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Esipuhe

Tämän kirjan tavoitteena on esittää yleiskuva Maan painovoimaken-
tän1 tutkimuksen nykytilasta, mukaan lukien ne geofysiikan osat, jotka 1

liittyvät aiheeseen läheisesti. Yksi niistä on geodynamiikka eli muut-
tuvan Maan tutkimus. Kirjan taustalla on yli kaksi vuosikymmentä
kestänyt opetustyöni kahdessa helsinkiläisessä yliopistossa: Teknillisel-
lä korkeakoululla, joka on nykyisin osa Aalto-yliopistoa, ja Helsingin
yliopistolla. Kirja edustaa jokseenkin pohjoismaista perspektiiviä varsin
globaaliin aiheeseen. Esitystapaan vaikuttaa myös tekĳän oma tutki-
mus gravimetrisen geoidimäärityksen alalla. Vaikka aiheesta löytyy jo
erinomaisia oppikirjoja, toivon, että tämä teos löytää oman innokkaan
lukĳakuntansa.

Helsingissä 9. joulukuuta 2020

Martin Vermeer

1Kurssin alkuperäinen nimi Helsingin yliopistossa oli ”Maan painovoimakenttä”.
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^ Gravitaatioteorian perusteita11
^ 1.1 Yleistä

Tässä luvussa esitetään Newtonin gravitaatioteorian perusteet. Intui-
tiivisesti gravitaatioteoria on helpointa ymmärtää ”kaukovaikutuksen”
(engl. action at a distance, lat. actio ad distans) ilmiönä, jossa kahden mas-
san välinen voima on verrannollinen massojen suuruuteen ja kääntäen
verrannollinen massojen välisen etäisyyden neliöön. Tämä on Newtonin
yleisen gravitaatiolain kaikille tuttu ilmaisumuoto.

Olemassa on myös vaihtoehtoinen mutta samanarvoinen esitystapa,
kenttäteoria, joka kuvailee gravitaatiota avaruuden kautta etenevänä
ilmiönä, kenttänä. Etenemistä ilmaisevat kenttäyhtälöt. Kenttäteorian
lähestymistapa ei ole yhtä intuitiivinen, mutta se on tehokas teoreettinen
apuväline1. 1

Tässä luvussa tutustutaan kenttäteoriassa keskeiseen gravitaatiopo-
tentiaalin käsitteeseen. Käymme läpi myös yksinkertaisen ja kaksinker-
taisen massatiheyskerroksen aiheuttamat, teoreettisesti mielenkiintoiset

1Asialla on myös filosofinen puoli. Monelle, esimerkiksi Leibnizille, idea voimasta,
joka hyppää kappaleesta toiseen tyhjän avaruuden kautta, oli mahdoton ajatus. Monet
yrittivät selittää gravitaatiota — ja myös sähkömagnetismia ym. — ”maailmaneetterin”
avulla. Vasta suhteellisuusteorian myötä levisi käsitys, että fysikaalisen teorian ei
tarvitsekaan tyydyttää ennakkoluuloamme siitä, mikä on niin sanotusti järkevä selitys
— niin kauan kuin se vain esittää fysikaaliset ilmiöt korrektisti.

– 1 –



12 Gravitaatioteorian perusteita

Kuva 1.1. Gravitaatio on universaalinen. Hubblen avaruusteleskoopin ku-
vaama gravitaatiolinssi, galaksĳoukko Abell 1689 etäisyydellä 2,2
miljardia valovuotta. Benitez ym. (2003).
Kiitokset: NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew Uni-
versity), H. Ford (JHU), M. Clampin (STScI), G. Hartig (STScI), G.
Illingworth (UCO / Lick Observatory), ACS Science Team ja ESA.^

potentiaalikentät. Niiden sovelluksista, sekä teoriassa että käytännös-
sä, mainittakoon isostasia ja Helmertin kondensaatio, joita molempia
tarkastellaan myöhemmissä luvuissa.
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Kahden massan välinen gravitaatio 1.2 3
Tutustumme keskeisiin integraalilauseisiin, kuten Gaussin ja Greenin

lauseet, joiden avulla voidaan päätellä koko potentiaalikenttä ava-
ruudessa vain tietyllä pinnalla annettujen kenttäarvojen perusteella.
Muut vastaavat esimerkit ovat Chaslesin lause ja Dirichletin ongelman
ratkaisu.

Luvuissa 2 ja 3 näitä potentiaaliteorian perusteita sovelletaan Maan
gravitaatiokentän spektraaliesityksen, pallofunktiokehitelmän, johtami-
seen.

Aluksi johdamme suurehkon määrän matemaattisia yhtälöitä, kuten
tunnettuja integraaliyhtälöitä. Kyse on valitettavasti välttämättömästä
pohjatyöstä. Yhtälöt eivät kuitenkaan ole itsetarkoitus, eikä niitä kan-
nata opetella ulkoa. Yritä mieluummin ymmärtää niiden logiikka ja
miten näihin tuloksiin on historiallisesti päädytty, sekä hankkia itsellesi
”sormituntumaa” teorian luonteesta.

^ 1.2 Kahden massan välinen gravitaatio

Maan painovoimakentän tutkimus alkaa sopivasti Isaac Newtonin2 2

yleisestä gravitaation laista:

F = G
m1m2
ℓ2

. (1.1)

F on kappaleiden 1 ja 2 välinen vetovoima,m1 jam2 ovat kappaleiden
massat ja ℓ on niiden välinen etäisyys. Massat oletetaan pistemäisiksi.
Vakio G, universaalinen gravitaatiovakio, on arvoltaan

G = 6,674 · 10−11 m3/kg s2.

G:n arvon määritti ensimmäistä kertaa Henry Cavendish3 käyttämällä 3

2Sir Isaac Newton PRS (1642–1727) oli englantilainen yleisnero, joka matematisoi
tähtitieteen ja suuren osan geofysiikkaa pääteoksessaan Philosophiæ Naturalis Principia
Mathematica eli ”Fysiikan matemaattiset perusteet”.
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14 Gravitaatioteorian perusteita

herkkää torsiovaakaa eli kiertoheiluria (Cavendish, 1798).
Olkoon m pieni kappale eli koemassa, esimerkiksi satelliitti, ja M

suuri massa, kuten planeetta tai Aurinko. Silloin m1 = M voidaan
kutsua vetäväksi massaksi jam2 = m vedetyksi massaksi, ja saadaan

F = G
mM
ℓ2
.

Newtonin liikelain mukaan

F = ma,

jossa a on kappaleenm gravitaatiokiihtyvyys. Tästä seuraa

a = G
M
ℓ2
.

Tästä yhtälöstä suure m = m2 on kadonnut. Kyseessä on Galilein
kuuluisa havainto, jonka mukaan kaikki kappaleet putoavat yhtä nopeas-
ti4 niiden massasta riippumatta. Tämä tunnetaan myös Einsteinin54

5 ekvivalenssiperiaatteena.
Sekä voima F että kiihtyvyys a ovat samansuuntaisia kappaleita yh-

distävän viivan kanssa. Siksi kirjoitetaan yhtälö 1.1 usein vektorimuotoon,
jolla on suurempi ilmaisukyky:

aa = −GM
rr− RR
ℓ3

, (1.2)

jossa vedetyn ja vetävän massan kolmiulotteiset paikkavektorit määri-
tellään seuraavasti suorakulmaisissa koordinaateissa6:6

3Henry Cavendish FRS (1731–1810) oli brittiläinen luonnontieteilĳä rikkaasta aatelis-
suvusta. Hän teki uraauurtavaa työtä myös kemiassa. Hän oli erittäin ujo, ja kuuluisa
neurologi Oliver Sacks retrodiagnosoi hänelle Aspergerin oireyhtymän (Sacks, 2001).
4Ainakin tyhjiössä. Apollo-astronautit esittivät vaikuttavasti, miten höyhen ja vasara
putoavat Kuun pinnalla yhtä nopeasti! YouTube, Hammer vs. Feather.
5Albert Einstein (1879–1955) oli saksanjuutalainen teoreettinen fyysikko. Hän loi
erityisen ja yleisen suhteellisuusteorian, sovelsi viimeksi mainittua kosmologiaan ja
teki uraauurtavaa työtä kvanttiteorian parissa, teoria joka hän ei kuitenkaan koskaan
täysin hyväksynyt.
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Pistemäisen kappaleen potentiaali 1.3 5
rr = xii+ yjj+ zkk, RR = Xii+ Yjj+ Zkk,

jossa yksikkövektorien kolmikko
{︁
ii, jj,kk

}︁
on euklidisen avaruuden

ortonormaali kanta7. 7

ℓ = ∥r− Rr− R∥ =
√︂

(x− X)
2
+ (y− Y)

2
+ (z− Z)

2 (1.3)

on massojen välinen etäisyys Pythagoraan lauseen mukaisesti laskettu-
na.

Vektoriyhtälössä 1.2 oleva miinusmerkki kertoo, että voiman suunta
on päinvastainen kuin vektorin rr− RR suunta. Tämä vektori on vedetyn
massanm paikka vetävän massanM paikasta laskettuna. Toisin sanoen
tämä kertoo, että kyseessä on vetovoima eikä työntövoima.

^ 1.3 Pistemäisen kappaleen potentiaali

Gravitaatiokenttä on erikoinen kenttä: mikäli se on stationaarinen eikä
siis ajasta riippuvainen, se on konservatiivinen. Tämä merkitsee, että
kappale, joka liikkuu kentän sisällä suljettua reittiä pitkin, ei ole matkan
suoritettuaan menettänyt eikä voittanut energiaa. Tämän ansiosta voi
kiinnittää jokaisen kentän pisteelle yksiselitteisesti ”tarran”, johon voi
merkitä yksikkö- eli koemassan energiamäärän, jonka se on voittanut tai
menettänyt matkustaessaan sovitusta lähtöpisteestä kyseiseen pisteeseen.
Tarraan kirjoitettua arvoa kutsutaan potentiaaliksi.

Huomaa, että lähtöpisteen valinta on mielivaltainen. Tähän merkittä-
vään asiaan palataan myöhemmin.

Pistemäisen kappaleenM näin määritelty potentiaalifunktio on

V =
GM
ℓ
, ℓ = ∥rr− RR∥ . (1.4)

6Vektorin kirjoitustapana käytetään joko muotoa −→v (nuolta kirjaimen yläpuolella) tai
vv-kirjainta (lihavoituna). Tässä käytetään mahdollisuuksien mukaan lihavointia.
7Tämä merkitsee, että ∥ii∥ = ∥jj∥ = ∥kk∥ = 1 ja

⟨︁
ii · jj
⟩︁
=
⟨︁
ii · kk

⟩︁
=
⟨︁
jj · kk

⟩︁
= 0, jossa

normin määritelmä on ∥aa∥ def
=
√︂⟨︁

aa · aa
⟩︁
, ja

⟨︁
aa · bb

⟩︁
on avaruuden vektorien aa ja bb

skalaaritulo.
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16 Gravitaatioteorian perusteita

Vakiolla GM on maapallon tapauksessa (GRS80-järjestelmän mukainen,
konventionaalinen) arvo

GM⊕ = 3,986 005 · 1014 m3/s2.

Tämän hetken paras mittauksiin perustuva arvo on hieman tarkempi:

GM⊕ = 3,986 004 418 (8) · 1014 m3/s2.

Suluissa oleva luku (8) on mittausarvon epävarmuus viimeisen annetun
desimaalin yksiköissä. Suhteellinen epävarmuus on siis 2 : 109.

^ 1.4 Pallon muotoisen kuoren potentiaali

Voimme kirjoittaa yhtälön 1.4 perusteella laajan kappaleenM potenti-
aalin seuraavaan muotoon:

V (rr) = G
w

M

dm(RR)
ℓ

= G
w

M

dm(RR)

∥rr− RR∥ . (1.5)

Tämä on integraali kappaleen massa-alkioiden dm yli, jossa jokainen
massa-alkio sĳaitsee omalla paikallaan RR. Potentiaali V lasketaan pai-
kalla rr ja etäisyys ℓ = ∥rr− RR∥.

Johdamme nyt ohuen pallon muotoisen kuoren potentiaalin yhtälön,
katso kuva 1.2, jossa olemme laittaneet pallon keskipiste origoksi O.

Koska kapean rinkulan, leveys b · dθ, ympärysmitta on 2πb sin θ, on
sen pinta-ala

(2πb sin θ) (b · dθ) .

Olkoon kuoren paksuus p (pieni) ja sen ainetiheys ρ. Saamme rinkulan
kokonaismassaksi

2πpρb2 sin θdθ.

Koska rinkulan jokainen piste on samalla etäisyydellä ℓ pisteestä P,
voimme kirjoittaa rinkulan potentiaaliksi pisteessä P:

VP =
2πGpρb2 sin θdθ

ℓ
.
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Pallon muotoisen kuoren potentiaali 1.4 7
bdθ

p b

b

r
P

ℓ

θ
O

Kuva 1.2. Pallon ohut kuori koostuu renkaista.^

Kosinisäännön avulla,

ℓ2 = r2 + b2 − 2rb cos θ, (1.6)

saadaan yhtälön 1.5 avulla koko kuoren potentiaaliksi

VP = 2πGρpb2
w sin θdθ√

r2 + b2 − 2rb cos θ
.

Tämän integraalin laskemiseksi muutetaan integrointimuuttuja θ:sta
ℓ:ksi. Differentioimalla yhtälö 1.6 saadaan

ℓ dℓ = rb sin θdθ,

ja muistamalla, että ℓ =
√
r2 + b2 − 2rb cos θ, saadaan

VP = 2πGρpb2
w ℓ2
ℓ1

dℓ
rb
.

Siinä tapauksessa, että piste P on kuoren ulkopuolella, ovat muuttujan
ℓ integrointirajat ℓ1 = r − b ja ℓ2 = r + b, ja pisteen P potentiaaliksi
saadaan

VP = 2πGρpb2
[︂
ℓ
rb

]︂ℓ=r+b
ℓ=r−b

=
4πGρpb2

r .
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18 Gravitaatioteorian perusteita

Koska koko kuoren massa on Mb = 4πb2ρp, seuraa, että kuoren
potentiaali on sama kuin sen keskipisteessäO olevan samansuuruisen massan
potentiaali:

VP =
GMb

r ,

jossa r on laskentapisteen P etäisyys pallon keskipisteestä O. Nähdään,
että tämä on identtinen yhtälön 1.4 kanssa.

Pallon kuoren aiheuttama vetovoima, tarkemmin kiihtyvyys, on88

aaP = ∇V |P = −4πGρpb2
rrP − rrO
r3

= −GMb
rrP − rrO
r3

,

jossa r = ∥rrP − rrO∥ . Tämä tulos on identtinen samanmassaisen, pis-
teessä O sĳaitsevan, pistemassan aiheuttaman kiihtyvyyden kanssa,
yhtälö 1.2.

Siinä tapauksessa, että piste P on kuoren sisäpuolella, ℓ1 = b − r ja
ℓ2 = b+ r, ja yllä oleva integraali muuttuu seuraavaksi:

VP = 2πGρpb2
[︂
ℓ
rb

]︂ℓ=b+r
ℓ=b−r

= 4πGρpb.

Kuten nähdään, tämä on vakio eikä riipu pisteen P paikasta. Siksi
∇VP = 0 ja vetovoima potentiaalin gradienttina häviää.

Lopputulos on, että pallon muotoisen kuoren vetovoiman suuruus
on, kuoren ulkopuolella,

a = ∥aa∥ = GM
r2
,

jossa M on kuoren kokonaismassa ja r = ∥rrP − rrO∥ havaintopisteen
etäisyys kuoren keskipisteestä. Vetovoima häviää kuoren sisällä.

Kuvassa 1.3 on piirretty potentiaalin ja vetovoiman — tarkemmin
kiihtyvyyden, joka on vetovoima per massayksikkö — käyrät. Jos
kappale koostuu monesta sisäkkäisestä pallon kuoresta, kuten melko
tarkasti maapallo ja useimmat taivaankappaleet, osallistuvat kappaleen

8Tässä käytetään∇ (nabla) -operaattoria, josta lisää osiossa 1.5.
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Vetovoiman laskeminen potentiaalista 1.5 9

0

0

→ rb

4πGρpb

Kiihtyvyys

4πGρp
b2

r2

4πGρpb
b

r
Potentiaali

Kuva 1.3. Potentiaalin ja vetovoiman riippuvuus etäisyydestä r pallokuoren
keskipisteestä.^

sisäisen vetovoiman muodostukseen vain ne massakerrokset, jotka ovat
havaintopisteen ”sisäpuolella”, siis lähempänä keskipistettä. Vetovoima
on sama kuin silloin, jos kerrosten koko massa olisi keskitetty kappaleen
keskipisteeseen. Tapausta, jossa massatiheysjakauma kappaleen sisällä
riippuu ainoastaan etäisyydestä sen keskipisteestä eikä leveys- tai
pituusasteesta, kutsutaan isotrooppiseksi tiheysjakaumaksi.

^ 1.5 Vetovoiman laskeminen potentiaalista

Kuten yllä argumentoitiin, on potentiaali V polkuintegraali. Kääntäen
voidaan potentiaalista laskea gravitaation kiihtyvyysvektorin kompo-
nentit differentioimalla V(x, y, z) paikan suhteen eli soveltamalla gradientti-
operaattoria, joka on vektorioperaattori:

aa = ∇V = gradV =
∂V
∂x

ii+
∂V
∂y

jj+
∂V
∂z

kk. (1.7)

Tässä symboli∇ (nabla) on usein käytetty osittaisdifferentiaalioperaattori

∇ = ii
∂
∂x

+ jj
∂
∂y

+ kk
∂
∂z
.
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110 Gravitaatioteorian perusteita

Kuten ennen,
{︁
ii, jj,kk

}︁
on euklidisen avaruuden keskenään kohtisuorien

yksikkövektorien ortonormaali kanta. Vektorit ovat samansuuntaisia
(x, y, z)-akseleiden kanssa.

Kokeillaan tätä differentiointia massapisteen M potentiaalikentän
tapauksessa. Sĳoita yllä olevat potentiaalin V ja etäisyyden ℓ yhtälöt 1.3
ja 1.49 :9

∂V
∂x

=
∂V
∂ℓ
∂ℓ
∂x

= GM ·− 1
ℓ2
· x− X

ℓ
= −GM

x− X
ℓ3

.

Vastaavasti lasketaan y- ja z-komponentit:

∂V
∂y

= −GM
y− Y
ℓ3

,
∂V
∂z

= −GM
z− Z
ℓ3

.

Nämä ovat gravitaation kiihtyvyys- eli vetovoimavektorin komponen-
tit, kun kentän lähde on yksi massapiste M. Tässä konkreettisessa
tapauksessa yllä annettu vektoriyhtälö 1.7 siis pätee:

aa = gradV = ∇V.

Huomautus Fysikaalisessa geodesiassa — toisin kuin fysiikassa — po-
tentiaali lasketaan aina positiiviseksi, jos vetävä massa M on
positiivinen, kuten tiettävästi aina on. Kuitenkin kappaleenm po-
tentiaalienergia massanM kentässä V on negatiivinen! Tarkemmin
esitettynä kappaleenm potentiaalienergia on

Epot = −Vm.

9Yhtälöstä

ℓ =

√︂
(x− X)2 + (y− Y)2 + (z− Z)2 =

(︂
(x− X)2 + (y− Y)2 + (z− Z)2

)︂1/2
seuraa ketjusäännön avulla

∂ℓ

∂x
=
∂
(︂
(x− X)2 + (y− Y)2 + (z− Z)2

)︂1/2
∂
(︂
(x− X)2 + (y− Y)2 + (z− Z)2

)︂ · ∂
(x− X)2

∂x
=

= 1
2

(︂
(x− X)2 + (y− Y)2 + (z− Z)2

)︂−1/2
· 2 (x− X) = x− X

ℓ
.
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Kiinteän kappaleen potentiaali 1.6 11
Gravitaation kiihtyvyysvektoria kutsutaan lyhyemmin gravitaatio- eli
vetovoimavektoriksi.

^ 1.6 Kiinteän kappaleen potentiaali

Seuraavaksi tutkitaan kiinteää kappaletta, jonka massa on jakautunut
avaruudessa eikä sitä siis ole keskitetty yhteen pisteeseen. Esimer-
kiksi maapallon massajakauma avaruudessa voidaan kuvata aineen
tiheysfunktiolla ρ:

ρ(x, y, z) =
dm(x, y, z)

dV(x, y, z)
,

jossa dm on massa-alkio ja dV vastaava avaruuden tilavuusalkio. ρ:n
dimensio on tiheys ja yksikkö SI-järjestelmässä kg/m3 .

Koska gravitaation kiihtyvyys 1.7 on lineaarinen lauseke potentiaa-
lissa V ja voima- tai kiihtyvyysvektorit voidaan summata lineaarisesti,
seuraa siitä, että myös kappaleen kokonaispotentiaali saadaan summaa-
malla kaikki sen osien potentiaalit yhteen. Esimerkiksi nmassapisteen
kokoelman potentiaali on

V(rr) = G

n∑︂
i=1

mi
ℓi

= G

n∑︂
i=1

mi(RRi)

∥rr− RRi∥
,

josta saadaan gravitaation kiihtyvyys yksinkertaisesti soveltamalla
gradienttilausetta 1.7.

Kiinteän kappaleen potentiaali saadaan vastaavasti korvaamalla sum-
ma integraalilla seuraavalla tavalla10: 10

V = G
y

kappale
dm
ℓ

= G
y

kappale

ρ
ℓ
dV. (1.8)

Symboli ρ integraalin sisällä merkitsee aineen tiheyttä tilavuusalkion
dV paikalla. Suure ℓ = ∥rr− RR∥ =

√︂
(x− X)

2
+ (y− Y)

2
+ (z− Z)

2 on

10Valitettavasti potentiaalille ja tilavuudelle käytetään lähes samoja symboleja V ja V.
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112 Gravitaatioteorian perusteita

potentiaalin laskentapisteen ja vetävän massa-alkion välinen etäisyys.
Selvemmin:

V(x, y, z) = G
y

kappale

ρ(X, Y, Z)√︂
(x− X)

2
+ (y− Y)

2
+ (z− Z)

2
dXdY dZ.

Kuten edellä näytettiin massapisteiden tapauksessa, on myös kiinteän
kappaleen potentiaalin V ensimmäinen derivaatta paikan suhteen eli
gradientti,

gradV = ∇V = aa, (1.9)

kappaleen vetovoiman aiheuttama kiihtyvyysvektori. Tämä pätee ylei-
sesti.

^ 1.6.1 Käyttäytyminen äärettömyydellä
Jos kappale on äärellisen kokoinen — toisin sanoen kokonaan ϵ-säteisen,
origoa ympäröivän pallon sisällä — ja sen tiheyskin on kaikkialla
rajallinen, seuraa, että

∥rr∥ →∞ =⇒ V(rr)→ 0,

koska kolmioepäyhtälön mukaan

ℓ = ∥rr− RR∥ ⩾ ∥rr∥− ∥RR∥ ⩾ ∥rr∥− ϵ

ja siis
∥rr∥ →∞ =⇒ 1

/︁
ℓ → 0.

Gravitaation kiihtyvyyden kaikille kolmelle komponentille, siis myös
vektorisuureen pituusarvolle, pätee sama:

∥rr∥ →∞ =⇒ ∥∇V∥ → 0.

Tulosta voi vielä tarkentaa: jos ∥rr∥ → ∞, on taas kolmioepäyhtälön
mukaan

ℓ = ∥rr− RR∥ ⩽ ∥rr∥+ ∥RR∥ ⩽ ∥rr∥+ ϵ,
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Esimerkki: Massaviivan potentiaali 1.7 13
ja siis

1
∥rr∥+ ϵ ⩽ 1

ℓ
⩽ 1
∥rr∥− ϵ =⇒ 1

∥rr∥
1

1+ ϵ
/︁
∥rr∥

⩽ 1
ℓ
⩽ 1
∥rr∥

1

1− ϵ
/︁
∥rr∥

.

Näemme taas notaatiolla r = ∥rr∥, että

r→∞ =⇒ 1
/︁
ℓ → 1

/︁
r .

Kun sĳoitetaan tämä integraaliin 1.8, seuraa, että suurille etäisyyksille
r→∞:

V = G
y

kappale

ρ
ℓ
dV ≈ Gr

y

kappale
ρdV =

GM
r ,

jossaM, tiheyden integraali kappaleen tilavuuden yli, on juuri sen koko-
naismassa. Tästä nähdään, että suurella etäisyydellä äärellisen kokoisen
kappaleenM kenttä on lähes identtinen sen kentän kanssa, joka aiheu-
tuu pistemassasta, jonka massa on sama kun kappaleen kokonaismassa.
Tämän tärkeän havainnon teki jo Newton. Ilmiön ansiosta voimme
aurinkokunnan taivaanmekaniikassa käsitellä Aurinkoa ja planeettoja11 11

massapisteinä, vaikka tiedetään, että ne eivät sitä ole.

^ 1.7 Esimerkki: Massaviivan potentiaali

Pystyasennossa olevalla massaviivalla, jonka lineaarinen massatiheys
on yksi, on potentiaali

V(x, y, z) = G
w H
0

1√︂
(X− x)

2
+ (Y − y)

2
+ (Z− z)

2
dZ, (1.10)

jossa (X, Y) on massaviivan paikka tasossa, (x, y, z) on potentiaalin
laskentapisteen paikka, ja massaviiva ulottuu merenpinnalta Z = 0

korkeudelle Z = H.

11Ainoa merkittävä poikkeus ovat planeettojen ja niiden kuiden väliset voimat sekä
planeetan litistyneisyyden että vuorovesi-ilmiön takia.
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114 Gravitaatioteorian perusteita

Kirjoitetaan ensin ∆x = X− x, ∆y = Y − y ja ∆z = Z− z, ja potentiaa-
lista tulee

V(∆x,∆y,∆z) = G
w H−z

−z

1√︁
∆x2 + ∆y2 + ∆z2

d(∆z).

Integraalifunktio on

ln
(︂
∆z+

√︁
∆x2 + ∆y2 + ∆z2

)︂
ja integrointirajojen sĳoitus antaa

V = G ln
H− z+

√︂
∆x2 + ∆y2 + (H− z)

2

−z+
√︁
∆x2 + ∆y2 + z2

.

Kehitetään tämä Taylorin sarjaksi muuttujassa H pisteen H = 0 ympäri:
yhtälön 1.10 ensimmäinen derivaatta on

∂V
∂H

=
G√︂

(X− x)
2
+ (Y − y)

2
+ (H− z)

2
=
G
ℓ

jossa ℓ(H) =

√︂
(X− x)

2
+ (Y − y)

2
+ (H− z)

2. Toinen derivaatta saa-
daan ketjusäännön avulla:

∂2V
∂H2

=
∂
∂H

(︂
G
ℓ

)︂
= G · ∂ℓ

−1

∂ℓ
· ∂ℓ
∂H

=

= G ·−ℓ−2 · 1
2
ℓ−1 · 2 (H− z) = −G

H− z
ℓ3

.

Kolmas derivaatta, laskettu samalla tavalla:

∂3V
∂H3

= −G
∂
∂H

(︃
H− z
ℓ3

)︃
= G

(︃
3 (H− z)

2

ℓ5
−
1
ℓ3

)︃
=

= G
3 (H− z)

2
− ℓ2

ℓ5
,

ja niin edelleen. Taylorin kehitelmä on

V =

V |H=0⏞ ⏟⏟ ⏞
0 +

∂HV |H=0⏟⏞⏞⏟
G
1
ℓ0
H+ 1

2

∂2HV|H=0⏟⏞⏞⏟
G
z

ℓ30
H2 + 1

6

∂3HV|H=0⏟ ⏞⏞ ⏟
G
3z2 − ℓ20
ℓ50

H3 + · · · , (1.11)

í � Õ! ¤.�û



Laplacen ja Poissonin yhtälöt 1.8 15
jossa ℓ0 =

√︂
(X− x)

2
+ (Y − y)

2
+ z2, siis tässä kehitelmässä käytetyt

derivaattojen arvot saadaan sĳoittamalla H = 0.

Kysymys Miten voisimme käyttää tätä tulosta kokonaisen, realistisen
maaston eli topografian gravitaatiopotentiaalin laskemiseen?

Vastaus Tässä kehitelmässä kertoimet 1
/︁
ℓ0 , 1

2
z
/︁
ℓ30 , . . . , kuten ℓ0, riip-

puvat vain koordinaattien erotuksista ∆x = X− x ja ∆y = Y − y,
massaviivan paikan (X, Y) ja laskentapaikan (x, y) välillä — ja las-
kentapaikan korkeudesta z. Jos maasto on annettuna hilan muo-
dossa, voidaan arvioida yllä oleva kehitelmä 1.11 termi kerrallaan
annetulle z-arvolle ja kaikille mahdollisille (∆x,∆y)-arvopareille.
Jos hilan koko on vaikkapa N×N, tarvitaan vain N2 laskutoimi-
tusta jokaisen kertoimen laskemiseksi. Itse Taylorin kehitelmän
evaluointi raa’alla laskentavoimalla koko maastolle, siis kaikille
sekä maaston että laskentatason hilapisteille, vaatii sen jälkeen
N2 · N2 = N4 laskutoimitusta, mutta ne ovat nyt yksinkertai-
sempia: kertoimet on jo esilaskettu. Ja raaka voima ei ole edes
paras ratkaisu: kuten tulemme näkemään, voidaan yllä oleva
konvoluutio laskea paljon nopeammin FFT:n (nopean Fourier’n
muunnoksen) avulla.
Palaamme tähän aiheeseen laajemmin maastokorjauksen yhtey-
dessä osioissa 6.3 ja 9.7.

^ 1.8 Laplacen ja Poissonin yhtälöt

Geopotentiaalin toinen derivaatta paikan suhteen eli gravitaation kiih-
tyvyysvektorin ensimmäinen paikan derivaatta eli sen divergenssi on
myös geofysikaalisesti mielenkiintoinen. Voidaan kirjoittaa:

divaa
def
= ⟨∇ · aa⟩ = ⟨∇ · (∇V)⟩ = ⟨∇ · ∇⟩V =

= ∆V =
∂2

∂x2
V +

∂2

∂y2
V +

∂2

∂z2
V, (1.12)
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jossa

∆
def
= ⟨∇ · ∇⟩ = ∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

on tunnettu symboli nimeltä Laplacen12 operaattori.12

Massapistepotentiaalin yhtälöstä 1.4 voidaan osoittaa suorittamalla
kaikki osittaisdifferentiaatiot 1.12, että

∆V = 0, (1.13)

tunnettu Laplacen yhtälö. Tämä yhtälö pätee pistemassan ulkopuolella
ja yleisemmin kaikkialla tyhjässä avaruudessa: kaikkien massojenhan
voidaan limiitissä katsoa koostuvan pistemäisistä massa-alkioista. Tai
yhtälössä 1.8 voidaan suoraan differentioida kolminkertaisen integraali-
merkin sisällä käyttäen hyväksi sitä, että integraalin ja osittaisderivaatan
vaihtaminen keskenään on sallittua, jos molemmat ovat olemassa.

Potentiaalikenttää, jolle Laplacen yhtälö 1.13 pätee, kutsutaan harmo-
niseksi kentäksi.

Siinä tapauksessa, että massatiheys ei ole kaikkialla nolla, saadaan
toisenlainen yhtälö, jossa ρ on massatiheys:

∆V = −4πGρ. (1.14)

Tätä yhtälöä kutsutaan Poissonin13 yhtälöksi.13

Yhtälöpari

gradV = aa, divaa = −4πGρ

tunnetaan gravitaatiokentän kenttäyhtälöinä. Niillä on samanlainen roo-
li kuin sähkömagnetismissa Maxwellin14 kenttäyhtälöillä. Toisin kuin14

12Pierre-Simon markiisi de Laplace (1749–1827) oli ranskalainen matematiikan ja
luonnontieteiden yleisnero. Hän on yksi niistä 72 ranskalaistiedemiehestä, insinööristä
ja matemaatikosta, joiden nimet kaiverrettiin Eiffel-torniin, Eiffel Tower, 72 names.
13Siméon Denis Poisson (1781–1840) oli ranskalainen matemaatikko, fyysikko ja
geodeetti, yksi Eiffel-tornin 72 nimestä, Eiffel Tower, 72 names.
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Mittainvarianssi 1.9 17
Maxwellin yhtälöissä, yllä olevissa ei ole aikakoordinaattia mukana.
Tästä syystä niiden avulla ei voida johtaa yhtälöä, joka kuvaa Maxwel-
lin sähkömagneettisten aaltojen vastaavien gravitaatioaaltojen kulkua
avaruudessa.

Nykyisin tiedetään, että yllä olevat ”Newtonin kenttäyhtälöt” ovat
vain likimääräisiä ja että tarkempi teoria on Einsteinin yleinen suhteelli-
suusteoria. Kuitenkin fysikaalisessa geodesiassa Newtonin gravitaatio-
teoria on yleensä riittävän tarkka, ja tulemme rajoittumaan siihen.

^ 1.9 Mittainvarianssi

Potentiaalin tärkeä ominaisuus on, että jos siihen lisätään vakio C,
mikään gravitaatioon liittyvä mitattavissa oleva suure ei muutu. Tämä
on esimerkki niin kutsutusta mittainvarianssista (engl. gauge invariance).

Gravitaatio itse saadaan differentioimalla potentiaali: toimitus hävit-
tää vakiotermin. Siksi potentiaalin määrittely on mielivaltainen: kaikki
eri C:n valinnalla saadut potentiaalikentät V ovat samanarvoisia.

Havainnoistakin saadaan vain potentiaalieroja, kuten vaaitsĳat hyvin
tietävät.

Usein valittu potentiaalin määritelmä lähtee siitä, että jos r = ∥rr∥ →∞, silloin myös V → 0, mikä on fysikaalisesti järkevä ja antaa yk-
sinkertaisia yhtälöitä. Kuitenkin maanpäällisessä työssä järkevämpi
vaihtoehto voi olla V = 0 keskimerenpinnan kohdalla — vaikka sekään
ei ole ongelmaton.

Esimerkiksi Maan massalle M⊕ fysikaalisesti järkevä potentiaalin
esitys on palloapproksimaatiossa

V =
GM⊕
r ,

14James Clerk Maxwell FRS FRSE (1831–1879) oli skotlantilainen fyysikko ja sähkö-
magnetismin kenttäyhtälöiden keksĳä. Hän löysi yhtälöiden aaltomaisen ratkaisun ja
tunnisti valon sellaiseksi sen kulkunopeuden perusteella.
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joka häviää äärettömyyteen r → ∞, kun taas geodeettisesti järkevä
esitys olisi

V =
GM⊕
r −

GM⊕
R

,

jossa R = ∥RR∥ on maapallon säde. Jälkimmäinen potentiaali on nolla,
siinä missä r = R, pallon muotoisen Maan pinnalla eli ”merenpinnalla”.
Limiitissä r→∞ potentiaalin arvo on − GM⊕

/︁
R eikä nolla.

^ 1.10 Yksinkertainen massatiheyskerros

Jos kappaleen pintaan S levitetään massan ”pinnoite” massatiheydellä

κ =
dm
dS
,

saadaan potentiaaliksi integraaliyhtälö, joka on muuten samannäköinen
kuin yhtälö 1.8, mutta pintaintegraali:

V = G
x

pinta
dm
ℓ

= G
x

pinta
κ
ℓ
dS. (1.15)

Tässä taas ℓ on etäisyys potentiaalin laskentapisteen ja integroinnissa
liikkuvan massa-alkion dm — tai pinta-alkion dS — välillä. Massa-
pintatiheyden κ dimensio on kg/m2 , siis erilainen kuin tavallisen eli
tilavuuden massatiheyden dimensio, joka on kg/m3 .

Tämä tapaus on teoreettisesti mielenkiintoinen, vaikkakin fysikaali-
sesti epärealistinen. Funktio V on näet kaikkialla jatkuva, myös pinnan S
kohdalla. Kuitenkin jo sen ensimmäiset derivaatat paikan suhteen ovat
epäjatkuvia. Tämä epäjatkuvuus ilmenee pinnan suhteen kohtisuorassa
olevassa suunnassa, normaaliderivaatassa.

Tutkitaan yksinkertaista tapausta, jossa pallo, säde R, on pinnoitettu
kerroksella, jonka pintatiheys on vakio κ. Laskemalla yllä oleva inte-
graali 1.15 voidaan todistaa — monimutkaisesti, katso osio 1.4 — että
ulkoinen potentiaali on sama, kuin jos pinnoitteen koko massa olisi
pallon keskipisteessä. Myös osiossa 1.4 tuli todistetuksi, että pallon
sisäinen potentiaali on vakio.
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Kaksinkertainen massatiheyskerros 1.11 19
Siten ulkoinen vetovoima (r > R) , jossa r on laskentapisteen etäisyys

pallon keskipisteestä, on

aulk(r) = G
M
r2

= G
κ · 4πR2
r2

= 4πGκ
(︂
R
r

)︂2
.

Sisäinen vetovoima (r < R) on

asis(r) = 0.

Tämä merkitsee, että pallon pinnalla, r = R, vetovoima on epäjatkuva:

aulk(R) − asis(R) = 4πGκ.

Tässä symmetrisessä tapauksessa nähdään, että

a = ∥aa∥ = ∂V
∂n
, (1.16)

jossa differentiointimuuttuja n edustaa normaalisuuntaa eli pintaan
S nähden kohtisuorassa oleva suunta. Jos pinta S on potentiaalin V
tasapotentiaalipinta, pätee yhtälö 1.16 yleisesti. Silloin vetovoimavektori
— tarkemmin kiihtyvyysvektori — on kohtisuorassa pintaan S nähden
ja sen suuruus on sama kuin potentiaalin normaaliderivaatta.

^ 1.11 Kaksinkertainen massatiheyskerros

Kaksinkertainen massatiheyskerros voidaan tulkita dipolitiheyskerroksek-
si. Kerroksen dipolit ovat orientoituneet pinnan normaalin suuntaan.

Jos dipoli koostuu kahdesta ”varauksesta”m ja −m paikoilla rr1 ja rr2

siten, että niiden välinen sĳaintierovektori on ∆rr = rr1 − rr2, on dipolin
momentti dd = m∆rr, vektorisuure. Katso kuva 1.4.

Olkoon dipolikerroksen pintatiheys

µ =
dD
dS
,

jossa dD on ”dipolikerrosalkio”. Tämä kerros voidaan katsoa kahden
yksinkertaisen kerroksen yhdistelmäksi. Jos on positiivinen kerros
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ℓ

κ

−κ

P nn

δ

Kuva 1.4. Kaksinkertainen massatiheyskerros.^

tiheydellä κ ja negatiivinen kerros tiheydellä −κ ja niiden välinen
etäisyys on δ, syntyy pienillä δ-arvoilla likimääräinen vastaavuus:

µ ≈ κδ. (1.17)

Edellisen osion mukaan, yhtälö 1.15, kahden yksinkertaisen massati-
heyskerroksen yhteenlaskettu potentiaali on

V = G
x

pinta
κ
(︂
1
ℓ1

−
1
ℓ2

)︂
dS.

Suureiden ℓ1, ℓ2 ja δ välillä pätee seuraava yhteys (funktion 1
/︁
ℓ Taylorin

kehitelmä):
1
ℓ1

=
1
ℓ2

+ δ · ∂
∂n

(︂
1
ℓ

)︂
+ · · · ,

jossa ∂

∂n
on suureen derivaatta pinnan normaalisuuntaan.

Sĳoittamalla yhtälöön saadaan

V ≈ G
x

pinta
κδ
∂
∂n

(︂
1
ℓ

)︂
dS = G

x

pinta
µ
∂
∂n

(︂
1
ℓ

)︂
dS. (1.18)

í � Õ! ¤.�û



Gaussin divergenssilause 1.12 21
Limiitissä, jossa δ on mielivaltaisen pieni ja κ vastaavasti suuri, tämä
yhtälö, kuten yhtälö 1.17, pätee eksaktisti.

On helppo näyttää, että yllä oleva potentiaali ei ole jatkuva. Epäjat-
kuvuus tapahtuu pinnalla S. Tutkitaan taas yksinkertaisuuden vuoksi
palloa, jonka säde on R ja jossa on kaksoiskerros vakiodipolitiheydellä
µ.

Ulkoinen potentiaali (r > R, r etäisyys pallon keskipisteestä) on

Vulk = Gµ
x

pinta
∂
∂n

(︂
1
ℓ

)︂
dS = 0,

koska potentiaali on kahden samankeskisen ja samanmassaisen pallo-
kuoren potentiaalien erotus.

Sisäinen potentiaali (r < R) on

Vsis = Gµ
x

pinta
∂
∂n

(︂
1
ℓ

)︂
dS = Gµ · 4πR2

(︂
−
1
R2

)︂
= −4πGµ,

valitsemalla pintaintegraalin evaluointi- eli laskentapisteeksi pallon
keskipiste ja käyttämällä aiemmin todettua seikkaa, että yksinkertaisen
vakiotiheän massatiheyskerroksen peittämän pallon sisällä potentiaali
on vakio.

Nyt limiitissä r→ R tulos on erilainen ulkopuoliselle ja sisäpuoliselle
potentiaalille. Ero on

Vulk(R) − Vsis(R) = 4πGµ.

^ 1.12 Gaussin divergenssilause

^ 1.12.1 Esitys
Fysiikan kuuluisa Gaussin15 divergenssilause on vektorimuodossa 15

y

V
divaadV =

x

∂V

⟨︁
aa · nn

⟩︁
dS, (1.19)

15Johann Carl Friedrich Gauss (1777–1855) oli saksalainen matemaatikko ja yleisnero.
”Princeps mathematicorum”.
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Normaali nn

Kappaleen
pintaLähteet

Kenttäviiva, kenttä aa

Kuva 1.5. Gaussin divergenssilauseen graafinen selostus. Kenttäviivan käsite
oli Michael Faraday’n oivallus. Vuo on skalaaritulo

⟨︁
aa · nn

⟩︁
.^

jossa nn on pinnan S ulkoinen normaali, nyt vektorina: vektorin pituus
oletetaan ∥nn∥ = 1. ∂V on kappaleen V koko pinta.

Tämä lause pätee kaikille differentioitaville vektorikentilleaa ja kaikille
”kunnollisille” kappaleille V, joiden pinnalla ∂V on olemassa kaikkialla
normaalisuunta nn. Toisin sanoen tämä ei ole gravitaation kiihtyvyys-
vektorin erikoisominaisuus, vaikka se pätee sillekin.

^ 1.12.2 Intuitiivisesti
Huomautettakoon, että1616

divaa = ∆V = −4πGρ

16Olettaen, että vektorikentälle aa potentiaali V on olemassa, katso osio A.4.
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Gaussin divergenssilause 1.12 23
on lähdefunktio. Se edustaa, paljonko pinnan ∂V sisäpuolella olevassa
osa-avaruudessa on gravitaatiokentän positiivisten ja negatiivisten
”lähteiden” ja ”nielujen” tiheyksiä (engl. sources and sinks).

Tilanne on analoginen nesteen virtauskuvion kanssa: positiiviset
varaukset vastaavat pisteisiin, joista lisätään nestettä virtaukseen, nega-
tiiviset varaukset17 vastaavat ”nieluihin”, joiden kautta nestettä häviää. 17

Vektori aa on tässä vertauskuvassa virtauksen nopeusvektori, joka ”läh-
teiden” ja ”nielujen” puuttuessa täyttää ehdon divaa = 0,mikä ilmaisee
ainemäärän säilymisen ja kokoonpuristumattomuuden.

Toisaalta funktiota ⟨︁
aa · nn

⟩︁
=
∂V
∂n

kutsutaan usein vuofunktioksi (engl. flux), joka kertoo, paljonko kenttää
”vuotaa ulos” nestevirtauksen tavoin pinnan ∂V sisäiseltä avaruuden
osalta.

Gaussin divergenssilause toteaa, että molemmat määrät ovat yhtä
suuret: se on tavallaan kirjanpitolause, joka vaatii, että kaiken, mikä
tuotetaan pinnan sisällä, divaa, on tultava myös ulos pinnan kautta,⟨︁
aa · nn

⟩︁
.

Kuvassa 1.5 on graafisesti selostettu, että ”lähteiden” summan kap-
paleen sisäisen avaruusosan yli,

∑︁
(+ + + · · · ), on oltava yhtä suuri

kuin ”vuon” summa
∑︁

(↑ ↑ ↑ · · · ) koko sisäistä avaruusosaa rajoittavan
reunapinnan yli.

^ 1.12.3 Gaussin divergenssilauseen potentiaaliversio
Kirjoitetaan Gaussin divergenssilause hieman eri tavalla käyttämällä
potentiaalia V gravitaatiovektorin sĳasta:

y

V
∆V dV =

x

∂V

∂V
∂n

dS, (1.20)

17Mutta gravitaation ”varaukset” eli massat ovat aina positiivisia.

í �Õ ! ¤.�û



124 Gravitaatioteorian perusteita

aa

a −
1

a+
1

a
+
2

a
−
2

∆y

∆x

a−3

∆z

a+3

Kuva 1.6. Pieni suorakulmainen laatikko.^

jossa on tehty yllä annetut sĳoitukset. Tässäkin näkyy kappaleen V

pintaa tarkoittava kirjoitustapa ∂V. Esitystavat 1.20 ja 1.19 yhdistävät
yhtälöt 1.12 ja 1.9 potentiaalin V ja gravitaatiovektorin aa välillä.

^ 1.12.4 Esimerkki 1: pieni laatikko
Tutkitaan pientä suorakulmaista laatikkoa, jonka sivut ovat ∆x, ∆y ja
∆z. Laatikko on niin pieni, että kenttä aa(x, y, z) on sen sisällä lähes
lineaarinen paikan funktio. Kirjoitetaan vektori aa komponentteihin:

aa = a1ii+ a2jj+ a3kk.

Nyt tilavuusintegraali
y

V
divaadV ≈

(︃
∂a1
∂x

+
∂a2
∂y

+
∂a3
∂z

)︃
∆x∆y∆z (1.21)

kun taas pintaintegraali
x

∂V

⟨︁
aa · nn

⟩︁
dS ≈

≈ (a+
1 − a−

1 )∆y∆z+ (a+
2 − a−

2 )∆x∆z+ (a+
3 − a−

3 )∆x∆y.
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Gaussin divergenssilause 1.12 25
Tässäa+

1 on komponentina1 arvo toisella tahkolla x-suunnassa jaa−
1 sen

arvo toisella tahkolla ja niin edelleen. Esimerkiksi a+
3 on komponentin

a3 arvo laatikon ylä- ja a−
3 alatahkossa. Laatikolla on tiettävästi kuusi

tahkoa, tahko jokaisen kolmen koordinaattisuunnan ”ylä- ja alavirrassa”.
Silloin

a+
1 − a−

1 ≈
∂a1
∂x
∆x, a+

2 − a−
2 ≈

∂a2
∂y
∆y, a+

3 − a−
3 ≈

∂a3
∂z
∆z,

ja sĳoittamalla nähdään, että
x

∂V

⟨︁
aa · nn

⟩︁
dS ≈

≈ ∂a1
∂x
∆x · ∆y∆z+ ∂a2

∂y
∆y · ∆x∆z+ ∂a3

∂z
∆z · ∆x∆y =

=

(︃
∂a1
∂x

+
∂a2
∂y

+
∂a3
∂z

)︃
∆x∆y∆z,

sama lauseke kuin 1.21. Tässä yksinkertaisessa tapauksessa Gaussin
divergenssilause siis pätee.

Ilmeisimmin yhtälö pätee myös, jos näistä ”Lego™-palikoista” raken-
nettaisiin suurempi kappale, koska eri palikoiden toisiinsa koskevat
vastaavat pinnat ovat vastakkaisesti orientoituneet ja kumoavat toisiaan
koko kappaleen pintaintegraalissa. Hieman vaikeampi on todistaa, että
yhtälö pätee myös kappaleille, joilla on vinopintoja.

^ 1.12.5 Esimerkki 2: Poissonin yhtälö pallolle
Poissonin yhtälön 1.14 mukaan

∆V = −4πGρ. (1.14)

Oletetaan pallo, säde R, jonka sisällä massitiheys ρ on vakio. Tilavuusin-
tegraali pallon yli antaa

y

V
∆V dV = −4πGρ

y

V
dV = −4πGρV = −4πGM, (1.22)

jossaM = ρV on pallon kokonaismassa.
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0

+1

−1

0

0

+1y

z

z

−1

x

y

x

GM(0, 0, 0)GM(0, 0, 0)

Kuva 1.7. Kahdeksan yksikön kuutio.^

Pallon pinnalla normaaliderivaatta on
∂V
∂n

=
∂
∂r
GM
r

⃓⃓⃓
r=R

= −
GM
R2

,

vakio, ja sen integraali pallon pinnan yli on
x

∂V

∂V
∂n

dS = −
GM
R2
· S = −

GM
R2
· 4πR2 = −4πGM. (1.23)

Tulokset 1.23 ja 1.22 ovat identtisiä, kuten Gaussin divergenssilause 1.20
edellyttää.

^ 1.12.6 Esimerkki 3: pistemassa kahdeksan yksikön kokoisessa
kuutiossa

Katso kuva 1.7. Oletetaan, että on pistemassa kuution keskipisteessä,
jonka suuruus onGM. Kuution sivutasot ovat koordinaattitasot x = ±1,
y = ±1 ja z = ±1. Silloin tilavuusintegraali on

y

V
∆V dV = −4πGM

y

V
δ(rr)dV = −4πGM,
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jossa δ(rr) on Diracin18 deltafunktio avaruudessa, jolla on ääretön piikki 18

origossa, jonka arvo on nolla muualla ja joka tuottaa arvoa 1 tilavuusin-
tegraaleissa.

Pintaintegraali on kuusi kertaa kuution yläpinnan integraali

x

yläpinta

⟨︁
aa · nn

⟩︁
dS = −GM

w +1

−1

(︄
w +1

−1

1

(x2 + y2 + 1)
3/2
dx

)︄
dy.

Integrointi koordinaatin x suhteen (suurissa suluissa oleva lauseke)
antaa

w +1

−1

1

(x2 + y2 + 1)
3/2
dx =

[︄
x

(y2 + 1)
√︁
x2 + y2 + 1

]︄+1
−1

=

=
2

(y2 + 1)
√︁
y2 + 2

.

Integrointi koordinaatin y suhteen antaa

w +1

−1

2

(y2 + 1)
√︁
y2 + 2

dy =

[︄
2 arctan y√︁

y2 + 2

]︄+1
−1

=

= 4 arctan 1√
3
= 4 · π

6
= 2

3
π.

Summaamalla kaikki kuusi tahkoa yhteen saadaan

− 6 ·GM
w +1

−1

(︄
w +1

−1

1

(x2 + y2 + 1)
3/2
dx

)︄
dy = −6 ·GM · 2

3
π =

= −4πGM,

sama tulos kuin yllä oleva tilavuusintegraali.

18Paul Adrien Maurice Dirac (1902–1984) oli englantilainen kvanttifyysikko, elek-
tronin relativistisen aaltoyhtälön löytäjä ja antiaineen teoreettinen keksĳä. Hän oli
fysiikan nobelisti 1933 yhdessä Erwin Schrödingerin kanssa. Hänen uskotaan myös
olleen autismin kirjolla (Farmelo, 2011).

í �Õ ! ¤.�û



128 Gravitaatioteorian perusteita

^ 1.13 Greenin lauseet

Käytä Gaussin divergenssilausetta vektorikenttään

FF = U∇V.

Tässä U ja V ovat kaksi eri skalaarikenttää. Saadaan
y

V
div FFdV =

y

V

⟨︁
∇ · (U∇V)

⟩︁
dV =

=
y

V
U
⟨︁
∇ · ∇

⟩︁
V dV+

y

V

⟨︁
∇U · ∇V

⟩︁
dV =

=
y

V
U∆V dV+

y

V

(︃
∂U
∂x
∂V
∂x

+
∂U
∂y
∂V
∂y

+
∂U
∂z
∂V
∂z

)︃
dV

ja
x

∂V

⟨︁
FF · nn

⟩︁
dS =

x

∂V

⟨︁
U∇V · nn

⟩︁
dS =

x

∂V
U
⟨︁
∇V · nn

⟩︁
dS =

=
x

∂V
U
∂V
∂n
dS.

Tulos on Greenin19 ensimmäinen lause:19

y

V
U∆V dV+

y

V

(︃
∂U
∂x
∂V
∂x

+
∂U
∂y
∂V
∂y

+
∂U
∂z
∂V
∂z

)︃
dV =

=
x

∂V
U
∂V
∂n
dS.

Yhtälö voidaan siivota, koska vasemman puolen toinen termi on symmet-
rinen skalaarikenttien U ja V keskinäisen vaihdon suhteen. Vaihdetaan
siis U ja V keskenään ja vähennetään saadut yhtälöt toisistaan. Tulos on
Greenin toinen lause:

y

V
(U∆V − V ∆U)dV =

x

∂V

(︂
U
∂V
∂n

− V
∂U
∂n

)︂
dS.

Oletamme kaikissa toimituksissa, että funktiot U ja V ovat ”hyvin
käyttäytyviä”: esimerkiksi kaikki tarvittavat derivaatat ovat kaikkialla
kappaleessa V olemassa.

19George Green (1793–1841) oli itseoppinut Nottinghamin lähellä myllärinä leipänsä
ansainnut brittiläinen matemaattinen fyysikko. Hän keksi myös sanan ”potentiaali”.
Green (1828); O’Connor ja Robertson (1998); Green’s Windmill.
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Etäisyys ℓ

P

Kappale V

Pinta-alkio dS

Pinta S = ∂V

Pinta-
normaali
nn

Kuva 1.8. Geometria Greenin kolmannen lauseen johtamiseksi, jos piste P on
pinnan ∂V ulkopuolella.^

Hyödyllinen erikoistapaus on se, jossa funktioksi U valitaan

U =
1
ℓ
,

jossa ℓ on etäisyys annetusta laskentapisteestä P. Tämä funktio U on
hyväkäytöksinen kaikkialla paitsi pisteessä P, jossa sitä ei ole määritelty.

Siinä tapauksessa, että piste P on pinnan ∂V ulkopuolella, tulos,
Greenin kolmas lause, saadaan nyt sĳoittamalla (muista, että pinnan ∂V
sisällä pätee ∆U = 0):

y

V

1
ℓ
∆V dV =

x

∂V

(︃
1
ℓ
∂V
∂n

− V
∂
∂n

(︂
1
ℓ

)︂)︃
dS.

Tämä tapaus on piirretty kuvassa 1.8.
Siinä tapauksessa, että piste P on pinnan ∂V sisäpuolella, laskenta

mutkistuu jonkin verran. Tutustutaan siihen ovelaan tekniikkaan, joka
tässä tapauksessa — kuten muissakin — auttaa.

Muodostetaan pieni ϵ-säteinen pallero V2 pisteen P ympäri; nyt
voimme määrittää muodollisesti kappaleeksiV def

= V1−V2, ”reikäjuusto”,
ja samalla sen pinnasta ∂V tulee kaksiosainen pinta, ∂V = ∂V1 + ∂V2.
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Nyt tilavuusintegraali voidaan kirjoittaa kahteen osaan:
y

V

1
ℓ
∆V dV =

y

V1

1
ℓ
∆V dV−

y

V2

1
ℓ
∆V dV,

jossa toinen termi voidaan integroida pallokoordinaateissa:
y

V2

1
ℓ
∆V dV ≈ ∆VP

w ϵ
0
4πℓ2

1
ℓ
dℓ = 2π∆VPϵ

2,

mikä menee nollaan limiitissä ϵ→ 0.

Ensimmäiseksi pintaintegraaliksi saamme Gaussin divergenssi-
lauseen 1.20 avulla:

x

∂V2

1
ℓ
∂V
∂n
dS =

1
ϵ

x

∂V2

∂V
∂n
dS =

1
ϵ

y

V2
∆V dV ≈ 1ϵ∆VP ·

4

3
πϵ3,

mikä myös menee nollaan kun ϵ→ 0.

Toinen pintaintegraali (huomaa, että ∂V2:n normaali osoittaa sisään-
päin P:hen):
x

∂V2
V
∂
∂n

(︂
1
ℓ

)︂
dS =

x

∂V2
V ·−

(︂
−
1
ϵ2

)︂
dS ≈ 4πϵ2 · 1

ϵ2
VP = 4πVP.

Yhdistämällä kaikki tulokset oikeilla etumerkeillään saadaan tapauk-
sessa, jossa P on pinnan ∂V1 ∼ ∂V sisäpuolella:

y

V

1
ℓ
∆V dV = −4πVP +

x

∂V

(︃
1
ℓ
∂V
∂n

− V
∂
∂n

(︂
1
ℓ

)︂)︃
dS. (1.24)

Tämän jälkeen lienee intuitiivisesti selvää, ja siksi esitämme ilman
todistusta, että

y

V

1
ℓ
∆V dV = −2πVP +

x

∂V

(︃
1
ℓ
∂V
∂n

− V
∂
∂n

(︂
1
ℓ

)︂)︃
dS

jos piste P on juuri kappaleen V reunapinnalla ∂V. Tämä kuitenkin edel-
lyttää normaaliderivaatan, ja erityisesti normaalisuunnan, olemassaoloa
pisteessä P!

Geodesiassa on tyypillinen tilanne, että kappale V, jonka tilavuuden
yli halutaan laskea tilavuusintegraali, on koko maapallon ulkopuolinen
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Tila VPiste P
Pinta ∂V, osa 2

Pinta ∂V, osa 1

Kuva 1.9. Geometria Greenin kolmannen lauseen johtamiseksi, jos piste P on
pinnan ∂V sisäpuolella.^

avaruuden osa. Tässä tapauksessa on kätevästi ∆V = 0 ja koko yllä
esiintyvä tilavuusintegraali häviää.

Tulos 1.24 voidaan yleistää tähän tapaukseen, jossa V on koko avaruus
pinnan ∂V ulkopuolella. Tämä yleistys tehdään valitsemalla pinnaksi ∂V
kolmiosainen pinta ∂V = ∂V1 + ∂V2 + ∂V3, jossa ∂V3 on suurisäteinen
pallo sekä aineellisen kappaleen että pisteen P ympäri. Sen säteen
annetaan jälkeenpäin kasvaa limiitissä äärettömyyteen, jolloin voidaan
näyttää, että molemmat integraalit pinnan ∂V3 yli häviävät.

Lopputulos on — kun n on maanpinnan ulkoinen normaali:

y

V

1
ℓ
∆V dV = −4πVP −

x

∂V

(︃
1
ℓ
∂V
∂n

− V
∂
∂n

(︂
1
ℓ

)︂)︃
dS, (1.25)

Koska tässä limiitissä, jossa V on maapallon koko ulkopuolinen tyhjä
avaruus, jossa ∆V = 0, vasemmanpuoleinen tilavuusintegraali häviää ja
voidaan ilmaista pisteen P potentiaaliarvo VP kätevästi kaksitermisenä
pintaintegraalina pinnan ∂V yli.

^ 1.14 Chaslesin lause

Tutkitaan yllä kuvattua tapausta, jossa ”kappale” on pinnan ∂V ulko-
puolinen avaruuden osa — käytännössä siis maapallon ulkopuolinen
avaruus.
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Reuna ∂V, osa 2

Reuna ∂V, osa 3

(Limiitti)

Piste P

Aine

Reuna ∂V, osa 1

Integrointitila V

Kuva 1.10. Greenin kolmas lause kappaleen ulkoavaruudelle.^

Yllä johdetusta Greenin lauseesta 1.25 voidaan johtaa harmoniselle
funktiolle V (toisin sanoen ∆V = 0) ulkoavaruudessa:

VP = −
1
4π

x

∂V

1
ℓ
∂
∂n
V dS+

1
4π

x

∂V
V
∂
∂n

(︂
1
ℓ

)︂
dS. (1.26)

Tulkinta Mielivaltaisen pinnan ulkopuolinen, harmoninen potentiaali
voidaan esittää pinnassa sĳaitsevien, yksinkertaisen ja kaksinker-
taisen massatiheyskerroksen summana.

Selostus Yksinkertaisen massakerroksen pintatiheys saadaan yhtälön
1.15 avulla,

κ = −
1
4πG

∂
∂n
V, (1.27)

ja kaksinkertaisen massakerroksen pintatiheys yhtälön 1.18 avul-
la,

µ =
V
4πG

.
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Jos ne sĳoitetaan yhtälöön 1.26, saadaan

VP = G
x

∂V

(︃
κ
ℓ
+ µ

∂
∂n

(︂
1
ℓ

)︂)︃
dS.

Siinä tapauksessa, että pinta ∂V on potentiaalin V tasapotentiaalipinta,
siis V = V0, seuraa, että yksinkertainen massatiheyskerros riittää, koska
silloin x

∂V
V
∂
∂n

(︂
1
ℓ

)︂
dS = V0

x

∂V

∂
∂n

(︂
1
ℓ

)︂
dS = 0.

Oikeanpuoleinen integraali häviää Gaussin divergenssilauseen perus-
teella. Syy tähän on, että funktio 1

/︁
ℓ , jossa ℓ on etäisyys pisteestä P, on

harmoninen maapallon sisällä. Maapallon pinta on ∂V.
Tämä on Chaslesin20 lause eli myös Greenin vastaavan kerroksen 20

lause (engl. equivalent-layer theorem).
Lausetta käytetään hyväksi Molodenskin21 teoriassa. Myös Maan pai- 21

novoimakentän esittäminen maanalaisen massapistekerroksen avulla,
esimerkiksi Vermeer (1984), voitaisiin perustella tämän lauseen avulla.

Tapaus, jossa ∂V on tasapotentiaalipinta, toteutuu, jos kappale on
nestemäinen ja hakeutuu itsestään tasapotentiaalipinnan muotoisek-
si. Maaplaneettamme tapauksessa tämä pätee merenpinnalle. Myös
sähköstaattisessa teoriassa johtimessa, jonka sisällä elektronit liikkuvat
vapaasti, johtimen fyysinen pinta on tasapotentiaalipinta. Johtimen
sähkövaraukset ovat aina sen ulkopinnalla22. 22

Yhtälö 1.26, sĳoituksella 1.27, yksinkertaistuu silloin seuraavaksi:

VP = −
1
4π

x

∂V

1
ℓ
∂
∂n
V dS = G

x

∂V

κ
ℓ
dS. (1.28)

20Michel Chasles (1793–1880) oli ranskalainen matemaatikko ja geometrikko, yksi
72:sta joiden nimet kaiverrettiin Eiffel-torniin, Eiffel Tower, 72 names.
21Mihail Sergejevitš Molodenski (1909–1991) oli maineikas venäläinen fysikaalinen
geodeetti.
22Sähköstaattisen potentiaalin on oltava myös johtimen sisällä vakio. Yksikin ylimää-
räinen elektroni kappaleen sisällä tekisi sen mahdottomaksi.
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Yhtälö kertoo jo, että koko maapallon ulkopuolinen potentiaali voidaan
laskea, jos vain Maan pinnalla — jonka muoto on oltava tiedossa arvon
1
/︁
ℓ laskemista varten — on annettuna potentiaalin normaali- eli pysty-

suuntainen gradientti ∂

∂n
V . Tämä gradientti on gravitaation kiihtyvyys,

suure, joka saadaan gravimetrisista havainnoista. Koko gravimetrinen
geopotentiaalin määritys (”geoidimääritys”) G. G. Stokesista lähtien
perustuu tähän ajatukseen.

^ 1.15 Reuna-arvotehtävät

Reuna-arvotehtävä (engl. boundary-value problem, BVP) on laskea potenti-
aali V annetun reunapinnan ulko- tai sisäpuolisessa avaruuden osassa
reunapinnalla, esimerkiksi Maan pinnalla, annetuista potentiaaliin V
liittyvistä arvoista. Yksinkertaisin reuna-arvotehtävä on Dirichletin2323

tehtävä: reunapinnalla on annettuna potentiaaliarvo V.Monimutkaisem-
mat reuna-arvotehtävät lähtevät potentiaalin lineaarisista funktionaaleista:
reunalla on annettuna joku lineaarinen lauseke potentiaalissa V , esi-
merkiksi derivaatta tai derivaattojen lineaariyhdistelmä, yleisesti

L
{︁
V
}︁
,

jossa L
{︁
·
}︁

on lineaarinen funktionaali, katso osio 10.2.
Dirichletin reuna-arvotehtävä geodesiassa käytetyssä muodossa on mää-

rittää potentiaalikenttäV , jos sen arvot on annettu suljetulla pinnalla S ja
V on harmoninen (∆V = 0) pinnan S ulkopuolella. Avaruuden tyhjiössä
potentiaali on aina harmoninen, kuten todettiin jo aiemmin: massa-
pisteenmP potentiaali V = GmP

/︁
ℓ on harmoninen funktio kaikkialla

paitsi itse pisteessä P — ja laaja kappale koostuu limiitissä monesta
pistemassasta tai massa-alkiosta.

Yleisessä tapauksessa tämä on teoreettisesti haastava ongelma. Rat-
kaisun olemassaolo ja yksiselitteisyys on pystytty todistamaan hyvin

23Peter Gustav Lejeune Dirichlet (1805–1859) oli saksalainen matemaatikko, joka
tunnetaan myös lukuteoreetikkona.

í � Õ! ¤.�û



Olenko ymmärtänyt tämän? 35
yleisesti, katso Heiskanen ja Moritz (1967) sivu 18.

Pinnalla S annetuista potentiaalifunktion V arvoista voidaan siis
laskea harmoninen funktio V(x, y, z) koko avaruudessa pinnan ulko-
puolella. Reuna-arvotehtävä on tehokas ja myös fysikaalisessa geode-
siassa hyväksytty yleismenetelmä. On kuitenkin syytä huomauttaa, ettei
pinnalla annetuista potentiaaliarvoista voida yksiselitteisesti ratkaista
maapallon sisäistä massajakaumaa, joka tämän potentiaalin tuottaa.

