssi jakaa
sen kahtia. Puolet atomeista'® putoaa ensin hitaasti ja sitten nopeam-
min. Toinen puoli putoaa ensin nopeasti ja sitten hitaammin. Tamén
toteuttamiseksi ammutaan toinen laserpulssipari, joka toimii peilin tai
ehkéd tennismailan tavoin. Kolmas ja viimeinen laserpulssi yhdistda
sdteet. Sen jalkeen havaitaan vahvistavaa tai vaimentavaa interferenssia
fluoresenssi-ilmaisimen avulla. Havainnoista paatelldan interferometrin
kahden haaran vélinen vaihe-ero.

Kun atomit kulkevat aika-avaruuden kautta kahta eri reitti, joiden
painovoimapotentiaalit ovat erilaiset'!, syntyy niiden vilille vaihe-ero,
joka periaatteessa voidaan mitata. Katso kuva 11.7, jossa vaaka-akseli
on aika. [Iman painovoimaa (katkoviivat) tdiméa vaihe-ero olisi nolla.

Kuten kaikissa (ei-kinemaattisissa) interferometrisissa menetelmissa,

ambiguiteettiongelma — se, ettd mitattu vaihe on aina vililld [0, 27),
vaikka vaiheen muutos tai vaihe-ero voi sisdltid monta kokonaista

'9Tamd on kvanttiteoreettisesti vddrin sanottu. Jokaisen atomin aineaalto jakautuu
kahteen! Wikipedia, Kaksoisrakokoe.

"tse asiassa atomin aaltofunktion vaihekulman kiertoliike toimii kellon tavoin, ja
ajan kulun nopeus riippuu paikallisesta geopotentiaalista (Vermeer, 1983a).
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Kuva 11.7. Atomi- eli kvanttigravimetrin toiminta-ajatus. Vaaka-akseli on aika.

kierrosta— asettaa oman haasteensa. Ambiguiteettien ratkaisu onnistuu
mittaamalla useilla eri pulssien vilisilld aikavaleilld T, kuva 11.7.

11.4 Verkkohierarkia gravimetriassa

Gravimetriassa verkkohierarkia on yhté tarked kuin geodeettisissa si-
jainnin tai korkeuden mittauksissa. Menetelma on yleensa ollut se,
ettd ylin mittausluokka koostuu absoluuttigravimetrilla — aikanaan
heilurikojeella — mitatuista pisteistd. Taméan ylimman luokan verkon
vaiheittainen tihennys eli runkoverkon mittaus suoritettiin sen jalkeen
relatiivi- eli jousigravimetreilla, kuten myos alimman luokan mittaukset
eli painovoimakartoitus. Runkomittauksissa kdytettiin nopeita kuljetus-
vdlineitd, kuten lentokoneita, ja kansalliset tai alueelliset vertauspisteet
sijaitsivat usein lentokentilla.

Koska heilurigravimetrit eivit ole riittdvan tarkasti absoluuttisia, on
vanhaan Potsdamin jarjestelméddn jadnyt systemaattinen 14 milligalin
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Kuva 11.8. Kansainvilinen absoluuttigravimetrien vertailu Walferdangessa

Luxemburgissa. Kuva © Olivier Francis.

kokoinen virhe: kaikki arvot ovat sen verran liian korkeita. Nykyisin
kédytetddnkin mieluummin ballistisia vapaan putoamisen gravimetreja,
joiden systematiikka on paljon pienempi, vaikkakaan ei olematon:
suuruusluokkaa on mikrogalleja. Koska olemassa ei ole parempia,
siis absoluuttisempia, laitteita, ratkaisua ongelmaan ei lopulta ole.
Siksi alalla jarjestetddn sdannollisid kansainvélisid laitevertailuja, kuten
International Intercomparison of Absolute Gravimeters, jotka ovat
arvokkaita.

Suomessa absoluuttigravimetrilla sidnnoéllisesti mitatut pisteet ovat
Metsédhovin lisdksi Vaasassa (kaksi pistettd), Joensuussa (kaksi pistettd),
Kuusamossa, Sodankylédssd, Kevolla ja Eurajoella.
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Kuva 11.9. Suprajohtavan gravimetrin toimintaperiaate. Pallon paikka luetaan

kapasitiivisesti.

11.5 Suprajohtava gravimetri

Tama gravimetrityyppi perustuu magneettikentdssa leijuvaan supra-
johtavaan metallikuulaan, jonka tarkka paikka mitataan elektronisesti.
Koska magneettikenttd ei ldpdise suprajohtavaa ainetta, kuula jad ikui-
sesti samaan paikkaan kentdn sisille. Kyseessd on Meissnerin ilmid.
Kentdn on oltava muuttumaton. Kenttd on suprajohtavien kddmien ge-
neroima ja mu-metallista tehdyn sdilion sisélla (Wikipedia, Mu-metal).
Néain Maan magneettikenttd suljetaan ulkopuolelle.
Suprajohtavuus vaatii edelleen tyoskentelyd nestemdisen heliumin
(He) lampotiloilla. Siksi laite ei ole vain kallis, vaan sen kaytto vaatii
kalliita laboratoriotiloja toimivan yhteiskunnallisen infrastruktuurin

ymparistossa.

Suprajohtavia gravimetreja on maailmassa reilut kolmekymmenta.

Tyotd koordinoi IAG:n palvelu IGETS, International Geodynamics and Earth
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Tide Service. Yksi GWR20-tyyppinen laite on toiminut vuodesta 1994
Kirkkonummella silloisen Geodeettisen laitoksen, nyt Maanmittauslai-
toksen Metsdhovin tutkimusasemalla, Virtanen ja Kdaridinen (1995),
Virtanen (1998). Laite pdivitettiin vuonna 2014.

Suprajohtavan gravimetrin tarkein ominaisuus sen ylivoimaisen tark-
kuuden* lisdksi on stabiilius eli olematon kdynti. Siksi se soveltuu
erinomaisesti pitkdperiodisten ilmididen seuraamiseen, kuten suurten
maanjdristysten aiheuttamien kiintein Maan ominaisvérdhtelyjen'?,
joissa koko maapallo soi kirkonkellon tavoin. Se sopii siis mittauksiin,
joihin tavallinen gravimetri ei sovi suuremman kdynnin ja heikomman
herkkyyden takia, ja mittauksiin, joihin seismometri ei sovi, koska
mitattavat taajuudet ovat liian matalia.

Viime aikojen trendi on kevyiden, “kannettavien” ja kauko-
ohjattavien suprajohtavien gravimetrien kehitys, esimerkiksi GWR
iGrav®, joka painaa 30kg eikd kuluta yhtdidn nestemdistd heliumia.
Toisaalta se vaatii reilun kilowattin verran verkkovirtaa jadhdytysjarjes-
telmédnsd (GWR Instruments, Inc., iGRAV® Gravity Sensors). Ehka
tama tuo parannusta nykytilanteeseen, jossa valtaosa laitteista sijaitsee
Euroopassa ja Pohjois-Amerikassa.

11.6 Painovoimamittaus ja ilmakeha

IImakehd vaikuttaa painovoimaan seuraavalla tavalla:

o Laitteeseen liittyvit vaikutukset johtuvat gravimetrin konstruktiosta.
Ainakin ilmanpaineen vaikutus saadaan havidméaan sulkemalla
laite painekammioon. Kédytannossa helpompaa on kalibroida laite

2Virtanen (2006) kertoo, miten Metsdhovin laite havaitsi painovoiman muutoksen,
kun tyoldiset loivat lunta laboratoriorakennuksen katolta ja pitivét teetauon! Myos
vierailijoiden “punnitus” heiddn vetovoimansa perusteella on rutiinia.

*3Niiden periodit ovat vililld noin 300-30 000 sekuntia — taajuudet 0,03-3 mHz — ja
ne ovat geofysikaalisesti hyvin mielenkiintoisia, Wikipedia, Earth normal modes.
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laboratoriossa ja laskea kalibroinnin mukainen korjaus kenttdmit-
tauksiin.

o Ilmakehin vetovoima on oikea gravitaatio. Se sisdltda epasaannollisia
paikasta ja ajasta riippuvaisia vaihteluita, joita pitdéd korjata pois
painovoiman havaintoarvoista.

IImakehédn vaikutuksen voi laskea Bouguer-laatta-approksimaa-
tion avulla: jos ilmanpaine on p, on ilmakehdn massan pintatiheys

K=Ply,

jossay on edustava painovoima-arvo ilmakehén sisdlld. Emme tee
suurta virhettd, jos kiytimme merenpinnan arvoa y ~ 9,81 m/s2.
Merenpinnan standardi-ilmanpaine on 1013,25 hPa, jolloin saa-
daan merenpinnan tasolla'* k ~ 10 329 k¢/m2. Bouguer-laatan vai-
kutus on

2nGk = 0,43 mGal (11.7)

ylospdin.

Olisi kuitenkin vaarin kayttaa tatd arvoa korjauksena! Standardi-
ilmakehd on oikeasti pallokuori, jonka sisdlld mittaukset tehdéén,
ja kuoren sisilld sen vetovoima hévidd, katso osio 1.4.

Sen sijaan ilmanpaineen paikallisella vaihteluilla on suhteellinen
vaikutus. Jos ilmanpaineen poikkeama on Ap = p — po, jossa po
on keskimddrdinen ilmanpaine, tehtdva painovoimamittauksen
korjaus on

_0.434p
69A = 0,43p—0mGal

Myrskyn tai sddrintaman ylikulun aikana kaunis teoria romahtaa
ja yksinkertaiset kaavat antavat harhaanjohtavia tuloksia. Silloin
on paras olla tekemaéttd painovoimamittauksia!

'4Siis tosiaan, standardi lapparin 14 tuuman ndytt66n (kuvasuhde 16 : 9) kohdis-
tuva voima on 547 kg... mutta silld ei ole vélid, koska se ei ole vanhanaikainen
tyhjickuvaputki.
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Ilmakehiin sisillyttdminen maapallon massaan ei ole painovoimamit-
tauksiin tehtdva korjaus, vaan reduktio, jota kdytetadn painovoima-
anomalioiden laskennassa, mikali halutaan anomalioita, joissa il-
makehédn vaikutus ei aiheuta systematiikkaa.

Muista, ettd GRS80:n normaalipainovoimakenttd on maédritelty
siten, ettd parametri GMg sisdltdd koko maapallon massan il-
makehd mukaan lukien. Se on Maan vetovoima sellaisena kuin
satelliitit sen tuntevat (Heikkinen, 1981).

Siksi, jos halutaan laskea painovoima-anomalioita, joiden maa-
ilmanlaajuinen keskiarvo on nolla, pitdd redukoida myds mi-
tattu painovoima siirtdmalld laskennallisesti koko mittauspaikan
yliapuolella oleva ilmakehi mittauspaikan alapuolelle, esimerkiksi
merenpintaan.

IImakehin kokonaismassa on
M, = 4mkR? = 4n$R2.

Newtonin mukaan sen vetovoima on

R? Y

kaksi kertaa ylld laskettua Bouguer-laatan ilmakehédreduktiota
11.7. Tdma arvo on lisdttavd mitattuihin painovoima-arvoihin.
Voi my®0s ajatella tdtd arvoa painovoiman muutoksena, jos paikal-
lisen ilmakeh&dn Bouguer-laatta tiivistettdisiin Helmertin konden-
saation tavoin mittauspaikan alapuolelle, jolloin saadaan kaksin-
kertainen Bouguer-laattakorjaus.

Merenpinnalla korjaus on 0,87 mGal. Korkeudella korjaus on

0,872M) 1 Gal,
Po

jossa p(H) ja po ovat ilmanpaineet korkeudella H ja merenpinnalla.
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11.7 llmagravimetria ja GNSS

1990-luvun alussa GPS, globaali paikannusjdrjestelmad, ja yleisemmin
satelliittipaikannus, muutti ilmagravimetrian hankalasti toteutettavas-
ta tekniikasta tdysin operationaaliseksi. Tamédn ymmartdmiseksi on
tunnettava ilmagravimetrian toimintaperiaate.

Lentokoneessa kuljetetaan ilmagravimetria, kojetta, joka on samalla
tavalla vahvasti vaimennettu kuin merigravimetri. Mittaus tapahtuu
automaattisesti, yleensd sahkostaattisen kompensaation avulla. Koje on
asennettu vakautetulle alustalle, joka seuraa paikallista luotiviivaa.

Lennon aikana gravimetri mittaa lentokoneessa kokonaispainovoimaa,
joka koostuu kahdesta osasta:

1) varsinainen painovoima kiinteddn Maahan kiinnitetyssé ja sen
mukana py0rivdssd vertauskehyksessa

2) lentokoneen kiihtyvyyksien aiheuttamat ndenndisvoimat, jopa
suorassa lennossa.

Lentokoneeseen on kiinnitetty muutama GNSS-antenni. Niiden ja geo-
deettisen GNSS-laitteen avulla voidaan lentokoneen liikkeita seurata
senttimetrin tarkkuudella. Liikkeistd voidaan laskea kohdalla 2 mainitut
ndenndisvoimat.

Jos mitataan lentokoneen (eli mittalaitteen) paikka x; hetkilld t;,
At = ti41 —ti, saadaan kiihtyvyysarvojen estimaatit seuraavasti (inerti-
aalisessa kehyksessd):

X{ X —2X]
Al . (11.8)

Jos gravimetrilla mitattu kiihtyvyys on g ja paikallisen luotiviivan

*

~
a; =

suunta (ylospdin) n, seuraa paikallinen painovoima g seuraavasti:
g=9g— <(a* + o) -n> =g—(a*-n)— w3 N(¢)cos p,

jossa f,, = w2 (Xi+ Yj) on Maan pyorahdysliikkeen keskipakoiskiih-
tyvyys, yhtdlo 4.1. N(¢) on Maa-ellipsoidin poikittaiskaarevuussade,
yhtalo 2.6.
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Maan mukana pyorivassa kehyksessa (”Earth centred, Earth fixed”)
keskipakoiskiihtyvyystermi on jétettdva pois. Sen sijaan on silloin kui-
tenkin otettava huomioon corioliskiihtyvyys, joka johtaa lentokoneen
nopeuden v vuorovaikutuksesta Maan pydrimisliikkeen kanssa. Kiihty-
vyystermi on

fl, = —2(wg x V) =2wg (vyi—vxj),
ja saadaan
9=5-((a~£,) - m) =g~ (a®n) + 2ws viscos .

Kriittistd tdssd menetelméssad on aikavakion At valinta. Parasta on
valita se mahdollisimman pitkéksi, koska silloin laskettujen GNSS-
kiihtyvyyksien a; tarkkuus on mahdollisimman hyva. My6s gravi-
metrin vaimennus valitaan At:n mukaan, ja havainnot suodatetaan
digitaalisesti: kaikki taajuudet rajan At~ ylipuolella poistetaan, koska
ne ovat ldhes kokonaan lentokoneen liikkeiden aiheuttamia.

Signaalista poistettu korkeataajuuksinen osa on usein 10 000 kertaa
vahvempi kuin etsitty painovoimasignaali! Katso esimerkiksi Lu ym.
(2017) kuva 2.

Jos yhden GNSs-paikkamittauksen pystysuuntaisen koordinaatin epa-
varmuus (keskivirhe) on o, ja eri koordinaatit eivit korreloi keskendén,
on yhtélon 11.8 mukaan pystykiihtyvyyden epdavarmuus

0.V6

O0q = A2 "

Aikavilin At tekeminen mahdollisimman pitkdksi ilman, ettd erotuskyky
kdrsii, vaatii matalaa lentonopeutta. Yleensa kdytetddan potkurikonetta
tai jopa helikopteria. Tietysti mittauksen hinta kasvaa lennon keston
mukaan — helikopterin roottoritunti on kallis!

Lentokorkeus H valitaan erotuskyvyn Ax mukaan:

H~ Ax = v At,
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jossa v on lentonopeus. Vierekkdisten lentoratojen vilinen etdisyys
valitaan vastaavalla tavalla.

Ensimmdinen suuri ilmagravimetriaprojekti lienee ollut Gronlannin
painovoimakentdn kartoitus ilmasta (Brozena, 1992). Kunnianhimoises-
sa amerikkalais-tanskalaisessa hankkeessa lennettiin kesind 1991-92 yli
200 000 km. Koko ajan mitattiin sekd painovoimaa ettd magneettikenttaa.
Jadnpinnan korkeutta mitattiin altimetrisesti.

Sen jdlkeen on kartoitettu muitakin suuria asumattomia alueita poh-
joisella ja eteldiselld napa-alueella, katso Brozena ym. (1996), Brozena
ja Peters (1994). Muista suurista mittauskampanjoista kerrottiin jo ala-
osiossa 9.6.2. Toiminta jatkuu, katso Coakley ym. (2013), Kenyon ym.
(2012). Menetelmd soveltuu suurille asumattomille alueille, mutta myos
esimerkiksi merialueille ldhelld rannikkoa tai saaristojen sislld. Tallai-
sissa paikoissa laivagravimetrilla olisi vaikea navigoida pitkid suoria
linjoja. Vuonna 1999 suoritettiin ilmagravimetriakampanja Itdimeren yli,
ja mukana oli myds Suomenlahti (Jussi Kédaridinen, henkilokohtainen
tiedotus).

Taloudellisuuden lisdksi ilmagravimetrian tirked etu on, ettd laajal-
ta alueelta saadaan homogeeninen painovoima-aineisto. Monien vuosi-
kymmenien aikana kerdtyn pintamittausaineiston homogeenisuutta on
vaikea taata samalla tavalla. Mydskddn paikallisen maaston vaikutus,
joka on pintamittauksissa etenkin vuoristossa systemaattinen ja hanka-
lasti poistettava hdirittekija (katso osio 6.3), ei esiinny samalla tavalla
ilmagravimetriassa.

Satelliittigravimetrian toimintaperiaate on samanlainen, katso osio 13.7.
Olennainen ero on, ettd satelliitissa oleva laitteisto on painottomassa
tilassa. g = 0 korkealla radalla tai jos kdytetddn ilmanvastuksen kom-
pensaatiomekanismia. g on pieni ja mitataan herkan kiihtyvyysmittarin
avulla matalalla radalla, jossa ilmanvastus on merkittava.

Satelliittipainovoimamission suunnittelun suurin haaste onkin len-
tokorkeuden valinta. Matalin mahdollinen korkeus on noin 200 km.
Silla korkeudella tarvitaan ajoainetta tankillisen verran, koska muuten



318

11 GRAVIMETRISET MITTALAITTEET

lento ei kestd kauan. Mittausten erotuskyky Maan pinnalla on rajalli-
nen: esimerkiksi GOCE-satelliittin “ndkemé&t” Maan painovoimakentdn
pienimmadt yksityiskohdat ovat ldpimitaltaan 50—-100 km.

11.8 Painovoimagradientin mittaus

Painovoiman kiihtyvyys g on geopotentiaalin W gradientti. Painovoi-
man kiihtyvyys vaihtelee paikan mukaan, etenkin massojen ldhistolla.
Puhutaan painovoimagradienttitensorista eli E6tvosin tensorista:

[ 02 02 02
0x2 axay 0x0z dux Oy Oz
RS0 IO G O O YV I Y
| 9yox 9y? Oyoz o yx  Fyy  Fyz
aZ aZ 62 azx azy aZZ
[ 0z0x 0z0y 0z2

Tieddmme, ettd painovoima kasvaa alaspdin, ainakin vapaassa ilmas-
sa. Ylospdin painovoima vdhenee, noin 0,3 mGal jokaista korkeusmetriad
kohti.

Toposentrisissd koordinaateissa (x,y,z), joissa z osoittaa zeniitin

suuntaan, on tama matriisi likiméaarin

—0,15 0 0
M=~ 0 —0,15 0 mGal /|
0 0 0,3
jossa 9,,W = 0,9, = —0,g ~ 0,3mGal/m on standardiarvo painovoi-

man pystysuuntaiselle ilmagradientille: Newtonin laki antaa pallon
muotoiselle maapallolle

GM

T

Miinusmerkki tulee siitd, ettd g:n suunta on alaspédin, kun z-koordinaatti
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kasvaa ylospdin. Differentiointi antaa

D, _> GM '6(R+Z):_ 29, ~
2" R 0z R+ 2)

~3. 10—6 m/SZ/m — O)gmGal/m.

Suureet 0, W ja 0,y W taas edustavat tasapotentiaalipintojen kaare-
vuuksia x- ja y-suunnassa, yhtalot 4.4:

W g _*W_ g

o2~ e wWE B = o0

axxW =

jossa py ja py ovat x- ja y-suunnan kaarevuussiteet. Sijoittaminen
Px, Py =~ R antaa

dxW =9, yW=a —1,5-107° m/sz/m — —0,15mGal /iy,

Unkarilainen tutkija Lordnd E6tvos teki useita neuvokkaita kokeita (Eot-
v0Os, 1998) painovoimagradienttitensorin komponenttien mittaamiseksi
rakentamillaan torsiovaaoilla. Menetelma on edelleen kdytossa geofysi-
kaalisessa tutkimuksessa, koska painovoimagradientti on mittaussuu-
reena varsin herkka paikallisille maankuoren ainetiheysvaihteluille.

Eo6tvosin kunniaksi painovoimagradientin yksikkond kéytetdadn eot-
vosid, symboli E:

1E=10"""/s/m =10 *mGal/m.
Yl1l4 oleva tensori on nyt

—1500 0 0
M~ 0 —1500 0 E.
0 0 3000

Huomaa, ettd

2W | 2W | 2W
a2 T oyr T oz

= QW + Dy y W + 0. W ~ 0,
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tuttu Laplacen differentiaaliyht&ls. Yhtilo ei ole kuitenkaan tadssa ek-
sakti: Maan mukana py0rivéssd koordinaattijarjestelmédssda Laplacen
yhtdloon pitad lisatd keskipakoisvoiman divergenssin termi 2w?, yhta-
16 4.2.

Kuun ja Auringon painovoimagradienttikenttd tunnetaan Maan padal-
1a vuoroveden kenttind, katso osio 14.1.

Olenko ymmartanyt taman?

1) Osiossa 11.2 kuvatulla jousigravimetrilla yhden milligalin muutos
painovoimassa ¢ tuottaa yhtédlén 11.4 mukaan pidennystd 5 -
10~8 m. Suorita tarkistuslasku.

2) Miksi heilurigravimetri, vaikkakin teoreettisesti absoluuttinen, ei
ole kovin tarkka absoluuttisena gravimetrina?

3) Millaisilla menetelmévalinnoilla otetaan kdytannon mittauksissa
huomioon relatiivigravimetrin kdynti?

4) Miksi kansainvalisten gravimetristen runkoverkkojen vertauspis-
teet olivat ennen absoluuttisten gravimetrien tuloa usein lento-
kentilla?

5) Miké on absoluuttisessa eli ballistisessa gravimetrissa seuraavien
osien rooli:
(a) putoavan prisman ympéaréiva “hakki”
(b) ”superjousi”?
6) Googlen mukaan

o Persianlahden sota 1990-1991 oli ensimmadinen selkkaus,
jossa sotilaat kayttivat GPs:da laajasti.

7

o Joulukuussa 1993 GPS saavutti “initial operational capabilityn’
(I0C), kun taysi konstellaatio, 24 satelliittia, oli kdytettavissa.

o Greenland Aerogeophysics Project, ensimmdinen suuren
mittakaavan ilmagravimetriakartoitus, kartoitti Gronlannin
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painovoimakenttdd kesien 1991 ja 1992 aikana.

Miksi ndma vuosiluvut ovat ndin ldhella toisiaan?

Harjoitus 11—1: Absoluuttinen gravimetri

Absoluuttisen gravimetrian havaintoprosessin yhtdlé on
— 1 42
z =120+ Vot + 5gt°.

Oletetaan, ettd putoamismatka on 30 cm.
1) Paljonko on putoamisaika?

2) Jos tavoitetarkkuus on +10 uGal, kuinka tarkasti laserinterfero-
metrin tulee mitata putoamismatka?

Saa vapaasti valita kdytettdvdan analyysimenetelmén: analyyttinen,
numeerinen, .... Ajattele olevasi ostotilanteessa absoluuttista
gravimetria rakentaessasi. Karkea arvio riittaa!

3) Sama kysymys putoamisajan mittaustarkkuudelle.

Harjoitus 11—2: Jousigravimetri

Kun jousigravimetria kédytetddn kenttdty0ssd, asetetaan se jokaisella mit-
tausasemalla tukevaan pohjaan, esimerkiksi peruskallioon, ja tasataan.

Taman lisdksi huolehditaan aina siitd, etta
o Laite arretoidaan kuljetuksen aikana: puomi kiinnitetdadn liikku-
mattomaksi.
o Laitteen sisdinen lampétila pidetddn vakiona termostaattijirjestel-

midn avulla.

Syynd tdhdn on se, ettd jousigravimetrin toiminta riippuu jousen aineen
ominaisuuksista, jotka saattavat muuttua huolimattoman késittelyn tai
lampétilan vaihtelujen seurauksena.

Taman lisdksi jousigravimetrilla on aina kiynti: yhteys mitatun ar-
von ja todellisen arvon vililld muuttuu hitaasti ajassa. “Kypsdssd”, ei-
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vastavalmistuneessa gravimetrissa, kdynti on kuitenkin hyvin tasainen
ja melkein lineaarinen.
Kysymys Miten jousigravimetrin kdyttdytyminen, erityisesti sen kiynti,
otetaan huomioon
1) mittausverkon topologian suunnittelussa?
2) verkon eri mittausten aikajdrjestyksen suunnittelussa?

3) kulkuneuvojen ja mittauspisteiden sijaintien valinnassa?

Harjoitus 11—3: llmanpaine ja painovoima

1) Paljonko 100hPa syvd matalapaineen alue — jolla on siis
100 hPa:n wvihemmin ilmanpainetta kuin keskimddrdinen il-
manpaine 1013,25hPa — vaikuttaa Maan pinnalla mitattuun
painovoimaan? Oleta, ettd alue on laaja, niin laaja kuin
matalapaineet yleensa.

2) Paljonko merenpinta nousee matalapaineen alla ”ylosalainen
ilmapuntari” -ilmitn takia?

3) Kuinka suuri on kohdassa 2 mainitun ilmioén vaikutus laivalla
mitattuun painovoimaan? Oleta, ettd olet avomerelld, ettd paino-
voiman pystygradientti vapaassa ilmassa on —0,3 mGal/m ja ettd
meriveden tiheys on 1030 k8/m*. Analysoi tilanne huolellisesti'.

15Siis oikein huolellisesti.



Geoidi, keskimerenpinta ja
meritopografia

12.1 Peruskasitteet

Merelld geoidi on keskimddrin samalla tasolla kuin keskimerenpinta, joka
saadaan, jos hetkellisestd merenpinnasta poistetaan kaikki jaksolliset ja
kvasijaksolliset vaihtelut. Nama vaihtelut ovat esimerkiksi:

o vuorovesi-ilmiditd (Kuun ja Auringon aiheuttamia), suuruusluok-
kaa +1m, paikallisesti enemmaénkin

o ilmanpaineen vaihtelujen aiheuttamia vaihteluja (”ylosalainen
ilmapuntari”), jotka ovat tavallisesti desimetrien luokkaa, mutta
trooppisten hirmumyrskyjen alla jopa metreja

o tuulen aiheuttama vesimassojen kasaantuminen, “wind pile-up”
o reunamerilld makean jokiveden mereen virtaaman vaihteluja

o valtamerilld esimerkiksi Golfvirran ja Agulhasinvirran yhteydessa
syntyvid mesomittakaavan pyorteitd (“mesoscale eddies”), joiden
elinkaari voi olla kuukausia ja joissa merenpinta voi olla jopa pari
desimetrid ympdristonsd merenpinnan ala- tai ylapuolella

o merivirtausten jatkuva siirtyminen paikasta toiseen

o ENSO, El Nifio Southern Oscillation, on hyvin pitkéd-aikainen, kva-
sijaksollinen sddilmio, joka tapahtuu pddasiassa Tyynenmeren
vesissd ja sen yldpuolella olevassa ilmassa, mutta joka vaikuttaa
koko maapallon sddilmioihin. Vaihtelun aikaskaala on kahdesta
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seitsemddn vuoteen. Katso kuva 13.1.