Tämä on ilmeistä jo siinä yksinkertaisessa tapauksessa, jossa po-
tentiaalin arvo on vakio pallon pinnalla. Jos lisäksi on annettu, että
massajakauma on pallosymmetrinen, on tiheysprofiili säteen mukaan
edelleen kokonaan auki. Kaikki massa voi olla pallon keskipisteessä
keskitettynä tai ohuena kuorena juuri pallon pinnan alla tai jossain
näiden äärivaihtoehtojen välissä. Ilman lisäinformaatiota, esimerkiksi
seismisestä tutkimuksesta tai geofysikaalisista tiheysmalleista, emme
voi ratkaista asiaa.

Myös yllä mainittu Chaslesin lause, yhtälö 1.26, ja sen erikoistapaus,
yhtälö 1.28, ovat esimerkkejä tästä: lause kertoo, miten ulkopuolista
potentiaalia voidaan kuvata kappaleen pinnalla olevan massajakauman
tuottamana, vaikka tiedämme, että kentän lähde on koko kappaleen
lävitse ulottuva massajakauma!

Tämä on perustavaa laatua oleva rajoitus kaikille menetelmille, jot-
ka yrittävät saada tietoa Maan sisäisestä tilanteesta ainoastaan Maan
pinnalla tai sen ulkopuolella tehdyistä gravimetrisista mittauksista.

^ Olenko ymmärtänyt tämän?

1) Millä laitteella määritettiin vakio G? Miksi on vaikeaa saada
tarkkaa arvoa tähän vakioon?

2) Miksi kaikki kappaleet putoavat massasta riippumatta samalla
kiihtyvyydellä, vaikka raskaampi kappale tuntee vahvempaa
gravitaation vetovoimaa?
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3) Mikä on konservatiivinen voimakenttä?

(a) Voimakenttä, jonka voima voidaan kirjoittaa yksiselitteisesti
potentiaalin gradienttina.

(b) Voimakenttä, jossa kappale, joka kulkee suljettua reittiä pit-
kin, ei voita eikä menetä energiaa.

(c) Vetovoimakenttä, josta mikään kappale ei pääse pakoon.

(d) Voimakenttä, jonka roottori häviää kaikkialla.

4) Homogeenisen, pallon muotoisen pikkuplaneetan pinnalla va-
paan putoamisen kiihtyvyys on 1 cm/s2 . Mikä on vapaan putoami-
sen kiihtyvyys toisen pikkuplaneetan pinnalla, jos planeetta on
muuten samanlainen, mutta sillä on kaksinkertainen läpimitta?

(a) 0,25 cm/s2

(b) 1 cm/s2

(c) 2 cm/s2

(d) 4 cm/s2

5) Mikä on harmoninen potentiaali?

6) Minkä kertaluvun differentiaaliyhtälö on Laplacen yhtälö?

7) Onko lineaarinen potentiaali, V(x, y, z) = a+ bx+ cy+ dz (a, b,
c, d vakioita), harmoninen?

8) Jos edellisen kysymyksen potentiaali on gravitaatiopotentiaali,
laske sen kiihtyvyysvektori.

9) Millä edellytyksellä on mahdollista esittää kappaleen ulkoista
gravitaatiokenttää kappaleen pinnalla olevan yksinkertaisen mas-
satiheyskerroksen tuottamana?

10) Dipolipintatiheys µ mainitaan osiossa 1.11. Mikä on suureen
SI-yksikkö?
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Harjoitus 1–1: Maan ydin 37
^ Harjoitus 1–1: Maan ydin

1) Johda yhtälö, joka antaa vetovoiman kiihtyvyyden g tiheydeltään
homogeenisen pallon pinnalla. Annettuna on tiheys ρ ja säde
Rydin.

2) Maan rauta-nikkeliytimen keskitiheys on 11g/cm3 ja säde 3500 km.
Laske ytimen pinnalla vallitseva vetovoiman kiihtyvyys gydin.

3) Mikä on vetovoima g ytimen keskipisteessä? Mitä yleistä voit
sanoa geopotentiaalista tässä pisteessä? Älä yritä laskea!

4) Johda säteittäisen gravitaatiogradientin ∂

∂r
g yhtälö tiheydeltään

homogeenisen pallon pinnalla, jonka tiheys on ρ.

^ Harjoitus 1–2: Ilmakehä

1) Ilmakehän keskipaine on 1013,25hPa (paineen yksikkö pascalin
määritys on Pa = N/m2 ). Maan pinnalla painovoima on 9,81m/s2 .
Laske ilmakehän keskimääräinen pintatiheys ohuena kerroksena
κ yksiköissä kg/m2 .

2) Laske ilmakehän kokonaismassa käyttäen pallokuori-
approksimaatiota. Voit ottaa sen säteeksi 6371 km.

3) Laske ilmakehästä lähtevä vetovoima ilmakehän ulkopuolella,
sekä kiihtyvyysarvona että koko Maan painovoiman osamääränä.

4) Mikä on ilmakehästä lähtevä vetovoima ilmakehän sisällä?

^ Harjoitus 1–3: Gaussin divergenssilause

Maan alla on rautamalmin esiintymä, kuva 1.11. Esiintymä aiheut-
taa maanpinnalla vetovoimavaikutuksen, joka on piirretty a-käyränä.
Käytämme litteän Maan approksimaatiota.

Todellisen vetovoiman käyrä approksimoidaan yksinkertaisella funk-
tiolla

í �Õ ! ¤.�û



138 Gravitaatioteorian perusteita

a0

d

a

d

∞ ∞
Σ1

Σ2

Kuva 1.11. Rautamalmikappale.^

a =

⎧⎨⎩a0 jos s ⩽ d

0 jos s > d

(punainen katkoviiva), jossa s on etäisyys maanpinnalla malmiesiin-
tymän suoraan yläpuolella olevasta pisteestä. Siis alue, jossa a ̸= 0

muodostaa d-säteisen kiekon maanpinnalla.

1) Käyttäen yllä olevaa vetovoiman a approksimaatiota, laske pin-
taintegraali x

Σ1
adS,

jossa Σ1 on maanpinta, katso kuva 1.11.

2) Gaussin divergenssilauseen mukaan
x

Σ1

⟨︁
aa1 · nn1

⟩︁
dS+

x

Σ2

⟨︁
aa2 · nn2

⟩︁
dS =

y

tilavuus
∆V dV =

=
y

tilavuus
(−4πGρrauta)dV = −4πGMkappale,

jossa Σ1 + Σ2 on kaksilehtinen suljettu pinta kappaleen ympäri.
Lehdet kohtaavat äärettömyydessä. aa1 ja aa2 ovat vetovoiman
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Harjoitus 1–3: Gaussin divergenssilause 39
vektorit Maan pinnalla ja pinnalla Σ2, ja nn1 ja nn2 ovat pintojen
ulkoisia normaaleja.
Olettaen, että

x

Σ1

⟨︁
aa1 · nn1

⟩︁
dS =

x

Σ2

⟨︁
aa2 · nn2

⟩︁
dS = −

x

Σ1
adS,

laske GMkappale. Ole huolellinen etumerkkien kanssa!

3) Olettaen, että malmiesiintymä on pallo syvyydellä d, laske GM
Newtonin vetovoimalain avulla arvosta a0 suoraan esiintymän
yläpuolella maanpinnalla.

4) Vertaa tuloksia 2 ja 3 ja tee johtopäätöksiä. Onko yllä annettu
funktio a hyvä approksimaatio?
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^ Laplacen yhtälö ja sen ratkaisuja22
^ 2.1 Laplacen yhtälön luonne

Maan gravitaatiokentän tutkimuksen keskeinen yhtälö on Laplacen
yhtälö,

∆V =

(︃
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)︃
V = 0.

Symbolia ∆ kutsutaan Laplacen operaattoriksi. Joskus käytetään vaihtoeh-
toista kirjoitustapaa∇2.

Tutkittaessa gravitaatiota kenttänä Laplacen yhtälö on luonnollisempi
valinta kuin Newtonin lähestymistapa. Newtonin yhtälöä käytetään, jos
massajakauma on tiedossa: yhtälö antaa suoraan massojen aiheuttaman
gravitaatiovoiman.

Laplacen yhtälö sen sĳaan on osittaisdifferentiaaliyhtälö. Sen ratkaise-
minen antaa gravitaatiokentän potentiaalin V(x, y, z) koko avaruudessa
tai sen osassa. Tästä potentiaalista voidaan laskea kentän vaikutus ava-
ruudessa liikkuvaan kappaleeseen, siinä paikassa missä kappale on.
Tämä on kaksivaiheinen prosessi. Käsitteellisesti uutta on, että tyhjäl-
le avaruudelle kiinnitetään tietty ominaisuus, kenttä. Enää ei puhuta
kaukovaikutuksesta suoraan kahden kappaleen välillä.

Laplacen yhtälön ratkaiseminen voi olla yleisessä tapauksessa vai-
keaa. Lähestymistapa on yleensä se, että valitaan joku koordinaatisto:
suorakulmainen (kuten yllä), pallo- tai lieriökoordinaatisto, toroidaali-
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242 Laplacen yhtälö ja sen ratkaisuja

set koordinaatit tai mikä vain sopii parhaiten ongelman geometriaan.
Sen jälkeen muunnetaan Laplacen yhtälö näihin koordinaatteihin, etsi-
tään tiettyä muotoa olevia erikoisratkaisuja, ja kootaan lopuksi yleinen
— tai ei-niin-yleinen — ratkaisu näiden erikoisratkaisujen lineaariyhdis-
telmänä eli sarjakehitelmänä.

Onneksi lineaaristen osittaisdifferentiaaliyhtälöiden teoria on hyvin
kehittynyt. Vastaavanlaisia teoreettisia ongelmia löytyy sähkömagneet-
tisen kentän eli Maxwellin teoriassa ja kvanttimekaniikassa (Schrödin-
gerin1 yhtälö), nesteen- ja lämmönkuljetuksesta puhumattakaan.1

Tärkeä havainto on, että Laplacen yhtälö on lineaarinen. Tämä merkit-
see, että jos annettuna on kaksi ratkaisua

∆V1 = 0, ∆V2 = 0,

silloin myös niiden lineaariyhdistelmät

V = αV1 + βV2, α, β ∈ R

ovat kelvollisia ratkaisuja: ∆V = 0. Tämä lineaarisuuden ominaisuus
mahdollistaa yleisten ratkaisujen etsimisen perusratkaisujen lineaariyh-
distelminä tai sarjakehitelminä.

Erikoisuus, joka myös erottaa Laplacen yhtälön Newtonin yhtälös-
tä, on, että se on paikallinen yhtälö, joka luonnehtii potentiaalikentän
käyttäytymistä yhden pisteen pienessä ympäristössä. Kuitenkin ratkai-
sua etsitään kokonaiselta alueelta. Tavallinen lähestymistapa ratkaisua
etsittäessä on reuna-arvotehtävä. Tämä merkitsee, että kentän arvojen
(”reuna-arvojen”) on oltava annettuina vain kiinnostuksen kohteena
olevan avaruuden osan reunalla.

1Erwin Rudolf Josef Alexander Schrödinger (1887–1961) oli saksalainen fyysikko ja
kvanttiteoreetikko sekä hänen nimeään kantavan aineaaltojen aaltoyhtälön keksĳä:
asia, josta hän sai fysiikan Nobel-palkinnon vuonna 1933 yhdessä Paul Diracin kanssa.
Hän on myös hyvin tunnetun, ei-havaitun kissan keksĳä: kissa, joka on kahden
mahdollisen kvanttitilan, elävän ja kuolleen, superpositiotilassa.
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Esimerkiksi kentän arvot ovat annettuina Maan pinnalla. Tästä las-

ketaan kentän arvot ulkoavaruudessa, jossa Laplacen yhtälö pätee —
kentän käyttäytyminen Maan sisällä jää tarkastelun ulkopuolelle. Ul-
koisen potentiaalin kannalta tarkkaa massajakaumaa Maan sisällä ei
tarvitse tietää — eikä sitä myöskään saada selville vain Maan pinnalla
ja sen ulkopuolella tehtyjä mittauksia käyttäen.

^ 2.2 Laplacen yhtälö suorakulmaisissa koordinaateissa

On opettavaista kirjoittaa ja ratkaista Laplacen yhtälö suorakulmaisissa
koordinaateissa. Tapaus on analoginen pallokoordinaattien tilanteen
kanssa, mutta matematiikka on paljon yksinkertaisempaa.

Oletetaan, että maanpinta eli merenpinta on z-koordinaatin tasopinta
z = 0. Kirjoita

∆V = ∆
(︁
V(x, y, z)

)︁
=

(︃
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)︃(︁
X(x) · Y(y) · Z(z)

)︁
,

jossa kokeiluratkaisu

V(x, y, z) = X(x) · Y(y) · Z(z).

Toisin sanoen kirjoitetaan kokeilumielessä V kolmen tekĳäfunktion
tulona, jossa jokainen tekĳäfunktio riippuu vain yhdestä koordinaatista.
Kyseessä on siis ”muuttujien erottaminen”. Realistinen potentiaalifunk-
tio V ei tietenkään yleensä ole tätä muotoa. Voimme kuitenkin toivoa,
että se voitaisiin esittää tämän muotoisten termien lineaariyhdistelmänä
Laplacen yhtälön lineaarisuuden ansiosta.

Suorittamalla kaikki osittaisderivoinnit saadaan

YZ
∂2

∂x2
X+ XZ

∂2

∂y2
Y + XY

∂2

∂z2
Z = 0.

Jako lausekkeella XYZ antaa

1
X(x)

∂2

∂x2
X(x) +

1
Y(y)

∂2

∂y2
Y(y) +

1
Z(z)

∂2

∂z2
Z(z) = 0.
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Koska tämän on oltava totta koko avaruudessa eli kaikille arvojen yh-
distelmille x, y ja z, seuraa, että jokaisen termin on oltava vakio. Jos
ensimmäiseksi ja toiseksi vakioksi otetaan −ω2x ja −ω2y, seuraa kolman-
neksi vakioksi ω2x +ω2y. Kirjoittamalla määritelmä ja tulos auki sekä
siirtämällä nimittäjä toiselle puolelle saadaan

∂2

∂x2
X(x) = −ω2x X(x),

∂2

∂y2
Y(y) = −ω2y Y(y),

(syy negatiivisen vakion valinnalle selviää pian), sekä

∂2

∂z2
Z(z) =

(︁
ω2x +ω

2
y

)︁
Z(z).

Nyt ratkaisu löytyy helposti ainakin ensimmäiselle kahdelle yhtälölle:
nehän ovat harmoniset värähtelĳät, ja niiden perusratkaisut2 ovat2

X(x) = exp
(︁
±iωxx

)︁
, Y(y) = exp

(︁
±iωyy

)︁
.

Z-yhtälön ratkaisu puolestaan on eksponentiaalinen:

Z(z) = exp
(︃
±z
√︂
ω2x +ω

2
y

)︃
.

Nyt voidaan muodostaa perusratkaisuja avaruudessa:

Vωxωy(x, y, z) = exp
(︃
i
(︁
±ωxx±ωyy

)︁
± z
√︂
ω2x +ω

2
y

)︃
.

Yleinen ratkaisu saadaan summaamalla termit Vωxωy eri arvoillaωx ja
ωy eri kertoimilla.

Emme voi valita arvoparia (ωx,ωy) täysin vapaasti. Mitkä arvot ovat
sallittuja, riippuu annetuista reunaehdoista.

Oletetaan, että sekä x- että y-suunnassa maailman koko on L (”kenkä-
laatikkomaailma3”). Yksinkertaistetaan asiaa hieman olettamalla, että3

2Vaihtoehtoiset perusratkaisut ovat X(x) = sinωxx, X(x) = cosωxx jne. Ne
ovat samanarvoisia esitettyjen kanssa, koska exp(iωxx) = cosωxx + i sinωxx ja
exp(−iωxx) = cosωxx− i sinωxx.
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kenkälaatikkomaailmamme reunapinnoilla ovat voimassa reunaehdot

V(0, y, z) = V(L, y, z) = V(x, 0, z) = V(x, L, z) = 0.

Silloin seuraa, että ainoat parit (ωx,ωy), jotka antavat laatikkoon sopi-
van ratkaisun, ovat

ωx =
πj
L
, ωy =

πk
L
, j, k ∈ Z,

ja ainoat sopivat funktiot ovat sinifunktioita. Ratkaisuksi saadaan siis

Vjk(x, y, z) = sin
(︂
πj
x
L

)︂
sin
(︂
πk
y
L

)︂
exp

(︂
±π
√︁

(j2 + k2)
z
L

)︂
.

Tämä yksittäinen ratkaisu voidaan nyt yleistää kertomalla sopivilla
kertoimilla ja summaamalla eri indeksiarvojen j = 0, ±1, ±2, . . . ja
k = 0, ±1, ±2, . . . yli.

Voidaan kuitenkin huomauttaa, että termit, joilla j = 0 tai k = 0,
häviävät aina, ja että termit, jotka sisältävät j = +n ja j = −n tai k = +n

ja k = −n, n ∈ N, ovat (etumerkkiä vaille) identtisiä. Siksi käytännössä
summataan arvojen j = 1, 2, . . . ja k = 1, 2, . . . yli.

Erilaiset reunaehdot antavat hieman erilaisia yleisratkaisuja. Kuiten-
kin niiden yleinen muoto on aina sama.

Yleisestä ratkaisusta saatava nollatason z = 0 kehitelmä on Fourier’n4 4

sinikehitelmä:

V(x, y, 0) =

∞∑︂
j=1

∞∑︂
k=1

vjk

Vjk(x,y)⏟ ⏞⏞ ⏟
sin
(︂
π
jx
L

)︂
sin
(︂
π
ky
L

)︂
, (2.1)

jossa vjk ovat Fourier’n kertoimia, ja lausekkeet

Vjk(x, y)
def
= sin

(︂
π
jx
L

)︂
sin
(︂
π
ky
L

)︂
3. . . vaikka tosimaailman kenkälaatikot ovat harvemmin neliön muotoisia.
4Joseph Fourier (1768–1830) oli ranskalainen matemaatikko ja fyysikko sekä joidenkin
mukaan myös ilmastotutkĳa. Hän oli yksi Eiffel-tornin 72 nimestä, Eiffel Tower, 72
names.
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ovat kaksiulotteisia kantafunktioita maanpinnalla, tasolla z = 0.
Viittaamme osioon B.2.2 liitteessä B, jossa kuvataan, miten yksinker-

taisen funktion Fourier’n analyysi ja synteesi tehdään ja miten Fourier’n
kehitelmä approksimoi alkuperäistä funktiota termien määrän kasvaes-
sa.

Täydellinen kolmiulotteinen kehitelmä on taas

V(x, y, z) =∞∑︂
j=1

∞∑︂
k=1

vjk

Vjk(x,y)⏟ ⏞⏞ ⏟
sin
(︂
π
jx
L

)︂
sin
(︂
π
ky
L

)︂
exp

(︂
±π
√︁
j2 + k2

z
L

)︂
. (2.2)

z-lausekkeen sisällä voi olla joko positiivinen tai negatiivinen etumerkki!
Tietysti se ratkaisu, jolla on positiivinen etumerkki menee→∞, kun
z→∞, mikä ei ole ulkoavaruudessa fysikaalisesti realistista.

Huomaa myös, että V(x, y, 0) ja vjk edustavat samaa gravitaatiokenttää
kahdella olennaisesti erilaisella tavalla: avaruusdomeenissa ja spatiaali-
sessa taajuus- eli aaltolukudomeenissa. Molempien informaatiosisältö
on sama. Ne voidaan muuntaa toisikseen käyttämällä suoraa ja kään-
teistä Fourier’n muunnosta F ja F−1.

Itse asiassa funktion V(x, y, 0) informaatiosisältö on periaatteessa
sama kuin funktion V(x, y, z) millä tahansa tasolla z: yhden tason poten-
tiaalin tunteminen merkitsee — Laplacen yhtälön kautta — potentiaalin
tuntemista kautta avaruuden.

Vedetään yhtälöt 2.1 ja 2.2 vielä yhteen kommutoivaksi kaavioksi 2.2.
Tämän lopputulema on, että kentän V siirto-operaatio pystysuunnas-

sa nollatasosta tasoon z, joka avaruusdomeenissa ei ole helppoa, on
yksinkertainen — niin yksinkertainen kuin kertolasku — taajuusdomee-
nissa5. Sama pätee myös pallokoordinaateissa, jolloin taajuusdomeeni5

merkitsee pallofunktiokehitelmän kertoimia, kuten tulemme näkemään.

5Syy tähän on, kuten tulemme myöhemmin esittämään laajemmin, että pystysuuntai-
nen siirto-operaatio on konvoluutio.
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L

sin 5πx
L

sin 5πx
L

sin 13πx
L

sin 13πx
LMerenpintaMerenpinta

Kuva 2.1. Harmonisen kentän Fourier-aaltoilun eksponentiaalinen vaimen-
nus korkeuden mukaan. Suorakulmainen geometria, yksiulotteinen
vaakasuunnassa. Pitkät aallot (pienet aaltoluvut, punainen) vai-
mentuvat hitaammin kuin lyhyet aallot (vihreä): korkeus toimii siis
alipäästösuodattimena.^

Avaruusdomeeni Taajuusdomeeni

V(x, y, 0)
Fourier F−−−−−−−−−−−−−−−−→ vjk⏐⏐↓(vaikea) × (helppo)

⏐⏐↓
V(x, y, z)

Käänteinen Fourier F−1

←−−−−−−−−−−−−−−−− vjk exp
(︂
−π
√︁
j2 + k2 zL

)︂
Kuva 2.2. Harmonisen kentän V pystysuuntainen siirto avaruus- ja taajuus-

eli aaltolukudomeeneissa, kommutoiva kaavio. Suorakulmainen
geometria.^
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^ 2.3 Laplacen yhtälö napakoordinaateissa

Napakoordinaateissa, kaksiulotteisesti, Laplacen yhtälö on

∆V =
∂2V
∂r2

+
1
r
∂V
∂r

+
1
r2
∂2V
∂α2

= 0.

Suoritamme tähän samanlaisen muuttujien erottamisen kuin osiossa
2.2. Kirjoita ensin

V(α, r) = A(α)R(r)

ja jaa sitten yllä oleva yhtälö kahteen eri yhtälöön, toinen funktiolle R(r)
ja toinen funktiolle A(α). Sĳoitus antaa

A(α)
∂2R(r)

∂r2
+
A(α)
r

∂R(r)
∂r

+
R(r)

r2
∂2A(α)

∂α2
= 0.

Kerro lausekkeella r2
/︁
A(α)R(r) :(︃

r2

R(r)

∂2R(r)

∂r2
+

r
R(r)

∂R(r)
∂r

)︃
+

1
A(α)

∂2A(α)

∂α2
= 0.

Molempien termien on taas oltava vakioita:

r

(︃
r
∂2R(r)

∂r2
+
∂R(r)
∂r

)︃
− k2 R(r) = 0,

∂2A(α)

∂α2
+ k2A(α) = 0.

Tässä vakion k2 etumerkki on valittu niin, että A(α) saa jaksollisen
ratkaisun. Sellainen yleinen ratkaisu olisi

Ak(α) = ak coskα+ bk sinkα,

jossa, koska kulman α periodi on 2π, k:n on oltava ei-negatiivinen
kokonaisluku: k = 0, 1, 2, . . . . Negatiiviset k-arvot eivät anna erilaisia
ratkaisuja, koska

ak coskα = ak cos(−kα), bk sinkα = −bk sin(−kα).
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Toinen, funktion R(r) yhtälö, on vaikeampi ratkaista. Koeratkaisu on
potenssikaava:

R(r) = rq.

Sĳoitus antaa

r
(︁
rq (q− 1) rq−2 + qrq−1

)︁
− k2rq = 0

=⇒ q2 − k2 = 0

=⇒ q2 = k2.

Tämä toimii positiivisille q = 2, 3, . . . ja negatiivisille q = −1, −2, . . .
Arvolle q = 1 saadaan

r− k2r = 0 =⇒ k2 = 1 = q2.

Arvolle k = 0 löytyy, paitsi triviaali vakioratkaisu, ei-triviaali ratkaisu
R(r) = ln r:

r
(︂
r ·− 1

r2
+
1
r

)︂
− k2 ln r = 0 =⇒ k = 0.

Näin saadaan yleinen ratkaisu

Rk(r) =

⎧⎨⎩1 tai ln r jos k = 0,

rk tai r−k jos k = 1, 2, . . . .

Nähdään, että jos vaaditaan, että ratkaisu on olemassa origossa r = 0,
tarvitaan ensimmäiset ratkaisut, tuloksena

Vsis(α, r) = a0 +

∞∑︂
k=1

rk (ak coskα+ bk sinkα) ,

mutta jos halutaan, että ratkaisu on olemassa — tai ainakin käyttäytyy
hyvin — äärettömyydessä6 r→∞, tarvitaan toiset ratkaisut, 6

Vulk(α, r) = a0 + b0 ln r+
∞∑︂
k=1

r−k (ak coskα+ bk sinkα) . (2.3)

Samanlaisuus kolmiulotteisen eli pallokoordinaattien tapauksen kanssa
on selvästi nähtävissä.

6Itse asiassa limr→∞ Vulk →∞ mutta limr→∞ ∂
∂r
Vulk = 0.
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^ 2.4 Pallo-, geodeettiset ja ellipsoidiset koordinaatit

Fysikaalisessa geodesiassa käytämme geometrisia ja fysikaalisia kä-
sitteitä rinnakkain. Esimerkiksi pisteen koordinaatit voidaan antaa
muodossa (X, Y, Z), joka on periaatteessa geometrinen — lukuun ot-
tamatta fysikaalista olettamusta, että koordinaatiston origo on Maan
massakeskipiste.

Koska maapallo ei ole tarkasti ottaen pallo, vaan litistynyt pyörähdys-
ellipsoidi, maantieteellisiä koordinaatteja ei voida käyttää ikään kuin ne
olisivat pallokoordinaatteja. Koska maapallo on litistynyt huomattavasti
(noin 0,3%), ero on merkittävä. Pallokoordinaattien (ϕ, λ, r) yhteys
suorakulmaisiin koordinaatteihin (X, Y, Z) on seuraava:

X = r cosϕ cos λ,
Y = r cosϕ sin λ, (2.4)
Z = r sinϕ.

Tässä ϕ on geosentrinen leveysaste, λ on (tavallinen — geosentrinen,
geodeettinen tai maantieteellinen, kaikki kolme ovat samoja) pituusaste
ja r on etäisyys Maan keskipisteestä. X-akseli osoittaa Greenwichin
meridiaanin suuntaan. Katso kuva 2.3.

Maan pinnalla nämä pallokoordinaatit eivät ole kovin käyttökelpoisia
Maan litistyneisyyden takia, mutta avaruudessa pallokoordinaatteja
käytetään paljon. Maan päällä käytetään useimmiten geodeettisia — eli
maantieteellisiä — koordinaatteja (φ, λ, h):

X = (N+ h) cosφ cos λ,
Y = (N+ h) cosφ sin λ, (2.5)
Z =

(︁
N+ h− e2N

)︁
sinφ,

jossa

N(φ) =
a√︁

1− e2 sin2φ
=

a2√︁
a2 cos2φ+ b2 sin2φ

. (2.6)
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P

Greenwichin meridiaani

r sinϕ

λ

r cosϕ
Napa Z

Päiväntasaaja

Y

X

ϕ

r

Kuva 2.3. Pallokoordinaattien määritelmä.^

Yhtälön 2.6 määrittämä suure N on vertausellipsoidin länsi-itäsuunnan
eli poikittainen kaarevuussäde. Yhtälössä a on käytetyn vertausellipsoi-
din päiväntasaajasäde, b on napasäde,

e2
def
=
a2 − b2

a2
(2.7)

on ensimmäisen eksentrisyyden neliö7, ja yhtälöissä 2.5 h on pisteen 7

korkeus vertausellipsoidista, katso kuva 2.4.
Suorakulmaisten koordinaattien konvertointi geodeettisiksi käy hel-

poimmin iteratiivisesti, vaikka suljettujakin kaavoja löytyy kirjallisuu-
desta.

Pallokoordinaatit ja geodeettiset eli maantieteelliset koordinaatit
eroavat huomattavasti toisistaan. Leveysasteessa ero on suurimmillaan
11 kaariminuuttia eli lähes 20 kilometriä. Maksimi saavutetaan leveys-
asteilla ±45◦.

7Parametri liittyy Maan litistyneisyyteen f yhtälön e2 = 2f− f2 kautta.
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x

Vertaus-
ellipsoidi

h

Z

(N+ h) cosφ(N+ h) cosφ

(︂(︁
1− e2

)︁
N+ h

)︂
sinφ

X, Y

Ellipsoidinen
normaali

φ

O

P

Kuva 2.4. Geodeettisten koordinaattien määritelmä.^

Teoreettisessa työssä käytetään myös ellipsoidisia koordinaatteja (β, λ, u).
Koordinaattia β kutsutaan redukoiduksi leveysasteeksi. Yhteys suora-
kulmaisiin koordinaatteihin on

X =
√︁
u2 + E2 cosβ cos λ,

Y =
√︁
u2 + E2 cosβ sin λ, (2.8)

Z = u sinβ.

Jos Maa-ellipsoidin isoakselin puolikas ona ja sen pikkuakselin puolikas
b, seuraa tästä, että E2 = a2 − b2. Yhtälö 2.7 kertoo, että E2 = a2e2.

Ensimmäinen eksentrisyys e on meridiaaniellipsin eksentrisyys, ja E = ae

on tämän ellipsin kahden polttopisteen etäisyys Maan keskipisteestä.
Polttopisteet sĳaitsevat keskipisteen molemmilla puolilla päiväntasaajan
tasossa. Yhtälöt 2.8 kertovat, että kaikilla meridiaanitason ellipseillä
u = vakio eri arvoilleu on samat kaksi poltopistettä: ne ovat konfokaalisia.
Katso kuva 4.6.

Huomautamme vielä — katso Heiskanen ja Moritz (1967) kuva 1-14 —
että käyrät β = vakio kuvaavat hyperbeleitä, joilla on samat polttopisteet.
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Laplacen yhtälö pallokoordinaateissa 2.5 53
^ 2.5 Laplacen yhtälö pallokoordinaateissa

Laplacen yhtälö muunnettuna pallokoordinaatteihin on (geometrinen
todistus, katso liite E):

∆V =
∂2V
∂r2

+
2
r
∂V
∂r

+
1
r2
∂2V
∂ϕ2

−
tanϕ
r2

∂V
∂ϕ

+
1

r2 cos2ϕ
∂2V
∂λ2

= 0, (2.9)

jossa ϕ on (geosentrinen) leveysaste eli latitudi, λ on pituusaste eli
longitudi ja r on etäisyys origosta eli Maan keskipisteestä.

Emme johda tässä yhtälön ratkaisua muuttujien erottamisella, koska
se on suhteellisen monimutkainen. Se löytyy osiosta E.2 ja kirjallisuu-
desta (Heiskanen ja Moritz, 1967, osio 1-9). Merkittävää on, että ratkaisu
on hieman saman näköinen kuin aiemmin esitetty ratkaisu suorakul-
maisissa koordinaateissa, osio 2.2. Laplacen yhtälön perusratkaisut
ovat

Vsis
n (ϕ, λ, r) = rnYn(ϕ, λ), Vulk

n (ϕ, λ, r) =
Yn(ϕ, λ)

rn+1
, n = 0, 1, . . . ,

(2.10)

joista ensimmäinen on epäfysikaalinen ulkoavaruudessa, koska toisin
kuin todellinen geopotentiaali nämä lausekkeet kasvavat äärettömiksi
kun r→∞.

Yllä olevissa yhtälöissä funktiot Yn(ϕ, λ) ovat pintapallofunktioita,
kun taas funktiot Vn(ϕ, λ, r) ovat avaruuspallofunktioita. Jälkimmäiset
ovat harmonisia kaikkialla muualla avaruudessa paitsi origossa (2.10,
oikeanpuoleinen yhtälö) tai äärettömyydessä (vasemmanpuoleinen
yhtälö).

Funktiot Yn, nimeltään Laplacen pallofunktiot, ovat

Yn(ϕ, λ) =

n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) . (2.11)

FunktiotPnm ovat Legendren funktioita, joista kerrotaan myöhemmin lisää.
Lausekkeen 2.11 avulla ja käyttämällä toista fysikaalisesti realistista
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254 Laplacen yhtälö ja sen ratkaisuja

vaihtoehtoa yhtälöistä 2.10 saadaan seuraava ratkaisu eli sarjakehitelmä
ulkoavaruuden potentiaalille V :

V(ϕ, λ, r) =

∞∑︂
n=0

1
rn+1

n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) .

(2.12)
Kertoimia anm ja bnm kutsutaan pallofunktiokehitelmän kertoimiksi,
lyhyesti spektraalikertoimiksi. Yhdessä ne esittävät funktiota V , hieman
samalla tavalla kuin Fourier’n kertoimet vjk tekevät suorakulmaisissa
koordinaateissa yhtälössä 2.2. Indeksejä n jam kutsutaan asteluvuksi ja
järjestysluvuksi (engl. degree and order).

Tulemme käyttämään skaalatuille funktioille Yn
/︁
Rn+1 usein hieman

vapaampaa kirjoitustapaa. Esimerkiksi jos kehitetään häiriöpotentiaali
T pallofunktioihin, käytetään kirjoitustapaa Tn(ϕ, λ) sen pintapallo-
funktioille. Samalla tavalla ∆gn(ϕ, λ) on painovoima-anomalian ∆g
asteluvun n pintapallofunktio, ja niin edelleen. Silloin pätee Maan
pinnalla r = R (asteosuushajotelma):

T(ϕ, λ, R) =

∞∑︂
n=0

Tn(ϕ, λ), ∆g(ϕ, λ, R) =

∞∑︂
n=0

∆gn(ϕ, λ),

ja niin edelleen.

^ 2.6 Riippuvuus korkeudesta

Yllä olevista yhtälöistä 2.10 nähdään, että eri asteluvuilla n funktiolla
Vn(ϕ, λ, r) on eri riippuvuus etäisyydestä r Maan keskipisteestä eli
vastaavasti korkeudestaH = r−R, jossaR on maapallon eli merenpinnan
säde. Riippuvuus on

Vn(ϕ, λ, r) =
Yn(ϕ, λ)

rn+1
.

Merenpinnalla on

Vn(ϕ, λ, R) =
Yn(ϕ, λ)

Rn+1
def
= Vn(ϕ, λ).
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Voimme siis kirjoittaa

Vn(ϕ, λ, r) =
(︂
R
r

)︂n+1
Vn(ϕ, λ) =

(︂
R+H
R

)︂−(n+1)

Vn(ϕ, λ) =

=
(︂
1+

H
R

)︂−(n+1)

Vn(ϕ, λ) ≈ exp
(︂
−
H
R
(n+ 1)

)︂
Vn(ϕ, λ).

Näemme, että potentiaalin vaimennus korkeuden mukaan on ekspo-
nentiaalinen ja asteluku n on eksponentissa, kuten oli myös aaltoluku
suorakulmaisessa geometriassa, katso yhtälö 2.2 ja kuva 2.1. Analogia
pelaa.

^ Olenko ymmärtänyt tämän?

1) Millä olennaisella tavalla Laplacen yhtälön lähestymistapa eroaa
Newtonin lähestymistavasta?

2) Miten Laplacen yhtälön lineaarisuus auttaa löytämään ratkaisuja?

3) Miten muuttujien erottaminen toimii?

4) Miksi Laplacen yhtälön ratkaiseminen vaatii reunaehtoja?

5) Näytä yhtälöiden 2.8 avulla, että meridiaanitason Y = 0 käyrille
u = vakio käyrän pisteen

[︂ √
u2 + E2 cosβ 0 sinβ

]︂T
ja polt-

topisteiden
[︂
±E 0 0

]︂T
välisten etäisyyksien summa on vakio

(ja että käyrät siis ovat konfokaalisia ellipsejä), ja että käyrille
β = vakio näiden etäisyyksien erotus on vakio (ja että käyrät siis
ovat konfokaalisia hyperbeleitä). Katso kuva 4.6.
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^ Legendren funktiot ja
pallofunktiot33

^ 3.1 Legendren funktiot

Yhtälöissä 2.11 ja 2.12 funktiot P ovat Legendren1 funktioita, jotka pulpah- 1

tavat esiin aina, kun Laplacen kaltainen yhtälö ratkaistaan pallokoordi-
naateissa. Niiden laskemiseen on käytettävissä erilaisia tehokkaita niin
sanottuja rekursiivisia algoritmeja, kuten seuraava, joka on algoritmi
vain tavallisille Legendren polynomeille Pn = Pn0:

nPn(t) = − (n− 1)Pn−2(t) + (2n− 1) tPn−1(t). (3.1)

Vastaavanlaisia yhtälöitä löytyy myös funktioille Pnm,m > 0. On jopa
valinnan varaa, vaikka useimmat yhtälöt ovat mutkikkaita. Niiden
ohjelmoinnissa on varottava, etteivät kertomat mene yli laidan. Jo 30:n
kertoma 30! on suurempi luku kuin tietokoneet osaavat käsitellä 64-
bittisinä kokonaislukuina — luvusta 360:n kertoma 360! puhumattakaan,
johon ei edes riitä standardi 64-bittinen liukulukuformaatti. Toisin kuin
sanotaan, Heiskasen ja Moritzin (1967) yhtälö 1-62 ei suoraan kelpaa
tietokonekäyttöön!

1Adrien-Marie Legendre (1752–1833) oli ranskalainen matemaatikko ja tunnettu
työstään lukuteoriassa, tilastotieteessä ja elliptisten funktioiden saralla. Hän keksi
Gaussista riippumatta pienimmän neliösumman menetelmän. Hänen nimensä löytyy
Eiffel-tornista, Eiffel Tower, 72 names.
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358 Legendren funktiot ja pallofunktiot

^ Taulukko 3.1. Legendren polynomeja. t = sinϕ.

t:n funktiona Ilmaistuna sineihin ja kosineihin

P0(t) = 1 P0(sinϕ) = 1
P1(t) = t P1(sinϕ) = sinϕ
P2(t) =

3
2t
2 − 1

2 P2(sinϕ) = −34 cos 2ϕ+ 1
4

P3(t) =
5
2t
3 − 3

2t P3(sinϕ) = −58 sin 3ϕ+ 3
8 sinϕ

P4(t) =
1
8

(︁
35t4 − 30t2 + 3

)︁
P4(sinϕ) = 35

64 cos 4ϕ− 5
16 cos 2ϕ+ 9

64

P5(t) =
1
8

(︁
63t5 − 70t3 + 15t

)︁
P6(t) =

1
16

(︁
231t6 − 315t4 + 105t2 − 5

)︁
Ensimmäiset Legendren polynomit luetteloidaan taulukossa 3.1. Tätä

korkeampia polynomeja tarvitaan käsilaskennassa harvoin.
Vertailun vuoksi, myös Fourier’n kantafunktiot (kuten, monimutkai-

0◦ −→ ϕ

P6
P10
P25

P3

P5

P4

−1

−0,5

0

0,5

1

−1 0 −→ t 0,5 1−0,5

−90◦ 90◦30◦

P4

P0P0

P1P1

P1P1

P5

P3

P6
P2P2

−30◦

Kuva 3.1. Muutama Legendren polynomi P0(t), . . . , P25(t) argumentin t =
sinϕ funktioina.^
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Legendren funktiot 3.1 59
semmalla tavalla, myös sinit ja kosinit yhdessä!)

Fj(x) = exp
(︂
2πij

x
L

)︂
,

jossa i2 = −1, voidaan laskea rekursiivisesti:

Fj+1(x) = Fj(x) · F1(x).

^ 3.1.1 Legendren polynomien ominaisuudet
◦ Parilliset polynomit, joiden asteluku n on parillinen, ovat peili-

symmetrisiä origon ϕ = t = 0 eli päiväntasaajan tason kautta:
Pn(−t) = Pn(t), eli vastaavasti Pn

(︁
sin(−ϕ)

)︁
= Pn(sinϕ). Tämä

merkitsee, että niiden arvot samalla leveysasteella päiväntasaajan
molemmin puolin ovat identtisiä. Parittomat polynomit ovat taas
antisymmetrisiä: Pn(−t) = −Pn(t) eli Pn

(︁
sin(−ϕ)

)︁
= −Pn(sinϕ),

eli niiden arvot samalla leveysasteella päiväntasaajan pohjois- ja
eteläpuolella ovat vastakkaisia.

◦ Kuvasta 3.1 nähdään, että polynomit Pn(t) menevät koko välillä
t ∈

[︁
−1, 1

]︁
eli ϕ ∈

[︁
−90◦, 90◦

]︁
tarkasti n kertaa nollan läpi.

◦ Kun päätepisteiden t = ±1, ϕ = ±90◦ arvot ovat ±1, seuraa,
että on tarkasti n + 1 ”etumerkkiväliä” eli avoimia välejä, joilla
polynomin arvot ovat joko yksinomaan positiivisia tai yksinomaan
negatiivisia.

^ 3.1.2 Legendren liitännäisfunktioiden ominaisuudet
Legendren liitännäisfunktioista Pnm, m ̸= 0 esitetään esimerkkeinä
muutama taulukossa 3.2.

Eräs niitä määrittelevä yhtälö on

Pnm(t) =
(︁
1− t2

)︁m/2 dmPn(t)
dtm

. (3.2)

◦ Myös Legendren liitännäisfunktiot ovat joko peilisymmetrisiä
origon eli päiväntasaajan tason kautta, Pnm(−t) = Pnm(t) eli
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P22P22

P32

P32

P31

P32

P21

15

10

5

0

−5

P33P33
P25,25
5 · 1030
P25,25
5 · 1030

−1 −0,5 0,5 1

P11P11

P33P33

P31P31P21P21

0 −→ t

Kuva 3.2. Legendren liitännäisfunktioita. Huomaa äärimmäisen erilainen mit-
takaava funktiolle P25,25, katso yhtälö 3.8.^

vastaavasti Pnm
(︁
sin(−ϕ)

)︁
= Pnm(sinϕ), tai antisymmetrisiä,

Pnm(−t) = −Pnm(t) eli Pnm
(︁
sin(−ϕ)

)︁
= −Pnm(sinϕ), riippuen

asteluvun n ja järjestysluvunm lukuarvoista.

◦ Kuva 3.2 antaa uskoa, että polynomit Pnm(t) menevät välillä
t ∈

[︁
−1, 1

]︁
eli ϕ ∈

[︁
−90◦, 90◦

]︁
tarkasti n −m kertaa nollan läpi.

Tämä pitää tosiaankin paikkansa.

^ Taulukko 3.2. Legendren liitännäisfunktioita.

t:n funktiona Trigonometrisena funktiona

P11(t) =
√
1− t2 P11(sinϕ) = cosϕ

P21(t) = 3t
√
1− t2 P21(sinϕ) = 3 sinϕ cosϕ

P22(t) = 3
(︁
1− t2

)︁
P22(sinϕ) = 3 cos2ϕ

P31(t) =
3
2

(︁
5t2 − 1

)︁√
1− t2 P31(sinϕ) = 3

2

(︁
5 sin2ϕ− 1

)︁
cosϕ

P32(t) = 15t
(︁
1− t2

)︁
P32(sinϕ) = 15 sinϕ cos2ϕ

P33(t) = 15
(︁
1− t2

)︁3/2
P33(sinϕ) = 15 cos3ϕ
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Legendren funktiot 3.1 61
◦ Kun myös päätepisteiden t = ±1, ϕ = ±90◦ arvot ovat nolla,

seuraa, että on tarkasti n−m+ 1 ”etumerkkiväliä”.

^ 3.1.3 Pintapallofunktiot
Lähtien yhtälöstä 2.11 voidaan kirjoittaa

Yn(ϕ, λ) =

=

n∑︂
m=0

(︁
anmPnm(sinϕ) cosmλ+ bnmPnm(sinϕ) sinmλ

)︁
=

=

n∑︂
m=−n

vnmYnm(ϕ, λ),

jossa nytm kulkee −n:stä +n:ään. Tässä

Ynm(ϕ, λ)
def
=

⎧⎨⎩Pnm(sinϕ) cosmλ josm ⩾ 0,

Pn|m|(sinϕ) sin |m| λ josm < 0,
(3.3)

vnm
def
=

⎧⎨⎩anm josm ⩾ 0,

bn|m| josm < 0.
(3.4)

Nämä ovat asteluvun n ja järjestysluvunm pintapallofunktiot.
Pintapallofunktioita, kuten myös avaruuspallofunktioita, löytyy kol-

menlaisia:

Zonaalisia eli vyöhykefunktioita m = 0. Funktiot riippuvat vain le-
veysasteesta.

Sektoriaalisia eli sektorifunktioita m = n. Funktioiden etumerkki
vaihtelee vain pituus- eikä leveysasteen mukaan. Funktiot itse
kuitenkin riippuvat sekä leveys- että pituusasteesta!

Tesseraalisia eli ruutufunktioita 0 < m < n. Funktiot, joiden etu-
merkki vaihtelee sekä leveys- että pituusasteen mukaan, muodos-
tavat pallon pintaan ”shakkilautamaisen” kuvion, jos positiiviset
arvot maalataan valkoisiksi ja negatiiviset harmaiksi (lat. tessera:
tiili mosaiikin tekoon).
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(a)
Vyöhykefunktioita:

P50(sinϕ)

(b)
Sektorifunktioita:
P66(sinϕ) cos 6λ

(c)
Ruutufunktioita:
P11,6(sinϕ) cos 6λ

Kuva 3.3. Eri pallofunktioiden etumerkit Maan pinnalla. Valkoinen positiivi-
nen, harmaa negatiivinen. Funktiot ”aaltoilevat” sini- tai kosinifunk-
tioiden tavoin.^

Jokainen funktio menee välillä sinϕ ∈
[︁
−1,+1

]︁
tarkasti n−m kertaa

nollan läpi. Jokainen funktio on joko symmetrinen tai antisymmetrinen
origon kautta ϕ:n tai t = sinϕ:n funktiona.

Pallofunktiot edustavat siis eräänlaista aaltoilmiötä. Ne eivät kui-
tenkaan ole varsinaisia aaltofunktioita (sinuksia ja kosinuksia), yhteys
näihin on vähintään mutkikas. On kuitenkin mielekästä puhua niiden
aallonpituudesta.

Kuvassa 3.3 näkyy, miten eri pallofunktioiden etumerkit käyttäytyvät
Maan pinnalla — ja sen yläpuolella. Tämä on perspektiivikuva, eivätkä
kaikki valkoiset ja harmaat alueet näy!

Yhtälössä 2.11 esiintyvät lausekkeet cosmλ ja sinmλmenevät koko
ympyrällä eli päiväntasaajalla, 0◦ ⩽ λ < 360◦ eli 0 ⩽ λ < 2π, tarkasti
2m kertaa nollan läpi. ”Puoliaallonpituus” on siis

2πR
2m

= π
R
m,

jossa R on maapallon säde.
Samanlainen kaava pätee myös funktioille Pnm(sinϕ): kun funktio

menee nollan läpi n−m kertaa navasta napaan välillä −90◦ < ϕ < 90◦
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Kuva 3.4. Pintapallofunktiot karttoina. Vaaka-akseli λ ∈
[︁
0, 360◦

)︁
=
[︁
0, 2π

)︁
,

pystyakseli ϕ ∈
[︁
−90◦, 90◦

]︁
=
[︁
− π

/︁
2 , π

/︁
2
]︁
. Kuvatut funktiot ovat

P50(sinϕ) P66(sinϕ) cos 6λ P11,6(sinϕ) cos 6λ
P40(sinϕ) P65(sinϕ) cos 5λ P10,6(sinϕ) cos 6λ

.
^

eli − π
/︁
2 < ϕ < π

/︁
2 , seuraa, että tässäkin tapauksessa edustava

puoliaallonpituus on
πR

n−m.

Jos sĳoitetaan tähän eri järjestysluvun m ja lausekkeen n −m arvot,
saadaan tuloksena taulukko 3.3.

Tämä taulukko antaa myös pallofunktiokehitelmällä saavutettavaa
erotuskykyä, eli kuinka yksityiskohtaisesti kehitelmä voi kuvata Maan
painovoimakenttää. Nykyisin käytettävissä olevat kehitelmät, kuten
EGM2008-malli, menevät asteluvulle n = 2159 asti. Niiden luoman
geopotentiaalikuvan ”terävyys” on siis 9 km. Satelliittiratahäiriöistä
johdetut mallit menevät usein vain asteluvulle 20 saakka, jolloin näkyvät
vain mantereen kokoiset — suuruusluokkaa 1000 km — yksityiskohdat.
Toisaalta kokeelliset topografian pallofunktiokehitelmät menevät jopa
asteluvulle 10 800 saakka (Balmino ym., 2012).
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^ Taulukko 3.3. Puoliaallonpituudet pallofunktioiden eri aste- ja järjestys-
luvuille.

m tai n−m Puoliaallonpituus (km) Asteina

10 2000 18◦

40 500 4◦, 5

180 111 1◦

360 55 30 ′ = 0◦, 5

1800 11 6 ′ = 0◦, 1

10 800 1,85 1 ′ = 0◦, 017

^ 3.2 Pallofunktiokehitelmän symmetriaominaisuudet

Toistetaan tässä pallofunktiokehitelmä:

V(ϕ, λ, r) =

∞∑︂
n=0

1
rn+1

n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) .

(2.12)

^ 3.2.1 Riippuvuus leveysasteesta ϕ
Nähdään, että riippuvuus leveysasteestaϕ toimii pelkästään Legendren
funktion Pnm(sinϕ) kautta. Tämä funktio voi olla pohjoisen ja eteläisen
pallonpuoliskon välisen peilisymmetrian kannalta joko symmetrinen tai
antisymmetrinen argumentissa ϕ. Tämä merkitsee, että joko (symmetri-
nen tapaus)

Pnm(sinϕ) = Pnm
(︁
sin(−ϕ)

)︁
tai (antisymmetrinen tapaus)

Pnm(sinϕ) = −Pnm
(︁
sin(−ϕ)

)︁
.

Vastaavasti se merkitsee, että kun t = sinϕ, pätee joko (symmetrinen
tapaus)

Pnm(t) = Pnm(−t)
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tai (antisymmetrinen tapaus)

Pnm(t) = −Pnm(−t).

Kumpi tapaus pätee, riippuu molempien, n jam, arvoista. Asian ratkai-
semiseksi tutki vaikkapa yhtälöä 3.2:

Pnm(t) =
(︁
1− t2

)︁m/2 dmPn(t)
dtm

. (3.2)

Tarvitaan vastaus pariin kysymykseen:

1) Millä asteluvun n arvoilla polynomi Pn(t) on symmetrinen, millä
arvoilla antisymmetrinen argumentissa t? Tämän ratkaisemiseksi
voi tutkia polynomien rekursiivista laskenta-algoritmia, yhtälö 3.1.
Tiedämme jo, että P0(t) = 1 on symmetrinen ja P1(t) = t on anti-
symmetrinen. Muiden n-arvojen sääntö saadaan rekursiivisesti
tai voit luntata taulukosta 3.1.

2) Millä tavalla differentiointi d
dt

vaikuttaa funktion symmetrisyyteen
tai antisymmetrisyyteen?

Kertominen lausekkeella
√
1− t2 = cosϕ ei muuta mitään, koska tämä

kerroin on itse symmetrinen argumentissa t tai ϕ.
Jos halutaan, että kehitelmä 2.12 on peilisymmetrinen pohjoisen ja

eteläisen pallonpuoliskon välillä, tulee asettaa nollaksi ne kertoimet
anm, bnm, joiden vastaava Pnm on antisymmetrinen. Silloin ne termit
häviävät sarjakehitelmästä. Jäljelle jäävät silloin kertoimet ja termit,
joiden vastaava Pnm on symmetrinen.

Taulussa 3.4 annetaan koodipätkä octave-skriptauskielellä mielivaltai-
sen pintapallofunktion piirtämiseksi ja sen symmetriaominaisuuksien
arvioimiseksi silmämääräisesti. Älä luule, vaan kokeile.

^ 3.2.2 Riippuvuus pituusasteesta λ
Tämä riippuvuus toimii ”Fourier’n kantafunktioiden“ cosmλ ja sinmλ
kautta. Mielenkiintoisin ominaisuus tässä on pyörähdyssymmetria: muut-
tuuko pallofunktiokehitelmä 2.12, kun pituusaste λmuuttuu?
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^ Taulu 3.4. Pintapallofunktion kartan piirtäminen. Huomaa, että tässä käytetty
octaven Legendren liitännäisfunktioiden koodi sisältää ylimääräisen kertoi-
men (−1)m, joten yhtälön 3.2 verrattuna kaiken parittoman järjestysluvun
funktioilla on päinvastainen etumerkki.

% Pintapallofunktioiden piirtäminen

phi=linspace(-90,90,72);

lab=linspace(0,360,144);

[f,l]=meshgrid(phi,lab);

n=5; m=-3;

leg=legendre(n,sin(phi.*pi./180));

if m >= 0

cs=cos(m.*lab.*pi./180);

else

cs=sin(abs(m).*lab.*pi./180);

end

v=leg(abs(m)+1,:)’*cs;

contourf(l,f,v’)

xlabel(’Pituusaste’, ’FontSize’, 16)

ylabel(’Leveysaste’, ’FontSize’, 16)

str=sprintf(’Pintapallofunktio n=%d, m=%d’, n, m)%

title(str, ’FontSize’, 20)

axis ([0 360 -90 90])

colorbar()

print(’legendre2D.jpg’,’-djpg’)

Näemme heti, että on olemassa riippuvuutta pituusasteesta λ, jos
kertoimista anm, bnm,m ̸= 0 yksikin eroaa nollasta. Saadakseen aikaan
pyörähdyssymmetriaa kaikkien kerrointen anm ja bnm arvoillem > 0

tulee nollata: a11 = b11 = a21 = b21 = a22 = b22 = · · · = 0.
Jäljelle jäävistä kertoimista voimme sanoa, että josm = 0, sinmλ = 0

identtisesti, siis kertoimet b00, b10, b20, . . . ovat yksinkertaisesti ilman
merkitystä. Niiden arvot saavat olla mitä vain, mukaan lukien nolla.
Kertoimet a00, a10, a20, . . . taas ovat merkityksellisiä, koska josm = 0,
silloin cosmλ = 1 identtisesti. Näin saamme pyörähdyssymmetrisenä

í � Õ! ¤.�û



Legendren funktioiden ortogonaalisuus 3.3 67
kehitelmänä

V(ϕ, λ, r) = V(ϕ, r) =

∞∑︂
n=0

1
rn+1

anPn(sinϕ),

jossa Pn
def
= Pn0 ovat tutut Legendren polynomit, ja an

def
= an0.

^ 3.3 Legendren funktioiden ortogonaalisuus

Legendren polynomit ovat ortogonaalisia: integraali — muodollisesti
vektoreiden skalaaritulo — on

⟨︁
Pn · Pn ′

⟩︁
t

def
=

w +1

−1
Pn(t)Pn ′(t)dt =

⎧⎨⎩
2

2n+ 1
jos n = n ′,

0 jos n ̸= n ′.
(3.5)

Tämä ortogonaalisuus on vain yksi esimerkki yleisemmästä tavasta
katsoa funktioita ja funktioiden integraaleja. Kyseessä on hyödyllinen
analogia vektoriavaruuden kanssa, katso liite B.

Voimme kirjoittaa vaihtoehtoisesti, yksikköpallon σ pinnalla ja käyttäen
parametrisointia2 (ψ,α) kulmaetäisyyden ja atsimuutin mukaan, katso 2

kuva 10.1:
x

σ
Pn(cosψ)Pn ′(cosψ)dσ =

=
w 2π
0

w π
0
Pn(cosψ)Pn ′(cosψ) sinψdψdα =

= −2π
w −1

+1
Pn(t)Pn ′(t)dt = 2π

w +1

−1
Pn(t)Pn ′(t)dt,

jossa t = cosψ ja yksikköpallon pinta-alkio dσ = sinψdψdα, jossa
taas sinψ on (ψ,α)-koordinaattien Jacobin3 determinantti. Siis pätee 3

2Tämä parametrisointi voidaan katsoa leveys- ja pituusastekoordinaatistoksi: leveys-
aste on 90◦ −ψ = 1

2
π−ψ, pituusaste on α.
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⟨︁
Pn · Pn ′

⟩︁
σ

def
=

x

σ
Pn(cosψ)Pn ′(cosψ)dσ =

⎧⎨⎩
4π

2n+ 1
jos n = n ′,

0 jos n ̸= n ′,

(3.6)
jossa ψ on kulmaetäisyys integrointipisteestä parametrisoinnin (ψ,α)

origoon ψ = 0. Yhtälö 3.6 kertoo, että Legendren polynomit ovat
keskenään ortogonaalisia, jos funktioiden vektoritulo on määritetty
yksikköpallon σ pintaintegraalina.

Vaihtoehtoisesti voimme määrittää myös täysin normalisoituja Le-
gendren polynomeja

Pn(cosψ) def
=
√
2n+ 1Pn(cosψ). (3.7)

Nyt modifioitu skalaaritulo — tulon keskiarvo yksikköpallon pinnan
yli — on

⟨︁
Pn · Pn ′

⟩︁
σ

def
=
1
4π

x

σ
Pn(cosψ)Pn ′(cosψ)dσ =

⎧⎨⎩1 jos n = n ′,

0 jos n ̸= n ′,

jolloin polynomit ovat ortonormaaleja4. Samanlaisia täysin normalisoituja4

Legendren liitännäisfunktioita on olemassa, katso Heiskanen ja Moritz
1967, sivu 31:

Pnm(cosψ) def
=

√︄
2 (2n+ 1)

(n−m)!
(n+m)!Pnm(cosψ), m ̸= 0. (3.8)

Tässä tapauksessa ortonormaalit funktiot ovat yhtälön 3.3 funktiot
normalisoituina:

Ynm(ψ,α) =

⎧⎨⎩Pnm(cosψ) cosmα josm ⩾ 0,

Pn|m|(cosψ) sin |m|α josm < 0.

3Carl Gustav Jacob Jacobi (1804–1851) oli saksalainen matemaatikko, joka tunnetaan
elliptisten funktioiden tutkimuksestaan.
4Ja myös ⟨︁

Pn · Pn′
⟩︁
t

def
= 1
2

w +1

−1
Pn(t)Pn′(t)dt =

⎧⎨⎩1 jos n = n ′,

0 jos n ̸= n ′,

taas tulon keskiarvo integrointivälin yli.
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Vastaava skalaaritulo on⟨︁
Ynm · Yn ′m ′

⟩︁
σ

def
=
1
4π

x

σ
Ynm(ψ,α) Yn ′m ′(ψ,α)dσ =

=

⎧⎨⎩1 jos n = n ′ jam = m ′,

0 muuten.

^ 3.4 Matalan asteluvun pallofunktiot

Pistemassan potentiaalikenttä on (yhtälö 1.4):

V =
GM
r .

Potentiaalikehitelmän 2.12 asteluvun n = 0 vastaava termi on

V0(ϕ, λ, r) =
1
ra00P00 (sinϕ) = 1

ra00P0 (sinϕ) = a00
r ,

josta
a00 = GM.

Siis a00 edustaa origossa sĳaitsevan massapisteen tai pallosymmetrisen
massajakauman voimakenttää. Korkeammat pallofunktiokertoimet ovat
”häiriöitä” tämän päälle.

Ensimmäisen asteen kerrointen kehitelmä on seuraavan näköinen:

V1(ϕ, λ, r) =
1
r2

(a11 cosϕ cos λ+ b11 cosϕ sin λ+ a10 sinϕ) .

Kirjoita tämä vektorimuotoon käyttämällä sĳaintivektorin lauseketta

rr = (r cosϕ cos λ) ii+ (r cosϕ sin λ) jj+ (r sinϕ)kk

— jossa
{︁
ii, jj,kk

}︁
on euklidisen avaruuden ortonormaali kanta — tulok-

sena
V1(rr) =

1
r3
⟨︁
(a11ii+ b11jj+ a10kk) · rr

⟩︁
.

Dipolin potentiaalikenttä on

V(rr) =
G
r3
⟨︁
dd · rr

⟩︁
,
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m

d

Kuva 3.5. Monopoli, dipoli ja kvadrupoli Maan keskuksessa sekä niiden vai-
kutukset geoidiin.^

jossa dd on dipolimomentti. Vertailemalla saa

a11ii+ b11jj+ a10kk = Gdd,

siis ensimmäisen asteluvun n = 1 pallofunktiokertoimet edustavat
Maan gravitaatiokentän dipolimomenttia.

Jokaisen maapallomme massa-alkion dm voidaan katsoa koostuvan

◦ monopolista koordinaattĳärjestelmän origossa, suuruus dm

◦ dipolista, suuruus rrdm, jossa rr on massa-alkion sĳaintivektori.

Silloin voimme laskea koko maapallon dipolimomentin integroimalla:

dd⊕ =
y

⊕
rrdm =

y

⊕
ρrrdV =

y

⊕
ρdV ·

t
⊕ρrrdVt
⊕ ρdV

=M⊕ · rrmkp,

jossa rrmkp on määritelmän mukainen maapallon massakeskipisteen paik-
ka. Tästä seuraa, että jos valitsemme koordinaattĳärjestelmämme niin,
että origo on Maan massakeskipisteessä, pallofunktiokertoimet a11,
b11 ja a10 häviävät. Jos satelliittien liikeyhtälöt on formuloitu tietyssä
koordinaattĳärjestelmässä, kuten GPS-satelliittien tapauksessa WGS84-
järjestelmässä, on järjestelmän origo automaattisesti Maan massakeski-
pisteessä, ja ensimmäisen asteluvun pallofunktiokertoimet ovat oikeasti
nolla.
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Sama logiikka pätee korkeammille pallofunktioiden asteluvuille.

Asteluvun 2 kertoimet edustavat maapallon kvadrupolimomenttia — mikä
vastaa sen hitaustensoria — ja niin edelleen.

^ 3.5 Funktion hajottaminen5 asteosuuksiin 5

Pintapallofunktioille on olemassa hyödyllinen integraaliyhtälö, jos
vastaava funktio f pallon pinnalla on annettu. Yhtälö on Heiskasen ja
Moritzin (1967) yhtälö 1-71, käyttämällä notaatiotamme Yn → fn:

fn(ϕ, λ) =
2n+ 1
4π

x

σ
f
(︁
ϕ ′, λ ′)︁Pn(cosψ)dσ ′, (3.9)

jossa ψ on geosentrinen kulmaetäisyys laskentapisteen (ϕ, λ) ja liikku-
van data- eli integrointipisteen (ϕ ′, λ ′) välillä, katso kuva 8.2. Tässä
asteosuusyhtälössä 3.9 on tietty samanlaisuus projektio- eli kerroinlasken-
tayhtälön B.11 kanssa. Tässä ei kuitenkaan lasketa spektraalikertoimia,
vaan ”spektraaliosuusfunktioita” fn.

Palautamme mieleen funktioiden fn keskeisen ominaisuuden

f(ϕ, λ) = f(ϕ, λ, R) =

∞∑︂
n=0

fn(ϕ, λ)

pallon r = R pinnalla.
Asteosuusyhtälön todistamiseksi valitaan ilman yleispätevyyden

menetystä laskentapiste (ϕ, λ)koordinaattijärjestelmän ”pohjoisnavaksi”
eli ϕ = 90◦. Silloin ϕ ′ = 90◦ −ψ. Kirjoittamalla yhtälön 2.12 tavoin:

f
(︁
ϕ ′, λ ′)︁ = ∞∑︂

n=0

n∑︂
m=0

Pnm
(︁
cosψ

)︁
(anm cosmλ ′ + bnm sinmλ ′) ,

sĳoittamalla tämä asteosuusyhtälöön 3.9 ja käyttämällä hyväksi Le-

5Tai hajoittaminen, katso Kolehmainen (2008).
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gendren funktioiden ortogonaalisuutta saadaan oikeaksi puoleksi:

IR =
2n+ 1
4π

x

σ
f
(︁
ϕ ′, λ ′)︁Pn(cosψ)dσ ′ =

=
2n+ 1
4π

an0

x

σ
P2n(cosψ)dσ ′.

Seuraavaksi yhtälön 3.6 avulla

IR =
2n+ 1
4π

an0
4π

2n+ 1
= an0 = an.

Asteosuusyhtälön vasemmaksi puoleksi saadaan, koska oletetulla poh-
joisnavalla ϕ = 90◦ ja siis sinϕ = 1:

IL = fn(ϕ, λ) = fn(90
◦, λ) =

=

n∑︂
m=0

Pnm(1) (anm cosmλ+ bnm sinmλ) = Pn0(1)an0 = an,

käyttämällä yhtälöä 2.11 ja

Pn0(1) = 1,

Pnm(1) = 0, m ̸= 0.

Kun tämä pätee jokaiselle pisteelle (ϕ, λ), seuraa, että asteosuusyhtälö
3.9 on yleisesti tosi. Huomaa, että kerrointen an arvot riippuvat pisteen
valinnasta!

^ 3.6 Eri suureiden spektraaliesitykset

^ 3.6.1 Potentiaali
Lähtien yhtälöstä 2.10 kirjoitamme geopotentiaalin V spektraaliesityksen
avaruudessa:

V(ϕ, λ, r) =

∞∑︂
n=0

(︂
R
r

)︂n+1
Vn(ϕ, λ), (3.10)
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jossa asteosuudet Vn ovat

Vn(ϕ, λ) =
Yn(ϕ, λ)

Rn+1
=

=
1

Rn+1

n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) =

=
1

Rn+1

n∑︂
m=−n

vnmYnm(ϕ, λ).

Tässä kantafunktiot Ynm on määritelty yhtälössä 3.3:

Ynm(ϕ, λ) =

⎧⎨⎩Pnm(sinϕ) cosmλ josm ⩾ 0,

Pn|m|(sinϕ) sin |m| λ josm < 0,

ja kertoimet, yhtälö 3.4:

vnm =

⎧⎨⎩anm josm ⩾ 0,

bn|m| josm < 0.

Maan pinnalla (r = R) tämä antaa

V(ϕ, λ, R) =

∞∑︂
n=0

Vn(ϕ, λ) =

∞∑︂
n=0

1
Rn+1

n∑︂
m=−n

vnmYnm(ϕ, λ). (3.11)

Voimme yhdistää löytyneet yhteydet kommutoivaksi kaavioksi 3.6. Ai-
van kuten osiossa 2.2 suorakulmaiselle geometrialle, nähdään, että
potentiaalifunktion V siirtäminen pallotasosta R tasoon r = R +H on
olennaisesti helpompaa taajuusdomeenissa — asteosuudet Vn(ϕ, λ) —
kuin avaruusdomeenissa.