Jos poistetaan kaikki ndmad jaksolliset ja kvasijaksolliset vaihtelut, jaa
jaljelle keskimerenpinta. Jos merten vesi olisi tasapainotilassa, olisi tima
keskimerenpinta Maan painovoimakentédn tasapotentiaalipinta nimelta
geoidi.

Ndin ei todellisuudessa ole. Keskimerenpinta eroaa tasapotentiaali-
pinnasta muun muassa seuraavien ilmididen seurauksena:

o Pysyvit virtaukset valtameressa aiheuttavat coriolisvoiman kautta
pysyvid keskimédardisen vedenpinnan tasoeroja.

o My®és pysyvit lampétila- ja suolaisuuserot aiheuttavat pysyvid
keskiveden tason eroja, jilkimmadiset esimerkiksi jokien suiden
edustalla.

Y1ld mainitut fysikaaliset ilmi6t aiheuttavat muiden joukossa niin sa-
notun meritopografian, pysyvan erotuksen keskimerenpinnan ja geoidin
valilla. Katso kuva 12.4.

Geoidin klassinen maaritelma on

“Maan painovoimakentin tasapotentiaalipinta, joka yhtyy keskimidrin
ldhimmin keskimerenpintaan.”

Taméan médritelmén kdytannon ongelma on, ettd geoidin oikean tason
madritys edellyttdd keskimerenpinnan tuntemista kaikkialla maailman
valtamerilld. Siksi monet “geoidin” mallit kdytdnnossa eivédt yhdy
globaaliin keskimerenpintaan, vaan johonkin paikallisesti mddritettyyn
keskimerenpintaan. Usein sekin yhteys on likimaardinen.

Keskimerenpintakin on ongelmallinen késite. Se on merenpinta, josta on
laskennallisesti poistettu kaikki jaksolliset efektit, mutta kuka voi tietds,
onko niin sanottu sekulaarinen efekti todellisuudessa pitkdperiodinen?
Pysyvyyden mittana ovat mittaussarjat, kun mareografimittaukset
ovat olleet laajasti kdytdssd jo noin vuosisadan ajan. Nykyaikaiset
merenpintaa mittaavat satelliitit, kuten TOPEX/Poseidon ja sen seuraajat,
ovat sen sijaan olleet kdytdssd vasta noin neljannesvuosisadan.
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Jarkeva kompromissi lienee merenpinnan 18 vuoden jakson keskiarvo
eli Kuun rataliikkeen jaksollisuus saros, Wikipedia, Saros-jakso.

12.2 Geoidimallit ja kansalliset korkeusdatumit

Paikallisesti mddritetty geoidin malli on yleensa suhteellinen. Kaytettavis-
sd ei ole tekniikkaa, jolla globaali keskimerenpinta voitaisiin maarittaa
paikallisesti riittdvalla tarkkuudella. Tulevaisuudessa tdima luultavasti
muuttuu uusien teknologioiden ansiosta.

Yleensd paikallinen geoidimalli on sidoksissa kansalliseen korkeus-
jdrjestelmdin ja ero klassisesta méadritelméastd on siis sama kuin tasoero
kansallisen korkeusjdrjestelmén ja globaalin keskimerenpinnan valilla.

Suomessa korkeudet médritettiin pitkddn N6o-jarjestelméssd, joka on
sidottu keskimerenpintaan Helsingin satamassa vuoden 1960 alussa.
Ero sen ja globaalin keskimerenpinnan vélilld on noin 30 cm johtuen
Itdmeren topografiasta, katso kuva 12.4. Jarjestelman piikiintopiste si-
jaitsee Kaivopuistossa, kuva 7.2. Tarkkavaaituksen avulla korkeuksia
on viety kaikkialle Suomeen.

Nykyinen Suomen korkeusjarjestelmé on N2ooo. Jarjestelma on si-
dottu periaatteessa Amsterdamin keskimerenpinnalle, joka on ldhelld
globaalia keskimerenpintaa. Sen paékiintopiste Suomessa sijaitsee Met-
sdhovin tutkimusasemalla Kirkkonummella.

Vuoden 1960 alussa Suomen N6o-korkeusjdrjestelmén lahtétaso oli
Maan painovoimakentédn tasapotentiaalipinta. Maannousun seurauk-
sena se ei ole sitd endd: postglasiaalinen maannousu vaihtelee Helsingin
seudun noin neljdstd millimetristd vuodessa maannousun maksimialu-
een Pohjanmaan jopa kymmeneen millimetriin vuodessa. Tama on tér-
kein syy, miksi Fennoskandian korkeusjdrjestelmilld on “parasta ennen”

-pdivamaddrd, ja ne joudutaan uusimaan pari kertaa vuosisadassa.

Yleensd kdytdnnon geoidikartat, kuten Suomen geoidimalli FIN2000
(kuva 9.5), rakennetaan niin, ettd ne muuntavat kansallisen korkeusjar-
jestelmdn mukaiset korkeudet, esimerkiksi N6o-korkeudet (Helmertin
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korkeudet), “keskimerenpinnasta” korkeuksiksi GRS8o-jdrjestelmén ver-
tausellipsoidista.

Koska maannousu on jatkuva prosessi, se on sidottava tiettyyn epook-
kiin eli ajanhetkeen, jolloin tehtiin ne GNSS-mittaukset, joihin alun perin
gravimetrinen geoidiratkaisu on sovitettu. FIN200o:n tapauksessa tama
oli 1997.0 (Matti Ollikainen, henkilokohtainen tiedotus; Bilker-Koivula
ja Ollikainen, 2009; Hékli ym., 2009).

Tarkasti ottaen FIN2000 ei siis olekaan geoidin malli. Parempi ni-
mitys lienee “muunnospinta”. Taméa koskee oikeastaan kaikkia kan-
sallisia tai alueellisia geoidimalleja, jotka tehdddn ensisijaisesti sitd
varten, ettd GNSS-mittauksia voitaisiin kdyttda korkeuden maaritykseen
("GNSS-vaaitus”). Namaé “geoidinkaltaiset pinnat” rakennetaan yleensa

seuraavalla tavalla:

1) Lasketaan gravimetrinen geoidimalli kdyttamalld Stokesin inte-
graaliyhtdl6d ja poistamis-entistimismenetelmaa (remove-restore),
esimerkiksi FFT-laskentatekniikan avulla.

2) Sovitetaan geoidipinnan ratkaisu muutamaan vertailupisteeseen,
joissa sekd korkeus vaaituksesta eli “merenpinnasta” ettd GNSS-
menetelmdstd eli vertausellipsoidista tunnetaan. Sovitus tapahtuu
esimerkiksi mallintamalla erotukset polynomifunktiona:

SN=a+b(A—=2Ag)+c(@—@o)+--

tai jotain monimutkaisempaa, ja ratkaisemalla kertoimet a, b,
¢, ... kahden korkeuden vilisista erotuksista niissd tunnetuissa

vertailupisteissd pienimmén neliGsumman menetelmén avulla.

12.3 Geoidi ja postglasiaalinen maannousu

Globaali keskimerenpinnan taso ei ole vakio. Merenpinta nousee hitaasti,
mutta nousuvauhti on viime vuosisadan aikana kasvanut. Koko 1900-
luvun aikana keskimédardinen nousutahti on ollut parhaiden arvoiden
mukaan 1,5-2,0mm/a - esimerkiksi 1,6mm/a (Woppelmann ym., 2009).
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Muutaman viime vuosikymmenen aikana tahti on kiihtynyt ja on nyt
reilu 3mm/;, katso kuva 13.1.

Tatd arvoa kutsutaan eustaattiseksi keskimerenpinnan nousuksi. Se johtuu
osin jadtikdiden ja mannerjddn sulamisesta, osin meriveden lampolaa-
jenemisesta. Eustaattisen nousun tarkkaa arvoa on vaikea maéarittaa:
lahes kaikilla merenpinnan tasoa seuraavilla mareografeilla on omat
pystyliikkeensd, ja niiden erottaminen merenpinnan noususta edellyt-
tdd mittauspaikkojen edustavaa maantieteellistd jakaumaa. Etenkin
kiintean Maan vield kdynnissd oleva isostaattinen reaktio viimeisen
jadkauden paddttymiseen eli deglasiaatioon, niin sanottu GIA (glacial
isostatic adjustment), on maailmanlaajuinen ilmid, jota on osattu vasta
viime vuosikymmenind havainnoida satelliittipaikannuksen avulla.

Eustaattisen merenpinnan nousun takia on tehtéva ero absoluuttisen
ja relatiivisen eli suhteellisen maannousun valilla:

Absoluuttinen maannousu on maankuoren liike maapallon massa-
keskipisteen suhteen — tai vastaavasti geosentrisen vertausellip-
soidin, esimerkiksi GRS80:n, pinnan suhteen. Timéd maannousu
mitataan, kun kdytetddn satelliitteja, joiden radanmaéaritys tapah-
tuu Maan massakeskipisteeseen sidotussa vertausjdrjestelmassd,
esimerkiksi mareografin paikannus GNSS:n avulla.

Suhteellinen maannousu on maankuoren liike keskimerenpinnan

suhteen. Tama liike mitataan mareografin avulla.

Geoidin nousu Kun postglasiaalinen maannousu on Maan sisdisten ai-
nemddrien siirtyminen paikasta toiseen, on selvad, ettd myos geoi-
di muuttuu. Geoidin nousu on kuitenkin pientd maannousuun
verrattuna, vain muutama prosentti.

Yhtilo (piste suureen yldpuolella merkitsee aikaderivaattaa'):

H=h-N=H, + H. + H,

'Tamd pistekirjoitustapa eli fluxion on Newtonin keksima.



328

12 GEOIDI, KESKIMERENPINTA JA MERITOPOGRAFIA

jossa
H  suhteellinen maannousu geoidista
h absoluuttinen maannousu vertausellipsoidista

H,  suhteellinen maannousu paikallisesta keskimerenpinnasta
He  eustaattinen (globaalin keskimerenpinnan) nousu
H;  meritopografian ajallinen muutos (luultavasti pieni)

N geoidin nousu vertausellipsoidista.

Geoidin nousu maannousun seurauksena voidaan yksinkertaisesti
laskea Stokesin integraaliyhtéilén avulla:

= 4y H ( Ag) do-

Tassd < Ag on painovoima-anomalioiden muutos ajassa maannousun
seurauksena. Valitettavasti emme tunne tarkasti mekanismia, jolla massaa
virtaa Maan vaipassa maannousualueen alle. Voimme olettaa

d o dH _ o
aAg dt CH,

jossa vakio c voi vaihdella arvojen —0,16 ja —0,31mGal/m vililla.

o Arvoa —0,16mGal/m kutsutaan “"Bouguer-hypoteesiksi”: se vas-
taa tilannetta, jossa nousevan maankuoren alle virtaa yldvaipan
ainetta tdyttamaan vapautunutta tilaa. Aine voidaan karkeasti
mallintaa Bouguer-laataksi.

o Arvo—0,31mGal/m on toinen ddripad, “vapaa-ilmahypoteesi”,jonka
mukaan viime jddkauden jidkuorma on vain puristanut Maan
vaippaa kokoon, ja nyt se laajentuu hitaasti entiseen tilavuuteensa
("pullataikinamalli”).

Todenndkoisin arvo oli pitkddn noin —0,2mGal/m, melkoisella epa-
varmuudella. Uusimmat tulokset (Médkinen ym., 2010; Olsson ym.,
2019) voidaan esittdd muodossa —0,16 £ 0,02mGal/m (yksi standardipoik-
keama). Nayttda siltd, ettd Bouguer-malli on ldhempénd fysikaalista
totuutta. Massan virtauksen oletetaan tapahtuvan astenosfiirissd.
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Astenosfaari

(a)

Bouguer-hypoteesi. . .

Ylavaippa

(b)
... ja vapaa-ilmahypoteesi.

Kuva 12.1. Postglasiaalisen maannousun mekanismin kaksi eri hypoteesia.

Tata ongelmakenttdd on tutkittu Pohjoismaissa paljon. Kaytetty me-
netelma on ollut gravimetrinen mittaus 63. pohjoista leveyspiirid pitkin
(”Blue Road Geotraverse” -projekti). Mittausasemat ulottuvat Norjan ran-
nikolta Vendjan rajalle saakka, ja ne on valittu niin, ettd painovoima vaih-
telee kapean arvovilin sisdlld. Nain véltetddn gravimetrien mittakaava-
virheen vaikutus. Eihdn meitd kiinnosta absoluuttinen painovoima-arvo,
vaan ainoastaan painovoimaerojen muutos ajassa asemien valilla.

Mittauksia on tehty monen vuoden ajan kédyttden huipputarkkoja
jousi- eli relatiivigravimetreja. Viime vuosina on siirrytty absoluutti-
gravimetrien kdyttoon, jolloin mittauslinjoja ei enda tarvita.
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Ainekoski

15° 20° 25°

Kuva 12.2. Fennoskandian 63. pohjoisen leveyspiirin painovoimalinja.

12.4 Meritopografian maaritys

Periaatteessa on olemassa kolme geodeettista menetelmaa:
o satelliittialtimetria ja gravimetrinen geoidimaéaritys
o mareografien paikannus rannikolla GNSS:n avulla gravimetrisen

geoidimddrityksen kanssa
o tarkkavaaitus rannikkoa pitkin mareografien valilla.

Taman lisdksi on olemassa meritieteellinen menetelma eli fysikaalinen
mallinnus. Menetelmaa kutsutaan steeriseksi vaaitukseksi, jos kdytetdan
lampdtila- ja suolaisuusmittauksia pystyprofiilia pitkin avomerelld, ja
geostrofiseksi vaaitukseksi, jos kdytetddn virtausmittauksia coriolisvoiman
vaikutuksen madrittdmiseksi, yleensd rannikon ldhella.

Kaikkien menetelmien pitdisi antaa samat tulokset. Itdmeri on esi-
merkkitapaus, jossa kaikkia kolmea geodeettista menetelméda on kaytetty.
Tulos on ollut, ettd koko Itdimeren pinta on “kallellaan”: tasapotentiaali-
pintaan ndhden merenpinta nousee Tanskan salmista Suomenlahden ja
Pohjanlahden pohjukoille 25-30 cm.

Meritieteelliset mallilaskennat antavat ymmartas, ettd tdma kalte-



Globaali meritopografia ja limmonkuljetus 12.5

vuus on perdisin padosin suolaisuusgradientista: Atlantilla suolaisuus on
30-35 9/00, kun Itdmerelld se laskee tasoon 5—-10 ©/o0, jokien massiivisen
makean veden tuotannon takia (Ekman, 1992). Tietysti timén péélle
tulee ajallisia vaihteluita, kuten myrskyjen aiheuttamia heilahteluja
kylpyammeen tapaan. Vaihtelujen amplitudi voi olla yli metri.

Julkaisussa Ekman (1992) kerrotaan lisdd Itdmeren topografiasta ja
sen madrityksesta.

12.5 Globaali meritopografia ja lammonkuljetus

Yksi tiarked syy, miksi tutkijat ovat kiinnostuneita maailmanlaajuisesta
meritopografiasta, on, ettd se antaa tilaisuuden tutkia tarkemmin val-
tamerten virtauksia ja niiden kautta Auringon lampoenergian kulkua
pdivantasaajalta korkeampiin leveysasteisiin. On monia muita asioita,
joita merivirtausten parempi tunteminen auttaisi tutkimaan, esimerkiksi
veteen liuennut hiilidioksidi, lehtivihred (kasviplankton) ja suolaisuus.

Maan pyordhdysliikkeen aiheuttama coriolisvoima eli -kiihtyvyys on
fl, = —2(wg x v), (12.1)

jossa v on vapaasti liikkuvan hiukkasen nopeusvektori pyorivadn maa-
palloon kiinnitetyssé jdrjestelmdssd ja wg on maapallon pyordhdysliik-
keen vektori. Timé on aksiaalinen vektori, joka on Maan pyorahdysak-
selin suuntainen.

Jos neste virtaa Maan pinnalla, vaikuttaa yhtdlosséd 12.1 vain vektorin
Wg merenpinnan normaalisuunnassa n oleva osa: se on (Wg - M) =
Wg sin @, eli vektorina

__  def .
We = (Wg -N)N = (wgsin @) n.

Nyt vaakatasoon projisoitu coriolisvektori on

£ (Wg x V) = —2wg sin (N x v),

w
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jonka pituus on skalaari
fo = [foll = 2vwe sinfol.

Tassda v = ||[v|| ja wg = ||we]|| tutulla tavalla. Corioliskiihtyvyyden
suunta on aina kohtisuorassa virtausnopeuteen: virtaussuuntaan néhden
oikealle pdin pohjoisella pallonpuoliskolla ja vasemmalle péin eteldiselld
pallonpuoliskolla.
Coriolisvoiman seurauksena merivirtauksen alueella merenpinta on
virtauksen suhteen sivusuunnassa kallellaan, kulmalla
fls w
fo g

Téssd vy on paikallinen painovoima. Tétd tasapainoa coriolisvoiman ja

sin|q] .

painovoiman vélilld kutsutaan geostrofiseksi tasapainoksi. Kuten yhtalosta
ndkyy, on pdivintasaajalla kaltevuus nolla, mutta kaikkialla muualla

merivirrat ovat kallellaan.

Esimerkiksi Golfvirran tapauksessa efektin aiheuttamat korkeuden
muutokset ovat muutaman desimetrin. Jos madritellddn paikallinen
(x,y)-koordinaatisto, jossa x(¢@, A) osoittaa pohjoiseen ja y(¢, A) itddn,
voimme kirjoittaa meritopografialle H geostrofiset yhtalot

oH

on_ 5, Yo We
I = 2\)9y sin @,

H
= +2v, Y

0 .
b sin @. (12.2)
Kuten tulemme ndkemaédn luvussa 13, voidaan satelliittialtimetrian
avulla mitata merenpinnan paikka avaruudessa muutaman senttimet-
rin tarkkuudella. Jos tamén lisdksi on tarkka geoidikartta, voidaan
laskea meritopografia ja yhtdldiden 12.2 avulla ratkaista virtauksen
nopeusvektorikenttd*

[viw) wow ] =[vlen) vylon ]

Yhtdloiden elegantti ominaisuus on, ettei tarvitse edes tietdd kentdn
H(x,y) = H(@, A) absoluuttista tasoa, koska se héaviaa differentioinnissa.

*Kéypd, vaikkakin epdvirallinen, merivirtauksen yksikko on sverdrup (Wikipedia,
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Kuva 12.3. Meritopografian ja merivirtausten vilinen yhteys. Nuolet esittavit
merivirtauksia, kdyrdt meritopografiaa.

Kuvattu menetelmd, kuva 12.3, edellyttda riittdvan tarkan Maan val-
tameren geoidikartan olemassaoloa. Tahdn tarpeeseen GOCE-satelliitti
tuli kuin tilattuna, katso alaosio 13.7.3. Hankkeen yhtend pddamaéaarana
oli, kuten nimesta voi paatelld, saada tdydellinen kuva merivirtauksista
ja erityisesti niiden lammonsiirtokyvysta. Tama tieto auttaa ymmar-
tdméddn, miten maapallon ilmasto toimii ja miten se on muuttumassa
my0s ihmiskunnan toiminnan seurauksena. Timé on Euroopalle, Fen-
noskandialle ja my6s Suomelle tarked asia, ovathan ndma alueet asu-
miskelpoisia myds Golfvirran tuoman lampdenergian ansiosta (Caesar
ym., 2018).

Satelliittialtimetrian avulla voidaan tutkia merivirtausten vaihtelu-
ja my0s ilman geoidimallia. Jo kauan on ollut tiedossa, ettd Pohjois-
Atlantilla Golfvirran laidalla liikkuu 10-100 kilometrin kokoisia meso-
mittakaavan pyorteitd, jotka ndkyvat altimetriakuvissa. Mielenkiintoista

Sverdrup), miljoona kuutiometrid sekunnissa. Maailman kaikki joet muodostavat
yhdessd noin yhden sverdrupin, kun Golfvirta on 30-150Sv. “There is a river in
the ocean” — Matthew Fontaine Maury (1806-1873), amerikkalainen yleisnero ja
merentutkimuksen uranuurtaja.
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Kuva 12.4. GOCEn tuottama meritopografiakartta. Pohjakartta © European
Space Agency (ESA). Yksikko cm. Péélle piirretyt meren pintavir-
taukset NOAA / Rick Lumpkin (NOAA, Ocean currents).

on, ettd pyorteet nikyviat myds merenpinnan lampdétilakartoissa, ja
biologit ovat havainneet, ettd pyorteiden sisdinen elidst6 poikkeaa ulko-
puolisesta (Gode ym., 2012). Pydrteiden elinkaari voi olla viikkoja, jopa
kuukausia.

Hyva, vaikkakin jo hieman vanha, johdanto ”geodeettiseen meritie-
teeseen” ja satelliittialtimetrian kdytt6on on Rummel ja Sansoé (1992).

12.6 Merenpinnan globaali kayttaytyminen

Vettd on maapallolla kolmessa eri olomuodossa: nesteend, jidna ja
hoyryna. Geologisen historian aikana etenkin nestemdisen veden ja
jddn suhde on vaihdellut suuresti. My6s nykyddn suuri mééara jaata on
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sidoksissa mannerjdatikoihin, lahinnad Eteldmantereella ja Grénlannissa.
Naistd [ta-Etelamantereen mannerjaatikko on ylivoimaisesti suurin.

Koska mannerjdatikoihin sidotun veden mééra vaihtelee, vaihtelee
my0s merenpinta. Viime jddkauden padttyminen nosti keskimerenpin-
taa jopa 120 metrid. Prosessi tuli padtokseen noin 7000 vuotta sitten?
(Wikipedia, Merenpinnan nousu). Vasta parin viime vuosisadan aikana
merenpinta on lahtenyt taas kiihtyvaan nousuun globaalin lampenemi-
sen seurauksena.

Eldamme edelleen viimeisen glasiaation jalkimainingeissa. Sielld missa
oli isoja mannerjdatikoitd, kuten Fennoskandiassa ja Kanadassa Lauren-
tian mannerjadtikkd, maa nousee edelleen tasaiseen tahtiin, nopeim-
millaan 10 ja 14 millimetrid vuodessa. Maannousualueiden ymparilld
Keski-Euroopassa ja Yhdysvalloissa tapahtuu puolestaan maan vajoa-
mista 0,5—1,7 millimetrin vuosivauhdilla, esimerkiksi DeJong ym. (2015).
Vilittomasti Maan kovan ulkokerroksen eli litosfaarin alla olevassa yla-
vaipassa eli astenosfidrissi ainetta virtaa hitaasti sisddn pdin nousevan

maankuoren alle.

Kuvion mutkistamiseksi mannerjditikdiden sulamisen aiheuttama
merenpinnan nousu painaa myds valtameren pohjaa alas — jopa 0,3
millimetrid vuodessa. Kyseessa on niin sanottu Peltier'n ilmio (Peltier,
2009). Siksi joko rannikon mareografeilla tai avaruudesta késin satelliit-
tialtimetrialla mitattu merenpinnan nousu ei edusta koko valtameren veden
tilavuuden muutosta. Jos jalkimmainen kuitenkin kiinnostaa, kuten aina
ilmastotutkimuksessa, havaintoarvoihin pitdd lisdtd Peltier'n korjaus.

Merenpohjan vajoaminen ei ole ollut globaalisti tasaista: mantereiden
reunalla tapahtuu “vipuliikettd”, kun merenpohja vajoaa, mutta kuiva
maa ei. Intian valtameren ja Tyynenmeren tropiikissa merenpinta saa-
vutti maankuoren suhteen maksimitasonsa jo noin 7000 vuotta sitten:
mid-Holocene highstand. Sen jdlkeen paikallinen merenpinta on laskenut,

37000 years “before present”, 7ka BP. BP sovitusti merkitsee ennen vuotta 1950.
Nykyisin kdytetdan myos lyhennettd b2k: ennen vuotta 2000.
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Kuva 12.5. Merenpintayhtdld. Merenpinta reagoi monimutkaisella tavalla man-
nerjaatikoiden sulamiseen.

ja kuolleita korallimuodostelmia on jadnyt 2—-3 metrid nykymerenpin-
nan yldpuolelle. Ndin esimerkiksi muodostuivat Tuvalu ja Malediivit,

joita moderni merenpinnan nousu on jdlleen uhkaamassa.

12.7 Merenpintayhtalo

Tieteellisesti merenpinnan vaihteluja tutkitaan merenpintayhtiloén avulla.
Alan uranuurtajia on ollut kanadalainen Richard Peltier, joka on raken-
tanut fysikaalisia malleja siitd, miten sekd kiinted Maa ettd merenpinta

reagoi, jos mannerjaatikdiden kokonaismassa muuttuu.
Merenpintayhtdlo on (Farrell ja Clark, 1976; Spada ja Melini, 2015):

S = SE + %(pl(Gs i [— Gs ®i I) + pw(Gs ®o S— Gs ®o S))) (12'3)

jossa

o S =S(w,t) =S(d,A,1) tarkoittaa merenpinnan vaihteluja paikan
w = (¢P,A) ja ajan t funktiona. Vaihtelut ovat suhteessa kiin-
tedn Maan pintaan eli meren syvyyden vaihteluja. S on my6s
mareografien havaintosuure.

o I =1I(w,1) onjaatikdiden paksuuden vaihtelua kuvaava paikan ja
ajan funktio.
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o Sg on eustaattinen termi, jaddmassojen vaihtelu ilmaistuna ”vastaa-
vana globaalin merenpinnan vaihteluna”, yhtalona

~ m(t)
PwAo’

Sg(t) =

jossa m;(t) on jadn kokonaismassan vaihtelu ajan funktiona, p,,
meriveden tiheys ja A, valtamerten kokonaispinta-ala.

o RonMaankeskisdde, G Newtonin universaalinen gravitaatiovakio,
0810 1.2.

o p on aineen tiheys: p; jddn ja p,, meriveden.

o ® on Maan pinnan ja aika-akselin konvoluution symboli: ®; jaa-
tikdiden ja ®, valtamerten yli. Greenin funktio kerrotaan jaa- ja
merifunktioiden kanssa sekd integroidaan kyseessd olevan maa-
rittelyjoukon yli. Ndma integraalit ovat muuten hyvin samanlaisia
kuin ne, joista puhuttiin osiossa 8.1. Esimerkiksi

{Gs ® S}Hw, t) =
- I_toofmeri Gs(tl)(w,w’), (t—t’)) S(w',t')dw’ dt!, (12.4)

jossa P (w,w’) on geosentrinen kulmaetdisyys laskentapisteen
w = (¢,A) ja datapisteen w’ = ($p’,A’) vililld. Pintaintegraa-
lin mitta on dw = R*do = R? cos ¢ dd dA. Kuten nikyy, tissa
on kyse seki Maan pinnalla w etti aika-akselilla t suoritetusta
konvoluutiosta.

o Ylipalkki merkitsee keskiarvotusta koko kyseessd olevan alueen yli.

o Gg on merenpinnan Greenin funktio

Ga(th, At) = 2.Gy (b, At) — G, (1, At), (125)

?
jossa At L _v>o.
Tamad yhtdlo ilmaisee yksinkertaisesti sen, ettd meren syvyys S on
merenpinnan ja merenpohjan vélinen etdisyys ja ettd syvyyden
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muutos on erotus ndissd tapahtuvien pystysuuntaisten siirtymien
vililld: potentiaalin V muutoksesta johtuva merenpinnan siirtyma
ja merenpohjan siirtyma eli paikallisen sdteen r muutos.

Tassa geopotentiaalin Greenin funktio on

GV(ll))At) = Gi/(lb)At) + Gs/(ll))At) + G\\]/(Ll)aAt))

2
nen Greenin funktio, joka edustaa vesi- tai jddmassan aiheuttamaa

Funktio G}, ({, At) = 5(At) / 2 sin(Hb) on jaykéan ("rigid”) osittai-

potentiaalin muutosta ennen mitddn deformaatiota.

Funktiot G§, ja GY, ovat elastisen ja viskoosin deformaation geopo-
tentiaalin osittaiset Greenin funktiot. Ne siis luonnehtivat maa-
pallon reologista kiyttiytymisti, ja niiden teoreettiseen laskemiseen
tarvitaan Maan sisdisid tiheys- ja viskositeettijakaumia p(r) jan(r)
— olettaen, ettd ne ovat isotrooppisia eli riippuvat vain sdteestd r.

G (1, At) = GE(1, At) + GY (1, At)

on vastaavasti merenpohjan pysty- eli siteittdisen siirtymin Gree-
nin ydinfunktio, samalla tavalla jaettuna elastiseen ja viskoosiin
osuuteen. “Jaykkd” osuus on triviaalisti nolla.

Merenpinnan kédyttdytymisen voi nyt laskea siten, ettd ensin yritetdan
konstruoida “jadkuorman historia” I(w, t). Sen jdlkeen yritetddn laskea
tastd iteratiivisesti merenpintayhtdlon 12.3 avulla S(w, t). S merkitsee
suhteellista merenpinnan vaihtelua: muutoksia merenpinnan ja Maan
kiintedn kappaleen eli maankuoren vilisessd pystysuuntaisessa sijain-
tierossa. Kyseessa on paikan funktio: ei saa olettaa, ettd se olisi kaikkialla
sama. Artikkelissa Mitrovica ym. (2001) ndytetddn, miten esimerkiksi
Gronlannin sulamisvedet pakenevat eteldiselle pallonpuoliskolle, kun
taas Eteldmantereen sulamisvedet siirtyvit pohjoiseen. Timé on seu-
raus siitd, ettd Maan painovoimakentti ja geoidi muuttuvat, kun suuret
jddmassat sulavat. Ja my6s Maan muoto muuttuu, kun jadn kuormitus
muuttuu: glacial isostatic adjustment eli GIA.
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Kuva 12.6. Merenpinnan nousu viime jadkauden jalkeen (Rohde, 2005).

Tama hankaloittaa globaalin keskimerenpinnan vaihtelujen seurantaa
paikallisten mittausten avulla: ongelma on tuttu Fennoskandiasta, jossa
maankuori nousee toistaiseksi nopeammin kuin globaali merenpinta.

Merenpintayhtédlon Greenin funktiot ovat sekd etdisyyden 1 ettd
aikaeron At funktioita. Tdméa kertoo, ettd GIA on sekd paikan ettd
ajan funktio. Pallosymmetriselle Maalle funktioita voidaan kirjoittaa
kehitelmiksi. Katso Wieczerkowski ym. (1999).

Maapallon elastinen vaste kuormitukseen on geologisella aikaskaa-
lalla valiton. Sita kuvaavat samanlaiset elastiset Loven luvut kuin ne,
jotka esiintyvédt vuorovesivoiman aiheuttaman deformaation teoriassa,
pitkille (vaikkakin geologisesti lyhyille) jaksoille P. Katso osio 14.2. Talld

tavoin:

GS, (1,At) GS(h,At)
Ge (W, At) Z (cos ) — % :5(At) Y hyP(cos ),
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jonka k;, ja h,, esiintyvit myo6s yhtdloissd 14.4. 8(At) on Diracin delta-
funktio.

GIA puolestaan on viskoosi deformaatio monella eri geologisella aika-
skaalalla. Yhtdlosta 12.5 tulee

GY, (h,At) GY(h,At)

A

i n(cos) ——Zh (At) P (cos ),

jossa potentlaahn ja pystysiirtyman viskoosit Loven luvut ovat

Gy (W, At)

<|—

I
Kk} (At) Z Thiexp(—sni At), hl(At) = Z T exp(—sni At).

i=1 i=1
Tassd n on astelukujaindeksii = 1,..., I laskee viskooseja relaksaatiomoo-
deja jokaiselle asteluvulle n. Eri moodien lukumdara I on kdytannossa
kourallinen, joista jokainen liittyy kdytetyn Maan tiheys- ja viskositeetti-
mallin eri epdjatkuvuuspintaan. Suhteita TR [sni ja Thi /sn: kutsutaan
“moodien vahvuusluvuiksi” ja Tn; def 1 / sni ovat relaksaatioaikoja, joissa
kyseessd oleva moodi vaimentuu ajan my6ta.

Yleensd maannousun kuviot, joilla on pitkét spatiaaliset mittakaavat
— alhaiset asteluvut n — vaimentuvat hitaammin, kun taas paikalli-
set kuviot — korkeat asteluvut — vaimentuvat nopeammin. Viime
jadkauden lopun eli deglasiaation paikalliset kuviot ovat nyttemmin
jo hdvinneet. Fennoskandian maannousu on jo nyt maantieteellisesti
hyvin siled, ja deglasiaation aikainen seisminen toiminta on pitkalti ohi.
Mannerjadatikon vetdytymisen aikana jaatikon reunalla tapahtui voimak-
kaita maanjéristyksid, joiden jédljet ndkyvit maisemassa yha (Kuivamaki
ym., 1998). Tdmé&n hetken hallitsevat viskoosit maannousukuviot ovat
maantieteelliseltd mittakaavaltaan satoja kilometrejd ja aikaskaalaltaan
tuhansia vuosia.

Olenko ymmartanyt taman?

1) Luetteloi kaikki tuntemasi syyt merenpinnan vaihteluille.
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2) Miké on meritopografia?
3) Mikd on eustaattinen merenpinnan nousu?
4) Mistd nimi “El Nifio” on perdisin?
5) Miké on absoluuttinen ja mikéd suhteellinen maannousu? Misté
ero niiden valilld koostuu?
6) Mitd kahta mallia on padasiassa tarjolla maannousun mekanis-
miksi?
7) Milld kolmella geodeettisella menetelmaélld voidaan maéarittaa
meritopografia?
8) Minkd muotoinen on Itdmeren meritopografia ja mikd on sen syy?
9) Miké on coriolisvoima ja miten se vaikuttaa merivirtauksiin?
10) Mikd on geostrofinen tasapaino?
11) Kenen kunniaksi yksikko sverdrup on nimetty?

12) Miten meritopografian kartta voidaan invertoida merivirtausten

kartaksi? Missd maapallolla timd menetelma ei toimi?
13) Miké on Peltier'n ilmié? Mikd on mid-Holocene highstand?
14) Mitd merenpintayhtdlo kuvaa?

15) Miten merenpintayhtalo 12.3 muuttuisi, jos yhtdlon 12.4 tyyppiset
konvoluutiointegraalit olisivat yksikkdpallon do = cos ¢ d¢d dA
yli eivitkd dw = R? cos ¢ d¢ dA yli?

16) Miksi keskimerenpinta Itdmerelld ei nouse, kun Gronlan-
nin mannerjddtikké sulaa? Mitd tapahtuu Itdmerelld, kun
Lénsi-Etelamantereen mannerjdatikko sulaa?

Harjoitus 12—1: Coriolisvoima ja merivirtaus

Annettuna on, ettd merivirtauksen virtausnopeus on 0,1m/s ja sen leveys
100 km.

1) Kuinka paljon on korkeusero vasemman ja oikean reunan valilld?
Kumpi reuna on korkeampi? Oleta, ettd virtaus on pohjoisella
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leveydelld 45°.

2) Jos sama virtaus olisi 200 km leved ja sen virtausnopeus olisi
0,05m/s (eli jos oletetaan sama syvyys, myos kuljetetun veden
maéérd on sama), laske korkeusero vasemman ja oikean reunan
valilla.

3) (Huwvin vuoksi) jos virtauksen syvyys on 1 km, paljonko on kuljete-
tun veden mééra sverdrup-yksikossd?

Harjoitus 12—2: Maan vajoaminen ja maannousun
mekanismi
Miten Yhdysvalloissa ja Keski-Euroopassa havaittu postglasiaalinen

maan vajoaminen tukee Bouguer-tyyppistd maannousun mekanismia
(kuva 12.1a) muttei vapaa-ilmamekanismia?



Satelliittialtimetria ja
satelliittipainovoimamissiot

13

Satelliittialtimetria on mittausmenetelmd, jossa mitataan mikroaaltotut-

13.1 Satelliittialtimetria

kan avulla matka satelliitilta suoraan alaspdin merenpintaan. Histo-
riallisesti useilla satelliiteilla on ollut tutka-altimetri mukanaan, katso
taulukko 13.1 (ei vélttamatta taydellinen).

o GEOS- ja Seasat-satelliitit olivat amerikkalaisia koesatelliitteja alti-
metriamenetelmén kehittdmiseksi. Satelliitin GEOS-3 (1975-027A)
mittaustarkkuus oli vield vaatimaton. Ennen sitd kokeiltiin alti-
metriaa my06s avaruuslaboratorio Skylabilla (1973-027A) olevalla
laitteella. Sen tarkkuus oli £1 m.

o Seasat (1978-064A) meni epdakuntoon vain kolme kuukautta laukai-
sunsa jalkeen luultavasti oikosulun' seurauksena. Seasatin aineisto
oli kuitenkin ensimmadinen laaja satelliittialtimetria-aineisto, jota
kédytettiin keskimerenpinnan maédrittdmiseksi, maailmanlaajuises-
ti ja myos Itamerelld (Vermeer, 1983b).

o Geosat (1985-021A) oli Yhdysvaltain laivaston laukaisema satelliit-
ti, jonka tavoite oli kartoittaa maailman valtameren painovoima-
kenttd, tarkemmin luotiviivan poikkeamat. Niitd tarvitaan oikean
ldhtdsuunnan antamiseksi sukellusveneestd laukaistaville ballisti-

"Mutta lue tama: Wikipedia, Seasat conspiracy theory.

— 343~
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TAauLukko 13.1. Altimetriasatelliitteja kautta aikojen.
Satelliitti Laukai- Ratatason = Radan Toistojaksot Mittaus- Paikannus-
suvuosi kaltevuus korkeus (vrk) tarkkuus tekniikka

(°) (km) (m)
GEOS-3 1975 115,0 843 ~ 38 0,20
Seasat 1978 108,0 780 3,17,07 0,08
Geosat 1985 108,05 786 3,17,07 0,04
ERS-1 1991 98,5 780 3,35,168 0,03
TOPEX/Poseidon 1992 66,0 1337 92,9156 0,033 GPS, DORIS
ERS-2 1995 98,5 780 3,35 0,03 PRARE
Geosat follow-on 1998 108,0 800 17,07 0,035
Envisat 2001 98,5 784 35 0,045 GPS, DORIS
Jason-1 2001 66,1 1336 92,9156 0,025 GPS, DORIS
Jason-2 2008 66,04 1336 92,9156 0,025 GPS, DORIS
CryoSat-2 2010 92,0 725 369 DORIS
Haiyang-2A 2011 99,3 970 14, 168 0,085 DORIS, GPS
SARAL/ AltiKa 2013 98,5 781 35 DORIS
Jason-3 2016 66,04 1338 9,9927 0,025 GPS, DORIS
Sentinel-3A 2016 98,62 804 27 0,03 DORIS, SLR, GNSS

sille ohjuksille. Geodeettisen mission 17 pdivan toiston aineisto
oli alun perin salainen. Myshemmin eteldisen pallonpuoliskon
aineisto julkaistiin tutkijoiden kdyttoon, ja vieldkin my6hemmin
koko aineisto.

Satelliitit ERS-1/2 (1991-0504, 1995-021A) ja Envisat (2002-009A)
olivat ESA:n (Euroopan avaruusjdrjeston) laukaisemia. Altimetri oli
vain yksi useista laitteista. ERS-satelliiteilla oli mukana saksalainen
PRARE-paikannuslaite, mutta vain ERS-2-satelliitin laite toimi
laukaisun jdlkeen.

TOPEX/Poseidon (1992-052A) oli amerikkalais-ranskalainen yh-
teistyoprojekti, jonka yhtend tavoitteena oli meritopografian tarkka
kartoitus. Erikoispiirteend oli tarkka GPS-paikannuslaite, jonka

avulla altimetri osasi méarittdd merenpinnan sijainnin geosent-
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risesti. Yhdessd sen seuraajien Jason-1, -2 ja -3 (2001-055A, 2008-
0324, 2016-002A) kanssa satelliittimissio on tuottanut ja tuottaa
edelleen arvokasta tietoa globaalin keskimerenpinnan noususta
viimeisten 25 vuoden aikana. Tulos on noin 3 mm vuodessa. Katso
kuva 13.1.

Kuuluisa merentutkija Walter Munk® luonnehti vuonna 2002
TOPEX/Poseidonia sanoilla “kaikkien aikojen menestyksekkain
merentutkimushanke” (Munk, 2002).

o Haiyang-2A (2011-043A) on kiinalainen, Kiinan laukaisema satel-
liitti.

o SARAL (2013-009A) on Intian laukaisema satelliitti. Altimetri
AltiKa ja DORIS ovat Ranskan rakentamia.

o CryoSat-2 (2010-013A) on ESA:n laukaisema satelliitti napa-
alueiden merijddan tutkimiseksi. Kiinnostuksen kohteena on
freeboard, varalaita eli paljonko jda torrottad vedestd. Tastd voidaan
laskea jaan paksuus ja pinta-alan kanssa sen kokonaistilavuus.
Paikannus tapahtuu ranskalaisen DORIS-jdrjestelmén avulla.

CryoSat-1-satelliitin laukaisu epdonnistui.

o Sentinel-3A (2016-011A) on ESA:n monipuolinen kaukokartoitus-
satelliitti: suunnitellun konstellaation ensimmainen. Se kantaa
eri havaintolaitteita, joiden joukossa on SRAL: Synthetic Aperture
Radar Altimeter.

Satelliittialtimetrian mittausmenetelma esitetdan kuvassa 13.2. Kuvas-
sa ndkyvat kaikki altimetriassa mukana olevat suureet: mitattu etdisyys
s on satelliitin korkeus h vertausellipsoidista korjattuna geoidin korkeu-
della N, meritopografialla H ja merenpinnan vaihteluilla, esimerkiksi
vuorovesien, pyorteiden ja vuosisyklin muodossa.

Tamdn lisdksi, jos satelliitissa ei ole mukana tarkkaa paikannuslaitetta,

*Walter Heinrich Munk (1917-2019) oli kuuluisa amerikkalainen fysikaalinen meritie-
teilija.
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Kuva 13.1. TOPEX/Poseidon- ja Jason -satelliittien tuottamat tulokset. Vuotui-
nen sykli poistettu. Data © Coloradon yliopisto, Boulder, Yhdysval-
lat, Sea Level Research Group; Nerem ym. (2010). Vertailu ENSO:n
(”El Nifion”) kanssa, SOI = Southern Oscillation Index, Ita-Anglian
yliopisto, Climate Research Unit; Ropelewski ja Jones (1987).

satelliitin todellinen rata eroaa lasketusta radasta — jopa jdlkeenpdin
lasketusta radasta. Siksi
h = hy + Ah,

jossa hy on laskettu rata ja Ah ratavirheen korjaus.

Mittaukset tehdédédn ldhettamalla joka sekunti alas tuhansia pulsseja,
mittaamalla takaisin heijastettujen pulssien kulkumatkat, keskiarvos-
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Todellinen rata

" Laskettu rata

Vertausellipsoidi

Kuva 13.2. Satelliittialtimetria mittausmenetelméana: kéasitteet.

tamalla mittaustahdiksi 1020 arvoa sekunnissa ja ldhettdmalld ne
Maahan. Arvoista suurin ja pienin heitetddn pois mahdollisina virhe-
mittauksina, ja lopusta lasketaan lineaariregression avulla keskiarvo
pulssisarjan keskiepookkiin. Ndin regressioviivasta saatu arvo on varsi-
nainen “mittaus”: yksi sekunnissa, jolloin tehollinen mittaustahti on
1Hz.

Yksityiskohdat vaihtelevat satelliitista toiseen. Paluupulssin muoto
ei ole koskaan aivan terdvd. Heijastuksen paikka meren pinnalla eli
footprint on ldpimitaltaan muutaman kilometrin. Etenkin jos merel-
14 on aallokkoa (merkitsevi aallonkorkeus, significant wave height, SWH),
késittelyvaiheessa on suoritettava huolellinen korjaus, jottei syntyisi
systematiikkaa. Jos SWH on suuri, on myos altimetrin footprint eli me-
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renpinnan alue, josta vastaanottimeen palaa radioenergiaa, suurempi ja
radioaaltojen kulkumatka keskiméaérin hieman pidempi.

Uusimmat satelliitit kdyttavat interferometrista tekniikkaa, joka eroaa
hieman ylld kuvatusta.

Kaikista laitteistoon, ilmakehddn, mereen ja kiinteddn Maahan liitty-
vistd korjauksista mainittakoon

1) meriaaltojen korkeus (SWH)
2) kiintedan Maan vuorovesiliike
3) meren vuorovedet

4) troposfddrin “kostea” kulku- eli propagaatioviive, joka saadaan
parhaiten satelliitilla olevan alaspdin katsovan vesihdyryradiomet-

rin mittauksista, muuten sddmallista

5) troposfddrin “kuiva” kulku- eli propagaatioviive

6) ionosfadriviive, ainoastaan ionosfaarin osuudesta satelliitin ala-
puolella, riippuu lentokorkeudesta

7) altimetriatutkan oma kalibrointikorjaus. Nykyisin pyritddn aina
"in-flight”-kalibrointiin kdyttden GNSS-paikannettujen mareogra-
fien joukkoa, katso osio 13.4.

Mittaukset ja kaikki niihin tehtavét korjaukset keratdan “geophysical data
record” -nimiseen (GDR) tietueeseen: yksi per havaintoepookki. Ndin
rakennetut tiedostot jaetaan tutkijoille. Timd mahdollistaa kaikenlaisen
kokeilun, esimerkiksi korjausten korvaamisen paremmilla malleilla
lasketuilla korjauksilla.

13.2 Risteyskohtatasoitus

Kun satelliitti kiertdd Maata kuukausien tai vuosien ajan, kertyy tuhansia
pisteitd, joissa radat kulkevat ristin. Jos oletetaan, ettd merenpinnan
taso oli sama satelliitin molempien ylilentojen aikana, muodostuu ehto,
jota voidaan kéyttda ratavirheiden tasoittamiseksi.



Risteyskohtatasoitus 13.2

Havaintoyhtdld on
s=h—N-H-e4+n=hp+Ah—N—-H—-€+n,

jossa s on altimetrinen merenpinnan korkeuden mittaus (mukaan lu-
kien tunnetut korjaukset 1—7 edellisesséd osiossa), h todellinen ja ho
laskettu satelliitin korkeus vertausellipsoidista. N on geoidin korkeus,
H on meritopografia eli keskimerenpinnan pysyvéa poikkeama tasapoten-
tiaalipinnasta, Ah on ratavirheen korjaus, € on merenpinnan jidnnds-
vaihtelu eli vaihtelu vuoroveden ja muiden mallinnettavien vaikutusten
korjaamisen jdlkeen ja n on altimetriatutkahavaintojen satunnainen
mittausepdvarmuus eli kohina.

Téasta saadaan ratojen i ja j risteyskohdassa:

4 E (s —nd) - <§j —hﬂ)) = (Ah; — Ahy) — (es — ) + (n — 1) .
Tama on risteyskohtatasoituksen havaintoyhtédlé. Hankaluutena on,
ettd merenpinnan jddnnosvaihtelu ja ratakorjaukset esiintyvat yhtalos-
sd samalla tavalla. Ristikohtatasoituksen avulla niité ei voi erikseen
madrittaa.

Jos unohdetaan toistaiseksi merenpinnan jadnnosvaihtelu tai olete-
taan, ettd se kdyttdytyy satunnaisesti, jolloin se kuuluu kohinaan n,

voimme kirjoittaa yksinkertaisemmin
4, = Ahy — Ahj + 1, jossa  my def (ﬂi—ﬂj) —(e1—€5).

Indeksi k laskee risteyskohtia, indeksit 1 ja j laskevat ratoja.

Seuraavaksi valitaan sopiva malli satelliittiradan virheelle. Yksin-
kertaisin valinta, joka riittdd pienelld alueella, on oletus, ettd ratakorjaus
on jokaiselle radalle vakio. Katso yksinkertainen esimerkki, kuva 13.3.

13.2.1 Yksinkertainen esimerkki

Kuvassa 13.3 on kolme rataa ja kaksi risteyskohtaa. Havaintoyhtilit,
jotka kuvaavat tiedossa olevien risteyskohtien ristiriidat ratakorjausten
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Kuva 13.3. Erés risteyskohtien yksinkertainen geometria.

funktioina, ovat

¢, = Ah, — Ahs + 1y,
¢, = Ah; — Ahs +1,,

eli matriisimuodossa3

14 A — n

Ah,
Lot A Ah, | + H (13.1)
L1 0 2 n, | >

Ah;
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symbolisesti
£=Ax+n.

Kun nyt yrittdd laskea ratkaisun tavallisen pienimmaén nelidsumman
menetelméan avulla,

x=(ATA)TATE,
se ei onnistu. Normaalimatriisi ATA on singulaarinen (tarkista!). Tama
kédy jarkeen, voidaanhan koko rataverkko siirtdd ylos tai alas ilman,

ettd havaintosuureet {, muuttuvat. Sellaiseen jarjestelmééan ei 16ydy
yksiselitteistd ratkaisua.

Ratkaisun saaminen edellyttdd, ettd jotain kiinnitetddn, esimerkiksi
yksi rata — tai demokraattisemmin kaikkien ratojen keskitaso. Kiinnitys
saadaan aikaan lisddmalld seuraava “havaintoyhtal6”:

Egdﬁfo:[c c c}-x, (13.2)

jossa ¢ on sopiva vakio. Silloin matriisista A tulee

01 —1
A=1|10 -1 |,
c c ¢
ja pienimmaén nelidsumman ratkaisu
Ah, 4
X=|Ah, | = (ATA)TATE= (ATA) AT | ¢, |,
Ahs; 0

jossa matriisin kddntdminen onnistuu. Tdssd nimenomaisessa tapauk-
sessa X = A~ '€ antaa saman ratkaisun, koska A on nelion muotoinen ja

sen kadanteismatriisi on olemassa:

(ATA) T ATE=ATT(AT) T ATE= AT (AT) AT E=ATe

3Huomaa samanlaisuus vaaituksen havaintoyhtéldiden kanssa! Vaaituspisteiden
sijasta on ratoja ja vaaituslinjojen sijasta risteyskohtia.
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Nyt symbolisen algebran jarjestelméd maxima (SourceForge, Maxima) —
tai raaka laskenta — antaa helposti verifioitavan kddnteismatriisin

-1 —1

01 —1 1 01 —1
Al=110 -1 = 1 10 —1 =
c c ¢ c 11 1
01 -1 '[1 ;
=10 —1 1 =
11 1 c
-1 2 1 1 -1 2 1/
=3l 2 —11 1 =31 2 =1 1/,
-1 -1 1 1/c -1 -1 T/

ja ratkaisu on

AR,
Ah, | =A7'¢
Ah; 12 1 [ -1 2 .
2 Vel =3] 2 1 [-1],
-1 -1 1/ 0 —1 1

josta ¢ on hdavinnyt.

Toinen tapa tutkia tdtd on kirjoittaa havaintoyhtdlot 13.1 ja 13.2
yhdessd ndin:

13 A X n

—N - 7N ~—— —
Ll=10 —1]|an |+]|n |,
0 c c ¢ Ahs 0
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Tulos on
D¢ DA Dn
— —
3 01 —177[ an n,
Ll=110 1]|am|+]|n ]|,
0 T 1 1 Ahs 0

josta c on havinnyt.

Periaate pétee yleisesti:

Minimaaliset pakkoehdot lisittyind havaintoyhtildihin, joissa on
datumivaje, eivit olennaisesti muuta ratkaisua.

13.2.2 Edistyneempi ratakorjausmalli

Edistyneempi ratakorjausten esitystapa, joka kelpaa kdytettavaksi suu-
remmalla alueella, on lineaarinen funktio:

Ah = a + br,

jossa parametri T on paikka radassa laskettuna sen alkupisteestd. Paikan
dimensio voi olla aika sekunteina tai etdisyys asteina tai kilometreina.
Nyt ylld olevan tilanteen havaintoyhtdldiden ryhma on

— N 1 —

g] o O 0 1 T% —1 —T? az E]
£ ] T} n; .

0 0 3
Rakennematriisi A siséltdd arvojen 1ja —1 lisdksi myos arvoja +1i,

bs |

jossa i on radan ja k risteyskohdan numero. Arvot ovat laskettavissa,
kun ratojen geometria on tiedossa.

Nyt jokaisella radalla on kaksi tuntematonta, a ja b, vakio ja trendi.
Tietysti tdmékin ryhméa osoittautuu singulaariseksi. Singulariteetin
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poistaminen onnistuu kiinnittdmalld kaikki kolme b-parametria ja
yhden a-parametrin®.

IImiotd, ettd ratkaisua ei 16ydy, mikali jotain ei kiinnitetd, kutsutaan
datumidefektiksi. Sopivan asian kiinnitys maarittdd tietyn datumin. Kah-
den eri datumin vililld on olemassa muunnoskaava: yksinkertaisimmassa
tapauksessa, jolloin jokaisella radalla on vain yksi ratakorjausparametri,
muunnos on yksinkertaisesti kaikkien ratojen translaatio eli siirto ylos
tai alas.

Tilanne on hieman sama kuin kansallista korkeusjdrjestelmdd maari-
tettdessd. On kiinnitettava yksi korkeus, esimerkiksi Helsingin sataman.
Jos vaihtoehtoisesti kiinnitetdan toinen korkeus, esimerkiksi Turun
sataman, saadaan toinen datumi, jossa kaikki korkeusarvot eroavat
ensimmadisen datumin vastaavista korkeuksista tietylld vakioarvolla.

Sama argumentti pitdd, jos on useita ratoja, esimerkiksi kymmenen
rataa pohjoiseen ja kymmenen eteldédn, sekd 10x10 risteyskohtaa. Jos
jokaista rataa kohti on kaksi parametria, tuntemattomia olisi 40 ja
havaintoja periti 100. Onkin asetettava ratojen verkon absoluuttinen taso
sekd kaikenlaiset kaltevuudetja vddnnot. Yksinkertainen lahestymistapa
on asettaa kaikille estimoitavissa oleville tuntemattomille a; ja b; a priori
epavarmuuksia johdettuina esimerkiksi tunnetuista radanmaarityksen
epdvarmuuksista. Pienimman nelidsumman tasoituksen yhtdlosta tulee
silloin

x=(ATA+d2L ) ATY,

jossa L on lavistdjamatriisi, jossa on jokaisen radan i parametrien a

priori varianssit’ 07 ; ja oy ;. Taté lihestymistapaa kutsutaan Tihonovin®

4Taméan ymmartdmiseksi rakenna vaikkapa kolmen radan “rautalankamalli” kolmes-
ta jaykastd rautalangan péatkastd ja sido ne yhteen naruilla risteyskohdista. Risteys-
kohtaehdot eivit millddn tavalla kiinnitd kaltevuuksien b arvoja, ja koko hiakkyran
absoluuttinen taso on edelleen kiinnittdmatta.

50 on painoyksikon keskivirhe, tdssd tapauksessa risteyskohtahavainnon vakioksi
oletettu keskivirhe.
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Kuva 13.4. Satelliittialtimetrian ratageometrian esimerkki.

regularisoinniksi.

13.2.3 Toinen esimerkki

Oheisessa satelliittialtimetriaratakuviossa 13.4 on 16 risteyskohtaa. Yri-
tamme suorittaa risteyskohtatasoituksen.
Kysymyksia
1) Josjokaisen satelliittiradan ratakorjaus Ah kuvataan mallilla,
jossa on yksi vakio, kuinka monta tuntematonta on?

2) Jos kéytettdvissd on 16 “havaintoa” eli risteyskohtaeroa,
kuinka monta on yliméaraista?

3) Onko mahdollista laskea tdma verkko geometrisesti?

4) Jos kiinnitetddn yksi rata etukédteen (a priori tieto), kuinka

® Andrei Nikolajevits Tihonov (1906-1993) oli venildinen matemaatikko ja geofyysikko.
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monta ylimédéradisyyttd on? Voidaanko tdima verkko laskea?

5) Oletetaan, ettd jokaisella radalla on kaksi tuntematonta, vakio
ja ajassa lineaarisesti kehittyva termi eli “trendi”. Mité kaik-
kea taytyy kiinnittdd, jotta verkko voitaisiin laskea? Montako
ylimddrdisyyttd silloin on?

6) Jos kohdassa 3 kiinnitetddn yksi rata, minkd niistd valitsisit?
Ehdota vaihtoehtoisesti ratkaisua, joka vilttdd valinnan.

Vastauksia

1) Yhtd monta kuin on ratoja: 8.

2) T6 -8 =38.

3) Ei, koska koko verkon absoluuttinen taso ei ole kiinnitetty.