^ 3.6.2 Gravitaatio
Neumannin6 reuna-arvotehtävässä ratkaistaan funktioV , jonka normaali- 6

derivaatta ∂

∂n
V on annettu suljetulla pinnalla avaruudessa, esimerkiksi

kappaleen pinnalla.

6Carl Gottfried Neumann (1832–1925) oli saksalainen matemaatikko, joka tutki
Dirichletin reuna-arvotehtävää.
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Avaruusdomeeni Taajuusdomeeni

V(ϕ, λ, R)
Vn(ϕ,λ) =

2n+ 1

4π

x

σ
V(ϕ ′, λ ′,R)Pn(cosψ)dσ ′

−−−−−−−−−−−−−−−−−−−−−−−−−−→ =

∞∑︂
n=0

Vn(ϕ, λ)⏐⏐↓(vaikea) × (helppo)
⏐⏐↓

V(ϕ, λ, r)

∑︂
←−−−−−−−−−−−−−−−−−−−−−−−−−− =

∞∑︂
n=0

(︁
R
r

)︁n+1
Vn(ϕ, λ)

Kuva 3.6. Harmonisen kentänV pystysuuntainen eli säteittäinen siirto avaruus-
ja taajuus- eli astelukudomeeneissa. Pallogeometria.^

Jos kappale on pallo, saa olettaa ∂

∂n
V = ∂

∂r
V ja käyttää pallofunktio-

kehitelmiä. Differentioimalla yhtälö 3.10 saadaan

∂V
∂r

= −

∞∑︂
n=0

n+ 1
r

(︂
R
r

)︂n+1
Vn(ϕ, λ) = −

∞∑︂
n=0

n+ 1
R

(︂
R
r

)︂n+2
Vn(ϕ, λ).

Merenpinnalla tämä merkitsee

∂V
∂r

⃓⃓⃓
r=R

= −

∞∑︂
n=0

n+ 1
R

Vn(ϕ, λ).

Jos kirjoitetaan myös merenpinnalla gravitaatiolle

g(ϕ, λ, R)
def
=
∂V
∂r

⃓⃓⃓
r=R

def
=

∞∑︂
n=0

gn(ϕ, λ),

seuraa analogisesti, että

gn(ϕ, λ) = −
n+ 1
R

Vn(ϕ, λ),

ja kääntäen, että
Vn(ϕ, λ) = −

R
n+ 1

gn(ϕ, λ).
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Tuloksena saadaan erään Neumannin tehtävän ratkaisun spektraaliesitys:

V(ϕ, λ, r) =

∞∑︂
n=0

(︂
R
r

)︂n+1
Vn(ϕ, λ) = −R

∞∑︂
n=0

(︂
R
r

)︂n+1 gn(ϕ, λ)
n+ 1

. (3.12)

Gravitaatiolle voi kirjoittaa analogisesti potentiaalin lausekkeen 3.11
kanssa:

g(ϕ, λ, R) =

∞∑︂
n=0

gn(ϕ, λ)
def
=

∞∑︂
n=0

1
Rn+1

n∑︂
m=−n

gnmYnm(ϕ, λ), (3.13)

ja vertailu antaa johdonmukaisesti

gnm = −
n+ 1
R

vnm. (3.14)

Tämä on mielenkiintoinen ja miettimisen arvoinen tulos:

1) Ensiksikin huomaa, kuinka yksinkertainen yhteys 3.14 potentiaa-
lin vnm ja gravitaation gnm välillä on taajuusdomeenissa!

2) Toisekseen, jos käytettävissä on koko maapallon pinnalta gravitaa-
tion kiihtyvyyden mittausarvoja g(ϕ, λ), voisimme johtaa niistä
asteosuusfunktiot gn(ϕ, λ) aiemmin esitetyn menetelmän avulla.
Sen jälkeen voimme saada ratkaisun yhtälön 3.12 avulla koko
maapallon ulkopuoliselle geopotentiaalikentälle! Tämä on geopo-
tentiaalin määrityksen — tai geoidimäärityksen — perusajatus
spektraalinäkökulmasta.

^ 3.7 Usein käytetyt pallofunktiokehitelmät

Tarjolla olevista globaaleista pallofunktiokehitelmistä mainittakoon
jo vanhentunut malli EGM96. Sen kehittivät Ohion valtionyliopiston
tutkĳat käyttämällä hyvin laajaa, Yhdysvaltojen NIMAn (National Imagery
and Mapping Agency, entinen Defense Mapping Agency DMA, nykyinen
National Geospatial-Intelligence Agency NGA) keräämää maailmanlaajuista
ja pääasiassa gravimetrista aineistoa. Tämä kehitelmä menee asteluvulle
360 saakka. Sen standardiesitystapa7 on 7
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V =
GM⊕
r

(︃
1+

360∑︂
n=2

(︂
a
r

)︂n n∑︂
m=0

Pnm(sinϕ)
(︁
Cnm cosmλ+ Snm sinmλ

)︁)︃
. (3.15)

Tällainen esitystapa, jossa etumerkki ”+” on kehitelmän edessä, joka
alkaa asteluvusta n = 2, ykkönen suluissa, mikä edustaa origossa
olevaa, Maan kokonaismassan suuruista pistemassaa, ja kertoimet C
ja S ovat dimensiottomia ja ”täysin normalisoituina”, on teollisuus-
standardi globaalissa tutkimusyhteisössä, joka harjoittaa pallofunktio-
kehitelmien laskemista Maan gravitaatiokentän malleiksi. Uranuurtaja
on ollut professori Richard H. Rapp Ohion valtionyliopistosta, ja siksi
malleja kutsutaan usein OSU-malleiksi.

Yleensä näissä malleissa alemmat termit — 2 ⩽ n ⩽ 20— johdetaan
pääasiallisesti satelliittiratojen häiriöiden analysoinnista. Siksi mallit
ovat koordinaattĳärjestelmässä, jonka origo on Maan massakeskipis-
teessä. Tämä selittää ensimmäisen asteluvun kerrointen puuttumisen,
kuten aiemmin selostettiin.

Korkeammat kertoimet — 20 < n ⩽ 360— olivat ennen vuotta 2000
pääosin sekä painovoima-aineistojen (maa-alueet) että satelliittialtimet-
riadatan (valtameret) analyysin tulosta. Painovoimasatelliittien CHAMP,
GRACE ja GOCE laukaisujen jälkeen ja niiden mittausten seurauksena on
nykyisin ainakin astelukuväli 20 < n ⩽ 200 avaruusgeodesian tuotos.
Vieläkin korkeammat asteluvut tulevat edelleen maanpäällisestä datas-
ta. Uudempi malli EGM2008 (Pavlis ym., 2012) pääsee jopa asteluvulle
2159 saakka.

Taulussa 3.5 annetaan EGM96-mallin ensimmäisiä ja viimeisiä kertoi-
mia. EGM96 on tuorein ja paras pallofunktiomalli painovoimasatelliitti-
missioiden edeltävältä ajalta. Taulukoidut arvot ovat n,m, Cnm, Snm ja
molempien kerrointen keskivirheet niiden laskennasta. Huomaa, että
kaikki Sn0 häviävät!

7Käytetyt symbolit ovat a = a⊕, joka merkitsee Maan vertausellipsoidin päiväntasaaja-
sädettä eikä R, ja ϕ, joka merkitsee geosentristä leveysastetta. Koordinaatit (ϕ, λ, r)
muodostavat pallokoordinaattĳärjestelmän.
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Joskus myös ei-normalisoituja kertoimia käytetään ja kirjoitetaan

V =
GM⊕
r

(︃
1−

∞∑︂
n=2

(︂
a
r

)︂n n∑︂
m=0

Pnm(sinϕ) (Jnm cosmλ+ Knm sinmλ)
)︃
. (3.16)

Silloin kirjoitetaan Jn
def
= Jn0. Kerroin J2 on tärkein, maapallon litis-

tyneisyyttä ilmaiseva Maan painovoimakentän pallofunktiokerroin.
Yhtälöiden 3.7 ja 3.8 perusteella yhteys parametreihin C, S on{︄

Jn0

Kn0

}︄
= −
√
2n+ 1

{︄
Cn0

Sn0

}︄
,{︄

Jnm

Knm

}︄
= −

√︄
2 (2n+ 1)

(n−m)!
(n+m)!

{︄
Cnm

Snm

}︄
, m ̸= 0.

(3.17)

^ 3.8 Ellipsoidifunktiot

Laplacen differentiaaliyhtälö 1.13 voidaan kirjoittaa ja ratkaista pallo-
koordinaattien sĳaan ellipsoidisiin koordinaatteihin. Tulos tunnetaan
ellipsoidifunktiokehitelmänä8 (engl. ellipsoidal harmonics). Menetelmää 8

käytetään vähän, koska tarvittava matematiikka on monimutkaisempaa.
Myös ellipsoidiset koordinaatit ovat lähinnä teoreettisesti kiinnostavia
eivätkä geodesiassa laajassa käytössä.

Esitystapa on

V(β, λ, u) =

=

∞∑︂
n=0

n∑︂
m=0

Qnm
(︁
iu
E

)︁
Qnm

(︁
ib
E

)︁Pnm(sinβ) (Ae
nm cosmλ+ Be

nm sinmλ) , (3.18)

jossaQnm(zz) ovat toisen lajin Legendren funktiot, joista pieni näyte löytyy
taulukosta 3.6. Vaikka yleinen argumentti zz on kompleksinen, yhtälö

8Tämä kehitelmä pyörähdysellipsoidille eroaa Lamén funktioihin perustuvasta kehi-
telmästä, joka pätee kolmiakselisen ellipsoidin tapauksessa.
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378 Legendren funktiot ja pallofunktiot

^ Taulu 3.5. EGM96-pallofunktiokehitelmän kertoimia ja keskivirheitä.

n m Cnm Snm Cnm:n
keskivirhe

Snm:n
keskivirhe

2 0 −0.484165371736E−03 0.000000000000E+00 0.35610635E−10 0.00000000E+00
2 1 −0.186987635955E−09 0.119528012031E−08 0.10000000E−29 0.10000000E−29
2 2 0.243914352398E−05 −0.140016683654E−05 0.53739154E−10 0.54353269E−10
3 0 0.957254173792E−06 0.000000000000E+00 0.18094237E−10 0.00000000E+00
3 1 0.904627768605E−06 0.248513158716E−06 0.13965165E−09 0.13645882E−09
3 2 0.904627768605E−06 −0.619025944205E−06 0.10962329E−09 0.11182866E−09
3 3 0.721072657057E−06 0.141435626958E−05 0.95156281E−10 0.93285090E−10
4 0 0.539873863789E−06 0.000000000000E+00 0.10423678E−09 0.00000000E+00
4 1 −0.536321616971E−06 −0.473440265853E−06 0.85674404E−10 0.82408489E−10
4 2 0.350694105785E−06 0.662671572540E−06 0.16000186E−09 0.16390576E−09
4 3 0.990771803829E−06 −0.200928369177E−06 0.84657802E−10 0.82662506E−10
4 4 −0.188560802735E−06 0.308853169333E−06 0.87315359E−10 0.87852819E−10
5 0 0.685323475630E−07 0.000000000000E+00 0.54383090E−10 0.00000000E+00
5 1 −0.621012128528E−07 −0.944226127525E−07 0.27996887E−09 0.28082882E−09
5 2 0.652438297612E−06 −0.323349612668E−06 0.23747375E−09 0.24356998E−09
5 3 −0.451955406071E−06 −0.214847190624E−06 0.17111636E−09 0.16810647E−09
5 4 −0.295301647654E−06 0.496658876769E−07 0.11981266E−09 0.11849793E−09
5 5 0.174971983203E−06 −0.669384278219E−06 0.11642563E−09 0.11590031E−09
6 0 −0.149957994714E−06 0.000000000000E+00 0.14497863E−09 0.00000000E+00
6 1 −0.760879384947E−07 0.262890545501E−07 0.22415138E−09 0.21957296E−09
6 2 0.481732442832E−07 −0.373728201347E−06 0.27697363E−09 0.28105811E−09
6 3 0.571730990516E−07 0.902694517163E−08 0.19432407E−09 0.18682712E−09
6 4 −0.862142660109E−07 −0.471408154267E−06 0.15229150E−09 0.15328004E−09
6 5 −0.267133325490E−06 −0.536488432483E−06 0.89838470E−10 0.87820905E−10
6 6 0.967616121092E−08 −0.237192006935E−06 0.11332010E−09 0.11518036E−09
...

...
360 358 0.709604781531E−10 0.691761006753E−10 0.50033977E−10 0.50033977E−10
360 359 0.183971631467E−10 −0.310123632209E−10 0.50033977E−10 0.50033977E−10
360 360 −0.447516389678E−24 −0.830224945525E−10 0.50033977E−10 0.50033977E−10

3.18 antaa reaaliarvoisen tuloksen reaaliarvoisten kerrointen Ae
nm, Be

nm

tapauksessa.
Yllä olevan yhtälön 3.18 johtamisesta kiinnostuneet löytävät sen

kirjasta Heiskanen ja Moritz (1967) osio 1-20 tai muista potentiaaliteorian
oppikirjoista.
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^ Taulukko 3.6. Toisen lajin Legendren funktioita.

Q0(zz) =
1
2 ln zz+ 1

zz− 1 (n+ 1)Qn+1(zz) − (2n+ 1) zzQn(zz) + nQn−1(zz) = 0

Q1(zz) =
1
2zz ln zz+ 1

zz− 1
− 1

Q2(zz) =
(︁
3
4zz
2 − 1

4

)︁
ln zz+ 1

zz− 1
− 3
2zz Qnm(zz) =

(︁
1− zz2

)︁m/2 dm

dzzm
Qn(zz)

Q3(zz) =
(︁
5
4zz
3 − 3

4zz
)︁

ln zz+ 1

zz− 1
− 5
2zz
2 + 2

3

^ 3.8.1 Kehitelmän skaalaus standardimuotoon
Oletetaan, että origo on Maan massakeskipisteessä, jolloin Ae

10 ≈ 0,
Ae
11 ≈ 0, Be

11 ≈ 0.
Voidaan myös näyttää, että kehitelmässä 3.18 ensimmäinen kerroin

on oltava
Ae
00 = A

e
0 =

GM⊕
E

arctan E
b

ja kehitelmä erikoistuneena pyörähdyssymmetriselle kentälle on

V∗(β, u) =

∞∑︂
n=0

V∗
n(β, u) =

∞∑︂
n=0

Qn
(︁
iu
E

)︁
Qn
(︁
ib
E

)︁Ae∗
n0 Pn(sinβ). (3.19)

Myös

V0(u) = V
∗
0(u) =

Q0
(︁
iu
E

)︁
Q0
(︁
ib
E

)︁GM⊕
E

arctan E
b
,

gravitaatiopotentiaali, joka liittyy kentän osuuteen, jonka ellipsoidinen
asteluku on nolla.

Sĳoituksilla (Heiskanen ja Moritz, 1967, sivu 66)

Q0

(︂
i
u
E

)︂
= −i arctan Eu, Q0

(︂
i
b
E

)︂
= −i arctan E

b
(3.20)

saadaan
V0(u) = V

∗
0(u) =

GM⊕
E

arctan Eu. (3.21)

Tämä vastaa pallofunktiokehitelmän ”keskeiskenttää” GM⊕
/︁
r , jonka

avulla voidaan skaalata yhtälö 3.18 sĳoittamalla yllä olevat identiteetit
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380 Legendren funktiot ja pallofunktiot

3.20. Kertoimet tulee jakaa vakiolausekkeella

GM⊕
E

arctan E
b
,

kun keskeiskenttä, lauseke 3.21, siirretään kehitelmän ulkopuolelle.
Tulos on

V(β, λ, u) =
GM⊕
E

arctan Eu ·

·
(︃
1+

∞∑︂
n=2

n∑︂
m=0

arctan E

b

arctan E

u

Qnm
(︁
iu
E

)︁
Qnm

(︁
ib
E

)︁Pnm(sinβ)
(︂
C

e
nm cosmλ+ Se

nm sinmλ
)︂)︃
,

jossa olemme samalla siirtyneet täysin normalisoituihin kertoimiinCe
nm,

S
e
nm ja Legendren funktioihin Pnm(sinβ).
Tämä on ellipsoidifunktiokehitelmä, joka vastaa standardimuotoista

pallofunktiokehitelmää 3.15, jossa Maan kokonaismassa on sulkujen
ulkopuolella ja kertoimet dimensiottomia. Tätä yhtälöä ei ole tiettävästi
käytetty käytännön geopotentiaalilaskentaan missään.

^ 3.8.2 Rappin ja ellipsoidisen kehitelmän vastaavuus
Voimme osoittaa pallofunktiokehitelmien 3.15 ja 3.16 sekä ellipsoidisen
kehitelmän 3.18 vastaavuuden, jos Maan litistyneisyys→ 0 ja siis myös
b → a, β → ϕ ja u → r. Oletamme, että Heiskasen ja Moritzin (1967)
yhtälö 1-112,

lim
E→0

Qnm
(︁
iu
E

)︁
Qnm

(︁
ib
E

)︁ =
(︂
a
r

)︂n+1
pätee. Sĳoitus yhtälöön 3.18 antaa

V(u,β, λ) = V(r, ϕ, λ) =

=

∞∑︂
n=0

n∑︂
m=0

(︂
a
r

)︂n+1
Pnm(sinϕ) (Ae

nm cosmλ+ Be
nm sinmλ) , (3.22)
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mikä identifioimalla Ae

00 = GM⊕
/︁
a , Ae

10 = Ae
11 = Be

11 = 0 ja yhteyk-
sien 3.17 kanssa saa kirjoittamaan{︄

Ae
n0

Be
n0

}︄
= −

GM⊕
a

{︄
Jn0

Kn0

}︄
=
GM⊕
a

√︁
(2n+ 1)

{︄
Cn0

Sn0

}︄
,{︄

Ae
nm

Be
nm

}︄
= −

GM⊕
a

{︄
Jnm

Knm

}︄
=

=
GM⊕
a

√︄
2 (2n+ 1)

(n−m)!
(n+m)!

{︄
Cnm

Snm

}︄
, m ̸= 0.

Sĳoitus yhtälöön 3.22 vahvistaa sen vastavuutta pallofunktioiden yhtä-
löiden 3.15 ja 3.16 kanssa.

^ 3.8.3 Ellipsoidifunktiokehitelmän käytön edut
◦ Normaaligravitaatiopotentiaalin ilmaisu on tässä esitystavassa

yksinkertainen, katso Heiskanen ja Moritz (1967) yhtälö 2-56.
Saman kentän pallofunktiokehitelmä sen sĳaan vaatii teoreettisesti
äärettömän monta kerrointa — vaikka käytännössä vain 3–4.
Kehitelmä kertoimiin J6 tai J8 saakka riittää.

◦ Litistyneella maapallolla suppenemiskäyttäytyminen on parem-
pi. Tämä siksi, että Maan litistyneisyyden takia päiväntasaaja
on noin 21 km kauempana Maan keskipisteestä kuin navat. Eri-
tyisesti korkean asteluvun pallofunktioilla on vaikeuksia supeta
tehokkaasti yhtaikaa sekä napa- että päiväntasaaja-alueille. Tämä
ongelma on pahin erittäin korkea-asteisille pallofunktiokehitel-
mille (esimerkiksi Wenzel, 1998). Jo asteluvun 360 pallofunktion
puoliaallonpituus on vain 55 km!

^ 3.8.4 Ellipsoidifunktiokehitelmän käytön huono puoli
Ellipsoidifunktiokehitelmän laskeminen on pallofunktiokehitelmää
selvästi työläämpää ja siis kalliimpaa mitattuna tietokoneresursseissa.
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^ Olenko ymmärtänyt tämän?

1) Mikä ovat asteluku ja järjestysluku pallofunktiokehitelmässä?
Miten ne liittyvät kehitelmän erotuskykyyn Maan pinnalla?

2) Mitä pallofunktioiden tyyppejä on olemassa? Kuvaile niiden
riippuvuutta leveys- ja pituusasteista.

3) Montako kertaa pintapallofunktio Ynm(ϕ, λ) vaihtaa etumerkki-
ään, kun matkustetaan meridiaania pitkin etelänavalta pohjoisna-
valle? Ja montako kertaa se vaihtaa etumerkkiään, kun matkuste-
taan maapallon ympäri päiväntasaajaa pitkin?

4) Mitä merkitsee sanonta, että funktiopari on keskenään ortogo-
naali? Anna kahden funktion välisen skalaaritulon mahdollinen
määritelmä.

5) Miten pallofunktioiden vaimennus korkeuden mukaan käyttäy-
tyy? Miksi painovoimasatelliitti, joka yrittää kartoittaa Maan pai-
novoimakenttää suurella erotuskyvyllä, lentää mahdollisimman
matalalla radalla?

6) Mitä asteosuusyhtälö kertoo?

7) Mitkä pallofunktiokertoimet liittyvät Maan massajakauman dipoli-
momenttiin? Miksi ne puuttuvat taulusta 3.5?

^ Harjoitus 3–1: Pallofunktiokehitelmän vaimennus

korkeuden mukaan

Jos

V(ϕ, λ, r) =

∞∑︂
n=0

Vn(ϕ, λ, r) =

∞∑︂
n=0

(︂
R
r

)︂n+1
Vn(ϕ, λ),

voidaan kutsua
Vn(ϕ, λ, r)

Vn(ϕ, λ)
=
(︂
R
r

)︂n+1
potentiaalin vaimennuskertoimeksi korkeuden mukaan.
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Differentioimalla säteen r suhteen saadaan

∂Vn(ϕ, λ, r)
∂r

= −
n+ 1
R

(︂
R
r

)︂n+2
Vn(ϕ, λ), (3.23)

eli koska merenpinnalla vastaavasti

∂Vn(ϕ, λ, r)
∂r

⃓⃓⃓⃓
r=R

= −
n+ 1
R

Vn(ϕ, λ), (3.24)

seuraa, että vetovoiman vaimennuskerroin on lausekkeiden 3.23 ja 3.24
suhde: (︂

R
r

)︂n+2
.

1) Piirra loglineaarinen grafiikka sekä potentiaalin että vetovoiman
vaimennuskertoimista arvoille n = 0, 1, 2, . . . , 100 joko käsin
tai koneellisesti. Valitse R = 6378 km, r = 7378 km — korkeus
1000 km maanpinnan yläpuolella.

2) Tämän perusteella, jos satelliitti on 1000 km maanpinnan yläpuolel-
la, millä asteluvulla n ovat vetovoiman kiihtyvyydet ∂

∂r
Vn(ϕ, λ, r)

satelliitin korkeudella pienemmät kuin 1% siitä, mitä ne ovat
Maan pinnalla?

3) Millä asteluvulla n ne ovat pienemmät kuin 10−4× siitä, mitä ne
ovat Maan pinnalla?

^ Harjoitus 3–2: Pallofunktioiden symmetriat

Katso yhtälö 2.12. Siinä Pnm(sinϕ) = Pnm(t) on vain leveysasteen ϕ
funktio. Kun ϕ kulkee etelänavalta ekvaattorin kautta pohjoisnavalle,
−90◦ ⩽ ϕ ⩽ +90◦, saavuttaa t arvot −1 ⩽ t ⩽ +1.

Legendren funktioille on olemassa suljettu lauseke 3.2:

Pnm(t) =
(︁
1− t2

)︁m/2 dm
dtm

Pn(t),

jossa Pn(t) ovat tavallisia Legendren polynomeja:

Pn(t) =
1

2nn!
dn

dtn
(︁
t2 − 1

)︁n
.

Voidaan havaita seuraavat ominaisuudet:
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◦ Symmetrisen t-funktion differentiointi tuottaa antisymmetrisen
funktion ja toisinpäin.

◦ funktio
(︁
t2 − 1

)︁
ja sen potenssit ovat symmetrisiä.

◦ Siis parillisille n-arvoille Pn(t) = Pn(−t): Pn on symmetrinen poh-
joisen ja eteläisen pallonpuoliskon välillä, ja parittomillen-arvoille
Pn(t) = −Pn(−t): Pn on antisymmetrinen pallonpuoliskojen välillä.

◦ Vastaavasti parillisille n, Pn(sinϕ) = Pn
(︁
sin(−ϕ)

)︁
ja parittomille

n, Pn(sinϕ) = −Pn
(︁
sin(−ϕ)

)︁
.

Kysymyksiä

1) Mikä on vastaava sääntö Pnm-funktioille, siis millä arvoilla
n jam se on symmetrinen ja millä arvoilla antisymmetrinen?

2) Täytä kaavio (n = 0, . . . , 5,m = 0, . . . , n) merkeillä joko ’S’
(symmetrinen) tai ’A’ (antisymmetrinen) jokaiselle lokerolle:

n = 0 1 2 3 4 5
m = 0

1
2
3
4
5 ×

3) Mikä on symmetrisyyden logiikka?

4) Jos kenttä on peilisymmetrinen pohjoisen ja eteläisen pal-
lonpuoliskon välillä, siis V(ϕ, λ, r) = V(−ϕ, λ, r), mitkä
pallofunktiokertoimista anm ja bnm putoavat pois sarjake-
hitelmästä? Miksi?
Vihje: katso tämän luvun Pnm(sinϕ) esimerkkiyhtälöitä ja
-graafeja ja yritä arvata yleinen sääntö. Sen jälkeen verifioit.

5) Sama kysymys, jos potentiaali on pyörähdyssymmetrinen
Maan pyörähdysakselin ympärillä: V(ϕ, λ, r) = V(ϕ, r).
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^ Harjoitus 3–3: Pallofunktioiden etumerkkialueet

Osiossa 3.1 nähtiin, että Legendren liitännäisfunktioilla Pnm(t) on
tarkasti n−m+ 1 etumerkkiväliä määrittelyvälillään ϕ ∈

[︁
−90◦, 90◦

]︁
.

Voimme näyttää, että molemmat funktiot cosmλ ja sinmλmenevät 2m
kertaa nollan läpi ja niillä on 2m etumerkkiväliä määrittelyvälillään
λ ∈

[︁
0, 360◦

)︁
, jonka oletaan olevan suljettu kehä. Montako etumerkki-

aluetta — harmaita tai valkoisia, näkyvissä tai peitossa — on kuvassa
3.3 olemassa jokaiselle pintapallofunktiolle

Ynm(ϕ, λ) =

⎧⎨⎩Pnm(sinϕ) cosmλ josm ⩾ 0,

Pn|m|(sinϕ) sin |m| λ josm < 0
?

^ Harjoitus 3–4: Pakonopeus

1) Annettuna pallosymmetrinen planeetta, massa GM, säde R, jon-
ka pinnalta tykki ampuu luoteja lentonopeudella v. Mikä on
nopeuden v minimiarvo eli pakonopeus, jos halutaan, että luoti
saavuttaa mielivaltaisen suuria etäisyyksiä poispäin planeetan
pinnalta eikä koskaan enää putoa takaisin? Luodin liike-energia
on Ekin = 1

2
mv2, jossam on luodin massa.

2) Annettuna kaksiulotteisessa geometriassa ympyräsymmetrinen pla-
neetta, massa GM, säde R. Planeetan gravitaatiokenttää esittää
osion 2.3 mukainen potentiaali V . Minkä muotoinen V on ilmais-
tuna näissä parametreissa? Tee valistunut arvaus.

3) Ympyräplaneetan reunalla on taas tykki. Mitä voit sanoa nyt
pakonopeudesta v? Älä yritä laskea sitä!
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^ Normaalipainovoimakenttä

44
^ 4.1 Normaalikentän perusajatus

Samalla tavalla kuin Maan muoto voidaan approksimoida pyörahdysel-
lipsoidilla, voidaan Maan painovoimakenttä approksimoida kentällä,
jonka eräs tasapotentiaalipinta on juuri pyörähdysellipsoidi eli vertaus-
ellipsoidi.

Tämä tuo mieleen loogisen ajatuksen: miksei määritellä keskenään yh-
teensopiva vertausellipsoidi ja malligeopotentiaali eli normaalipotentiaali,
jonka eräs tasapotentiaalipinta vertausellipsoidi on? Sen jälkeen saadaan
painovoimakaava normaalipotentiaalista ottamalla sen gradientti.

Tämän jälkeen voimme määritellä anomaalisia suureita, kuten häiriö-
potentiaali ja painovoima-anomalia, jotka ovat keskenään yhteensopivia
— ja numeerisesti paljon pienempiä.

Olkoon normaalipotentiaali U(x, y, z). Silloin normaalipainovoima
on

γ (x, y, z) = ∥γγ∥ = ∥∇U∥ = −
⟨︁
γγ · nn

⟩︁
= −

∂U
∂n
,

jossa ∂

∂n
merkitsee differentiointia normaalikentän tasapotentiaalipin-

nan — sekin ellipsoidipinta — ulkoisen normaalin nn suuntaan, katso
kuva 4.1. Tämä suunta poikkeaa painovoimakentän tasapotentiaalipin-
tojen normaalin eli luotiviivan suunnasta luotiviivan poikkeaman verran.
Tämä luotiviivan poikkeama on myös hyvin pieni kulma.
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Normaali-
painovoima

Vertausellipsoidi
(litistyneisyys liioiteltu)

Normaalipainovoimakentän
tasapotentiaalipinnat

Normaali-
painovoimakentän
kenttäviivat

X

γγ

γγ
γγ

nn

nn

X

nn

Kuva 4.1. Maan normaalipainovoimakenttä.^

Seuraavassa osiossa nähdään, että Maan pyörähdysliikkeen aiheutta-
ma näennäisvoima voidaan Maan mukana pyörivässä järjestelmässä ku-
vata pyörähdyspotentiaalin — keskipakoispotentiaalin — Φ avulla. Myös
normaalipotentiaali Umääritellään niin, että pyörähdyspotentiaaliΦ
on sen osa: normaalipotentiaali on painovoimakentän eikä gravitaatioken-
tän vertauspotentiaali. Jos käytetään normaaligravitaatiopotentiaalille
merkintää V∗ — harvoin käytetty suure geodesiassa — normaalipaino-
voimapotentiaali eli normaalipotentiaali U on

U = V∗ +Φ,

jossa Φ on keskipakoispotentiaali. Siis V∗, kuten V , on määritelty ei-
pyörivässä eli inertiaalisessa järjestelmässä, kun taas U, kuten W, on
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kk

ii jj

X

pppp

X
Y

Z

Gravitaatio
Painovoima

Keskipakois-
voima

Kuva 4.2. Gravitaatio ja keskipakoisvoima.^

määritelty maapallon mukana pyörivässä (ei-inertiaalisessa) järjestel-
mässä. Samalla tavalla kuin sana painovoima viittaa maapallon mukana
pyörivässä järjestelmässä toimivaan voimaan, inertiaalisessa järjestel-
mässä käytetään sanaa gravitaatio eli vetovoima.

^ 4.2 Keskipakoisvoima ja sen potentiaali

Maan pyörähdysliike vaikuttaa painovoimakenttään. Inertiaalisessa ver-
tausjärjestelmässä puhutaan gravitaatiosta ja gravitaatiopotentiaalistaV ,
kun Maan pinnalla, ei-inertiaalisessa eli mukana pyörivässä järjestelmässä,
puhutaan painovoimasta ja painovoimapotentiaalistaW. Pyörähdysliikkeen
ja sen keskipakoisvoiman takia kyse on eri asioista. Katso kuva 4.2.

Keskipakoisvoiman yhtälön johtamiseksi kirjoita ensin

pp = Xii+ Yjj.

Vektorit
{︁
ii, jj,kk

}︁
muodostavat (X, Y, Z)-akseleiden kanssa samansuun-

taisen ortonormaalin kannan. Seuraa, että

p = ∥pp∥ =
√︂⟨︁

pp · pp
⟩︁
=
√︁
X2 + Y2.
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Nyt keskipakoisvoima — tarkemmin keskipakoiskiihtyvyys — on

ffω = ω2⊕ pp = ω2⊕ (Xii+ Yjj) , (4.1)

jossaω⊕ on Maan pyörähdysnopeus radiaaneina aikayksikössä. Jos X
ja Y ovat metreinä jaω⊕ radiaaneina sekunnissa, saadaan ffω yksikössä
m/s2 .

Täällä Maan pinnalla painovoimamittaukset tehdään yleensä kojeella,
joka on levossa Maan pintaan nähden: se seuraa maapallon pyörimislii-
kettä. Jos koje liikkuu, on keskipakoisvoiman lisäksi otettava huomioon
myös toinen näennäisvoima: coriolisvoima1. Myös nesteet — vesi ja1

ilma — tuntevat Maan pinnalla, jos ne ovat levossa, vain painovoi-
maa, joka sisältää keskipakoisvoiman. Virtaukset tuntevat tämän lisäksi
myös coriolisvoiman, joka kääntää ne sivuun ja aiheuttaa tunnettuja
pyörreilmiöitä valtamerillä ja ilmakehässä, kuten pyörremyrskyjä.

Keskipakoisvoima voidaan kuvata eräänlaisen potentiaalin gradien-
tiksi. Jos kirjoitetaan keskipakoispotentiaaliksi

Φ = 1

2
ω2⊕

(︁
X2 + Y2

)︁
,

voidaan suoraan laskea gradientti

ffω = ∇Φ =
∂Φ
∂X

ii+
∂Φ
∂Y

jj+
∂Φ
∂Z

kk =

= 1

2
ω2⊕ · 2X · ii+

1

2
ω2⊕ · 2Y · jj+ 0 = ω2⊕ (Xii+ Yjj) ,

mikä vastaa yllä annettua keskipakoisvoimayhtälöä 4.1.
Jos gravitaatiopotentiaaliin V lisätään keskipakoispotentiaaliΦ, tulos

on painovoimapotentiaali eli geopotentiaaliW:

W = V +Φ.

1Gaspard-Gustave Coriolis (1792–1843) oli ranskalainen matemaatikko, fyysikko ja
koneinsinööri. Hänen nimensä on kaiverrettu Eiffel-torniin, Eiffel Tower, 72 names.
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Voimme johtaa keskipakoispotentiaalista Φ myös seuraavan yhtälön
differentioimalla se kahdesti:

∆Φ = ∇2Φ = ⟨∇ · ffω⟩ =
∂
∂X
ω2⊕X+

∂
∂Y
ω2⊕Y +

∂
∂Z
0 = 2ω2⊕, (4.2)

josta seuraa, Poissonin yhtälön 1.14 kanssa,

∆W = −4πGρ+ 2ω2⊕, (4.3)

geopotentiaalin eli painovoimapotentiaalin Poissonin yhtälö.
Ero gravitaation ja painovoiman välillä on olennainen. Gravitaatio-

voima eli gravitaation kiihtyvyys g∗g∗ = ∇V on pelkkä vetovoima, kun
painovoiman kiihtyvyys gg = ∇W on gravitaation ja keskipakoisvoi-
man vektorisumma. Vetovoima ja keskipakoisvoima toimivat samalla
tavalla: voima on verrannollinen koekappaleen massaan. Toisin sanoen
kiihtyvyys on aina sama koekappaleen massasta riippumatta. Tämä on
kuuluisa ekvivalenssiperiaate (Galilei, Einstein), joka on todettu tarkasti
paikkansa pitäväksi. Erityisesti voidaan mainita unkarilaisen Loránd
Eötvösin2 neuvokkaat kokeet. 2

Maan päällä olevat vesimassat, samoin kuin ilmakehä ja suunnatto-
masti pidemmällä aikaskaalalla Maan ”kiinteä” kallio, joka muodostaa
vuoristoja ja valtameren syvänteitä, tottelevat painovoimaa tekemättä
eroa vetovoiman ja keskipakoisvoiman välillä. Siksi merenpinta yhtyy
noin metrin tarkkuudella geopotentiaalinW tasapotentiaalipintaan. Myös
Maan päällä korkeudet mitataan tästä pinnasta eli geoidista. Geoidi on
Gaussin mukaan ”Maan matemaattinen muoto”.

^ 4.3 Tasapotentiaalipinnat ja luotiviivat

Painovoimapotentiaali eli geopotentiaali on vakio tasapotentiaalipinnoilla:

W(x, y, z) = vakio.

2Loránd paroni Eötvös de Vásárosnamény (1848–1919) oli unkarilainen fyysikko ja
gravitaation tutkĳa.
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Olkoon
{︁
ii, jj,kk

}︁
(x, y, z)-akseleiden suuntainen ortonormaali kanta.

Silloin potentiaali muuttuu yksikkövektorin

ee = e1ii+ e2jj+ e3kk

suuntaan seuraavasti:

∂W
∂e

= e1
∂W
∂x

+ e2
∂W
∂y

+ e3
∂W
∂z

= ⟨ee · ∇W⟩ ,

joka on nolla, jos ja vain jos vektorit ee ja∇W ovat kohtisuorassa toisiinsa
nähden. Toisin sanoen potentiaali on stationaarinen vaan suuntiin, jotka
ovat kohtisuoria Maan painovoimavektoria

∇W = gg

kohtaan.

Tasapotentiaalipinnat ja painovoimavektorit eli luotiviivat ovat aina
kohtisuorassa toisiinsa nähden.

^ 4.3.1 Tasapotentiaalipintojen kaarevuus
Taso, joka on pisteessä P samansuuntainen tasapotentiaalipinnan kans-
sa kutsutaan sen tangenttitasoksi, kuva 4.3. Jos tasapotentiaalipinnan
paikallinen kaarevuus x-suunnassa on ρx ja pisteen P x-koordinaatti on
x0, voidaan kehittää pintojen välinen etäisyys Taylorin sarjaksi:

ϵ ≈ 1
2ρx

(x− x0)
2
.

Tästä seuraaW-arvojen erotukseksi pintojen välillä (g = ∥gg∥ = ∥∇W∥):

δW ≈ −ϵg ≈ −(x− x0)
2 g
2ρx

.

Differentioimalla (W on tässä geopotentiaali tangentti- eli vaakatasolla)
saadaan33
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ϵ

P

x

W =WP + δW

x0

Tasapotentiaali-
pintaW =WP

x-akseli

Kaarevuus-
säde ρx

X

Tangenttitaso

Kuva 4.3. Tasapotentiaalipintojen kaarevuus.^

∂2

∂x2
δW =

∂2

∂x2
W = ∂xxW = −

g
ρx
,

josta
ρx = −

g
∂xxW

.

Määrittämällä kaarevuus x- ja y-suunnassa

Kx
def
=
1
ρx

= −
∂xxW
g , Ky

def
=

1
ρy

= −
∂yyW
g , (4.4)

saadaan keski- eli Germainin4 kaarevuus, joka on useimmissa paikoissa 4

positiivinen luku:

J =
Kx + Ky

2
= −

∂xxW + ∂yyW
2g

,

3Tässä käytetään kompaktia Eulerin osittaisderivaattien kirjoitustapaa, ∂xx, ∂yy, ∂zz,
joka on usein kätevä.
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∆W
/︁
g

g
g

P

Luotiviiva

x −→
W =WP +

∆W

W =WP

Kaarevuussäde ρx

Kuva 4.4. Luotiviivan kaarevuus.^

ja käyttämällä Poissonin yhtälöä 4.3,

∆W = ∂xxW + ∂yyW + ∂zzW = −4πGρ+ 2ω2⊕,

saadaan
−2gJ+ ∂zzW = −4πGρ+ 2ω2⊕.

Käyttämällä
∂zzW = −

∂g
∂z

= −
∂g
∂H
,

jossaH on korkeuskoordinaatti, saadaan painovoiman pystygradientiksi
(Heiskanen ja Moritz, 1967, yhtälö 2-20):

∂g
∂H

= −2gJ+ 4πGρ− 2ω2⊕,

Ernst Heinrich Brunsin löytämä yhtälö (Bruns, 1878, sivu 13).

^ 4.3.2 Luotiviivojen kaarevuus
Luotiviivat ovat kaarevia, koska painovoima ei ole vakio vaakasuunnas-
sa. Jos painovoima kasvaa vaakasuunnassa, myös tasapotentiaalipinnat

4Marie-Sophie Germain (1776–1831) oli nerokas ranskalainen matemaatikko, lukuteo-
reetikko ja elastisuuden tutkĳa. Hän kävi kirjeenvaihtoa Gaussin kanssa lukuteoriasta
(Friedelmeyer, 2014) ja teki arvokasta pohjatyötä Fermat’n suuren lauseen todistusta
varten. Hänen nimensä puuttuu Eiffel-tornista.
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tulevat lähemmäksi toisiaan eivätkä ole samansuuntaisia. Tämä merkit-
see, että luotiviivojen, jotka ovat kohtisuorassa kaikkiin tasapotentiaali-
pintohin nähden, on oltava kaarevia samaan suuntaan.

Tarkastellaan kahta tasapotentiaalipintaa, toinen potentiaalilleWP ja
toinen potentiaalilleWP+∆W. Niiden välinen etäisyys on∆H = ∆W

/︁
g .

Koordinaatin x suuntainen pintojen välinen suhteellinen kallistus on

∂
∂x
∆H(x) =

∂
∂x

(︃
∆W
g(x)

)︃
= −

∆W
g2

∂g
∂x
.

Jos lähtöetäisyys pintojen välillä on ∆H, tarvitaan matkaa

ρx = − ∆H
/︂
∂
∂x
∆H = −

(︂
∆W
g

)︂/︄(︃
−
∆W
g2

∂g
∂x

)︃
= g

/︂
∂g
∂x

saadakseen tangentit kohtaamaan, katso kuva 4.4. Luotiviivan kaare-
vuus on tämän käänteisluku sekä x- että y-koordinaatin suunnassa:

κx =
1
ρx

=
1
g
∂g
∂x
, κy =

1
ρy

=
1
g
∂g
∂y
.

Voimme johtaa normaalipainovoimakentän kenttäviivojen eli normaali-
luotiviivojen kaarevuuden samalla tavalla. Ero on kuitenkin, että paino-
voimalle vertausellipsoidin pinnalla löytyy yksinkertainen matemaatti-
nen lauseke, esimerkiksi yhtälö 4.8. Hyvä approksimaatio on

γ(φ) ≈ γa cos2φ+ γb sin2φ.

Ketjusäännön avulla

∂γ
∂x

=
∂γ
∂φ

∂φ
∂x

=
1
R
∂γ
∂φ

=
1
R
(−2γa cosφ sinφ+ 2γb sinφ cosφ) =

=
γb − γa
R

sin 2φ.

Tämä merkitsee x- eli etelä-pohjoissuunnassa ja y- eli länsi-itäsuunnassa:

κ∗x =
1
γ
∂γ
∂x
≈ 1
R
γb − γa
γa

sin 2φ, κ∗y =
1
γ
∂γ
∂y

= 0.

Tämä merkitsee myös, että normaaliluotiviivan suunta korkeudella h
on φ(h) = φ(0) + κ∗xh, jossa numeerisesti κ∗x = 0,171 ′′ km−1 · sin 2φ
(Heiskanen ja Moritz, 1967, yhtälö 5-34).
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Tähtitieteelliset
koordinaatit Φ,Λ

Φ

Λ

nn

nn

Luotiviiva

O

GreenwichGreenwichGreenwichGreenwich

Kuva 4.5. Luonnolliset koordinaatitΦ ja Λ. Näiden lisäksi tarvitaan luonnolli-
nen korkeuskoordinaatti, esimerkiksi geopotentiaaliW.^

^ 4.4 Luonnolliset koordinaatit

Ennen satelliittiaikakautta geosentrisiä koordinaatteja X, Y ja Z oli
mahdotonta mitata suoraan. Nykyisin tämä on mahdollista, ja samalla
saadaan korkeus h vertausellipsoidista, joka on puhtaasti geometrinen
suure.

Aiemmin voitiin mitata vain kuvassa 4.5 näkyvä luotiviivan suunta
sekä havaintopisteen ja keskimerenpinnan potentiaalien välinen ero.
Luotiviivan suunta nn mitattiin tähtitieteellisesti: tähtitieteellinen leveys-
aste onΦ ja pituusasteΛ. Kolmas koordinaatti, painovoimapotentiaalin
ero W(x, y, z) −W0 merenpinnan potentiaalin W0 kanssa, määritet-
tiin vaaitsemalla. Koordinaatteja Φ, Λ ja W kutsutaan luonnollisiksi
koordinaateiksi.
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Potentiaalin sĳasta voidaan käyttää ortometrista korkeutta H. Sen mää-

ritelmä on helppo ymmärtää, jos kirjoittaa

∂W
∂H

= −g =⇒ dH = −
1
gdW =⇒ HP = −

wWP

W0

1
g(W)

dW, (4.5)

jossa integraali otetaan pisteen P luotiviivaa pitkin. ∂

∂H
= ∂

∂n
on pai-

kallinen tasapotentiaalipintojen normaalin eli luotiviivan suuntainen
derivaatta. g on painovoiman kiihtyvyys luotiviivalla paikan — tai
geopotentiaalitason — funktiona. Tässä ortometristen korkeuksien ta-
pauksessa g on todellinen, kallion sisällä oleva painovoima, joka on
paikan epälineaarinen funktio ja riippuu myös kallion tiheydestä. Mää-
rittämisen hankaluus on ortometrisille korkeuksille ominaista. Tähän
palataan myöhemmin (Heiskanen ja Moritz, 1967 luku 4).

Myös koordinaatit Φ, Λ ja Hmuodostavat luonnollisen koordinaatti-
järjestelmän.

^ 4.5 Normaalipotentiaali ellipsoidisissa koordinaateissa

Olemme jo esittäneet yhtälöä 3.18, geopotentiaalin kehitelmä ellipsoi-
difunktioihin. Normaalipotentiaalilta U vaaditaan, että se on vakio
vertausellipsoidin pinnalla u = b. Kehitetään keskipakoispotentiaaliΦ
ellipsoidifunktioihin. Saadaan

Φ(β, u) = 1

2
ω2⊕

(︁
x2 + y2

)︁
= 1

2
ω2⊕

(︁
u2 + E2

)︁
cos2 β =

= 1

2
ω2⊕

(︁
u2 + E2

)︁ (︁
1− sin2 β

)︁
=

= 1

2
ω2⊕

(︁
u2 + E2

)︁ (︁
−2
3
P2(sinβ) + 2

3
P0(sinβ)

)︁
=

= −1
3
ω2⊕

(︁
u2 + E2

)︁ (︁
P2(sinβ) − P0(sinβ)

)︁
.

Tämän lisäksi on yhtälön 3.19 perusteella pyörähdyssymmetriselle
normaaligravitaatiopotentiaalille V∗:

V∗(β, u) =

∞∑︂
n=0

V∗
n(β, u) =

∞∑︂
n=0

Qn
(︁
iu
E

)︁
Qn
(︁
ib
E

)︁Ae∗
n0Pn(sinβ). (3.19)
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Nyt
U(β, u) = V∗(β, u) +Φ(β, u).

Vertausellipsoidin pinnalla u = b vaatimuksena on U(β, b) = U0,mikä
on mahdollinen vain, jos (Ae∗

n

def
= Ae∗

n0):

U0 = A
e∗
0 + 1

3
ω2⊕

(︁
b2 + E2

)︁
= Ae∗

0 + 1

3
ω2⊕a

2,

0 = Ae∗
1 ,

0 = Ae∗
2 − 1

3
ω2⊕

(︁
b2 + E2

)︁
= Ae∗

2 − 1

3
ω2⊕a

2,

0 = Ae∗
n , n = 3, 4, 5, . . . .

SuureU0 on laskettavissa yksiselitteisesti, jos maapallon massa GM⊕ ja
vertausellipsoidin mitat a ja b ovat tiedossa. Tulos, Heiskanen ja Moritz
(1967) yhtälö 2-61, on

U0 =
GM⊕
E

arctan E
b
+ 1

3
ω2⊕a

2. (4.6)

Seuraa
Ae∗
0 = U0 −

1

3
ω2⊕a

2 =
GM⊕
E

arctan E
b
.

Painovoimakentän normaalipotentiaali U saadaan seuraavasti:

U(β, u) = V∗(β, u) +Φ(β, u) =

V∗
0(u)⏟ ⏞⏞ ⏟

GM⊕
E

arctan Eu +

+

Ae∗
2⏟ ⏞⏞ ⏟

1

3
ω2⊕a

2
Q2
(︁
iu
E

)︁
Q2
(︁
ib
E

)︁ P2(sinβ)⏟ ⏞⏞ ⏟(︁
3

2
sin2 β− 1

2

)︁
+

Φ(β,u)⏟ ⏞⏞ ⏟
1

2
ω2⊕

(︁
u2 + E2

)︁
cos2 β =

= C0(u) + C1(u) sin2 β+ C2(u) cos2 β,

jossa C0, C1 ja C2 ovat sopivia u:n funktioita. Funktio V∗
0 on termi n = 0

kehitelmässä 3.19, yhtälö 3.21.
Vertausellipsoidin pinnalla (u = b), käyttäen a2 = b2 + E2:

U(β, b) =

=

V∗
0(b)⏟ ⏞⏞ ⏟

GM⊕
E

arctan E
b
+

Ae∗
2 P2(sinβ)⏟ ⏞⏞ ⏟

1

2
ω2⊕a

2 sin2 β− 1

6
ω2⊕a

2 +

Φ(β,b)⏟ ⏞⏞ ⏟
1

2
ω2⊕a

2 cos2 β =
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Z

ϕ
β

P

Q

X/Yφφ

a O

E
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F2 F1

Hyperbeli β = vakio

Kuva 4.6. Meridiaaniellipsin geometria ja eri leveysastetyypit sekä polttopis-
teet F1 ja F2.^

=
GM⊕
E

arctan E
b
+ 1

3
ω2⊕a

2,

vakio U0 (yhtälö 4.6), kuten sopii ollakin!

^ 4.6 Normaalipainovoima vertausellipsoidin pinnalla

Ilman todistusta mainittakoon, että normaalipainovoimalle, suureelle
γ = − ∂

∂h
U, pätee vertausellipsoidin pinnalla seuraava yhtälö:

γ(β) =
aγb sin2 β+ bγa cos2 β√︁
a2 sin2 β+ b2 cos2 β

. (4.7)

Nähdään, että γa on normaalipainovoima päiväntasaajalla (β = 0) ja
γb normaalipainovoima navoilla (β = ±90◦).
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Yhtälöt 2.5 ja 2.8 antavat

tanβ =
sinβ
cosβ =

Z
/︁
b√

X2 + Y2
/︁
a

=
a
b

Z√
X2 + Y2

=
a
b

tanϕ

ja

tanφ =
sinφ
cosφ =

Z
/︂(︁
1− e2

)︁
N

√
X2 + Y2

/︁
N

=
1

1− e2
Z√

X2 + Y2
=
a2

b2
tanϕ,

jossaϕ on geosentrinen leveysaste, katso yhtälöt 2.4. Tästä seuraa suoraan

tanβ =
b
a tanφ,

jossa leveyskulma φ on geodeettinen eli maantieteellinen leveysaste.
Kulma β on edelleen redukoitu leveysaste. Nyt voidaan osoittaa (harjoi-
tus!), että

γ(φ) =
aγa cos2φ+ bγb sin2φ√︁
a2 cos2φ+ b2 sin2φ

. (4.8)

Tämä on kuuluisa Somiglianan ja Pizzettin5 yhtälö. Kyseiset geodeetit5

osoittivat ensimmäisinä, että ”ellipsoidinen” normaalipainovoimakent-
tä, jonka eräs tasapotentiaalipinta on vertausellipsoidi, on tarkasti ole-
massa ja että myös maantieteellisissä koordinaateissa painovoimakaava
on suljettu lauseke leveysasteessa.

^ 4.7 Numeeriset arvot ja laskentakaavat

Kun vertausellipsoidi on valittu, voidaan laskea sen vastaava normaali-
potentiaali ja normaalipainovoima. Perussuureet ovat

a pyörähdysellipsoidin päiväntasaajasäde eli isoakselin puolikas

f litistyneisyys
f

def
=
a− b
a ,

jossa b on napasäde eli pikkuakselin puolikas

5Carlo Somigliana (1860–1955) oli italialainen matemaatikko ja fyysikko. Paolo Pizzetti
(1860–1918) oli italialainen geodeetti.
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Numeeriset arvot ja laskentakaavat 4.7 101
ω⊕ Maan pyörähdysnopeus

GM⊕ Maan kokonaismassa, mukaan lukien ilmakehä.

Nykyisin käytetyin vertausellipsoidi normaalipotentiaaleineen on Geo-
detic Reference System 1980 eli GRS80:

a = 6 378 137m, ω⊕ = 7 292 115 · 10−11 s−1,

1
f
= 298,257 222 101, GM⊕ = 3 986 005 · 108 m3/s2.

Oikeastaan f ei ole GRS80:n määrittelevä vakio, vaan käytetään vakiota
J2, joka on eräs gravitaatiokentän määrittelevä suure, katso yhtälö 3.16.

GPS-järjestelmän käyttämä WGS84 (World Geodetic System 1984) si-
sältää vertausellipsoidin, joka on melkein identtinen GRS80:n vertausel-
lipsoidin kanssa.

Normaalipotentiaali on (Heikkinen, 1981), SI-järjestelmän yksiköissä:

U ≈ 62 636 860,8500+

+

(︄
− 9,780 326 77− 0,051 630 75 sin2φ−

− 0,000 227 61 sin4φ− 0,000 001 23 sin6φ

)︄
h+

+

(︄
+ 0,015 438 99 · 10−4 − 0,000 021 95 · 10−4 sin2φ−

− 0,000 000 10 · 10−4 sin4φ

)︄
h2 +

+
(︁
− 0,000 024 22 · 10−8 + 0,000 000 07 · 10−8 sin2φ

)︁
h3, (4.9)

ja normaalipainovoima (huomaa miinusmerkki: U on positiivinen ja
vähenee ylöspäin):

γ = −
∂U
∂h
≈ + 9,780 326 77+ 0,051 630 75 sin2φ+

+ 0,000 227 61 sin4φ+ 0,000 001 23 sin6φ+

−

(︄
+ 0,030 877 98 · 10−4 − 0,000 043 90 · 10−4 sin2φ−

− 0,000 000 20 · 10−4 sin4φ

)︄
h+

−
(︁
− 0,000 072 65 · 10−8 + 0,000 000 21 · 10−8 sin2φ

)︁
h2. (4.10)
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4102 Normaalipainovoimakenttä

Tässä potentiaalin yksikkö on m2
/s2 ja painovoiman yksikkö m/s2 . φ

on geodeettinen leveysaste ja h on korkeus metreinä vertausellipsoi-
dista. Tarkemmat yhtälöt löytyvät raportista Heikkinen (1981). Näissä
yhtälöissä kerroin 9,780 32 . . . m/s2 on päiväntasaajan painovoima ja
−0,030 87 . . . · 10−4 s−2 on painovoiman pystygradientti päiväntasaajal-
la.

Muut vielä käytössä olevat, vaikkakin hitaasti väistyvät, painovoima-
kaavat ja vertausellipsoidit ovat Helmertin vuoden 1906 ellipsoidi,
Krasovskyn ellipsoidi eli SK-42 Itä-Euroopan maissa, Kansainvälinen
eli Hayfordin ellipsoidi (1924) ja sen painovoimakaava sekä Geodetic
Reference System 1967.

^ 4.7.1 Numeroesimerkki
Yhtälön 4.9 mukaan päiväntasaajan yläpuolella on normaalipotentiaali

U = 62 636 860,8500− 9,780 326 77h+ 0,015 438 99 · 10−4 h2 −
− 0,000 024 22 · 10−8 h3.

◦ Piirrä tämä funktio h-arvoille välillä 0–7000 km.

◦ Piirrä vertailun vuoksi neliöllinen versio, josta viimeinen termi on
jätetty pois.

Kysymyksiä

1) Mikä on neliöllisen funktion minimi?

2) Kuinka realistinen tämä on fysikaalisesti?

Vastauksia

1) Katso kuva 4.7. Neliöllisen funktion minimi on korkeudella
3000 km. Kuutiollisella funktiolla ei ole minimiä.

2) Ei kovin realistinen: potentiaalin U (Maan mukana pyöri-
vän järjestelmän normaalipotentiaali) stationaarisen pisteen
tulisi sĳaita noin 36 000 km korkeudella geostationaarisella
radalla.
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X

3. potenssi
2. potenssi
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Kuva 4.7. Normaalikentän potentiaali päiväntasaajan yläpuolella. Korkeudet
kilometreissä, potentiaali yksikössä m2/s2.^

Tämä kertoo, että polynomiapproksimaatiota ei voida ekstra-
poloida kovin pitkälle. Tässä tapauksessa ekstrapolointiväli on
samaa luokkaa kuin Maan säde, eikä se enää toimi.

^ 4.8 Normaalipotentiaali pallofunktiokehitelmänä

Ellipsoidisen gravitaatiokentän pallofunktiokehitelmä sisältää toisen
asteen lisäksi korkeamman asteen pallofunktioita. Jos kirjoitetaan, kuten
on tapana, potentiaali maapallon ulkopuolella seuraavaan muotoon
(Heiskanen ja Moritz, 1967 yhtälö 2-39, myös yhtälö 3.16):

V(ϕ, λ, r) =
GM⊕
r

(︃
1−

∞∑︂
n=2

(︂
a
r

)︂n n∑︂
m=0

Pnm(sinϕ) (Jnm cosmλ+ Knm sinmλ)
)︃
,

voidaan myös normaaligravitaatiopotentiaali V∗ kirjoittaa muotoon

V∗(ϕ, r) =
GM⊕
r

(︃
1−

∞∑︂
n=2

parillinen

J∗n

(︂
a
r

)︂n
Pn(sinϕ)

)︃
,

joka sisältää vain parillisia kertoimia J∗n
def
= J∗n0, koska normaalikenttä
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4104 Normaalipainovoimakenttä

^ Taulukko 4.1. GRS80-normaalipotentiaalin pallofunktiokertoimia (Heikkinen,
1981; Heiskanen ja Moritz, 1967).

Ei-normalisoidut Täysin normalisoidut

J∗2 = J
∗
2,0 = 1082,63 · 10−6 J

∗
2 = −C

∗
2,0 = 484,166 854 896 · 10−6

J∗4 = J
∗
4,0 = −2,370 912 22 · 10−6 J

∗
4 = −C

∗
4,0 = −0,790 304 073 · 10−6

J∗6 = J
∗
6,0 = +0,006 083 47 · 10−6 J

∗
6 = −C

∗
6,0 = +0,001 687 251 · 10−6

J∗8 = J
∗
8,0 = −0,000 014 27 · 10−6 J

∗
8 = −C

∗
8,0 = −0,000 003 461 · 10−6

on symmetrinen päiväntasaajan tasoon nähden.
GRS80:n normaaligravitaatiopotentiaalin kertoimet löytyvät6 taulu-6

kosta 4.1. Korkeampia termejä ei yleensä tarvita. Täysin normalisoitujen
ja ei-normalisoitujen kerrointen välillä on yhteys J∗n = J

∗
n

√
2n+ 1.

Vertailun vuoksi: osiossa 4.5 osoitettiin, että saman kentän ellipsoidi-
funktiokehitelmässä vain kertoimet asteluvuille 0 ja 2 eroavat nollasta!
Tämä on yksi syy miksi ellipsoidifunktioita ylipäänsä käytetään.

Normaalipainovoimapotentiaalikaavana voidaan käyttää ellipsoidi-
funktiomallin sĳaan todellisen geopotentiaalin pallofunktiokehitelmän
ensimmäisiä paria kolmea termiä. Silloin saadaan, kun otetaan keski-
pakoispotentiaali mukaan:

U =
Y0
r +

Y2(ϕ, λ)

r3
+ 1

2
ω2⊕

(︁
X2 + Y2

)︁
,

vastaava tasapotentiaalipinta U = U0 on ”Brunsin sferoidi”, tai

U =
Y0
r +

Y2(ϕ, λ)

r3
+
Y4(ϕ, λ)

r5
+ 1

2
ω2⊕

(︁
X2 + Y2

)︁
,

”Helmertin sferoidi”. Tässä Y0
def
= GM⊕ ja funktiot Y2(ϕ, λ) ja Y4(ϕ, λ)

otetaan todellisesta geopotentiaalista.

6Ne voidaan laskea myös Heiskasen ja Moritzin (1967) antamalla yhtälöllä 2-92:

J∗2n = (−1)n+1
3
(︁
e2
)︁n

(2n+ 1) (2n+ 3)

(︃
1− n+ 5n

J2

e2

)︃
,

lähtien arvoista J2 ja e2. Tulokset ovat samat kuin taulukon vasemmassa sarakkeessa.
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Häiriöpotentiaali 4.9 105
Nämä yhtälöt on helppo laskea, mutta niiden tasapotentiaalipinnat

eivät ole pyörähdysellipsoideja eivätkä edes pyörähdyssymmetrisiä.
Ne ovat oikeastaan hyvin monimutkaisia pintoja (Heiskanen ja Moritz,
1967, osio 2-12)!

Kuitenkin geometrisessa geodesiassa käytetään aina vertausellipsoi-
dia, joten kannattaa tehdä se myös fysikaalisessa geodesiassa.

^ 4.9 Häiriöpotentiaali

Kirjoita painovoimapotentiaali

W = V +Φ,

jossa Φ on keskipakoisvoiman potentiaali (katso yllä), ja normaalipo-
tentiaali

U = V∗ +Φ.

Niiden välinen erotus on häiriöpotentiaali

T
def
= W −U = V − V∗.

Sekä V että V∗ voidaan kehittää pallofunktiokehitelmäksi. Jos kirjoite-
taan painovoimapotentiaali

W = V +Φ = Φ+

+
GM⊕
r

(︃
1−

∞∑︂
n=2

(︂
a
r

)︂n n∑︂
m=0

Pnm(sinϕ) (Jnm cosmλ+ Knm sinmλ)
)︃
,

ja normaalipotentiaali

U = Φ+
GM⊕
r

(︃
1−

∞∑︂
n=2

parillinen

(︂
a
r

)︂n
J∗nPn(sinϕ)

)︃
,

saadaan vähentämällä ne toisistaan häiriöpotentiaaliksi

T =W −U = −
GM⊕
r

(︃ ∞∑︂
n=2

(︂
a
r

)︂n n∑︂
m=0

Pnm(sinϕ) (δJnm cosmλ+ Knm sinmλ)
)︃
,

(4.11)

í �Õ ! ¤.�û



4106 Normaalipainovoimakenttä

jossa ⎧⎨⎩δJn0 = Jn0 − J∗n jos n parillinen,

δJnm = Jnm muuten.

Yllä oleva yhtälö häiriöpotentiaalille T lyhennetään seuraavasti (Heiska-
nen ja Moritz, 1967, yhtälö 2-152):

T(ϕ, λ, r) =

∞∑︂
n=2

(︂
a
r

)︂n+1
Tn(ϕ, λ), (4.12)

jossa jokaisessa termissä asteosuudella Tn on sama dimensio kuin T , ja

Tn(ϕ, λ) = −
GM⊕
a

n∑︂
m=0

Pnm(sinϕ) (δJnm cosmλ+ Knm sinmλ) .

Nyt a-säteisen ”vertauspallon” pinnalla7:7

T(ϕ, λ) = T(ϕ, λ, a) =

∞∑︂
n=2

Tn(ϕ, λ),

josta nähdään, että vertaustasolla termit Tn(ϕ, λ) ovat todella häiriöpo-
tentiaalin T tietyn asteluvun n asteosuudet.

Yllä olevista kehitelmistä puuttuvat termit n = 0, 1. Näistä T0(ϕ, λ) =
T0 on vakio — häiriöpotentiaalin maailmanlaajuinen keskiarvo — ja
T1(ϕ, λ) on dipolikentän muotoinen. Sen arvo on verrannollinen lasken-
tapisteen geosentrisen paikkavektorin ja dipolivektorin välisen kulman
kosiniin. Molemmat arvot häviävät, koska

◦ Normaalikentän olettama Maan kokonaismassa GM⊕ on realisti-
nen.

◦ Koordinaattĳärjestelmän origon oletetaan yhtyvän Maan massa-
keskipisteeseen.

Osiossa 3.4 löytyy asiasta lisää.

7Aiemmin tälle vertaussäteelle on käytetty palloapproksimaatiossa myös symbolia R.
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Olenko ymmärtänyt tämän? 107
^ Olenko ymmärtänyt tämän?

1) Mikä on normaalipainovoimakentän käytön perusajatus?

2) Mikä on ero painovoiman ja gravitaation välillä?

3) Kun annettuna on keskipakoispotentiaali

Φ = 1

2
ω2⊕

(︁
X2 + Y2

)︁
,

johda keskipakoiskiihtyvyys vektorina. (X, Y, Z) ovat vertauske-
hyksen suorakulmaiset koordinaatit. Kehys pyörii kulmanopeu-
dellaω⊕ Z-akselin ympäri.

4) Kuvassa 4.1 on piirretty normaalipainovoimakentän tasapotenti-
aalipinnat. Nähdään, että ne ovat päiväntasaajan yli kauempana
toisistaan kuin napojen yli, koska normaalipainovoima päivänta-
saajalla on pienempi kuin navoilla.
Millainen tilanne olisi normaaligravitaatiokentällä, eli ilman keski-
pakoisvoimaa? Selitä perustelusi.

5) Selosta luonnollisten koordinaattien idea.

6) Minkälainen oli M. Le Blancin ja C. F. Gaussin välinen suhde?
Käytä Googlea.

7) Johda Somiglianan ja Pizzettin yhtälö 4.8 yhtälöstä 4.7. Mikä tekee
yhtälöstä arvokkaan?

8) Mitkä ovat Geodetic Reference System 1980 -järjestelmän määrittele-
vät parametrit?

9) Miksi normaalipotentiaalin pallofunktiokehitelmä sisältää vain
pienen määrän termejä ja kertoimia?

10) Miksi normaalipotentiaalin pallofunktiokehitelmä ei sisällä ter-
mejä, joiden järjestyslukum ̸= 0?

11) Miksi normaalipotentiaalin pallofunktiokehitelmä sisältää vain
termejä, joiden asteluku n on parillinen?
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4108 Normaalipainovoimakenttä

^ Harjoitus 4–1: Somiglianan ja Pizzettin yhtälö

1) Annettuna on painovoima päiväntasaajalla γa ja navoilla γb. Mi-
kä on painovoima geodeettisella leveysasteella φ = 45◦? Johda
lauseke, joka saa sisältää myös a:n ja b:n.

2) Mikä on painovoima redukoidulla leveysasteella β = 45◦? Vertaa
edellisen kanssa.

3) Annettuna on isoakselin puolikas a ja pikkuakselin puolikas b.
Mitkä ovat saman paikan erityyppisten leveysasteiden (geodeet-
tinen φ, geosentrinen ϕ ja redukoitu β) erotukset maksimissaan
kaariminuutteina? Oleta, että maksimi tapahtuu leveysasteilla
±45◦.

4) Laske sekä geodeettiselle että redukoidulle leveysasteelle 45◦ pai-
novoiman numeeriset arvot GRS80-vertausellipsoidin tapauksessa.
Paljonko ne eroavat toisistaan?

^ Harjoitus 4–2: Keskipakoisvoima

Annettuna on Maan pyörähdysnopeus yksikössä radiaanit sekunnissa:
ω⊕ = 7292 115 · 10−11 s−1.

1) Laske (karkeasti) Maan pyörähdysliikkeen keskipakoisvoima Etelä-
Suomen kohdalla (φ = 60◦, R = 6378 km, Maa pallona). Mihin
suuntaan voima osoittaa? Piirrä!

2) Miten suuri osa paikallisesta painovoimasta on keskipakoisvoi-
ma eli paljonko keskipakoisvoima muuttaa painovoimaa sekä
kiihtyvyysarvona että prosentteina?

3) Laske yllä annetustaω⊕-arvosta maapallon pyörähdysaika tun-
teina ja minuutteina. Miksei se ole tarkasti 24h?
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^ Painovoimakentän anomaaliset
suureet55

^ 5.1 Häiriöpotentiaali, geoidin korkeus ja luotiviivan

poikkeamat

Ensimmäinen anomaalinen suure, josta puhuttiin jo, on ero todellisen
painovoimapotentiaalinW ja normaalipainovoimapotentiaalinU välillä,
niin sanottu häiriöpotentiaali:

T
def
= W −U.

Kaikki muut anomaaliset suureet ovat häiriöpotentiaalin erilaisia funk-
tioita, kuten geoidin korkeus N ja luotiviivan poikkeamat ξ ja η. Ne
saadaan yleisesti vähentämällä toisistaan

◦ luonnollinen, Maan todelliseen painovoimakenttään liittyvä suure,
ja

◦ vastaava Maan vertausellipsoidin normaalipainovoimakenttään
liittyvä suure.

Esimerkiksi luotiviivan poikkeamat:

ξ
def
= Φ−φ, η

def
= (Λ− λ) cosφ.

Tässä (Φ,Λ) ovat tähtitieteellinen leveys ja pituus, jotka yhdessä muo-
dostavat paikallisen luotiviivan suunnan, ja (φ, λ) ovat geodeettinen
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Luotiviivan
poikkeamat (ξ, η)

Topografia

Geoidi

VertausellipsoidiVertausellipsoidi

Geoidikorkeus NGeoidikorkeus N

Kuva 5.1. Geoidiundulaatiot N ja luotiviivan poikkeamat ξ ja η.^

leveys ja pituus, jotka samalla tavalla muodostavat normaalipainovoi-
mavektorin eli ”normaaliluotiviivan” suunnan1. Katso kuva 5.1.1

Geoidin korkeus eli geoidiundulaatio on

N
def
= h−H,

jossa H on ortometrinen korkeus — laskettuna keskimerenpinnasta —
ja h on korkeus vertausellipsoidista.

Luotiviivan poikkeamat ovat Suomessa muutaman kaarisekunnin
( ′′) luokkaa ja geoidiundulaatiot välillä 15–32m, jos käytetään ver-
tauspintana GRS80-ellipsoidia. Vertailun vuoksi: maailmanlaajuisesti
vaihtelu on −107m:n ja +85m:n välillä. Merenpinnan tasolla luotivii-
van poikkeamat — yksikkönä radiaani — ovat geoidin korkeuksien
vaakagradientteja. Katso kuvat 5.1 ja 5.2.

Vertausellipsoidille, esimerkiksi GRS80-ellipsoidille, on olemassa oma,
matemaattisesti eksakti standardi- eli normaalipainovoimakenttä, jonka
eräs tasapotentiaalipinta kyseinen vertausellipsoidi on. Tämän ken-
tän avulla voi laskea jokaiselle painovoimakentän suureelle vastaavan
normaalisuureen. Vähentämällä normaalisuure alkuperäissuureesta
saadaan vastaava anomaalinen suure.

1Tämä olettaa, ettäΦ ja Λ ovat redukoituja merenpinnan tasolle luotiviivan kaarevuu-
den takia, osio 4.3.2, ja että φ ja λ ovat laskettuja vertausellipsoidilla.
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Kuva 5.2. Suomen geoidimalli vuodesta 1984. Punaisella havainnoista lasketut
luotiviivan poikkeamat (Vermeer, 1984).^

Korkeuksille vertausellipsoidista löytyy lauseke, joka on analoginen
ortometristen korkeuksien vastaavan lausekkeen 4.5 kanssa. Olkoon U
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normaalipotentiaali ja γ normaalipainovoima2:2

dU = −γdh =⇒ hP = −
w UP
U0

1
γ(U)

dU.

Pisteen P geoidin korkeus on nyt

NP = hP −HP =
wWP

W0

1
g(W)

dW −
w UP
U0

1
γ(U)

dU =

=
wWP

W0

1
g(W)

dW −
wWP

W0

1
γ(U)

dU−
w UP
WP

1
γ(U)

dU+
w U0
W0

1
γ(U)

dU =

=
wWP

W0

γ(W) − g(W)

g(W)γ(W)
dW −

w UP
WP

1
γ(U)

dU+
w U0
W0

1
γ(U)

dU =

=
w HP
0

g(z) − γ(z)

γ(z)
dz−

w UP
WP

1
γ(U)

dU+
w U0
W0

1
γ(U)

dU, (5.1)

uudelleen nimittämällä integrointimuuttuja U→W ja vaihtamalla se
pituudeksi: dW = −gdz.

Yhtälössä 5.1 viimeinen termi häviää, jos oletetaan3 U0 =W0. Ensim-3

mäinen ja toinen termi ovat molemmat rippuvaisia pisteen P korkeu-
desta, mutta niiden erotus NP ei ole. Siksi pisteen P sĳaan käytetään
sen projektiota P ′ keskimerenpinnan — käytetyn korkeusjärjestelmän
nollan — tasolle. Silloin myös ensimmäinen termi häviää: HP ′ = 0. Siis

NP ′ = −
w UP ′

WP ′

1
γ(U)

dU ≈ 1
γP ′

(︁
WP ′ −UP ′

)︁
=
TP ′

γP ′
,

mihin olemme sĳoittaneet T =W −U: häiriöpotentiaali. Kaikki suureet
ovat nyt merenpinnan tasolla. Tiiviimmin:

N =
T
γ. (5.2)

Tämä on kuuluisa Brunsin4 yhtälö (Heiskanen ja Moritz, 1967, yhtälö4

2Tämä ei ole tarkasti totta, koska ”normaaliluotiviiva” ei ole sama kuin vertausellip-
soidin normaali. Tehty virhe on pikkuruinen.
3Tämä ei ole itsestään selvää! Paikallisessa korkeusdatumissa nollapisteen potentiaali
voi hyvinkin poiketa jopa metriä vastaavalla määrällä globaalin vertausellipsoidin
normaalipotentiaalista.
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UPUP

P

UQ(=WP)UQ(=WP)

GeoidiGeoidi

NN

WP

QQ

−γγ = −gradU−γγ = −gradU
−gg = −gradW

EllipsoidiEllipsoidi

Kuva 5.3. Painovoimakentän (W) ja normaalipainovoimakentän (U) tasa-
potentiaalipintoja.^

2-144).
Tilannetta luonnehtii vieläkin paremmin kuva 5.3. Tässä kuvassa

normaalipainovoimavektorin γγ = gradU pituus on γ = ∥γγ∥ = − ∂

∂h
U,

josta seuraa, yhtälön T = W − U kanssa, että ”vastaavien” pintojen
W =WP ja U = UQ välinen etäisyys, kunWP = UQ, on

N ≈ UQ −UP
γ =

WP −UP
γ =

T
γ.

^ 5.2 Painovoimahäiriöt

Todellisen painovoiman ja normaalipainovoiman kiihtyvyysarvojen
erotusta kutsutaan painovoimahäiriöksi,

δg
def
= g− γ = ∥gg∥− ∥γγ∥ ≈ −

(︂
∂W
∂H

−
∂U
∂h

)︂
,

4Ernst Heinrich Bruns (1848–1919) oli saksalainen matemaatikko ja matemaattinen
geodeetti.
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jossa differentioidaanW luotiviivaa pitkin ja U— hieman epätarkasti
— vertausellipsoidin normaalia pitkin. Luotiviivan ja ellipsoidin pinta-
normaalin suunnat ovat itse asiassa hyvin lähellä toisiaan. Siksi hyvä
approksimaatio on

δg ≈ −
(︂
∂W
∂H

−
∂U
∂H

)︂
= −

∂T
∂H
.

Palloapproksimaatiossa saadaan

δg ≈ −
∂T
∂r
. (5.3)

Häiriöpotentiaali T kehitettiin jo eri pallofunktioiden asteluvun osuuk-
siin, yhtälö 4.12, ja nyt saadaan differentioimalla r:n suhteen:

δg(ϕ, λ, r) = −
∂T(ϕ, λ, r)

∂r
= −

∂
∂r

(︃ ∞∑︂
n=2

(︂
R
r

)︂n+1
Tn(ϕ, λ)

)︃
=

=

∞∑︂
n=2

n+ 1
r

(︂
R
r

)︂n+1
Tn(ϕ, λ) =

∞∑︂
n=2

n+ 1
R

(︂
R
r

)︂n+2
Tn(ϕ, λ), (5.4)

ja merenpinnalla (r = R):

δg(ϕ, λ, R) =

∞∑︂
n=2

n+ 1
R

Tn(ϕ, λ).

Tämä on painovoimahäiriön spektraaliesitys merenpinnalla eli R-säteisen
maapallon pinnalla. Vertaussäteen R arvoksi voi ottaa Maan vertausel-
lipsoidin päiväntasaajasäde a = a⊕.

Painovoimahäiriöitä voidaan määrittää havainnoista vain, jos on keino
mitata pisteen P painovoimakiihtyvyyden gP

(︁
= − ∂

∂H
W
⃓⃓
P

)︁
lisäksi P:n

sĳainti avaruudessa suhteessa Maan keskipisteeseen, jotta voisi laskea
normaalipainovoima γP = − ∂

∂h
U
⃓⃓
P

samassa pisteessä. Nykyisin tämä
on jopa helppoa GNSS:n avulla. Ennen se ei kuitenkaan ollut mahdollista.
Siksi painovoimahäiriöitä käytetään vähän. Niiden sĳaan käytetään
mieluummin painovoima-anomalioita, joista lisää seuraavassa osiossa.
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ζζ

Telluroidi

Keskimerenpinta
(geoidi)

LuotiviivaTopografia
P (mittauspiste)

Ellipsoidi

HPHP

Q

NN

hQhQ

Kuva 5.4. Vertausellipsoidi, keskimerenpinta (geoidi), telluroidi ja painovoima-
mittaus.^

^ 5.3 Painovoima-anomaliat

Normaalipainovoima lasketaan paikan geodeettisten koordinaattien
(φ, λ, h) funktiona. Kuitenkin perinteisessä gravimetrian kenttätyössä
ennen satelliittipaikannuksen aikakautta olivat saatavilla kartan geo-
deettiset koordinaatit φ ja λ, muttei tarkkaa korkeutta h vertausellipsoi-
dista. Saatavilla oli korkeus H keskimerenpinnan (geoidin) yläpuolella
määritettynä esimerkiksi valtakunnallisen vaaitusverkon kautta — tai
pahimmassa tapauksessa ilmapuntarin avulla.

Tämä merkitsee, että vaikka todellinen painovoima gmitataan pis-
teessä P, jonka korkeus meren pinnasta on HP, normaalipainovoima γ
on pakko laskea toisessa pisteessä Q, jonka korkeus vertausellipsoidista on
hQ = HP. Katso kuva 5.4.

Toisin sanoen pisteen P mitattu korkeus keskimerenpinnasta sĳoitetaan
raa’asti normaalipainovoimakaavaan, joka kuitenkin odottaa korkeutta
vertausellipsoidista! Tätä erikoista piirrettä painovoima-anomalioiden
määritelmässä voidaan kutsua ”vapaan reunan reuna-arvotehtäväksi”.

Sen mukaan johdetaan painovoima-anomalian lauseke seuraavasti:
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∆gP = gP − γQ = (gP − γP) + (γP − γQ) =

= −
(︂
∂W
∂H

⃓⃓⃓
P
−
∂U
∂h

⃓⃓⃓
P

)︂
+ (γP − γQ) ≈

≈ −
∂ (W −U)

∂H

⃓⃓⃓⃓
P

+ (hP − hQ)
∂γ
∂H

⃓⃓⃓⃓
P

=

= −
∂T
∂H

⃓⃓⃓
P
+
(︁
hP −HP

)︁ ∂γ
∂H

⃓⃓⃓⃓
P

=

= −
∂T
∂H

⃓⃓⃓
P
+NP

∂γ
∂H

⃓⃓⃓⃓
P

=

(︃
−
∂T
∂H

+
T
γ
∂γ
∂H

)︃⃓⃓⃓⃓
P

,

käyttämällä melkein kaikkia yllä olevia kaavoja. Tämä yhtälö,

∆g = −
∂T
∂H

+
1
γ
∂γ
∂H
T, (5.5)

tunnetaan nimellä fysikaalisen geodesian perusyhtälö eli fundamental equa-
tion of physical geodesy. Se on kolmannen reuna-arvotehtävän reunaehto
(Heiskanen ja Moritz, 1967, osio 1-17). Se antaa mahdollisuuden ratkais-
ta T ulkoavaruudessa, jos ∆g on annettu kaikkialla Maan pinnalla.

Jos oletetaan, että Maa on R-säteinen pallo ja että normaalipaino-
voimakenttä on pallosymmetrinen, voidaan approksimoida:

∆g = −
∂T
∂r

−
2
rT, (5.6)

jossa r = R+H on etäisyys maapallon keskipisteestä.
Sĳoittamalla tähän δg:n yhtälö 5.3 saadaan

∆g = δg−
2
rT.

Sĳoittamalla tähän spektraaliesitykset 3.10 (mutta T :lle) ja 5.4 δg:lle
saadaan

∆g(ϕ, λ, r) =

∞∑︂
n=2

(︂
n+ 1
r −

2
r

)︂(︂
R
r

)︂n+1
Tn(ϕ, λ) =

=

∞∑︂
n=2

n− 1
r

(︂
R
r

)︂n+1
Tn(ϕ, λ) =

∞∑︂
n=2

n− 1
R

(︂
R
r

)︂n+2
Tn(ϕ, λ) =

=

∞∑︂
n=2

(︂
R
r

)︂n+2
∆gn(ϕ, λ), (5.7)
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kirjoitustavalla

∆gn(ϕ, λ)
def
=
n− 1
R

Tn(ϕ, λ). (5.8)

Tekĳän n − 1 läsnäolo näyttää, että painovoima-anomaliat eivät voi
sisältää asteluvun n = 1 osuuksia, vaikka T sisältäisi. Koordinaatiston
origo kannattaa aina sĳoittaa Maan massakeskipisteeseen, mutta jos
näin ei tehdä, ainakaan painovoima-anomaliat eivät muutu.

Merenpinnalla r = R saadaan

∆g(ϕ, λ, R) =

∞∑︂
n=2

∆gn(ϕ, λ),

eli ∆gn ovat painovoima-anomalian ∆g asteosuudet.
Havaitse, että termi n = 1 puuttuu: ∆g1 = 0. Oletetaan myös, että

∆g0 = − T0
/︁
R = 0, siis todellinen ulkoinen potentiaali on globaalina

keskiarvona sama kuin normaalipotentiaali. Myös Maan kokonaismas-
sa GM⊕ ja sen geoidin tilavuus5 ovat normaalipotentiaalin olettama 5

kokonaismassa ja vertausellipsoidin tilavuus. Oletus on enemmän tai
vähemmän oikeutettu, koska GM⊕ on satelliittien avulla hyvin tarkasti
määritettävissä ja määritettykin, ja modernit normaalipotentiaalimallit,
kuten GRS80, perustuvat näihin määrityksiin6. 6

^ 5.4 Painovoima-anomalioihin käytetyt yksiköt

Painovoiman vaihtelujen suosittu mittayksikkö on milligal. Yhteys SI-
järjestelmään on 1mGal = 10−5 m/s2. Myös yksikköä µGal eli 10−8 m/s2

käytetään. Nykykirjoissa käytetään myös suoraan yksikköjä µm/s2 ja
nm/s2, jotka kuuluvat muodollisesti SI-järjestelmään. Kuitenkin milligallit

5Itse asiassa ilmakehä mutkistaa tätä asiaa.
6Kuitenkin GRS80:n päiväntasaajasäde on 6 378 137,0m, kun uudemmat mallit, kuten
EGM2008, antavat pienemmän arvon 6 378 136,3m globaalin keskimerenpinnan keski-
sĳainniksi. Tämä on hyvä huomioida käytettäessä mallia tuotantotyössä. Epävarmuus
on edelleen desimetrin luokkaa.

í �Õ ! ¤.�û



5118 Painovoimakentän anomaaliset suureet

^ Taulukko 5.1. Painovoiman vaihtelujen suuruusluokat.

Ilmiö Koko painovoimasta SI-yksiköissä mGal

Koko painovoima 1 9,81 981 000

Paikallinen vaihtelu ±10−4 ±10−3 ±100
Ero päiväntasaajan ja napojen välillä 0,5% 0,05 5000

Ero merenpinnan ja 10 km korkeuden välillä 0,3% 0,03 3000

Gravimetrin mittaustarkkuus ± 10−8–10−7 ± 10−7–10−6 ± 0,01–0,1

ja mikrogallit ovat tutumpia, ja lähellä maanpintaa niiden suuruus
on vastaavasti noin 1ppm (miljoonasosa) ja 1ppb (miljardisosa) koko
painovoimasta.

Taulukossa 5.1 on annettu muutama arvo ilmiöiden suuruusluokan
hahmottamiseksi.

Suosittu painovoiman gradientin mittauksen yksikkö on eötvös, sym-
boli E. SI-yksikössä se on 10−9 s−2, mikä vastaa arvoa 10−4 mGal/m. Maan
pinnalla painovoiman pystygradientin ∂

∂H
g arvo on keskimäärin noin

−0,3mGal/m = −3000E.

^ 5.5 Fysikaalisen geodesian reuna-arvotehtävä

Kuten edellisessä osiossa selitettiin, painovoimamittaus on monimut-
kaisempaa kuin se, että mitataan vain suure − ∂

∂H
W ≈ − ∂

∂r
W. Kun

mitataan geopotentiaalin korkeussuuntainen derivaatta, se tehdään
paikalla, jota ei tarkasti tunneta. Vaikka mittauspaikan korkeus tunnettai-
siin merenpinnan yläpuolella, se ei vielä anna mittauspisteen sĳaintia
avaruudessa. Se riippuu näet myös merenpinnan eli geoidin paikasta
avaruudessa, tarkemmin sen korkeudesta vertausellipsoidin ylä- tai
alapuolella.

Näin päädytään kolmanteen reuna-arvotehtävään7. Fysikaalisen geode-7

sian reuna-arvotehtävä on määrittää kappaleen ulkopuolinen potentiaali

7Kolmannen eli sekareuna-arvotehtävän yhteydessä mainitaan Victor Gustave Robi-
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V , jos sen pinnalla on annettu lineaariyhdistelmä

c1V + c2
∂V
∂n
,

jossa c1 ja c2 ovat sopivat kertoimet. Muuttuja nmerkitsee tässä reuna-
pinnan normaalin suuntaista differentiointia, käytännössä samaa kuin
H tai r.

Fysikaalisessa geodesiassa on annettu seuraava lineaariyhdistelmä
reunaehtona:

∆g = −
∂T
∂H

+
1
γ
∂γ
∂H
T. (5.5)

Nähdään, että c1 = −1 ja c2 = γ−1 ∂
∂H
γ. Tämä yhtälö on painovoima-

anomalioiden määritelmä 5.5 ja se tunnetaan nimellä fysikaalisen geode-
sian perusyhtälö.

Taas palloapproksimaatiossa yhtälön 5.8 kääntäminen antaa

Tn(ϕ, λ) =
R

n− 1
∆gn(ϕ, λ).

Muista, että funktiot ∆gn(ϕ, λ) voidaan laskea asteosuusyhtälön 3.9
avulla, kun ∆g(ϕ, λ) on tiedossa kaikkialla maapallolla.

Näin saadaan tämänkin reuna-arvotehtävän ratkaisu spektraaliesi-
tyksessä, joka siis pätee koko ulkoavaruudessa:

T(ϕ, λ, r) =

∞∑︂
n=2

(︂
R
r

)︂n+1
Tn(ϕ, λ) =

∞∑︂
n=2

(︂
R
r

)︂n+1 R
n− 1

∆gn(ϕ, λ) =

=
R
4π

∞∑︂
n=2

2n+ 1
n− 1

(︂
R
r

)︂n+1x
σ
∆g
(︁
ϕ ′, λ ′, R

)︁
Pn(cosψ)dσ ′. (5.9)

Tämä on juuri se reuna-arvotehtävä, joka syntyy, jos kaikkialla Maan pin-
nalla, merenpinta mukaan lukien, on annettu painovoima-anomalioita.

Integraaliyhtälö, joka vastaa yllä olevaa spektraaliyhtälöä 5.9, tunne-
taan Stokesin8 yhtälönä: 8

nin (1855–1897), ranskalaisen matemaatikon, nimi. Silloin Dirichletin ongelma olisi
ensimmäinen ja Neumannin ongelma toinen reuna-arvotehtävä.
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T(ϕ, λ, r) =
R
4π

x

σ
S(ψ, r, R)∆g

(︁
ϕ ′, λ ′, R

)︁
dσ ′,

jossa Stokesin ydin on

S(ψ, r, R) =

∞∑︂
n=2

2n+ 1
n− 1

(︂
R
r

)︂n+1
Pn(cosψ). (5.10)

Osiossa 8.1 annetaan tämän funktion suljettu muoto 8.3 ja grafiikka
tapaukselle r = R.

^ 5.6 Telluroidikuvaus ja ”kvasigeoidi”

Kun mitataan tähtitieteellinen leveys- ja pituusaste (Φ,Λ) sekä tulkitaan
ne geodeettisiksi (ellipsoidisiksi, maantieteellisiksi) koordinaateiksi
(φ, λ) ja samalla myös potentiaaliero −(W −W0) pisteen korkeuden h
mitaksi vertausellipsoidista, suoritetaan tavallaan kuvaus. Tämä kuvaus
lisää jokaiselle pisteelle P vastinpisteenQ, jonka geodeettiset koordinaatit
ovat samat kuin pisteen P luonnolliset koordinaatit.

Tätä menettelytapaa kutsutaan telluroidikuvaukseksi. Telluroidi on pin-
ta, joka seuraa Maan topografisen pinnan muotoja, mutta on kaikkialla
topografian alapuolella määrällä ζ tai sen yläpuolella määrällä −ζ, riip-
puen siitä, onko ζ positiivinen tai negatiivinen. Suuretta ζ kutsutaan
korkeusanomaliaksi.

Telluroidikuvaus on tärkeä apuväline Molodenskin painovoima-
kenttäteoriassa. Se on kuitenkin aika abstrakti käsite. Voidaan sanoa,
että telluroidi on Maan pinnan malli, joka saadaan olettamalla, että

◦ Maan todellinen potentiaalikenttä on normaalipotentiaali.

◦ Matemaattinen keskimerenpinta eli geoidi eli korkeudenmittausten
lähtötaso yhtyy vertausellipsoidiin.

Toisin sanoen telluroidi on Maan topografisen pinnan malli, joka saa-
daan jos tulkitaan vaaitut korkeudet — tarkemmin, vaaituksesta saadut

8Sir George Gabriel Stokes PRS (1819–1903) oli irlantilaissyntyinen ja Cambridgessa
toiminut, lahjakas matemaatikko ja fyysikko.
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geopotentiaaliluvut — normaalipotentiaalin erotuksiksi vertausellipsoi-
din normaalipotentiaaliin verrattuna.

Käytännössä kutsutaan usein ζ-arvojen karttaa ”kvasigeoidin mal-
liksi”. Kvasigeoidi on yleensä lähellä geoidia, paitsi vuoristossa, jossa
poikkeamat voivat nousta yli metriin.

On kuitenkin muistettava, että korkeusanomalia ζ on määritelty
topografian pinnalle, joka on monessa paikassa hyvin rosoinen. Tämä
merkitsee, että kaikki topografian korkeuden vaihtelut heĳastuvat myös
tämän kvasigeoidin vaihteluiksi sillä tavalla, että kvasigeoidi korreloi
vahvasti topografian pienten yksityiskohtien kanssa. Ei siis voida sanoa,
että kvasigeoidin muoto ilmaisee ainoastaan Maan potentiaalikentän
muotoa. Siinä sotketaan geopotentiaalin ja maastokorkeuden vaihtelut
yhdeksi sopaksi.

Siksi kvasigeoidin käsite on onnettomasti valittu kompromissi, myön-
nytys ”vertauspinta-ajattelulle”, joka on oikeasti toimiva vain klassisen
geoidikäsitteen puitteissa. Paras pitäytyä Molodenskin teorian puit-
teissa käsitteessä korkeusanomalia, joka on kolmiulotteinen funktio eli
kenttä

ζ(X, Y, Z) = ζ(φ, λ, h).

^ 5.7 Ilma-anomaliat

Jos mitataan painovoima g pisteessä P, jonka korkeus ”merenpinnan
yläpuolella” on H ja jonka leveysaste on Φ, voidaan laskea painovoima-
anomalia ∆g pisteessä seuraavasti:

∆g
def
= g− γ(Φ,H),

jossa γ(Φ,H) on normaalipainovoima laskettuna sen muodollisen mää-
ritelmän mukaan, mutta korkeudella H ja leveysasteellaΦ.

Näin määritellään ilma-anomalioita (engl. free-air anomalies).
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Linearisoidaan tämä seuraavasti:

∆g = g− γ(Φ,H) ≈ g−
(︃
γ(φ,h) + (Φ−φ)

∂γ
∂φ

+ (H− h)
∂γ
∂h

)︃
≈

≈ g−
(︃
γ(φ, 0) + h

∂γ
∂h

+ (H− h)
∂γ
∂h

)︃
= g− γ(φ, 0) −H

∂γ
∂h
,

jossa teemme approksimaation, että normaalipainovoiman pystygra-
dientti ∂

∂h
γ on vakio9.9

Näin ollen ilma-anomaliat voidaan laskea yksinkertaisemmin. Nor-
maalikentän painovoimakaava 4.10 antaa leveysasteelle 60◦:

γ = 981 917,838− 0,308 449 4H+ · · · mGal.

Siis lineaarisessa approksimaatiossa Maan pinnan lähellä painovoima
heikkenee noin 0,3mGal jokaista korkeuden metriä kohti. Tämä arvo
on hyvä muistaa.

Likimääräinen yhtälö ilma-anomalioiden laskemiseksi on silloin

∆gP = gP − γ0(φ) + 0,3084mGal/mH, (5.11)

jossa γ0(φ)
def
= γ(φ, 0), normaalipainovoima merenpinnalla, on ainoas-

taan leveysasteen funktio. Suomen tapaisessa maassa yhtälö 5.11 on
usein riittävän tarkka, vaikka myös alkuperäisen yhtälön 4.10 laskemi-
nen on helppoa.

Ilma-anomalioita käytetään laajasti. Yleensä kun puhutaan
painovoima-anomalioista, tarkoitetaan juuri ilma-anomalioita. Ne
ilmaisevat maapallon ulkopuolista painovoimakenttää vuorineen ja
laaksoineen.

9Tarkasti ottaen pitää huomioida, että leveysaste Φ ei välttämättä ole leveysaste
geosentriseen vertausellipsoidiin nähden. Se voi olla tähtitieteellinen leveysaste tai
leveysaste jossakin vanhassa kansallisessa koordinaattĳärjestelmässä, joka käyttää
epägeosentristä vertausellipsoidia, kuten Suomessa Kartastokoordinaattĳärjestelmä
KKJ ja Hayfordin ellipsoidi. Tämän aiheuttama virhe on kuitenkin pari kolme suuruus-
luokkaa pienempi kuin erotuksen H− h aiheuttama efekti.
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18◦ 28◦ 30◦ 32◦26◦24◦22◦20◦

18◦ 28◦ 30◦ 32◦26◦24◦22◦20◦

60◦

62◦

60◦

62◦

64◦64◦

Kuva 5.5. Painovoiman ilma-anomalioita Etelä-Suomessa laskettuina pallo-
funktiokehitelmästä EGM2008. Data © Bureau Gravimétrique Inter-
national (BGI) / International Association of Geodesy. Verkkopalvelu
BGI, EGM2008.^

Kysymyksiä

1) Jos painovoima merenpinnalla on 9,81m/s2 , millä korkeudel-
la painovoima häviää, laskettuna yllä mainitun painovoiman
pystygradientin −0,3mGal/m mukaan?

2) Kuinka realistista tämä on fysikaalisesti?
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Vastauksia

1) Jos gradientti on−0,3mGal/m , tarvitaan
(︂
9,81 · 105

/︂
0,3

)︂
m =

3270 km saavuttaakseen arvo nolla.

2) Ei kovin realistista. Itse painovoimagradientti putoaa no-
peasti alkuarvosta −0,3mGal/m, kun siirrytään ylöspäin, ja
siksi tämä lineaarinen ekstrapolointi on yksinkertaisesti
väärin.

^ Olenko ymmärtänyt tämän?

1) Miten luotiviivan poikkeamat ja geoidikorkeudet liittyvät toisiin-
sa?

2) Mikä on fysikaalisen geodesian perusyhtälö palloapproksimaa-
tiossa?

3) Millä tavalla painovoimahäiriö eroaa painovoima-anomaliasta?

4) Mitä yksiköitä käytetään painovoima-anomalioiden ja painovoi-
magradientin mittaamiseksi? Miten ne liittyvät SI-järjestelmään?

5) Miten geoidikorkeus ja häiriöpotentiaali liittyvät toisiinsa?

6) Selosta telluroidikuvaus ja korkeusanomaliat.

^ Harjoitus 5–1: Painovoima-anomalioiden spektri

Käytä yhtälöä 5.8. Jos oletetaan, että painovoima-anomalioiden aste-
osuuksien ∆gn neliöllinen keskiarvo,

∥∆gn∥σ
def
=

√︃
1
4π

x

σ
∆g2n (ϕ, λ)dσ,

ei riipu valitusta asteluvusta n, miten samalla tavalla määritetty ∥Tn∥σ
riippuu asteluvusta n?
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Toisin sanoen, mitkä painovoimakentän asteluvut ovat suhteessa vah-

vimmin edustettuina häiriöpotentiaalissa ja mitkä asteluvut painovoima-
anomalioissa?

^ Harjoitus 5–2: Luotiviivan poikkeamat ja geoidin

kaltevuus

Jos maan luotiviivan poikkeamien etelä-pohjoiskomponentissa on yh-
den kaarisekunnin systemaattinen virhe, minkälaisen virheen se aiheut-
taa geoidikorkeuksien erossa N2 − N1 pisteiden 1 ja 2 välillä, joiden
etäisyys toisistaan on noin 1000 km etelä-pohjoissuunnassa? Katso ku-
vat 5.1 ja 5.2.

^ Harjoitus 5–3: Painovoima-anomalia ja geoidin korkeus

Eräässä paikassa Suomessa painovoima-anomalia (ilma-anomalia) on
∆g = 100mGal = 10−3m/s2 . Samassa paikassa häiriöpotentiaali T on
200m2

/s2 .

1) Käyttämällä fysikaalisen geodesian perusyhtälöä 5.6:

∆g = −
∂T
∂r

−
2
rT,

laske ∂

∂r
T ja vertaa sitä suureen 2T

/︁
r kanssa. Oleta r ≈ R. Kumpi

termi, ∂
∂r
T vai 2T

/︁
r , dominoi?

2) Oleta, että piste on lähellä merenpintaa. Käyttämällä Brunsin
yhtälöä

N =
T
γ,

jossa γ on keskimääräinen painovoima 9,81m/s2 , laske pisteen
geoidikorkeus N.
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^ 6.1 Yleistä

Näimme, että integraaliyhtälöt, kuten Greenin kolmas lause 1.25, tar-
joavat mahdollisuuden laskea Maan koko ulkopuolinen potentiaali
sekä kaikki potentiaalista laskettavat suureet, kuten gravitaatiokiihty-
vyyden, käyttämällä reunapinnalla havaittujen suureiden V tai ∂

∂n
V —

tai niiden lineaariyhdistelmän — arvoja. Edellytys on, että rajapinnan
ulkopuolella ei ole massoja.

Greenin kolmas lause on vain yksi esimerkki monesta: jokainen
integraalilause on erään reuna-arvotehtävän ratkaisu.

Reunapinnan valinnalle on kolme vaihtoehtoa:

1) Valitaan Maan topografinen pinta.

2) Valitaan keskimerenpinta, tarkemmin keskimerenpinnan lähellä
oleva tasapotentiaalipinta eli geoidi.

3) Valitaan vertausellipsoidi.

◦ Vaihtoehdon 1 on kehittänyt etenkin Molodenskin (Molodenski
ym., 1962) koulukunta entisessä Neuvostoliitossa. Menetelmän
etuna on, että painovoimareduktiota ei tarvita, koska kaikki massat
ovat jo reunapinnan sisällä. Haittana on, että topografian usein mo-
nimutkainen muoto on otettava huomioon, kun reuna-arvotehtävä
formuloidaan ja ratkaistaan.
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◦ Vaihtoehto 2 on klassinen geoidi- tai geopotentiaalimääritys. Tässä
tapauksessa tarvitaan painovoimadatan geofysikaalisia reduktioita,
koska Maan massoista osa on laskentapinnan ulkopuolella: ne on
laskennallisesti poistettava tai siirrettävä pinnan sisäpuolelle. Vain
silloin Laplacen yhtälö 1.13 pätee Maan ulkopuolisessa avaruu-
dessa, kuten fysikaalisen geodesian reuna-arvotehtävä edellyttää,
katso osio 5.5.
Silloin saatu geopotentiaali- tai geoidiratkaisu ei ole enää alku-
peräisen massajakauman potentiaali tai geoidi, vain redukoidun
massajakauman. Tätä pintaa kutsutaan kogeoidiksi. Tarvitaan ”pa-
lautusaskel”, jossa määritetään ja peruutetaan tämän reduktio-
vaiheen vaikutus geopotentiaaliin ja geoidiin. Tätä vaikutusta
kutsutaan ”epäsuoraksi vaikutukseksi”.
Kirjallisuudessa tätä menetelmää kutsutaan myös poistamis-
entistämis- eli remove-restore-menetelmäksi.

◦ Vaihtoehtoa 3 on käytetty harvoin, koska painovoimamittauksia
ei ole ollut perinteisesti mahdollista tehdä absoluuttisesti, siis
geosentrisesti tai vertausellipsoidin suhteen, tunnetussa paikassa.
Nykyisin tämä onnistuu GNSS:n avulla: esimerkiksi Etelämante-
reella ja Grönlannin sisämaassa näin voisi tehdä, koska käytössä
ei ole merenpintaan sidottua korkeusjärjestelmää.
Odotettavissa on, että menetelmän suosio kasvaa, kun gravimetris-
ten asemien korkeudet mitataan yhä enemmän suoraan GNSS:llä.
Katso esimerkiksi Märdla (2017).

^ 6.2 Bouguer-anomaliat

Ilma-anomaliat riippuvat topografiasta, koska itse painovoima sisältää
topografisten massojen vetovoimavaikutuksen. Ilma-anomaliakartasta
näkyy samoja pieniä yksityiskohtia kuin topografiasta. Yksi tapa poistaa
topografian vaikutus on niin sanottu Bouguer1-reduktio.1
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ds

dz ⏟ ⏞⏞ ⏟
ℓ

cosβdβ

d

ℓℓ

β

P

y

z

ss

HH

dVdV x

Kuva 6.1. Bouguer-laatan vetovoima.^

^ 6.2.1 Bouguer-reduktion laskenta
Lasketaan homogeenisen laatan vaikutus painovoimaan. Oletetaan, että
laatta on äärettömän kokoinen: paksuus d, ainetiheys ρ ja pisteen P
korkeus H laatan alapinnasta. Katso kuva 6.1. Vetovoima pisteessä P,
joka osoittaa symmetrian takia suoraan alaspäin, saadaan integroimalla.
Laskettavalla tilavuusintegraalilla on tilavuusalkio

dV = ds · dz · s dα

lieriökoordinaateissa (s, z, α). Muunnetaan tämä koordinaatteihin
(β, z, α). Unohdetaan α ja tutkitaan pinta-ala-alkio (kuva 6.1, ylhäällä
oikealla)

dsdz =
ℓ

cosβdβdz,

jossa tarvittava Jacobin determinantti, ℓ
/︁
cosβ , näkyy.

1Pierre Bouguer (1698–1758) oli ranskalainen hydrografiaprofessori, joka osallistui
Maan muotoa koskevaan yhteiskunnalliseen keskusteluun. Vuosina 1735–1743 hän
johti Perussa Etelä-Amerikassa Ranskan Tiedeakatemian astemittausta suorittavaa
retkikuntaa samaan aikaan, kun De Maupertuis suoritti vastaavan Tornionlaakson
astemittauksen Lapissa. Geodesian lisäksi hän harrasti myös tähtitiedettä.
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Integroidaan:

a
def
= ∥aa∥ = G

y cosβ
ℓ2

ρdV = Gρ
w 2π
0

w d
0

w ∞
0

cosβ
ℓ2
· dsdz · s dα =

= Gρ
w 2π
0

w d
0

w π/2
0

cosβ
ℓ2
· ℓ

cosβdβdz · s dα =

= 2πGρ
w d
0

w π/2
0

s
ℓ
dβdz = 2πGρ

w d
0

(︃w π/2
0

sinβdβ
)︃
dz.

Tässä integraali
w π/2
0

sinβdβ =
[︁
− cosβ

]︁π/2
0

= 1,

ja lopputulos on
a = 2πGρd. (6.1)

Tämä on Bouguer-laatan vetovoiman yhtälö. Sivutuloksena saadaan
r-säteisen ympyrän muotoisen levyn vetovoima:

w β0(z)
0

sinβdβ =
[︁
− cosβ

]︁β0(z)
0

= 1− cos
(︁
β0(z)

)︁
,

ja koko integraali

a = 2πGρ
w d
0

(︄
1−

cos(β0(z))⏟ ⏞⏞ ⏟
H− z√︂

(H− z)
2
+ r2

)︄
dz.

Integraalifunktio on
w

H− z√︂
(H− z)

2
+ r2

dz =−

√︂
(H− z)

2
+ r2.

Integraalirajojen sĳoitus antaa

w d
0

(︄
1−

H− z√︂
(H− z)

2
+ r2

)︄
dz = d+

√︂
(H− d)

2
+ r2 −

√︁
H2 + r2.

Saadaan koko integraaliksi

a = 2πGρ

(︃
d+

√︂
(H− d)

2
+ r2 −

√︁
H2 + r2

)︃
.
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Laskentapiste P

IIII

II
Bouguer-laattaBouguer-laatta

TopografiaTopografia

II

d = Hd = H

Kuva 6.2. Bouguer-laatta topografian approksimaationa.^

Limiitissä r→∞, ja siis√︂
(H− d)

2
+ r2 −

√︁
H2 + r2 → 0,

tämä on identtinen yhtälön 6.1 kanssa.
Bouguer-anomalioita lasketaan merenpinnan eli geoidin yläpuolella

olevien maankuoren massojen vetovoiman poistamiseksi. Todellinen
topografia approksimoidaan Bouguer-laatalla, katso kuva 6.2.

Ei ole sovittu tapa käsitellä meren peittämiä alueita:

◦ Joillakin kartoilla on Bouguer-anomalioita maa-alueilla ja ilma-
anomalioita merialueilla. Tämä on vaihtoehto, jos ei ole käytettä-
vissä laadukasta syvyystietoa.

◦ Oikeampi tapa on korvata merivettä kallioisella Bouguer-laatalla,
jonka paksuus on yhtä suuri kuin meren paikallinen syvyys eli
batymetria.

Laskenta tapahtuu seuraavasti:

∆gB = ∆gFA − 2πGρH = ∆gFA − 0,1119H, (6.2)

jossa oletetaan laatan tiheydeksi usein käytetty maankuoren keskitihey-
den arvo, ρ = 2670 kg/m3. Sĳoittamalla tähän yhtälö 5.11, saadaan

∆gB = gP − γ0(φ) +
(︁
0,3084− 0,1119

)︁
H = gP − γ0(φ) + 0,1965H.

(6.3)
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Ilma-anomaliaIlma-anomalia

Bouguer-anomaliaBouguer-anomalia

Topografia

Kuva 6.3. Eri anomaliatyyppien käyttäytyminen vuoristoisessa maastossa.^

Suuretta ∆gB kutsutaan (yksinkertaiseksi) Bouguer-anomaliaksi.
Erotusta Bouguer-laatan vetovoiman ja todellisen topografian veto-

voiman välillä kutsutaan maastokorjaukseksi TC (kuvassa 6.2 tilavuudet I
ja II). Sen laskentaan palataan myöhemmin.

^ 6.2.2 Ominaisuudet
Toisin kuin ilma-anomaliat, jotka vaihtelevat nollan molemmin puo-
lin, Bouguer-anomaliat ovat vahvasti negatiivisia etenkin vuoristossa.
Esimerkiksi jos vuoriston keskikorkeus onH = 1000m, alueen Bouguer-
anomaliat sisältävät systematiikan 1000× (−0,1119mGal) = −112mGal,
noin −100mGal jokaista korkeuskilometriä kohti.

Bouguer-anomalioiden etuna on niiden pienempi vaihtelu paikasta
toiseen. Siksi ne soveltuvat etenkin painovoima-arvojen interpolointiin ja
prediktioon, tilanteissa joissa käytettävissä oleva gravimetrinen aineisto
on maantieteellisesti harva. Tämä edellyttää, että topografian korkeudet
tunnetaan paremmalla spatiaalisella tiheydellä.

^ 6.3 Maastoefektit ja maastokorjaus

Yksinkertainen Bouguer-reduktio ei poista painovoima-anomalioista
koko topografian vetovoimavaikutusta tarkasti. Kuvasta 6.2 näkyy, että
tapahtuu kahdenlaisia virheitä:
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18◦ 28◦ 30◦ 32◦26◦24◦22◦20◦

18◦ 28◦ 30◦ 32◦26◦24◦22◦20◦

60◦

62◦

64◦

62◦

64◦

60◦

Kuva 6.4. Maastokorjattuja Bouguer-anomalioita Etelä-Suomessa, laskettu-
na pallofunktiokehitelmästä EGM2008. Aineisto © Bureau Gravi-
métrique International (BGI) / International Association of Geodesy.
Verkkopalvelu BGI, EGM2008. Kuvaan 5.5 sivulla 123 verrattuna
Bouguer-anomaliat ovat vahvasti systemaattisesti negatiivisia, vaik-
ka tämä on osittain postglasiaalisen isostaattisen epätasapainon ai-
heuttamaa ja näkyy myös ilma-anomaliakartalla. Bouguer-anomaliat
ovat myös sileämpiä, vaikka sitä on tästä vaikeampi nähdä, koska
Etelä-Suomi on aika tasainen.^
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◦ Tilavuuksien I vetovoima lasketaan mukaan, vaikka ne tilavuudet
eivät sisällä ainetta.

◦ Tilavuuksien II vetovoima jätetään huomioimatta, vaikka tilavuu-
det sisältävät ainetta.

Molemmat virheet toimivat samaan suuntaan! Koska tilavuudet I ovat las-
kentapisteen P alapuolella, niiden vetovoima — jonka yksinkertainen
Bouguer-reduktio korjaa pois — toimii alaspäin. Ja koska tilavuudet
II ovat laskentapisteen yläpuolella, niiden vetovoima — jota ei yksin-
kertaisessa Bouguer-reduktiossa korjata pois — toimii ylöspäin. Tehty
virhe on samansuuntainen kuin edellisessä tapauksessa.

Maastokorjaus on aina positiivinen.

Kirjoitetaan
∆g ′

B = ∆gB + TC,

jossa TC — ”terrain correction” eli maastokorjaus — on positiivinen.
Suuretta ∆g ′

B kutsutaan maastokorjatuksi Bouguer-anomaliaksi.
Maastokorjaus lasketaan numeerisen integroinnin avulla. Kuvassa

6.5 näkyy prismamenetelmä ja miten molemmat prismat, I ja II, tuottavat
positiivisen korjauksen, koska prisma I lisätään ja prisma II poistetaan
laskennallisesti. Tarvitaan digitaalinen maastomalli, DTM, jonka on olta-
va varsinkin laskentapisteen ympäri erittäin tiheä: kokemuksen mukaan
500m on suurin sallittu pisteväli Suomen kaltaisessa maastossa; vuoris-
tossa tarvitaan jopa 50m. Maastokorjauksen systemaattisen luonteen ta-
kia liian harvan digitaalisen maastomallin käyttö aiheuttaa jopa vakavia
systemaattisia virheitä vajavaisesti korjatuissa painovoima-anomalioissa.

Maastokorjauksen laskennassa prismamenetelmällä käytetään seu-
raavaa yhtälöä, jossa oletuksina ovat maankuoren vakiotiheys ρ ja litteä
Maa, suorakulmaisissa karttakoordinaateissa x, y:

TC(x, y) = 1

2
Gρ

w +D

−D

w +D

−D

1
ℓ3

(︂
H
(︁
x ′, y ′)︁−H(x, y))︂2 dx ′ dy ′,
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x, y

H
(︁
x ′, y ′)︁

H(x, y)

x ′, y ′x ′, y ′

H
(︁
x ′, y ′)︁

Geoidi

Topografia

I

P
θ IIII

Kuva 6.5. Klassisen maastokorjauksen laskeminen prismamenetelmällä.^

jossa

ℓ =

√︃
(x− x ′)

2
+ (y− y ′)2 +

(︂
1

2

(︁
H(x ′, y ′) −H(x, y)

)︁)︂2
on etäisyys laskentapisteen[︂

x y H(x, y)
]︂T

ja prisman keskiakselin keskipisteen[︂
x ′ y ′ 1

2

(︂
H(x ′, y ′) +H

(︁
x, y
)︁)︂ ]︂T

välillä. Tietenkin tämä on vain approksimaatio, mutta se toimii riittävän
tarkasti maastossa, jossa kaltevuudet eivät yleensä ylitä 45◦. Yllä olevassa
integraalissa raja-arvoD on tavallisesti kymmeniä tai satoja kilometrejä.
Jälkimmäisessä tapauksessa Maan kaarevuus alkaa jo vaikuttaa, mitä
yhtälö ei ota huomioon.

Maastokorjauksen TC arvot vaihtelevat milligalin murto-osasta (Etelä-
Suomessa) satoihin milligalleihin (korkeassa vuoristossa). Suomen
käsivarressa maastokorjaukset voivat olla kymmeniä milligalleja.

Kuvassa 6.6 esitetään Bouguer-anomalian laskennan vaiheet pai-
novoimahavainnosta maastokorjauksen, Bouguer-laattakorjauksen ja
ilmareduktion kautta.
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Merenpinnan
normaalipainovoiman

vähennys, −γ0(φ)

Bouguer-
laatta-
korjaus

Maasto-
korjaus

Ilma-
reduktio
meren-
pintaan

Annettuna: painovoima g
maastossa

Kuva 6.6. Bouguer-anomalian laskennan vaiheet. Reduktio merenpintaan käyt-
tää painovoiman ilmagradientin standardiarvoa−0,3084mGal/m , nor-
maalipainovoiman pystygradienttia.^

^ 6.3.1 Esimerkki: Maastokorjauksen soveltaminen
erikoistapauksessa

Annettuna on erikoinen maaston muoto, kuvassa 6.7 kolmiulotteisvai-
kutteisesti esitettynä. Korkeuserot ovat PQ ′ = 300m ja QQ ′ = 200m.
Kallion tiheys on maankuoren standarditiheys 2670kg/m3 .

300m300m
200m200m

PP

Q ′

QQ

Merenpinta

Kuva 6.7. Erikoinen maaston muoto. Pystysuora kallioseinämä kohdalla PQ
on myös kartalla suora ja ulottuu molemmissa suunnissa äärettö-
myyteen.^
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Kysymyksiä

1) Laske pisteessä P maastokorjaus. Vihje: käytä Bouguer-
laatan vetovoimakaavaa. Mikä on etumerkki?

2) Laske pisteessä Qmaastokorjaus. Mikä on etumerkki?

3) Jos pisteessä P on annettuna, että ilma-anomalia on 50mGal,
paljonko on pisteen Bouguer-anomalia?

4) Jos pisteessä Q on annettuna, että Bouguer-anomalia on
22mGal, paljonko on pisteen ilma-anomalia?

Vastauksia

1) Pisteen Pmaastokorjaus on painovoiman muutos, kun maas-
to täytetään pisteen vasemmalla puolella 300metriin saakka.
Tämä merkitsee puolinaisen Bouguer-laatan, paksuus 100m,
lisäämistä P:n tason alapuolelle. Vaikutus pystysuunnalle
projisoituna on

TC = 1

2
· 2πGρ ·H =

= 1

2
· 0,1119mGal/m · 100m = 5,595mGal.

2) Pisteen Q maastokorjaus on painovoiman muutos, jos ote-
taan pois pisteen oikealla puolella ja sen yläpuolella oleva
100m paksu puolinainen Bouguer-laatta. Sen pystysuuntainen
painovoimavaikutus on, kuten yllä laskettu,

TC = 5,595mGal,

ja koska pisteenQ tason yläpuolella oleva puolilaatta otetaan
pois, on TC:n etumerkki taas positiivinen.

3) Ilma-anomaliasta Bouguer-anomaliaan:
∆gFA(P) 50,000mGal
TC +5,595mGal
Bouguer-laatan poisto, 300 m −33,570mGal
∆gB(P) 22,025mGal
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+TC ∆gB∆gFA −Laatta

4) Bouguer-anomaliasta ilma-anomaliaan:
∆gB(Q) 22,000mGal
Bouguer-laatan lisäys, 200 m +22,380mGal
TC:n poisto −5,595mGal
∆gFA(Q) 38,785mGal

∆gFA∆gB −TC+Laatta

^ 6.4 Bouguer-palloanomaliat

Viime aikoina on laskettu myös Bouguer-palloanomalioita, esimerkiksi
Balmino ym. (2012); Kuhn ym. (2009); Hirt ja Kuhn (2014). Tässä las-
kennassa koko maapallon topografia ja meren syvyydet eli batymetria
otetaan huomioon pallogeometriassa. Maan litistyneisyys aiheuttaa las-
kennassa olemattoman pienen virheen. Bouguer-palloanomaliat eroavat
Bouguer-laatta-anomalioista neljällä tavalla:

1) Bouguer-pallokuoren, paksuus H, vetovoima on 4πGρH eli kaksi
kertaa vastaavan Bouguer-laatan vetovoima. Kuoren kaukainen
osa tuottaa yhtä paljon vetovoimaa kuin laskentapisteen ympäris-
tö!

2) Valtamerten syvyydet eli batymetria otetaan huomioon2 korvaa-2

malla merivettä maankuoren standardikalliolla. Tämä vaikuttaa
anomalioihin positiivisesti.

2Näin voi tehdä myös Bouguer-laattakorjauksen yhteydessä, ja usein tehdäänkin.
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3) Myös maapallon kaukaisten alueiden topografia- ja syvyystiedot

otetaan huomioon realistisesti. Koska Maan pinnasta valtaosa on
syvien valtamerten peitossa, aiheutuu vahva positiivinen yleissyste-
matiikka, myös alavilla alueilla, joilla Bouguer-laattareduktio on
tavallisesti pieni.

4) Myös maastokorjaus lasketaan nyt pallogeometriassa koko maa-
pallon yli — vaikkakin vain topografialle. Siksi sääntö, jonka
mukaan sen kaikki osuudet ovat positiivisia, ei enää päde: Abreh-
dary ym. (2016) raportoivat, että paikoissa lähellä paikallisen
horisontin alapuolella olevia vuoristoja, pallomaastokorjaus voi
olla niinkin negatiivinen kuin −200mGal.

Laatta- ja pallo-Bouguer-anomalioiden välillä on olemassa suuri sys-
temaattinen ero, joka on kuitenkin hyvin pitkäaaltoinen ja Australian
kokoisella alueella lähes vakio: −18,6mGal muutaman milligallin vaih-
teluvälin sisällä. Yksityiskohdat Bouguer-anomalioiden kartoissa ovat
samannäköisiä (Kuhn ym., 2009).

Huvin vuoksi lasketaan globaalin ja täydellisen Bouguer-
palloreduktion netto massaefekti. Mantereiden topografian kes-
kikorkeus on 800m, kun mantereiden kokonaispinta-ala on 29% koko
maapallon pinta-alasta. Valtamerten keskisyvyys on 3700m, mikä
vastaa täytettävää kalliota vastaavaa syvyyttä

3700× 2670− 1030
2670

m = 2272m,

jos maankuoren kallion oletettu tiheys on 2670 kg/m3, meriveden tiheys
1030 kg/m3 ja valtameren kokonaispinta-ala on 71% koko maapallon
pinta-alasta. Aluepainotettu summa on siis

(0,29× 800− 0,71× 2272) m = −1381m.

Tulkinta Topografiaa ei ole tarpeeksi täyttämään valtamerta, silloin-
kaan jos saamme puristaa merivettä standardikallioksi. Jos yri-
tämme tätä puskutraktorikoetta, meiltä jää uupumaan 1381m
nykymerenpintaan verrattuna.
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6140 Geofysikaaliset reduktiot

Jos sen sĳaan lisätään standardikalliota nykyiseen merenpintaan
saakka — näinhän on Bouguer-palloreduktio määritelty — lisä-
tään avaruudesta käsin havaittavaan Maan vetovoimaan määrä
4πGρ× 1381m = 309mGal.
Maailmanlaajuinen keskimääräinen Bouguer-laattareduktio, ku-
ten myös ero Bouguer-pallo- ja laattareduktioiden välillä maa-
ilmanlaajuisesti keskimäärin, on nyt puolet tästä arvosta eli
≈ 155mGal. Koska ilma-anomalioiden globaali keskiarvo on nol-
la, on globaali pallo-Bouguer-anomalioiden keskiarvo 309mGal,
ja positiivisuudesta valtaosa löytyy syvän valtameren yllä.

^ 6.5 Helmertin kondensaatio

Usein käytetty, Friedrich Robert Helmertin3 ehdottama keino poistaa3

geoidin ulkopuolisten massojen vaikutus on kondensaatio. Tässä me-
netelmässä kaikki mannermassat siirretään matemaattisesti suoraan
alaspäin keskimerenpintaan yksinkertaiseksi massatiheyskerrokseksi

κ = ρH,

jossa H on topografian korkeus merenpinnasta ja ρ sen keskimääräinen
ainetiheys. Tämä massapintatiheys voidaan tulkita patsaan massa-
integraaliksi:

κ = ρ
w R+H
R

dz.

Pallon muotoisen Maan tapauksessa vastaava integraali on

κ = ρ
w R+H
R

(︂
r
R

)︂2
dr = ρ

1
R2
[︁
1

3
r3
]︁R+H
R

= ρH

(︃
1+

H
R

+ 1

3

H2

R2

)︃
, (6.4)

jossa ymmärretään, että massaa siirretään patsaan poikkileikkauksesta,
jonka pinta-ala on r2

/︁
R2 merenpintaan, jossa pinta-ala on 1.

3Friedrich Robert Helmert (1843–1917) oli saksalaisgeodeetti sekä matemaattisen ja
tilastollisen geodesian tutkĳa.
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Tasapotentiaalipinta

g ′g ′ gg

Kondensaatiokerros

Topografia

Kuva 6.8. Helmertin kondensaatio ja sen aiheuttamat muutokset painovoima-
kentässä.^

Helmertin kondensaation etu Bouguer-reduktioon verrattuna on, että
massaa ei poisteta. Bouguer-reduktiohan on topografisten massojen laaja-
mittainen laskennallinen poisto. Siksi toisin kuin Bouguer-reduktiossa,
Helmertin kondensaatiossa painovoima-anomaliat eivät muutu syste-
maattisesti.

Liitteessä D johdetaan sarjakehitelmät pallogeometriassa, jotka ilmai-
sevat topografian sekä ulkoista että sisäistä potentiaalia itse topografian
H(ϕ, λ) ja sen eri potenssien ”asteosuuksien” funktioina. Liitteessä
laajahkosti esitettyä johtamistapaa käytetään Maan painovoimakentän
teoriassa paljon topografian painovoimavaikutuksen mallintamiseksi.
Teoriassa suppenemiskysymykset ovat vaikeita, vaikka emme tässä
kiinnitä niihin erityistä huomiota.
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Kuva 6.9. Friedrich Robert Helmert. Humboldt University Berlin (2017).^

^ 6.6 Isostasia

^ 6.6.1 Klassisia hypoteeseja
Jo 1700- ja 1800-luvun aikana, muun muassa Bouguer’n työn ansiosta
Etelä-Amerikassa ja brittigeodeettien työn ansiosta Intian Himalajalla,
oltiin tietoisia siitä, että vuoristot eivät ole vain kivikasoja maankuoren
päällä. Vuoria ympäröivä painovoimakenttä, tarkemmin luotiviivan
poikkeamat, voitiin selittää vain olettamalla, että jokaisen vuoriston
alla on kevyemmästä kiviaineesta koostuva ”juuri”. Tämän juuren ai-
heuttajaksi arveltiin maankuoren lähes hydrostaattinen käyttäytyminen
geologisella aikaskaalalla. Tätä hydrostaattisen tasapainon oletusta
kutsuttiin isostasiahypoteesiksi, myös isostaattiseksi kompensaatioksi.

Silloin, toisin kuin nykyisin, ei vielä ollut mahdollista saada fysikaali-
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”Juuri””Juuri”

Geoidi

Luotiviiva- poikkeamat

MaankuoriMaankuori

VuoriVuori

Maan vaippaMaan vaippa

Kuva 6.10. Isostasia ja luotiviivojen taipuminen vuoreen päin.^

sin menetelmin eli seismologialla tarkkaa tai edes oikeaa kuvaa siitä,
minkä muotoisia nämä vuoristojen juuret oikeasti ovat. Siksi kehiteltiin
yksinkertaistettuja työhypoteesejä.

Yksi klassinen isostaattinen hypoteesi on Prattin ja Hayfordin hypo-
teesi. Sen ehdotti J. H. Pratt4 1800-luvun keskivaiheilla (Pratt, 1855, 1859, 4

1864), ja J. F. Hayford5 kehitti laskentaan tarvittavat matemaattiset apu- 5

välineet. Hypoteesin mukaan vuoren alla olevan ”juuren” ainetiheys
vaihtelee vuoren korkeuden mukaan niin, että korkeimpien vuorten alla
on kevyin materiaali, ja raja tämän kevyen juuriaineen ja tiheämmän
Maan vaipan materiaalin välillä on vakiosyvyydellä. Tämä malli, jota
nykyisin ei enää paljon käytetä, näkyy kuvassa 6.11.

Toinen klassinen isostaattinen hypoteesi on G. B. Airyn6 käsialaa. 6

4John Henry Pratt (1809–1871) oli brittiläinen pappismies ja matemaatikko, joka toimi
Kolkatassa Intiassa arkkidiakonina. Wikipedia, John Pratt.
5John Fillmore Hayford (1868–1925) oli yhdysvaltalainen geodeetti, joka tutki isostasiaa
ja Maan muotoa.

í �Õ ! ¤.�û



6144 Geofysikaaliset reduktiot

Kompen-
saatio-

syvyys

Kompen-
saatiotaso

MeriMeri

MaankuoriMaankuori

Vuoristo

VaippaVaippa

Kuva 6.11. Prattin ja Hayfordin isostaattinen hypoteesi.^

Koska V. A. Heiskanen7 käytti sitä laajasti ja kehitti sen matemaattista7

muotoa, sitä kutsutaan Airyn ja Heiskasen malliksi. Tässä mallissa
oletetaan, että ”juuren” ainetiheys on vakio ja että isostaattinen kompen-
saatio saadaan aikaan vaihtelemalla juuren uppoamissyvyyttä Maan
vaippaan. Nykytietojen mukaan tämä vastaa paremmin sitä, mitä Maan
sisällä todella tapahtuu. Tämä hypoteesi näkyy kuvassa 6.12.

^ 6.6.2 Laskentakaavoja
Airyn isostaattinen hypoteesi olettaa, että aineen pystypylvään koko-
naismassa on jokaisessa paikassa sama. Siis olkoon maankuoren tiheys
ρc, vaipan tiheys ρm, meriveden tiheys ρw, meren syvyys d, kuoren

6George Biddell Airy PRS (1801–1892) oli englantilainen matemaatikko ja tähtitieteilĳä,
”Astronomer Royal” 1835–1881.
7Veikko Aleksanteri Heiskanen (1895–1971), ”the great Heiskanen” (Hermans, 2007) oli
suomalainen geodeetti, joka toimi myös Ohiossa Yhdysvalloissa. Hänet tunnetaan
isostasian ja maailman geoidin tutkimuksistaan (”Columbuksen geoidi”). Katso
Kakkuri (2008).
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Kompen-
saatiotaso

VastajuuriVastajuuri

MeriMeri ρwρw

VaippaVaippa

Kompensaatiosyvyys t0Kompensaatiosyvyys t0

Vuoriston juuriVuoriston juuri

VuoristoVuoristo

ρmρm

ρcρc

MaankuoriMaankuori

Kuva 6.12. Airyn ja Heiskasen isostaattinen hypoteesi.^

paksuus t ja topografian korkeus H. Saadaan

tρc + dρw − (t+ d) ρm = c =⇒ t = −
d (ρm − ρw) + c

ρm − ρc

tt rr

dd

rr

HH

ttt0t0

JuuriJuuri

VastajuuriVastajuuri

Kuva 6.13. Isostaattisen kompensaation suureita.^
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merellä ja
tρc − (t−H) ρm = c =⇒ t =

Hρm − c
ρm − ρc

mantereella. c on sopiva vakio8. Tässä on jätetty huomioimatta Maan8

kaarevuus ja käytetään ”litteän Maan mallia”.
Mantereen alla vuoriston juuren syvyys on

r = t−H =
Hρm − c
ρm − ρc

−
Hρm − hρc
ρm − ρc

=
Hρc − c
ρm − ρc

.

Samoin meren alla

r = t+ d = −
d (ρm − ρw) + c

ρm − ρc
+
dρm − dρc
ρm − ρc

= −
d (ρc − ρw) + c

ρm − ρc
.

Yhtälöissä vakio c on, ainakin isostaattisen tasapainon kannalta, mie-
livaltainen ja ilmaisee sitä tosiasiaa, että taso, josta lasketaan juuren
syvyys — vähemmän tarkasti ”kuoren keskimääräinen paksuus” —
voidaan valita mielivaltaisesti.

Eri lähestymistapa: c:n sĳasta käytetään ”nollatopografian kompen-
saatiotasoa”, lyhyesti kompensaatiosyvyys, t0, joka lasketaan yllä olevista
yhtälöistä asettamalla H = d = 0:

t0 (ρc − ρm) = c.

Tästä saadaan mantereen alla juuren syvyydeksi

r =
Hρc − t0 (ρc − ρm)

ρm − ρc
= t0 +H

ρc
ρm − ρc

, (6.5)

ja meren alla

r = −
d (ρc − ρw) + t0 (ρc − ρm)

ρm − ρc
= t0 − d

ρc − ρw
ρm − ρc

, (6.6)

yhtälöt, jotka ovat jonkin verran yksinkertaisempia ja myös intuitiivi-
sempia.

8Sen dimensio, maanpinnan painovoiman g kanssa kertomisen jälkeen, on paine:
Arkhimedeen lain mukainen maankuoren ja meriveden patsaan paine vähennettynä
syrjäytetyn vaippa-aineen patsaan paineella.
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Vieläkin kolmas kirjoitustapa:

Hρc + (−r) (ρm − ρc) = c,

(−d) (ρc − ρw) + (−r) (ρm − ρc) = c.

Siis ∑︂
rajapinnat

(poikkeama× tiheyskontrasti) = vakio.

Eri isostaattisten hypoteesien vaikutus painovoimaan on aika lailla sa-
manlaista: painovoimamittausten perusteella hypoteeseja ei voi erottaa
toisistaan. Hypoteesin valinnan vaikutus geoidiin on vahvempi.

^ 6.6.3 Esimerkki: Norja
Etelä-Norjan Hardangerin ylänkö (Hardangervidda) on keskimäärin 1100m
merenpinnan yläpuolella. Se on kansallispuisto, suosittu turistikohde
ja Euroopan laajin puolitasanko. Sen läpi kulkee Bergensbanen, joka on
Pohjois-Euroopan korkein linjarautatie.

Norjanmeri on Atlantin valtameren osa Norjan rannikon edessä. Se ei
kuulu mannerjalustaan ja on keskimäärin 2 km syvä.

Kysymyksiä

1) Kuinka syvällä Hardangerin ylängön juuri on kompensaa-
tiotason t0 alapuolella?

2) Paljonko on Norjanmeren vastajuuren negatiivinen syvyys
saman kompensaatiotason suhteen?

3) Paljonko on Hardangerin ylängön juuren suhteellinen syvyys
verrattuna lähellä olevaan Norjanmereen?