4) 16 — (8 — 1) = 9. Nyt verkko voidaan laskea.

5) Jos oletetaan, ettd radat ovat suoria (x,y)-koordinaateissa,
koko verkon sallittujen muunnosten joukko on

Ah = apo + ajox+ ap1y + arg xy,

jossa on neljd vapausastetta. On siis kiinnitettdvd esimer-
kiksi yksi vakio ja kolme trendid, joista kaikki eivdt mene
pohjoiseen tai eteldan. Silloin on 16 — (16 — 4) = 4 ylimaa-
raisyytta.

6) Mika tahansa valinta olisi mielivaltainen. Kaytd mieluum-
min ylld kuvattua Tihonovin regularisointa.

13.2.4 Globaali risteyskohtatasoitus

Maailmanlaajuisissa risteyskohtatasoituksissa kéytetddn usein vieldkin
hienompaa mallia

Ah =a+ bsint+ ccosT, (13.3)

jossa T on kulmamitassa, esimerkiksi paikka radassa laskettuna vii-
meisestd pdivantasaajan ylikulusta eteldstd pohjoiseen eli nousevasta
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solmusta. Katso Schrama (1989), jossa timéd ongelma kasitellddn laa-
jemmin. Tdssd mallissa a edustaa radan kokoa ja b ja ¢ merkitsevit
radan keskipisteen siirtymad Maan keskipisteestd. Malli on kolmiulot-
teinen: ratakaaret risteyskohteineen muodostavat pallon muotoisen
verkon maapallon ympéri. Risteyskohtaehtojen jattdimat vapausasteet
ovat pallon koko ja sen keskipisteen siirtyméd Maan keskipisteesta:

Ah = ap + a; cos P cosA + a; cos ¢ sinA + az sin ¢, (13.4)

jossa on nelja vapausastetta’.

13.3 Satelliittiradan valinta

Satelliittiradan valinnassa Keplerin rataliikkeen lait ovat keskeisid.

Keplerin kolmas laki sanoo
GMgP? = 4n?a?, (13.5)

jossa a = ag + h on satelliittiradan isoakselin puolikas eli keskim&arai-
nen etdisyys Maan keskipisteestd, kun suuretta h kutsutaan satelliitin
keskikorkeudeksi. P on kiertoaika eli periodi, ja ag on Maan pédivénta-
saajasdde.

Yhtélostd 13.5 voi jo pddtelld, ettd satelliittihavaintojen avulla suure
GMg, maapallon kokonaismassa kerrottuna Newtonin universaalisen
gravitaatiovakion kanssa®, saadaan mééritetyksi tarkasti. Periodi P on
maédritettdvissa tarkasti pitkistd havaintosarjoista, ja myos radan koko a
saadaan hyvin tdsmallisesti esimerkiksi satelliittilaserhavaintojen (SLR,

7Voitaisiin véittdd, ettd parametrin a pitdisi olla nolla yhtélossa 13.3, koska Keplerin
kolmannen lain avulla voidaan maarittdd radan kokoa hyvin tarkasti, katso osio 13.3.
Silloin my6s ap = 0 yhtélossd 13.4.

8Siksi sanotaan, ettd ensimmaisend Henry Cavendish ”punnitsi maapalloa”. . .. Suu-
reen GMg madrittdminen oli jo silloin suoraviivaista Kuun rataliikkeen, tai jopa
maanpinnan painovoiman, avulla. Haasteena oli G:n ja Maan massan Mg erottaminen
toisistaan, jotta viimeksi mainittu saataisiin tavallisissa massan yksikoissa.
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Apogeum Nouseva solmu
Kuva 13.5. Keplerin rata-alkiot: a — isoakselin puolikas, e — eksentrisyys, i
— inklinaatio, Q — nousevan solmun rektaskensio (taivaallinen

pituus), w — perigeumin argumentti ja v —luonnollinen anomalia.

satellite laser ranging) avulla. Tdhdn on kdytetty esimerkiksi tunnettuja
LAGEOS-satelliitteja (Laser Geodynamic Satellite) 1976-039A ja 1992-
070B, jotka kiertavat maapalloa 5900 kilometrin korkeudella. Etdisyydet
saadaan nykyisin alle senttimetrin tarkkuudella.

Altimetriasatelliittien kiertoradat valitaan paljon matalammiksi, kuten
luvun alussa annetusta taulukosta 13.1 ilmenee. Korkeus sdddetdan
rakettimoottoreiden avulla tarkasti niin, etta satelliitti kulkee saman
paikan yli esimerkiksi kerran pdivéssd, 14 kierroksen jdlkeen. Vaihtoeh-
toisesti valitaan rata, joka kulkee paikan yli joka kolmas pdivé, joka
seitsemastoista pdiva tai joka 168. pdiva. . .. Tatd kutsutaan toistojaksoksi.

Toistojakso valitaan kdyttotarkoituksen mukaan:
o Jos halutaan tutkia keskimerenpinnan tarkkaa muotoa, valitaan

pitki toistojakso, jotta maaradat saadaan mahdollisimman ldhelle
toisiaan Maan pinnalla.
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o Jos halutaan tutkia merenpinnan vaihtelevuutta, valitaan rata, joka
palautuu samaan paikkaan lyhyin aikavélein. Silloin rataverkosto

Maan pinnalla muodostuu harvemmaksi.

My6s Maan muotoparametrit vaikuttavat satelliitin rataliikkeeseen,
esimerkiksi suure J,, dynaaminen litistyneisyys, jonka arvo on |, =
1082,63 - 107°. Se on suurin niistd monesta pallofunktiokertoimesta,
jotka yhdessd edustavat Maan muotoa ja vaikuttavat satelliittiratoihin.
Kertoimen ], tapauksessa vaikutus on sellainen, ettd satelliitin rata-
taso kiertaa tietylld kulmanopeudella Maan pyorahdysakselin ympari:
ratatason prekessio. Tasta seuraa tyypillisesti, ettd jos satelliitti lentda
saman paikan yli seuraavana pdivind, se tapahtuu useita minuutteja
aikaisemmin. Yhtdlo ympyrdan muotoiselle radalle, jonka sdde on a, on

dQ GMg /ag\? .
Gt =3 e (@) Jacost

jossa ag on Maan vertausellipsoidin pédivéntasaajasdde, Mg Maan massa

ja iratatason kaltevuuskulma eli inklinaatio paivantasaajan suhteen.

Numeroarvojen sijoitus tdhdn antaa

A€ _ 131895 10" m*Ss 1. —COSt

dt (ae + )3
jossa h on satelliittiradan keskikorkeus, konventionaalisesti pdivéanta-
saajasdteen ag kokoisen pallopinnan yldpuolella. Jos tdhédn sijoite-
taan vaikkapa satelliitin korkeudeksi h = 800 km (ja kédytetddn arvoa
g = 6378137 m), saadaan
o
dt

Kéaytannon syistd, esimerkiksi aurinkopaneelien takia, satelliittirata

=—1,33103- 10 °rad/s - cos i = (—65587 /psivi ) - cosi.

valitaan usein niin, ettd ratataso kiertdd Auringon vuosittaisen ndenndis-
liikkeen mukana eli 360° /365,25 paivaa = 059856 /paivi. Katso kuva
13.6.

Jos inklinaatio i valitaan vélilld 96°~102° radan korkeudesta riippuen,
Maan dynaaminen litistyneisyys |, aiheuttaa juuri sopivan ratatason
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Kuva 13.6. Aurinkosynkronisen kiertoradan mekanismi.

kiertoliikkeen (“no-shadow / Sun-synchronous / Sun-stationary orbit”).
Kyseessd on varjoton® aurinkosynkroninen rata, katso kuva 13.7.

Kiertorataa, jonka inklinaatio- eli kaltevuuskulma i > 90°, kutsutaan
retrogradiseksi radaksi: satelliitin liike on ldnteen péin, vastoin Maan
pyordhdysliike, joka onitddn pdin. Radan inklinaatio i, tai retrogradiselle
radalle sen suplementti 180° — 1, on korkein pohjoinen tai eteldinen
geosentrinen leveysaste, jonka yli satelliitti voi lentdd. Tdama merkitsee
sitd, ettd jos inklinaatio ei ole tarkasti 90°, molempien napojen ympaéri on
alueita, joiden ylitse satelliitti ei koskaan tule lentdimédan: “napareidt”.

Aurinkosynkronisen kiertoradan haittapuoli on puolestaan se, etta
altimetriahavainnot tehdddn aina samaan paikallisaikaan. Esimerkiksi
Auringon aiheuttamat vuoro- ja puolivuorokautiset vuorovedet ovat
aina samassa vaiheessa (“resonanssi”), jolloin niitd ei voida havaita
tamaénlaisella radalla olevan satelliitin avulla. Siksi merentutkimussatel-
liitti TOPEX/Poseidonin ja sen Jason-seuraajasatelliittien radat valittiin
ei-aurinkosynkronisiksi.

9Jos radan korkeus on alle 1400 km, se ei voi olla tdysin varjoton. Keskitalvella tai
keskikesélld satelliitti lentédd silloin Maan varjon ldpi.
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Kuva 13.7. Varjottoman kiertoradan geometria. Kuvan satelliitti lentdd pohjoi-
seen paikkojen yli, joissa on aamu, ja etelddn paikkojen yli, joissa

on ilta.

13.3.1 Esimerkki

Satelliitti liikkkuu aurinkosynkronisella kiertoradalla, toisin sanoen se
ylittdd jokaisen leveyspiirin pdivittdin samaan paikalliseen keskiaurinko-
aikaan.

Kysymyksia
1) Miké on satelliitin periodi, jos se lentdd aina 14 kierroksen
jalkeen saman paikan yli?
2) Sama kysymys, mutta jos satelliitti lentdd aina saman paikan
yli 43 kierroksen (kolmen péivin) jdlkeen?
3) Entds 502 kierroksen (35 pdivén) jalkeen?
4) Miké on satelliitin korkeus “kolmen pdivan kiertoradas-

sa”’? Kaytd Keplerin kolmatta lakia, yhtdlo 13.5. GMg =
3986005-108m’/g, ja satelliitin korkeus on h = a — ag, jossa
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Kuva 13.8. Retrogradisella radalla maapalloa kiertava satelliitti, joka ylittaa
pdivantasaajan eteldstd pohjoiseen kolmella perdkkaiselld kierrok-
sella. Kulma radan ja pdiviantasaajan vililld eli inklinaatio 1, tai
retrogradiselle radalle 180° — 1, on myds korkein pohjoinen tai
eteldinen leveysaste, jonka satelliitti saavuttaa. Saavuttamattomat
"napareidt” on merkitty sinisilld katkoviivoilla.

ag = 6378137 m.

5) Mika on satelliitin korkeus ”35 pdivan kiertoradassa”? Enta
korkeusero edelliseen ndhden?

6) Mikéa on kolmen pdivén kiertoradan pohjoiseen menevien
ratojen keskindinen etdisyys? Siis kuinka yksityiskohtaisesti
altimetri pystyy kuvaamaan merenpinnan?

7) Sama kysymys 35 pdivan kiertoradalle.
8) Pohdi:

(a) Mihin tarkoitukseen kaytettdisiin 35 pdivén kiertorataa
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ja mihin puolestaan kolmen péivan rataa?

(b) Olisiko mahdollista tai helppoa lentdd molemmat radat
samalla satelliitilla? Katso kysymys 5.

Vastauksia
1) Satelliitti tekee 14 kierrosta vuorokaudessa eli 1440 minuu-
tissa: P = 1440min /14 = 102,857 min.
2) Satelliitti tekee 43 kierrosta 3 vuorokaudessa eli 3 x 1440
minuutissa: P = 3 X 1440min /43 = 100,465 min.

3) Satelliitti tekee 502 kierrosta 35 vuorokaudessa eli 35 x 1440
minuutissa: P = 35 X 1440min /50> = 100,398 min.

4) Suorita taulun 13.2 octave-koodi. Tulos on 780,604 km.

5) Sama koodi muutoksella P=100.398+60 antaa 777,421 km.
Ero edellisestd on 3,183 km.

6) Satelliitilla on 43 eri maarataa. Tdamé antaa niiden vilisek-
si etdisyydeksi 360°/43 = 89372. Pdivintasaajalla tim4 on
40000 km /43 = 930 km. Etdisyys on lyhyempi korkeammil-
la leveysasteilla.

7) 360°/502 = 03717 eli 40000km /507 = 80 km.
8)
(a) 35pdivdn kiertorata olisi mainio yksityiskohtaista kartoi-
tusta varten. Kolmen pédivén rata soveltuisi esimerkiksi

vuoroveden tai sddhén liittyvien ilmididen havainnoi-

miseen, mutta spatiaalinen erotuskyky olisi heikompi.

(b) Ratakorkeuksien ero on vain 3 km ja periodien ero 4s.
Tarvittava radan muutos on helposti saavutettavissa
jopa pienilld rakettimoottoreilla'®. Vastaus on siis kylla.

'OPaljastetaan, ettd tarvittava nopeuden kokonaismuutos on Av = 1.6m/s eli reipas
kavelytahti.
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TauLu 13.2. Satelliitin korkeuden laskeminen sen kiertoajasta.

format long

GM=3986005€8;

ae=6378137;

P=100.465%60;

fac=4*pixpi;

a=(GM«PxP/fac)”0.33333333;

h =a - ae;

printf(’\n\nRadan korkeus: %8.3f km.\n’, h/1000);

13.4 In-flight-kalibrointi

Nykyiset huipputarkat GNSS-paikannetut satelliittien tutka-altimetrit
vaativat kunnon kalibrointia. Paras tekniikka tahdn on in-flight-kalibrointi.
Siind kdytetddn merialuetta tai joskus jarvialuetta, jonka vedenpinnan
geosentrinen paikka on tiedossa aluetta ympéardivien mareografien
GNSS-paikannuksen ja tarkan geoidimallin ansiosta. Esimerkin tdllaisista
mittauksista antaa Vu ym. (2018).

Yksi syy kdyttaa in-flight-kalibrointia on, ettd tutka-altimetreilla on
tuntematon nollavirhe, joka on seurausta siitéd, ettd signaalin polkua
elektroniikan ldpi ei tunneta tarkasti. Nollavirhe voi muuttua hitaasti
eli rydmid ajassa sekd riippua lampétilasta.

13.5 Retracking

Satelliittialtimetriamission tulokset julkaistaan jo lennon aikana geo-
physical data record -tiedostoina (GDR), joissa kaikki mittaukseen liittyvét
seikat, kuten ilmakehdn korjaustermit, vuorovesikorjaukset ja meri-
aaltoparametrit, ovat annettuja.

Nykykéytanto on késitelld vanhemmat altimetriamittaukset uudel-
leen soveltaen parannettuja menetelmid hyddyllisten lisdtietojen saami-
seksi. Koko tutkan paluupulssi analysoidaan uudelleen ldhestymista-
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Kulkuaika
T Puoli- o
o korkeus-
/ saanto
Lahetetty pulssi Vastaanotettu pulssi

Kuva 13.9. Altimetrian paluupulssin analyysi. Klassinen paluupulssin ajan-
mittaus kayttad “puolikorkeuspistettd”.

valla nimelta retracking (Altimetry, Retracking).

Analyysimenetelmd kdyttdd paluupulssin alkunousun pistettd, jonka
korkeus on puolet pulssin maksimiarvosta. Tama on todistetusti hyva
menetelmd saada kulkuaika, joka liittyy footprintin keskipisteeseen
suoraan satelliitin alla. Pulssin takaosassa on heijastuksia footprintin
kaukaisemmilta reuna-alueilta.

Kolmessa tilanteessa automaattinen menetelma ei toimi kunnolla

lennon aikana ja tarkempi pulssin analyysi jalkeenpdin kannattaa:

o Saaristoissa, kuten Indonesiassa tai Ahvenanmaalla. Silloin voi
esimerkiksi kdydd niin, ettd footprintin keskipiste on kuivalla
maalla. Silloin ensimmaiset vahvat heijastukset tulevat vinosti
lahimmaltd rannikolta ja tarkka rantaviivatiedosto on tarpeen
tulosten kasittelyssd. Mutta jo avomerelld rantaviivojen ldhella,
paluupulssi védristyy.

o Merijddalueilla Pohjoisella ja Eteldiselld jadmerelld. Heijastukset
voivat tulla merijadn pinnalta, jolloin késittelyssd on otettava
huomioon freeboard eli varalaita: kuinka korkealla merijadn pinta
on veden yldpuolella.

o Mannerjdatikoiden yli. Tassd paluupulssin muoto on hyvin erilai-
nen kuin avomeren yli. Lisdksi paluupulssin kulkuaika vaihtelee
nopeasti, kun satelliitti lentdd eteenpdin. Vastaanottoikkuna ei
pysy mukana''.



366

13 SATELLIITTIALTIMETRIA JA SATELLIITTIPAINOVOIMAMISSIOT

Naéissd tapauksissa perinteinen tosiaikainen késittely satelliitissa tuot-
taa virheellisid mittauksia tai ei mittauksia lainkaan. Retrackingilla
mittaukset saadaan pelastettua ja altimetriamittausten kattama alue
laajennettua, erityisesti arktisille ja Eteldmantereen alueille.

Freeboard on tarked suure jaan paksuuden maarittimisessd. Kun jaan
tiheys onnoin 920k8/m? ja meriveden tiheys noin 1030k8/m?, jadn paksuus
on noin 8x freeboard'*. Jos taman lisdksi on saatavilla kaukokartoitus-
tietoa jddpeitteen pinta-alasta, voidaan laskea merijaan kokonaistilavuus
ja -massa.

Arktinen jadpeite on vahentynyt rajusti viime vuosikymmenind. Kaik-
kein rajuinta on ollut jaan kokonaistilavuuden viahentyminen, katso
kuva 13.10. Pinta-alan lisdksi my®s jadn paksuus vahenee, ja monivuoti-
sesta paksummasta jddstd suuri osa on jo havinnyt.

13.6 Merentutkimus satelliittialtimetrian avulla

Satelliittialtimetrian ensimmadinen geodeettinen sovellus oli geoidin
madritys. Altimetrinen geoidimdéritys onnistuu vain, jos oletetaan, ettd

merenpinta
o on vakio ajassa
o yhtyy tasapotentiaalipintaan eli geoidiin.

Kéytanndssa merenpinta vaihtelee ajassa eiké ole tasapotentiaalipinta.
Siksi on kehitetty toisia ldhestymistapoja.

o Merenpinnan vaihtelevuutta voidaan tutkia satelliittialtimetrialla
kayttdmalld kolmea menetelmaa:

— Saman satelliitin toistuvat maaradat. Radat voidaan pinota
ja tasoittaa yhteen kdyttamalld yksinkertaista ratavirheen

"Uusimmat satelliitit, kuten Sentinel-3, kayttdvdt digitaalista maastomallia
vastaanottoikkunan ohjaamiseen muualla kuin avomeren yll&.

2QOlettaen, ettd jadn padlld ei ole lunta. Jadn tiheys myos vaihtelee, ja yksivuotisen ja
monivuotisen jadn tiheydet ovat erilaisia.
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Kuva 13.10. Jddn tilavuus Pohjoisella jadmerelld. PIOMAS; Schweiger ym.

(2011).

korjausmallia. Jdljelle jadvat ratakohtaiset jadnnosvirheet ker-
tovat jotain merenpinnan vaihtelevuudesta, vaikkeivit koko

tarina.

Risteyskohtatasoituksesta voidaan saada tietoa merenpinnan
vaihtelevuudesta. Kun merenpinta vaihtelee, risteyskohtata-
soituksesta saadut tulokset huononevat: a posteriori (lasken-
nan jdlkeen) risteyskohtaerojen neliéllinen summa kasvaa.
Varsinainen vaihtelevuuden tutkimus télla menetelmalld on
haastavampaa. Sitd voidaan kuitenkin kayttdad vaihtelevuu-

den suuruuden arvioimiseen.

Nykyisin altimetriasatelliiteissa on aina mukana GNSS-
paikannuslaite, joka mittaa tutkalaitteiston absoluuttisen
geosentrisen sijainnin mittaushetkelld. Sen avulla voi seurata
merenpinnan vaihteluita suoraan mittaamalla, olettaen etta

367
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mittausten ajallinen ja maantieteellinen tiheys on riittava.

o Merenpinnan poikkeamia tasapotentiaalipinnasta eli geoidista
voidaan tutkia vain, jos on saatavilla riippumatonta tietoa todelli-
sesta geoidipinnasta. Mikéli koealueelta on saatavilla hyvit, tiheét
painovoimamittaukset, voidaan ndistd estimoida geoidi ja sen
jdlkeen laskea meritopografia.

Tarvittavan tarkan ja tihedn painovoima-aineiston saaminen ko-
koon onnistuu laiva- tai ilmagravimetrian avulla. My6s mittausta
erikoissatelliitin avulla (gravitaatiogradiometria, GOCE-satelliitti)
suunniteltiin pitkdan, ja se toteutui vihdoin, katso alaosio 13.7.3.

13.7 Satelliittipainovoimamissiot

2000-luvun alkuvuosina laukaistiin kolme satelliittimissiota Maan pai-
novoimakentén eli geopotentiaalin hienorakenteen selvittimiseksi. Toi-
sin sanoen, missioiden tavoitteena oli mddrittdd maailmanlaajuinen
geoidimalli, jolla on korkea erotuskyky.

13.7.2 CHAMP

CHAMP (Challenging Minisatellite Payload for Geophysical Research
and Applications, 2000-039B) oli saksalainen satelliittiprojekti, jonka
vetdjana oli Deutsches Geoforschungszentrum GFZ. Satelliitti laukaistiin
radalleen Plesetskistd Vendjdlta vuonna 2000. CHAMP-satelliitin radan
korkeus oli alussa 454 km, ja se laski lennon aikana noin 300 kilometriin
ilmakehdn vastuksen takia. Ratatason kaltevuus eli inklinaatio oli
87°. Syyskuun 19. pdivdna 2010 satelliitti palasi ilmakeh&dan. Projektin
kuvaus: CHAMP Mission.

CHAMP sisdlsi GPS-vastaanottimen, jonka avulla médritettiin satellii-
tin paikka x(t) avaruudessa ajan t funktiona. Perdkkaéisistd satelliitin
paikoista voi laskea geometrista kiihtyvyyttd a(t) differentioimalla:

a(t) = ;—;x(t).
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Kuva 13.11. Maan painovoimakentdn méérittiminen matalalla lentdvén satel-
liitin GPS-rataseurannan avulla.

Differentiointi tapahtuu numeerisesti tavalla, joka esitettiin ilmagravi-
metrian osuudessa, yhtalo 11.8.

Satelliitti sisédlsi my0s kiihtyvyysmittarin, jonka avulla eliminoitiin
ilmakehdn aerodynaamisten voimien aiheuttamat satelliitin kiihtyvyy-
det eli poikkeamat vapaan putoamisen liikkeestd. Jaljelle jadvat silloin
vain Maan gravitaatiokentdn aiheuttamat kiihtyvyydet, joista laske-
taan tarkka geopotentiaali- eli geoidimalli kdyttden aiemmin kuvattuja
menetelmid.

Muutamia CHAMPin dataan perustuvia globaaleja geopotentiaali-
malleja on laskettu ja julkaistu.

13.7.2 GRACE

GRACE (Gravity Recovery And Climate Experiment Mission, 2002-012
A ja B) mittasi Maan painovoimakentan ajallisia muutoksia erittdin tar-
kasti, mutta melko karkealla maantieteelliselld erotuskyvylld. Ajalliset
muutokset johtuivat ldhinnd Maan ”sinisen kalvon”, ilmakehén ja ve-
sivaipan, liikkeistd. Mitattavaa suuretta kutsutaan myos merenpohjan
paineeksi, mikd on hieman yllattava ilmaisu, kunnes oivaltaa, ettd se
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Kuva 13.12. GRACE-satelliittien perusidea: painovoimakentédn pienenpienten
ajallisten vaihtelujen mittaaminen SST:n (Satellite-to-Satellite Trac-
kingin) avulla. Vaihteluita aiheuttavat massasiirtyméat Maan ”sini-
sessd kalvossa” eli ilmakehéssé ja vesivaipassa, ilmaistuna “me-
renpohjan kokonaispaineen” vaihteluina (/).

edustaa todella koko ilma- ja vesipatsaan sisdltdmad, ajassa vaihtelevaa
kokonaismassaa.

Tehollinen aikaresoluutio oli koko maapallon kartoitus kerran kuus-
sa. Projektin kuvaus: GRACE Mission. Projekti oli yhdysvaltalais-
saksalainen yhteisty0, jonka pdavetdjand toimi Center for Space Re-
search Texasin yliopistolla Austinissa.

GRACE oli satelliittipari (“Tom ja Jerry”), jonka satelliitit lensivat samal-
la radalla toinen toisensa perdssa aluksi noin 500 kilometrin korkeudella
ja 220 kilometrin keskindiselld etdisyydelld. Ratatason kaltevuus oli 89°,
eli kyseessé oli ldhes polaarinen rata, joka antoi tdydellisen globaalin
peittavyyden. Satelliittien vélisid etdisyysmuutoksia mittasi mikroaalto-
linkki tarkkuudella £1—m/s. Molemmissa satelliiteissa oli myds herkét
kiihtyvyysmittarit ilmakeh&n vastuksen vaikutuksen mittaamiseksi ja
poistamiseksi.

Mittausjdrjestelma oli niin herkka, ettd jopa millimetrin paksuisen
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Kuva 13.13. GRACE-mission tulokset: massan pintakerros vesisenttimetreina
ilmaistuna. Hiirennapsautus antaa animaation (e-kirja).

vesikerroksen liikkeet voitiin huomata, jos kerros vain ulottui mantereen
kokoiselle alueelle, noin 1000 km.

Julkaistuissa tuloksissa ndkyvat vakuuttavasti esimerkiksi kostean ja
kuivan monsuunin mukanaan tuomat kausittaiset vaihtelut vastavai-
heessa pohjoisella ja eteldiselld pallonpuoliskolla suurissa trooppisissa
jokialtaissa, kuten Amazonas, Kongo, Mekong, Intia ja Indonesia. . ..
GRACE Mission, hydrology.

Vuonna 2017 missio pédattyi 15 vuoden jalkeen. GRACEn seuraajamissio
laukaistiin vuonna 2018, GRACE Follow-On Mission.

13.7.3 GOCE

GOCE (2009-013A, Geopotential and Steady-state Ocean Circulation
Explorer) oli satelliiteista kaikkein kunnianhimoisin. Euroopan avaruus-
jarjestd ESAmn rakentama satelliitti laukaistiin onnistuneesti Plesetskista
maaliskuussa 2009. Radan korkeus oli mission aikana vain 270-235 km,
ja satelliitti sisdlsi rakettimoottorin (jonimoottorin) ja ajoainevarannon
radan yllapitamiseksi ilmakehdn vastusta vastaan. Ratatason kaltevuus-
kulma oli 967 eli rata oli aurinkosynkroninen'3.

13
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Satelliitissa oli mukana hyvin herkkaa gravitaatiogradiometri, joka
mittasi tarkasti Maan vetovoiman gradientin eri komponentteja eli veto-
voimavektorin komponenttien riippuvuuksia paikkakoordinaateista.
Gradiometri koostui kuudesta pareittain kehikkoon kiinnitetystd darim-
maisen herkasta kolmiakselisesta kiihtyvyysmittarista. Missio loppui
vuonna 2013 ja satelliitti palasi ndyttavasti ilmakehdédn 11. marraskuuta
Falklandin saarten yldpuolella (Scuka, 2013).

Teoreettisesta analyysista on saatu selville, ettd gravitaatiogradio-
metria on paras tapa mitata painovoimakentdn paikallisimmat piirteet:
parempi kuin rataseuranta GNSS:n avulla. Pienimmait geoidikartan yk-
sityiskohdat, jotka GOCE niki, ovat ldpimitaltaan vain noin 100 km, ja
niiden tarkkuus on niinkin hyva kuin £2 cm.

Niin tarkan maailmanlaajuisen geoidimallin avulla voidaan laskea
merenpinnan poikkeamat geoidista, siis tasapotentiaalipinnasta, vas-
taavalla tarkkuudella. Néhtiin, ettd merenpinnan todellinen paikka
avaruudessa saadaan satelliittialtimetrian avulla muutaman senttimet-
rin tarkkuudella. Tdimé tasoero merenpinnan ja tasapotentiaalipinnan
vdlilld taas voidaan invertoida merivirtauksiksi, katso osio 12.5 ja kuva
12.4. Tdma on GOCE-satelliitin nimen tausta.