Vastauksia

1) Käytä yhtälöä 6.5, joka antaa

r− t0 = H
ρc

ρm − ρc
=

= 1100m×
2670kg/m3

(3370− 2670) kg/m3
= 4196m.
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Tässä käytettiin standardiarvoja maankuoren ja Maan vaipan
kallion tiheydeksi.

2) Käytä yhtälöä 6.6, joka antaa

r− t0 = −d
ρc − ρw
ρm − ρc

=

= −2000m×
(2670− 1030) kg/m3

(3370− 2670) kg/m3
= −4686m,

jossa on lisäksi käytetty meriveden tiheyden standardiarvoa.

3) Syvyyskontrasti juuren ja vastajuuren välillä on 4196 −

(−4686) m = 8882m. Vertailun vuoksi Mount Everestin
korkeus on 8848m merenpinnan yläpuolella.

^ 6.6.4 Isostasian nykykäsitys
Nykyisin meillä on paljon parempi käsitys Maan sisäisestä tilasta. Isosta-
sian käsite on kuitenkin edelleen pätevä. Realistisemman ymmärryksen
Maan sisäisestä rakenteesta antaa kuva 6.14.

Nykytutkimuksen tärkeä kiinnostuksen kohde on Maan jäämassojen,
kuten mannerjäätiköiden, kasvamisen ja sulamisen vaikutus maankuo-
ren pystyliikkeisiin. Tähän sisältyy sekä jäämassojen vaihtelun suora
vaikutus että välillinen valtameren vesimassojen vaihtelun vaikutus. Pa-
leotutkimus kohdistuu jääkausisyklin vaihteluihin, kun moderni jäätiköi-
den vetäytyminen, esimerkiksi Alaskassa ja Huippuvuorilla, aiheuttaa
omaa, havaittavissa olevaa paikallisen maankuoren kohoamista. Lisää
luvussa 12.

^ 6.6.5 Esimerkki: Fennoskandian maannousu
Viime jääkauden maksimin aikana noin 20 000 vuotta sitten Fenno-
skandian päällä oli mannerjäätikkö, jonka paksuus oli maksimissaan
3 km.
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660km:n rajapinta

Litosfäärin
alapinta

Mohorovičićin
rajapinta

Conradin
rajapinta X

Benioffin vyöhykeBenioffin vyöhyke

KonvektioKonvektio AlityöntöAlityöntö

AstenosfääriAstenosfääri

VaippaVaippa

MaankuoriMaankuori

LitosfääriLitosfääri

Laattaliike
Valtameren keskiselänne

Syvänmeren hauta

MeriMeri

Kuva 6.14. Isostasian ja laattatektoniikan nykykäsitys. Syvänmeren haudat
ovat tiettävästi isostaattisessa epätasapainossa.^

Kysymyksiä

1) Kuinka syvä oli jääkuorman jättämä lommo Maan pinnalla,
olettaen että se oli isostaattisesti kompensoitu?

2) Tällä hetkellä maa nousee Fennoskandian keskellä siellä,
missä jään paksuus oli suurimmillaan, nopeudella 10mm/a .
Kauanko lommon häviäminen kestäisi tällä tahdilla?

Vastauksia

1) Oletetaan jään tiheydeksi 920kg/m3 . Jos ylävaipan tiheys on
3370kg/m3 , saamme lommon syvyydeksi

∆H = 3000m×
920kg/m3

3370kg/m3 = 819m.

Huomaa, että jää syrjäyttää Maan vaipan ainetta ja maan-
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kuori vain välittää kuormitusta! Katso kuva 12.1a.

2) Nousunopeudella 10mm/a lommon häviäminen kestää
819m

/︂
0,01m/a = 81 900 vuotta. Osa tästä noususta on jo

toteutunut viime jääkauden päättymisen jälkeen.
Todellisuudessa nousu on tietenkin hidastunut huomatta-
vasti ajan myötä ja tulee hidastumaan vastaisuudessakin.

^ 6.7 Isostaattiset reduktiot

Sekä topografian että sen isostaattisen kompensaation laskennallista
poistoa painovoimakentän mitatuista suureista kutsutaan isostaattiseksi
reduktioksi. Sillä on kaksi tavoitetta:

◦ Poistamalla mahdollisimman paljon ”pinnallisia” efektejä pai-
novoimakentältä jää sellainen kenttä, jossa vain Maan syvien
kerrosten vaikutus on jäljellä. Tästä on hyötyä geofysikaalisessa
tutkimuksessa.

◦ Nämä ”pinnalliset” efektit ovat yleensä myös hyvin paikallisia:
spektraalikielellä hyvin lyhytaaltoisia. Poistamalla niitä saadaan
jäännöskenttä, joka on sileämpi ja joka voidaan interpoloida eli
predikoida paremmin. Tämä on tärkeää etenkin alueilla, joilla todel-
lisesta mittausaineistosta on pulaa, kuten valtamerillä, aavikoilla
ja napa-alueilla.

Isostaattiset painovoima-anomaliat eli ilma-anomaliat, joihin on sovel-
lettu isostaattista reduktiota, ovat hyvin sileitä, kuten myös Bouguer-
anomaliat: niiden prediktio-ominaisuudet ovat hyvät. Toisin kuin Bouguer-
anomaliat, isostaattiset anomaliat ovat keskimäärin nolla. Niistä puut-
tuu se suuri systematiikka, joka tekee Bouguer-anomalioista vahvasti
negatiivisia etenkin vuoristoalueilla, osio 6.2. Tämä johtuu tietysti sii-
tä, että isostaattinen reduktio on vain massojen siirtämistä paikasta
toiseen eikä massojen poistamista, kuten Bouguer-reduktion tapauk-
sessa. Isostaattisessa reduktiossa vuoristosta siirtyy massaa sen alla
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18◦ 28◦ 30◦ 32◦26◦24◦22◦20◦

18◦ 28◦ 30◦ 32◦26◦24◦22◦20◦

60◦

62◦

64◦ 64◦

62◦

60◦

Kuva 6.15. Isostaattisia painovoima-anomalioita Etelä-Suomessa. Airyn ja
Heiskasen hypoteesi, kompensaatiosyvyys 30 km. Data © Bureau
Gravimétrique International (BGI) / International Association of
Geodesy, World Gravity Map -hanke. Verkkopalvelu BGI, WGM2012.
Paksun ja jäykän Fennoskandian kilven päällä topografian paikalli-
set yksityiskohdat eivät ole isostaattisesti kompensoituja ja kartta
näyttää aika samanlaiselta kuin ilma-anomaliakartta 5.5 sivulla 123.^

olevaan juureen, jonka massavaje on melko tarkasti sama kuin korkealle
merenpinnan yläpuolelle nousevan vuoriston oma massa.
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Isostaattisessa reduktiolaskennassa käytetyt reduktiomenetelmät ovat
samanlaisia kuin muissa reduktioissa. Ne käsitellään myöhemmin: nu-
meerinen integrointi avaruusdomeenissa — hilaintegrointi, pallokalotti-
integrointi, pienimmän neliösumman kollokaatio, elementtimenetelmä
ja niin edelleen — tai spektraalidomeenissa, esimerkiksi FFT ja ”Fast
Collocation”.

Käytetty hypoteesi on mielenkiintoisempi kysymys. Perinteisesti on
käytetty Prattin tai Airyn hypoteeseja, jotka Hayford, Heiskanen ja
Vening Meinesz9 ovat kehittäneet kvantitatiivisiksi menetelmiksi. Uu-9

dempi kehityssuunta on käyttää oikeaa mittausdataa seismisestä tomogra-
fiasta Maan sisäisen rakenteen mallintamiseksi. Oikeiden mittaustietojen
avulla, jos ne ovat luotettavia, pitäisi päästä parempiin tuloksiin.

^ 6.8 ”Isostaattinen geoidi”

Tutkitaan, miten ”isostaattinen geoidi”, tarkemmin isostaattisen reduktion
kogeoidi, lasketaan. Isostaattinen reduktio on yksi menetelmävaihtoehto,
jolla poistetaan laskennallisesti geoidin ulkopuoliset massat reuna-
arvotehtävän muodostamista varten geoidin pinnalla.

Voidaan näyttää (Heiskanen ja Moritz, 1967 sivu 142), että isostaatti-
nen kogeoidi on mannerten alla jopa metrejä geoidin alapuolella. Toisin
sanoen epäsuora vaikutus (”restore”-vaihe) on tätä luokkaa. Valtamerellä
isostaattinen ko-geoidi on vastaavasti metrejä geoidin yläpuolella.

Koska yksi geoidimääritysmenetelmälle asetettava vaatimus on pieni
epäsuora vaikutus, seuraa että isostaattiset menetelmät eivät liene par-
haita mahdollisia, jos tarkoitus on laskea ulkoista potentiaalia edustava
geoidi tai kvasigeoidi10. Heiskanen ja Moritz huomauttavat sivulla 152,10

9Felix Andries Vening Meinesz (1887–1966) oli hollantilainen geofyysikko, geodeetti
ja gravimetrikko. Hän laati yhdessä W. A. Heiskasen kanssa oppikirjan The Earth and
its Gravity Field (1958).
10Tietenkin Bouguer-reduktio on vieläkin pahempi! Epäsuora vaikutus voi olla jopa
satoja metrejä.
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että epäsuora vaikutus on ”moderate”.

Isostaattiset menetelmät soveltuvat kuitenkin hyvin Maan sisäisen
rakenteen selvittämiseen, koska sekä topografia että sen aiheuttama
painauma Maan vaippaan, isostaattinen kompensaatio, poistetaan las-
kennallisesti.

Tutkimus on osoittanut, että maapallon suuret topografiset piirteet
ovat noin 85–90% isostaattisesti kompensoituja (Heiskanen, 1960). Tämä
on arvokas hypoteesi, jos muuta tietoa ei ole saatavilla.

Toinen syy, miksi isostaattinen geoidi on kiinnostava, on se, että Maan
painovoimakenttä, josta vuoristojen vaikutus on poistettu kokonaan
juurineen kaikkineen, voi paljastaa syvempien kerroksien fysikaalisia
epätasapainoja ja niitä aiheuttavia prosesseja. Sellaisia prosesseja ovat
etenkin konvektioliikkeet Maan vaipassa sekä Maan sulan ulkoytimen
mahdollinen vaikutus näihin virtauksiin. Mielenkiintoisia korrelaatioita
on löydetty vaipan konvektiokuvioiden, geoidin globaalin kuvion ja
Maan magneettikenttää generoivien ytimen sähkövirtakuvioiden välillä
(Wen ja Anderson, 1997; Prutkin, 2008; Kogan ym., 1985).

Isostaattinen reduktio koostuu kahdesta osasta:

◦ topografian laskennallinen poisto

◦ topografian isostaattisen kompensaation laskennallinen poisto.

On mahdollista laskea molemmat osat eksaktisti prismaintegrointime-
netelmän avulla, katso osio 6.3. Tässä kuitenkin pyritään ymmärtä-
mään asia laadullisesti. Approksimoidaan molemmat osat yksinkertaisilla
massatiheyskerroksilla. Tiheys on esimerkiksi topografian tapauksessa
κ = ρH. Laitamme ensimmäisen kerroksen tasolle H = 0, ja toisen,
jonka tiheys on

−κ
(︂

R
R−D

)︂2
,

kompensaatiosyvyydelle D. Tämä valinta säilyttää maapallon kokonais-
massan. Tilanne on esitetty — litteän Maan approksimaatiossa — ku-
vassa 6.16.
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Seuraavassa käytetään ”generoivan funktion” yhtälöä 8.7,

1
ℓ
=
1
R

∞∑︂
n=0

(︂
R
r

)︂n+1
Pn(cosψ),

yhdessä yksinkertaisen massatiheyskerroksen yhtälön 1.15 kanssa:

V = G
x

pinta
κ
ℓ
dS = GR2

x

σ

κ
ℓ
dσ.

Merenpinnan massatiheyskerroksen potentiaalikentäksi saadaan, kun
myös laskentapiste sĳoittuu merenpinnalle, siis H = 0 =⇒ r = R:

Vtop = GR
x

σ
κ

∞∑︂
n=0

Pn(cosψ)dσ

ja kun tiheyskerros on kompensaatiosyvyydellä (lähteiden taso R−D,
laskentataso R):

Vkomp =

= G (R−D)
x

σ

(︃
−κ
(︂

R
R−D

)︂2)︃ ∞∑︂
n=0

(︂
R−D
R

)︂n+1
Pn(cosψ)dσ =

= −GR
x

σ
κ

∞∑︂
n=0

(︂
R−D
R

)︂n
Pn(cosψ)dσ,

josta reduktion yhteisvaikutus on (n = 0 putoaa pois):

δViso = −
(︁
Vtop + Vkomp

)︁
=

= −GR
x

σ
κ

∞∑︂
n=1

(︃
1−

(︂
R−D
R

)︂n)︃
Pn(cosψ)σ. (6.7)

Tässä massan pintatiheys κ on

κ =

⎧⎨⎩ρcH jos H ⩾ 0,

(ρc − ρw)H jos H < 0,

siis korvataan merten syvyydet vastaavilla ”kuivilla” syvyyksillä11. Nyt11
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Merenpinta

KompensaatiosyvyysKompensaatiosyvyys

Kuva 6.16. Isostaattinen reduktio kahtena pintatiheyskerroksena.^

käytämme taas asteosuusyhtälöä, Heiskanen ja Moritz (1967) yhtälö
1-71, eli yhtälöämme 3.9, seuraavassa muodossa:

κn(ϕ, λ)
def
=
2n+ 1
4π

x

σ
κ(ϕ ′, λ ′)Pn(cosψ)dσ ′.

Kertomalla molemmat puolet tekĳällä

−
4πGR
2n+ 1

(︃
1−

(︂
R−D
R

)︂n)︃
ja siirtämällä se integraalin sisään saadaan

−
4πGR
2n+ 1

(︃
1−

(︂
R−D
R

)︂n)︃
κn(ϕ, λ) =

= −GR
x

σ
κ
(︁
ϕ ′, λ ′)︁(︃1− (︂R−D

R

)︂n)︃
Pn(cosψ)dσ ′.

Summaus antaa yllä annetun lausekkeen 6.7:

−

∞∑︂
n=1

4πGR
2n+ 1

(︃
1−

(︂
R−D
R

)︂n)︃
κn(ϕ, λ) =

11Tämä toimii kuivalla maalla ja valtamerellä. Järvet, jäätiköt ja Kuolleenmeren
tyyppiset alueet ovat mutkikkaampia.
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6156 Geofysikaaliset reduktiot

= −GR
x

σ
κ(ϕ ′, λ ′)

∞∑︂
n=1

(︃
1−

(︂
R−D
R

)︂n)︃
Pn(cosψ)dσ ′ = δViso.

Seuraa

δViso = −

∞∑︂
n=1

4πGR
2n+ 1

(︃
1−

(︂
R−D
R

)︂n)︃
κn(ϕ, λ) =

= −

∞∑︂
n=1

2
2n+ 1

R

(︃
1−

(︂
R−D
R

)︂n)︃
2πGκn =

= −

∞∑︂
n=1

2
2n+ 1

R

(︃
1−

(︂
R−D
R

)︂n)︃
(AB)n .

Tässä on käytetty kirjoitustapaaAB = 2πGκ. Tämä edustaa massatiheys-
kerrosta κ vastaavan Bouguer-laatan vetovoimaa ja sen asteosuudet
ovat (AB)n = 2πGκn.

Tutkitaan ensin osuutta12 1 < n ⩽ N
def
= R

/︁
D . Silloin, koska12 (︂

R−D
R

)︂n
≈ 1− nD

R
,

seuraava approksimaatio pätee:

δViso ≈ −

N∑︂
n=1

2nD
2n+ 1

(AB)n ≈ −

N∑︂
n=1

D (AB)n ≈ −D˜︁AB,

ja

δNiso =
δViso
γ ≈ −

D˜︁AB
γ ≈ −

DAB
γ . (6.8)

Tämä on isostaattisen reduktion epäsuora vaikutus.
Sĳoitetaan tähän realistisia arvoja. Olkoon Mohorovičićin13 rajapinnan13

12Astelukujen n > R
/︁
D osuus on

δViso ≈ −

∞∑︂
n=N+1

2R

2n+ 1
(AB)n ,

jossa termit ovat pieniä ja putoavat nopeasti nollaan. Tällä astevälillä topografian ja
sen kompensaation pintakerrosapproksimaatio ei ole enää realistinen, mutta siinä ei
ole väliä kun näin lyhyet aallonpituudet eivät ole edes isostaattisesti kompensoituja.
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syvyys keskimäärin ∼ 20 km14. 14

Maalla H ≈ 0,8 km, Maan keskimääräinen topografian korkeus, ja
saadaan δNiso,maa ≈ −1,8m.

Merellä H ≈ −3,7 km keskimäärin. Kerrotaan vielä suhdeluvun
ρc − ρw
ρc

=
2670− 1030

2670

kanssa, veden huomioon ottamiseksi. Saadaan δNiso,meri ≈
+5,1m.

Toisin sanoen tämä efekti voi olla mittava.
Huomaa kuitenkin, että yllä oleva laskenta käytti vastaavan Bouguer-

laatan vetovoimaa

AB =

N∑︂
n=0

2πGκn,

kun taas yhtälö 6.8 sisältää

˜︁AB =

N∑︂
n=1

2n
2n+ 1

2πGκn ≈
N∑︂
n=1

2πGκn,

josta nollannen asteen osuus κ0 puuttuu. Toisin sanoin ˜︁AB:n, ja näin
ollen δNiso:n, globaalinen keskiarvo mantereiden ja valtamerten yli olisi
oltava nolla, koska oletettiin, että isostaattinen reduktio ei muuta Maan
kokonaismassaa. Laskettujen arvojen keskiarvo on kuitenkin

δNiso = 0,29 · δNiso,maa + 0,71 · δNiso,meri = 3,1m.

Tämän korjausarvon kanssa saadaan

δNiso,maa ≈ −1,8m − 3,1m = −4,9m,
δNiso,meri ≈ +5,1m − 3,1m = +2,0m.

13Andrĳa Mohorovičić (1857–1936) oli kroatialainen säätieteilĳä ja modernin seismo-
logian pioneereja.
14Mantereiden alla syvyys on 35 km ja valtamerien alla 7 km merenpohjasta (Encyclo-
paedia Britannica, Moho).
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6158 Geofysikaaliset reduktiot

Nämä arvot ovat edustavia laajemmille manner- tai valtamerialueille, ja
vain suunta-antavia. Tarkka laskenta on oltava numeerinen.

Yhtälö 6.8 on Bouguer-laatan vetovoiman AB kautta lineaarinen kor-
keudessaH. Tämä merkitsee, että jokainen topografian kilometrin lisäys
aiheuttaa noin −2,2m suureessa δNiso,maa, ja jokainen batymetrin kilo-
metrin lisäys samalla tavalla +1,4m suureessa δNiso,meri. Voimme myös
päätellä, että isostaattisen reduktion vaikutuksessa geoidiin – ainakin pi-
temmillä aallonpituuksilla 2πR

/︁
n , pidempiä kuin kompensaatiosyvyys

D— kaikki aallonpituudet ovat edustettuina spektrissä noin samassa
suhteessa kuin itse topografiassa, ja efekti on itse asiassa verrannollinen
topografiaan.

^ Olenko ymmärtänyt tämän?

1) Mitkä vaikutukset poistetaan laskennallisesti

(a) yksinkertaisella Bouguer-reduktiolla?

(b) maastokorjatulla Bouguer-reduktiolla?

(c) isostaattisella reduktiolla?

2) Miksi maastokorjaus on aina positiivinen?

3) Miksi Bouguer-anomalioilla on hyvät interpolointiominaisuudet
ja millä ehdoilla? Toisin sanoen, mitä lisäinformaatiota tarvitaan
interpoloinnin yhteydessä?

4) Miten keksittiin, että vuoristoilla on juuret?

5) Selitä Prattin ja Hayfordin sekä Airyn ja Heiskasen isostaattiset
hypoteesit.

^ Harjoitus 6–1: Painovoima-anomalia

Annettuna on piste P, jonka korkeus merenpinnasta on H = 500m.
Paikallinen painovoima on gP = 9,82m/s2 . Paikan leveysasteella φ ja
merenpinnalla laskettu normaalipainovoima on γ0(φ) = 9,820 192m/s2 .

í � Õ! ¤.�û



Harjoitus 6–2: Bouguer-reduktio 159

300m300m
600m600m

PP

QQ

MerenpintaQ ′

Kuva 6.17. Maaston muoto.^

1) Laske pisteen P ilma-anomalia ∆g.

2) Laske pisteen P Bouguer-anomalia ilman maastokorjausta ∆gB.

^ Harjoitus 6–2: Bouguer-reduktio

1) Piste P on 500m merenpinnan yläpuolella. Sen ilma-anomalia on
∆gFA = 25mGal. Laske pisteen Bouguer-anomalia ∆gB. Unohda
maastokorjaus.

2) Katso osio 6.2: Bouguer-anomaliat. Johda yhtälöt 6.2 ja 6.3 uudel-
leen olettamalla, että maankuoren keskitiheys on ρ = 3370kg/m3 .

^ Harjoitus 6–3: Maastokorjaus ja Bouguer-reduktio

Annettuna on maaston muoto, kuva 6.17.
Pystysuora kallioseinämä PQ on myös kartalla suora ja kulkee mo-

lemmissa suunnissa (”paperiin” ja ”paperista”) äärettömyyteen.
Korkeuserot: PQ ′ = 600m, QQ ′ = 300m.

1) Laske pisteessä P maastokorjaus.
Vihje: käytä Bouguer-laatan vetovoiman yhtälö. Tässä on puolikas
Bouguer-laatta, jonka vetovoima on vain puolet täyden laatan
vetovoimasta.

2) Laske pisteessä Qmaastokorjaus. Mikä on etumerkki?
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6160 Geofysikaaliset reduktiot

3) Jos pisteessä P on annettuna, että ilma-anomalia on 60mGal,
paljonko on pisteen Bouguer-anomalia? Käytä täydellistä Bouguer-
reduktiota.

4) Jos on annettuna, että pisteessä Q Bouguer-anomalia on 10mGal,
paljonko on pisteen ilma-anomalia?

^ Harjoitus 6–4: Isostasia

Oleta Airyn ja Heiskasen isostaattinen kompensaatio (kuva 6.12). Maan-
kuoren tiheys ρc = 2670kg/m3 , vaipan tiheys ρm = 3370kg/m3 , siis kuoren
ja vaipan välinen tiheyskontrasti on 700kg/m3 . Olkoon nollatopografiaa
vastaavan rajapinnan vertaustaso −25 km, siis t0 = 25 km.

1) Laske 8 km korkean vuoren ”juuren” syvyys vertaustason −25 km
alapuolella olettaen, että se on isostaattisesti kompensoitu.

2) Tulivuori Mauna Kea, Havaji, on 4 km merenpinnan yläpuolella,
mutta sitä ympäröivä meri on 5 km syvä. Kuinka syvällä vertaus-
tason alapuolella on Mauna Kean juuri?

3) Kuinka paljon ympäröivän meren ”vastajuuri” on vertaustason
yläpuolella? Olkoon meriveden tiheys 1030kg/m3 .

4) Siis kuinka syvällä on Mauna Kean juuri ympäristöönsä nähden?
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^ Korkeusjärjestelmät77
^ 7.1 Vaaitus, ortometriset korkeudet ja geoidi

Korkeuksia on perinteisesti määritetty vaaitsemalla. Vaaitus on menetel-
mä, jossa mitataan korkeuseroja vaaituskojeen ja kahden latan avulla.
Vaaituskoje sisältää kaukoputken ja vesivaa’an, ja mittaustilanteessa
kaukoputken optinen akseli eli tähtäysakseli osoittaa paikallisen hori-
sontin suuntaisesti. Kahdelle mittauspisteelle asetetaan vaaituslatat ja
luetaan mittauskaukoputken kautta niistä mittausarvot. Kahden arvon
erotus antaa pisteiden välisen korkeuseron metreinä.

20

00

10

t

Vaaituskoje

∆H = t− e

e

Vaaituslatat Vaakasuora
tähtäys

Näkymä

Kuva 7.1. Vaaituksen periaate.^
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7162 Korkeusjärjestelmät

Etäisyys vaaituskojeen ja lattojen välillä on 40–70m, koska suurem-
milla etäisyyksillä ilmakehän refraktio aiheuttaa liian suuria virheitä.
Pidemmät etäisyydet mitataan toistamalla mittaus useammalla kojease-
malla ja välipisteellä.

Näin saadut korkeuserot ∆H eivät ole suoraan käyttökelpoisia. Kah-
den pisteen P ja Q välinen suoraan korkeuseroja ∆H summaamalla
saatu ”korkeusero” riippuu näet valitusta vaaitusmatkasta pisteestä P
pisteeseenQ. Myös suljetun silmukan korkeuserojen summa

∑︁
⃝∆H ei

(yleisesti) häviä.

Geometrinen korkeus ei ole konservatiivinen kenttä.

Siksi tarkkavaaituksessa muunnetaan korkeuserot aina potentiaalieroiksi:
∆W = −∆H · g, jossa g on paikallinen painovoima, joka joko mitataan
tai — esimerkiksi Suomessa — interpoloidaan olemassa olevasta pai-
novoimakartoitusmittausten tietokannasta. Potentiaalierojen summa
suljetun silmukan ympäri on aina nolla:

∑︁
⃝∆W = 0.

Mielivaltaisen maastopisteen P potentiaaliksi saadaan

WP =W0 −

P∑︂
merenpinta

(∆H · g) ,

jossa summaus suoritetaan merenpinnasta (potentiaaliW0) pisteeseen
P. Suuretta

CP = −(WP −W0) =

P∑︂
merenpinta

(∆H · g) ,

joka on positiivinen merenpinnan yläpuolella, kutsutaan pisteen P
geopotentiaaliluvuksi.
W0 on valtakunnallisen korkeusvertaustason geopotentiaali. Suo-

messa vanhan N60-järjestelmän vertaustaso on periaatteessa Helsingin
sataman keskimerenpinta vuoden 1960 alussa, ja siksi järjestelmää
kutsutaankin nimellä N60. Kuitenkin vertaustason tarkka realisaatio
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Ortometriset korkeudet 7.2 163
on erikoispilari Helsingin observatorion puutarhassa Kaivopuistossa1. 1

Suomen uuden korkeusjärjestelmän nimi on N2000, ja sen vertausta-
son realisaatio on pilari Metsähovin tutkimusasemalla. Käytännössä
N2000-järjestelmän korkeudet ovat noin desimetrin tarkkuustasolla
Amsterdamin NAP-datumin korkeuksia.

Muilla mailla on omat, samanlaiset, korkeusvertaus- eli datumipis-
teet: Venäjällä Kronstadt, Länsi-Euroopassa laajasti käytetty Amsterdam
NAP, Etelä-Euroopassa vanha itävaltalais-unkarilainen satamakaupunki
Trieste, Pohjois-Amerikassa NAVD88 (North American Vertical Datum
1988) datumipisteenä Pointe-au-Père2 Rimouskissa Quebecissä Kana- 2

dassa, ja niin edelleen.

^ 7.2 Ortometriset korkeudet

Kun halutaan luoda korkeusjärjestelmä, olisi kaikkein yksinkertaisinta
käyttää alkuperäisiä geopotentiaalieroja merenpinnasta ja yllä määri-
tettyjä geopotentiaalilukuja C = −(W −W0) suoraan korkeuslukuina.
Psykologisesti ja käytännön kannalta se on kuitenkin hankalaa: ihmiset
haluavat, että korkeudet ovat metreissä.

Geopotentiaaliluvuilla on selviä etuja: ne edustavat energian määrää,
joka tarvitaan yhden massayksikön koemassan siirtämiseksi pisteeseen
vertaustasosta. Neste — merivesi, ilma tai geologisella aikaskaalalla
jopa peruskallio — virtaa aina alaspäin ja etsiytyy minimienergiatilaan.

Suomessa, kuten monessa muussa maassa, käytössä ovat olleet jo pit-
kään ortometriset korkeudet. Ne ovat fysikaalisesti määritettyjä korkeuksia

1Kuitenkin pilariin kaiverrettu korkeusarvo on vieläkin vanhemman järjestelmän NN

eikä N60:n vertauskorkeus. Tämän patsaan oikea N60-vertausarvo, 30,513 76m, löytyy
julkaisusta Kääriäinen (1966), sivu 49.
2Rimouskin kaupunginosa Pointe-au-Père nimettiin jesuiittapappi Isä Henri Nouvelin
(1621?–1701?) mukaan. Hän palveli 40 vuotta Uuden Ranskan alkuperäisväestön
parissa. Pointe-au-Père tunnetaan myös RMS Empress of Ireland -laivan haaksirikon
paikkana vuonna 1914. Haverissa menehtyi yli tuhat matkustajaa.
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7164 Korkeusjärjestelmät

Kuva 7.2. Korkeuden pääkiintopiste Helsingin observatorion puutarhassa
Kaivopuistossa, Kääriäinen (1966). Teksti:

Suomen
tarkka-
vaakituksen
pääkiintopiste
30,4652 m yli nollan

Utgångspunkt för
precisionsnivellementet
i Finland
30,4652 m öfver noll

^
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∆H ′
2∆H ′
2

∆H ′
1∆H ′
1

∆H ′
3∆H ′
3

WP
P

HH

∆H3

O

g

g

GeoidiGeoidi
W0W0

∆H2

∆H1∆H1

Kuva 7.3. Vaaitut korkeudet ja geopotentiaaliluvut. Korkeus, joka saadaan
summaamalla vaaitut korkeuserot,

∑︁3
i=1∆Hi, ei ole oikea korkeus

geoidista eli
∑︁3
i=1∆H

′
i laskettuna luotiviivaa pitkin.

Geopotentiaalin tasapotentiaalipinnat eivät ole yhdensuuntaisia: siksi
matka Maan pintaa pitkin voi hyvinkin viedä ”ylöspäin”, siis kasva-
viin korkeuksiin geoidista, vaikka geopotentiaaliluku vähenee. Vesi
voi siis ”virrata ylöspäin”.

Painovoimavektori gg on kaikkialla kohtisuora tasapotentiaali-
pintoihin nähden, ja sen pituus on kääntäen verrannollinen pintojen
väliseen etäisyyteen.^

”keskimerenpinnan” eli geoidin yläpuolella. Katso kuva 7.3.
Klassinen geoidi on määritelmänsä mukaan

”Se Maan painovoimakentän tasapotentiaalipinta, joka yhtyy keskimää-
rin parhaiten keskimerenpintaan.”

Pisteen P ortometrinen korkeus H on määritelty korkeudeksi, joka
saadaan mittaamalla pisteen P etäisyys geoidista luotiviivaa pitkin.

Tämä on hyvin fysikaalinen määritelmä, muttei kovin operationaali-
nen, koska emme (yleensä) pääse mittaamaan luotiviivaa pitkin maan-
kuoren sisällä eikä geoidi edes näy siellä. Siksi ortometrisia korkeuksia
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HEHE
ggP

ggE

Geoidi:W =W0
HPHP

Päĳänne: C = −(W −W0) = 76,9GPU
Pohjoinen Etelä

PäĳännePäĳänne

Kuva 7.4. Ortometrisissa korkeuksissa vesi voi joskus virrata ”ylöspäin”. Vaik-
ka Päĳänteen pohjois- ja eteläpäät ovat samalla geopotentiaalita-
solla — 76,9 geopotentiaaliyksikköä keskimerenpinnan potentiaa-
lia alempana — eteläpään ortometrinen korkeus HE on suurempi
kuin pohjoispään HP, koska paikallinen painovoima g on pohjoises-
sa vahvempi kuin etelässä. Korkeusero on Päĳänteen tapauksessa
8mm (Jaakko Mäkinen, henkilökohtainen viesti). Normaalipaino-
voimakentän avulla laskettuna saadaan 6mm. Loput 2mm tulevat
painovoima-anomalioiden erosta järven pohjois- ja eteläpään välillä.^

lasketaan geopotentiaaliluvuista: jos pisteen P geopotentiaaliluku on
CP, lasketaan ortometrinen korkeus yhtälöllä

H =
CP
g
,

jossa g, keskimääräinen painovoima luotiviivaa pitkin, on

g =
1
H

w H
0
g(z)dz,

ja z on luotiviivaa pitkin mitattu etäisyys geoidista. Koska g:n yhtälö
sisältää H:n, saadaan ratkaisu iteratiivisesti käyttämällä ensin karkeaa
H:n arvoa. Iterointi suppenee nopeasti.

Tulemme näkemään, että tarkkojen ortometristen korkeuksien mää-
rittäminen on hankalaa, etenkin vuoristossa.

^ 7.3 Normaalikorkeudet

Suomessa käytetään tällä hetkellä N2000-korkeusjärjestelmän mukaisia
normaalikorkeuksia. Kuten ortometriset korkeudet, ne ovat korkeuksia
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keskimerenpinnasta. Keskimerenpinnan matemaattinen esitys on tässä
tapauksessa kvasigeoidi. Merialueilla kvasigeoidi on identtinen geoidin
kanssa. Manneralueilla se eroaa hieman geoidista ja vuoristossa ero voi
olla huomattava.

^ 7.3.1 Molodenskin teoria
Maineikas teoreetikko M. S. Molodenski (kuva 7.5) kehitti teorian, jossa
pisteen korkeus ”keskimerenpinnasta” määritellään seuraavan yhtälön
mukaan:

H∗ def
=

C
γ0H

,

jossa γ0H on keskimääräinen normaalipainovoima laskettuna nolla-
tason (vertausellipsoidin) ja H∗:n välillä ellipsoidista normaalia pitkin.
Laskentatapa on siis sama kuin ortometristen korkeuksien tapauksessa,
mutta käytetään normaalipainovoimakenttää todellisen painovoimakentän
sĳaan.

Korkeudet ”merenpinnasta” annetaan käytännön syistä metreinä.
Suurissa mantereen kokoisissa kolmioverkoissa korkeudet halutaan
antaa laskennallisesta vertausellipsoidista metreinä, ja siksi myös kor-
keuksien merenpinnasta on oltava metreinä.

Molodenski ehdotti, että geoidin sĳaan käytettäisiin korkeusanomalioita,
joiden määritelmä on

ζ
def
=

T
γHh

, (7.1)

jossa nyt γHh on keskimääräinen normaalipainovoima topografian kor-
keudella. Tarkemmin ilmaistuna se on normaalipainovoiman keskiarvo
ellipsoidista normaalia pitkin välillä z ∈

[︁
H∗, h

]︁
, jossa H∗ on pisteen

normaalikorkeus ja h pisteen korkeus vertausellipsoidista. Parametri
z on etäisyys vertausellipsoidista laskettuna ellipsoidista normaalia
pitkin. T on pisteen häiriöpotentiaali.

Näiden oletusten perusteella Molodenski näytti, että

H∗ + ζ = h.
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Kuva 7.5. Mihail Sergejevitš Molodenski (1909–1991), lähde tuntematon. Lisä-
kuvia ja taustainformaatiota Brovar ym. (2000).^

Tämä yhtälö on hyvin samanlainen kuin ortometristen korkeuksien ja
geoidin korkeuksien vastaava yhtälö

H+N = h.

Muutenkin ζ, korkeusanomalia eli myös ”kvasigeoidin korkeus”, on hyvin
lähellä N:ää, ja vastaavasti H∗ on lähellä H:ta.

^ 7.3.2 Molodenskin oivallus
Molodenskin koulukunnan oivallus oli, että koska normaalipainovoima
on luotiviivaa pitkin hyvin lähellä lineaarista paikan funktiota, voitaisiin
määritellä korkeustyppi, joka olisi suoraan laskettavissa geopotentiaali-
luvuista ja joka olisi yhteensopiva samalla tavalla määriteltyjen niin
sanottujen korkeusanomalioiden sekä vertausellipsoidista laskettujen
geometristen korkeuksien h kanssa.

Geometrinen korkeus h vertausellipsoidista voidaan kytkeä normaali-
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painovoimakentän potentiaaliin U seuraavan integraaliyhtälön kautta:

U = U0 −
w h
0
γ(z)dz.

Tässä U on normaalipotentiaali ja γ normaalipainovoima. U:n eräs
tasapotentiaalipinta U = U0 on samalla vertausellipsoidi. Muuttuja z
on matka ellipsoidista sen paikallista normaalia pitkin3. 3

Määrittelemällä
γ0h

def
=
1
h

w h
0
γ(z)dz (7.2)

saadaan
h = −

U−U0
γ0h

.

KäyttämälläW = U+ T ja jakamalla suureella γ0h saadaan

W −W0

γ0h
=

T
γ0h

− h

olettaen, ettäW0 = U0, vertausellipsoidin pinnan normaalipotentiaali.
Seuraavaksi voitaisiin määritellä

H+ ?
= −

W −W0

γ0h

uudeksi korkeustyypiksi ja

N+ ?
= h−H+ =

T
γ0h

vastaavaksi uudeksi geoidikorkeustyypiksi. Tässä on kuitenkin se kau-
neusvirhe, että jako suoritetaan normaalipainovoiman keskiarvolla
laskettuna tasojen 0 ja h välillä. Tämä suure ei ole operationaalinen
ilman keinoa määrittää korkeus h ellipsoidista.

Siksi tehdään seuraava parannus, joka hyödyntää sitä seikkaa, että
γ(z) on lähes lineaarinen funktio. Tämä merkitsee, että pystyderivaatta
d

dz
γ on lähes vakio kyseessä olevalla korkeusvälillä.

3Tässä jätetään huomiotta, että normaalipainovoimavektori γγ(z) ei ole arvoille z ̸= 0
tarkasti samansuuntainen ellipsoidin normaalin kanssa: normaalipainovoimakentän
kenttäviivojen eli normaaliluotiviivojen kaarevuus, osio 4.3.2.
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Määritellään yhtälön 7.2 lisäksi:

γ0H
def
=

1
H+

w H+

0
γ(z)dz, γHh

def
=

1
N+

w h
H+
γ(z)dz.

Nyt

γ0H ≈ γ0h − 1

2
N+dγ

dz
≈ γ0h

(︃
1+

N+

R

)︃
, (7.3)

γHh ≈ γ0h + 1

2
H+dγ

dz
≈ γ0h

(︃
1−

H+

R

)︃
. (7.4)

R on Maan säde palloapproksimaatiossa: d
dz
γ ≈ d

dr
γ ≈ − 2γ

/︁
R .

Seuraavaksi hyödynnetään myös, että sekä N+/︁
R että H+/︁

R ovat
≪ 1, siis(︃

1+
N+

R

)︃−1

≈
(︃
1−

N+

R

)︃
,

(︃
1−

H+

R

)︃−1

≈
(︃
1+

H+

R

)︃
,

ja yhtälöiden 7.3, 7.4 ja yllä olevien suureiden H+ ja N+ määritelmien
avulla,

ζ
def
=

T
γHh

=
T
γ0h
· γ0h
γHh

≈ N+

(︃
1+

H+

R

)︃
= N+ +

N+H+

R
,

H∗ def
= −

W −W0

γ0H
= −

W −W0

γ0h
· γ0h
γ0H

≈ H+

(︃
1−

N+

R

)︃
=

= H+ −
N+H+

R
.

Koska jo muutenkin pienet korjaustermit N+H+/︁
R kumoutuvat, saa-

daan lopuksi
H∗ + ζ = H+ +N+ = h. (7.5)

Suure γ0H, ja siis myös normaalikorkeus H∗, voidaan, toisin kuin γ0h,
laskea käyttämällä ainoastaan (vesi- tai trigonometrisesta) vaaituksesta
saatuja tietoja, ilman että tarvitsee tuntea korkeutta vertausellipsoidista
h. Tuo tieto edellyttäisi paikallisen geoidin tuntemista.
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h

N+

γ(z)

z

H∗

ζ

H+

N+H+

R

−N
+H+

R

Kuva 7.6. Molodenskin oivalluksen todistuksen graafinen aasinsilta. Siniset
ja punaiset alueet, jotka ovat yhtä suuria, edustavat korjaustermejä,
jotka muuntavat suureen N+ suureeksi ζ ja suureen H+ suureeksi
H∗. Siniset ja punaiset nuolet edustavat muunnosprosessia. Pallerot
esittävät funktion γ(z) keskiarvostamisvälien keskipisteet.^

Tämä oli Molodenskin oivallus (Molodenski ym., 1962) jo vuonna
1945, kauan ennen globaalin paikannusjärjestelmän GPS:n tai maailman-
laajuisen geosentrisen vertausellipsoidin olemassaoloa. Silloin lasket-
tiin mannerlaajuiset kolmioverkot, kuten Neuvostoliiton kolmioverkko,
omilla alueellisesti määritetyillä vertausellipsoideillaan.

Korjaustermin N+H+/︁
R suuruus on, kun globaalit geoidin korkeu-

det ovat maksimissaan 110m, 17mm jokaista maastokorkeuskilometriä
kohti. Tämän termin käytön jälkeen jäävät virheet ovat mikroskooppi-
sen pieniä, koska normaalipainovoima on todellisesta painovoimasta
poiketen erittäin lineaarinen luotiviivaa pitkin — kuten yhtälöissä 7.3 ja
7.4 jo oletettiin.

Kuva 7.6 yrittää visualisoida yhtälöiden johtamista.
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Vertausellipsoidi

ζ

H

Topografia

Telluroidi

Geoidi Kvasigeoidi

hH∗

H∗ N ζ

Kuva 7.7. Geoidi, kvasigeoidi, telluroidi ja topografia. Huomaa korrelaatio
kvasigeoidin ja topografian välillä. Kuvattu on alue, jossa N > 0.
Geoidin ja kvasigeoidin välinen etäisyys on liioiteltu.^

^ 7.3.3 Normaalikorkeus ja korkeusanomalia
Normaalikorkeus

H∗ =
C
γ

= −
W −W0

γ
, (7.6)

jossa (rekursiivinen määritelmä!)

γ = γ0H =
1
H∗

w H∗

0
γ(z)dz.

Korkeusanomalia
ζ =

W −U
γHh

=
T
γHh

,

jossa
γHh =

1
ζ

w h
H∗
γ(z)dz.

Korkeusanomalia ζ, joka on muuten samanlainen suure kuin
geoidin korkeusN, sĳoittuu topografian eikä merenpinnan tasoon.
Pintaa, joka muodostuu pisteistä, jotka ovat matkan H∗ verran
vertausellipsoidin yläpuolella ja siis etäisyyden ζ verran topo-
grafian ala- tai etäisyyden −ζ verran sen yläpuolella, kutsutaan
telluroidiksi. Se on topografisen pinnan eräs kuvaus: pisteiden Q

í � Õ! ¤.�û



Erotus geoidin korkeuden ja korkeusanomalian välillä 7.4 173
joukko, joiden normaalipotentiaali UQ on sama kuin topografian
vastaavan pisteen P oikea geopotentiaaliWP. Katso kuva 5.4.
Usein myönnytyksenä vanhoihin tapoihin konstruoidaan pinta,
joka on etäisyyden ζ verran vertausellipsoidin ylä- tai etäisyyden
−ζ verran sen alapuolella. Tätä pintaa kutsutaan kvasigeoidiksi.
Siltä puuttuu fysikaalinen merkitys: se ei ole tasapotentiaalipinta,
vaikka merellä se yhtyy geoidiin. Sen lyhytaaltoiset muodot, toisin
kuin geoidin, korreloivat topografian lyhytaaltoisten muotojen
kanssa.

Korkeus ellipsoidista (oletus U0 =W0)

h =
U−U0
γ0h

,

jossa
γ0h =

1
h

w h
0
γ(z)dz.

Yhteys kolmen suureen välillä on

h = H∗ + ζ.

Kaikessa kolmessa tapauksessa suure määritellään jakamalla potentiaali-
ero jonkinlaisella ”keskimääräisellä normaalipainovoimalla”, laskettuna
sopivaa paikallisen luotiviivan segmenttiä pitkin. Korkeusanomalian
ζ tapauksessa käytetään luotiviivan pätkää korkealla topografian pinnan
lähellä tason H∗ (telluroidin) ja tason h (topografian) välillä.

^ 7.4 Erotus geoidin korkeuden ja korkeusanomalian

välillä

Normaalikorkeudet ovat hyvin operationaalisia. Niitä käytetään aina
”kvasigeoidin” korkeuksien — oikeammin korkeusanomalioiden — ζ

kanssa. Sen sĳaan ortometrisia korkeuksia — esimerkiksi Helmertin
korkeuksia H— käytetään aina geoidin korkeuksien N kanssa. Molem-
pien, H ja N, laskemiseksi tarvitaan topografian massatiheys ρ, jonka
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oletetaan usein olevan standardi vakioarvo (2670kg/m3 ) sekä paikallinen
painovoiman pystygradientti, joksi yleensä oletetaan normaalipainovoi-
man pystygradientti (−0,3084mGal/m ).

Erotus korkeusanomalian ja geoidikorkeuden välillä lasketaan seu-
raavasti.

1) Ensin lasketaan erotus kvasigeoidin ja ”ilmageoidin” välillä. Il-
mageoidi on harmonisesti alaspäin jatketun ulkoisen potentiaalin
tasapotentiaalipinta. Jos TFA on ulkoisen, harmonisesti alaspäin
jatketun kentän häiriöpotentiaali, on sen ero topografian ja me-
renpinnan tasojen välillä:

TFA(H) − TFA(0) =
w H
0

dTFA(z)
dz

dz ≈ −∆gFAH, (7.7)

ja käyttämällä Brunsin yhtälöä kahdesti, ζ = T(H)
/︁
γ = TFA(H)

/︁
γ

(korkeusanomalia eli kvasigeoidin korkeus) ja NFA = TFA(0)
/︁
γ

(”ilmageoidin” korkeus, FA = Free Air), saadaan44

ζ−NFA ≈ −
∆gFAH
γ . (7.8)

2) Näin on saatu erotus korkeusanomalioiden ja ilmageoidin kor-
keuksien välillä. Jää määritettäväksi ero ilmageoidin ja geoidin
välissä.
Approksimoidaan topografia Bouguer-laatalla. Silloin

◦ Ilmageoidin NFA tapauksessa tämän laatan paksuus on pis-
teen P korkeus H, sen takia, että ilmageoidi perustuu alas-
päin jatkettuun ulkoiseen kenttään, mikä merkitsee, että myös
Bouguer-laatan vetovoiman pisteessä P on jatkettava alaspäin
eli se on otettava huomioon kokonaan.
Koska laatan pintamassatiheys on Hρ, on sen oletettu vetovoi-
ma kaikkialla pisteen P luotiviivalla:

2πGρH. (7.9)

4Tässä tehtiin approksimaatio, että γ on sama topografian ja merenpinnan tasolla.
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◦ Geoidikorkeuden N = T(0)

/︁
γ tapauksessa meidän on oltava

fysikaalisesti realistisia: mielivaltaisessa pisteen P luotiviivan
paikassa z Bouguer-laatasta osa on paikan alapuolella ja osa
sen yläpuolella. Vetovoima on silloin vain

2πGρ z− 2πGρ (H− z) = 2πGρ (2z−H) . (7.10)

Integroimalla yhtälöiden 7.9 ja 7.10 välinen erotus yhtälön 7.7
tapaan saadaan

T(0) − TFA(0) = 2πGρ
w H
0

(︁
(2z−H) −H

)︁
dz =

= 2πGρ
[︁
z2 − 2Hz

]︁z=H
z=0

= −2πGρH2 = −ABH,

jossa AB on Bouguer-laatan vetovoima, jos laatan paksuus on H.
Jakamalla yhtälö normaalipainovoimalla saadaan

N−NFA = −
ABH
γ .

Vähentämällä tämä viimeinen tulos yhtälöstä 7.8 saadaan

ζ−N =
(−∆gFA +AB)H

γ = −
∆gBH
γ . (7.11)

Katso myös Heiskanen ja Moritz (1967), sivut 327–328. Koska vuo-
ristossa Bouguer-anomalia ∆gB on vahvasti negatiivinen, seuraa että
kvasigeoidi on siellä aina geoidin yläpuolella: likimäärin yhtälöä 6.2
käyttäen:

ζ−N ≈
0,1119mGal/m

9,81m/s2 H2 ≈ 10−7m−1 ·H2.

Eli jos H on yksikössä km ja ζ−N yksikössä m:

ζ−N ≈ 0,1m/km2 ·H2.

^ 7.5 Erotus ortometristen korkeuksien ja

normaalikorkeuksien välillä

Geoidi on ortometristen korkeuksien lähtötaso. Siksi voimme kirjoittaa

h = H+N,
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jossa h on korkeus vertausellipsoidista ja H on ortometrinen korkeus.
Toisaalta voimme palauttaa muistiin yhtälö 7.5:

h = H∗ + ζ ,

jossa ζ on korkeusanomalia ja H∗ on normaalikorkeus.
Saadaan yksinkertaisesti

H−H∗ = ζ−N = −
∆gBH
γ , (7.12)

käyttäen yhtälöä 7.11.

^ 7.6 Ortometristen korkeuksien tarkka laskenta

Ortometriset korkeudet ovat perinteinen tapa ilmaista korkeutta meren-
pinnan yläpuolella. Ortometriset korkeudet ovat korkeuksia todellisen
geoidin — Maan sisällä sĳaitsevan ja keskimerenpinnan kanssa keski-
määrin samalla tasolla olevan ekivipotentiaalipinnan — yläpuolella.

Voidaan kirjoittaa

W =W0 −
w H
0
g(z)dz,

jossa g on todellinen painovoima topografisten massojen sisällä. Tästä
saadaan

H =
C
g

=
−(W −W0)

g
,

jossa keskimääräinen painovoima luotiviivaa pitkin on

g =
1
H

w H
0
g(z)dz.

Määritelmä on rekursiivinen: H esiintyy sekä vasemmalla että oikealla
puolella. Tämä ei ole ongelma: sekä H että g saadaan iteroimalla.
Suppeneminen on nopea.

Käytännössä ortometrinen korkeus lasketaan likimääräisellä kaavalla.
Suomessa on pitkään käytetty Helmertin ortometrisia korkeuksia, jossa mi-
tattu painovoima Maan pinnalla, g

(︁
H
)︁
, ekstrapoloidaan alaspäin käyt-

tämällä arvioitua kalliomassojen sisäistä painovoiman pystygradienttia.
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Oletetaan, että sen kallion ulkopuolinen standardiarvo, −0,3084mGal/m

(ilmagradientti), kasvaa määrällä 0,2238mGal/m (kaksinkertainen stan-
darditiheyden 2670kg/m3 Bouguer-laatan efekti): lopputulos on kallion
sisäinen kokonaispainovoimagradientti, −0,0846mGal/m .

Tätä kutsutaan Prey5-reduktioksi. Lopputuloksena saadaan seuraavat 5

kaavat, joissa kerroin on puolet painovoimagradientista, siis keskimääräi-
nen painovoima luotiviivaa pitkin on sama kuin luotiviivan keskipisteen
painovoima:

g = g(H) − 0,0846mGal/m
(︁
−1
2
H
)︁
= g(H) + 0,0423mGal/m ·H,

siis

H =
C
g

=
C

g(H) + 0,0423mGal/m ·H , (7.13)

jossaC on geopotentiaaliluku (potentiaaliero keskimerenpinnan kanssa)
ja g(H) painovoima Maan pinnalla. Katso myös Heiskanen ja Moritz
(1967) sivut 163–167. Termi 0,0423mGal/m ·H on tavallisesti paljon pienempi
kuin g(H), joka on noin 9,81m/s2 = 981 000mGal! Siis iterointi, jossa
nimittäjä lasketaan ensin karkean H-arvon avulla, suppenee varsin
nopeasti.

Helmertin korkeuksien käyttö ortometristen korkeuksien approksi-
maationa on epätarkka seuraavista syistä:

◦ Oletus, että painovoima muuttuu lineaarisesti luotiviivaa pitkin,
ei pidä paikkaansa, erityisesti ympäröivän maaston vaikutuksen
takia. Tarkassa ortometristen korkeuksien laskennassa tämän vai-
kutuksen laskemiseen tulisi käyttää riittävää määrää tukipisteitä
luotiviivaa pitkin.

◦ Oletus, että painovoiman ilman pystygradientti on kaikkialla sama,
−0,3084mGal/m . Todellinen gradientti voi vaihdella hyvinkin±10%
tämän arvon ympärillä.

5Adalbert Prey (1873–1949) oli itävaltalainen tähtitieteilĳä ja geodeetti sekä oppi-
kirjojen laatĳa.
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◦ Oletus, että kallion tiheys ρ = 2670kg/m3 . Tiheyden todellinen arvo
voi vaihdella hyvinkin ±10% tai enemmän tämän oletusarvon
ympärillä.

Ensimmäinen approksimaatio, maastoefektin huomiotta jättäminen,
voidaan korjata käyttämällä Niethammerin6 menetelmää, katso Heis-6

kanen ja Moritz (1967) sivu 167. Se edellyttää, että maasto otetaan
vastaavasti huomioon myös geoidilaskussa.

Kolmas approksimaatio, tiheysongelma, voidaan poistaa sopimalla,
että myös vastaavassa geoidin määrityksessä käytetään vakiotiheyttäρ =

2670kg/m3 . Saatu pinta ei silloin ole enää oikea geoidi, vaan ”valegeoidi”,
jolle on vaikea keksiä sopivaa nimeä.

Toinen approksimaatio voitaisiin poistaa käyttämällä todellista paino-
voiman ilmagradienttia standardiarvon sĳasta. Gradientin laskemiseen
tarjoutuu osiossa 8.6 esitetty integraaliyhtälö.

Ortometristen korkeuksien tarkka laskenta on siis työlästä, yhtä
työlästä kuin geoidin tarkka määritys ja samoista syistä. Onneksi ei-
vuoristoisissa maissa Helmertin korkeudet ovat riittävän hyviä. Suo-
messa niitä laskettiin aikoinaan jopa käyttämällä ρ-arvoina ”todellisia”
maankuoren tiheyksiä geologisen kartan mukaan (Kääriäinen, 1966,
sivu 32).

^ 7.7 Normaalikorkeuksien tarkka laskenta

Tähän käytetään yhtälöä 7.6:

H∗ =
C
γ

= −
W −W0

γ
, (7.6)

jossa normaalipainovoiman keskiarvo luotiviivaa pitkin on

γ = γ0H =
1
H∗

w H∗

0
γ(z)dz.

6Theodor Niethammer (1876–1947) oli sveitsiläinen tähtitieteilĳä ja geodeetti, joka loi
Sveitsin gravimetrisen runkoverkon.
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Koska normaalipainovoima on varsin tarkasti lineaarinen z:n funktio,
voimme kirjoittaa

γ = γ0 +
1

2
H∗∂γ
∂z
,

jossa ∂

∂z
γ = −0,3084mGal/m ja γ0(φ)

def
= γ(φ, 0) on normaalipainovoima

laskettuna nollakorkeudella. Saadaan

γ = γ0 − 0,1542mGal/m ·H∗.

Ratkaisu saadaan taas iteratiivisesti:

H∗ =
C
γ

=
C

γ0 − 0,1542mGal/m ·H∗ (7.14)

jossa γ0(φ) on laskettavissa eksaktisti, kun paikallinen leveysaste
φ on tiedossa. H∗ on yhtälön molemmilla puolilla, mutta iteratiivi-
nen ratkaisu suppenee nopeasti, koska nimittäjän ensimmäinen ter-
mi γ0, noin 9,81m/s2 = 981 000mGal, on huomattavasti toista termiä
0,1542mGal/m ·H∗ suurempi.

Normaalikorkeuksien laskenta, toisin kuin ortometristen korkeuksien
laskenta, ei ole altis maankuoren tiheyshypoteeseille. Se on kuitenkin
riippuvainen valitusta normaalipainovoimakentästä eli vertausellipsoi-
dista.

^ 7.8 Korkeuksien laskentaesimerkki

Pisteellä P on potentiaaliero keskimerenpinnan kanssa C = 5000m2
/s2 .

Paikallinen painovoima on g = 9,820 000m/s2 .

Normaalipainovoima laskettuna nollakorkeudella pisteen P alapuo-
lella on γ0 = 9,821 500m/s2 .

Kysymyksiä

1) Laske pisteen P ortometrinen korkeus.

2) Laske pisteen P ilma-anomalia ∆gFA.

3) Laske pisteen P Bouguer-anomalia (ilman maastokorjausta)
∆gB.
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4) Laske pisteen P normaalikorkeus.

5) Jos geoidin korkeus pisteen P kohdalla on N = 25,000m,
paljonko on korkeusanomalia (”kvasigeoidin korkeus”) ζ?

Vastauksia

1) Ensimmäinen yritys:

H(0) =
C
g =

5000
9,82

m = 519,165m.

Toinen yritys (yhtälö 7.13):

H(1) =
5000m2

/s2

9,820 000m/s2 + 0,0423 · 10−5 s−2 · 519,165m =

= 509,154m.

Sen jälkeen millimetrit eivät enää muutu.

2) Ilma-anomalia on

∆gFA = 9,820 000m/s2 −

−
(︁
9,821 500− 0,3084 · 10−5 · 509,154

)︁
m/s2 =

= 7,023mGal.

3) Bouguer-anomalia on (yhtälö 6.2):

∆gB = ∆gFA − 0,1119mGal/m ·H = −49,951mGal.

4) Ensimmäinen yritys on taas

H∗(0) =
C
γ0

= 509,087m.

Toinen, yhtälö 7.14:

H∗(1) =
5000m2

/s2

9,821 500m/s2 − 0,1542 · 10−5 s−2 · 509,087m =

= 509,128m,

myös lopullinen millimetritasolla.
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5) Erotuskaava 7.12 antaa

ζ−N = −
∆gBH
γ = 0,026m.

Myös (tarkistus) H−H∗ = 0,026m. Eli

ζ = N+ 0,026m = 25,026m.

^ 7.9 Ortometrinen korjaus ja normaalikorjaus

Käytännön ortometristen korkeuksien laskennassa lasketaan usein
yhteen ensin vaaituksella mitatut korkeuserot (”lattalukemien erot”)
∆H pisteiden A ja B välillä alustavaksi eli raa’aksi korkeuseroksi

B−1∑︂
i=A

vaaituslinja

∆Hi,i+1
def
=

B∑︂
A

∆H,

jonka jälkeen menetelmän epäeksaktisuus otetaan huomioon sovelta-
malla ”ortometrista korjausta” (OC):

HB = HA +

B∑︂
A

∆H+ OCAB.

Tosiasia, että kahden pisteen A ja B välinen ortometristen korkeuksien
ero ei ole sama kuin vaaittujen korkeuserojen summa, on seurausta siitä,
että painovoima ei ole kaikkialla sama.

Jos CA, CB ja ∆C ovat geopotentiaaliluvut pisteissä A ja B ja geopo-
tentiaalierot vaaituslinjaa pitkin, pätee CB − CA −

∑︁B
A∆C = 0, koska

geopotentiaali on konservatiivinen kenttä. Jakaminen vakiolla γ0 antaa

CB
γ0

−
CA
γ0

−

B∑︂
A

∆C
γ0

= 0.

Toisaalta

OCAB = HB −HA −

B∑︂
A

∆H =
CB
gB

−
CA
gA

−

B∑︂
A

∆C
g ,
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jossa gA ja gB ovat painovoiman keskiarvoja pisteidenA jaB luotiviivoja
pitkin ja g on painovoima vaaituslinjaa pitkin. Tässä lausekkeessa
verrataan

∑︁B
A∆H, naiivisti laskettu vaaittujen korkeuserojen summa,

ja ortometristen korkeuksien erotus linjan päätepisteiden A ja B välillä
laskettuna määritelmän mukaan.

Vähennys antaa

OCAB − 0 =

(︃
CB
gB

−
CB
γ0

)︃
−

(︃
CA
gA

−
CA
γ0

)︃
−

B∑︂
A

(︂
∆C
g −

∆C
γ0

)︂
,

jossa

CB
gB

−
CB
γ0

=

(︃
γ0 − gB
γ0

)︃
CB
gB

=

(︃
γ0 − gB
γ0

)︃
HB,

CA
gA

−
CA
γ0

=

(︃
γ0 − gA
γ0

)︃
HA,

∆C
g −

∆C
γ0

=
(︂
γ0 − g
γ0

)︂
∆H,

tuloksena ortometrinen korjaus

OCAB =

B∑︂
A

(︂
g− γ0
γ0

)︂
∆H+

(︃
gA − γ0
γ0

)︃
HA −

(︃
gB − γ0
γ0

)︃
HB, (7.15)

identtinen Heiskasen ja Moritzin (1967) yhtälön 4-33 kanssa.
Vakionγ0 valinta on mielivaltainen. On viisasta valita arvo läheltä kes-

kimääräistä painovoimaa vaaituslinjan AB alueella, jolloin laskennassa
liikkuvat luvut jäävät pieniksi.

Vastaavasti voidaan laskea myös normaalikorjaus (NC) normaalikor-
keuksien laskennan yhteydessä. Lähdetään yhtälöstä

NCAB = H∗
B −H∗

A −

B∑︂
A

∆H =
CB
γB

−
CA
γA

−

B∑︂
A

∆C
g , (7.16)

josta, samalla tavalla kuin yllä, saa vähentämällä:

NCAB =

B∑︂
A

(︂
g− γ0
γ0

)︂
∆H+

(︃
γA − γ0
γ0

)︃
H∗
A −

(︃
γB − γ0
γ0

)︃
H∗
B. (7.17)
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Identtinen ensimmäinen termi yhtälöissä 7.15 ja 7.17 polveutuu termistä

B∑︂
A

∆C
g =

B∑︂
A

∆H,

korkeuserojen ∆H naiivi summaus sekä ortometrisen korjauksen että
normaalikorjauksen tapauksessa, mihin tämä yleinen korjauskäsite
perustuu.

Yhtälö 7.16 antaa

H∗
B = H∗

A +

B∑︂
A

∆H+ NCAB.

Erilaista ortometrisen korjauksen ja normaalikorjauksen välillä on
korkeuksien määritelmä:H:n sĳastaH∗ eli jaetaan normaalipainovoiman
keskiarvolla luotiviivaa pitkinγ eikä todellisen painovoiman vastaavalla
keskiarvolla g.

Sekä ortometrinen korjaus 7.15 että normaalikorjaus 7.17 lasketaan
kiintopisteväli kerrallaan: on tunnettava vaaitun korkeuseron∆H lisäksi
paikallinen painovoima g vaaituslinjaa pitkin. Lisäksi on tunnettava
g(H) tai γ(0) molemmissa päätepisteissä, jotta voidaan laskea keskipai-
novoima g tai γ päätepisteiden luotiviivoja pitkin. Kaikki tämä onnistuu
hyvin yllä mainittujen yhtälöiden avulla. Muista, että painovoima g
vaaituslinjaa pitkin tarvitaan myös, jos halutaan redukoida yksittäiset
vaaitut korkeuserot ∆H geopotentiaalilukueroiksi ∆C. Tämä reduk-
tio on osana sekä ortometrisen korjauksen että normaalikorjauksen
laskentaa.

^ 7.10 Tulevaisuuden näkymä: suhteellisuusteoreettinen

vaaitus

Yleisen suhteellisuusteorian mukaan kello kulkee sitä hitaammin, mitä
syvemmällä se on massojen potentiaalikuopan sisällä. Tämä näkyy hel-
poiten tutkimalla pallosymmetrisen kentän Schwarzschildin7 metriikka: 7
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c2 dτ2 =

=
(︂
1−

2GM
c2r

)︂
c2dt2 −

(︂
1−

2GM
c2r

)︂−1
dr2 − r2

(︁
dϕ2 + cos2ϕdλ2

)︁
=

=
(︂
1−

2W
c2

)︂
c2 dt2 −

(︂
1−

2W
c2

)︂−1
dr2 − r2

(︁
dϕ2 + cos2ϕdλ2

)︁
,

pallokoordinaateissa plus aika (ϕ, λ, r, t). Tässä näkyy, miten ominais-
ajan τ kulku hidastuu stationaarisen koordinaattiajan t (aika äärettömyy-
dessä r→∞) verrattuna, kun geopotentiaaliW kasvaa lähestyttäessä
massaa. Hidastussuhde on

∂τ
∂t

=

√︃
1−

2W
c2
≈ 1− W

c2
.

Nyt c2, valon nopeuden neliö, on tavallisissa ihmisten yksiköissä val-
tavan iso luku: 1017m2

/s2 . Tämä merkitsee, että potentiaalieron 1m2
/s2 —

mikä vastaa korkeuseroa 10 cm — mittaamiseksi tämän menetelmän
avulla mittaustarkkuuden olisi oltava 1 : 1017. Perinteisemmät, mikro-
aaltoalueella toimivat atomikellot pystyvät tarkkuuksiin 10−12–10−14

(Vermeer, 1983a). Uusille optisille kelloille tavoitteen pitäisi olla saavu-
tettavissa, ja relativistinen vaaitus voisi toteutua.

Kello toimii sillä tavalla, että atomien äärimmäisellä jäähdytyksellä
aikaansaama niin sanottu Bosen ja Einsteinin kondensaatti on vangittuna
kuuden lasersäteen muodostamassa valohilassa: seisovien aaltojen
sähkömagneettisessa kuviossa. Kellovärähtelyllä on eri taajuus. Bosen ja
Einsteinin kondensaatille ominaista on, että kaikki atomit ovat tarkasti
samassa kvanttitilassa — kuten fotonit toimivassa laserissa: niiden
aineaallot ovat koherentteja. Tavallaan kaikki atomit toimivat yhdessä
yhtenä virtuaalisena atomina. Kondensaatti voi koostua miljoonista
atomeista.

7Karl Schwarzschild (1873–1916) oli saksalaisfyysikko, joka johti vuonna 1915 ase-
palveluksessa Venäjän rintamalla ollessaan ensimmäisenä Albert Einsteinin yleisen
suhteellisuusteorian kenttäyhtälön suljetun pallosymmetrisen, ei-pyörivän ratkaisun,
Schwarzschildin metriikan.
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100 km

Garching

Braunschweig

Kuva 7.8. Valohilakello: tulevaisuuden ultratarkka atomikello toimii optisella
alueella. Oikealla, julkaisun Predehl ym. (2012) kokeen reitti.^

Valitettavasti ei riitä, että aikaa osataan mitata äärimmäisen tarkasti
vain yhdessä laboratoriossa. On osattava verrata eri atomikellojen tiki-
tysnopeuksia yli maantieteellisten etäisyyksien. Tähänkin on löytynyt
ratkaisu: olemassa olevat valokuitukaapelit, joita Internet ja puhelinlii-
kenne käyttävät jo maailmanlaajuisesti, soveltuvat tähän pienin muu-
toksin. Muutokset koskevat kaapeleissa olevia välivahvistimia, jotka
on sĳoitettu noin 100 km:n välein. Vahvistimet pitää korvata modifioi-
duilla laitteilla (Predehl ym., 2012). Tällä huipputeknologian ja -tieteen
ratkaisulla voidaan korvata sekä perinteisiä tarkkavaaitusverkkoja että
GNSS-teknologiaan ja geoidimääritykseen perustuvia korkeusjärjestel-
miä.
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^ Olenko ymmärtänyt tämän?

1) Miksi suoraan vaaituista korkeuseroista lasketut korkeudet eivät
kelpaa korkeusjärjestelmäksi?

2) Mikä on geopotentiaaliluku?

3) Mitkä ovat ortometrisia korkeuksia?

4) Mitkä ovat normaalikorkeuksia?

5) Mikä on klassinen geoidin määritelmä?

6) Mikä on korkeusanomalia?

7) Mikä on kvasigeoidi?

8) Miksi vesi voi joskus virrata ”väärään” suuntaan, niin sanotusti
suurempaan korkeuteen?

9) Mikä on telluroidi?

10) Mitkä ovat ortometrinen korjaus ja normaalikorjaus?

^ Harjoitus 7–1: Ortometristen korkeuksien laskenta

PisteenP potentiaaliero merenpinnan kanssa,−(W −W0), on 1000m2
/s2 .

Painovoima pisteessä on gP = 9,820 000m/s2 .Laske pisteen ortometrinen
korkeus. Pyri millimetrin tarkkuuteen.

^ Harjoitus 7–2: Normaalikorkeuksien laskenta

Pisteessä P potentiaaliero merenpinnan kanssa on

−(W −W0) = 5000m2
/s2 .

Pisteen alapuolella merenpinnan tasolla normaalipainovoima on γ0 =
9,821 500m/s2 . Laske pisteen normaalikorkeus.
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^ Harjoitus 7–3: Erotus ortometrisen korkeuden ja

normaalikorkeuden välillä

Pisteessä P Bouguer-anomalia on ∆gB = −120mGal. Pisteen ortometri-
nen korkeus on 1150m.

1) Laske pisteen P normaalikorkeus.

2) Jos geoidikorkeus pisteessä P on N = 21,75m, laske pisteen
korkeusanomalia ζ.
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^ Stokesin yhtälö ja muut
integraaliyhtälöt

88
^ 8.1 Stokesin yhtälö ja Stokesin integraaliydin

Oletetaan, että Maa on pallon muotoinen. Sopivasti yhdistämällä osion
5.3 yhtälöitä saadaan merenpinnan tasolla

T =

∞∑︂
n=2

Tn = R

∞∑︂
n=2

∆gn
n− 1

,

jossa Tn = Tn(ϕ, λ) ovat häiriöpotentiaalikentän T = T(ϕ, λ) ja ∆gn =

∆gn(ϕ, λ) painovoima-anomaliakentän ∆g = ∆g(ϕ, λ) asteosuudet.
Summaus alkaa asteluvulta n = 2: asteluvuille n = 0, 1 oletetaan, että
∆gn häviävät, koska ∆g0 ̸= 0 edustaa Maan kokonaismassan erotusta
normaalikentän kokonaismassasta ja ∆g1 ̸= 0 koordinaatiston origon
poikkeamaa Maan massakeskipisteestä, katso osio 3.4.

Tämä on nyt Stokesin yhtälön spektraalimuoto.
Sĳoittamalla tähän asteosuusyhtälö 3.9 saadaan integraaliyhtälö

T =
R
4π

∞∑︂
n=2

2n+ 1
n− 1

x

σ
∆g(ϕ ′, λ ′)Pn(cosψ)dσ ′ =

=
R
4π

x

σ

(︄ ∞∑︂
n=2

2n+ 1
n− 1

Pn(cosψ)
)︄
∆g(ϕ ′, λ ′)dσ ′ =

=
R
4π

x

σ
S(ψ)∆g(ϕ ′, λ ′)dσ ′, (8.1)
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Massa-ylĳäämä

−N

N

gg

Massa-
alĳäämä

Kuva 8.1. Gravimetrisen geoidimäärityksen periaate.^

jossa

S(ψ) =

∞∑︂
n=2

2n+ 1
n− 1

Pn(cosψ),

Stokesin ydinfunktio. Kulma ψ on laskentapisteen ja liikkuvan data-
pisteen välinen geosentrinen kulmaetäisyys, katso kuva 8.2. Tämän
yhtälön avulla voi maailmanlaajuisesta painovoima-aineistosta laskea
jokaiselle maapallon pinnan pisteelle häiriöpotentiaalin T ja siitä geoidin
korkeuden N Brunsin yhtälön 5.2, N = T

/︁
γ , mukaan. Tulos on

N(ϕ, λ) =
T(ϕ, λ)
γ =

R
4πγ

x

σ
S(ψ)∆g

(︁
ϕ ′, λ ′)︁dσ ′, (8.2)
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Liikkuva data- eliLiikkuva data- eli
integrointipisteintegrointipisteψψ

N(ϕ, λ)

Laskenta-
piste

∆g
(︁
ϕ ′, λ ′

)︁
dσ ′∆g

(︁
ϕ ′, λ ′

)︁
dσ ′

S(ψ)

Maan keskipiste

Kuva 8.2. Stokesin yhtälön integroinnin geometria.^

jossa (ϕ, λ) ja (ϕ ′, λ ′) ovat laskentapiste ja liikkuva piste (”datapis-
te”) sekä ψ on niiden välinen kulmaetäisyys. Yhtälö 8.2 on klassinen
gravimetrisen geoidimäärityksen Stokesin integraaliyhtälö.

Yllä oleva on esimerkki integraaliyhtälöiden ja spektraalikehitelmien
vastaavuudesta. Tästä löytyy muitakin esimerkkejä, kuten funktion 1

/︁
ℓ

spektraaliesitys eli yhtälö 8.7, Heiskanen ja Moritz (1967) yhtälö 1-81. Tie-
tysti 1

/︁
ℓ on myös integraaliyhtälön ydinfunktio, yhtälö 1.28. Yhtälöstä

saa potentiaalin V , jos annettuna on yksinkertainen massatiheyskerros
κ.

On olemassa myös Stokesin yhtälön versio ulkoavaruudelle. Se annettiin
jo aiemmin, yhtälö 5.9. Sen ydinfunktion spektraalimuoto on yhtälö
5.10:

S(ψ, r, R) =

∞∑︂
n=2

(︂
R
r

)︂n+1 2n+ 1
n− 1

Pn(cosψ). (5.10)

Stokesin ydinfunktio Maan pinnalla esitetään kuvassa 8.3, jossa kulma
ψ on radiaaneina (1 rad ≈ 57◦, 29578 . . .). Käyrä laskettiin seuraavan
suljetun lausekkeen avulla (Heiskanen ja Moritz, 1967, osio 2-16, yhtälö
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0

90◦60◦30◦ 180◦

0,5 1 1,5 2 2,5 3 3,5
−5

0

5

10

15

20

25

S(ψ)

1

sin 12ψ

− 6 sin 12ψ+ 1− 5 cosψ

− 3 cosψ ln
(︁
sin 12ψ+ sin2 12ψ

)︁
S
(ψ

)−
→

ψ −→

Kuva 8.3. Stokesin ydinfunktio S(ψ). Argumentti ψ on radiaaneina
[︁
0, π
)︁
.

Kuva näyttää myös analyyttisen lausekkeen 8.3 kolme eri osaa eri
asymptoottisine käyttäytymisineen.^

2-164):

S(ψ) =
1

sin 1

2
ψ

− 6 sin 1

2
ψ+ 1− 5 cosψ−

− 3 cosψ ln
(︂

sin 1

2
ψ+ sin2 1

2
ψ
)︂
. (8.3)

Suljettu lauseke auttaa ymmärtämään paremmin, miten funktio käyttäy-
tyy origon ψ = 0 lähellä: ensimmäinen termi 1

/︁
sin 1

2
ψ menee äärettö-

myyteen, kun ψ→ 0. Seuraavat kolme termiä, − 6 sin 1

2
ψ+ 1− 5 cosψ,

ovat kaikki rajallisia koko välillä
[︁
0, π
)︁

ja arvo tapauksessa ψ = 0 on
−4. Viimeinen ja samalla monimutkainen termi − 3 cosψ ln

(︂
sin 1

2
ψ+

sin2 1
2
ψ
)︂

menee positiiviseen äärettömyyteen, kun ψ→ 0, mutta logarit-
min ansiosta paljon hitaammin.
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^ 8.2 Esimerkki: Stokesin yhtälö napakoordinaateissa

Osiossa 2.3 johdimme kaksiulotteisen napakoordinaattien Laplacen
yhtälön yleisen ratkaisun. Alla kehitetään yksinkertainen laskentakehys
kaksiulotteiselle gravimetriselle geoidimääritykselle, joka mahdollistaa
yksinkertaisten numeeristen ratkaisujen laskemisen. Tavoitteena on
saada näppituntumaa näihin asioihin.

Ensin johdetaan häiriöpotentiaali, painovoima-anomalia ja Stokesin
integraaliydin ratkaisua varten yhtälöstä 2.3, olettaen että normaalipo-
tentiaali on U(r) = a0 + b0 ln r.

◦ Häiriöpotentiaali:

T(α, r) = Vulk(α, r) − (a0 + b0 ln r) =

=

∞∑︂
k=1

r−k (ak coskα+ bk sinkα) .

◦ Normaalipainovoima:

γ(r) = −
∂U
∂r

= −
b0
r .

◦ Normaalipainovoimagradientti:

∂γ
∂r

= −
∂2U
∂r2

=
b0
r2
.

◦ Painovoima-anomalia, yhtälö 5.5:

∆g(α, r) = −
∂T
∂r

+
1
γ
∂γ
∂r
T =

=

∞∑︂
k=1

k
r r

−k (ak coskα+ bk sinkα)−

−
1
r

∞∑︂
k=1

r−k (ak coskα+ bk sinkα) =

=

∞∑︂
k=2

k− 1
r r−k (ak coskα+ bk sinkα) .
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Näkyy että, jos kirjoitamme

T(α, r) =

∞∑︂
k=1

(︂
R
r

)︂k
Tk(α), Tk(α)

def
= R−k (ak coskα+ bk sinkα) ,

seuraa, että

∆g(α, r) =

∞∑︂
k=2

(︂
R
r

)︂k+1
∆gk(α),

∆gk(α)
def
= (k− 1)R−(k+1) (ak coskα+ bk sinkα) ,

ja kuten pallokoordinaattien tapauksessa

∆gk(α) =
k− 1
R

Tk(α). (8.4)

Fourier’n teorian mukaan kantafunktiot coskα ja sinkα ovat ortonormaa-
leja ympyrällä r = R, kun valitaan seuraava integraali skalaarituloksi:

1
π

w 2π
0

coskα cosmαdα =
1
π

w 2π
0

sinkα sinmαdα =

⎧⎨⎩0 jos k ̸= m,

1 jos k = m,

1
π

w 2π
0

coskα sinmαdα = 0 aina.

Tämä merkitsee, että saamme kehittää

∆g(α, R) =

∞∑︂
k=2

∆gk(α)

Fourier’n termeihinsä seuraavasti:

∆gk(α)
def
= (k− 1)R−(k+1) (ak coskα+ bk sinkα) =

=

Ak⏟ ⏞⏞ ⏟
(k− 1)R−(k+1)ak coskα+

Bk⏟ ⏞⏞ ⏟
(k− 1)R−(k+1)bk sinkα.

Tämä antaa seuraavat Fourier’n kertoimet:{︄
Ak

Bk

}︄
= (k− 1)R−(k+1)

{︄
ak

bk

}︄
, k = 2, 3, · · ·
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ja ympyrällä r = R kehitelmä on

∆g(α, R) =

∞∑︂
k=2

∆gk(α) =

∞∑︂
k=2

(Ak coskα+ Bk sinkα) .

Sĳoitukset {︄
ak

bk

}︄
=
Rk+1

k− 1

{︄
Ak

Bk

}︄
antavat

T(α, R) =

∞∑︂
k=2

Tk(α) =

∞∑︂
k=2

R−k (ak coskα+ bk sinkα) =

=

∞∑︂
k=2

R−k

(︃
Rk+1

k− 1
Ak coskα+

Rk+1

k− 1
Bk sinkα

)︃
=

=

∞∑︂
k=2

R
k− 1

(Ak coskα+ Bk sinkα) .

Käyttäen Fourier’n kertoimien yhtälöt,{︄
Ak

Bk

}︄
=
1
π

w 2π
0
∆g(α, R)

{︄
coskα
sinkα

}︄
dα,

ja kosinin eroyhtälöä (Wolfram Demonstrations, Difference formula for
cosine) saadaan

T(α, R) =
1
π ·

·
∞∑︂
k=2

R
k− 1

(︃
coskα

w 2π
0
∆g(α ′, R) coskα ′ dα ′ + sinkα

w 2π
0
∆g(α ′, R) sinkα ′ dα ′

)︃
=

=
1
π

∞∑︂
k=2

R
k− 1

w 2π
0
∆g(α ′, R) · cos

(︁
k (α− α ′)

)︁
dα ′.

Määritellään Stokesin ydin tähän kaksiulotteiseen tilanteeseen:

N(α) =
T(α, R)
γ =

R
πγ

w 2π
0
∆g
(︁
α ′, R

)︁
S
(︁
α− α ′)︁dα ′,

jossa S
(︁
α− α ′)︁ def

=

∞∑︂
k=2

cos
(︁
k (α− α ′)

)︁
k− 1

.
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−1

1

2

−2π 2π−π π

Kuva 8.4. Stokesin ydinfunktio kaksiulotteisessa geometriassa ympyrällä r =
R. Huomaa symmetria ja jaksollisuus. Vertaa pallokoordinaattien
Stokesin ytimen kanssa, kuva 8.3.^

Pienille arvoille α − α ′ saa approksimoida (Wolfram Functions,∑︁∞
k=1

coskx
k

):

S(α− α ′) =

∞∑︂
k ′=1

cos
(︁
(k ′ + 1) (α− α ′)

)︁
k ′ ≈

∞∑︂
k ′=1

cos
(︁
k ′ (α− α ′)

)︁
k ′ =

=
1
2

ln
(︃

1

2
(︁
1− cos(α− α ′)

)︁)︃ ≈ − ln(α− α ′).

Abstraktimmin yhteys 8.4 voidaan kirjoittaa myös diskreetin Fourier’n
muunnoksen ja sen käänteismuunnoksen avulla seuraavasti:

F
{︁
∆g

}︁
=
k− 1
R

F
{︁
T
}︁

=⇒ T = F−1
{︂

R
k− 1

F
{︁
∆g

}︁}︂
.

Tässä F
{︁
f
}︁

edustaa ympyrän spatiaalisen koordinaatin α funktion
f(α) Fourier’n muunnosta spatiaalisen aaltoluvun (aaltoilujen määrä
ympyrän ympäri) k funktioksi.

Tämän esitystavan hyvä puoli on, että se voi hyödyntää mitä tahansa
standardia FFT-ohjelmakirjastoa, jossa on sekä itse Fourier’n muunnok-
sen F

{︁
·
}︁

että sen käänteismuunnoksen F−1
{︁
·
}︁

yhteensopivat versiot.
Lisää FFT:stä kerrotaan liitteessä C.
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^ Taulu 8.1. Stokesin yhtälö kahdessa ulottuvuudessa, octave-koodi.

% Stokesin yhtälön emulaattori kahdessa ulottuvuudessa

R = 6378137;

g = 9.8;

ak(1:180) = 0.0;

bk(1:180) = 0.0;

dg(1:360) = 0.0;

T(1:360) = 0.0;

for i=1:359

% Gauss-Markov

dg(i+1) = 0.8*dg(i) + 50*(rand()-0.5);

end

dgsum = 0.0;

for i=1:360

% Pakota jaksollisuus

dg(i) = dg(i) - (dg(360) - dg(1)) * (i/359);

dgsum = dgsum + dg(i);

end

for i = 1:360

% Pakota odotusarvo nolla

dg(i) = dg(i) - dgsum/360;

for k = 2:180

ak(k) = ak(k) + dg(i) * cos(k*i*pi/180)/180;

bk(k) = bk(k) + dg(i) * sin(k*i*pi/180)/180;

end

end

dg(1:360) = 0.0;

for i=1:360

for k = 2:180

T(i) = T(i) + (ak(k)*cos(k*i*pi/180) + bk(k)*sin(k*i*pi/180))*R/(k-1);

% Ilman astelukua yksi

dg(i) = dg(i) + ak(k)*cos(k*i*pi/180) + bk(k)*sin(k*i*pi/180);

end

end

hold on

plot(1:360, dg, ’b’) plot(1:360, 0.00001*T/g, ’m’)

print -dpdf stokes2D-out.pdf
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Kuva 8.5. Painovoima-anomalioiden (Gaussin ja Markovin prosessi) ja geoidi-
korkeuksien (sininen) simulaatio kaksiulotteisesti ympyrällä. Huo-
maa molempien spektraalikäyttäytyminen.^

Kuva 8.5 näyttää simuloinnin tuloksen, jossa satunnaisesti generoituja
painovoima-anomalioita ympyrällä r = R on käytetty geoidikorkeuk-
sien laskemiseksi samalla ympyrälla. Molemmat käyrät käyttäytyvät
tilastollisesti melko realistisesti. Käytetty koodi löytyy taulusta 8.1.

^ 8.3 Luotiviivan poikkeamat ja Vening Meineszin

yhtälöt

Differentioimalla Stokesin yhtälö paikan suhteen saadaan luotiviivan
poikkeamien komponenttien integraaliyhtälöt (Heiskanen ja Moritz,
1967, yhtälö 2-210’):{︄

ξ(ϕ, λ)

η(ϕ, λ)

}︄
=

1
4πγ

x

σ
∆g(ϕ ′, λ ′)

dS(ψ)
dψ

{︄
cosα
sinα

}︄
dσ ′ =

=
1
4πγ

x

σ
∆g(ϕ ′, λ ′)

dS(ψ)
dψ

{︄
cosα
sinα

}︄
sinψdαdψ, (8.5)
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Kuva 8.6. Legendren polynomien generoivan funktion geometria.^

jossa ξ ja η ovat etelä-pohjois- ja lansi-itäsuuntaiset luotiviivan poik-
keamat. Yksikköpallon pinta-alkio on dσ ′ = sinψdαdψ, jossa sinψ on
(ψ,α)-koordinaatien Jacobin determinantti.

Nämä yhtälöt johti ensimmäisenä hollantilainen geofyysikko F. A.
Vening Meinesz. Kulma α on atsimuutti eli suuntakulma laskenta- eli
evaluointipisteen (ϕ, λ) ja liikkuvan integrointi- eli datapisteen (ϕ ′, λ ′)

välillä. Yhtälöt on paljon vaikeampi kirjoittaa spektraalimuotoon, koska
ydinfunktiot ovat nyt myös atsimuuttisuunnan α funktioita eli an-
isotrooppisia.

Häiriöpotentiaali, painovoimahäiriö ja painovoima-anomalia ovat
kaikki niin sanottuja isotrooppisia suureita: ne eivät riipu atsimuutis-
ta ja siksi spektraaliesityksessä niiden väliset muunnokset ovat vain
asteluvun n funktioita.

^ 8.4 Poissonin integraaliyhtälö

Katso kuva 8.6. Kappaleen piste Q on paikassa RR ja havaintopiste P
paikassa rr. Kahden paikkavektorin välinen geosentrinen kulmaetäisyys
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8200 Stokesin yhtälö ja muut integraaliyhtälöt

eli kulmaetäisyys origosta katsottuna on ψ. Pisteiden P ja Q välinen
etäisyys on ℓ.

Kun määritellään R def
= ∥RR∥ ja r def

= ∥rr∥, saa kirjoittaa (kosinisääntö):

ℓ2 = r2 + R2 − 2rR cosψ. (8.6)

Saa myös kirjoittaa funktion 1
/︁
ℓ seuraavaksi kehitelmäksi (Heiskanen

ja Moritz, 1967 yhtälö 1-81):

1
ℓ
=

1√︁
r2 + R2 − 2Rr cosψ

=
1
R

∞∑︂
n=0

(︂
R
r

)︂n+1
Pn(cosψ), (8.7)

jossa r ja R ovat pisteiden P ja Q etäisyydet origosta O eli tavallisesti
Maan keskipisteestä. Funktiota 1

/︁
ℓ kutsutaan Legendren polynomien

generoivaksi funktioksi.
Differentioimalla yhtälö 8.7 r:n suhteen saadaan

−
r− R cosψ

ℓ3
= −

1
R

∞∑︂
n=0

n+ 1
r

(︂
R
r

)︂n+1
Pn(cosψ).

Tämä kerrotaan 2r:n kanssa:

−
2r2 − 2rR cosψ

ℓ3
= −

1
R

∞∑︂
n=0

(2n+ 2)
(︂
R
r

)︂n+1
Pn(cosψ).

Lasketaan yhteen tämä yhtälö ja yhtälö 8.7:

−2r2 + 2rR cosψ+ ℓ2

ℓ3
= −

1
R

∞∑︂
n=0

(2n+ 1)
(︂
R
r

)︂n+1
Pn(cosψ).

Sĳoitetaan tähän ℓ2 yhtälöstä 8.6:

−2r2 + 2rR cosψ+ ℓ2

ℓ3
=
R2 − r2

ℓ3
,

tuloksena, −R:n kanssa kerrottuna,

R
(︁
r2 − R2

)︁
ℓ3

=

∞∑︂
n=0

(2n+ 1)
(︂
R
r

)︂n+1
Pn(cosψ). (8.8)
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Jos sovelletaan asteosuusyhtälöä 3.9 harmoniselle potentiaalikentälle V
R-säteisen maapallon pinnalla:

Vn(ϕ, λ) =
2n+ 1
4π

x

σ
V
(︁
ϕ ′, λ ′, R

)︁
Pn(cosψ)dσ ′,

sekä kentän spektraaliesitys avaruudessa 3.10:

V(ϕ, λ, r) =

∞∑︂
n=0

(︂
R
r

)︂n+1
Vn(ϕ, λ),

saadaan

V(ϕ, λ, r) =

=
1
4π

∞∑︂
n=0

(︂
R
r

)︂n+1
(2n+ 1)

x

σ
V
(︁
ϕ ′, λ ′, R

)︁
Pn(cosψ)dσ ′ =

=
1
4π

x

σ
V
(︁
ϕ ′, λ ′, R

)︁ [︄ ∞∑︂
n=0

(2n+ 1)
(︂
R
r

)︂n+1
Pn(cosψ)

]︄
dσ ′ =

=
1
4π

x

σ

R
(︁
r2 − R2

)︁
ℓ3

V
(︁
ϕ ′, λ ′, R

)︁
dσ ′

korvaamalla hakasulkeissa oleva lauseke yhtälöllä 8.8.
Näin on saatu Poissonin integraali harmonisen kentän V laskemiseksi

maapallon pinnalla annetuista arvoista:

VP =
1
4π

x

σ

R
(︁
r2 − R2

)︁
ℓ3

VQ dσQ, (8.9)

jossa ℓ on taas suoraviivainen etäisyys laskentapisteen P, jossa VP laske-
taan, ja pallon pinnalla olevan liikkuvan datapisteen Q (VQ integraalin
sisällä) välillä. Tässä yhtälössä pisteille on annettu symbolisia nimiä: las-
kentapisteen P koordinaatit ovat (ϕ, λ, r), ja datapisteen Q koordinaatit
ovat (ϕ ′, λ ′, R).

Saman yhtälön kolmas kirjoitusmuoto, joka soveltuu käytettäväksi sil-
loin, kun harmoninen funktio eli kenttä V ei ole varsinaisesti määritelty
Maan topografisen pinnan ja merenpinnan välillä, on

V =
1
4π

x

σ

R
(︁
r2 − R2

)︁
ℓ3

V∗ dσ.
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Tässä V∗ tarkoittaa harmonisesti alaspäin jatketun funktion V arvoa. Funk-
tio on siis jatkettu alaspäin koko matkan topografian sisään aina me-
renpintaan saakka: palloapproksimaatiossa pallon pintaan r = R asti.
Tämä funktio, joka on topografian yläpuolella sama kuin V , on harmo-
ninen ja olemassa myös topografian ja merenpinnan välillä. Tällaisen
funktion olemassaolon kysymys on ollut kauan klassinen teoreettinen
pähkinä. . . .

Yhtälö 8.9 ratkaisee tässä erikoistapauksessa niin sanotun Dirichle-
tin reuna-arvotehtävän eli harmonisen funktion löytämisen avaruuden
alueelta, kun funktion arvo alueen reunalla on annettuna.

^ 8.5 Painovoima-anomalioita ulkoavaruudessa

Edellisessä osiossa 8.4 johdettu yhtälö 8.9 pätee mielivaltaiselle harmo-
niselle kentälle V , siis kentälle, jolle ∆V = 0. Yhtälö soveltuu kätevästi
lausekkeelle r∆g: painovoima-anomalia kerrottuna geosentrisen säteen
kanssa. Sekin on harmoninen kenttä. Näin voimme ilmaista ulkoa-
varuuden painovoima-anomalian ∆g(ϕ, λ, r) R-säteisen vertauspallon
painovoima-anomalioiden ∆g(ϕ ′, λ ′, R) funktioksi. Funktio r∆g on
harmoninen, koska yhtälön 5.7 mukaan

∆g =
1
r

∞∑︂
n=2

(n− 1)
(︂
R
r

)︂n+1
Tn,

siis

r∆g =

∞∑︂
n=2

(︂
R
r

)︂n+1
(n− 1) Tn =

∞∑︂
n=2

(︂
R
r

)︂n+1
T ′
n,

jossa T ′
n(ϕ, λ) = (n− 1) Tn(ϕ, λ) on täysin laillinen pintapallofunktio,

aivan kuten Tn(ϕ, λ) itse: riippuvuus säteestä r, kerroin
(︁
R
/︁
r
)︁n+1, on

sama kuin (harmonisen) potentiaalin tapauksessa. Poissonin integraa-
liyhtälö 8.9 pätee siis funktiolle r∆g:

[︁
r∆g(ϕ, λ, r)

]︁
=
1
4π

x

σ

R
(︁
r2 − R2

)︁
ℓ3

[︂
R∆g

(︁
ϕ ′, λ ′, R

)︁]︂
dσ ′
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eli

∆g(ϕ, λ, r) =
1
4π

x

σ

R
r
R
(︁
r2 − R2

)︁
ℓ3

∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′. (8.10)

Vaihtoehtoinen kirjoitustapa on

∆g =
1
4π

x

σ

R
r
R
(︁
r2 − R2

)︁
ℓ3

∆g∗ dσ,

jossa ∆g∗ merkitsee painovoima-anomaliaa merenpinnan tasolla, taas
laskettuna jatkamalla ulkoista kenttää, tässä tapauksessa lauseketta r∆g,
harmonisesti alaspäin.

Yhtälöstä 8.10 voidaan poimia ytimen suljettu muoto, joka on dimen-
sioton:

K(ℓ, r, R) =
R
r
R
(︁
r2 − R2

)︁
ℓ3

,

jolloin
∆g(ϕ, λ, r) =

1
4π

x

σ
K(r, ψ, R)∆g

(︁
ϕ ′, λ ′, R

)︁
dσ ′.

Approksimoimalla r+ R ≈ 2r saadaan vielä

∆g(ϕ, λ, r) ≈ 1
2π

x

σ
R2
r− R
ℓ3

∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′.

Vaihtoehtoisesti johdetaan spektraalimuoto:

∆g(ϕ, λ, r) =

=
1
r

∞∑︂
n=2

(︂
R
r

)︂n+1
(n− 1) Tn(ϕ, λ) =

∞∑︂
n=2

(︂
R
r

)︂n+2
∆gn(ϕ, λ).

Asteosuusyhtälö 3.9 antaa funktiot ∆gn:

∆gn(ϕ, λ) =
2n+ 1
4π

x

σ
∆g(ϕ ′, λ ′, R)Pn(cosψ)dσ ′,

joiden avulla

∆g(ϕ, λ, r) =
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=
1
4π

∞∑︂
n=2

(︂
R
r

)︂n+2
(2n+ 1)

x

σ
∆g(ϕ ′, λ ′, R)Pn(cosψ)dσ ′ =

=
1
4π

x

σ

(︄ ∞∑︂
n=2

(︂
R
r

)︂n+2
(2n+ 1)Pn(cosψ)

)︄
∆g(ϕ ′, λ ′, R)dσ ′ =

=
1
4π

x

σ
Kmod∆g(ϕ

′, λ ′, R)dσ ′,

jossa

Kmod(ψ, r, R)
def
=

∞∑︂
n=2

(︂
R
r

)︂n+2
(2n+ 1)Pn(cosψ)

on modifioitu Poissonin ytimen spektraaliversio painovoima-
anomalioille. Ytimestä on poistettu astelukujen 0 ja 1 osuudet, katso
Heiskanen ja Moritz (1967) yhtälö 2-159.

Stokesin ytimeen verrattuna Poissonin ydin putoaa nopeasti nollaan
kasvaville etäisyyksille ℓ. Toisin sanoen integraaliyhtälön evaluoinnin
saa rajoittaa hyvin paikalliseen alueeseen, esimerkiksi kalottiin, jonka
säde on 1◦. Katso kuva 8.7. Poissonin ytimen pääasiallinen käyttö
on painovoima-anomalioiden harmoninen jatkaminen ylös- tai alaspäin,
jotta eri korkeuksilla mitatut ja lasketut painovoima-anomaliat saadaan
samaan vertaustasoon.

Limiitissä r → R (laskentatasoksi merenpinta) tämä ydinfunktio
menee asymptoottisesti Diracin kaksiulotteiseen δ-funktioon. Tämä on
väistämätöntä ytimelle, joka laskee painovoima-anomaliat painovoima-
anomalioista.

^ 8.6 Painovoima-anomalian pystygradientti

Differentioidaan yhtälöistä 5.8 ja 5.7 saatu yhtälö:

∆g =

∞∑︂
n=2

(︂
R
r

)︂n+2
∆gn =⇒ ∂∆g

∂r
= −

1
R

∞∑︂
n=2

(︂
R
r

)︂n+3
(n+ 2)∆gn.

Tämä yhtälö on eksakti palloapproksimaatiossa. Sen ydinfunktio on
hyvin lokalisoitu, toisin sanoen se putoaa hyvin nopeasti nollaan. Myös
tässä laskennassa pieni ”kalotti” riittää.
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−3
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K

R2
=
1

r
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K ′

R3
=
1

ℓ3

(︄
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2

(︁
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)︁2
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)︄
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Poissonin ydinfunktio K
1 km

1 km
1.25 km

Kuva 8.7. Poissonin ydinfunktio painovoima-anomalioille sekä anomaalisen
painovoiman pystygradientin ytimet eri korkeuseroille r− R. Näitä
ydinfunktioita käytetään pintaintegrointiin karttakoordinaateissa
(x, y) kilometreinä.^

∆gn ilmaistaan asteosuusyhtälön 3.9 avulla integraaliksi merenpin-
nan anomaliakentän yli:

∆gn(ϕ, λ) =
2n+ 1
4π

x

σ
∆g
(︁
ϕ ′, λ ′, R

)︁
Pn(cosψ)dσ ′,

siis

∂∆g(ϕ, λ, r)
∂r

= −
1
4πR

∞∑︂
n=2

(︂
R
r

)︂n+3
(2n+ 1) (n+ 2)

x

σ
∆g
(︁
ϕ ′, λ ′, R

)︁
Pn(cosψ)dσ ′ =

=
1
4πR

x

σ
K ′(ψ, r, R)∆g

(︁
ϕ ′, λ ′, R

)︁
dσ ′, (8.11)

jossa (dimensioton) ydinfunktio on

K ′(ψ, r, R) = −

∞∑︂
n=2

(︂
R
r

)︂n+3
(2n+ 1) (n+ 2)Pn(cosψ).
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^ Taulu 8.2. Painovoima-anomalian pystygradientin ydinfunktionK ′ johtaminen.
Käytetty on ℓ:n määritelmä, yhtälö 8.6, sekä Poissonin integraaliyhtälö 8.10.

∂∆g(ϕ, λ, r)

∂r
=
1

4π

∂

∂r

(︄
x

σ

(︃
R

r
· R
(︁
r2 − R2

)︁
· ℓ−3

)︃
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′

)︄
=

=
R2

4π

x

σ

∂

∂r

(︃
1

r
·
(︁
r2 − R2

)︁
· ℓ−3

)︃
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′ =

=
R2

4π

x

σ

(︄(︃
−
r2 − R2

r2
+
2r

r

)︃
· 1
ℓ3

+
1

r
·
(︁
r2 − R2

)︁
·
d
(︁
ℓ2
)︁−3/2

d (ℓ2)
· ∂ℓ

2

∂r

)︄
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′ =

=
R2

4π

x

σ

(︄
1

ℓ3

(︃
−
r2 − R2

r2
+ 2

)︃
+
r2 − R2

r
·
(︁
−32ℓ

−5
)︁
· (2r− 2R cosψ)

)︄
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′ =

=
R2

4π

x

σ

1

ℓ3

(︃
2− 3

2

r2 − R2

r

1

ℓ2
ℓ2 + r2 − R2

r

)︃
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′ −

−
1

r
· 1
4π

x

σ

R

r

R
(︁
r2 − R2

)︁
ℓ3

∆g(ϕ ′, λ ′, R)dσ ′ =

=
R2

4π

x

σ

1

ℓ3

(︄
2− 3

2

r2 − R2

r2
− 3
2

(︁
r2 − R2

)︁ (︁
r2 − R2

)︁
r2ℓ2

)︄
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′ −

1

r
∆g(ϕ, λ, r) =

=
R2

4π

x

σ

1

ℓ3

(︄
2− 3

2

(︁
r2 − R2

)︁2
r2ℓ2

)︄
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′ −

(︃
1

r
+
3

2r

)︃
∆g(ϕ, λ, r) =

=
R2

4π

x

σ

1

ℓ3

[︄
2− 3

2

(︁
r2 − R2

)︁2
r2ℓ2

]︄
∆g
(︁
ϕ ′, λ ′, R

)︁
dσ ′ −

5

2r
∆g(ϕ, λ, r). (8.12)

Vaihtoehtoisesti johdetaan suljettu lauseke. Lähdetään Poissonin yh-
tälöstä 8.10 painovoima-anomalioille ja differentioidaan r:n suhteen.
Katso taulu 8.2.

Tuloksessa viimeinen termi on pieni verrattuna edelliseen termiin:
alle tuhannesosa.

Hakasulkeissa olevat termit vaativat omaa tarkastelua. Paikallisella
alueella ℓ ≈ r − R termit ovat samaa suuruusluokkaa; toinen termi
kuitenkin menee nopeasti nollaan kun ℓ ≫ r − R. Kuitenkin kerroin
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1
/︁
ℓ3 tekee näin vielä nopeammin.
Kirjoita

∂∆g(ϕ, λ, r)
∂r

=
R2

4π

x

σ
κ
∆g
(︁
ϕ ′, λ ′, R

)︁
ℓ3

dσ ′ −
5
2r
∆g(ϕ, λ, r), (8.13)

määritelmällä

κ
def
= 2− 3

2

(︁
r2 − R2

)︁2
r2ℓ2

. (8.14)

Kuva 8.7 näyttää, että Poissonin ydin K kapenee suhteessa r − R ja
sen huippu nousee suhteessa (r− R)

−2. Koska integraali Poissonin
ytimen yli on kaksiulotteinen ja skaalautuu leveyden neliön mukaan,
se pysyy vakiona kun r → R, ja itse asiassa ydin suppenee Diracin
kaksiulotteiseen δ-funktioon.

Painovoima-anomalian pystygradientin ydin K ′ käyttäytyy ikäväm-
min: se kapenee samalla tavalla, mutta kuten kuva 8.7 näyttää, sen
huippu nousee suhteessa (r− R)

−3. Siksi sen pallointegraali hajaantuu
suhteessa (r− R)

−1.
Regularisointi onnistuu havaitsemalla, että globaalisti vakiolla

painovoima-anomaliakentällä

˜︂∆g0(ϕ, λ, r) = ˜︂∆g0(r) = (︂Rr )︂2∆g0
on gradientti

∂˜︂∆g0(ϕ, λ, r)
∂r

= −
2
r
˜︂∆g0(ϕ, λ, r), (8.15)

mutta myös, kuten yhtälö 8.13:

∂˜︂∆g0(ϕ, λ, r)
∂r

=
R2

4π

x

σ
κ
˜︂∆g0(ϕ ′, λ ′, R)

ℓ3
dσ ′ −

5
2r
˜︂∆g0(ϕ, λ, r). (8.16)

Vähennetään yhtälö 8.16 yhtälöstä 8.13 ja sĳoita yhtälö 8.15, tuloksena

∂∆g(ϕ, λ, r)
∂r

=
∂
(︁
∆g(ϕ, λ, r) − ˜︂∆g0(ϕ, λ, r))︁

∂r
+
∂˜︂∆g0(ϕ, λ, r)

∂r
=

í �Õ ! ¤.�û



8208 Stokesin yhtälö ja muut integraaliyhtälöt

=
R2

4π

x

σ
κ
∆g
(︁
ϕ ′, λ ′, R

)︁
− ˜︂∆g0(ϕ ′, λ ′, R)

ℓ3
dσ ′ −

−
5
2r

(︂
∆g(ϕ, λ, r) − ˜︂∆g0(ϕ, λ, r))︂− 2

r
˜︂∆g0(ϕ, λ, r) =

=
R2

4π

x

σ
κ
∆g
(︁
ϕ ′, λ ′, R

)︁
− ∆g0

ℓ3
dσ ′ −

−
5
2r

(︃
∆g(ϕ, λ, r) −

(︂
R
r

)︂2
∆g0

)︃
−
2
r

(︂
R
r

)︂2
∆g0.

Valitaan vakio ∆g0
def
= ∆g(ϕ, λ, R), laskentapisteen merenpinnan tason

anomalia:

∂∆g(ϕ, λ, r)
∂r

=
R2

4π

x

σ
κ
∆g
(︁
ϕ ′, λ ′, R

)︁
− ∆g(ϕ, λ, R)

ℓ3
dσ ′ −

−
5
2r

(︃
∆g(ϕ, λ, r) −

(︂
R
r

)︂2
∆g(ϕ, λ, R)

)︃
−
2
r

(︂
R
r

)︂2
∆g(ϕ, λ, R) ≈

≈ R
2

4π

x

σ
κ
∆g
(︁
ϕ ′, λ ′, R

)︁
− ∆g(ϕ, λ, R)

ℓ3
dσ ′ −

2
r

(︂
R
r

)︂2
∆g(ϕ, λ, R).

(8.17)

Jos κ = 2, tämä vastaisi Heiskanen ja Moritz (1967) yhtälöä 2-217, kui-
tenkin laskentapisteelle tasolla r ̸= R. Hyvin käyttäytyvälle painovoima-
anomaliakentälle

∆g
(︁
ϕ ′, λ ′, R

)︁
− ∆g(ϕ, λ, R)

nätisti→ 0 kun (ϕ ′, λ ′)→ (ϕ, λ) ,

ja integraali 8.17 suppenee kun r→ R. Esitamme ilman todistusta, että
tapauksessa r→ R suppeneminen tapahtuu samaan raja-arvoon kuin
Heiskasen ja Moritzin yhtälö, toisin sanoen lausekkeen 8.14 toinen termi
katoaa ja tehollisesti κ→ 2.

Jos integrointi suoritetaan maapallon pinnan (säde R) eikä yksik-
köpallon σ ′ (säde 1) yli — tai samanarvoisesti paikallisissa metrisissä
koordinaateissa (x, y) — voidaan tehdä sĳoitus dS = R2 dσ, jossa dS on
pinta-alkio R-säteisellä pallolla. Tämä poistaa kertoimen R2 integraali-
yhtälöistä, kuten 8.10, 8.12 ja 8.17.

Molodenskin menetelmässä tämä tai vastaavat yhtälöt voidaan eva-
luoida nopeasti hyvin paikallisesta painovoimadatasta.
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Heiskasen ja Moritzin (1967) antama suljettu lauseke 2-217 on ano-

maalinen pystygradientti evaluoituna merenpinnalla (vertauspallolla).
Yhtälöissämme 8.17 ja 8.11 tarvitaan myös painovoima-anomalioita
merenpinnalla. Saatavilla ovat kuitenkin vain anomaliat topografian
pinnalla. Käytännössä voi menetellä iteratiivisesti aluksi olettamalla,
että topografian tasolla mitatut anomalia-arvot ovatkin merenpinnan
tasolla:

∆g(0)
(︁
ϕ, λ, R

)︁
≈ ∆g

(︁
ϕ, λ, r

)︁
= ∆g

(︁
ϕ, λ, R+H

)︁
,

jossa H = H(ϕ, λ) on pisteen (ϕ, λ) topografian korkeus. Kun karkea
anomaalinen gradientti on laskettu esimerkiksi yhtälöllä 8.17, voidaan
suorittaa oikea reduktio merenpintaan lineaarisessa approksimaatiossa:

∆g(1)
(︁
ϕ, λ, R

)︁
≈ ∆g

(︁
ϕ, λ, r

)︁
−
∂∆g(0)

(︁
ϕ, λ, z

)︁
∂z

⃓⃓⃓⃓
⃓
z=r

H.

Tätä voidaan iteroida.

^ 8.7 Painovoimareduktiot geoidimäärityksessä

^ 8.7.1 Klassiset menetelmät
Stokesin yhtälön käyttö gravimetriseen geoidilaskentaan edellyttää, että
kaikki massat ovat geoidin sisällä — ja ulkoinen kenttä on siis harmoni-
nen. Siksi topografiset massat siirretään laskennallisesti geoidin sisään
tavalla, jonka tulee spesifioida. Olemassa olevat klassiset menetelmät
ovat

◦ Helmertin (toinen) kondensaatiomenetelmä, osio 6.5: Massat siir-
retään suoraan alaspäin geoidille massatiheyskerrokseksi. Tämän
jälkeen mitatun painovoiman siirtäminen alaspäin topografian
pinnalta merenpintaan on helppoa. Epäsuora vaikutus (massasiir-
ron vaikutus geoidiin, entistämisvaihe) on pieni.

◦ Isostaattinen reduktio, jossa poistetaan laskennallisesti sekä to-
pografian että sen isostaattisen kompensaation eli vuoristojen
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merenpinnan alapuolella olevien ”juurten” vaikutus. Tämän me-
netelmän epäsuora vaikutus on suurempi. Katso osio 6.7 ja yhtälö
6.8.

◦ Bouguer-reduktio, osio 6.2: topografisten massojen vaikutus pois-
tetaan raa’asti havaitusta painovoimadatasta ja palautetaan geoi-
dilaskun jälkeen yhtä raa’asti laskettuun tulokseen.
Bouguer-anomaliat sisältävät vuoristossa suurta negatiivista sys-
tematiikkaa, ja sen takia Bouguer-reduktion epäsuora vaikutus
on ylen suuri ja ulottuu laajalle alueelle. Tästä syystä Bouguer-
reduktiota käytetään harvemmin.

^ 8.7.2 Alaspäin jatkaminen lineaarisessa approksimaatiossa
Yllä kuvattu lähestymistapa voidaan linearisoida Molodenskin mukaan:

T =
R
4π

x

σ

⎛⎜⎜⎜⎜⎜⎝
∆g∗
(︁
ϕ ′,λ ′

)︁⏟ ⏞⏞ ⏟
∆g−

∂∆g
∂z

⃓⃓⃓⃓
z=H ′

H ′

⎞⎟⎟⎟⎟⎟⎠S(ψ)dσ ′

⏞ ⏟⏟ ⏞
T∗(ϕ,λ)

+
∂T
∂z

⃓⃓⃓
z=H

H. (8.18)

Siis ensin redukoidaan maaston pinnalla mitattu ja laskettu ∆g me-
renpintaan käyttämällä painovoiman anomaalista pystygradienttia ja
mittauspisteen korkeutta H ′. Tuloksena

∆g∗
(︁
ϕ ′, λ ′)︁ = ∆g(︁ϕ ′, λ ′, H ′)︁− ∂∆g

(︁
ϕ ′, λ ′, z

)︁
∂z

⃓⃓⃓⃓
⃓
z=H ′

H ′.

Sen jälkeen sovelletaan merenpinnalla Stokesin yhtälöä ja saadaan
merenpinnan häiriöpotentiaali T∗. Tämän jälkeen häiriöpotentiaali ”an-
tiredukoidaan” takaisin maaston tasoon, evaluointipisteeseen, yhtälöllä

T(ϕ, λ,H) = T∗(ϕ, λ) +
∂T
(︁
ϕ, λ, z

)︁
∂z

⃓⃓⃓⃓
⃓
z=H

H.
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Näissä yhtälöissä koko ajan T , sen pystyderivaatta ∂

∂H
T , ∆g ja sen pysty-

derivaatta ∂

∂H
∆g kuuluvat aina ulkoiseen harmoniseen painovoimakent-

tään. Niiden välinen yhteys on fysikaalisen geodesian perusyhtälö 5.5,
pallogeometriassa

∆g = −
∂T
∂r

−
2
rT, (5.6)

jossa r = R+H. Tässä tarvitaan ensin häiriöpotentiaalin pystyderivaatta.
Se on helppoa:

∂T
∂H

=
∂T
∂r

= −∆g−
2
rT,

jossa oikean puolen ensimmäinen termi on suoraan mitattu ja toisen
termin T saadaan iteratiivisesti ratkaisuprosessin päätuotteena.

Painovoima-anomalioiden pystygradientin eli painovoiman anomaa-
lisen pystygradientin laskeminen on vaikeampaa. Tehtävään tarjoutuu
osiossa 8.6 esitetyt laskentavaihtoehdot. Käytännön laskennan onneksi
integraaliyhtälöiden ytimet ovat hyvin lokalisoituja, eikä painovoima-
anomalioita tarvita kovin laajalta alueelta.

^ 8.7.3 Laskentapiste vertaustasoksi
Yllä olevassa yhtälössä 8.18 vertaustasona on käytetty merenpintaa.
Tämä on mielivaltaista: voimme käyttää mitä tahansa vertaustasoa,
esimerkiksi H0, jolloin

T =
R+H0
4π

x

σ

(︃
∆g−

∂∆g
∂z

⃓⃓⃓⃓
z=H ′

(H ′ −H0)

)︃
S(ψ)dσ ′ +

+
∂T
∂z

⃓⃓⃓
z=H

(H−H0) .

Mikäli nyt valitaan H0 = H, viimeinen termi putoaa pois ja saadaan

T =
R+H
4π

x

σ

(︃
∆g−

∂∆g
∂z

⃓⃓⃓⃓
z=H ′

(H ′ −H)

)︃
S(ψ)dσ ′.

Tässä tapauksessa reduktio tapahtuu ∆g-mittauspisteen korkeudes-
ta T -laskentapisteen korkeuteen. Tämä on luultavasti lyhyempi mat-
ka kuin merenpinnasta laskentakorkeuteen, varsinkin laskentapisteen
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välittömässä läheisyydessä. Tämä merkitsee, että linearisointivirhe jää
pienemmäksi1. Huonoa toisaalta on, että suluissa oleva lauseke on nyt1

jokaiselle evaluointipisteelle erilainen. Tämä mutkistaa FFT-pohjaisen
laskentatekniikan käyttöä, josta lisää myöhemmin.

Tässä puhuttiin koko ajan häiriöpotentiaalin T(ϕ, λ,H)määrittämisestä,
mikä on käytännössä sama asia kuin korkeusanomalian

ζ(ϕ, λ,H) =
T(ϕ, λ,H)
γHh

≈ T(ϕ, λ,H)

γ
(︁
ϕ, 1

2
(H+ h)

)︁
määrittäminen, yhtälö 7.1. Tässä γ on pisteen leveysasteelle2 ϕ ja topo-2

grafian korkeudelle 1
2
(H+ h) ≈ H+ 1

2
ζ laskettu normaalipainovoima.

^ 8.7.4 Jäännösmaastomallinnusmenetelmä ( residual terrain

modelling)
Kuvittele, että topografiset massat siirretään käsitteellisesti geoidin
alapuolelle tavalla, joka ei muuta ulkopuolista kenttää. Tämä on olennaisesti
sama asia, kuin jos määritettäisiin harmonisesti alaspäin jatketun kentän
geoidi.

Ongelmana tässä on, että tällaista merenpinnan alaista massajakau-
maa, joka tuottaisi harmonisesti alaspäin jatkettua ulkoista potentiaalia
topografian pinnan ja geoidin välillä, ei tarkasti ottaen aina ole olemas-
sakaan. Fysikaalisesti epärealistista olisi myös, jos sopiva massajakauma
sisältäisi hyvin suuria positiivisia ja negatiivisia massoja lähekkäin.

Sanotaan, että ongelma on huonosti asetettu (”ill posed”). Tällaisissa
tapauksissa käytetään regularisointia: ulkopuolista kenttää muutetaan,
mutta mahdollisimman vähän, niin että siitä tulee järkevä kenttä, joka

1Linearisointivirhe voitaisiin edelleen virittää pienemmäksi valitsemalla pystygra-
dientin evaluointitasoksi z = 1

2
(H ′ +H).

2Oikeassa laskennassa laskettaisiiin γHh käyttäen todellista geodeettista leveysastetta
φ ja yhtälöä 4.10. Korkeuden 1

2
(H+ h) on oltava oikein muutaman metrin sisällä

millimetritarkkuuden saavuttamiseksi korkeusanomaliassa ζ.
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voidaan harmonisesti jatkaa topografian sisään. Silloin on olemassa myös
järkevä geoidin sisäinen massajakauma tämän kentän lähteenä.

Aluksi voidaan esimerkiksi suodattaa Maan pinnan painovoimaken-
tästä pois topografian aiheuttamat lyhytaaltoiset osat korkean erotusky-
vyn digitaalisen maastomallin avulla. Tätä kutsutaan RTM-menetelmäksi
(jäännösmaastomallinnus, residual terrain modelling).

Tässä menetelmässä ei oikeasti siirretä kaikkia maaston massoja geoi-
din alapuolelle. Sen sĳaan käytämme puskutraktorin kaltaista menetel-
mää (kuva 8.8), jolla joko poistamme tai lisäämme massoja topografian
pinnan lähelle, tavalla, jolla saavutetaan korvaava sileä topografia, joka
sisältää vain pitkät aallonpituudet. Korvaavan topografian ulkoinen
kenttä ei sisällä, toisin kuin alkuperäisen topografian kenttä, kaikkein
lyhyimpiä aallonpituuksia. Siksi sitä voidaan jatkaa riittävällä tarkkuu-
della alaspäin geoidin tasoon.

Ensin poistetaan laskennallisesti topografiasta vain lyhyet aallonpituu-
det (alle 30 km) siirtämällä huippujen massat laaksoihin. Toisin sanoen
suoritetaan alipäästösuodatus. Poiston vaikutus mittauksista laskettui-
hin ilma-anomalioihin ∆g lasketaan ja otetaan huomioon: poistamis-
eli remove-vaihe.

Tarkemmin:

1) Jokaisessa pisteessä P sovelletaan painovoima-anomalioihin maas-
tokorjaus osiossa 6.3 kuvatulla tavalla.

2) Seuraavaksi poistetaan Bouguer-laatan vetovoima. Laatan pak-
suus on H − HRTM, jossa H on maaston korkeus pisteessä P ja
HRTM silotetun eli alipäästösuodatetun maaston korkeus pisteen P
vaakasĳainnilla. Vaikutus on yhtälön 6.1 mukaan

2πGρ (H−HRTM) ,

jossa ρ on laskennassa oletettu kallion tiheysarvo.

3) Tämän jälkeen painovoima-anomalian sĳainti siirretään (alas- tai
ylöspäin!) — ”alaspäin jatkaminen” — alkuperäisestä maaston
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P
P ′

+ −−
−

−
+

Bouguer-laatta, alas-Bouguer-laatta, alas-
päin jatkaminenpäin jatkaminenMaastokorjausMaastokorjaus

+

KäänteinenKäänteinen
maastokorjausmaastokorjaus

Kuva 8.8. Jäännösmaastomallinnus eli residual terrain modelling (RTM). Maastos-
ta poistetaan laskennallisesti lyhyet aallonpituudet eli poikkeamat
punaisesta katkoviivasta: sen yläpuolella nousevat maaston massat
poistetaan, alapuolelle jäävät laaksot täytetään. Reduktion jälkeen
punainen katkoviiva, joka on sileämpi kuin alkuperäinen maasto,
on maaston uusi pinta. Uuden massajakauman ulkoinen potentiaali
eroaa vain vähän alkuperäisestä, mutta sitä voidaan harmonisesti
jatkaa alaspäin merenpintaan asti.
Vasemmalla pisteen P maastokorjaus, keskellä Bouguer-laatta-
reduktio ja gradienttireduktio sileän maaston pisteen P ′ tasoon.
Oikealla pisteen P ′ käänteinen maastokorjaus.^

tasosta H uuden sileän maaston pinnan tasoon HRTM. Tähän tar-
koitukseen voi käyttää ilma-anomalian pystygradientin yhtälöä
8.17.
Jos tämä anomaalinen pystygradientti jätetään huomioimatta, ku-
ten usein tehdään, maastokorjatun ulkoisen kentän painovoiman
pystygradientti oletetaan olevan normaalipainovoiman pystygra-
dientti — osion 5.4 mukaan −0,3mGal/m — ja tämä toimenpide ei
aiheuta muutosta painovoima-anomaliaan.

4) Tarkasti ottaen seuraavaksi pitäisi vielä suorittaa käänteinen maas-
tokorjaus, jotta painovoima-anomaliat olisivat realistisia uudelle
korvaavalle topografialle. Usein tämäkin askel jätetään pois, koska
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efekti on pieni.

5) Sen jälkeen ulkoisen kentän harmoninen alaspäin jatkaminen
onnistuu: ulkopuolisessa kentässä on jäljellä lähinnä vain pitkät
aallonpituudet.

Koska RTM-menetelmän massojen siirrot ovat niin pieniä, siirtoetäisyy-
det niin lyhyitä ja siirtokuviot niin lyhytaaltoisia, on epäsuora vaikutus
eli entistämisvaihe niin pieni, että sen voi usein jättää huomioimatta.
Kyseessä on siis massasiirtojen aiheuttama geopotentiaalin muutos,
jonka vaikutus on sovellettava käänteisenä lopullisen geopotentiaali-
tai geoidiratkaisun saavuttamiseksi. Samasta syystä myös topografian
tuntemattoman tiheyden vaikutus jää pieneksi.

Lopuksi huomautetaan, että koska RTM-menetelmä poistaa lyhytaal-
toisen topografian vaikutuksen, menetelmä soveltuu myös painovoima-
anomalioiden interpolointimenetelmäksi. Katso Märdla (2017).

^ 8.8 Poistamis-entistämismenetelmä

Kaikki nykyiset geoidimääritysmenetelmät ovat tavalla tai toisella
poistamis-entistamis- eli remove-restore-menetelmiä, jopa usealla eri
tavalla.

1) Havaituista painovoima-arvoista poistetaan ensin globaalin pai-
novoimakenttämallin vaikutus. Malli on yleensä annettu pallo-
funktiokehitelmänä. Näin saadaan jäännöspainovoimakenttä,

◦ jonka numeeriset arvot ovat pienempiä ja helpompia käsitellä

◦ joka on paikallisempi: pitkät ”aallonpituudet”, suurten aluei-
den yli ulottuvat kuviot, on jäännöskentästä poistettu, ja vain
paikalliset yksityiskohdat ovat jäljellä.

2) Havaitusta painovoimasta poistetaan kaikkien geoidin ulkopuolella
olevien massojen — käytännössä topografian — vaikutukset.
Tämän tarkoituksena on saada jäännöspainovoimakenttä,

◦ johon Stokesin yhtälöä voidaan käyttää, koska reunapinnan
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”Poistaminen” ”Entistäminen”

∆g
Raaka voima−−−−−−−−−−−−−−−−−−→ N

−
⏐⏐↓Globaali painovoima-

kentän malli
Globaali painovoima-

kentän malli

↑⏐⏐+
∆gloc Nloc

−
⏐⏐↓Ulkopuoliset massat

(topografia)
Ulkopuoliset massat

(topografia)

↑⏐⏐+
∆gred

Stokes−−−−−−−−−−−−−−−−−−→ Nred

Kuva 8.9. Poistamis-entistamis- eli remove-restore-menetelmä kommutoivana
kaaviona.^

ulkopuolella ei ole massoja jäljellä

◦ josta erityisesti maaston aiheuttamat painovoimakentän ly-
hyimmät ”aallonpituudet” eli yksityiskohdat, joiden suuruus-
luokka on muutama kilometri, ovat poissa. Tämän jälkeen
painovoima-arvojen prediktio harvoista mittausarvoista sujuu
paremmin.

Joitakin painovoiman reduktiomenetelmiä, jotka poistavat laskennalli-
sesti ulkopuolisten massojen painovoimavaikutuksen ja joilla on hyviä
prediktio-ominaisuuksia, esitettiin jo alaosiossa 8.7.1: Bouguer-reduktio
ja isostaattinen reduktio. Mainitaan myös Helmertin kondensaatio vaik-
ka sen prediktio-ominaisuudet ovat heikompia.

Voimme havainnollistaa poistamis-entistamis- eli remove-restore-
menetelmää kommutoivalla kaaviolla 8.9. Tässä kaaviossa mustat nuolet
teksteineen tarkoittavat laskutoimituksia, jotka ovat suositeltavia, koska
ne ovat helppoja ja tarkkoja. Harmaa nuoli teksteineen viittaa suoraan
laskentaan, joka on puolestaan laskentaintensiivistä ja numeerisesti
hankalaa.

í � Õ! ¤.�û



Ydinfunktion modifikaatio 8.9 217
^ 8.9 Ydinfunktion modifikaatio

Yllä kuvatussa poistamis-entistamismenetelmässä redukoitujen pai-
novoima-anomalioiden ∆gred ja geoidin korkeuksienNred käsittely ta-
pahtuu tavallisesti pienen alueen sisällä. Esimerkiksi FFT-menetelmää
käytettäessä on laskenta-alue usein suorakulmainen alue karttapro-
jektiotasossa piirrettynä reilusti sen maan tai alueen ympärille, jonka
geoidimalli ollaan laskemassa.

Lisäksi jos lasketaan geoidimalli suoraan Stokesin yhtälöä integroi-
malla, evaluoidaan tämä integraali — sen jälkeen kun globaalin mallin
vaikutus on poistettu annetusta painovoima-aineistosta — vain rajatun
alueen eli kalotin yli: lasketaan yhtälö

Nred =
R
4πγ

x

σ0
S(ψ)∆gred(ϕ

′, λ ′)dσ ′, (8.19)

jossa σ0 on yksikköpallon kalotti, jonka säde on vaikkapa ψ0.
Oletus tämän takana on, että ∆gred kalotin ulkopuolella on sekä pieni

että nopeasti vaihteleva, koska pidemmät aallonpituudet ovat siitä
poistuneet globaalin mallin reduktion mukaan. Tämä saattaa kuitenkin
olla vaarallinen olettamus.

Kirjoitetaan yhtälön 8.19 molemmat integrandin osat spektraalimuo-
toon:

S(ψ) =

∞∑︂
n=2

2n+ 1
n− 1

Pn(cosψ)

ja
∆gred(ϕ

′, λ ′) =

∞∑︂
n=L+1

∆gn(ϕ
′, λ ′),

olettaen, että L on aineistosta vähennetyn globaalin pallofunktiokehi-
telmän eli painovoimamallin suurin mukana oleva asteluku — ja että
malli on tarkka siihen astelukuun saakka.

Koska ∆gn on pintapallofunktioiden

Ynm(ψ,α) =

⎧⎨⎩Pnm(cosψ) cosmα josm = 0, . . . , n,

Pn|m|(cosψ) sin |m|α josm = −n, . . . ,−1,
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eräs lineaariyhdistelmä, vaikkapa tällä tavoin, vertaile yhtälö 3.13:

∆gn(ψ,α) =
1

Rn+1

n∑︂
m=−n

∆gnmYnm(ψ,α),

ja myös

Pn(cosψ) = Pn0(cosψ) cos(0 · α) = Yn0(ψ,α),

seuraa Y-funktioiden ortogonaalisuuden perusteella, että
x

σ
Pn(cosψ)∆gn ′(ϕ ′, λ ′)dσ ′ = 0 jos n ̸= n ′.

Nyt voi kirjoittaa (termit n ⩽ L putoavat pois):
x

σ
S(ψ)∆gred(ϕ

′, λ ′)dσ ′ =

=
x

σ

(︄ ∞∑︂
n=2

2n+ 1
n− 1

Pn(cosψ)
)︄(︄ ∞∑︂

n=L+1

∆gn(ϕ
′, λ ′)

)︄
dσ ′ =

=
x

σ

(︄ ∞∑︂
n=L+1

2n+ 1
n− 1

Pn(cosψ)
)︄(︄ ∞∑︂

n=L+1

∆gn(ϕ
′, λ ′)

)︄
dσ ′ =

=
x

σ
SL(ψ)∆gred(ϕ

′, λ ′)dσ ′,

jossa

SL(ψ) =

∞∑︂
n=L+1

2n+ 1
n− 1

Pn(cosψ)

on niin sanottu modifioitu Stokesin ydinfunktio. Astelukua L kutsutaan
modifiointiasteeksi. Laskenta-alueen σ0 koko valitaan yhteensopivaksi
tämän kanssa.

Tässä kuvattua modifiointimenetelmää, S-funktion Legendren po-
lynomikehitelmän rajoittaminen korkeampiin astelukuihin, kutsutaan
Wong-Gore3-modifikaatioksi (Wong ja Gore, 1969). Uuden ydinfunktion3

SL toivottava ominaisuus on, että se olisi ainakin alkuperäisfunktioon S

3L. Wong ja R. C. Gore työskentelivät Aerospace Corporationilla, joka on Kaliforniassa
sĳaitseva avaruusteknologian tutkimuslaitos. Wikipedia, The Aerospace Corporation.
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15

20

25

10

−5

0

5
S2−5(ψ)

S(ψ)

S6(ψ)

S5(ψ)

S4(ψ)

S3(ψ)

S2(ψ)

1 1.5 2 2.5 3 3.50 0.5

S(ψ)S(ψ)

S(ψ)S(ψ)S2(ψ)
S(ψ)S(ψ)

S6(ψ)S6(ψ) Kulmaetäisyys ψ (rad) −→

S4(ψ)

Kuva 8.10. Modifioituja Stokesin ydinfunktioita. Huomaa, miten ytimen ar-
vot korkeammilla modifiointiasteen L arvoilla lähestyvät nollaa
paikallisen alueen ulkopuolella. Punainen käyrä on modifioitu
”pehmeästi” modifiointiasteilla 2–5 kosini-ikkunan avulla.^

verrattuna pieni kalottialueen σ0 ulkopuolella. Siinä tapauksessa inte-
graalin rajoittaminen kalottiin koko yksikköpallon sĳasta (yhtälö 8.19)
ei tee suurta vahinkoa. Selvää on, että SL on paljon kapeampi kuin S,
ovathan siinä edustettuina vain korkeammat harmoniset asteluvut. Tätä
voidaan verifioida piirtämällä molempien käyrien grafiikka (kuva 8.10).
Käyrä ei mene kuitenkaan täysin nollaan kalotin ulkopuolella, vaan
aaltoilee jonkin verran.

Syy aaltoiluun on, että modifioidun ydinfunktion katkaisu taajuus-
eli astelukudomeenissa on hyvin äkkinäinen. Tällaisen terävän reu-
nan muuntaminen avaruus- ja taajuusdomeenien välillä tuottaa aina
värähtelyä, joka liittyy niin sanottuun Gibbsin4 ilmiöön. 4

4Josiah Willard Gibbs (1839–1903) oli amerikkalainen fyysikko, kemisti, termodynaa-
mikko, matemaatikko ja insinööri.
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Kuvassa 8.10 on piiirretty punaisena Stokesin ydin, joka on modifioitu
”pehmeästi”: ytimen termit asteluvuilla 5→ 2 on pakotettu vähitellen
nollaan sen sĳaan että ne poistettaisiin kokonaan. Kuten näkyy, käyrä
menee nollaan jopa siistimmin kuin ”terävästi” modifioidut ytimet.

^ 8.10 Edistyneitä ydinfunktion modifikaatioita

Kirjallisuudesta löytyy muitakin ydinfunktion modifiointikeinoja. Nii-
den yleinen muoto on

SL(ψ) =

∞∑︂
n=L+1

2n+ 1
n− 1

Pn(cosψ) +
L∑︂
n=2

(1− sn)
2n+ 1
n− 1

Pn(cosψ) =

= S(ψ) −

L∑︂
n=2

sn
2n+ 1
n− 1

Pn(cosψ), (8.20)

jossa modifiointikertoimet sn, n = 2, . . . , L voidaan valita5. Ne valitaan5

ytimen SL arvojen minimoimiseksi kalotin ulkopuolisella alueella σ−σ0.
Tällä tavoin voi eliminoida yhtälön 8.19 katkaisuvirheen ja Wong-Gore-
modifikaation aaltoilut lähes kokonaan. Molodenski ym. (1962) kehitti
jo varhain sellaisen menetelmän. Katso myös Bucha ym. (2019).