Olenko ymmartanyt taman?
1) Mika on tutka-altimetrin jalanjdlki (“footprint”)? Miten se riippuu
aallokosta?

2) Mika on merijdan freeboard? Miten sitd voidaan kayttda jaan tila-

vuuden maarittdmiseksi?

'3Tamén kaltevuuskulman seurauksena oli kummallakin navalla kalotti, jonka sédde oli
697 jajonka sisdltd ei saatu mittauksia. Viime vuosien aikana nama “tietiméattomyyden
navat” on saatu vahitellen kartoitetuksi ilmagravimetrian avulla, esimerkiksi Forsberg

ym. (2017).
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Kuva 13.14. Maan painovoimakentdn méaarittdminen GOCE-satelliitin gravi-
taatiogradiometrin avulla.

3) Mitd kolme vaihtoehtoista satelliitin ratavirheen korjausmallia on
olemassa?

4) Mika on satelliittialtimetrian risteyskohtatasoituksessa datumide-
fekti ja miten sen voi korjata?

5) Miten Keplerin kolmatta lakia voidaan kdyttda satelliittiradan kes-
kikorkeuden maéarittamiseksi, jos satelliitin periodi on annettuna?

6) Mika on satelliittiradan toistojakso?
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7) Miki on ], ja miten se vaikuttaa satelliitin liikkeeseen?
8) Mika on aurinkosynkroninen rata ja miksi se on hyddyllinen?
9) Miki on retrogradinen rata?
10) Miksi TOPEX/Poseidon-jaJason-satelliittien radat eivit ole aurinko-
synkronisia?

11) Taulukossa 13.1 joidenkin satelliittien toistojakso on kokonais-
lukumaéard vuorokausia, joidenkin ei. Mitd yhteistd ndyttdd olevan
satelliiteilla, joiden toistajakso ei ole kokonaisluku?

12) Milla kolmella satelliittialtimetrian menetelmalld voidaan tutkia
merenpinnan vaihtelevuutta?

13) Maan painovoimakentédn hienorakenteen ja ajallisen vaihtelevuu-
den tutkimiseksi on toistaiseksi lentdanyt kolme satelliittimissiota.
Esitd ne ja niiden kadyttaméat menetelmat.

Harjoitus 13—1: Altimetria ja risteyskohtatasoitus

Annettuna on kaksi pohjoiseen menevad satelliittirataa ja kolme eteldan
menevéad rataa. On olemassa kuusi risteyskohtaa, katso kuva 13.15.

1) Jos jokaisen radan ratavirheen korjaukset kuvataan lineaarisena
paikan funktiona
Ah = a + br,

montako tuntematonta a ja b tarvitaan yhteensa?

2) Kirjoita auki havaintoyhtilét. Havainnot ovat risteyskohtien erot.
Tuntemattomat ovat eri maaratojen kertoimet a ja b.

3) Saadaanko ndistd havaintoyhtaldistd yksiselitteistd ratkaisua? Mik-
sei?
4) Kuinka monta tuntematonta on kiinnitettdvd, jotta saadaan yksi-

selitteinen ratkaisu? Mitka kertoimet kiinnittaisit?

5) Onko yliméardisid havaintoja? Oliko viisasta valita ratavirheen
korjausmalli, jossa on kaksi tuntematonta maarataa kohden?
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R Kuva 13.15. Satelliittialtimetrian ratageometrian esimerkki.

"I Harjoitus 13—2: Satelliittirata
Satelliitti liikkuu aurinkosynkronisella radalla, ja 419 kierroksen ja 30
pdivan jdlkeen se on taas tarkasti saman paikan yldpuolella.
1) Mika on satelliitin periodi?

2) Kuinka pitkd on etdisyys ldnnestd itddn kilometreissd pohjoiseen
menevien ratojen vililld pdivantasaajalla?

3) Koska aurinkosynkroninen rata eli ole polaarirata, on korkein
pohjoinen leveysaste, jonka yli satelliitti voi lentdd pienempi kuin
90°. Mihin kompassisuuntaan satelliitti lentdd siind pisteessa?

"Il Harjoitus 13—3: Keplerin kolmas laki

1) Paljonko on satelliitin korkeus h, jos sen periodi on 98 minuuttia?
Kaytd Keplerin kolmatta lakia 13.5,

GMgP? = 4m°a’,
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GMg = 3986005 - 108m°/2ja satelliitin korkeus on h = a — ag,
jossa ag = 6378137 m.

2) Mika on satelliitin kiertoradan inklinaatio i, jos annettuna on, ettd
rata on ympyré ja aurinkosynkroninen? Katso osio 13.3.



Vuorovesi, ilmakeha ja
maankuoren litkkeet

14

Vuorovesi on seurausta ulkoisten taivaankappaleiden, Maan tapaukses-

14.1 Teoreettinen vuorovesi

sa Kuun ja Auringon, vetovoimasta sekd Maan vapaasta putoamisesta
vetovoiman ldhteitd kohtaan. Voimme kirjoittaa vetovoimakentin po-

tentiaalin seuraavasti:

_GM

==

jossa { on vetovoiman ldhteen etdisyys potentiaalin laskentapisteestd,

v/

katso kuva 14.1. GM on Auringon tai Kuun massa kerrottuna New-
tonin gravitaatiovakiolla. Vetovoima voidaan ilmaista kiihtyvyys- eli
“voimakenttdnd”, jonka suuruus on

,_ GM
:€_2°

Vapaasti avaruudessa kelluva Maa vastaa tdhdn putoamalla vapaasti
kohti vetovoiman ldhdettd kiihtyvyydellad (katso osio 1.4):

n __ GM
=

jossa d on vetovoiman ldhteen etdisyys Maan keskipisteesta.
Kiihtyvyys a” on vakio. Avaruuden kenttdna siihen voidaan liittda

potentiaalin:

v St S (5" S ()

- 377~
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Kuva 14.1. Teoreettinen vuorovesi. {’ on Kuun (tai Auringon) paikallinen
zeniittikulma, ¢ vastaava geosentrinen kulma.

jossa z on koordinaatti, joka on médritelty Maan keskipisteen ja veto-
voiman ldhteen yhdistdvaa viivaa pitkin, katso kuva 14.1. R on pallon
muotoisen Maan sédde.

Nettovuorovesipotentiaali, sellaisena kuin massa-alkiot Maan pinnal-
la tuntevat sen, on nyt

R
S () m S (5

kayttdaen kehitelméaa 8.7. Tassd termin = 0 on vakio ja siten potentiaalin
tapauksessa mielivaltainen, ja se poistetaan. Termi n = 1 tuottaa tarkan
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kumoamisen. Jaa

V= % 3 (%)HH P.(cos (),

n=2
jossa asteluvun 2 termi on hallitseva.

Kirjoitetaan nyt vuorovesi- eli vuoksipotentiaali V seuraavasti:

GMR? GMR?
V:TPZ(COSC)‘F"‘— 2d3

jossa ¢ on paikan Auringon tai Kuun geosentrinen zeniittikulma eli

(3cos*C—1) +---,

paikallinen zeniitikulma (’, josta parallaksi on korjattu pois, katso kuva
14.1. Py(cos () on toisen asteluvun Legendren polynomi. Auringon ja
Kuun tapauksessa korkeampien astelukujen lisdtermit (- - - ) voidaan
jattdd huomiotta, koska ne ovat niin kaukaisia kappaleita: d > R.

Kosinisddnto pallolla kertoo, etté
cos ( = sin ¢ sin d + cos ¢ cos d cos h,

jossa ¢ on leveysaste, 6 on Kuun deklinaatio' ja h on Kuun tuntikulma®.

Pallofunktioiden summauslauseen (Wolfram MathWorld, Spherical Har-
monic Addition Theorem) perusteella on

Pn(cos () = P (sin¢d) P, (sind) +

= )!
Z Ez T 2 Prm(sin @) Py (sin ) cos mh,
=1

eli kunn = 2,

P,(cos () = Py (sin ) P, (sind) +

'Deklinaatio on taivaankappaleen leveysaste taivaanpallolla eli sen kulmaetdisyys
taivaan ekvaattorilta (Wikipedia, Deklinaatio), tdassd tapauksessa katsottuna Maan
keskipisteesta.

*Tuntikulma on taivaankappaleen meridiaanin ja paikallisen meridiaanin vélinen
kulma eli pituusasteiden ero mitattuna taivaan ekvaattoria pitkin (Wikipedia, Tuntikul-
ma), tdssd tapauksessa katsottuna Maan keskipisteestd. Se havidd, kun taivaankappale
on yldkulminaatiossa eli paikallisessa meridiaanissa korkeimmillaan.

379
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+ %Pm (sin) P27 (sind) cosh + ﬂ—szz(sin &) P2y (sin &) cos 2h.

Taulukon 3.2 mukaan

P, (sin¢) = 3sin ¢ cos ¢, P21(sind) = 3sin & cos b,
P2, (sin ) = 3 cos? ¢, P2, (sin§) = 3 cos? 3,
ja saadaan

P,(cos ¢) = Py(sin ) P,(sind) +
+ 3sin ¢ cos ¢ sindcos dcosh + %cos2 ¢ cos® dcos2h =
=2 (3sin’ ¢ —1) 5 (3sin? 5 — 1) + 2 sin2¢ sin 26 cos h +

+ 3 cos® ¢ cos? § cos 2h.

Tasta
(3sin®¢p —1) (3sin®5—1) +
V- GMR? ) .
=i + 3sin2¢d sin28 cosh +
+ 3 cos? ¢ cos? § cos 2h

Tama on vuoroveden jako osiin Laplacen mukaan.

Siind on kolme osaa:

o Hitaasti vaihteleva osa,

GMR? , . .
V, = S (3sin® ¢ —1) 3sin® 85— 1),
joka riippuu my6s Kuun deklinaatiosta 6 ja on néin ollen pe-
riodinen 14 pdivan (puolen kuukauden) jaksoissa. Kdyttamalla

pallotrigonometriaa:

sind = sinesin{

= sin’§ =sin’ esin’{ =sin’ e (3 — 3 cos2(), (14.1)

jossa £ on Kuun pituus eli longitudi radallaan laskettuna pai-
vantasaajan ylityspisteestd, ja € on Kuun ratatason kaltevuus
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eli inklinaatio pdivantasaajaan ndhden, keskimdarin 2395, mutta
vaihteleva arvojen 1893 ja 289 6 vililld. Ndin saadaan

GMR?
V1=

(3sin” ¢ —1) (3Sin2€ (3 —1cos2t) — 1) ,

jossa on kdytetty tulosta 14.1. Hajotetaan V; = Vi, + Vjp kahteen
osaan, joista toinen on vakio-osa’ ja toinen jaksollinen, puolikuu-
kausittainen osa:

2

Vi = Gﬁ? (3sin* ¢ —1) (3sine — 1), (14.2)
2

Vip = —Gﬁf (3sin* ¢ —1) (% sin” € cos 20) .

o Tamén lisdksi on pari termid, joissa Kuun tuntikulma h esiintyy,
periodina noin vuorokausi ja noin puoli vuorokautta:

2
V, = % - 3sin2¢ sin 26 cos h,

2
Vs = GMR” 3 cos? ¢ cos? § cos 2h.

443
Molemmissa on h:n lisdksi & “hitaana” muuttujana. Yhtélot voi-
taisiin kirjoittaa Kuun longitudin ¢ eri funktioiden summiksi.

Kaytd taas perustrigonometriaa, yhtalo 14.1:

cos’d =1—sin?5 =1—sin’ € sin’{ =
=1—sin’e (3 — 3 cos2l),
cos 2 cos 2h = % (cos(2€ + 2h) + cos(2¢ — 2h)),

sin28 = 2sindcos & = 2\/sin2 5 (1—sin?8) =

= Zsine\/(% — 1 cos 20) <1 —sin’e (3 — %coszﬁ)),

mika johtaa Kuun longitudin { trigonometriseen kehitelmé&an ja

niin edelleen. Katso esimerkiksi Melchiorin* kuuluisa kirja (1978).

3Kuun tapauksessa ei tarkasti, koska €¢ on (hitaasti) aikariippuvainen.
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TAULUKKO 14.1. Teoreettisen vuoroveden eri jaksoja. Laajasti kdytossd olevat
symbolit ovat George Darwinin standardisoimia.

Muuttuva Jakso Darwin-symboli imi
funktio Kuu Aur. Kuu Aur.
Via - - - My So Pysyva vuorovesi
Vi, cos2d 144 1824 Mf* Ssa? Deklinaatiov.
Vs, cosh 24h50m 24h Ki,O01 S$1,P4 Paivittdinen
V3 cos2h 12h25m  12h M, Sy Puolipdivittdinen

*Lunar fortnightly, Kuun puolikuukausittainen

USolar semi-annual, Auringon puolivuotuinen

Y114 olevista yhtdloistd erotetaan kerroin

af 3GMR2 _ 3 GM (B)z, (14.3)

P="4e ~+a la
“Doodsonin® vakio”. Kuun vakio on D¢ = 26,8cm x y ja Auringon
Dg =12,3cm x 7y, jossay ~ 9,81 m/s2. Katso kuva 14.2.
Jaksot on lueteltu taulukossa 14.1 Darwinin® symboleineen.

Kaytannossd vuorokautiset ja puolivuorokautiset vuorovedet voidaan
jakaa moniin hyvin ldhelld toisiaan oleviin “spektraaliviivoihin”, myos
siksi ettd Kuun rata, kuten myds Maan rata, on merkittavésti eksentrinen.

4Paul Jacques Léon Camille paroni Melchior (1925—2004) oli belgialainen geofyysikko
ja kiintedin Maan vuoksen tutkija sekd Luxemburgissa sijaitsevan Walferdangen
maanalaisen geodynamiikan laboratorion perustaja.

5 Arthur Thomas Doodson FRS (1890-1968) oli brittildinen merentutkija, vuorovesiteo-
rian pioneeri ja vuoroveden laskentaan soveltuvien koneiden suunnittelija. Han oli
taysin kuuro.

6Sir George Howard Darwin FRS FRSE (1845-1912) oli englantilainen tahtitieteilija ja
matemaatikko. Héan oli kuuluisan Lajien Synnyn Charles Darwinin poika.
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Viaq, pysyva Viv, puohkuukausutamen e =23°
80 ”, 0,2 0,1
S 40 0 0,05
&
g 0 —0,2 0
B
o —0,05
3 —40 —0,4
—0,1
Akselin kaltevuus €, 0° — 90° Kuun pltuusaste, 0° — 360° ’
Vs, Vuorokautinen 5 =23° V3, puolivuorokautinen, § = 23°
80 I I I I
5> 40
)
g 0
o —0,2
%
= —40 —0,4
—80 —0,6 | \ \ \
20
Tunt1kulma Tuntikulma

Kuva 14.2. Teoreettisen vuoroveden padkomponentit. Namé arvot on vield
kerrottava Doodsonin vakion D kanssa.

14.2 Vuorovesipotentiaalin aiheuttama deformaatio

Vuorovesipotentiaali eli teoreettinen vuorovesi, mistd puhuttiin jo aiem-
min, ei ole sama asia kuin sen aiheuttama kiintein Maan deformaatio.
Tama deformaatio riippuu Maan sisdisistd elastisuusominaisuuksista.
Naita ominaisuuksia luonnehditaan usein elastisten Loven” lukujen avulla

7 Augustus Edward Hough Love FRS (1863-1940) oli brittildinen matemaatikko ja Maan
elastisuuden tutkija.
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(Love, 1909; Melchior, 1978).
Kirjoitetaan ensin vuorovesipotentiaali V = V(¢, A, 1) seuraavalla

tavalla:

Vienn =3 (%) Valo,n) = ) V@A),
jossa indeksi n on pallofunktioiden asteluku. Vy, (¢, A) on potentiaalin
V asteosuus ja

Sis dﬁf 1 n
V(@ A1) (§) Valo,N)
sen sisdinen avaruuspallofunktio asteluvulle n.

Kutsutaan kiintedn Maan ainealkion lineaarista® siirtymé&a sateittéi-
seen suuntaan u,, pohjoissuuntaan ug, ja itdsuuntaan u,. Seuraavat

yhtalot patevit:
WA 1) =3 > Ha (1) V(A1) = 3 Hal1) Gl A1),
n=2 n=2
wa(@ AT =3 Y LB 5 1w gao,n ),
n=2 n=2
w b\ =T ;an%‘m =73 Ll A

Téssd r on etdisyys Maan keskipisteestd. Oletetaan, ettd Loven luvut
H,, ja L, ovat vain r:n funktioita: Maan elastisuusominaisuudet ovat
pallosymmetrisid. Symbolit (,,, &, jan, edustavat vuorovesipotentiaalin
asteluvun n vaikutuksen tasapotentiaalipinnan tasoon ja luotiviivan
suunnan komponentteihin.

Maan deformaatio aiheuttaa myds muutoksen, “epdsuoran vaikutuk-
sen” Kuun alkuperdisen vuorovesipotentiaalin V liséksi, geopotentiaa-
lissa. Kirjoitetaan

(e.¢]

5\/((1),)\,1‘) = Z Kn(r) V§S(¢)A)T))

n=2

8Eli niiden yksikko on metri eika aste myos wg:n ja uy:n tapauksessa!
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jossa kaytetddn jo kolmatta Loven lukujen lajia.

Maan pinnalla r = R tehd&ddn seuraava erikoistus:

ho £ H,L (R), t ¥ 1, (R), kn % Ky (R). (14.4)

Kuun ja Auringon suuren etdisyyden takia ainoa merkittdvd vuoro-
vesipotentiaalin V osa on asteluvun n = 2 osuus, “rugbypallo-osuus”
s

Loven luvut riippuvat vield taajuudesta eli vuoroveden jaksosta P:

hn = hn(P), ly =0 (P), kn = kn (P).

Vuorovedet tarjoavat oivallisen Loven lukujen h;(P), £ (P) ja k2 (P)
empiirisen médrittimisen keinon, koska jaksollisina vaihteluina ne
aiheuttavat maapallossa samojen jaksojen, mutta eri amplitudien ja
vaihekulmien?, deformaatioita. Ndin saadaan mairitetyksi ainakin ne
Loven luvut, jotka vastaavat teoreettisessa vuorovedessd esiintyvia
jaksoja.

Luvut hja ¢ saadaan nykyisin muun muassa GNSS-paikannuksesta.
GNSs-laskentaohjelmiin on ohjelmoitu valmiiksi reduktio tata ilmicta
varten. Painovoimamittauksesta saadaan tietoa koskien erdstd h:nja kin
lineaariyhdistelméad, 6 = 1+ h — %k: Kuun vuorovesivoima muuttaa
suoraan painovoimaa, pystyliike muuttaa painovoimaa sen gradientin
kautta, ja myos Maan deformaatio eli massojen siirtyminen muuttaa
painovoimaa suoraan.

Kayttokelpoinen tutkimusvéline on pitki vesivaaka, kuten Geodeetti-
sen laitoksen laite, kallistusmittari joka on ollut pitkdan kaytossa Tytyrin
kalkkikivikaivoksessa (Tytyri Elamyskaivos) Lohjalla (Kddridinen ja
Ruotsalainen, 1989). Laitteen moderni parannettu versio esitetddn julkai-
sussa Ruotsalainen (2017). Sama koskee herkkid klinometreja yleenss,
kuten Verbaandertin ja Melchiorin heiluri. Klinometri mittaa maankuo-
ren ja paikallisen luotiviivan vélisid suunnanmuutoksia. Tima voi antaa
tietoja hin ja kin toisesta lineaariyhdistelmaéstd, y = 1 — h + k.

9Vaihekulmat voidaan esittdd tekemaélld Loven luvuista kompleksilukuja.
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Luotiviivan absoluuttisen suunnan mittaus, esimerkiksi zeniittiputken
avulla, voi antaa tietoja lineaariyhdistelmdstd A = 1 — { + k, tosin
vasta erilaisten reduktioiden (Maan asentoparametrit kuten napaliike
ja pyordhdysnopeuden vaihtelut) jalkeen, Vondrak ym. (2010). Loven
luku £'° vaikuttaa zeniittiputken vaakasiirtymén kautta paikkaan, jossa
luotiviivan suunta on erilainen.

14.3 Vuoroveden pysyva osa

Kuten ylld néytettiin, teoreettinen vuorovesiyhtilo siséltdd vakio-osan,
joka ei vaihtele edes pitkdperiodisesti. Tietysti maapallo reagoi tdhdnkin
vuorovesivoiman osaan, mutta sitd ei ole mahdollista mitata, koska
muodonmuutos ei ole jaksollinen. Lisédksi kiintedin Maan elastisuus-
ominaisuuksien mekaaninen teoria ja tietdmyksemme Maan sisdisesta

tilasta eivat kerrassaan riita vasteen teoreettiseen laskentaan.

Téastd syystd on yleisesti hyvéksytty késitys, ettd vuoroveden pysyvan
osan vaikutusta Maan deformaatiotilaan ei tule sisdllyttdd mihinkdan
vuorovesireduktioon (Ekman, 1992). Silti monesti, esimerkiksi GNSS-
havaintojen késittelyssa tai Maan painovoimakentin pallofunktiokehi-
telmien maédrittelyssd, vuorovesireduktio sisdltdd tdiménkin termin, jota
on teoreettisesti ja kdytdnnossd mahdoton tuntea. Katso Poutanen ym.
(1996).

Yleisemmin geodeettisen suureen, esimerkiksi geoidin korkeuden,
reduktion vuoroveden pysyvéad osaa varten voi suorittaa kolmella eri
tavalla:

o Ei suoriteta mitddn vuoroveden pysyvan osuuden reduktiota.
Néin saatua suuretta kutsutaan nimelld “mean geoid” eli "keskigeoi-
di”. Saatu pinta on hydrodynamiikan kannalta tasapainopinta ja
suoraan kdyttokelpoinen merentutkimuksessa.

19Myos Shidan luku. Toshi Shida (1876—1936) oli japanilainen kiintedn Maan vuoksen
tutkija.
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F—— Maan pysyvé vuorovesideformaatio =~ ------ Vuorovesivapaa maankuori
Kuun ja Auringon suora pysyva vaikutus — Keski- eli nollamaankuori
geoidin Vuorovesivapaa geoidi

— — — Nollageoidi

N | Maan pysyvian vuorovesideformaation ———— Keskigeoidi

(massasiirtojen) vaikutus geoidiin

Vertausellipsoidi

Kuva 14.3. Késitteellinen kuva pysyvan vuoroveden eri osista.

o Kuun ja Auringon vuoroveden kentdn suora vaikutus poistetaan
suureesta kokonaan, mutta sen aiheuttaman Maan deformaation
vaikutus jitetddn korjaamatta. Ndin saatua suuretta kutsutaan
nimelld “zero geoid” eli “nollageoidi”.

o Taivaankappaleen oman voimakentdn vaikutus ja sen aiheutta-
man deformaation vaikutus lasketaan tietyn deformaatiomallin
(Loven lukujen) mukaan ja poistetaan. Ndin saatua tulosta kutsu-
taan nimelld “tide-free geoid”, vaikkapa “vuorovesivapaa geoidi”. Sen
ongelmana on kéytetyn elastisuusmallin empiirinen maarittamat-
tomyys.

Katso kuva 14.3. Kannattaa olla kriittinen ja analysoida tarkasti, miten
aineistojen reduktio on suoritettu!

14.4 Korkeusjarjestelmien valiset vuorovesikorjaukset

Yhtdlostd 14.2 ndhdddn, ettd kun e = 2395, vuorovesipotentiaalin
pysyva osa on
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2
Vogs = SME (35in?  — 1) (3sin’ e — 1) =

~ —0,7615 -

3GMR? , .
443 (s 2(1)_%)‘

Kun Auringon ja Kuun yhdistetty Doodsonin vakio 14.3 on

_ 3GMeR?  3GMgR?

D= +
3 3
4d3, 4d3

=(12,3cm + 26,8cm) x y =39,1cm x y

saadaan
Viys = 29,77 cm x (3 —sin® §) x v.
Brunsin yhtdlon 5.2 avulla voimme ilmaista timéan pysyvéksi vuorove-

sivaikutukseksi geoidiin:

Npys = 29,77 cm x (3 —sin’ ).

Tastd Npys(0°) = 9,92 cm péivéntasaajalla ja Npy(£90°) = —19,85cm
navoilla.

Tama ulkoisen Auringon ja Kuun potentiaalin pysyvan osan vaikutus
geoidiin on myds erotus ylld maéritettyjen keskigeoidin ja nollageoidin
valilla:

AkESkiN d:ef Nkeski - Nnolla == 29)77 cam X (l - Sil’lz d)) :

nolla 3

Korkeuksille H merenpinnasta patee H = h — N, jolloin saadaan

keskiy y def 1 . 2
ARTISH = Hieski — Hiolla = —29,77 cm X (3 —sin” ¢) ,

ja kahdelle eri leveysasteelle ¢4 ja ¢, saadaan vaikutukseksi korkeus-

eroon

ARSKH () — ARSKH (1) = 29,77 cm % (sin2 2 — sin’ CI>1) .

nolla nolla

Tama arvo on lisittivi, kun mennddn nollageoidin korkeusjérjestelmasta
keskigeoidin jarjestelmddn, ja vihennettivi, kun mennddn keskigeoidin
jarjestelméastd nollageoidin korkeusjdrjestelmaan.
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Kun seuraavaksi katsotaan vuorovesivapaata geoidia ja maankuorta,
tarvitaan pysyvan vuorovesideformaation Loven lukuja h ja k, jotka
ilmaisevat deformaation ja sen potentiaalin murto-osina alkuperdisesta
ulkoisesta vuorovesipotentiaalista''. Kuten olemme nédhneet, néitd lu-
kuja ei ole mahdollista maéarittda empiirisesti. Usein kdytetyt arvot ovat
h ~ 0,6, k ~ 0,3. Tamédn kanssa ylld olevat yhtdlot patevit kertoimella
29,77 cm kerrottuna lineaariyhdistelmdlld y = 1 —h + k ~ 0,7. Tulos on

def

AkQSkIH = erskl — HVVV — _20384 cm X (% - Sln2 d)) )

VvV

AXSKH (,) — ARSKH () = 20,84 cm % (Silﬂ2 $, —sin® ¢1) .

VAR VvV

Minka tahansa muun korjausyhtdlon voi johtaa nédistd, esimerkiksi

ANVH(d2) — ANPH(d1) = —8,93cm x (sin® ¢, —sin® ¢1) .

VAR AAAY

14.5 Meren ja ilmakehdan kuormitus maankuoreen

Vuorovesivoiman aiheuttaman deformaation lisdksi maankuori defor-
moituu meren ja ilmakehdn kuormituksesta. Etenkin rannikon ldhelld
meren vuorovesiliike aiheuttaa moniperiodisen kuormituksen, joka

litkkuttaa maankuorta ylos ja alas jopa senttimetrien verran.

Tamad ilmid voidaan mallintaa laskennallisesti, jos kiintein Maan elas-
tiset ominaisuudet, meren vuorovesiliike ja rantaviivan tarkka muoto
ovat tiedossa. Erds tunnettu ohjelmisto tdhan tarkoitukseen on saksa-
laisen Hans-Georg Wenzelin'? laatima Eterna, jota on kédytetty myos
Suomessa.

Toisaalta, kun on olemassa sopivia tyokaluja, vuorovesikuormitus an-
taa oivan mahdollisuuden tutkia myds maankuoren hyvinkin paikallisia
elastisia ominaisuuksia.

"Molemmat tarvitaan: vuorovesideformaatio siirtdd sekd maankuorta ettd geoidia.

?Hans-Georg Wenzel (1945-1999) oli saksalainen fysikaalinen geodeetti ja geofyysik-
ko.
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Deformaation mittaamiseksi kdytetddn yleensa rekisterdivaa gravi-
metria. Maankuorihan liikkuu elastisesti ylos ja alas, mikd muuttaa
painovoimaa likimé&éarin ilmagradientin arvon —0,3mGal/m suhteessa.
Torge (1992) kuvaa menetelméaa osiossa 4.2.

GNSS:n kdyttd meren vuorovesikuormituksen mittaamiseksi ei ole
vield yleistynyt.

Kuten meri, aiheuttaa myds ilmakehé ilmanpaineen vaihtelujen kaut-
ta maankuoren vaihtelevia deformaatioita. Ilmi6 on hyvin pieni, kor-
keintaan pari senttimetrid. Painovoimamittaus ei ole kovin hyva keino
taman ilmion tutkimiseksi, koska paikalliseen painovoimaan vaikuttaa
moni muukin paikallinen ilmid, joita ei tunneta kovin tarkasti. Mittaus
GNSs:n avulla on lupaavaa, mutta myos vaikeaa.

Olenko ymmartanyt taman?

1) Kuvaile sanoin Laplacen jakomenetelmén tuottamaa teoreettisen
vuoroveden kolmea osaa.

2) Miten teoreettisen vuoroveden hitaasti vaihteleva osa voidaan
edelleen hajottaa kahteen osaan? Esitd sanoin osat.

3) Mitkéd ovat taivaankappaleen, esimerkiksi Kuun, deklinaatio ja
tuntikulma?

4) Mika on Doodsonin vakio?

5) Mitd Loven luvut ilmaisevat?

6) Miksi vuoroveden pysyvan osuuden aiheuttamaa deformaatiota
ei voida méaarittdd empiirisesti?

7) Esitd kolme eri tapaa ottaa huomioon vuoroveden pysyva osa,
kun maééritetddn geoidia.



Harjoitus 14—1: Pysyvi vuorovesi

Harjoitus 14—1: Pysyva vuorovesi
Vuoroveden pysyvan osan yhtdlo on

_ GMR?

(3sinzq) — 1) (%sm2 € — 1) ,
jossa ¢ on leveysaste ja e maapallon pyordhdysakselin kaltevuus, talla
hetkella noin 235 5.

1) Milld leveysasteen ¢ arvolla vuoroveden pysyva osa havida? Mita
on tulkintasi?

2) Milld kaltevuuden e arvolla vuoroveden pysyva osa hdvida? Mita
on tulkintasi?






Maan painovoimakentan
tutkimus

15

Kansainvélisen geodeettisen assosiaation (IAG, International Association

15.1 Kansainvadlinen tutkimus

of Geodesy) puitteissa Maan painovoimakentdn tutkimus on talld hetkel-
1a International Gravity Field Servicen (IGFS) vastuulla. IGFS perustettiin
vuonna 2003 IUGG:n yleiskokouksessa Sapporossa Japanissa, ja se toimii
IAG:n uuden Komission 2 alaisuudessa, jonka aiheena on painovoi-
makenttd. Yhdysvaltalainen National Geospatial-Intelligence Agency
(NGA) toimii sen teknisena keskuksena.

Tarked ja maineikas IAG:n palvelu on Kansainvélinen gravimetrinen
toimisto, Bureau Gravimétrique International (BGI), joka sijaitsee Toulouses-
sa Ranskassa (http://bgi.obs-mip.fr/). Toimisto toimii kansainvalisena
vilittdjand, jolle maat voivat ldhettdd painovoima-aineistonsa. Jos tutkija
tarvitsee toisen maan painovoima-aineistoa esimerkiksi geoidimaaritys-
td varten, hadn voi pyytdd sitd BGL:std, joka luovuttaa sen alkuperdmaan
luvalla, mikali tutkijan oma maa on vastaavalla tavalla antanut omaa
painovoima-aineistoaan BGL:n kdyttoon.

Ranskan valtio on sijoittanut tdhdn elintirkeddn kansainviliseen
toimintaan merkittavasti rahaa.

Toinen tdrked IAG:n palvelu alalla on International Service for the
Geoid (ISG). Se on itse asiassa toiminut jo vuodesta 1992 Internatio-
nal Geoid Servicen (IGeS) nimelld International Geoid Commissionin
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(IGeC) toimeenpanevana elimend. ISG:n pddmaja on Milanossa Italias-
sa (http://www.isgeoid.polimi.it/). Palvelun tehtdvdna on tukea
geoidimddritystd eri maissa. Olemassa olevat geoidiratkaisut kerdtdan
yhteiseen tietokantaan, ja lisdksi jadrjestetddn kansainvilisid tutkija-
kouluja geoiditietoisuuden ja geoidilaskennan kehittdmiseksi, etenkin
kehitysmaissa. Italian valtio on rahoittanut toimintaa merkittavasti.

Molemmat palvelut, BGI ja ISG, ovat International Gravity Field Ser-
vicen (IGFS) alaisia: kaksi IAG:n monista virallisista palveluista. Muut
IGFS:n palvelut ovat International Center for Earth Tides (ICET), Interna-
tional Center for Global Earth Models (ICGEM) ja International Digital
Elevation Model Service (IDEMS).

15.2 Eurooppalainen tutkimus

Euroopassa toimii European Geosciences Union (EGU), joka koordinoi
painovoimakenttddn ja geoidilaskentaan liittyvéd julkaisu- ja kokous-
toimintaa. EGU jdrjestda vuosittain symposioita, joissa on aina myos
istuntoja painovoimakenttdan ja geoidiin liittyvistd aiheista. Kokouksiin
osallistuu myds amerikkalaisia tutkijoita. Vastaavasti American Geophy-
sical Unionin (AGU) syys-ja kevdtkokoukset' ovat myds eurooppalaisten
tutkijoiden suosiossa.

Yksi mainitsemisen arvoinen tutkimuslaitos on Hannoverissa Saksas-
sa sijaitseva Leibnizin yliopiston Geodesian laitos (Institut fiir Erdmes-
sung). Se on toiminut vuodesta 1990 ldhtien Kansainvélisen geoidikomis-
sion (IGeC) Euroopan alakommission laskentakeskuksena ja tuottanut
laadukkaita geoidimalleja Euroopasta (Denker, 1998; European geoid
calculations). Ty jatkuu vuodesta 2011 IAG:n alakomissio 2.4a Gravity
and Geoid in Europen puitteissa.

'Syyskokoukset pidetddn aina San Franciscossa, kevdtkokoukset jossain muualla. AGU,
vaikkakin amerikkalainen, on hyvin kosmopoliittinen vaikuttaja.
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15.3 Pohjoismainen tutkimus

Pohjoismaissa toimintaa koordinoi Nordiska Kommissionen for Geodesi
(NKG) ja sen geoidin ja korkeusjdrjestelmien tydéryhmd. Toimintaan
kuuluu geoidimaéadritys, uusien, tarkempien geoidimallien laskennan
edellytyksien selvittdiminen, uudet vaaitusteknologiatja postglasiaalisen
maannousun tutkimus.

Ryhma on laskenut K6openhaminan laskentakeskuksessaan jo pit-
kdan laadukkaita pohjoismaisia geoidimalleja. Toiseksi viimeinen malli
on NKG2004 (Forsberg ja Kaminskis, 1996; Forsberg ja Strykowski, 2010).
Uusin malli NKG2015 on eri maiden, muun muassa Ruotsin ja Viron,
laskentakeskusten tyon tulos. Se julkaistiin lokakuussa 2016.

15.4 Suomalainen tutkimus

Suomessa Maan painovoimakentédn tutkimus on ollut pddosin vuonna
1918 perustetun Geodeettisen laitoksen késissd. Laitos on ollut vastuussa
vaaituksen ja painovoiman valtakunnallisista perusmittauksista ja nii-
den kansainvilisistd kytkenndistd. Vuonna 2001 Geodeettisen laitoksen
painovoimaosasto ja geodesian osasto yhdistettiin uudeksi geodesian ja
geodynamiikan osastoksi, johon myds painovoimatutkimus kuuluu.

Tutkittujen asioiden joukkoon kuuluvat kiintedn Maan vuorovesi ja
ominaisvardhtelyt, postglasiaalinen maannousu ja korkeusjarjestelmat.

Geoidimalleja on laskettu laitoksessa alusta ldhtien, aina Hirvosen
globaalista mallista (Hirvonen, 1934) toistaiseksi uusimpaan Suomen
FIN20oo5Noo-malliin (Bilker-Koivula, 2010). Namaé geoidimallit perus-
tuvat yhteispohjoismaiseen gravimetriseen geoidiin NKG2004, ja ne
sovitettiin Suomen alueen GNSS-vaaituspisteisiin korkeuksien muun-
nospinnaksi.

Vuonna 2015 Geodeettinen laitos yhdistettiin Maanmittauslaitokseen
sen paikkatieto- ja tutkimuskeskuksena. Englanninkielinen lyhenne on
edelleen FGI, Finnish Geospatial Research Institute (https://www.ma
anmittauslaitos.fi/tutkimus).
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My®6s Teknillinen korkeakoulu (nykyisin osa Aalto-yliopistoa) on ollut
aktiivinen Maan painovoimakentédn tutkimuksessa. Vuosina 1928-1949
TKK:n professorina toiminut V. A. Heiskanen toimi my&s Isostaattisen
laitoksen (International Isostatic Institute) johtajana 1936-1949. Lisdksi
héan tyoskenteli Ohion valtionyliopistossa Yhdysvalloissa monien mui-
den, my6s suomalaisten ja suomalaissyntyisten, geodeettien kanssa
ensimmadisen suuren maailmanlaajuisen geoidimallin, ”“Columbuksen

geoidin” laskentatyon parissa (Kakkuri, 2008).

15.5 Oppikirjat

Maan painovoimakentdn tutkimuksesta on olemassa monia hyvid oppi-
kirjoja. Heiskasen ja Moritzin suurilta osin jo vanhentuneen klassikon
(1967) lisdksi voidaan mainita Wolfgang Torgen kirja (1989). Vaikea
mutta hyvd on myos Moritz (1980). Samalla tavalla vaativa on Molo-
denski ym. (1962). Lukemisen arvoisia ovat myos fysikaalisen geodesian
kannalta Vanicek ja Krakiwsky (1987). Alan uudempi kirja on Hofmann-
Wellenhof ja Moritz (2006).



Kenttateoria ja vektorianalyysi
lyhyesti

L)

Fysiikassa monet suureet ovat vektorisuureita, esimerkiksi voima, nopeus
ja saihkomagneettinen kenttd. Vektorin méérittelevd ominaisuus on, etta
koordinaattimuunnoksissa se kdyttaytyy identtisesti kahden naapu-
ripisteen vélisen sijaintieron kanssa. Olkoon sijaintiero Ar = 1, — 1y,
jossa T7 ja T, ovat pisteiden 1 ja 2 paikkavektorit. Koordinaattimuunnok-

A.1 Vektorilaskenta

sessa vektori ei objektina muutu, mutta sen komponenttien lukuarvot,
osio A.2.2, ovat erilaiset eri koordinaatistoissa. Muunnoksen vaiku-
tus komponentteihin on sama, kuin jos vektori olisi kahden pisteen
sijjaintiero.
Tamé on perimmadinen syy, miksi on mahdollista piirtii vektorit
nuoleina.
Notaatiosta Painetussa tekstissd vektorit kirjoitetaan usein lihavoituna:
v. Késin kirjoitetussa tekstissd voidaan kdyttdd nuolta merkin

ylapuolella: V.

A.1.1  Skalaaritulo

Kahden vektorin vélilld voidaan maédritelld skalaaritulo eli pistetulo,
joka on itse skalaariarvo. Fysiikassa skalaari on yksittdinen numeroar-
vo, vaikkapa paine tai lampétila. Jos kyse on kahden vektorikentdn

- 397~
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skalaaritulosta, puhutaan skalaarikentdsti: jokainen skalaariarvo on si-
dottu paikkaan, mutta vaikka koordinaattimuunnos muuttaisi paikan
koordinaattiarvot, skalaarin arvo ei muutu: se on invariantti.

Esimerkki skalaaritulosta: tyd AE on
AE = (F- Ar),
voiman F ja matkan eli polun Ar skalaaritulo. Usein jatetddan hakasulut
(-) pois.
Mythemmin ndhdédén, ettd jos pisteet 1 ja 2, Ar = 1, — 11, ovat hyvin
ldhelld toisiaan, voidaan kirjoittaa

dE = (F- dr),

jossa dr ja dE ovat infinitesimaaleja polku- ja energia-alkioita. Jos
pisteiden A ja B valilld on kaareva polku, tdstd voidaan saada integraali-
yhtalo, tydintegraali

AEpp = jj dE = Lf (F-dr).

A.1.2 Skalaaritulo muodollisesti

Olkoon
s &f (a-b)

vektoreiden a ja b skalaaritulo. Pitee (p € R):
(na-b)=(a-pub) =pula-b), (homogeenisuus)
(a-(b+c))=(a-b)+(a-c), (osittelulaki)

(a-b)=(b-a), (vaihdannnaisuus)

la| £ /(a-a)

vektorin a normiksi eli pituudeksi.

ja kutsutaan

Péatee my0s
s = [la][|[b]| cos «,

jossa o on vektorien a ja b suuntien védlinen kulma.
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A.1.3 Ulkoinen tulo eli vektoritulo

Kahden vektorin ulkoinen tulo eli ristitulo on itsekin vektori nimelta
vektoritulo, ainakin kulmiulotteisessa euklidisessa avaruudessa. Esimer-
kiksi pyorihdysmomentti L:

L= (rxp),
jossa p = mt on liikkemomentti, r kappaleen paikkavektori tietyn origon
suhteen, m kappaleen massa ja

F = % (A1)

on paikan aikaderivaatta eli nopeus. Kirjoitetaan

L=m(rx). (A.2)
A.1.4 Vektoritulo muodollisesti
Olkoon

x & (axb)
kahden vektorin a ja b vektoritulo. Silloin (u € R):

(raxb)=(axpb)=plaxb), (homogeenisuus)
{ax (b+c))=(axb)+(axc), (osittelulaki)
(axb)=—(bxa), (antivaihdannaisuus)

jasiis (a x a) =0.

Tulosvektori x on aina kohtisuorassa vektoreihin aja b ndhden. Vektorin
x pituus vastaa vektorien aja b virittimén suunnikkaan pinta-alaa:

x|l = lla [|b]| sin «, (A.3)

jossa o on jélleen vektorien aja b suuntien vélinen kulma. Jos kulma on
nolla, my6s vektoritulo on nolla, koska silloin a = ub sopivalle arvolle
L.

Ellei kulma ole nolla, tarvitaan lisdksi korkkiruuvisiintd, joka sanoo,
ettd jos korkkiruuvi kddnnetdan vektorista a vektoriin b, se etenee
tulovektorin x = (a x b) suuntaan.
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AN
a

Kuva A.1. Ulkoinen tulo eli vektoritulo.

A.1.5 Keplerin toinen laki

Olkoon 1 kappaleen, esimerkiksi planeetan, paikkavektori liikekeskuk-
sen, kuten Auringon, suhteen ja ¥ (yhtdlo A.1) sen nopeusvektori. Silloin

vektoritulo 4
(rxt)y= <r X d_:> (A.4)

on juuri kaksi kertaa aikayksikossd peitetyn kolmion eli “alueen” pinta-

ala.

Lasketaan tdman tulon, lausekkeen A.4, aikaderivaatta:

d .\ /dr _ dr d’r\ /.. .

a<rxr>_<dt X dt>+<r>< dt2>—<r><r>+<r><r>. (A.5)
Ensimmainen termi havida, koska mielivaltaiselle vektorille <a X a> =0.
Toisessa termissd voimme hyodyntda tietoamme, ettd Auringon vetovoi-
ma F, joka aiheuttaa planeetan rataliikkeen, ja vetovoiman aiheuttama

kiihtyvyys
. d’r
L TER
ovat keskeisid:
. __GMm
I7||°

G on universaalinen gravitaatiovakio, M on Auringon massa ja m on
planeetan massa.

Sijoitetaan tdima yhtdloon A.5:

%<rxi’>:O—G—M
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Pyoérahdysmomentti

A<r><1'">

Planeetta

Aurinko

Sadevektori

Kuva A.2. Keplerin toinen laki. Samassa ajassa planeetan sadevektori “pyyh-
kii” samankokoisen alueen yli. Kyseessd on pydrahdysmomentin
sdilyminen.

Siis vasemmalla puolella oleva suure, pydrahdysmomentti L per massa-
yksikkd m, yhtdlo A.2, sdilyy:

<r><i~>:n%.

Kuten esimerkiksi energian, séhkdvarauksen ja monen muun suureen
kokonaismaéaérd, suljetun jarjestelméan pyorahdysmomentin kokonais-
madrd on vakio.

A.2 Skalaari- ja vektorikenttia

A.2.1 Maaritelmat

Euklidisessd avaruudessa voidaan maarittaa funktioita eli kenttid.

Skalaarikenttd on skalaariarvoinen funktio, joka on méaritelty koko
avaruudessa tai sen osa-alueella. Esimerkki on lampdétila T(r). Siis
jokaiselle paikkavektorin arvolle r kuuluu lampétila-arvo T(r).

Vektorikenttd on vektoriarvoinen funktio, joka on méaritelty avaruu-
dessa. Esimerkki on sdhkostaattinen kentta E(r).
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A.2.2 Avaruuden kanta

Voimme valita avaruudessa kolmen vektorin kannan, joka virittii ky-
seessd olevan avaruuden. Yleensd valitaan kolme kantavektoria i, j ja
k, jotka ovat keskenddn kohtisuoria ja joiden normi eli pituus on 1,
jolloin kyseessd on ortonormaali kanta. Kahden vektorin ortogonaalisuus
merkitsee, ettd niiden skalaaritulo hdviaa; siis

ilj, ilk, jLlk
merkitsee, ettd
(i-j)={{-k)y = k)=0. (A.6)
Ortonormaalius merkitsee lisdksi, ettd
Il = 1131l = [l = 1. (A7)
Nyt voimme kehittdd avaruuden vektoreita komponentteihinsa:
a=aji+ ayj+ ask,

ja my0s skalaari- ja vektoritulot voidaan nyt laskea komponenttien
avulla:

S = <a- b> = <(a1i+ Clzj + C13k) : (b1i+b2j +b3k)> =
3
= (11b1 + Clzbz + (l3b3 = Z (libi,
i=1

kayttamalla ylla esitettyjd kantavektorien identiteettejd A.6ja A.7.

Vektoritulon tapauksessa laskenta on monimutkaisempaa. Ortogo-
naalisille vektoreille kulma o yhtédlossda A.3 on 90°, siis

I = 1w =[G < Foll = 1.

Korkkiruuvisddnto sanoo nyt, etta
k= (ixj)=—(x1i),
i=(xk)=—(kxj),
j=(kxi)=—(ixk).
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Saamme lopputulokseksi determinantin

i ok
c=(axb)y=det| a; a; a3 | =
b; by b3

= (apbz —azby)i+ (azb; —aybz)j+ (a;by —axby) k.
Siis
c1 = apbz —aszbz, ¢z =azb; —arbs, c¢3=ab,—ab;.

Néama lausekkeetkin ovat determinantteja:

C1 T
co | = | det a2 43 det @ i det ar d2 .
by bs bs by by b2
C3
A.2.3 Nabla-operaattori

Paikkavektori r voidaan kirjoittaa {1, j, k }-kannalle seuraavasti:
r =xi+vyj + zk,

joka madrittelee avaruuden (x,y, z)-koordinaatit.

Maéritellddn vektorioperaattori nimeltd nabla (V) seuraavasti:

def;0 , 50 40
\Y —1ax+)ay+kaz.

Operaattori on sellaisenaan merkitykseton. Se saa merkityksen vas-

ta, kun operoi johonkin, jolloin voidaan laskea oikean puolen kolme
osittaisderivaattaa.

A.2.4 Gradientti

Olkoon V(r) = V(x,y, z) skalaarikenttd avaruudessa. Nabla-operaattori
antaa sen gradientin g, joka on saman avaruuden vektorikentta:

Vv 12V 0V 2V
g—gradV—VV—laX-l—]ay-l—kaZ.
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Kuva A.3. Gradientti. Skalaarikentdn tasokdyrét sinisind katkoviivoina.

Siis kenttd g(r) = g(x,y, z) on kentdn V gradienttikenttd. Fysiikassa g
on usein voimakenttd ja V sen potentiaali.

Tulkinta Gradientti kuvaa skalaarikentdn kaltevuutta. Vektorin suunta
on se suunta, johon skalaarikentdn arvo muuttuu nopeimmin, ja
sen pituus kuvaa muutoksen nopeutta paikan mukaan. Kuvittele
kukkulamaisema: maan korkeus merenpinnasta on skalaarikent-
td ja sen gradientti osoittaa kaikkialla ylimikeen, pois laaksoista
huippuja kohti. g-nuolet ovat sitd pidempid, mitd jyrkempi on
maanpinnan kaltevuus.

Gradientti-operaattori, kuten my0s divergenssi ja roottori, on
lineaarinen:

grad (U + V) =grad U + grad V.
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Kuva A.4. Divergenssi. Positiiviset (“ldhteet”) ja negatiiviset divergenssit (“nie-
lut”). Kenttaviivat punaisina katkoviivoina.

A.2.5 Divergenssi

Olkoon annettuna vektorikenttda a(x,y,z) = a;i + a,j + azk. Muodos-
tetaan tdiman ja nabla-operaattorin skalaaritulo s:

a(l3
0z’

Tulkinta Divergenssi kuvaa vektorikentén lihteiti, sekd positiivisia etta

a(l] + a(lz

s:diva:<V-a>: . 3y

_|_

negatiivisia. Ajattele veden virtausnopeus vektorikenttand. “Lah-
teiden” kohdalla divergenssi on positiivinen, “nielujen” kohdalla
negatiivinen. Kaikkialla muualla divergenssi on nolla, koska
nestettd ei ilmaannu tyhjasta eikd sitd havia tyhjaan.

A.2.6 Roottori (engl. curl)

Olkoon taas annettuna vektorikenttd a(x,y, z). Muodostetaan timén ja
nabla-operaattorin vektoritulo ¢, joka on itse vektorikentta:

i j ok
_ _ _ 0 0 90 | _
c=rota=(V x a) =det ox 3y 2z |

a; az as
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Kuva A.5. Roottori. Positiiviset (vastapdivddn) ja negatiiviset (myotapdivaan)

pyOrteet.
9 9 S 8 2 9
=det | 0y Oz i—det[ax 0z |j+det| 0x Oy | k=
a; as aq as as ar

_ (Qas _9ax);, (a1 Qas),, (Qday Dday
_(ay az>1+<az ax>]+<ax ay)k’
kédyttden determinanttien laskentasdantoja.

Tulkinta Roottori kuvaa vektorikentédssa olevaa pydrteisyytti.

Kuvittele sddkartta, jossa on kuvattu matala- ja korkeapainei-
ta. Vektorikenttaimme on tuulikenttd. Tuuli kiertdd pohjoisel-
la pallonpuoliskolla my6tapdivadn korkeapaineiden ympiri ja
vastapdivddn matalapaineiden ympéri. Voidaan sanoa, ettd tuu-
likentdn roottori on korkeapaineiden kohdalla positiivinen ja
matalapaineiden kohdalla negatiivinen.

(Tama on heikko vertauskuva, koska se on kaksiulotteinen. R?:ssi
roottori on skalaari eikd vektori. Samalla tavalla kierron luonneh-
timiseksi tarvitaan vain yksi kulma, kun R3:ssi tarvitaan kolme
Eulerin kulmaa.)
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A.2.7 Konservatiiviset kentat

Mitd tapahtuu, jos vektorikenttd a on skalaarikentdn V gradientti ja
yritimme laskea sen roottorin b, joka on sekin vektori? Kirjoita

i j k
9 0 0
b =rota =rotgradV =det | 5x 9y 09z |V
9 0 0
x 3y oz

ja olkoon
b =bii+byj + bsk.

Silloin determinantin kehittiminen tuottaa

0 0 0 0

00 0 0.,
b=y " waz' O
0 0 0 0.,
b3—a®V—@&V—O,
siis
b=rota=0!

Toisin sanoen, jos vektorikenttd a(x,y,z) on skalaarikentdn V(x,y, z)
gradientti, sen roottori hividi:

rotgradV=(V x VV) =(V x V)V =0,
siis V:n vektoritulo itsensd kanssa havida aivan kuin se olisi tavallinen

vektori!

Maiiritelmd Vektorikenttdd a, jonka roottori havidd, kutsutaan konser-
vatiiviseksi, ja vastaavaa skalaarikenttdd V, a = grad V, kutsutaan
kentdn a potentiaaliksi.

Huomataan heti, ettd jos

a(X> Y, Z) = grad V(Xv Y, Z))
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silloin my®s
a(x,y, Z) = 8rad (V(X>y) Z) + VO) )
jossa V, on mielivaltainen vakio, koska

Vo | L0V, L0V
5 1) 3y +kaZ =0.

Siis potentiaalia ei ole mddritelty yksiselitteisesti.

grad Vo =

A.2.8 Laplacen operaattori

Olkoon konservatiivinen kenttd a, siis rot a = 0. Silloin voimme kirjoit-
taa

a=gradV=VYV,
jossa V on potentiaali.

IImaistaan kentdn a divergenssi nyt potentiaaliin:

0 0 0 0 0 0
aav—i-@@\/-}—a—za—z

(0% 2% , 0? def
- <6x2 togrt aZZ) v Ay,

jossa olemme ottaneet kayttoon uuden differentiaalioperaattorin, ranska-

diva=(V-a)=(V-VV) = V=

laisen Pierre-Simon Laplacen keksimén Delta-operaattorin,

R
A= T oy T2 =

Kun operaattorin kohteena on “ldhdevapaan” kentdn potentiaali, kuten

(V-V)=V2

gravitaatiopotentiaali tyhjiossa tai sihkostaattinen potentiaali avaruu-
den alueella, jossa ei ole sdhkdisid varauksia, tdimén Delta- eli Laplacen
operaattorin tulos havida.

A.3 Integraalit

A.3.1  Kaéyrédintegraali

Aiemmin nédhtiin, ettd tyd AE voidaan kirjoittaa voiman F ja matkan Ar
skalaaritulona:
AE = (F- Ar).



Integraalit A3

Taman differentiaalimuoto on
dE = (F - dr),

josta saa integraalimuodon eli tydintegraalin

B
AEAB = J‘A <F . dr>

Téassd lasketaan kappaleen siirtdmisen pisteestd A pisteeseen B tuottama
tydmaédrd integroimalla (F - dr) polkua AB pitkin.
Jos polkua parametrisoidaan kaaren pituuden s mukaan ja polun

tangenttivektoria kutsutaan

def dx;  dy,, dz
o ds1+ dstL dsk’

t
saa my0s kirjoittaa
B
AEap = [ (F-t)ds,

joka on integraalin parametrisoitu versio.

A.3.2 Pintaintegraali

Olkoon taas annettuna joku vektorikenttd a ja avaruudessa oleva pinta
S. Usein pyritddn integroimaan pinnan yli vektorikentan normaalikom-
ponentti eli vektorin a projektio pinnan S normaalivektoriin, vektoriin,
joka on pinta-alkiossa dS kohtisuorassa pintaan ndhden.

Olkoon pinnan normaalivektori n. Silloin on integroitava

ffs<a-n> ds,

symbolisesti kirjoitettuna

jfs<a' dS>,

jossa kirjoitustapaa dS kutsutaan suunnistetuksi pinta-alkioksi. Se on
normaalivektorin n suuntainen vektori.
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Tangenttivektori t

rota @
@ rota (—)

@ Integraali
Jfs (rota-n)ds

Integraali

ggas<a~t> ds

Suljettu
1" polku 0S

@ rota @

Kuva A.6. Stokesin roottorilause.

Kuten kdyrdd, voidaan myos pintaa parametrisoida. Esimerkiksi maa-
pallon pinta, jos se oletetaan pallopinnaksi, voidaan parametrisoida
leveysasteen ¢ ja pituusasteen A avulla: r = (¢, A). Tdssd tapauksessa
kirjoitetaan pinta-alkioksi

dS = R?cos ¢ d¢ dA,

jossa R? cos ¢ on parametriparin (¢, A) Jacobin determinantti. Tassd para-
metrisoinnissa integraali lasketaan seuraavasti:

ffg(a- ds) = ff5<a'“> dS = Ljﬂ +711//22<(1-T1> R% cos ¢ ddp dA.