Yllä olevassa yhtälössä 8.20 haluamme minimoida funktiota

SL(ψ) = S(ψ) −

L∑︂
n=2

sn
2n+ 1
n− 1

Pn(cosψ)

paikallisen kalotin ulkopuolisen alueen σ − σ0 yli. Kerrotaan tämä
lauseke jokaisen Legendren polynomin Pn(cosψ), n = 2, . . . , L kanssa
vuorollaan, integroidaan paikallisen kalotin ulkopuolisen alueen σ−σ0
yli ja vaaditaan, että tulos häviää:\{

w

σ−σ0
S(ψ)Pn(cosψ)dσ−

5Valinta sn = 1 antaa taas yksinkertaisesti (Wong-Gore-menetelmällä) modifioidun
Stokesin ytimen, josta matalat asteosuudet on kokonaan poistettu.
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−

L∑︂
n ′=2

sn ′
2n ′ + 1
n ′ − 1

w

σ−σ0
Pn ′(cosψ)Pn(cosψ)dσ = 0,

n = 2, . . . , L,

L− 1 yhtälön ryhmä L− 1 tuntemattomassa sn ′ :
L∑︂

n ′=2

2n ′ + 1
n ′ − 1

enn ′ sn ′ = Qn,

jossa

Qn =
1
2π

w

σ−σ0
S(ψ)Pn(cosψ)dσ =

w π
ψ0
S(ψ)Pn(cosψ) sinψdψ

ja

enn ′ =
1
2π

w

σ−σ0
Pn(cosψ)Pn ′(cosψ)dσ =

=
w π
ψ0
Pn(cosψ)Pn ′(cosψ) sinψdψ.

Kertoimet Qn tunnetaan Molodenskin katkaisukertoimina, enn ′ Paulin
(1973) kertoimina.

Tästä voimme ratkaista sn jokaiselle asteluvullen arvojen 2 ja L välillä.
Tämä ratkaisu nollaa lausekkeet⟨︁

SL · Pn
⟩︁
σ−σ0

=
w

σ−σ0
SL(ψ)Pn(cosψ)dσ, (8.21)

myös kaikille n-arvoille 2:n ja L:n välillä.
Lausekkeet 8.21 voidaan tulkita skalaarituloina funktioiden SL ja Pn vä-

lillä. Samalla tavalla matriisin enn ′ alkiot sisältävät funktioiden Pn ja Pn ′

väliset skalaaritulot. Nämä skalaaritulot eivät häviä: kun integroidaan
alueen σ−σ0 eikä koko pallon σ yli, Legendren polynomit eivät ole kes-
kenään ortogonaaleja. Siksi e on täysi matriisi eikä päälävistäjämatriisi,
kuten silloin kun integroidaan koko yksikköpallon σ yli.

Legendren polynomit ovat keskenään riippumattomia integrointialu-
eella σ − σ0 ja virittävät yhdessä L − 1 -ulotteisen lineaarisen vektori-
avaruuden.
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ψ0-säteisen kalotin σ0 ulkopuolella Stokesin ydinfunktio S(ψ) on vi-
suaalisen tarkastelun perusteella ”sileä”. Riippuen tietysti kalotin säteen
ψ0 ja modifiointiasteen L arvoista se voi olla niin sileä, että se ei sisällä
mitään merkittävää osuutta asteluvuista, jotka ovat modifiointiastetta
L suurempia. Jos tämä pätee funktiolle S, se pätee myös funktiolle SL.
Tämä merkitsee, että SL on polynomien Pn, n = 2, . . . , L lineaariyhdis-
telmä eli niiden virittämän vektoriavaruuden alkio. Mutta jos näin on,
ja skalaaritulot 8.21 jokaisen kantavektorin kanssa häviävät, on ytimen
SL oltava nollafunktio alueella σ− σ0.

Katso myös Featherstone (2003).
Liitteen A osio A.1 selittää lisää lineaarisista vektoriavaruuksista ja

vektoreiden välisestä skalaaritulosta.

^ 8.11 Blokki-integrointi

Gravimetrisen geoidin numeerisessa laskennassa käytetään anoma-
lioiden keskiarvoja laskettuina standardikokoisille soluille eli blokeille,
yleensä 5 ′ × 5 ′, 10 ′ × 10 ′, 30 ′ × 30 ′ ynnä muita. Euroopan leveysasteilla
käytetään usein kokoja 3 ′ × 5 ′, 5 ′ × 10 ′, 6 ′ × 10 ′ ynnä muita, jotka ovat
likimäärin neliön muotoisia.

Seuraava yhtälö pätee integraalin laskennassa blokkien keskiarvoja
käyttäen:

N(ϕ, λ) ≈ R
4πγ

∑︂
i

Si(ϕ, λ)∆gi, (8.22)

jossa ∆gi on blokin i keskiarvo:

∆gi
def
=

1
ωi

x

σi
∆g(ϕ, λ)dσ =

1
ωi

x

σi
∆g(ϕ, λ) cosϕdϕdλ,

ja Stokesin ydinfunktion blokki-integraali vastaavasti

Si(ϕ, λ)
def
=

x

σi
S
(︁
ψ(ϕ, λ;ϕ ′, λ ′)

)︁
cosϕ ′ dϕ ′ dλ ′,

jossa σi on blokin i alue ja sen pinta-ala yksikköpallolla on

ωi
def
=

x

σi
dσ =

x

σi
cosϕdϕdλ.
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Sellaisen integraalin arvon numeerinen laskenta eli kvadratuuri tapahtuu
kätevästi Simpsonin säännön6 avulla: 6

Si(ϕ, λ) =
w λi+∆λ/2
λi−∆λ/2

w ϕi+∆ϕ/2
ϕi−∆ϕ/2

S
(︁
ψ(ϕ, λ;ϕ ′, λ ′)

)︁
cosϕ ′ dϕ ′ dλ ′ ≈

≈ ∆ϕ∆λ
1∑︂

j=−1

wj

1∑︂
k=−1

wkS
jk
i ,

jossa ∆λ ja ∆φ ovat blokkien pituus- ja leveyssuuntaiset koot ja w−1 =

w1 =
1

6
, w0 = 4

6
ovat painot.

Sjki (ϕ, λ) = S
(︂
ψ
(︁
ϕ, λ;ϕi + 1

2
j ∆ϕ, λi +

1

2
k∆λ

)︁)︂
cos
(︁
ϕi +

1

2
j ∆ϕ

)︁
,

j, k = −1, 0, 1

ovat lausekkeen S
(︁
ψ(ϕ, λ;ϕ ′, λ ′)

)︁
cosϕ ′ arvot laskennassa käytetty-

jen solmupisteiden kohdilla, 3×3 kappaletta. Katso kuva 8.11. Myös
monimutkaisempia kaavoja (toistettu Simpson tai Romberg) voi käyttää.

^ 8.12 Paikallisen vyöhykkeen vaikutus

Voi näyttää, että paikallisen (sisäisen) vyöhykkeen vaikutus geoidin
korkeuteen laskentapisteessä (ϕ, λ) on verrannollinen itse pisteen
painovoima-anomaliaan ∆g(ϕ, λ). Jos lähdetään Stokesin yhtälöstä
8.2, jolloin S(ψ) ≈ 1

/︁
sin 1

2
ψ ≈ 2

/︁
ψ , saadaan, jos ympyrän muotoisen

sisäisen vyöhykkeen säde on ψ0:

δN0 =
R
4πγ

w 2π
0

w ψ0
0

2

��ψ
∆g(ψ,α)���sinψdψdα ≈

≈ Rγ
w ψ0
0

(︃
1
2π

w 2π
0
∆g(ψ,α)dα

)︃
dψ ≈ Rγ ·ψ0 · ∆g0 =

s0
γ ∆g0.

6Thomas Simpson FRS (1710–1761) oli englantilainen matemaatikko ja oppikirjojen
laatĳa. Simpsonin sääntöä käytti itse asiassa jo Johannes Kepler sata vuotta aiemmin.
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Kuva 8.11. Simpsonin integroinnin solmupistepainot kahdessa ulottuvuudes-
sa.^

Tässä s0 = Rψ0 on paikallisen blokin (”kalotin”) säde pituusyksiköissä.
Suure

∆g0
def
=

1
ψ0

w ψ0
0

(︃
1
2π

w 2π
0
∆g(s, α)dα

)︃
dψ =

=
1
s0

w s0
0

(︃
1
2π

w 2π
0
∆g(s, α)dα

)︃
ds

on painovoima-anomalian erikoinen keskiarvo, ”rengaskeskiarvojen”
keskiarvo säteiden s = 0 ja s = s0 välillä. Jos s0 on pieni, keskiarvon saa
korvata keskipisteen anomalia-arvolla ∆g(ϕ, λ) ilman suurta virhettä.

Luotiviivan poikkeamien paikalliset osuudet ovat puolestaan ver-
rannollisia painovoima-anomalioiden vaakagradientteihin. Lähdetään
Vening Meineszin yhtälöistä 8.5, joihin sĳoitetaan tämä approksimaatio
paikalliselle kalotille, tarkemmin

S(ψ) ≈ 2
ψ

=⇒ d
dψ
S(ψ) = −

2
ψ2

:{︄
δξ0

δη0

}︄
≈ 1
4πγ

w ψ0
0

w 2π
0

(︂
−
2
ψ2

)︂
∆g(ϕ ′, λ ′)

{︄
cosα
sinα

}︄
sinψdαdψ.

Kehitetään ∆g paikallisille lineaarisille suorakulmaisille koordinaateille
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x, y:

∆g ≈ ∆g0 + x
∂∆g
∂x

+ y
∂∆g
∂y
≈

≈ ∆g0 + Rψ
(︃

cosα∂∆g
∂x

+ sinα∂∆g
∂y

)︃
,

ja sĳoitetaan:{︄
δξ0

δη0

}︄
≈ 1
4πγ

·

·
w ψ0
0

w 2π
0

−
2
ψ2

(︃
∆g0 + Rψ

(︂
cosα∂∆g

∂x
+ sinα∂∆g

∂y

)︂)︃{︄
cosα
sinα

}︄
sinψdαdψ.

Tässä termit, joissa on ∆g0, putoavat pois α-integroinnissa, koska
r 2π
0

sinαdα =
r 2π
0

cosαdα = 0. Näin tekevät myös sekatermit, joissa
sinα cosα. Ainoat nollasta eroavat termit sisältävät

r 2π
0

sin2 αdα =
r 2π
0

cos2 αdα = π :

δξ0 ≈ −
1
4πγ

w ψ0
0

w 2π
0

2

�
�ψ2
R��ψ cosα∂∆g

∂x
cosα���sinψdαdψ ≈

≈ −
R
2πγ

w ψ0
0

w 2π
0

∂∆g
∂x

cos2 αdαdψ ≈ −
Rψ0
2γ

∂∆g
∂x

,

δη0 ≈ −
1
4πγ

w ψ0
0

w 2π
0

2

�
�ψ2
R��ψ sinα∂∆g

∂y
sinα���sinψdαdψ ≈

≈ −
R
2πγ

w ψ0
0

w 2π
0

∂∆g
∂y

sin2 αdαdψ ≈ −
Rψ0
2γ

∂∆g
∂y

.

Integraalien laskenta olettaa, että osittaisderivaatat ovat vakioita kalotin
alueella. Käyttäen Rψ0 = s0 saadaan nyt

δξ0 ≈ −
s0
2γ
∂∆g
∂x

, δη0 ≈ −
s0
2γ
∂∆g
∂y

.

Yhtälöt saattavat olla hyödyllisiä kun standardi blokki-integrointi, yhtälö
8.22, on numeerisesti huonokäytöksinen laskentapisteen välittömässä
ympäristössä jos ydinfunktio on singulaarinen origossa ψ = 0. Sekä
Stokesin 8.2 että Vening Meineszin 8.5 ytimet ovat tätä tyyppiä.
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^ Olenko ymmärtänyt tämän?

1) Minkä näköisiä ovat Stokesin yhtälö ja sen spektraalimuoto?

2) Minkä näköinen on Stokesin ydinfunktio S(ψ) kehitettynä Le-
gendren polynomeihin?

3) Mikä on Stokesin ytimen sopiva approksimaatio, kun ψ on pieni?

4) Mikä on isotrooppinen ja mikä anisotrooppinen suure Maan
pinnalla? Anna jälkimmäisestä esimerkki.

5) Mitä Poissonin integraaliyhtälö kertoo?

6) Miksi painovoimareduktiot ovat tarpeen, kun geoidimallin laske-
miseksi käytetään Stokesin yhtälöä?

7) Mitkä eri painovoimareduktiomenetelmiä on tarjolla?

8) Selitä jäännösmaastomallintamenetelmä eli residual terrain model-
ling -menetelmä (RTM).

9) Selitä poistamis-entistamis- eli remove-restore-lähestymistapa.

10) Miksi Stokesin ydinfunktio modifioidaan usein geoidilaskennassa?
Minkä näköinen sellainen modifikaatio on?

11) Mikä on Gibbsin ilmiö?

^ Harjoitus 8–1: Stokesin yhtälö lähialueella

1) Johda Stokesin yhtälön S(ψ) yksinkertaisempi muoto, joka pätee,
kun kulmaetäisyys ψ on pieni. Oikeasti tämä yksinkertaistettu
muoto sisältää vain yhden termin!

2) Käyttäen tätä muotoa, kirjoita integraaliyhtälö

N =
R
4πγ

x

σ
S(ψ)∆gdσ

napakoordinaatteihin, siis integraaliksi muotoa
w 2π
0

w ∞
0
· · · dsdα,
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Harjoitus 8–1: Stokesin yhtälö lähialueella 227
jossa s = ψR on lineaarinen etäisyys laskentapisteestä ja α on atsi-
muuttikulma (suuntakulma) geoidikorkeudenN laskentapisteestä
liikkuvaan painovoima-anomalian ∆g datapisteeseen.
Vihje: tässä on otettava huomioon napakoordinaattien (s, α) Jaco-
bin determinantti.

3) LaskeN (yhtälönä), jos∆g = ∆g0 vain ympyrän muotoisen alueen
sisällä, s ⩽ s0, ja sen ulkopuolella ∆g = 0. Oleta, että s0 on pieni.
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^ Spektraalimenetelmät, FFT99
^ 9.1 Stokesin yhtälö konvoluutiona

Lähdetään liikkeelle Stokesin yhtälöstä 8.1,

T(ϕ, λ) =
R
4π

x

σ
S(ψ)∆g

(︁
ϕ ′, λ ′)︁dσ ′,

jossa (ϕ ′, λ ′) on liikkuvan integrointi- eli datapisteen sĳainti ja (ϕ, λ)

laskentapisteen sĳainti, molemmat merenpinnan tasolla eli pallon muo-
toisen Maan pinnalla. Molempien pisteiden sĳainnit annetaan siis pal-
lokoordinaatteina. Integrointi suoritetaan yksikköpallon σ pinnan yli:
pinta-alkio on dσ = cosϕdϕdλ, jossa cosϕ on pallokoordinaattien
(ϕ, λ) Jacobin determinantti.

Paikallisesti riittävän pienellä alueella voidaan kuitenkin kirjoittaa
pisteiden koordinaatit myös suorakulmaisina ja ilmaista integraali
suorakulmaisissa koordinaateissa. Sopivat suorakulmaiset koordinaatit
ovat esimerkiksi karttaprojektiokoordinaatit, katso kuva 9.1.

Yksinkertainen tangenttitason suorakulmaisten koordinaattien esi-
merkki olisi

x = ψR cosα, y = ψR sinα, (9.1)

jossa α on laskentapisteen ja liikkuvan datapisteen välisen yhdysviivan
atsimuutti. Tämän projektion keskus on tangenttitason kosketuspiste.
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x

ψ

α

R

y

Maan keskipiste

LaskentapisteLaskentapiste

DatapisteDatapiste

Kuva 9.1. Karttaprojektiokoordinaatit x, y paikallisessa tangenttitasossa.^

Muiden pisteiden sĳainnit mitataan Maan keskipisteen kulmalla eli
geosentrisellä kulmaetäisyydellä ψ ja tangenttitason suuntakulmalla eli
atsimuutilla α.

Realistisempi esimerkki käyttää suosittua konformista karttaprojek-
tiota nimeltä stereografinen projektio:

x = 2 tan ψ
2
R cosα, y = 2 tan ψ

2
R sinα.

Pienten ψ-arvojen limiitissä tämä on sama kuin yhtälöt 9.1.
Laskemalla yhtälöiden 9.1 neliöt, summaamalla ne ja jakamalla tulos

R2:llä saadaan
ψ2 ≈ x

2 + y2

R2
.

Yleisemmin ψ on laskenta- eli evaluointipisteen (x, y) ja data-,
integrointi- eli liikkuvan pisteen (x ′, y ′) välinen kulmaetäisyys
maapallon keskustasta nähtynä, likimäärin

ψ2 ≈
(︃
x− x ′

R

)︃2
+

(︃
y− y ′

R

)︃2
.
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Lisäksi on otettava huomioon projektion Jacobin determinantti R−2:

dσ = R−2 dxdy ⇐⇒ dxdy = R2 dσ,

ja Stokesin yhtälöstä tulee nyt

T(x, y) ≈ 1
4πR

x ∞
−∞ S

(︁
x− x ′, y− y ′)︁∆g(︁x ′, y ′)︁dx ′ dy ′, (9.2)

kaksiulotteinen konvoluutio1. 1

Konvoluutioilla on mukavia ominaisuuksia Fourier-teoriassa. Jos
kutsutaan Fourier’n muunnosta symbolilla F ja konvoluutiota symbolil-
la ⊗, voidaan yllä oleva yhtälö lyhentää seuraavaksi:

T =
1
4πR

S⊗ ∆g,

ja konvoluutiolauseen mukaan (”Fourier muuntaa konvoluution kerto-
laskuksi”):

F{T } =
1
4πR

F{S} · F{∆g}.

Tämä approksimaatio (x, y)-tasossa toimii vain, jos integroinnin voi
rajoittaa paikalliseen alueeseen, jossa Maan pinnan kaarevuuden voi
jättää huomiotta. Se onnistuu globaalien pallofunktiokehitelmien
ansiosta, koska ne edustavat Maan painovoimakentän spatiaali-
sen vaihtelun pitkäaaltoista osuutta. Sen jälkeen kun havaituista
painovoima-anomalioista ∆g on poistettu globaalin pallofunktiomallin
vaikutus (poistamis- eli remove-vaihe), voi laskentapisteestä kaukana
olevien alueiden vaikutuksen unohtaa turvallisesti: poiston jälkeen
anomaliakenttä ∆gloc sisältää vain loput lyhytaaltoiset osat, joiden
vaikutus kumoutuu pidemmän matkan päässä.

1Integrointi kulkee miinus äärettömyydestä plus äärettömyyteen sekä x- että y-
koordinaatissa. Tämä voi olla kaarevalla maapallolla realistinen vain, jos ydinfunktiolla
S on rajoitettu kantaja: se eroaa nollasta vain rajoitetulla alueella, joka on pieni osa koko
maapallon pinta-alasta. Tämä pitää paikkansa osiossa 8.9 esitetyille modifioiduille
ydinfunktioille.
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Tietenkin kun integraali on laskettu ja paikallinen häiriöpotentiaali
Tloc ja vastaava geoidin korkeusNloc on saatu, on muistettava, että näihin
olisi lisättävä jälleen globaalin pallofunktiomallin erikseen laskettava
vaikutus häiriöpotentiaaliin T ja geoidikorkeuteenN. Tämä on laskennan
entistämisvaihe, katso kommutoiva kaavio 8.9.

^ 9.2 Integrointi FFT:llä

Konvoluutiolauseen tarvitsema Fourier’n muunnos lasketaan diskreet-
tina Fourier’n muunnoksena. Tähän on tarjolla laskennallisesti erittäin
tehokas menetelmä: nopea Fourier’n muunnos, Fast Fourier Transform eli
FFT, esimerkiksi Vermeer (1993). Kirjallisuudesta löytyy useita hieman
erilaisia Fourier’n muunnoksen yhtälöitä. Valinnalla ei ole merkitystä,
kunhan Fourier’n muunnos F ja Fourier’n käänteismuunnos F−1 ovat
keskenään yhteensopivia.

Esivalmisteluna rakennetaan ensin funktion ∆g(x, y) diskreetti hila-
esitys, suorakulmainen ∆g-arvojen taulukko tasaisen pistevälin (xi, yj)-
hilalla. Arvot voivat olla vaikkapa funktioarvot itse hilapisteissä2:2

∆gij = ∆g
(︁
xi, yj

)︁
,

jossa hilapisteiden koordinaatit ovat

xi = i δx, yj = j δy, i, j = 0, 1, . . . , N− 1,

sopiviksi valituilla hilan väleillä (δx, δy) . Kokonaisluku N on hilan
koko, joka on oletettu yksinkertaisuuden vuoksi samaksi x:n ja y:n
suunnassa.

Seuraavaksi tehdään samoin ydinfunktiolle

S(ψ) = S
(︁
x− x ′, y− y ′)︁ = S(∆x,∆y),

2Vaihtoehtoisesti voitaisiin esimerkiksi laskea jokaiselle hilapisteelle pistettä ympäröi-
vän neliön muotoisen solun keskiarvo.
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Integrointi FFT:llä 9.2 233
siis kirjoitetaan

Sij = S
(︁
∆xi, ∆yj

)︁
,

jossa taas

∆xi = i δx, ∆yj = j δy, i, j = 0, 1, . . . , N− 1.

Nyt ydinfunktion S origon huippu — S(∆x,∆y)→∞ kun (∆x,∆y)→
(0, 0) — sĳoittuu funktioarvojen hilan Sij origoon i = j = 0, yhteen
nurkkaan, ja hila sisältää vain huipun yhden kvadrantin. Tämä ei ole
hyväksyttävä.

Diskreetille Fourier’n muunnokselle ominainen jaksollisuus merkit-
see, että arvot i = 1

2
N, . . . ,N − 1 saa korvata negatiivisilla arvoilla

i ′
def
= i−N = −1

2
N, . . . ,−1 ilman, että muodollisesti mikään muuttuu:

katso alaviite 1 liitteessä C. Tässä tulkinnassa

∆xi ′ = i
′ δx, ∆yj ′ = j

′ δy, i ′, j ′ = −1
2
N, . . . , 1

2
N− 1,

ja nyt origo on hilan keskellä. Tämä on oikea tapa laskea todellisen,
ei-jaksollisen ytimen arvot, käyttäen sekä positiivisia että negatiivisia
arvoja ∆x ja ∆y origon symmetrisesti ympäröivältä alueelta.

Seuraavaksi:

1) Näin saadut funktioiden ∆g ja S hilaesitykset ∆gij ja Sij muun-
netaan taajuusdomeeniin. Niistä tulee siten kahden ”taajuuden”,
x- ja y- suuntaisten aaltoindeksien u ja v, funktiot Suv = F

{︁
Sij

}︁
ja Guv = F

{︁
∆gij

}︁
. Spatiaalitaajuudet eli aaltoluvut3 ˜︁ν ja spatiaa- 3

liaallonpituudet λ ovat ˜︁νx = λ−1x = u
/︁
L , ˜︁νy = λ−1y = v

/︁
L , jossa

L = Nδx = Nδy on neliön muotoiseksi oletetun alueen koko.

2) Ne kerrotaan keskenään ”taajuuspari kerrallaan”: lasketaan

3Tämä on niin sanottu lineaarinen aaltoluku, joka laskee, montako kokonaisia aaltoja
on pituusyksikköä kohti. Syklinen eli pyöreä aaltoluku on k = 2π˜︁ν, ja se laskee,
montako vaihekulman radiaaneja on pituusyksikköä kohti.
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Havaintopisteet
omissa

paikoissaan

Interpolointi
−−−−−−−−−−−−−−→

Säännöllinen
pistehila⏐⏐↓Suora ratkaisu FFT

⏐⏐↓
Vapaa ratkaisu-

pistevalinta
Interpolointi

←−−−−−−−−−−−−−−
Säännöllinen

pistehila

Kuva 9.2. FFT-menetelmän kommutoiva kaavio.^

Tuv =
1
4πR

Suv · Guv, u, v = 0, 1, . . . , N− 1. (9.3)

3) Muunnetaan tulos Tuv = F
{︁
Tij

}︁
takaisin avaruusdomeeniin: Tij =

F−1
{︁
Tuv

}︁
, häiriöpotentiaalin T pistehila Tij = T

(︁
xi, yj

)︁
. Mielival-

taisen pisteen häiriöpotentiaali saadaan tästä hilasta interpoloimal-
la. Koordinaatit xi, yj kulkevat indeksien i, j funktioina samalla
tavalla kuin on kuvattu yllä ∆g:n tapauksessa.

Esitetty menetelmä kelpaa häiriöpotentiaalin T — ja vastaavasti geoidi-
korkeuden N = T

/︁
γ — laskentaan painovoima-anomalioista Stokesin

yhtälön avulla. Yhtä hyvin se kelpaa muiden suureiden, kuten esimerkik-
si painovoima-anomalian pystygradientin, evaluoimiseen yhtälön 8.17
avulla. Ainoa vaatimus on, että yhtälö olisi kirjoitettavissa konvoluutioksi.

Myös inversiolasku on helppoa, kuten tulemme näkemään: taajuusdo-
meenissa se on vain yksinkertainen jakolasku.

Diskreetin Fourier’n muunnoksen käyttö edellyttää, että syöttödata
eli integroitavana oleva kenttä — esimerkissä painovoima-anomalioiden
kenttä — on annettu laskenta-alueen peittävänä, säännöllisenä hilana,
tai on muunnettava sellaiseksi. Tulos — esimerkissä häiriöpotentiaali —
saadaan saman muotoisena säännöllisellä hilalla. Arvoja voi interpoloida
hilasta haluttuihin pisteisiin.

FFT-menetelmää voidaan kuvata kommutoivana kaaviona, kuva 9.2.
Liitteestä C löytyy lyhyt selostus, miksi FFT toimii ja miksi se on niin
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tehokas kuin se on.

^ 9.3 Ratkaisu leveys- ja pituusasteissa

Yllä olevassa yhtälössä 9.2 hilan koordinaatit x ja y ovat suorakulmai-
sia. Käytännön syistä käytetään hilan koordinaatteina mieluummin
leveys- ja pituusastetta (φ, λ). Näin väistyy uuden (x, y)-pistehilan
rakentamisen tarve interpoloimalla annetusta (φ, λ)-hilasta karttapro-
jektiolaskennan kautta. Maantieteellisten koordinaattien käyttö joh-
taa kuitenkin meridiaanikonvergenssin aiheuttamiin lisävirheisiin. Eihän
leveys- ja pituusastejärjestelmä ole suorakulmainen. Hieman sopivampi
olisi koordinaattipari (φ, λ cosφ).

Ongelma on ratkaistu myös käsitteellisemmällä tasolla.

^ 9.3.1 Strang van Heesin menetelmä
Stokesin ydinfunktio S(ψ) riippuu vain laskentapisteen (ϕ, λ) ja data-
pisteen (ϕ ′, λ ′) välisestä geosentrisestä kulmaetäisyydestä ψ. Kulma-
etäisyyden voi kirjoittaa seuraavasti (kosinisääntö pallolla):

cosψ = sinϕ sinϕ ′ + cosϕ cosϕ ′ cos
(︁
λ− λ ′)︁.

Sĳoitetaan

cos
(︁
λ− λ ′)︁ = 1− 2 sin2 λ− λ

′

2
,

cosψ = 1− 2 sin2 ψ
2
,

cos
(︁
ϕ− ϕ ′)︁ = 1− 2 sin2 ϕ− ϕ ′

2
,

ja saadaan puolikulman kosinisääntö:

cosψ = cos
(︁
ϕ− ϕ ′)︁− 2 cosϕ cosϕ ′ sin2 λ− λ

′

2

=⇒ sin2 ψ
2

= sin2 ϕ− ϕ ′

2
+ cosϕ cosϕ ′ sin2 λ− λ

′

2
.
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Tässä seuraava approksimaatio lienee sallittu:

cosϕ ′, cosϕ ≈ cosϕ0,

jossaϕ0 on vertausleveysaste laskenta-alueen keskellä. Nyt yllä olevasta
yhtälöstä tulee

sin2 ψ
2
≈ sin2 ϕ− ϕ ′

2
+ cos2ϕ0 sin2 λ− λ

′

2
, (9.4)

joka riippuu vain eroista ∆ϕ def
= ϕ− ϕ’ ja ∆λ def

= λ− λ ′.
Tämän jälkeen FFT-menetelmää voidaan soveltaa käyttämällä koordi-

naatteja (ϕ, λ)4 ja Stokesin ydinfunktiota kirjoitettuna muotoon4

S(ψ) = S(∆ϕ,∆λ) = S

(︄
2 arcsin

√︃
sin2 ∆ϕ

2
+ cos2ϕ0 sin2 ∆λ

2

)︄
,

joka on nyt ainoastaan erotusten ∆ϕ ja ∆λ funktio, kuten konvoluutio-
lause edellyttää. Tämän ovelan tavan käyttää FFT-menetelmää maan-
tieteellisissä koordinaateissa keksi hollantilainen G. Strang van Hees55

vuonna 1990.

^ 9.3.2 ” Spherical FFT” / monivyöhykemalli
Jaetaan alue useaan kapeaan vyöhykkeeseen leveysasteen mukaan.
Jokaisen vyöhykkeen sisällä sovelletaan Strang van Hees -menetelmää
omalla optimaalisella keskusleveysasteella.

Kirjoitetaan Stokesin yhtälö seuraavasti:

N(ϕ, λ) =
R
4πγ

x
S
(︁
∆ϕ,∆λ;ϕ

)︁[︂
∆g
(︁
ϕ ′, λ ′)︁ cosϕ ′

]︂
dϕ ′ dλ ′, (9.5)

4Käytännössä käytetään geodeettista eli maantieteellistä leveysastetta φ geosentrisen
ϕ sĳasta ilman merkittävää virhettä.
5Govert L. Strang van Hees (1932–2012) oli hollantilainen gravimetrisen geodesian
tutkĳa.
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jossa olemme ilmaisseet S leveysaste-eron, pituusaste-eron ja laskenta-
leveysasteen funktiona. Nyt valitaan kaksi tukileveysastetta, ϕi ja ϕi+1.
Lisäksi oletetaan, että S on niiden välillä riittävän lineaarinen ϕ:n
funktio. Siinä tapauksessa voimme kirjoittaa

S(∆ϕ,∆λ;ϕ) = (ϕ− ϕi)Si+1(∆ϕ,∆λ) + (ϕi+1 − ϕ)Si(∆ϕ,∆λ)
ϕi+1 − ϕi

,

jossa ∆ϕ = ϕ− ϕ ′, ∆λ = λ− λ ′ ja

Si(∆ϕ,∆λ) = S
(︁
ϕ− ϕ ′, λ− λ ′;ϕi

)︁
,

Si+1(∆ϕ,∆λ) = S
(︁
ϕ− ϕ ′, λ− λ ′;ϕi+1

)︁
.

Integraaliyhtälöön 9.5 sĳoittamalla saadaan

N(ϕ, λ) =
R
4πγ

(︃
ϕi+1 − ϕ
ϕi+1 − ϕi

Ii +
ϕ− ϕi
ϕi+1 − ϕi

Ii+1

)︃
, (9.6)

jossa

Ii =
x
Si(∆ϕ,∆λ)

[︂
∆g
(︁
ϕ ′, λ ′)︁ cosϕ ′

]︂
dϕ ′ dλ ′,

Ii+1 =
x
Si+1(∆ϕ,∆λ)

[︂
∆g
(︁
ϕ ′, λ ′)︁ cosϕ ′

]︂
dϕ ′ dλ ′.

Yhtälö 9.6 on kahden konvoluution lineaariyhdistelmä. Molemmat
evaluoidaan FFT:n avulla. Yhtälö muodostaa saaduista ratkaisuista
painotetun keskiarvon.

Tässä menetelmässä käytämme likiyhtälön 9.4 sĳasta tarkkaa yhtälöä,
jossa ϕ ′ on ilmaistu ϕ:hin ja ∆ϕ:hin:

sin2 ψ
2

= sin2 ϕ− ϕ ′

2
+ cosϕ cosϕ ′ sin2 λ− λ

′

2
=

= sin2 ∆ϕ
2

+ cosϕ cos (ϕ− ∆ϕ) sin2 ∆λ
2
.

Lasketaan Si ja Si+1 tukileveysasteen arvoille ϕi ja ϕi+1, evaluoidaan
integraalit konvoluutiolauseen avulla ja interpoloidaanN(ϕ, λ) yhtälön
9.6 mukaan, kun ϕi ⩽ ϕ < ϕi+1. Tämänkään jälkeen ratkaisu ei ole
eksakti, koska jokaisen vyöhykkeen sisällä käytetään edelleen lineaarista
interpolointia. Kaventamalla vyöhykkeitä saadaan virhe pysymään
mielivaltaisen pienenä.
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^ 9.3.3 ” Spherical FFT” / Taylorin kehitelmämalli
Tämä on hieman monimutkaisempi, mutta myös monipuolisempi lähes-
tymistapa, joka kehittää Stokesin ytimen Taylorin sarjaksi leveysasteen
suhteen keskellä laskenta-aluetta sĳaitsevan vertausleveysasteen molem-
min puolin6. Kehitelmän jokainen termi riippuu vain leveysasteiden6

erosta. Laskettava integraali hajoaa vastaavasti termeihin, joista jokainen
sisältää puhtaan konvoluution.

Kirjoitetaan yleinen ongelma seuraavasti:

ℓ(ϕ, λ) =
w 2π
0

w +π/2

−π/2
C
(︁
ϕ,ϕ ′, ∆λ

)︁[︂
m
(︁
ϕ ′, λ ′)︁ cosϕ ′

]︂
dϕ ′ dλ ′,

jossa ℓ sisältää laskettavat ja m annetut suureet ja C on kerroin- eli
ydinfunktio. Tässä oletetaan vain geometrian pyörähdyssymmetriaa Maan
akselin ympäri: ydinfunktio riippuu vain pituusasteiden erotuksesta
∆λ eikä absoluuttisista pituuksista λ ja λ ′.

Konkreettisessa tapauksessa m sisältää esimerkiksi painovoima-
anomalia-arvoja ∆g eri pisteissä (ϕ ′, λ ′), ℓ sisältää geoidikorkeuksiaN
eri pisteissä (ϕ, λ) ja C sisältää Stokesin ydinfunktion avulla laskettuja
kertoimien arvoja.

Muunnetaan ensin riippuvuus suureista ϕ ja ϕ ′ riippuvuudeksi
suureista ϕ ja ∆ϕ:

C = C
(︁
ϕ,ϕ ′, ∆λ

)︁
= C(∆ϕ,∆λ;ϕ).

Linearisoidaan:

C = C0(∆ϕ,∆λ) + (ϕ− ϕ0)Cϕ(∆ϕ,∆λ) + · · ·

jossa määritellään sopivalle vertausleveysasteelle ϕ0:

C0(∆ϕ,∆λ)
def
= C

(︁
∆ϕ,∆λ;ϕ0

)︁
,

Cϕ(∆ϕ,∆λ)
def
=

∂
∂ϕ
C(∆ϕ,∆λ;ϕ)

⃓⃓⃓⃓
ϕ=ϕ0

.

6Kirjallisuudessa menetelmä on yleistetty kehittämällä ydin myös korkeuden suhteen.
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Tämä kahden termin kehitelmä on tarkka vain rajallisella ∆ϕ-välillä, ja
ydinfunktiolla C oletetaan olevan rajoitettu kantaja. Silloin integraalit
voidaan laskea rajallisen alueen sisällä koko Maan sĳasta.

Sĳoittamalla saadaan

ℓ(ϕ, λ) =
x
C(∆ϕ,∆λ;ϕ) ·m

(︁
ϕ ′, λ ′)︁ cosϕ ′ dϕ ′ dϕ ′ =

=
x (︁

C0 + (ϕ− ϕ0)Cϕ
)︁
·m cosϕ ′ dϕ ′ dϕ ′ =

=
x
C0 ·m cosϕ ′ dϕ ′ dλ ′ + (ϕ− ϕ0)

x
Cϕ ·m cosϕ ′ dϕ ′ dλ ′.

(9.7)

Tärkeää tässä on se, että ensimmäisen ja toisen termin integraalit,
x
C0(∆ϕ,∆λ)

[︂
m
(︁
ϕ ′, λ ′)︁ cosϕ ′

]︂
dϕ ′ dλ ′ = C0 ⊗

[︁
m cosϕ

]︁
,

x
Cϕ(∆ϕ,∆λ)

[︂
m
(︁
ϕ ′, λ ′)︁ cosϕ ′

]︂
dϕ ′ dλ ′ = Cϕ ⊗

[︁
m cosϕ

]︁
,

ovat molemmat konvoluutioita: molemmat C-funktiot riippuvat vain erois-
ta ∆ϕ ja ∆λ. Molemmat integraalit ovat laskettavissa, jos datahila
m cosϕ ja kerroinhilat C0 ja Cϕ lasketaan ensin valmiiksi. Tämän pe-
riaatteessa kalliin, mutta FFT:n ja konvoluutiolauseen ansiosta paljon
edullisemman integroinnin jälkeen on yhdistelmän 9.7 laskeminen no-
peaa: yksi kertolasku ja yksi yhteenlasku jokaista laskentapistettä (ϕ, λ)

kohtaan.

Esimerkki Olkoon laskenta-alue leveysasteella 60◦ kooltaan 10◦ × 20◦.
Jos hilan silmäkoko on 5 ′ × 10 ′, on solujen määrä 120 × 120.
Valitaan vaikkapa 256 × 256 -kokoinen hila (siis N = 256) ja
täytetään puuttuvat arvot ekstrapoloimalla.
Myös ydinfunktioiden C0 ja Cϕ arvot lasketaan 256 × 256
-kokoisella (∆ϕ,∆λ)-hilalla. Niitä on siis myös 65 536. Konvo-
luutioiden C0 ⊗

[︁
m cosϕ

]︁
ja Cϕ ⊗

[︁
m cosϕ

]︁
laskeminen FFT:n

avulla — siis7 7
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x
C0(∆ϕ,∆λ)m

(︁
ϕ ′, λ ′)︁ cosϕ ′ dϕ ′ dλ ′ =

= C0 ⊗
[︁
m cosϕ

]︁
= F−1

{︂
F
{︁
C0

}︁
· F

{︁
m cosϕ

}︁}︂
,

x
Cϕ(∆ϕ,∆λ)m

(︁
ϕ ′, λ ′)︁ cosϕ ′ dϕ ′ dλ ′ =

= Cϕ ⊗
[︁
m cosϕ

]︁
= F−1

{︂
F
{︁
Cϕ

}︁
· F

{︁
m cosϕ

}︁}︂
,

vaatii N2 × 2log
(︁
N2
)︁
= 65 536 × 16 = reilu miljoona ”standar-

dilaskutoimitusta8”. Kertominen kerrointen (ϕ− ϕ0) kanssa ja8

yhteenlasku taas vaativat yhdessä 65 536 standardilaskutoimitus-
ta.
Ydinfunktioiden C0 ja Cϕ vastaavat hilamatriisit saadaan seu-
raavasti: kolmelle vertausleveysasteelle ϕ−1, ϕ0, ϕ+1 lasketaan
numeerisesti hilat

C−1 = C
(︁
∆ϕ,∆λ;ϕ−1

)︁
,

C0 = C
(︁
∆ϕ,∆λ;ϕ0

)︁
,

C+1 = C
(︁
∆ϕ,∆λ;ϕ+1

)︁
,

jossa C0 on suoraan tarjolla ja

Cϕ ≈
C+1 − C−1

ϕ+1 − ϕ−1
.

Myös inversiolasku on näin suoraan mahdollinen. Olkoon annettuna ℓ
sopivassa pistehilassa. Lasketaan vektorinm ensimmäinen approksi-
maatio seuraavasti9:9

F
{︁
C0

}︁
· F

{︁
m cosϕ

}︁
= F

{︁
ℓ
}︁

=⇒
[︁
m cosϕ

]︁(0)
= F−1

{︃
F
{︁
ℓ
}︁

F
{︁
C0

}︁}︃.
7Fourier’n muunnokset kerrotaan kertomalla vastaavat alkiot, katso osio 9.2 yhtälö
9.3.
8Standardilaskutoimitus on kertolasku plus joko yhteen- tai vähennyslasku.
9Fourier’n muunnos jaetaan toisella jakamalla vastaavat alkiot, katso osio 9.2.
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Toinen approksimaatio saadaan laskemalla ensin

ℓ(0) = C0 ⊗
[︁
m cosϕ

]︁(0)
+ (ϕ− ϕ0) · Cϕ ⊗

[︁
m cosϕ

]︁(0)
,

jonka jälkeen tehdään parannus[︁
m cosϕ

]︁(1)
=
[︁
m cosϕ

]︁(0)
+ F−1

{︃
F
{︁
ℓ− ℓ(0)

}︁
F
{︁
C0

}︁ }︃
,

ja niin edelleen, iteratiivisesti. Pari kolme askelta riittää. Tätä me-
netelmää on käytetty maanalaisten massapisteiden laskemiseksi
painovoima-anomalioista esittämään Maan ulkopuolista painovoima-
kenttää10. Enemmän on selostettu julkaisuissa Forsberg ja Vermeer 10

(1992); Vermeer (1992).

^ 9.3.4 ”1-D-FFT”
Tämä on edellisten rajatapaus, jossa käytetään FFT-menetelmää vain
pituusasteen suuntaan. Toisin sanoen tämä on vyöhykemenetelmä, jossa
vyöhykkeet ovat vain yhden hilarivin leveitä. Menetelmä on eksakti, jos
laskentaan otetaan mukaan kaikki pituusasteet 0◦ ⩽ λ < 360◦. Se vaatii
edellisiin menetelmiin verrattuna hieman enemmän laskenta-aikaa. Itse
asiassa se on identtinen Fourier-muunnoksen kanssa muuttujassa λ
eli pituusasteessa. Yksityiskohdat löytyvät julkaisusta Haagmans ym.
(1993).

^ 9.4 Data-alueen reunustaminen ja ikkunointi

Diskreetti Fourier’n muunnos olettaa, että data on jaksollisesti jatkuva.
Toisin sanoen oletetaan, että jos yhdistetään data-alueen itäreuna sen
länsireunaan ja pohjoisreuna sen eteläreunaan, datan on oltava jatkuva
näiden reunojen yli11. Käytännössä tämä ei pidä paikkaansa. On kyse 11

10Koska yhteys massapisteiden ja Maan pinnalla mitattujen painovoima-anomalioiden
välillä voidaan kuvata eksaktisti geodeettisissa koordinaateissa, voidaan menetel-
mässä korvata geosentrinen leveysaste ϕ geodeettisella leveysasteella φ. Tällä tavalla
vältetään virheet, jotka aiheutuvat Maan litistyneisyyden sivuuttamisesta.
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kahdesta eri vaatimuksesta:

◦ Reunan toisella puolella olevan datan on oltava niin kaukana, että
se ei vaikuta reunan yli merkittävästi laskennan tulokseen.

◦ Datan on oltava jatkuva reunojen yli.

Siksi aina kun käytetään FFT-menetelmää konvoluutiolauseen kanssa,
tarvitaan kaksi toimenpidettä.

1) Dataa jatketaan lisäämällä reunus data-alueelle, niin sanottu reu-
nustaminen (engl. bordering). Usein reunuksen leveys on 25% data-
alueen koosta, jolloin laskenta-alueen pinta-ala on neljä kertaa
data-alueen pinta-ala. Reunus täytetään mitatuilla arvoilla siinä,
missä niitä on, muuten predikoiduilla (inter- tai ekstrapoloiduilla)
arvoilla.
Myös ydinfunktion laskenta-alue tehdään vastaavasti neljä kertaa
suuremmaksi. Tässä tapauksessa koko hila, reunus mukaan lukien,
täytetään oikeilla (lasketuilla) arvoilla.
Ydinfunktion hila on täytettävä siten, että indeksiarvot i, j ⩾ N

/︁
2

tulkitaan negatiivisiksi arvoiksi i−N ja j−N, jotka edustavat myös
negatiivisia ∆xi ja ∆yj. Silloin funktion huippu on hilan keskellä.
Jos funktio on symmetrinen, hilan neljä kvadranttia näyttävät
toistensa peilikuvilta. Silloin hila on automaattisesti jaksollisesti
jatkuva.

2) Koska diskreetti Fourier’n muunnos olettaa jaksollisuutta, on huo-
lehdittava siitä, että data on jatkuva reunojen yli. Jos reunojen
arvot eivät ole nolla, voidaan pakottaa ne nollaan kertomalla koko
laskenta-alue niin sanotulla ikkunointifunktiolla (engl. tapering func-
tion), joka menee sileästi nollaan reunoihin mennessä. Sellaisen
funktion voi rakentaa helposti: esimerkit ovat kolmannen asteen
splinipolynomi tai Tukey’n eli kosini-ikkuna. Katso kuva 9.3, jossa

11Topologisesti yhteen kytketty data-alue on sama kuin torus eli donitsi, ja data
oletetaan jatkuvaksi toruksen pinnalla.

í � Õ! ¤.�û



Geoidimallin laskenta FFT:llä 9.5 243
Data-alue

0

1

50%25% 25%

Kuva 9.3. ”Ikkunointi” 25%.^

on 25%:n ikkunointifunktio, sekä esimerkkikuvat 9.4, josta näkyy,
miten ei-jatkuvuus — jyrkät erot vasemman ja oikean reunan sekä
ala- ja yläreunan välillä — aiheuttavat vaaka- ja pystysuuntai-
set artefaktit Fourier’n muunnoksessa. Nämä artefaktit liittyvät
Gibbsin ilmiöön, joka on mainittu osiossa 8.9: terävä leikkaus eli
reuna avaruusdomeenissa tuottaa signaalia kaikilla taajuuksilla
aina korkeimpiin saakka.

Ammattikirjallisuudessa on julkaistu paljon aiheen teknisistä puolista.
Monet tutkimusryhmät ovat osallistuneet FFT-geoidimääritystekniikan
kehittämiseen jo 1980-luvulla: Forsbergin ryhmä Kööpenhaminassa,
Klaus-Peter Schwarzin ja Michael Sideriksen ryhmä Calgaryssa Ka-
nadassa, Delftin ryhmä (Strang van Hees, Haagmans, De Min, Van
Gelderen), Milanon ryhmä (Sansò, Barzaghi, Brovelli), Heiner Denker
Hannoverin Leibniz-yliopiston laitoksessa ”Institut für Erdmessung” ja
monet muut.

^ 9.5 Geoidimallin laskenta FFT:llä

Nykyisin geoidi- tai kvasigeoidimallin laskeminen on lisääntyneen tie-
tokonetehon ansiosta helppoa, erityisesti FFT:n avulla. Toisaalta tarkan
geodeettisen satelliittipaikannuksen käytön leviäminen on tehnyt tar-
koista geoidimalleista haluttua tavaraa, jotta GNSS-teknologiaa voitaisiin
käyttää korkeuksien nopeaan ja kustannustehokkaaseen määritykseen.
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Kuva 9.4. FFT-muunnoksen esimerkkikuvia ilman ikkunointia (ylhäällä) ja
ikkunoinnin kanssa (alhaalla). Käytetty on FFT-online-palvelua Watts
(2004). Kuvat ovat harmaasävyn amplitudispektrejä |Fuv|, piirretty
niin, että origo u = v = 0 on keskellä, katso liite C.^

^ 9.5.1 GRAVSOFT-ohjelmisto
GRAVSOFT-geoidilaskentaohjelmisto on tehty pääosin Tanskassa. Teki-
jöinä ovat toimineet muun muassa Carl Christian Tscherning12, René12

12Carl Christian Tscherning (1942–2014) oli tunnettu tanskalainen fysikaalinen geo-
deetti ja Maan painovoimakentän tutkĳa. Hän teki uraauurtavaa työtä tilastollisten
laskentamenetelmien parissa Maan painovoimakentän mallintamiseksi erityyppisistä
mittauksista.
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Forsberg, Per Knudsen, norjalainen Dag Solheim ja kreikkalainen Di-
mitris Arabelos. Ohjelmiston käsikirja on Forsberg ja Tscherning (2008).

Tämä paketti on laajassa käytössä ja tarjoaa FFT-geoidimäärityksen
varianttien lisäksi esimerkiksi pienimmän neliösumman kollokaatio-
menetelmän sekä eri maastoefektien laskentaan soveltuvia rutiineja.
Sen levinneisyyttä selittää osittain, että se on tieteelliseen käyttöön
ilmainen ja toimitetaan lähdekoodin muodossa. Se on myös hyvin do-
kumentoitu. Sille on löytynyt myös kaupallisia käyttäjiä, esimerkiksi
öljyteollisuudessa.

GRAVSOFTia on käytetty paljon myös opetuksessa, esimerkiksi mo-
nessa IAG:n (Kansainvälisen geodeettisen assosiaation) järjestämässä
tutkĳakoulussa eri maissa. ISG, Geoid Schools.

^ 9.5.2 Suomen FIN2000-geoidi
Tällä hetkellä Suomessa on käytössä kaksi geoidimallia: FIN2000 (ku-
va 9.5) ja FIN2005N00 (Bilker-Koivula ja Ollikainen, 2009). Ensim-
mäinen malli on vertauspinta N60-korkeusjärjestelmälle: sen käyttö
GNSS-paikannuksen kanssa mahdollistaa pisteiden N60-korkeuden
määrityksen. Malli antaa geoidin korkeuksia GRS80-vertausellipsoidin
yläpuolella. Toinen malli on vastaavasti vertauspinta uudelle N2000-
korkeusjärjestelmälle. Sekin antaa korkeuksia GRS80-ellipsoidista.

Mallien FIN2000 ja FIN2005N00 tarkkuudet (keskivirheet) ovat tasolla
± 2–3 cm.

^ 9.6 FFT-laskennan käyttö muissa yhteyksissä

^ 9.6.1 Satelliittialtimetria
Tanskalaistutkĳat Per Knudsen ja Ole Balthasar Andersen ovat las-
keneet maailman valtameren altimetrisen painovoimakartan invertoi-
malla satelliittialtimetriasta saatuja ”geoidikorkeuksia” painovoima-
anomalioiksi (Andersen ym., 2010). Tämän menetelmän käytön edelläkä-
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vĳä on ollut Kaliforniassa sĳaitsevan Scrippsin merentutkimuslaitoksen
David Sandwell, esimerkiksi Garcia ym. (2014). Kartan lyhytaaltoiset
piirteet kertovat merenpohjan muodoista.

^ 9.6.2 Satelliittipainovoimamissiot ja ilmagravimetria
Myös painovoimasatelliittien, kuten CHAMP, GRACE ja GOCE, antamia ai-
neistoja voidaan käsitellä FFT-menetelmällä alueellisesti: GOCE:n tapauk-
sessa gradiometristen mittausten inversiolasku tuottaa satelliittitason
mittauksista geoidin korkeuksia Maan pinnalla. Myös ilmagravimetria-
mittaukset käsitellään tällä tavoin käyttäen FFT:tä. Tätä tehtävää kutsu-
taan nimellä ”harmonisesti alaspäin jatkaminen” (”harmonic downwards
continuation”), ja se on periaatteessa epästabiili.

Ilmagravimetria on käypä laajojen alueiden gravimetrisen kartoituk-
sen menetelmä. Pioneeriaikana kartoitettiin Grönlannin painovoima-
kenttä ja monta aluetta Arktiksen ja Etelämantereen ympärillä. Myö-
hemmin mitattiin Brasilian Amazonaksen, Mongolian ja Etiopian (Be-
dada, 2010) kaltaisia alueita, joista ei ollut olemassa kattavaa terrestristä
painovoima-aineistoa. Ilmagravimetrian vahvuutena on, että laajoja
alueita saadaan mitattua nopeasti ja homogeenisesti.

^ 9.7 Maastokorjausten laskenta FFT:llä

Maastokorjaus on hyvin paikallinen ilmiö, jonka laskentaan tarvitaan
korkean erotuskyvyn maastotietoa suhteellisen pieneltä alueelta lasken-
tapisteen ympäri. Näin ollen maastokorjauksen laskeminen on kuin
luotu FFT-menetelmää varten.

Näytetään, miten maastokorjaus voidaan laskea FFT:n avulla yksin-
kertaisella ja tehokkaalla tavalla. Tehdään seuraavat yksinkertaistavat
oletukset:

◦ Maaston kaltevuudet ovat suhteellisen loivia.

◦ Maankuoren tiheys ρ on vakio.
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◦ Maa on litteä — ”kenkälaatikkomaailma”.

Nämä oletukset eivät ole välttämättömiä. Yleinen tapaus johtaa kuiten-
kin yhtälöiden viidakkoon eikä auta käsitteellistä ymmärrystä.

Maastokorjaus, laskentapisteen korkeustason H ylä- ja alapuolella
olevien tai puuttuvien topografisten massojen yhteisvaikutuksen poisto,
lasketaan näillä oletuksilla seuraavalla suorakulmaisella yhtälöllä, joka
antaa kalliopatsaiden vetovoiman pystysuuntaisen komponentin (kuva
6.5):

TC(x, y) =
x +∞

−∞
Gρ
(︁
H ′(x ′, y ′) −H(x, y)

)︁
ℓ2

cos θdx ′ dy ′ =

=
x +∞

−∞
Gρ (H ′ −H)

ℓ2
· 1
2

H ′ −H
ℓ

dx ′ dy ′ =

= 1

2
Gρ

x +∞
−∞

(H ′ −H)
2

ℓ3
dx ′ dy ′. (9.8)

Tässä Gρ (H ′ −H)
/︂
ℓ2 on patsaan vetovoima ja 1

2
(H ′ −H)

/︂
ℓ on voima-

vektorin — jonka oletetaan tulevan kalliopatsaan keskipisteeltä — ja
pystysuunnan välisen kulman θ kosini. Tämä on niin sanottu prismame-
netelmä.

Tehdään lineaarinen approksimaatio, jossa ℓ, vinoetäisyys laskenta-
pisteen (x, y) ja liikkuvan datapisteen (x ′, y ′) välillä, on samalla vaaka-
etäisyys:

ℓ2 ≈ (x− x ′)
2
+ (y− y ′)

2
.

Yhtälö 9.8 seuraa suoraan Newtonin gravitaatiolaista. Kun on oletettu,
että maasto on suhteellisen loivaa, ℓ on suuri korkeuseron H ′ − H

verrattuna.
Yhtälöstä 9.8 saadaan kehittämällä termeihin:

TC(x, y) = 1

2
GρH2

x +∞
−∞ 1

ℓ3
dx ′ dy ′ −GρH

x +∞
−∞ H ′

ℓ3
dx ′ dy ′ +

+ 1

2
Gρ

x +∞
−∞

(H ′)2

ℓ3
dx ′ dy ′, (9.9)
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jossa jokainen integraali on konvoluutio ytimenä ℓ−3 ja integroitavina
funktioina 1, H ′ ja (H ′)2.

Valitettavasti yllä implisiittisesti määritellyllä funktiolla ℓ−3 ei ole
olemassa Fourier’n muunnosta. Siksi muutetaan yllä olevaa määritelmää
hieman lisäämällä pieni termi:

ℓ2 = (x− x ′) 2 + (y− y ′) 2 + δ2. (9.10)

Yllä olevassa yhtälössä 9.9 termit ovat suuria lukuja, jotka melkein
kumoutuvat, antaen lähes oikean tuloksen. Numeerisesti tämä ei ole
miellyttävää. Tähän löytyy seuraavaksi esitetty ratkaisu.

Jos ℓ määritellään yhtälön 9.10 mukaisesti, ytimen ℓ−3 Fourier’n
muunnos on (Harrison ja Dickinson, 1989; Forsberg, 1984):

F
{︁
ℓ−3

}︁
=
2π
δ

exp(−2πδq) = 2π
δ

(︃
1− 2πδq+

4π2δ2q2

1 · 2 − · · ·
)︃
,

jossa q def
=
√︂˜︁ν2x + ˜︁ν2y =

√
u2 + v2

/︂
L , u ja v ovat aaltoindeksejä ja˜︁νx = u

/︁
L ja ˜︁νy = v

/︁
L ovat (lineaarisia) ”spatiaalitaajuuksia” eli aal-

tolukuja x- ja y-suunnissa (x, y)-tasossa. Jos tämä sĳoitetaan yhtälöön
9.9, huomataan, että termit, joissa on 1

/︁
δ summautuvat nollaksi, ja

tietenkin myös termit, joissa on suureen δ positiiviset potenssit häviävät,
kun δ→ 0. Saadaan (Harrison ja Dickinson, 1989):

F
{︁
TC

}︁
≈ 1

2
GρH2 F

{︁
1
}︁
·
(︂
2π
δ

(1− 2πδq)
)︂
−

−GρHF
{︁
H ′}︁ · (︂2π

δ
(1− 2πδq)

)︂
+

+ 1

2
GρF

{︁
(H ′)

2}︁ · (︂2π
δ

(1− 2πδq)
)︂
,

jättämällä kaikki δ:n korkeampien potenssien termit pois.
Laita termit toiseen järjestykseen:

F
{︁
TC

}︁
=
2π
δ
Gρ
(︂
1

2
H2 F

{︁
1
}︁
−HF

{︁
H ′}︁+ 1

2
F
{︁
(H ′)

2}︁)︂
−

− 2πGρ · 2πq ·
(︂
1

2
H2 F

{︁
1
}︁
−HF

{︁
H ′}︁+ 1

2
F
{︁
(H ′)

2}︁)︂
.
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9250 Spektraalimenetelmät, FFT

Koska F
{︁
1
}︁
= 0 jos q ̸= 0, toisen termin sisäinen ensimmäinen termi

häviää aina. Kun muistetaan, että laskentapisteen korkeus H on vakio,
saadaan

F
{︁
TC

}︁
=
2π
δ
Gρ
(︂
1

2
F
{︁
H2 −HH ′ + 1

2
(H ′)

2}︁)︂
+

+ 2πGρ · 2πq ·
(︂
HF

{︁
H ′}︁− 1

2
F
{︁
(H ′)

2}︁)︂
ja käänteinen Fourier’n muunnos antaa

TC =
π
δ
Gρ
(︂
H2 − 2H ′H+ (H ′)

2
)︂
+

+ 2πGρ F−1

{︃
2πq ·

(︂
HF

{︁
H ′}︁− 1

2
F
{︁
(H ′)

2}︁)︂}︃
.

Ensimmäisessä termissä

H2 − 2H ′H+ (H ′)
2
= (H−H ′)

2
= 0

pisteessä (x, y), jossa H ′ = H, ja saadaan

TC = 4π2Gρ F−1

{︃
q ·
(︂
HF

{︁
H ′}︁− 1

2
F
{︁
(H ′)

2}︁)︂}︃
,

josta nyt murheenkryyni 1
/︁
δ on hävinnyt.

Tämän ”regularisoinnin” tai ”renormalisoinnin” edellytyksenä on, että
pisteen (x, y) kohdalla H ′ = H, eli evaluointi tapahtuu Maan pinnalla.
Yllä olevat Fourier’n muunnokset evaluoidaan FFT-menetelmällä.

Maastokorjauksen TC laskemiseksi maaston ulkoisessa tilassa — esi-
merkit ovat ilmagravimetria, merenpohjan vaikutus merenpinnalla ja
Mohorovičićin rajapinnan vaikutus Maan pinnalla — löytyvät tekniikat,
jotka ilmaisevat TC konvoluutioiden summaksi, Taylorin sarjakehitel-
mäksi. Varhainen artikkeli tästä aiheesta on Parker (1972).

^ Olenko ymmärtänyt tämän?

1) Mikä on konvoluution määritelmä?
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2) Selosta konvoluutiolause.

3) Varmista, että yhtälön 9.2 molempien puolien dimensiot täsmää-
vät.

4) Mikä on spatiaalitaajuus? Mikä on lineaarisen ja pyöreän spatiaa-
litaajuuden välinen ero?

5) Selosta Strang van Heesin menetelmän perusajatus.

6) Mitkä muut lähestymistavat ovat olemassa FFT-menetelmän sovel-
tamiseksi kaarevalla pallo- tai ellipsoidisella pinnalla?

7) Miksi data-alueen reunustamista ja laskenta-alueen ikkunointia
tarvitaan?

8) Geoidimäärityksen lisäksi, missä fysikaalisessa geodesiassa käy-
tetään FFT-menetelmää?

9) Kun lasketaan maastokorjaus Maan pinnalla, selitä derivoinnissa
käytetty ”δ-temppu”. Miksi se on tarpeen ja miten δ saadaan
häviämään?
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^ Tilastolliset menetelmät1010
^ 10.1 Epävarmuuden rooli geofysiikassa

Geofysiikassa tuloksia saadaan usein epävarman, epätäydellisen tai
muuten puutteellisen havaintoaineiston perusteella. Sama pitää paik-
kansa Maan painovoimakentän tutkimuksessa: esimerkiksi painovoi-
mahavaintojen tiheys Maan pinnalla vaihtelee suuresti, ja laajat alueet
valtamerillä ja napa-alueilla ovat vain hyvin harvan mittausverkon
peittämiä. Puhutaan vajavaisesta spatiaalisesta otannasta (”spatial under-
sampling”).

Toisaalta avaruudesta käsin toimivat mittausteknologiat kattavat
tavallisesti koko maapallon valtamerineen kaikkineen. Ne eivät kuiten-
kaan aina mittaa kovin suurella erotuskyvyllä. Menetelmän erotuskyky
voi olla rajallinen, mikä pätee esimerkiksi satelliittiratojen häiriöistä las-
ketuille painovoimakentän parametreille, tai havaintolaitteet mittaavat
vain suoraan satelliittiradan alla, kuten satelliittialtimetria.

Toinen usein relevantti epävarmuustekĳä on, että Maan pinnalla
voidaan tehdä tarkkoja havaintoja mutta Maan sisällä epävarmuus on
paljon suurempi ja tiedot saadaan paljon epäsuoremmalla tavalla.

Edellisissä luvuissa kuvailtiin tekniikoita, joiden avulla voitaisiin
laskea Maan painovoimakentän haluttuja arvoja tai parametreja olettaen,
että esimerkiksi painovoima-anomaliat olisivat saatavissa kaikkialta
Maan pinnalta mielivaltaisen korkealla erotuskyvyllä. Tässä luvussa
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10254 Tilastolliset menetelmät

katsotaan, minkälaisia matemaattisia apuvälineitä voidaan käyttää
reaalimaailman tilanteissa, joissa näin ei ole.

^ 10.2 Lineaariset funktionaalit

Kuvausta, joka liittää jokaiseen funktioavaruuteen kuuluvaan funktioon
tietyn numeerisen arvon, kutsutaan matematiikassa funktionaaliksi. Sel-
lainen on esimerkiksi osittaisderivaatta tietyssä pisteessä x0:

f ↦→ d
dx
f(x)

⃓⃓⃓
x=x0

.

Triviaali funktionaali on myös evaluointifunktionaali, funktioarvo itse
(siis ”nollas derivaatta”), tietylle argumenttiarvolle,

f ↦→ f(x0).

Toiset funktionaalit ovat esimerkiksi integraali tietyn alueen σ yli:

f ↦→
w

σ
f(x)dx,

ja niin edelleen.
Voimme kirjoittaa symbolisesti

L =
d
dx

⃓⃓⃓
x=x0

, merkityksellä L
{︁
f
}︁
=
d
dx
f(x)

⃓⃓⃓
x=x0

.

Funktionaali tai operaattori on lineaarinen, jos

L
{︁
αf+ βg

}︁
= αL

{︁
f
}︁
+ βL

{︁
g
}︁
, α, β ∈ R.

Muista, että kaikki osittaisderivaatat, kuten myös Laplacen operaattori ∆,
ovat lineaarisia.

Fysikaalisessa geodesiassa mielenkiintoiset funktionaalit ovat kaik-
ki funktion T(ϕ, λ, R) = T(ϕ, λ, r)|r=R, siis pallon muotoisen Maan
pinnan häiriöpotentiaalin, funktionaaleja. Teoriassa käytetään siis pal-
loapproksimaatiota1, ja pallon pinta, säde R, vastaa keskimerenpintaa.1
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Esimerkiksi pisteen P häiriöpotentiaali TP

def
= T(ϕ, λ, R) merenpinnan

tasolla paikalla (ϕ, λ) on sellainen funktionaali:

T(·, ·, R) ↦→ T(ϕ, λ, R).

Sopiva funktionaali löytyy myös, jos piste P ei ole merenpinnan tasolla:

T(·, ·, R) ↦→ T(ϕ, λ, r).

Jos suure ei ole häiriöpotentiaali, vaan vaikkapa painovoima-anomalia
tai luotiviivan poikkeama:

T(·, ·, R) ↦→ ∆g(ϕ, λ, r),
T(·, ·, R) ↦→ ξ(ϕ, λ, r),

T(·, ·, R) ↦→ η(ϕ, λ, r).

Kaikki nämä ovat myös lineaarisia funktionaaleja. Itse asiassa jos kirjoi-
tetaan

T(ϕ, λ, r) =

∞∑︂
n=2

1
rn+1

n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) ,

jopa pallofunktiokehitelmän kertoimet anm, bnm ovat kaikki häiriöpo-
tentiaalin T lineaarisia funktionaaleja:

T(·, ·, R) ↦→ anm, T(·, ·, R) ↦→ bnm.

Tässä T(·, ·, R) on lyhenne koko funktiolle

T(ϕ, λ, R), ϕ ∈
[︁
− π

/︁
2 ,+ π

/︁
2
]︁
, λ ∈

[︁
0, 2π

)︁
.

^ 10.3 Tilastotiede Maan pinnalla

Tilastotieteessä määritellään stokastinen prosessi stokastiseksi suureeksi
eli satunnaissuureeksi, jonka arvojoukko eli kodomeeni on funktioava-
ruus. Toisin sanoen se on satunnaissuure, jonka realisaatioarvot ovat

1Tämä ei ole välttämätöntä, mutta approksimaation aiheuttama virhe on tavallisesti
pieni.
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10256 Tilastolliset menetelmät

funktioita. Stokastinen prosessi voi olla ajassa kehittyvä suure, jonka
tarkka käyttäytyminen on epävarmaa. Hyvä esimerkki tästä on satellii-
tin rata. Samalla tavalla kuin reaaliarvoiselle stokastiselle suureelle x
voidaan määritellä odotusarvo E

{︁
x
}︁

ja varianssi

Σxx
def
= Var

{︁
x
}︁
= E

{︃(︂
x− E

{︁
x
}︁)︂2}︃

,

voidaan näin tehdä myös stokastiselle prosessille. Ainoa ero on, että
näin saadaan funktioita.