Muilla pinnoilla ja parametrisoinneilla on erilaiset Jacobin determinantit.
Determinantti edustaa aina ”“parametripinta-alkion” d¢ dA todellista
pinta-alaa “luonnossa”. Esimerkiksi Maan pinnalla aste-kertaa-aste-
ruutu on suurin pdivantasaajan lahistolld. Napakoordinaateissa (p, 0)
tasossa (x = pcos 0,y = psin 0) Jacobin determinantti on p. Tavallisessa
pinnan (x,y)-parametrisoinnissa Jacobin determinantti on 1, eli sen voi
jattdd kokonaan pois.
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A.3.3 Stokesin roottorilause

Olkoon S mahdollisesti kaareva pinta avaruudessa ja 0S sen reunakéyra.
Oletetaan, ettd pinta ja sen reuna ovat sen verran hyvikaytoksisid, ettd
kaikki tarvittavat integroinnit ja differentioinnit voi suorittaa. Silloin
(my0s tunnettu Kelvinin' ja Stokesin lauseena):

ffs<rota- ds) = gSE)S(a- dr),

jossa r on reunakdyran paikkavektori. Lauseen parametrisoitu muoto

fjs<rota-n> dS = ggas<a-t> ds,

jossa m on pinnan S normaali ja t reunakédyrdn 0S tangenttivektori.

on

Sanoin Vektorikentdn roottorin pintaintegraali pinnan yli on sama
kuin kentédn suljettu polkuintegraali pinnan reunan ympari.

Erikoistapaus Konservatiiviselle vektorikentélle a patee rota = 0
kaikkialla. Silloin
gS (a-dr) =0,
os

siis myoOs

fj(a -dr) = fj(a -dr).

polku 1 polku 2
Olkoon a kentdn voimavektori, esimerkiksi painovoimakentén ai-
heuttama kiihtyvyys eli voima per massayksikkd. Silloin tulkinta
on

Tydintegraali pisteestd A pisteeseen B ei riipu valitusta polusta. Ja
suljetun polun ympdri kuljetetun kappaleen tekemd tyd on nolla.

ama saattaa selittdad konservatiivisen voimakentin olemuksen
T tt littaa k t kent 1 k
paremmin. Konservatiivinen kenttd voidaan esittda potentiaalin

'William Thomson, lordi Kelvin PRS FRSE (1824-1907) oli brittildisfyysikko, matemaa-
tikko, insin6ori ja keksija. Han on kuuluisa ldhinnd ehdotuksestaan absoluuttiseksi
lampotila-asteikoksi vuodesta 1848.
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gradienttina a = gradV, jossa V on kentdn potentiaali. Maan
painovoimakenttd g(x,y,z) on Maan painovoimapotentiaalin
eli geopotentiaalin W(x, y, z) gradientti. Keskimerenpinnalla —
tarkemmin geoidilla — painovoimapotentiaali on vakio ja paino-
voimavektori g on kaikkialla kohtisuorassa geoidiin ndhden.

A.3.4 Gaussin divergenssilause

Olkoon V avaruuden osa-alue ja 9V sen suljettu reuna: pintojen yhdistel-
mad. Oletetaan taas, ettd molemmat ovat matemaattisesti hyviakaytoksisid.
Silloin pédtee seuraava lause (Gauss):

jffv divadV = ffav<a- dS> = Ifav<a ) n> ds.

Sanoin Kaiken, mika syntyy kappaleen siséllad (“ldhteet”, divergenssi),
on tultava sen pintojen kautta ulos.

Tavallisesti pinnan 0V suunnistus otetaan positiiviseksi ulkoapadin:

pinnan normaalivektori n osoittaa ulospéin.

A.4 Aineen jatkuvuus

Usein kaytetty yhtdlo hydro- ja aerodynamiikassa on jatkuvuusyhtilé.
Se ilmaisee, ettei aine voi noin vain hédvitd tai lisddntyd. Yleisessa
tapauksessa yhtdlo on timéan ndkdinen:

d _
+ ap = 0.

Tassd lauseke pv merkitsee massavirtausta, p on aineen tiheys ja v on

div(pv)

virtauksen nopeus. Termi div(pv) ilmaisee, paljonko enemmdn ainetta
lahtee aika-yksikossa tila-alkiosta pois kuin tulee sisdédn tilavuusyksik-
kod kohti. Toinen termi, tiheyden p aikaderivaatta, merkitsee tila-alkion
sisdlld olevan massamddrdn muutosta ajassa myos tilavuusyksikkoa
kohti. Termien on oltava keskenddn tasapainossa, jotta “ainekirjanpito”
tasmaa.



Aineen jatkuvuus A4 4_ 1 3

Kuva A.7. Gaussin divergenssilause. n on ulkopinnan normaalivektori. Gaus-
sin divergenssilause voidaan esittdda myos Michael Faraday'n kenttd-
viivojen avulla: kenttdviiva alkaa tai paattyy sahkovarauksen koh-
dalla eli paikalla, jossa div a # 0, tai kulkee dédrettdmyyteen pinnan
oV lapi.

Mikali virtaava aine on kokoonpuristumaton, p on vakio:

%p =0 = div(pv) =pdivv=0 =— divv=0.

Kun puhutaan nesteen tai kaasun virtauksesta, pitdd olla tietoinen,
ettd pydrteisyys rotv ei valttamatta havid, eli virtaus ei valttamatta
ole pyorrevapaa. Toisin sanoen potentiaalia V, jolle v = grad V, ei ole
vilttamitti olemassa. Itse asiassa pyOrteiset virtaukset ovat hyvin yleisid,

ja jopa laminaarisessa virtauksessa tavallisesti rot v # 0.






Funktioavaruudet

D

B.1 Abstrakti vektoriavaruus

Abstraktissa vektoriavaruudessa voidaan luoda kanta, jonka avulla jokainen
vektori avaruudessa voidaan ilmaista kantavektoreiden lineaariyhdis-
telméksi. Esimerkiksi jos kanta on konkreettisessa kolmiulotteisessa
avaruudessa { e, e, e3}, voidaan kirjoittaa mielivaltainen vektori r

muotoon
3

r=m€1+1e+r3€3 = Zriei.

i=1
Koska kolme kantavektoria (jotka eivit ole samassa tasossa) riittdd aina,
kutsutaan tavallista (euklidista) avaruutta kolmiulotteiseksi.

Vektoriavaruudessa voidaan maéarittda skalaaritulo, joka on lineaari-
kuvaus kahdesta vektorista yhteen lukuun (”“bilineaarinen muoto”):

(r-s).
Lineaarisuus merkitsee, etta
((ory +Bra)-s) =a(ry-s)+B(ry-s) o, B ER

ja vaihdannaisuus sitd, ettd

(r-s)={(s-r).
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Jos kantavektorit ovat keskenéén ortogonaaleja, toisin sanoen (e; - €;) = 0
jos i # j, voidaan laskea kertoimet 1; yksinkertaisella tavalla:

3
r= Zriei» Ty = (r-e) = r-e) (B.1)
i1

(ei-e)  e*”
Jos taman lisdaksi
(ei-e)=lel*=1, ie{1,2,3},

toisin sanoen kantavektorit ovat ortonormaaleja, yhtdlo B.1 yksinkertais-

tuu edelleen:
3
T = Z Tri€i, Ty = <r . €i>. (BZ)
i=1

Suuretta
def
el = <ei : ei>

kutsutaan vektorin e; normiksi.

Toisin kuin tavallinen avaruus, joka on kolmiulotteinen, funktioava-
ruus on ddrettdéman ulotteinen abstrakti vektoriavaruus, joka auttaa
meitd konkretisoimaan tiettyja abstrakteja, mutta hyvin hyodyllisia
funktioteorian perusasioita.

B.2 Fourier'n funktioavaruus

B.2.1 Kuvaus

Funktiot voidaan katsoa vektoriavaruuden alkioiksi. Jos méaaritellaan
kahden funktion f ja g skalaaritulo seuraavaksi integraaliksi'

(f-g)= <? : 3> def 7lt 0271 f(x) g(x) dx, (B.3)

'Nuolet funktioiden nimien f ja g yldpuolella vahvistavat psykologisesti sen, ettd
funktiot ovat todella “vektoreita”. Niitd nuoleja ei normaalisti kéyteta.
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on helppo todeta, ettd ylld mainitut skalaaritulon vaatimukset tayttyvat.

Tamaén vektoriavaruuden eli funktioavaruuden erdadn kannan muodos-
tavat Fourier’'n kantafunktiot,

€y = %\/Z
ex = cos kx, k=1,2,3,..., (B.4)

e_ = sin kx, k=1,2,3,....

Tama kanta on ortonormaali (todistus: harjoitus). Se on my®6s tiydellinen
kanta, jota emme todista. Koska kantavektorien mdard on numeroi-
tuvasti daretdn, sanotaan, ettd tima funktioavaruus on direttOmaéan
ulotteinen.

Nyt jokainen funktio f(x), joka tayttda tietyt vaatimukset, voidaan
kehittdd yhtdlon B.2 tapaan seuraavasti:

f(x) = %ao\/er Z (ay cos kx + by sinkx) ,
k=1

joka on tuttu Fourier'n sarjakehitelmd, jossa kertoimet ovat
2m J—
aO = <f-€0> = %{\/ZJO f(x) dX:\/z'f(X),
27
ar =(f-e) = %jo f(x)coskxdx, k=1,2,3,...,
21
bk:<f'€7k>=7]—tjo f(x) sin kx dx, k=1,2,3,....

Tama on tunnettu tapa laskea Fourier'n sarjan kertoimet.

B.2.2  Esimerkki

Fourier'n analyysin esimerkkini esitetdédn askelfunktio valilld [0, 27):

0 xe€[0,m),

f(x) =
1 x € [m2n).
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Taman funktion Fourier'n kertoimet voidaan laskea seuraavasti:

27
ao:%r\/z'fo f(x)dx:zL\/Z-n:%\/z,

i
1 27 1 27
ak_ﬁjo f(x) coskxdx-7—TL cos kx dx =

27

Tk k7t
27 27
by = J—TL f(x)sinkx dx = ;—(f sinkx dx =
T sk = L (cosk 2km) —
= [—Ecos x]ﬂ —k—ﬂ(cos 7T — cos 2kmt) =
1 0 jos k parillinen,
(1) =
T Jos k pariton.
Numeroarvot: ay = %ﬁ =0,70710..., by = — 2/7( = —0,63662...,

by = —2/3x = —0,21220..., bs = —0,12732..., ja niin edelleen.
Kehitelmd on nyt

[o¢]

—% Z 1Esinkx.

k=1
pariton

Nl =

f(x) = %\/Zao + Zbk sinkx =
k=1

Nédemme, ettd kehitelmad sisdltdd vain sinejd eikd lainkaan kosineja. Se

on seurausta funktion symmetriaominaisuuksista.
Kuvassa B.1 ndytamme tdméan funktion katkaistuja kehitelmia:
K
1
k
k=1
pariton

2 :
— = sin kx, (B.5)

Nl=

K
f9(x) € JaovVZ+ Y bisinkx =
k=1
jossa K on katkaisuparametri.

B.2.3  Suppeneminen
Fourier'n kehitelmd suppenee nelidintegraalin merkityksessa. Jos maa-

ritelldan katkaistu kehitelma

K
K (%) def %ao\/z—i— Z (ay cos kx + by sinkx) ,
k=1
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K=5

02| — S

Kuva B.1. Askelfunktion Fourier'n analyysi. Piirrettyind ovat katkaistut Fou-
rier'n kehitelmat f(X) (x), yhtdlo B.5, K-arvoille 1, 3, 5 ja 25. Upotet-
tuna funktion spektri.

silloin -
) 7 2
lim 7 jo (f(K)(x) — f(X)) dx = 0.

K500
Tamd ei merkitse, ettd mielivaltaisen pienelle arvolle ¢ pétee
[f(®)(x) — f(x)| < € jokaiselle x € [0,27), kun K — co. Kuva B.1 kertoo,
ettd jdljelle jad aina pieni pisteen x = 7 ympdristd, jossa on olemassa
pisteitd x’ # 7, joiden absoluuttinen erotus |f) (x) — f(x")| > 0,1 (tai
mikd tahansa positiivinen raja < 0,5) my0s mielivaltaisen suurille
K:n arvoille. Sanotaan, ettd Fourier'n kehitelma suppenee, mutta se ei

suppene tasaisesti.

Fourier'n kehitelmd suppenee pisteittdisesti “melkein kaikkialla”
valilld x € [0, 27): kaikissa pisteissd paitsi erikoispisteissd x = Ojax = .
Maaérittelemalla f(0) = () def 0,5 kehitelmd saadaan suppenemaan

pisteittdisesti kaikkialla.

Huomaa myds kehitelmén ”olkapdd” jopa arvolle K = 25. Olkapda
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kapenee korkeammille K:n arvoille, mutta sen korkeus ei pienene, vaan
jdd arvoon noin 0,09. Tdma tunnetaan Gibbsin ilmiona.

B.3 Sturmin ja Liouvillen differentiaaliyhtdlot

B.3.1  Ominaisarvotehtava

Abstraktissa vektoriavaruudessa voidaan formuloida ominaisarvotehtiuvi.
Kun on annettu lineaarinen operaattori (kuvaus) L, voidaan kirjoittaa

Lx —Ax =0,

jossa tehtdvana on madrittaa ominaisarvot A, joille 16ytyy yksi tai useampi
ratkaisu eli ominaisvektori x.

Konkreettisessa n-ulotteisessa vektoriavaruudessa, jossa on ortonor-
maali kanta {e;,1=1,...,n}, voidaan kirjoittaa vektori

n
XZE Xi€i,
i=1

ja lineaarisuuden ansiosta

[x=L (i xiei> = ixi . Lei.
i=1 i=1

Toisaalta voidaan kirjoittaa n eri vektoria Le; kannalle { e; } seuraavalla
tavalla:

n
Lei: E ai; ej, 1=1,,n
=1

Tama madrittdad kertoimet ayj, jotka voidaan kerdtd n x n -kokoiseksi
matriisiksi A.

Nyt sijoittamalla saadaan

[x = ixi . i aije; = i( Y aijxi) €;. (B6)
j=1 i=1

i=1 j=1
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Myos

n

A = ?\ixiei => (W) e;. (B.7)
i=1

j=1
Yhdistamalld yhtédlot B.6 ja B.7, joiden kaikkien kertoimien on oltava
identtisid, saadaan

n
E aini—AXj:O, j:1,...,n,
i=1

eli matriisiyhtdlona
AX —AX = 0, (B.8)
jossa A on kertoimista a;; koostuva matriisi ja X kertoimista x; koostuva
sarakevektori: X = [ X1 X2 o Xn ]T.
Tietenkin my0s yhtdl6 B.8 edustaa ominaisarvotehtdvad, mutta nyt
lineaarisessa vektoriavaruudessa R"™, joka koostuu kaikista kerroin-
vektoreista X. Jokainen X on vektorin x numeerinen esitys valitulla

kannalla {e;}. Matriisi A taas on operaattorin L numeerinen esitys
samalla kannalla®.

B.3.2 Itseadjungoitu operaattori

Olkoon L lineaarinen operaattori vektoriavaruudessa, jossa on olemassa
skalaaritulo, siis bilineaarinen muoto (x - y), joka on symmetrinen eli

vaihdannainen.

Silloin L on itseadjungoitu, jos jokaiselle vektoriparille x, y patee

(x-Ly) = (Ix - y).

Jos vastaava matriisi A on itseadjungoitu, se merkitsee, ettd

(x-AY) = (AX-Y)

*Numeeristen esitysten etuna on tietenkin, ettd niilld voi oikeasti laskea.
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eli

i Xt (i aiiyi) = i (i %‘Xj)yu

i=1 j=1 i=1 Vj=1

mikaé on triviaalisti totta, jos
aiyj = Qji, i,j€1,...,n, ehA:AT
Toisin sanoen

symmetrinen matriisi on itseadjungoitu operaattori.

Lineaarialgebrasta on tuttua, ettd symmetrisen n x n -kokoisen mat-
riisin eri ominaisarvoille A, # A4 kuuluvat ominaisvektorit x,,, x4 ovat
keskendidn ortogonaaleja: X, L Xq. Jos kaikki ominaisarvot A,, p =1,...,
n ovat erilaisia, ominaisvektorit x,, p = 1, ..., n muodostavat tiydellisen
ortogonaalin kannan3 vektoriavaruudessa R™.

Todistus ei ole vaikea. Lihdetddn ominaisarvotehtdavan yhtalosta
ominaisvektoreille ja -arvoille x,,, A,

Lx, = ApXy,
ja kerrotaan vasemmalta vektorilla x4:
(Xq - Lxp) =Ap (Xq - Xp)-

Samoin ominaisvektorille ja -arvolle x4,Aq kerrottuna vasemmalta
vektorilla x:

(%p - Lxq) = Aq (Xp - Xq)-

Jos L on itseadjungoitu, on

(Xq - Lxp) = (Lxq Xp) = (Xp - Lxq) = Ap(Xq-Xp) =Aq(Xp Xq)-

3Itse asiassa ominaisvektorit voidaan skaalata mielivaltaisesti: jos x on ominaisvektori,

on myds e def X/|\x|| - Néin saadaan ortonormaali kanta.
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Seuraa, etta

Ap = Ag) (Xp - Xq) =0.
Muista, ettd skalaaritulo on symmetrinen. Jos A, # A4, on siis oltava
(Xp - Xq) = Oelix, L xq, miki oli todistettava.

Esimerkki Paikan varianssimatriisi tasossa. Pisteen P koordinaattien va-
rianssimatriisi tasossa on

2
Var{zp}:Var{ i"]}:zppz [(:x (;xzy])
Jp xy Yy

symmetrinen matriisi. Tassd o7 ja 07 ovat x- ja y-koordinaattien

varianssit eli keskivirheen neliét, kun o, on koordinaattien
valinen kovarianssi.

Taméan matriisin Xpp ominaisarvot ovat karakteristisen yhtdilon

Oxy O0F —

2_}\ ~
det(Zpp — Al) = det [ Ox N ‘J)\] ~0,
Yy

siis yhtdlon
(02 —A) (02 —A) —0%, =0

ratkaisut. Saadaan

Mo =3 (084 03) =3y (02 + )" 4 (o0 o3, =

— (024 02) £ 1\/(02— 02)” + 402,

Varianssimatriisin visuaalinen esitys on varianssi- eli virhe-ellipsi.
Sen pédakseleiden puolipituudet ovat v/Ay ja /A, ja padakse-
leiden suunnat ovat Zpp:n ominaisvektorit X; ja X;, jotka ovat
kesken&an kohtisuoria. Kun koordinaatiston akselit kddnnetaan
X1,2-suuntaisiksi, matriisi Zpp saa muodon

/ Gi/ 0 }\‘] 0
O-y/ O }\2

Ominaisarvojen summa ja matriisin 7ilki A + A; = 02 + 02 on
x y

invariantti, jota kutsutaan pistevarianssiksi.
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B.3.3 lItseadjungoidut differentiaaliyhtalot

Funktioavaruudessa on olemassa myos itseadjungoituja eli “symmetri-
sid” differentiaaliyhtdloitd. Itse asiassa fysiikan kuuluisimmat yhtalot
ovat titad tyyppia.

Tutki vaikkapa vadrdhtely-yhtdlod, jossa x(t) on paikka ajan funktiona:

;—tzzx(t) + w?x(t) = 0. (B.9)

Ratkaisu on yleistd muotoa (« amplitudi, ¢ vaihevakio)
x(t) = asin(wt — ¢).

Vililld t € [0, T| vaaditaan jaksollisuutta:

4,
dt

d

x(0) =x(T), T2

x=T )

N&ama reunaehdot ovat olennainen osa itseadjungoituneisuutta. Silloin
ratkaisu 16ytyy vain tietyille w:n arvoille. [Imién nimi on kvantisointi.

Yhtalo B.g on muodoltaan ominaisarvotehtivi:

Lx + w?x =0,
jossa operaattori on
dZ
L=—>.
dt?

Néytetddn ensin, ettd tim4 operaattori on valilld [0, T] itseadjungoitu.
Jos skalaaritulo méaritelldan seuraavasti

(T [ xvyay

on (osittaisintegrointi):

2 T

R A Al R A
2 T

(IX - Y) = IOT ddi(zt)y(t)dt = {d)éit)y(t)} - IOT d’éit) dlé(tt) it
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Koska oikealla puolella ensimmadiset termit havidvit ja toiset ovat

(X 1Y) = (X V),

identtisid, on

mika oli todistettava.

Itseadjungoidulla operaattorilla on ominaisarvot ja ominaisvektorit.
Ominaisvektorit ovat tdssd tapauksessa funktioita, jotka ovat keskenddn
ortogonaaleja eri w-arvoille*. Y14 olevilla jaksollisuusehdoilla ne ovat
varadhtely-yhtdlon ratkaisufunktiot

sin(wyt — ¢) = sin (2%]% — cb) , (B.10)
joissa taajuus
o _ 2
KTOT

on kvantisoitu "kvanttiluvun” k € N mukaan.

Jos annetaan T — oo, taajuudet wy menevit yhd ldhemmads toisiaan
ja lopulta muodostuvat jatkumon.

Fysiikasta 16ytyy laaja joukko differentiaaliyht&loitd, jotka ovat jos-
sakin funktioavaruudessa itseadjungoituja. Joukko kdy nimelld “Stur-
min’ ja Liouvillen® tyypin ongelmat”. Niihin kuuluvat vérdhtely-yhtils,
Legendren yhtilo, Besselin yhtdl6 ja monet muut. Jokainen generoi
luonnollisella tavalla joukon keskenddn ortogonaaleja funktioita, jotka
toimivat monen osittaisdifferentiaaliyhtdlon yleisen ratkaisun kanta-
funktioina.

“Itse asiassa samalle wy-arvolle 16ytyy kaksi keskenddn ortogonaalista jaksollista
ratkaisua

27kt f— 27kt
T Ccos Wit = cos T

My®ds niiden mielivaltainen lineaariyhdistelmé on toimiva ratkaisu ja yleistd muotoa

sin wyt = sin

B.10.

5Jacques Charles Frangois Sturm FRS FAS (1803-1855) oli ranskalainen matemaatikko
ja yksi 72 Eiffel-torniin kaiverretusta nimesta.

6]oseph Liouville FRS FRSE FAS (1809—1882) oli ranskalainen matemaatikko.
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B.4 Legendren polynomit

My®és tavalliset Legendren polynomit P, (t) muodostavat kannan funk-

tioavaruudessa, jossa skalaaritulon méaaritelmé on
— def +1
< 7. €> fe L f(t) g(t) dt.

Ne eivat kuitenkaan muodosta ortonormaalia kantaa, vaan ainoastaan
ortogonaalin kannan:

2 . +1 2 B 2
IPrl® = (Pn - Pn) = | Pal(t) dt = 5=

B.5 Pallofunktiot

Pallon pinnalla kaikkien funktioiden voidaan katsoa olevan funktioava-
ruuden alkioita. Jokainen funktio, joka tdyttda tietyt hyvan kaytoksen
vaatimukset, kuten integroitavuuden, on sen alkio. Funktiot

Rum(d,A) = P (sin d) cos mA, n=0,12,..., m=0,...,n,
Sam(d,A) = P (sin @) sin mA, n=0,1,2,..., m=1,...,n,

yhdessda muodostavat timén vektoriavaruuden tiydellisen kannan siten,
ettd jokainen funktio voidaan kirjoittaa niiden kantafunktioiden — tar-
vittaessa ddrettoméksi — lineaariyhdistelméksi. Tilanne on analoginen
kolmiulotteisen avaruuden kanssa, jossa tdydellinen kanta koostuu
kolmesta vektorista, jotka eivit ole samassa tasossa.

Vaihtoehtoinen ja tiivimpi kirjoitustapa on

Phm(sing)cosmA  josm >0,
Ynm(d)))\) = ) ) '
Poim/(sin d) sinfm|A  jos m < 0,

arvoilen=0,1,2,..., m=-mn,..., n.

Tassa funktioavaruudessa maaritellaan skalaaritulo:

(T-9) = 2= [ (4, 9(¢,A) do,



Pallofunktiot B.s

jossa o on yksikkodpallon (“suuntapallon” taijopa “taivaanpallon”) pinta,
do = cos ¢ d¢ dA on pallon pinta-ala-alkio ja cos ¢ on koordinaattien
(¢, A) Jacobin determinantti.

Tamdan méadritelman mukaan voidaan ndyttda toteen, ettd kaksi eri
funktiota, Ynm ja Yn'm/, Ovat ortogonaaleja toisiinsa ndhden:

<Ynm : Yn’m/> = %_[ J:[G Ynm((b) 7\) Yn’m/(d)a }\) do=0

josn #n’taim #m'.
Kanta {Ynm,n =0,1,2,...,m=-—n,... ,n} on ortogonaali, muttei
ortonormaali: vektoreiden pituudet eroavat arvosta 1.

||Ynnl||2 = <Ynm : Ynm> =
1

1 In+i
= o [ e do =T

22n+1) (n —|mJ)!

josm =0,

jos m # 0,

katso Heiskanen ja Moritz (1967, yhtdlo 1-69). Tamédn ortogonaalisuuden
todistaminen ei ole suoraviivaista.

Jos nyt jaetaan funktiot Yy, tai vastaavasti Rpm, Snm ylld olevien
tekijoiden nelidjuurilla, saadaan tiysin normalisoidut pintapallofunktiot

Ynm, joille patee

[Vonll* = g [f. Vam(®, ) do=1.

Niiden avulla on taas helppo laskea annetun yleisen pallopinnan
funktion f(, A) kertoimet fy . Ylaviiva merkitsee, etti nimé ovat taysin
normalisoituja kertoimia:

]?nm = <f : Vnm> = %_[ Jjﬁ f((b) A) 7'rlm(d)v A) do. (B-ll)

Tama on geometrisessa analogiassa suora projektio kannan yksikkovek-
toreihin.

Y14 olevassa integraalissa f(¢d,A) on funktio f Maan pinnalla: jos
maapallon sdde on R, silloin f($,A) = f(P, A, R).
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Kehitelméaa 2.12 vastaava tdysin normalisoitu yht&lo on

V(d,A 1) Z rn1+1 Z am (SN $) (Anm cOS MA + by sSINMA) .
n=0 m=0

Voimme kirjoittaa myds

v Pum(sing)cosmA  josm >0,
Ynm((b) }\) =5 _ .
Prim/(sind) sin[m[A  jos m <0,
mikd vastaa tdysin normalisoitujen Legendren funktioiden mdiritelmdi:

P.o (sind) = vV2n+ 1P, (sind),

Pam(sind) = \/2(2n+ 1) En_ m): Pam(sind), m>0.

n+m)!

Nyt ylla olevasta potentiaalin yhtélosta tulee

jossa

Pallolla r = R saadaan

V(b, A\ R) =

josta ortogonaalilla pro]ektlolla (yhtdlo B.11) seuraa

_ n+1

i ] VIR Yo (0 d
eli

n+1
Unm = R J] (d, A, R) Prum (b, A) cosmA do,
Rn—H

= H (d, A, R) Pram (b, A) sinmA do.




Olenko ymmirtinyt tdmdin?

Olenko ymmartanyt taman?

1) Identiteetti (r-s) = (s-1) kahdelle vektoriavaruuden alkiolle rja s
ilmaisee seuraavan ominaisuuden: lineaarisuus | vaihdannaisuus

| liitdanndisyys.

Harjoitus B—1: Fourier'n kantafunktioiden

ortonormaalius

Nayta Fourier'n kantafunktioiden, yhtilo B.4, ortonormaalius johtamal-
la niiden skalaaritulot yhtdlén B.3 mukaan.






Miksi FFT toimii?

FFT on faktorointi- eli tekijoihinjakomenetelméa diskreetin Fourier'n
muunnoksen laskemiseksi. Menetelmd pienentdd tuntuvasti tarvittavien
laskentatoimitusten lukumé&édrdd ja nopeuttaa laskentaa. Se kuitenkin
edellyttds, ettd datahilan pistemdédra on jaollinen luku.

FFT-menetelmén valinnassa on vaihtoehtoja. Nopein FFT vaatii hilan,
jonka pisteméaara on kahden potenssi. Hila on silloin 2™ x 2™ -kokoinen.
Myos vaihtoehtoiset “mixed radix” -menetelmdt tulevat kysymykseen ja
suoriutuvat hyvin, jos hilan koko on jotain 360 x 480 -tapaista, esimer-
kiksi N =360 =2 x 2 x 2 x 3 x 3 x 5. Jos hilan koko on alkuluku, FFT
ei ole parempi kuin tavallinen diskreetti Fourier'n muunnos.

Jos funktio f(x) on annettu viliin x € [0,L) tasavéliselld hilalla
xx = KL/N arvoina fy = f(xi), k =0, ..., N —1, on diskreetti Fourier'n
muunnos yhdessd ulottuvuudessa

F{fx)} =F),

jossa

vj) Z (X1 exp( 27’[i%<>, j=0,...,N—1. (Ch)

Taajuusargumentti, spatiaalitaajuus eli aaltoluku, v; = j / L,j=0,...,

N — 1 on mddritelty véliin® [0, (N—T) / I_} .1on imaginaarinen yksikko:
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i? = —1. Kdytdmme exp(x) merkitsemdén e*.

Vastaavasti kdanteinen diskreetti Fourier'n muunnos,
FHF)} = f(x),

on
N—1

fx) = ZF(Vj)exp(zm%), Kk=0,... N—1. (C.2)
j=0
FFT on vain raa’an tehokas tapa laskea molemmat yhtalot C.1 ja C.2.

2 ”standardilas-

Yhtéloiden raaka laskeminen vaatii suuruusluokkaa N
kutoimitusta”, kun jokainen standardilaskutoimitus on yksi kertolasku

plus yksi yhteen- tai vahennyslasku. Jos N on parillinen, voi kirjoittaa

Foy ] cany kY LN kY
(Vj) = N Z T exp (—27{1N> + Z fr exp (—27{1N> =
k=0 1

k:zN
%Nf1 1 %Nfl
1 = /
_ 1 fr ex (—me)—l—ex —Zﬂijﬁ f 1 ex (—27&]—) =
N k&P N P N g in P N
k=0 k/=0
%Nﬁ %Nfl
_1 oK i ¥ | =
=N Z fkexp< 27{1N> + exp(—mtij) fk+%N exp( 27{1N> —
k=0 k=0
1
2

N-1 : e
1 ) gk + jos j parillinen
= = frtf 4 ex (—2711—) (C3)
N ];) FT N P N/ — jos j pariton
minkd summan laskeminen vaatii vain N - %N kerto- sekd yhteen- tai
viahennyslaskua, esilaskentoja lukuunottamatta.

Tassd kédytettiin Eulerin identiteettid exp(—mi) = —1, siis e ™ =

(e7™) = (-1) ,joko +1 tai —1. Hakasulkeissa on jokaiselle k:n arvolle

Vaihtoehtoiseksi maérittelyviliksi voidaan valita [—% N/, (IN-=1) / I_} . Tama
onnistuu kuvaamalla v; — v; — N/ elij — j — N arvoille j > $N — 1. Tamén hyva
puoli on, ettd nyt taajuus nolla on keskella. Se ei olennaisesti muuta mitddn, koska se
yksinkertaisesti vain kertoo F(V;) arvolla yksi: exp (—2mi Nk/N) = exp(—2mik) = 1,
diskreetin Fourier'n muunnoksen jaksollisuusominaisuus.



k=0,1,..., %N — 1 joko summaus parillisille j:n arvolle tai vihennys-
lasku parittomille j:n arvoille. Yhteensa esilasketaan %N summaa ja %N
erotusta. My0s exp-lausekkeet esilasketaan hakutaulukkoon.

Yhteensa tarvitaan noin %Nz standardilaskutoimitusta, puolet alku-
peraisesta.

Yhtdlo C.3 tunnistetaan Fourier'n sarjaksi, mutta tukipisteiden méara
on N:n sijasta vain %N. Jos my0s %N on parillinen, voidaan toistaa ylla
kuvattu temppu, jolloin lopputuloksena on lauseke, joka vaatii vain
luokkaa %N 2 laskutoimitusta. Toistetaan taas, ja operaatioiden maéarastd
tulee $N?, --N2, -UN? jne. ... Tarkempi analyysi nayttad, ettd jos N on
kahden potenssi, saadaan koko diskreetti Fourier'n muunnos lasketuksi
suuruusluokkaa N - 2log N laskutoimituksessa!

Kirjallisuudesta 16ytyy dlykkditd algoritmeja esitetyn menetelméan
toteuttamiseksi, esimerkiksi fftw (”“Fastest Fourier Transform in the
West”, FFTW Home Page; Frigo ja Johnson, 2005).

*Nditd arvoja kutsutaan “nypléayskertoimiksi” (engl. ”twiddle factors”).






Helmertin kondensaatio

Helmertin kondensaatioyhtdlon johtamiseksi johdetaan ensin topogra-
fian potentiaalin yhtalo:

Viop($,A,7) ij top pﬂdl)b,i\ /) v’ ~ prjjtop il tl),r /) av,

jossa P on geosentrinen kulmaetdisyys laskentapisteen (¢, A, ) ja data-
pisteen (¢’,A’, ') vililld. Oletetaan vakiotiheys p.

Samalla tavalla saadaan kondensaatiokerroksen potentiaalin yht&lo:

Viena(&, A7) = Gp [ gt rav

Integroidaan pallokoordinaateissa:

jjjtop £ lb)r /) j fR+H b 1]),1‘ . ) (r ')2 dr’ do’,

jjjkondﬂlb,r R j 21]),1' R) jRJrH v }\)( ,)zdr/dO'/:

H / )\/ HZ / }\/
sz (’,LI), X (1+ ((bR’ )+ (3(';2’ ))do’, (D.1)

jossa H on topografian korkeus.

— 435~
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D.1 Topografian ulkoinen potentiaali

Topografian ulkoisen potentiaalin laskemiseksi kdytetdan kddnteisen
etdisyyden kehitelmaa (yhtalo 8.7):

=1\ — 1/(r\"
Z i (—) P.(cos\) = Z = (?) P.(cos).

n=0

Tama kehitelmd suppenee tasaisesti' 1:n suhteen, jos v > r’. Seuraavassa
oletetaan aina suppenemista, vaikka oletus on vaarallinen etenkin
rosoisen topografian pinnan ldhell4. Jos asian filosofia kiinnostaa, lue
Moritz (1980).

Sijoitus antaa
V(A7) Gpﬂftopz (%) n(cosp) AV’ =
= Gpﬂ (fR+H o Z % (_) dT’) Pn(cos) do’ =
1

- Gpﬂg LZ_O ‘rn1+1 n+3 ﬁ’f‘”] Pn(cosy) do’ =

=Go | i Tn]ﬁn#” ((R+H)™3 —RY3) P, (cos ) do”
n=0

Nyt kdytetddn seuraavaa Taylorin kehitelmaa:

'Tasainen suppeneminen tarkoittaa, ettd kun annettuna on rja 1/, jokaiselle € > 0 on
olemassa Np;n, jolle

1o /T\"
E rZ() n(cos)| <

kaikille N > Npin ja kaikille \p:n arvoille. TAma on tavallista suppenemista vahvempi

ominaisuus.



Topografian sisdinen potentiaali D.2

(R—l— H)n+3 _
_ R <1 +(n+3)%+ (n+3)2(n+2)11;l_22+ (n+3) (T;J'FSZ) (n+”];—j+---> |
(D.2)
Sijoitus antaa
Vi (d, A7) = GpR? -
jj Z( )nH( (Tl—l-z)]];lz ;(n+2)(n+1)H3 "')Pn(COSIl))dG’
(D.3)

Tama on siis topografian ulkoinen potentiaali — tai topografisten massojen
sisdlld ulkoisen potentiaalin harmoninen jatko alaspdin olettaen, etta
tdma on matemaattisesti mahdollinen eikd hajaannu. Vuoristoisessa
topografiassa tdimd voi olla ongelma.

D.2 Topografian sisdinen potentiaali

Samalla tavalla voimme laskea topografian eli merenpinnan ja maaston
pinnan valisten massojen sisdisen potentiaalin yhtdlo. Avaruusetdisyy-
delle ¢ kdytetaan sisdistd kehitelmdd, yhtdlo 8.7, joka pétee jos 1 < 1

- = % i ( )nH (cosp).

Sijoitetaan:

Vi A =6 [f] + Z (2)" Putcosw) av' =

I

S jR+H oA %i (%)nﬂ 2 4r' P, (cos ) do

n=0
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Téasséd korkeusintegraali I on

o]

_J~R+H b’\A") %;) <T_,>n+1 (r’)z 4 —

R+H(dp’,A7)
x n—(n-2)
= Zr“ (_(r) )+r Inr =
— n—2
T‘L#Z r’'=R
_ = T —(n—2 2 R+ H
_Zon_z(R (R+H)™ ) 42 255,
nA2
antaen
Vi (6, A,1) =
_ = T —(n—2) —(n-2) 2 R+H ’
—Gpjfcy Zon_2<R — (R+H) )-I—r In = P..(cos) do
hA2
Tahan kdytetddn Taylorin kehitelméaa
(R+H)""? =
e (1 g H, (=M -DH (=2 (-DnH

My®s erikoistapaus n = 2,

% 1n

R+H L (H 1H? 1H?® 1H*

™ (H n—1H>? M—1)nH> Mm—-1Tnn+1)H*

- Rn—2

R 2 RR" 723 R 134 ®

),

otetaan siististi mukaan seuraavaan sijoituksella saatuun lausekkeeseen:

Viop (0, A, 1) =

top

_ = ™ H H2 H3
_prLZoRn2<ﬁ_z(n_”@+g(n—1)nﬁ—--->Pn(cosq))dcr

(D.4)



Kondensaatiokerroksen ulkoinen potentiaali D.3

D.3 Kondensaatiokerroksen ulkoinen potentiaali

Tamad lasketaan erikoistamalla yhtdlo D.3 tapaukselle H — 0, mutta
kuitenkin p — ooniin, ettd k = pH jdd ddrelliseksi. Tassd limiitissd kaikki
termit, joissa on H2, H3 ja korkeammat potenssit menevit nollaan. Tulos

on silloin

Viona(d,A,1) = GpR? fj Z ( >n+1 P, (cosV) do’ =
= GRIJ Z < )THL1 n(cosy)d

Aiemmin meilld oli tarkempana K-yhtalona 6.4 pallon muotoisen Maan
pinnalla:

H H
K:pH(1+R+;R2> (6.4)

Sijoittamalla tdimd edelliseen saadaan (katso myos yhtalo D.1):

b = ok [ 5 (3)" (1418118 Y Pt

(D.5)

D.4 Helmertin kondensaation kokonaispotentiaali

Tama saadaan viahentdamalla yhtdlot D.5 ja D.3 toisistaan. Tulos, joka
pétee ulkoisessa avaruudessa®, on

SViimimert (0, Ay T) = Vi 1 (b, A, T) — Vi (d, A, 7) = —GpR? -

Helmert top

HZ() < n2 -1 (é(n+2)(n+1)—%)];_j+...).

- Pn(cos) do’ =

3

=—Gp IL i (E)mq <%nH2 t %n (n+3) % + - ) Pn(cosy) do’.
n=0

*Teoriassa ulkoinen avaruus on avaruus koko Maan topografian sisdltdvan pallon,
niin sanotun Brillouinin pallon, ulkopuolella. Kdytant6 on sallivampi.



440 D HELMERTIN KONDENSAATIO

Usein mééritelladn korkeuden H potenssien asteosuudet (vertaa aste-
osuusyhtdlo 3.9) seuraavasti:

HY (,A) & 2““ [[. 1Y (@A) Pulcosh) do’, (D)

jolloin pétee
=) Hi(d,\)
n=0

Silloin

sVulk

elmert —

:—47TGpZ< )HH T ( InH2 + n(n+3)HT31 >

Jos topografia on vakio, kaikki termit, joille n # 0, hdviavat. Ylla
olevassa kehitelmédssd myos ensimmadinen ja toinen termi havidvit.
Tassd tapauksessd n = 0 sitd seuraavat termit eivit ole edes olemassa:
kehitelmé& D.2 on binomikehitelma

(R+H)? = R® + 3R?H + 3RH? + H?.

Siis

SV i =0

elmert —
kuten oli odotettavissa osion 1.4 perusteella: pallon muotoisen kuoren
kondensaatio ei muuta ulkoista kenttaa.

D.4.1 Helmertin kondensaation painovoimavaikutus

Lasketaan Helmertin kondensaation potentiaalin vaikutus painovoima-

anomalioihin:
u a u 2 u
Angi(lmert a 6\/Hleklrnert 6\/Hleklmert
N = 1 —(m+1) 2y /R\""! 2 fx
N4nGpZZn+]< - +;) (;) nH + n(n+3) e | =

1 — n—1 /R\""" [/ 1 Hi
:—4ﬂGp-?Zzn+1(?) (an§+gn(n+3)T+--- . (D)




Helmertin kondensaation kokonaispotentiaali D.4

Nyt myés n = 1 antaa nollatuloksen, kuten odotettavissa oli, kun
painovoima-anomaliat eivét sisdlld mitddn asteluvun 1 osuuksia.

Tulos D.7 on likiméaardinen eiké tarkoitettu kdytettaviksi topografian
pinnan l&histolld. Huomaa vahva riippuvuus asteluvusta n: Helmertin
kondensaation painovoimavaikutusta hallitsevat lyhyet aallonpituudet
eli topografian paikalliset piirteet.

D.4.2 Helmertin kondensaation sisdinen potentiaali

Tama suure lasketaan geoidin tasolla. Se edustaa Helmertin kondensaa-
tion epdsuoraa vaikutusta eli massojen siirron aiheuttamaa geoidipinnan
siirtymistd avaruudessa. Vahennetdan yhtalot D.5 ja D.4 toisistaan:

SViimert (0, A, R) = Vik 1, A, R) — Viis (b, \,R) =

= GpR? jj Z <H +H—2+ ;];j) P..(cosV) do’ —
ad 2 3
—GpRZJLZ (%—%(n—U%Jr%(n—Hn%—m) P, (cos) do
n=0

:GPILZ (%(TH—UHZ—%(TI—Z) (n+1)H?3+---> P.(cos) do
n=0

Kayttamalld H:n potenssien asteosuuksien méddritelmaa D.6 saadaan

sis n+1 H 1 Hi
5 Viielmert = 471Gp ZZTL—{—]( —g(n—Z)T+...>)

josta saa Brunsin yhtdlon 5.2 avulla Helmertin kondensaation epdsuoran
vaikutuksen:

SVSIS

Helmert

47TGp n+1 1 1 H?L
ZZn+1( g(TL—Z)?+---). (D.8)

ON Helmert —
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Termi n = 0 antaa vakiomaaston H = H = H, epdsuoran vaikutuksen:
vain ensimmadisen suluissa olevan termin kéytt6 antaa

ZTerH

ON Helmert, vakio ~

jota ei voida jattda huomiotta.

D.s Dipolimenetelma

Jarkevyyskokeena voidaan kuvata Helmertin kondensaation vaikutus
ensimmadisessd approksimaatiossa dipolitiheyskerroskenttindi p. Topogra-
finen massa, pintatiheys k = pH, siirtyy alaspdin keskimdarin matkan
%H verran. Efekti olisi sama, jos keskimerenpinta® olisi kaksinkertaisen
massatiheyskerroksen

w=1pH? (D.9)

peitossa. Tamén kerroksen potentiaali on palloapproksimaatiossa (yh-

talo 1.18):
V= [ (s~ 6w [ ug (e

Selkedmmin kirjoitettuna pallogeometriassa:

_ g2 o (1
Ve =GR [ oz <ePQ)d“Q'

Kéaytetaan kehitelmdd Legendren polynomeihin, yhtdlo 8.7:

* n+1
ﬁ = %Z (:.—S) : Pr(cosrq),

n=0

differentioidaan rq:n suhteen ja sijoitetaan:

Vp = GR? ff uQ Z ( )nﬂ Pn(cospq) dog.

3ltse asiassa parempi paikka tdhén korvaavaan kerrokseen olisi taso +H.



Dipolimenetelmi D.5

Sijoittamalla tdhan kaksoistiheyskerroksen yhtdlo D.g ug:n tilalle ja
ottamalla limiitti rp, T | R saadaan

] o
V= an ;“f _ (2nGpH) HPy (cos ) do’ =

— %r i n fL AgHP,, (cos) do’
n=0

Olemme jdttdaneet selventdvit P-ja Q-merkinnét pois tarpeettomina.
Symboli Ag ilmaisee sellaisen Bouguer-laatan vetovoimaa, jonka
paksuus on H ja ainetiheys p.
Kehitetddn suure (AgH) pallofunktiokehitelméaksi. Asteosuusyhtdlon
3.9 mukaan

(AgH) 2n+ 1 ff (AgH) P, (cos V) d

jolloin saadaan
_ §°° n ~ 1
V= a m (ABH)n ~ 3 (ABH) )

ainakin korkeampien asteluvun n arvojen osalta, eli alueellisesti vaikkei
globaalisti.

Ndin saadaan jédlleen arvion Helmertin kondensaation epdsuorasta
vaikutuksesta. Episuora vaikutus on kondensaation aiheuttama geoidi-
pinnan muutos, joka geoidin laskennassa kondensaatiomenetelman
avulla on otettava huomioon kaanteiselld etumerkilld. Tosin sanoen,
jos menetelmd ymmarretddn poistamis-entistimis- eli remove-restore-
menetelméksi, epdsuora vaikutus edustaa sen entistdmisvaihetta:

V _1AgH _ 711G pH2
Y T2y Y
Vertailun vuoksi tarkempi kehitelmd D.8 antaa suurempien n-arvojen

ON Helmert —

approksimaatiossa

47'[G
dON Helmert ~

NI—‘

N

miké on olennaisesti sama t ulos.






Laplacen yhtalo
pallokoordinaateissa

O
%
oL

E.1 Johtaminen

Tarkastellaan pientd tilavuusalkiota, jonka mitat koordinaattisuunnissa
ovat Ap, AA ja Ar. Tutkitaan vektorikentin a &' YV vuon erotusta

vastakkaisten tahkojen kautta sisddn tulevan ja ulos menevin vililla.

Toimitaan samanlaisella tavalla kuin alaosiossa 1.12.4 kdyttamalla
kappaletta eli tilavuusalkiota, jonka pinnat on suunnattu koordinaat-
tilinjojen mukaisesti. Annetaan alkion koon menné nollaan limiitissa
kayttden hyviksi Gaussin divergenssilausetta 1.19. Suure diva = AV
on lihdetiheysarvo avaruudessa, ja sen keskiarvon kerrottuna alkion
tilavuuden kanssa on oltava sama kuin kokonaisvuo alkion pintojen
kautta.

Maéritelldan kappaleen kohdalla paikallinen ortonormaali kanta
{e1, ez, €3}, tyyppi “north-east-up”. Vektori e, osoittaa paikalliseen
pohjoissuuntaan, vektori e, itdsuuntaan ja vektori e3 “ylospdin” eli
sdteittdissuuntaan. Voidaan kirjoittaa

a=qaqe;+ae; +azes.

Osa vuon f erotuksesta vastakkaisten tahkojen vililld aiheutuu vektorin
a normaalikomponentin muutoksesta tahkojen vililld. Osa on tahkojen

~ 445 —
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Kuva E.1. Gaussin divergenssilause sovellettuna koordinaattilinjojen mukai-
2] seen tilavuusalkioon.

pinta-alojen w erotuksen aiheuttamaa:

I II

A A

fr—f za)(a+—a_5+a(w+—w_f.

Katso kuva E.1.

o Leveysasteen ¢ suuntainen, ”eteldi—pohjoinen”:

W, = 1cos G AT AN, wy =T1cos(d + Ad) Ar AA,

=M BI&



Johtaminen E1

erotus
Wy — Wy & —rsind Ad - At AA.

Kerro arvolla

oV 10V
) = 37—~ =

o(rp) T

ja jaa alkion tilavuudella 2 cos ¢ Ar A AA, jolloin saadaan

ny, _ tan¢ oV
Ay =2

Tamaén lisdksi on tietysti ykkdsosuus

al —a;
AV = (Var-en) = 0,
jossa
.~ Tav ] _1fav]"
al —a; = |x——| == |ar
to o(rd)]_ T [od] "’
tuloksena

[%Vt 192
Ap T rIog?

o Pituusasteen A suuntainen, “ldnsi-itd”: pinta-ala w) = r Ar A ei

iy 101
AV =757

muutu pyordhdyssymmetrian takia:
ANV = 0.
On vain

+ _—
a, —a,

T\ _ o\
AV =(Va;-e) = rcosd - AN

jossa

+

2 7% = [a(Arcosd)

ov. 17 1 [ ﬂ/} *
)| rcosd LOA]_"
Sijoitus antaa

+
S N T 2 N T
T rcosd Tcosp AN T t2cosZd OAZC

ALV
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o Séteittdisessd suunnassa vastakkaisten tahkojen eli “sisdisen” ja
“ulkoisen” tahkon pinta-alat ovat

wo =12cosPAGAN,  w! = (r+ Ar)* cos ¢ Ad AA,
ja erotus on
w! —w, ~2rAr-cos b Ad AA.
Tama kerrotaan arvolla
%

a3 = x—-
or
ja jaetaan alkion tilavuudella 12 cos ¢ Ar Adp AN antaen Laplace-
operaattorin kakkososuudeksi
iy _ 20V
AV =550
Taman lisdksi on ykkososuus

v - ivr 2
v _ o oa-a &V ety
ArV = <VC13 63> = Ar = Ar ~ 2

Kaikki tdiméa antaa lopputulokseksi

AV = ALV + AV + ALV + ATV + ALV =
_ %V 1. 0%V, 109*V 20V _tanddV

02 120082 ¢ ON? + Tror (E1)

2092 T Toar 12 3’

miké vastaa yhtdlod 2.9.

E.2 Ratkaiseminen

E.2.1 Sateittdisen riippuvuuden erottaminen

Yritetddn muuttujien erottamista seuraavasti:
V((D,)\,T) = R(T) Y(d)a }\)

Sijoitus yhtdloon E.1 ja kertominen lausekkeella 12 /RY antaa

1 (@R HORY 1/ 1 2%y 2y oy
R(r ar2+2rar>_ Y(coszq>a>\2+a¢2 tandgg ) -




Ratkaiseminen E.2

Tamén on taas padettava kaikille arvoille 1 ja ¢, ja ndin ollen molemmat
lausekkeet voivat vain olla yhtd suuria kuin vakio, p. Tdma antaa kaksi
yhtaloa:

0°R OR
(TZW + ZTﬁ) — pR = O,

1Y Y
cos? ¢ OAZ 0?2

Ensimmadiselle yhtalolle kokeillaan potenssilakia,

tan d)%) +pY =0.

joka antaa
qq—1)r9+2qri—pri=0 = (q(q+1)—p)r?=0
ratkaisulla

p=9q(q+1).

Toisen yhtdlon ratkaiseminen funktiolle Y (¢, A),

1Y oY
cos?2 ¢ OAZ 02

on hankalampaa. q:n on oltava kokonaisluku. Kun n € Ny, 16ydetdan,

tand)%) +q(q+1)Y=0, (Ba2)

ettd on ei-negatiivisia ratkaisuja q = n ja negatiivisia ratkaisuja q =

—(m+1),jossan=0,1,2,.... Taman kanssa koko erikoisratkaisujen
joukko on
i n u YTl A
Vrsms(d)>}\>r) =T Yn(d))x)a vnlk(d)>}\>r) = T‘(TLLE")])) ne NO)

yhtdlot 2.10.

E.2.2 Pintapallofunktioiden ratkaisu

Molemmat ratkaisut q, sekd ei-negatiivinen ettd negatiivinen, antavat

sijoitettuna yhtdloon E.2 saman n-arvon yhtalon:

1Y oY
cos?2 ¢ OAZ 02

tancb%) +nn+1)Y=0.
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Yritetddn muuttujien erottamista:

Y(d,A) =F(d) L(A).

Sijoitus ja kertominen lausekkeella cos® ¢ / FL antaa

10%L

cos? ¢ [ O3F 19°L
LoAZ"

= ¥ W—tand)g—;—i—n(n#—])F) =

F

Molempien puolten on taas oltava sama vakio, jonka oletetaan olevan
positiivinen ja jota kutsutaan nimelld m?:

o%F

2 2
W—tand)aa—;—i—(n(n—kﬂ— m )F:O) a_L+m2L:0.

cos? ¢ OA2

Ensimmadinen yhtdlo tunnetaan Legendren yhtdlond. Sen ratkaisut ovat
Legendren funktiot P, (sin ¢), jossa kokonaisluku m =0, 1, ..., n.
Toinen on klassinen harmoninen virihteliji, jonka ratkaisut ovat’

L, 1(A) = cosmA, Lim,2(A) =sinmA.

Naéin l6ytyvit pintapallofunktiot lineaariyhdistelmina

Yn(d,A) = Z Pam(sin®) (@nm cos MA + by sSinmA) .

m=0

Yleinen ratkaisu saadaan nyt seuraavasti:

VS (A, 1) = Z ™ Z Pom(sin®) (anm cosmA + b, sinmA)

n=0 m=0
Vik(p,A 1) = Z rn1+1 Z Pom(sin®) (apm cos mA + b, sinmA) .
n=0 m=0

Tadssd anm ja bnm ovat pallofunktiokertoimia, jotka méaarittelevit eri-
koisratkaisujen lineaariyhdistelmédn. Maan ulkoisen gravitaatiokentdn
esittdmiseksi kelpaa fysikaalisesti vain toinen ratkaisu, koska se menee
nollaan ddrettdémyydessa r — oo.

'Tama selittdd my06s, miksi vakion m on oltava kokonaisluku: pituusaste A on jaksolli-
nen periodilla 2.
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epdsuora vaikutus, 441
dipolimenetelmd, 443
vakiomaasto, 442
kokonaispotentiaali, 439
kondensaatiokerroksen potentiaali,
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kuva, 141
massan sdilyminen, 141
painovoimavaikutus, 441
topografian potentiaali, 435



HAxEMISTO
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héiridpotentiaalin, 234

interpolointi, 234
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ikkunointifunktio (Fourier), 243
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kaytto, 122
laskenta, 122
ilmageoidi, 174
ilmagravimetri, 303
ilmagravimetria
kuvaus, 315
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GNSS, 315
gravimetrinen kartoitus, 247
homogeenisuus, 317
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lentokoneen liikkeet, 315
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painovoima, 315
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International Service for the Geoid (ISG),
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invariantti, 398, 423
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isoakselin puolikas, radan, 358
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isostaattinen geoidi, 152

miksi kiinnostaa, 153
isostaattinen hypoteesi, 152
isostaattinen kompensaatio, 145

mddritelmd, 142

prosenttimddrd, 153
Isostaattinen laitos, 396
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kuvaus, 153

epdsuora vaikutus, 152, 156, 210
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kuva, 155
tavoitteet, 150
isostasia
kuva, 143
mannerjdatikot, 148
nykykasitys, 148, 149
paleotutkimus, 148
isostasiahypoteesi, 142
isotrooppinen prosessi, 266
isotrooppinen tiheysjakauma, 9
isotropia ja spektraaliesitys, 199
isotropiaolettamus, 260
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itseadjungoitu differentiaaliyhtlo, 424
itseadjungoitu operaattori
mddritelmd, 421
symmetrinen matriisi, 422
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ilmagravimetria, 317
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napakoordinaatit, 410
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pallokoordinaatit (), ), 67
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jatkuvuusyhtéld, 412
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jadtikoiden vetdytyminen, 148

K
Kaivopuisto (Helsinki), paakiintopiste,
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Kansainvélinen geodeettinen assosiaatio
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kappale, ulkoinen potentiaali, 35
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karttaprojektiokoordinaatit (kuva), 230
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kenttd, kasite, 41
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kenttayhtalot
gravitaation, 1, 16
sdhkomagnetismin, 16, 17
Kepler, Johannes, 357
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kuva, 89
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kenttd darettomyydelld, 12
kokonaismassa, 13
potentiaali, 11
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pystysuuntainen siirto, 47
séteittdinen siirto, 74
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komponentit, vektorin, 402
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kuva, 259
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kvasigeoidi
kiisite, 121, 173
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Koopenhamina (Tanska), geoidimadaritys,
395

L
laattatektoniikka, 149
LaCoste, Lucien, 301
LAGEOS (satelliitti), 358
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maéadritys, 330
merivirtaus
inversiotehtava, 372
poikittaiskallistus, 332
vaihtelu, 333
merkitsevd aallonkorkeus (SWH), 347
mesomittakaavan pyorre, 323, 333
metallivasymys, 302
metallurgia, 302
Metsdhovin tutkimusasema, 312
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(kuva), 115
painovoiman pystygradientti, 102
anomaalinen

HAkEMISTO
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