Olkoon esimerkiksi stokastinen prosessi x(t) ajan funktio. Silloin
voidaan määritellä sen varianssifunktio seuraavasti:

Cxx(t)
def
= Var

{︁
x(t)

}︁
.

Stokastiselle prosessille voidaan kuitenkin määritellä paljon enemmän,
esimerkiksi saman prosessin arvojen kovarianssi eri ajanhetkien välillä
eli autokovarianssi:

Ax
(︁
t1, t2

)︁
= Cxx

(︁
t1, t2

)︁ def
= Cov

{︁
x(t1), x(t2)

}︁
=

= E

{︃(︂
x(t1) − E

{︁
x(t1)

}︁)︂(︂
x(t2) − E

{︁
x(t2)

}︁)︂}︃
.

Samalla tavalla, jos on käytettävissä kaksi eri prosessia, voidaan niiden
välille määritellä ristikovarianssi:

Cxy
(︁
t1, t2

)︁ def
= Cov

{︁
x(t1), y(t2)

}︁
=

= E

{︃(︂
x(t1) − E

{︁
x(t1)

}︁)︂(︂
y(t2) − E

{︁
y(t2)

}︁)︂}︃
.

Stokastisen prosessin argumentti on tavallisesti aika t. Geofysiikassa
tutkitaan kuitenkin stokastisia prosesseja, joiden argumentit ovat paik-
koja Maan pinnalla: puhutaan prosesseista, jotka ovat muotoa x(ϕ, λ).
Auto- ja ristikovarianssien määrittäminen tapahtuu muuten samalla
tavalla, mutta maapallon tapauksessa on olemassa erikoinen ongel-
ma. Stokastinen suure määritellään yleisesti suureena x, josta saadaan
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realisaatioita x1, x2, x3, . . . , joilla yhdessä on tiettyjä tilastollisia ominai-
suuksia.

Klassinen esimerkki on nopan heitto. Nopan voi heittää yhä uudelleen
ja uudelleen, ja heittojen tuloksilla voi harrastaa tilastotiedettä. Toinen
klassinen esimerkki on mittaus. Saman suureen mittaus voidaan toistaa,
ja toistetaankin, tarkkuuden parantamiseksi.

Maapallon pinnalla määritellyn stokastisen prosessin osalta tilanne
on toinen.

Meillä on vain yksi maapallo.

Tästä syystä tilastotiedettä pitää harrastaa hieman eri tavalla.
Kun annettuna on stokastinen prosessi — vaikkapa joku geofysi-

kaalinen suure — Maan pinnalla, x(ϕ, λ), määritellään tilastollisen
odotusarvon E

{︁
·
}︁

vastineeksi maantieteellinen keskiarvo

M
{︁
x
}︁ def
=

1
4π

x

σ
x(ϕ, λ)dσ =

1
4π

w 2π
0

w +π/2

−π/2
x(ϕ, λ) cosϕdϕdλ.

(10.1)
Tässä x(ϕ, λ) on prosessin x yksi ja ainoa realisaatio, joka on olemassa
tällä maapallolla.

Ilmeisesti määritelmä on järkevä vain siinä tapauksessa, että pro-
sessin x(ϕ, λ) tilastollinen käyttäytyminen on samanlainen kaikkialla
Maan pinnalla, sĳainnista (ϕ, λ) riippumatta. Tätä kutsutaan homo-
geenisuusolettamukseksi. Se on itse asiassa olettamus, että maapallon
pallosymmetria ulottuu kentän x tilastolliseen käyttäytymiseen.

Samalla tavalla kuin tilastollinen varianssi määriteltiin odotusarvon
perusteella, voimme määritellä maantieteellisen varianssin:

Cxx(ϕ, λ) = Var
{︁
x(ϕ, λ)

}︁ def
= M

{︃(︂
x−M

{︁
x
}︁)︂2}︃

. (10.2)

Painovoima-anomalioiden ∆g(ϕ, λ) globaali keskiarvo häviää2 niiden 2
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määritelmän perusteella:

M
{︁
∆g

}︁
= 0.

Silloin yhtälö 10.2 yksinkertaistuu seuraavaksi:

C∆g∆g(ϕ, λ) = Var
{︁
∆g(ϕ, λ)

}︁
=M

{︁
∆g2

}︁
=
1
4π

x

σ

(︁
∆g(ϕ, λ)

)︁2
dσ.

Tässä annettu maantieteellisen keskiarvonM
{︁
·
}︁

määritelmä perustuu
yhden ja ainoan realisaation integrointiin koko maapallon pinnan yli.
Kuten nähtiin, tilastotieteessä keskiarvo määritellään hieman eri tavalla,
stokastisen prosessin odotusarvona. Painovoima-anomalioiden tapauk-
sessa se on E

{︁
∆g

}︁
, jossa ∆g on anomalia stokastisena prosessina. Toisin

sanoen se ∆g:n arvojen sarja, joka syntyy, jos tarkastellaan loputonta
satunnaisesti syntyneiden maapallojen sarjaa. Ei kovin käytännöllistä!

Siinä tapauksessa, että stokastisen prosessin odotusarvo on sama
kuin integrointimenetelmällä laskettu yhden realisaation keskiarvo —
ja muutkin tilastolliset ominaisuudet ovat vastaavasti samoja — puhu-
taan ergodisesta prosessista. Ergodisuuden todistaminen empiirisesti on
geofysiikassa tavallisesti hankalaa tai mahdotonta.

^ 10.4 Painovoimakentän kovarianssifunktio

Kovarianssifunktion määrittäminen pisteiden P ja Q välillä on monimut-
kaisempaa. Yhtälöiden 10.1 ja 10.2 tapaista lähestymistapaa ei voida
käyttää suoraan, koska sekä ∆gP että ∆gQ:

∆gP = ∆g
(︁
ϕP, λP

)︁
, ∆gQ = ∆g

(︁
ϕQ, λQ

)︁
,

voivat liikkua toisistaan riippumatta koko Maan pinnan yli.
Seuraavassa oletetaan, että laskettava kovarianssi riippuu vain pistei-

denP jaQ suhteellisesta sĳainnista. Homogeenisessa painovoimakentässä

2Tämä ei pidä tarkasti ottaen paikkaansa, jos esimerkiksi anomalioiden laskennassa
käytetty normaalipainovoimakenttä sisältää ilmakehän massan, mutta merenpinnan
lähellä mitatut painovoima-arvot eivät sisällä ilmakehän vetovoimaa.
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α

ψψ

Maan massakeskipiste

Q
P

Kuva 10.1. Geosentrisen kulmaetäisyyden ja atsimuuttikulman määritelmä.^

kovarianssifunktio ei riipu pisteiden absoluuttisesta sĳainnista, vaan
ainoastaan pisteiden P ja Q välisestä sĳaintierosta.

Kirjoitetaan

ϕQ = ϕQ
(︁
ϕP, λP, ψPQ, αPQ

)︁
, λQ = λQ

(︁
ϕP, λP, ψPQ, αPQ

)︁
.

ϕQ ja λQ ovat laskettavissa3, jos tunnetaan ϕP ja λP sekä geosentrinen 3

kulmaetäisyys ψPQ ja atsimuuttikulma αPQ. Katso kuva 10.1.
Nyt voi kirjoittaa

∆gQ = ∆gQ

(︂
ϕQ
(︁
ϕP, λP, ψPQ, αPQ

)︁
, λQ

(︁
ϕP, λP, ψPQ, αPQ

)︁)︂
=

= ∆gQ
(︁
ϕP, λP, ψPQ, αPQ

)︁
,

ja voi määritellä kovarianssifunktioksi

C∆g∆g
(︁
ψPQ, αPQ

)︁ def
= M

{︂
∆gP

(︁
ϕP, λP

)︁
∆gQ

(︁
ϕP, λP, ψPQ, αPQ

)︁}︂
=

=
1
4π

x

σ
∆gP

(︁
ϕP, λP

)︁
∆gQ

(︁
ϕP, λP, ψPQ, αPQ

)︁
dσP. (10.3)

Myös tässäM on maantieteellinen keskiarvo-operaattori. Ensin kiinni-
tetään pisteQ suhteessa pisteeseen P: sekä atsimuutti αPQ että etäisyys
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ψPQ pidetään vakioina4. Piste P, ja pisteQ sen mukana, liikutetaan koko4

Maan pinnan yli. Lasketaan vastaava integraali koko yksikköpallon σP
yli ja jaetaan arvolla 4π:

C∆g∆g
(︁
ψPQ, αPQ

)︁
=M

{︁
∆gP ∆gQ(P)

}︁
=
1
4π

x

σ
∆gP ∆gQ(P) dσ =

=
1
4π

w 2π
0

w +π/2

−π/2
∆gP ∆gQ(P) cosϕdϕdλ,

jossa käytetään dσ = cosϕdϕdλ, ja cosϕ on yksikköpallon koordinaat-
tien (ϕ, λ) = (ϕP, λP) Jacobin determinantti.

Homogeenisuusolettamuksen lisäksi teemme vielä isotropiaolettamuk-
sen: kovarianssifunktio — yleisemmin painovoimakentän tilastollinen
käyttäytyminen — ei riipu pisteparin (P,Q) välisestä suunnasta eli at-
simuutista αPQ, vaan ainoastaan niiden välisestä kulmaetäisyydestä
ψPQ. Tämäkin on homogeenisuuden lailla maapallon pallosymmetrian
eräs ilmenemismuoto. Tässä tapauksessa voimme laskea maantieteel-
lisen keskiarvon hieman eri tavalla, keskiarvostamalla myös kaikkien
atsimuuttikulmien αPQ ∈

[︁
0, 2π

)︁
yli:

C∆g∆g
(︁
ψPQ

)︁ def
= M ′{︁∆gP ∆gQ(P)

}︁
=

=
1
2π

w 2π
0
M

{︁
∆gP ∆gQ(P)

}︁
dαPQ =

=
1
8π2

w 2π
0

w 2π
0

w +π/2

−π/2
∆gP ∆gQ(P) cosϕdϕdλdαPQ. (10.4)

3Puhutaan geodeettisesta päätehtävästä pallolla.
4Kriittinen lukĳa voi huomauttaa, että vaikka kulmaetäisyys ψAB on olemassa riippu-
matta maantieteellisten koordinaattien määritelmästä, näin ei ole atsimuuttikulman
αAB tapauksessa: se riippuu meridiaanin paikallisesta suunnasta. Jos yhtälössä 10.3
kulma αAB on tavallinen geodeettinen atsimuutti, se ottaa huomioon vain tietyn
mahdollisen atsimuuttiriippuvuuden kuvion. Tästä syntyy ajatus yleistyksestä atsi-
muuttikulmiin, jotka ovat määriteltyjä suhteessa Maan pinnan yleisiin kaarevalinjaisiin
koordinaatteihin.
Myös isotropia tulisi silloin ymmärtää atsimuuttiriippuvuuden puuttumisena ei vain
maantieteellisissä koordinaateissa vaan kaikissa mahdollisissa kaarevalinjaisissa
koordinaateissa.
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Huomautus Maan todellinen painovoimakenttä ei ole kovin homo-

geeninen eikä kovin isotrooppinenkaan, mutta siitä huolimatta
molempia hypoteeseja käytetään laajasti.

^ 10.5 Pienimmän neliösumman kollokaatio

^ 10.5.1 Stokastiset prosessit yhdessä ulottuvuudessa
Kollokaatio on tilastollinen estimointitekniikka, jota käytetään stokastisen
prosessin arvojen estimoimiseksi ja estimaattien epävarmuuden, kuten
keskivirheiden, laskemiseksi.

Olkoon s(t) stokastinen prosessi ja C(ti, tj) sen autokovarianssifunk-
tio. Olkoon lisäksi prosessi stationaarinen, toisin sanoen mille tahansa
kahdelle aikahetkelle ti, tj pätee C(ti, tj) = C(tj − ti) = C(∆t). Argu-
mentti t on yleensä aika, mutta se voi olla mikä tahansa parametri,
esimerkiksi kuljettu matka.

Tästä prosessista on tehty havaintoja ajan hetkillä t1, t2, . . . , tN, kun
prosessin vastaavat arvot näillä hetkillä ovat s(t1), s(t2), . . . , s(tN).
Oletetaan aluksi, että nämä arvot ovat virheettömiä havaintoarvoja. Silloin
havainnot ovat prosessin s funktioarvot, stokastiset suureet, joiden
varianssi-kovarianssimatriisi voidaan kirjoittaa seuraavasti:

Var
{︁
si
}︁
=

⎡⎢⎢⎢⎢⎣
C
(︁
t1, t1

)︁
C
(︁
t1, t2

)︁
· · · C

(︁
t1, tN

)︁
C
(︁
t2, t1

)︁
C
(︁
t2, t2

)︁
· · · C

(︁
t2, tN

)︁
... ... . . . ...

C
(︁
tN, t1

)︁
C
(︁
tN, t2

)︁
· · · C

(︁
tN, tN

)︁

⎤⎥⎥⎥⎥⎦ .
Tätä autokovarianssimatriisia kutsutaan myös s:n signaalivarianssimat-
riisiksi. Tähän käytetään symbolia Cij, sekä matriisin yhdelle alkiolle
Cij = C(ti, tj) että koko matriisille: Cij =

[︁
C(ti, tj), i, j = 1, . . . ,N

]︁
.

Symboli si taas merkitsee prosessin arvoista
[︁
s(ti), i = 1, . . . ,N

]︁
koos-

tuvaa vektoria — tai yhtä sen alkioista s(ti).
Huomaa, että jos funktio C(t, t ′) tai C(∆t) on tiedossa, koko matriisi
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10262 Tilastolliset menetelmät

ja kaikki sen alkiot voidaan laskea sillä ehdolla, että kaikki argumentti-
arvot eli havaintojen ajanhetket ti ovat myös tiedossa.

Olkoon ongelman asettelu se, että pitää estimoida eli predikoida pro-
sessin s arvo ajan hetkellä T , siis s(T), käyttäen hyväksi yllä kuvattuja
havaintoja s(ti), i = 1, . . . , N.

Samalla tavalla, kun yllä laskettiin s(ti):n ja s(tj):n väliset kovarians-
sit — signaalivarianssimatriisin Cij alkiot — lasketaan myös s(T):n ja
kaikkien s(ti), i = 1, . . . , N väliset kovarianssit. Saadaan

Cov
{︁
s(T), s(ti)

}︁
=
[︂
C
(︁
T, t1

)︁
C
(︁
T, t2

)︁
· · · C

(︁
T, tN

)︁ ]︂
.

Tähän voidaan käyttää merkintää CTj. On oletettu, että on vain yksi
aikahetki T , johon estimointi kohdistuu. Yleistys tilanteeseen, jossa on
useita Tp, p = 1, . . . ,M, on suoraviivainen. Silloin signaalikovarianssi-
matriisista tuleeM×N -kokoinen:

Cov
{︂
s
(︁
Tp
)︁
, s(ti)

}︂
=

⎡⎢⎢⎢⎢⎣
C
(︁
T1, t1

)︁
C
(︁
T1, t2

)︁
· · · C

(︁
T1, tN

)︁
C
(︁
T2, t1

)︁
C
(︁
T2, t2

)︁
· · · C

(︁
T2, tN

)︁
... ... ...

C
(︁
TM, t1

)︁
C
(︁
TM, t2

)︁
· · · C

(︁
TM, tN

)︁

⎤⎥⎥⎥⎥⎦ .
Tähän voidaan käyttää yleisempää merkintää Cpj.

^ 10.5.2 Signaali ja kohina
Prosessia s(t) kutsutaan signaaliksi, joka on fysikaalinen ilmiö, josta
olemme kiinnostuneita. On myös olemassa fysikaalisia ilmiöitä, jotka
ovat muuten samanlaisia, mutta joista me emme ole kiinnostuneita:
päinvastoin haluamme poistaa niiden vaikutuksen. Sellaisia stokastisia
prosesseja kutsutaan kohinaksi.

Kun suoritetaan havainto, jonka tarkoitus on saada arvo suureelle
s(ti), saamme todellisuudessa arvon, joka ei ole absoluuttisen tarkka.
Todellinen havainto on siis

ℓi = s(ti) + ni. (10.5)
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Tässä ni on stokastinen suure: havaintovirhe eli kohina. Olkoon sen
varianssi, tai tarkemmin useiden havaintojen yhteinen kohinavarianssi-
matriisi, Dij. Tämä on samanlainen matriisi kuin yllä Cij: molemmat
ovat symmetrisiä ja positiivisesti definiittejä. Ainoa ero on, että Dij
edustaa kohinaa, ilmiötä, josta emme ole kiinnostuneita. Usein saa olet-
taa, että kahden eri havainnon ℓi ja ℓj virheet ni ja nj eivät korreloidu,
jolloin Dij on lävistäjämatriisi.

^ 10.5.3 Estimaattori ja ennustusvarianssi
Nyt rakennetaan estimaattori

ˆ︁s(︁Tp)︁ def
=

∑︂
i

Λpiℓi,

käytettävissä olevien havaintojen ℓi lineaariyhdistelmänä. Tämän esti-
maattorin elämän tarkoitus on päästä mahdollisimman lähelle s

(︁
Tp
)︁
.

Siis minimoitava suure on erotus

ˆ︁s(︁Tp)︁− s(︁Tp)︁ = Λpiℓi − s(︁Tp)︁ = Λpi (︁s(ti) + ni)︁− s(︁Tp)︁.
Tässä jätettiin kirjoitusmukavuuden vuoksi summausmerkki

∑︁
pois

(Einsteinin summauskonventio): Summaamme aina vierekkäisten, ident-
tisten indeksien, tässä tapauksessa i:n, yli.

Tutkitaan tämän erotuksen varianssi, niin sanottu ennustusvarianssi:

Σpp
def
= Var

{︂ˆ︁s(︁Tp)︁− s(︁Tp)︁}︂.
Käytämme hyväksi varianssien kasautumislakea, yllä annettuja notaatioita
sekä tietoamme, että tuskinpa havaintoprosessin kohinan n ja signaalin
s välillä on olemassa fysikaalista yhteyttä eli korrelaatiota:

Cov
{︂(︁
s(ti) + ni

)︁
,
(︁
s(tj) + nj

)︁}︂
=

= Cov
{︁
s(ti), s(tj)

}︁
+ Cov

{︁
ni, nj

}︁
= Cij +Dij,

ja5 5
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Σpq = Cov
{︃(︂ˆ︁s(︁Tp)︁− s(︁Tp)︁)︂,(︂ˆ︁s(︁Tq)︁− s(︁Tq)︁)︂}︃ =

= ΛpiCov
{︂(︁
s(ti) + ni

)︁
,
(︁
s(tj) + nj

)︁}︂
Λjq + Cov

{︂
s
(︁
Tp
)︁
, s
(︁
Tq
)︁}︂

−

−ΛpiCov
{︂
s(ti), s

(︁
Tq
)︁}︂

− Cov
{︂
s
(︁
Tp
)︁
, s(tj)

}︂
Λjq =

= Λpi (Cij +Dij)Λjq + Cpq −ΛpiCiq − CpjΛjq. (10.6)

Varianssit eli matriisin päälävistäjän alkiot Σpp saadaan nyt asettamalla
q = p.

^ 10.5.4 Optimaalisuuden osoitus
Tässä osoitetaan, että optimaalinen estimaattori on todella se, joka
tuottaa pienimmät mahdolliset varianssit. Valitse

Λpj
def
= Cpi (Cij +Dij)

−1
.

Silloin, yhtälöstä 10.6 ja käyttäen hyväksi matriisien C ja D symmetri-
syyttä, saadaan

Σpp = Cpi (Cij +Dij)
−1
Cjp + Cpp −

− Cpi (Cij +Dij)
−1
Cjp − Cpi (Cij +Dij)

−1
Cjp =

= Cpp − Cpi (Cij +Dij)
−1
Cjp. (10.7)

Tutkitaan seuraavaksi vaihtoehtoinen valinta

Λpj = Cpi (Cij +Dij)
−1

+ δΛpj.

Tässä tapauksessa saadaan sĳoittamalla

Σ ′
pp =

I⏟ ⏞⏞ ⏟
Λpi (Cij +Dij)Λjp + Cpp

II⏟ ⏞⏞ ⏟
−ΛpjCjp

III⏟ ⏞⏞ ⏟
− CpiΛip,

jossa

5Matriisi Ciq on matriisin Cpj, matriisi Λjq matriisin Λpi transpoosi.
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I = Λpi (Cij +Dij)Λjp =

=
(︂
Cpi (Cij +Dij)

−1
+ δΛpj

)︂
(Cij +Dij)

(︂
(Cjk +Djk)

−1
Ckp + δΛkp

)︂
=

=
˂˂˂˂˂˂˂˂˂˂˂˂hhhhhhhhhhhh
Cpi (Cij +Dij)

−1
Cjp

hhhhhhh+ CpiδΛip˂˂˂˂˂˂˂+ δΛpiCip + δΛpi (Cij +Dij) δΛjp ,

II = −ΛpjCjp = −
(︂
Cpi (Cij +Dij)

−1
+ δΛpj

)︂
Cjp =

=
˂˂˂˂˂˂˂˂˂˂˂˂˂hhhhhhhhhhhhh
− Cpi (Cij +Dij)

−1
Cjp˂˂˂˂˂˂˂− δΛpiCip

ja

III = − CpiΛip = − Cpi

(︂
(Cij +Dij)

−1
Cjp + δΛip

)︂
=

= − Cpi (Cij +Dij)
−1
Cjp

hhhhhhh− CpiδΛip ,

lopputuloksena

Σ ′
pp = Cpp

III⏟ ⏞⏞ ⏟
− Cpi (Cij +Dij)

−1
Cjp

I⏟ ⏞⏞ ⏟
+ δΛpi (Cij +Dij) δΛjp.

Tässä viimeinen termi — ainoa ero tulokseen 10.7 verrattuna — on
positiivinen, koska matriisit Cij ja Dij ovat positiivisesti definiittejä:
Σ ′
pp > Σpp, paitsi jos δΛpi = 0. Toisin sanoen yllä annettu ratkaisu

Λpj = Cpi (Cij +Dij)
−1 =⇒ ˆ︁s(︁Tp)︁ = Cpi (Cij +Dij)−1 ℓj

on optimaalinen pienimmän neliösumman — tarkemmin, ennustusva-
rianssin Σpp minimoimisen — merkityksessä.

^ 10.5.5 Painovoima-anomalioiden kovarianssifunktio
Pienimmän neliösumman kollokaatiota käytetään paljon maanpinnan
painovoima-arvojen ja painovoimakentän muiden funktionaaliarvojen
optimaaliseksi estimoimiseksi.
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Jos on kaksi pistettä P jaQ, joiden mitatut painovoima-anomaliat ovat
∆g

P
= ∆g

(︁
ϕP, λP

)︁
ja ∆g

Q
= ∆g

(︁
ϕQ, λQ

)︁
, näiden kahden anomalian

välinen kovarianssin
Cov

{︂
∆g

P
, ∆g

Q

}︂
määrittäminen kiinnostaa. Kuten jo argumentoitiin osiossa 10.4, voim-
me empiirisesti saada sellaisen kovarianssin vain tutkimalla kaikki
pisteparit (P,Q), jotka ovat samassa keskinäisessä asennossa maailman
ympäri, ja ottamalla niiden keskiarvon käyttäen operaattoriaM taiM ′.

Tavallisesti kovarianssin oletetaan riippuvan vain pisteiden P ja Q
välisestä geosentrisestä kulmaetäisyydestä ψ. Silloin puhutaan isotroop-
pisesta prosessista ∆g(ϕ, λ). Kovarianssi on

Cov
{︁
∆gP, ∆gQ

}︁
=M ′{︁∆gP∆gQ(P)

}︁
= C

(︁
ψPQ

)︁
.

Usein käytetty painovoima-anomalioiden kovarianssifunktio on Hirvo-
sen6 kovarianssifunktio:6

C(ψ) =
C0

1+
(︁
ψ
/︁
ψ0
)︁2 , (10.8)

jossa C0 = C(0) ja ψ0 ovat painovoimakentän käyttäytymistä kuvaa-
via parametreja. Suuretta C0 = Var

{︁
∆g(ϕ, λ)

}︁
= M

{︁
∆g2

}︁
kutsutaan

signaalivarianssiksi ja suuretta ψ0 korrelaatiopituudeksi. ψ0 on se etäi-
syys, jolla eri pisteiden painovoima-anomalioiden välillä on vielä 50%
korrelaatiota7.7

Paikallisissa sovelluksissa käytetään kulmaetäisyyden ψ sĳasta line-
aarista etäisyyttä

s = Rψ,

6Reino Antero Hirvonen (1908–1989) oli suomalainen geodeetti ja Maan painovoima-
kentän tutkĳa.
7Korrelaatio on

Corr
{︁
∆g

P
, ∆g

Q

}︁
=

Cov
{︁
∆g

P
, ∆g

Q

}︁√︂
Var

{︁
∆g

P

}︁
Var

{︁
∆g

Q

}︁ =

C0

1+
(︁
ψ
/︁
ψ0
)︁2

√
C0C0

=
1

1+
(︁
ψ
/︁
ψ0
)︁2 ,

joka on 0,5 kun ψ = ψ0.
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Kuva 10.2. Hirvosen kovarianssifunktio kahdessa ulottuvuudessa. Oletettu
on C0 = ψ0 = 1.^

jossa R on maapallon säde. Silloin

C(s) =
C0

1+
(︁
s
/︁
d
)︁2 .

Tämä yhtälö johdettiin Yhdysvaltain Ohion osavaltion painovoima-ai-
neistosta, mutta se pätee laajemminkin. C(0) = C0, signaalivarianssi.
Myös suuretta d = Rψ0 kutsutaan korrelaatiopituudeksi. Se on etäisyys
d, jolla C(d) = 1

2
C0, kuten yhtälöstä näkyy.

Suure C0 vaihtelee huomattavasti alueesta toiseen, sadoista tuhansiin
mGal2, ja on yleensä suurimmillaan vuoristoalueilla. Suure d on yleensä
muutaman kymmenen kilometrin suuruusluokkaa.

Vaihtoehtoiset funktiot, joita käytetään usein paikallisissa sovelluk-
sissa ovat esimerkiksi stationaarisen Gaussin ja Markovin prosessin
kovarianssifunktio sekä sen kvadraattinen variantti:

C(ψ) = C0 exp
(︂
−
ψ
ψ0

)︂
, C(ψ) = C0 exp

(︃
−
(︂
ψ
ψ0

)︂2)︃
.
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Kuva 10.3. Esimerkki pienimmän neliösumman kollokaatiosta. Tässä on an-
nettuna kaksi datapistettä ∆g

1
ja ∆g

2
(tähtiä), ja piirretty pinta

antaa estimoitua arvoa ˆ︂∆gP alueen jokaiselle pisteelle P. Käytetään
siis pienimmän neliösumman kollokaatiota painovoimadatan inter-
ja ekstrapolointiin.^

^ 10.5.6 Pienimmän neliösumman kollokaatio
painovoima-anomalioille

Jos on annettunaNpistettäPi, i = 1, . . . ,N, joissa on mitattu painovoima-
arvot ja laskettu anomaliat ∆g

i
= ∆g

(︁
ϕi, λi

)︁
, voidaan, kuten yllä,

rakentaa signaalivarianssimatriisi

Cij
def
= Var

{︂
∆g

i

}︂
=

=

⎡⎢⎢⎢⎢⎣
C0 C

(︁
ψ12

)︁
· · · C

(︁
ψ1N

)︁
C
(︁
ψ21

)︁
C0 · · · C

(︁
ψ2N

)︁
... ... ...

C
(︁
ψN1

)︁
C
(︁
ψN2

)︁
· · · C0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
C0 C12 · · · C1N
C21 C0 · · · C2N

... ... ...
CN1 CN2 · · · C0

⎤⎥⎥⎥⎥⎦ ,
jossa kaikki alkiot C(ψij) lasketaan yllä annetun kovarianssifunktion
10.8 avulla.
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Jos lasketaan myös painovoimaltaan tuntemattomalle pisteelle P:

Cov
{︂
∆g

P
, ∆g

i

}︂
=
[︂
C
(︁
ψP1

)︁
C
(︁
ψP2

)︁
· · · C

(︁
ψPN

)︁ ]︂ def
= CPi,

saadaan samalla tavalla kuin ennen pienimmän neliösumman kollokaation
ratkaisuksi ˆ︂∆gP = CPi (Cij +Dij)

−1
ℓj ≈ CPiC−1

ij ℓj,

jossa ℓj = ∆g
j
+ nj on pisteissä j = 1, . . . , N suoritetut painovoima-

anomaliahavainnot. Matriisi Dij, joka jätetään huomiotta, kuvailee ha-
vaintojen tekemisen yhteydessä esiintyvää satunnaista havaintovirhettä,
mittausepävarmuutta eli kohinaa ni. Usein Dij on lävistäjämatriisi eli
havainnot ovat tilastollisesti riippumattomia toisistaan eivätkä korreloi
keskenään.

Voimme laskea myös ratkaisun tarkkuusarvion, ennustusvarianssin,
yhtälö 10.11:

ΣPP = C0 − CPi (Cij +Dij)
−1
CjP ≈ C0 − CPiC−1

ij CjP

yhden tuntemattoman pisteen P tapauksessa. Sen neliöjuuri

σ∆gP =
√︁
ΣPP

on estimaattorin ˆ︂∆gP keskivirhe.

^ 10.5.7 Laskuesimerkki
Katso kuva 10.4. Annettuna on kaksi pistettä, joissa painovoima on mitat-
tu ja painovoima-anomaliat laskettu: ∆g

1
= 15mGal, ∆g

2
= 20mGal.

Koordinaatit x- ja y-suunnassa ovat kilometreissä. Oletetaan, että eri
pisteiden painovoima-anomalioiden välillä on voimassa Hirvosen kova-
rianssifunktio,

C(s) =
C0

1+
(︁
s
/︁
d
)︁2 ,

jossa d = 20 km ja C0 = ±1000mGal2. Tämän lisäksi oletetaan, että suo-
ritetut painovoimamittaukset — mukaan lukien painovoimapisteiden
korkeuksien määritys — ovat virheettömiä. Siis Dij = 0, i, j = 1, 2.
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Kuva 10.4. Pienimmän neliösumman kollokaation laskuesimerkki.^

Kysymys Laske pisteen P painovoima-anomalian estimaatti ˆ︂∆gP ja sen
keskivirhe σ∆gP =

√
ΣPP.

Vastaus Lasketaan ensin etäisyydet s ja vastaavat kovarianssit C.

s212 =
(︂
(30− 20)

2
+ (20− 30)

2
)︂

km2 = 200 km2,

C12 = C21 =
1000mGal2
1+ 200

/︁
400

= 666,66 . . . mGal2,

s21P =
(︂
(30− 10)

2
+ (20− 10)

2
)︂

km2 = 500 km2,

C1P =
1000mGal2
1+ 500

/︁
400

= 444,44 . . . mGal2,

s22P =
(︂
(20− 10)

2
+ (30− 10)

2
)︂

km2 = 500 km2,

C2P =
1000mGal2
1+ 500

/︁
400

= 444,44 . . . mGal2.

Tästa seuraa

Cij +Dij ≈
≈ Cij =

[︄
C11 C12

C21 C22

]︄
=

[︄
1000 666,66

666,66 1000

]︄
mGal2,

ja sen käänteismatriisi

(Cij +Dij)
−1

=

[︄
0,0018 −0,0012

−0,0012 0,0018

]︄
mGal−2.
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Lisäksi

CPi =
[︂
CP1 CP2

]︂
=
[︂
444,44 444,44

]︂
mGal2.

Kun havaintojen vektori on

∆g
j
=

[︄
∆g

1

∆g
2

]︄
=

[︄
15

20

]︄
mGal,

saadaan tuloksena

ˆ︂∆gP =

=
[︂
444,44 444,44

]︂ [︄ 0,0018 −0,0012

−0,0012 0,0018

]︄[︄
15

20

]︄
mGal =

= 9,333mGal.

Tarkkuus, ennustusvarianssi, yhtälö 10.11:

ΣPP = CPP − CPi (Cij +Dij)
−1
CjP =

= C0 −
[︂
444,44 444,44

]︂ [︄ 0,0018 −0,0012

−0,0012 0,0018

]︄[︄
444,44

444,44

]︄
mGal2 =

= 762,96mGal2,

siis
σ∆gP =

√︁
ΣPP = ±27,622mGal.

Tuloksen yhteenveto:

ˆ︂∆gP = 9,333± 27,622mGal.

Havaitaan, että löytynyt painovoima-anomalian estimaatti on
paljon pienempi kuin sen oma epävarmuus, eli se ei eroa mer-
kittävästi nollasta. itse asiassa kun jätetään havainnot kokonaan
käyttämättä, a priori estimaatti on

ˆ︂∆gP = 0±
√
1000mGal = 0± 31,623mGal,
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melkein yhtä hyvä.
Jos sen sĳaan olisimme käyttäneet pistettä P ′ pisteiden 1 ja 2
välillä, paikassa (25 km, 25 km), silloin

CP ′1 = CP ′2 = 1000mGal2
/︂(︁
1+ 50

/︁
400

)︁
= 888,89mGal2

ja ˆ︂∆gP ′ = 18,667± 7,201mGal,mikä on selvästi parempi kuin a
priori nolla-estimaatti.
Jos olisi valittu käytettäväksi Gaussin ja Markovin kovarianssi-
funktio

C = C0 exp
(︁
− s
/︁
d
)︁
,

olisi saatu tuloksiksi ˆ︂∆gP = 7,664± 29,272mGal alkuperäiselle
pistesĳainnille ja ˆ︂∆gP ′ = 16,460± 18,426mGal siirretylle sĳain-
nille.

^ 10.5.8 Pienimmän neliösumman kollokaation teoria
Yllä esitettiin eräs pienimmän neliösumman kollokaation (LSC, least-
squares collocation) suosittu sovellus. Tässä tutkitaan menetelmää ylei-
semmältä kannalta. Perusyhtälö on

ˆ︁ff = Cfg (Cgg +Dgg)−1 (︁gg + nn
)︁
. (10.9)

Vektori gg sisältää havaintosuureita g
i
, vektori nn sisältää havaintojen

virheet eli epävarmuuden tai kohinan ja ˆ︁ff on predikoitavana olevien
suureiden ˆ︁fp vektori.

Molemmat vektorit gg jaˆ︁ff voivat olla esimerkiksi painovoima-anoma-
lioita, jolloin on kyseessä homogeeninen prediktio, eräänlainen inter- tai
ekstrapolaatio. Yleisemminˆ︁ff ja gg ovat keskenään erityyppisiä, esimer-
kiksiˆ︁ff koostuu geoidin korkeuksistaNp ja gg painovoima-anomalioista
∆g

i
. Jälkimmäisessä tapauksessa Stokesin yhtälö on ”piilevänä” mukana

C-matriisien rakenteessa.
Matriisit rakennetaan kovarianssifunktioista. Niiden alkiot voidaan

esittää seuraavasti8:8
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Cfg

]︁
pi

=M ′{︁fpgi}︁, [︁
Cgg

]︁
ij
=M ′{︁gigj}︁, [︁

Dgg
]︁
ij
= E

{︁
ninj

}︁
,

jossa ni, vektorin nn alkio, edustaa havaintoyhtälössä 10.5 esiintyvää
havaintoprosessin epävarmuutta:

ℓi = gi + ni, eli vastaavasti ℓℓ = gg + nn.

ℓ on itse havaintoarvojen vektori, mukaan lukien havaitsemisen epävar-
muus nn.
D-matriisi on havaintojen epävarmuuden eli kohinan varianssimatriisi,

joka kuvaa siis havaintoprosessia eikä painovoimakentän ominaisuutta.
VarianssimatriisinM ′{︁∆gi∆gj}︁ arvot voivat olla niinkin suuria kuin
1200mGal2. Painovoimahavaintojen varianssimatriisin E

{︁
ninj

}︁
arvot

voivat puolestaan olla mittaustekniikasta riippuen paljon pienempiä,
esimerkiksi niinkin pieniä kuin 0,01mGal2.

Tämä ei päde blokkikeskiarvojen tapauksessa — esimerkiksi 1◦ × 1◦

-kokoisten blokkien keskiarvot hajanaisista havaintopisteistä laskettuina
— koska arvot ovat usein hyvin epätarkkoja.

Pienimmän neliösumman kollokaatiomenetelmän suurin vahvuus on
sen joustavuus. Eri havaintotyypit voidaan käsitellä yhden yhtenäisen
teorian ja menetelmän avulla, havaintopisteiden paikat ovat vapaita
ja tulos saadaan suoraan vapaasti valittaviksi suureiksi ja paikkoihin,
joihin niitä halutaan.

^ 10.6 Painovoima-anomalioiden prediktio

Jos laskettavana eli estimoitavana oleva suure ˆ︁ff on samantyyppinen
kuin havaittu suure gg, puhutaan homogeenisesta prediktiosta. Esimerkiksi
alaosiossa 10.5.6 jo esitetty painovoima-anomalioiden prediktion yhtälö
saadaan yhtälöstä 10.9 sĳoittamalla:ˆ︂∆gP = CPi (Cij +Dij)

−1
ℓj. (10.10)

8Signaalikovarianssien evaluoimiseksi käytetään tässä maantieteellistä keskiarvoaM ′{︁·}︁.
Näin ollen funktioita f ja g ei enää katsota stokastisiksi. Oletetaan, että niiden globaali
maantieteellinen keskiarvo häviää:M

{︁
ff
}︁
=M

{︁
gg
}︁
= 0.
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Tässä on useita pisteitä j, joissa painovoima on mitattuna: vaikkapa N
havaintoa ℓj = ∆g

j
+ nj, j = 1, . . . , N. Predikoitavia pisteitä voi olla

yksi eli P tai useita. Matriisit Cij ja Dij ovat neliön muotoisia, ja niiden
summan käänteismatriisi on olemassa. CPi on suorakulmainen matriisi.
Jos on vain yksi piste P, CPi on 1×N -kokoinen rivimatriisi.

Prediktion virhe on nyt erotussuure9 ˆ︂∆gP − ∆g
P
, ja sen varianssi9

(”ennustusvarianssi”) on

ΣPP
def
= Var

{︂ˆ︂∆gP − ∆gP}︂ =

= Var
{︁ˆ︂∆gP}︁+ Var

{︂
∆g

P

}︂
− Cov

{︂ˆ︂∆gP, ∆gP}︂− Cov
{︂
∆g

P
, ˆ︂∆gP}︂.

Tässä (varianssien kasautumislaki sovellettuna yhtälöön 10.10):

Var
{︁ˆ︂∆gP}︁ = CPi (Cij +Dij)

−1 (Cjk +Djk) (Ckℓ +Dkℓ)
−1
CℓP =

= CPi (Cij +Dij)
−1
CjP

ja

Cov
{︂ˆ︂∆gP, ∆gP}︂ = Cov

{︃
CPi (Cij +Dij)

−1
(︂
∆g

j
+ nj

)︂
, ∆g

P

}︃
=

= CPi (Cij +Dij)
−1

(︃
Cov

{︂
∆g

j
, ∆g

P

}︂
+ 0

)︃
=

= CPi (Cij +Dij)
−1
CjP,

ja myös

Cov
{︂
∆g

P
, ˆ︂∆gP}︂ = CPi(Cij +Dij)

−1CjP

sekä lopuksi signaalin varianssi Var
{︂
∆g

P

}︂
= CPP.

Tassa CiP (eli CjP, eli jopa CℓP) on matriisin CPi transpoosi. Matriisi
(Cij +Dij)

−1 on symmetrisenä oma transpoosinsa.

9Ole tietoinen, että tässä ∆g
P

on painovoima-anomalian todellinen arvo pisteessä P,
jota emme tunne empiirisesti. Mitattu arvo olisi ℓP = ∆g

P
+ nP, jossa nP on paino-

voimahavainnon satunnainen virhe eli ”kohina”.
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Lopputulos on

ΣPP = CPi(Cij +Dij)
−1CjP + CPP −

− CPi(Cij +Dij)
−1CjP − CPi(Cij +Dij)

−1CjP =

= CPP − CPi(Cij +Dij)
−1CjP.

Siinä tapauksessa, että Dij ≪ Cij, saadaan yksinkertaisempi ja usein
käytetty tulos:

ΣPP ≈ CPP − CPiC−1
ij CjP. (10.11)

Rajatapauksia

◦ Piste P on kaukana kaikista pisteistä i. Silloin CPi ≈ 0 ja
ΣPP ≈ CPP, siis prediktio on käytännössä mahdoton ja pre-
diktion yhtälö 10.10 antaa arvon nolla. Prediktion keskivirhe
σ∆gP =

√
ΣPP on sama kuin painovoima-anomaliasignaalin

vaihtelevuus
√
CPP, signaalivarianssin neliöjuuri.

◦ Piste P on identtinen erään pisteen i kanssa. Silloin jos
käytetään vain tuota pistettä i, saadaan

ΣPP = CPP − CPPC
−1
PPCPP = 0,

ei prediktiovirhettä laisinkaan. Prediktiopisteen arvo kun
oli jo tiedossa!
Kuitenkin jos DPP ̸= 0 (mutta pieni), on tulos ΣPP ≈ DPP.

^ 10.7 Kovarianssifunktio ja astevarianssit

^ 10.7.1 Häiriöpotentiaalin kovarianssifunktio
Teoreettisessa työssä käytetään painovoima-anomalioiden sĳasta mie-
luummin häiriöpotentiaalin T kovarianssifunktiota Maan pinnalla:

K(P,Q) = K(ψPQ, αPQ)
def
= M

{︁
TPTQ(P)

}︁
,
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tai vaihtoehtoisesti käyttäen yhtälöä 10.4:

K(P,Q) = K
(︁
ψPQ

)︁ def
= M ′{︁TPTQ(P)

}︁
=

=
1
8π2

w 2π
0

w 2π
0

w +π/2

−π/2
TPTQ(P) cosϕdϕdλdαPQ. (10.12)

Tässä on oletettu, että häiriöpotentiaali on isotrooppinen: K ei riipu α:sta
vaan ainoastaan ψ:stä.

Valitaan yksikköpallon pinnalla koordinaattĳärjestelmä, jossa piste
P on ”napa”. Tässä järjestelmässä parametrit αPQ ja ψPQ ovat pis-
teen Q pallokoordinaatit. Kovarianssifunktio kehitetään seuraavaksi
summaksi:

K(ψ) =

∞∑︂
n=2

n∑︂
m=−n

knmYnm(ψ,α)

jossa Ynm on määritelty yhtälön 3.3 tavoin:

Ynm(ψ,α) =

⎧⎨⎩Pnm(cosψ) cosmα josm ⩾ 0,

Pn|m|(cosψ) sin |m|α josm < 0.
(10.13)

Isotropian perusteella kaikki kertoimet, joiden järjestysluku m ̸= 0,
häviävät: yhtälon 10.13 oikealla puolella olevat lausekkeet voivat olla
vain riippumattomia α:sta, josm = 0. Siis

K(ψ) =

∞∑︂
n=2

kn0Yn0(ψ) =

∞∑︂
n=2

knPn(cosψ). (10.14)

Kertoimia kn kutsutaan (häiriöpotentiaalin) astevariansseiksi. Isotroop-
piselle kovarianssifunktiolle K(ψ) astevarianssien kn, n = 2, 3, . . .
informaatiosisältö on sama kuin itse funktion, ja se on itse asiassa sen
spektraaliesitys.
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^ 10.7.2 Astevarianssit ja pallofunktiokertoimet

Kerro yhtälö 10.14 lausekkeen Pn ′(cosψ) sinψ kanssa ja integroi:
w π
0
K(ψ)Pn ′(cosψ) sinψdψ =

=

∞∑︂
n=2

kn

w π
0
Pn(cosψ)Pn ′(cosψ) sinψdψ =

=

∞∑︂
n=2

kn

w +1

−1
Pn(t)Pn ′(t)dt = kn ′

2
2n+ 1

,

käyttäen ortogonaalisuusehtoa 3.5. Seuraa, että

kn =
2n+ 1
2

w π
0
K(ψ)Pn(cosψ) sinψdψ, (10.15)

siis jos K(ψ) on annettuna, voimme laskea kaikki kn.
SĳoittamallaK(ψPQ) yhtälöstä 10.12 saadaan, lyhennyksilläψ = ψPQ,

α = αPQ:

kn =
2n+ 1
2

w π
0

K(ψ)⏟ ⏞⏞ ⏟
1
8π2

w 2π
0

w 2π
0

w +π/2

−π/2
TPTQ(P) cosϕdϕdλdα Pn(cosψ) sinψdψ =

=
2n+ 1
16π2

w 2π
0

w +π/2

−π/2
TP

I⏟ ⏞⏞ ⏟w 2π
0

w π
0
TQ(P) Pn(cosψ) sinψdψdα cosϕdϕdλ.

Tässä olemme vaihtaneet integraalien järjestystä, kuten on sallittu, ja
siirtäneet TP:n toiseen paikkaan.

Lauseke I on yksikköpallon pintaintegraali:

I =
w 2π
0

w π
0
TQ(P)Pn

(︁
cosψPQ

)︁
sinψPQ dψPQ dαPQ =

=
x

σ
TQ(P) Pn

(︁
cosψPQ

)︁
dσQ =

4π
2n+ 1

Tn,P,

jossa Tn,P = Tn(ϕP, λP) = Tn(ϕ, λ). Tn on häiriöpotentiaalin T harmo-
nisen asteluvun n osuus, vertaile asteosuusyhtälö 3.9. Sĳoittamalla
saadaan

kn =
1
4π

w 2π
0

w +π/2

−π/2
TPTn,P cosϕdϕdλ =

=
1
4π

x

σ
TTn dσ =M

{︁
TTn

}︁
=
1
4π

x

σ
T2ndσ =M

{︁
T2n

}︁
,
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M-operaattorin määritelmän mukaan ja ottaen huomioon funktioiden
Tn keskinäinen ortogonaalisuus.

Astevarianssit ovat häiriöpotentiaalin asteosuuksien maantieteelliset
varianssit.

Kirjoitetaan yhtälöä 4.11 seuraten, mutta käyttäen yhtälön 3.15 määri-
telmiä:

T(ϕ, λ, r) =

=
GM⊕
R

∞∑︂
n=2

(︂
R
r

)︂n+1 n∑︂
m=0

Pnm(sinϕ)
(︁
δCnm cosmλ+ Snm sinmλ

)︁
,

jossa normaalikenttä, kertoimet C∗
n, on poistettu vähentämällä:⎧⎨⎩δCn0 = Cn0 − C
∗
n jos n parillinen,

δCnm = Cnm muuten.

Nähdään, että

Tn(ϕ, λ) =
GM⊕
R

n∑︂
m=0

Pnm(sinϕ)
(︁
δCnm cosmλ+ Snm sinmλ

)︁
.

Saadaan

kn =
1
4π

x

σ
T2n dσ =

⟨︁
Tn · Tn

⟩︁
σ
=

(︃
GM⊕
R

)︃2 n∑︂
m=0

(︂
δC
2

nm + S
2

nm

)︂
.

Tässä on käytetty hyväksi täysin normalisoitujen kantafunktioiden
Pnm(sinϕ) cosmλ ja Pnm(sinϕ) sinmλ ortonormaaliutta yksikköpal-
lon σ pinnalla. Siis

Häiriöpotentiaalin astevarianssit kn voidaan laskea suoraan pallo-
funktiokehitelmän kertoimista.

Kirjallisuudesta löytyy monia vaihtoehtoisia kirjoitustapoja, kuten

kn = σ2n = σTTi .
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^ 10.8 Kovarianssien kasautumislaki eri suureiden välillä

Yllä johdettua häiriöpotentiaalin kovarianssifunktiota K voidaan käyt-
tää myös muiden suureiden kovarianssifunktioiden johtamiseksi. Tämä
toimii periaatteessa suureille, jotka ovat maapallon pinnan häiriöpo-
tentiaalin T(·, ·, R) lineaarisia funktionaaleja, kuten esitettiin osiossa
10.2.

^ 10.8.1 Esimerkki: potentiaalin jatkaminen ylöspäin

Kirjoitetaan häiriöpotentiaali avaruudessa T(ϕ, λ, r) pintahäiriöpotenti-
aalin T(ϕ, λ, R) = T(·, ·, R) funktionaaliksi. Asteosuuksien Tn määritel-
män perusteella,

T(ϕ, λ, R)
def
=

∞∑︂
n=2

Tn(ϕ, λ),

pätee
T(ϕ, λ, r) =

∞∑︂
n=2

(︂
R
r

)︂n+1
Tn(ϕ, λ).

Symbolisesti
T(ϕ, λ, r) = L

{︁
T(·, ·, R)

}︁
.

Tässä L on lineaarinen funktionaali

L
{︁
f
}︁
=

∞∑︂
n=2

(︂
R
r

)︂n+1
fn,

jossa funktiot fn on asteosuusyhtälön 3.9 mukaisesti määritelty, niin
että pallon muotoisen Maan merenpinnalla

f =

∞∑︂
n=2

fn.

Symbolisesti

L
{︁
f
}︁
=

∞∑︂
n=2

Lnfn,

jossa

Ln =
(︂
R
r

)︂n+1
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on funktionaalin L spektraaliesitys.
Voimme kirjoittaa tietyllä pisteellä P, paikka (ϕP, λP, rP) avaruudessa:

LP
{︁
f
}︁
=

∞∑︂
n=2

LnPfn,P ,

jossa

LnP =
(︂
R
rP

)︂n+1
.

Konkreettisesti häiriöpotentiaalille T
(︁
ϕP, λP, rP

)︁
pisteessä P tämä mer-

kitsee

T
(︁
ϕP, λP, rP

)︁
= LP

{︁
T(·, ·, R)

}︁
=

∞∑︂
n=2

LnPTn,P =

∞∑︂
n=2

(︂
R
rP

)︂n+1
Tn
(︁
ϕP, λP

)︁
.

Häiriöpotentiaalin T kovarianssifunktio avaruudessa on

K
(︁
rP, rQ, ψPQ

)︁
=M ′

{︂
T
(︁
ϕP, λP, rP

)︁
T
(︁
ϕQ(P), λQ(P), rQ

)︁}︂
=

=M ′
{︂
LP

{︁
T(·, ·, R)

}︁
LQ(P)

{︁
T(·, ·, R)

}︁}︂
=

=M ′
{︃ ∞∑︂
n=2

(LnPTn,P)

∞∑︂
n ′=2

(︁
Ln

′

Q Tn ′,Q(P)

)︁}︃
=

=

∞∑︂
n=2

∞∑︂
n ′=2

LnPL
n ′

QM
′{︁Tn,PTn ′,Q(P)

}︁
.

Ortogonaalisuuden perusteella10 M ′{︁Tn,PTn ′,Q(P)

}︁
= 0 jos n ̸= n ′. Siis10

K
(︁
rP, rQ, ψPQ

)︁
=

∞∑︂
n=2

LnPL
n
QM

′{︁Tn,PTn,Q(P)

}︁
. (10.16)

Nyt merenpinnan tasolla kaikki LnP = LnQ = 1, eli

K
(︁
ψPQ

)︁
=

∞∑︂
n=2

M ′{︁Tn,PTn,Q(P)

}︁
.

Vertaamalla yhtälön 10.14

K
(︁
ψPQ

)︁
=

∞∑︂
n=2

knPn(cosψ) (10.14)
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kanssa nähdään, että

M ′{︁Tn,PTn,Q(P)

}︁
= knPn(cosψPQ).

Tämä ei tule yllätyksenä: jos spatiaalinen kovarianssifunktio on
isotrooppinen, sen yleisen muodon on oltava

K
(︁
rP, rQ, ψPQ

)︁
=

∞∑︂
n=2

Krn
(︁
rP, rQ

)︁
Kψn
(︁
ψPQ

)︁
,

ja Kψn
(︁
ψPQ

)︁
on oltava samaa muotoa kuin K(ψ) yhtälössä 10.14, ja

samasta syystä:
Kψn
(︁
ψPQ

)︁
= knPn(cosψPQ).

Merenpinnalla Krn
(︁
R, R

)︁
= 1 ja yhtälö 10.15 antaa kertoimet kn.

Yhtälöstä 10.16 tulee nyt11 11

10Kuten osion 8.5 lausekkeen r∆g harmonisuuden todistuksessa, on otettava mukaan
kolmas ulottuvuus.

M ′{︁Tn,PTn′,Q(P)

}︁
=
1

2π

w 2π
0
M

{︁
Tn,P Tn′,Q(P)

}︁
dαPQ =

=M

{︃
Tn,P ·

1

2π

w 2π
0
Tn′,Q(P) dαPQ

}︃
=M

{︂
Tn,P T

⃝
n′,P

}︂
,

määritelmällä
T⃝n′,P

def
=

1

2π

w 2π
0
Tn′,Q(P) dαPQ.

Kolmiulotteisesti r:n kanssa:

T⃝n′,P(r) =
1

2π

w 2π
0
Tn′,Q(P)(r)dαPQ =

1

2π

w 2π
0

(︂ r
R

)︂n′+1

Tn′,Q(P)(R)dαPQ =

=
(︂ r
R

)︂n′+1

· 1
2π

w 2π
0
Tn′,Q(P)(R)dαPQ =

(︂ r
R

)︂n′+1

T⃝n′,P(R).

Tämä osoittaa, että T⃝n′,P(r) on täysin laillinen asteluvun n ′ avaruuspallofunktio,
T⃝n′,P = T⃝n′,P(R) laillinen pintapallofunktio ja pallofunktioiden ortogonaalisuus
pätee:

M ′{︁Tn,PTn′,Q(P)

}︁
=M

{︂
Tn,PT

⃝
n′,P

}︂
= 0 jos n ̸= n ′.
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K
(︁
rP, rQ, ψPQ

)︁
=

∞∑︂
n=2

LnPL
n
QknPn

(︁
cosψPQ

)︁
=

=

∞∑︂
n=2

(︂
R
rP

)︂n+1(︂ R
rQ

)︂n+1
knPn

(︁
cosψPQ

)︁
=

=

∞∑︂
n=2

(︃
R2

rPrQ

)︃n+1
knPn

(︁
cosψPQ

)︁
. (10.17)

Tässä olemme ilmaisseet avaruuden häiriöpotentiaalin T(ϕ, λ, r) kova-
rianssifunktion vastaavan merenpinnan häiriöpotentiaalin T(ϕ, λ, R) as-
tevarianssien kn kehitelmänä. Sovelsimme kovarianssien kasautumislakea
funktion K kehitelmään 10.14. Näin olemme saaneet häiriöpotentiaa-
lille kolmiulotteisen kovarianssifunktion, jollainen tarvitaan esimerkiksi
vuoristomaissa ja ilma- ja avaruussovelluksissa.

^ 10.8.2 Esimerkki: painovoima-anomalioiden kovarianssifunktio

Tiedämme yhtälön 5.7 perusteella, että painovoima-anomalioiden ja
häiriöpotentiaalin välillä on olemassa seuraava yhteys:

∆g =

∞∑︂
n=2

n− 1
r

(︂
R
r

)︂n+1
Tn,

symbolisesti: ∆g = L∆g
{︁
T
}︁

sopivalle operaattorille L∆g:

L∆g
{︁
f
}︁
=

∞∑︂
n=2

Ln∆gfn, Ln∆g =
n− 1
r

(︂
R
r

)︂n+1
.

Taas konkreettisessa pisteessä P,

∆g(ϕP, λP, rP) = L∆g,P
{︁
T(·, ·, R)

}︁
=

=

∞∑︂
n=2

Ln∆g,PTn,P =

∞∑︂
n=2

n− 1
rP

(︂
R
rP

)︂n+1
Tn,P.

11Tämä toimii niin siististi, koska tässä tapauksessa operaattori Ln on luonteeltaan
kerroin,

(︁
R
/︁
r
)︁n+1.
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Voidaan näyttää samalla tavalla kuin yllä, että

Cov
{︁
∆gP, ∆gQ

}︁
=M ′{︁∆gP ∆gQ(P)

}︁
=

=

∞∑︂
n=2

Ln∆g,PL
n
∆g,QM

′{︁Tn,PTn,Q(P)

}︁
=

=

∞∑︂
n=2

n− 1
rP

(︂
R
rP

)︂n+1n− 1
rQ

(︂
R
rQ

)︂n+1
knPn

(︁
cosψPQ

)︁
=

=

∞∑︂
n=2

(︃
R2

rPrQ

)︃n+2 (︂
n− 1
R

)︂2
knPn

(︁
cosψPQ

)︁
.

Usein kirjoitetaan

C
(︁
rP, rQ, ψPQ

)︁ def
= Cov

{︁
∆gP, ∆gQ

}︁
=M ′{︁∆gP ∆gQ(P)

}︁
=

=

∞∑︂
n=2

(︃
R2

rPrQ

)︃n+2
cnPn

(︁
cosψPQ

)︁
,

jossa painovoima-anomalioiden astevarianssit ovat

cn =
(︂
n− 1
R

)︂2
kn.

Vastaavasti lasketaan myös ”sekakovarianssit” häiriöpotentiaalin ja
painovoima-anomalian välille:

Cov
{︁
TP, ∆gQ

}︁
=

=M ′{︁TP ∆gQ(P)

}︁
=

∞∑︂
n=2

LnPL
n
∆g,QM

′{︁Tn,PTn,Q(P)

}︁
=

=

∞∑︂
n=2

(︂
R
rP

)︂n+1n− 1
rQ

(︂
R
rQ

)︂n+1
knPn

(︁
cosψPQ

)︁
=

=

∞∑︂
n=2

n− 1
rQ

(︃
R2

rPrQ

)︃n+1
knPn

(︁
cosψPQ

)︁
.

Kaikki nämä ovat kovarianssien kulkeutumisen eli kasautumisen esimerk-
kejä sovellettuna sarjakehitelmään:

Cov
{︂
L1

{︁
TP

}︁
, L2

{︁
TQ

}︁}︂
=

∑︂
n

Ln1,PL
n
2,QM

′{︁Tn,PTn,Q(P)

}︁
=

=
∑︂
n

Ln1,PL
n
2,QknPn

(︁
cosψPQ

)︁
,
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mielivaltaisille lineaarisille funktionaaleille

L1
{︁
TP

}︁
=

∑︂
n

Ln1,PTn,P, L2
{︁
TQ

}︁
=

∑︂
n

Ln2,QTn,Q,

jossa Tn,P = Tn
(︁
ϕP, λP

)︁
ja Tn,Q = Tn

(︁
ϕQ, λQ

)︁
ovat Maan pinnan häiriö-

potentiaalin asteosuuksia. Haaste jokaisessa tapauksessa on identifioida
tämän lineaarisen funktionaalin spektraalimuoto. Tämä tehdään kehit-
tämällä kyseessä oleva suure funktioihin Tn ja poimimalla löytyneet
kertoimet kehitelmästä. Nämä kertoimet on värjätty yllä punaisiksi ja
sinisiksi.

^ 10.9 Globaalit kovarianssifunktiot

Empiirisiä kovarianssifunktioita on laskettu paljon, vaikka koko maa-
palloa koskevia empiirisiä kovarianssifunktioita on olemassa vain muu-
tama. Tavallisesti ne annetaan astevarianssikaavan muodossa. Kuuluisin
on William Kaulan12 havaitsema nyrkkisääntö (Rapp, 1989):12

kn = α
2n+ 1
n4

.

Kirjoittamalla

cn =
(︂
n− 1
R

)︂2
kn,

jossa cn ovat painovoima-anomalioiden astevarianssit, saadaan

cn = α
2n+ 1
n4

(︂
n− 1
R

)︂2
≈ 2α
nR2

.

Tässä α on planeettakohtainen vakio, Kaulan arvion mukaan α =

10−10
(︁
GM⊕

/︁
a⊕
)︁2
.

Kaulan sääntö ei pidä paikkaansa kovin tarkasti. Se pätee aika hyvin
myös Marsin painovoimakentälle, tietenkin eri vakioarvolla (Yuan ym.,
2001).

12William M. Kaula (1926–2000) oli amerikkalainen geofyysikko ja avaruusgeodeetti,
joka tutki Maan painovoimakentän määritystä satelliittigeodesian keinoin.

í � Õ! ¤.�û



Kollokaatio ja spektraalinäkökohta 10.10 285
Toinen kuuluisa sääntö on Tscherningin ja Rappin kaava (Tscherning

ja Rapp, 1974):

cn =
A (n− 1)

(n− 2) (n+ B)
=
(︂
n− 1
R

)︂2
kn.

Vakiot ovat tekĳöiden mukaan A = 425.28mGal2 ja B = 24 (tarkasti).
Teknisenä yksityiskohtana valitaan tavallisesti R = RB = 0.999R,Maan
sisällä olevan Bjerhammarin13 pallon säde (R on Maan keskisäde). Kaavan 13

muoto on valittu sen mukaan, että eri suureiden kovarianssifunktioiksi
saataisiin suljettuja lausekkeita.

^ 10.10 Kollokaatio ja spektraalinäkökohta

Myös pienimmän neliösumman kollokaation laskennat voidaan suorit-
taa tehokkaasti FFT:n keinoin. Tätä varten pitää tarkastella geometriassa
olevia symmetrioita, lähinnä pyörähdyssymmetriaa, joka on olemassa
esimerkiksi pituusastesuunnassa koko maapallolla, kun kollokaatio-
yhtälöt riippuvat vain pisteiden välisistä pituusaste-eroista ∆λ eivätkä
absoluuttisista pituusasteista λ.

Seuraavassa käsitellään yksinkertaistettua esimerkkiä yhdessä ulot-
tuvuudessa. Olkoon kentän g(ψ), ψ ∈

[︁
0, 2π

)︁
havaintoja ℓi = gi + ni

annettuna ympyrän reunalla pisteissäψi
def
= 2π i

/︁
N , i = 0, 1, 2, . . . ,N−1.

Oletetaan, että myös laskentatulokset, tulosfunktion f(ψ) estimaatit ˆ︁fi,
halutaan samoihin pisteisiin. Silloin on yhtälö 10.9:

ˆ︁ff = Cfgfg (Cgggg +Dgggg)
−1 (︁gg + nn

)︁
, (10.9)

jossa [︁
Cfgfg
]︁
ij
= Cfgfg

(︁
f(ψi), g(ψj)

)︁
= Cfgfg

(︁
ψi, ψj

)︁
,[︁

Cgggg
]︁
ij
= Cgggg

(︁
g(ψi), g(ψj)

)︁
= Cgggg

(︁
ψi, ψj

)︁
,[︁

Dgggg
]︁
ij
= Dgggg

(︁
g(ψi), g(ψj)

)︁
= Dgggg

(︁
ψi, ψj

)︁
.

13Arne Bjerhammar (1917–2011) oli ruotsalainen geodeetti.
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Kaula
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Harmoninen asteluku n
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Kuva 10.5. Globaalit kovarianssifunktiot astevariansseina. GOCE-malli menee
vain astelukuun 280 saakka.^

Mikäli koko tilanteen fysiikka, mukaan lukien mittausprosessin fysiikka,
on pyörähdyssymmetrinen, on oltava

[︁
Cfgfg
]︁
i,j(i)

=M⃝

{︂
f(ψi)g

(︁
ψj(i)

)︁}︂
=
1
N

N−1∑︂
i=0

f(ψi)g
(︁
ψj(i)

)︁ def
=
[︁
Cfgfg
]︁
k
,

jossa j(i) = (i+ k) mod N. Tässä operaattoriM⃝ on funktion ”ympyrä-
keskiarvo”,

M⃝
{︁
h
}︁ def
=
1
N

N−1∑︂
i=0

h(ψi),

mikä, kuten maantieteellinen keskiarvo osiossa 10.4, korvaa tilastollisen
keskiarvon.
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Samalla tavalla saadaan

[︁
Cgggg
]︁
i,j(i)

=M⃝

{︂
g(ψi)g

(︁
ψj(i)

)︁}︂
=

=
1
N

N−1∑︂
i=0

g(ψi)g
(︁
ψj(i)

)︁ def
=
[︁
Cgggg
]︁
k
.

Nyt Cfgfg, Cgggg ovat ainoastaan k:n funktiot, ja ne voidaan kirjoittaa[︁
Cfgfg
]︁
ij
= Cfgfg

(︁
ψi, ψj

)︁
= Cfgfg(∆ψk) =

[︁
Cfgfg
]︁
k
,[︁

Cgggg
]︁
ij
= Cgggg

(︁
ψi, ψj

)︁
= Cgggg(∆ψk) =

[︁
Cgggg
]︁
k
,

joissa ∆ψk
def
= (ψj −ψi) mod 2π ja k = (j− i) mod N.

Lisäksi[︁
Dgggg

]︁
ij
= Dgggg

(︁
ψi, ψj

)︁
= Dgggg(∆ψk) =

[︁
Dgggg

]︁
k
= E

{︁
ninj(i)

}︁
,

havaintokohinan perinteinen tilastollinen varianssi. Koska havainnot
eivät yleensä korreloi keskenään, on14 14

Dgggg = σ
2 IN,

σ2 (havaintojen varianssi, oletettu samaksi kaikille) kerrottuna N×N
-kokoisella yksikkömatriisilla.

Tämän muotoisia matriiseja kutsutaan Toeplitz-sirkulanteiksi15. Omi- 15

naisuuden ansiosta yhtälö 10.9 koostuu konvoluutioista.

14Itse asiassa yksikkö- eli identiteettimatriisi tunnetaan myös Kroneckerin deltana.
Toeplitzin matriisina se voidaan tulkita Diracin deltafunktion diskreettina versiona.
Sen diskreetti Fourier’n muunnos on ”valkoinen”:

F
{︁
IN

}︁
=
1

N
,

ja sisältää saman tehon kaikille taajuuksille.
15Otto Toeplitz (1881–1940) oli saksanjuutalainen matemaatikko ja funktionaali-
analyysin tutkĳa.
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N− 2

∆ψk
ψj

N− 1

ψi

i

j

0

2 1

Kuva 10.6. Kehämäinen geometria.^

Ilman todistusta esitetään, että yhtälön 10.9 spektraalivastine on
seuraavan näköinen:

F
{︁ˆ︁ff}︁ =

F
{︁
Cfgfg

}︁
F
{︁
Cgggg

}︁
+ F

{︁
Dgggg

}︁F{︂gg + nn
}︂
=

F
{︁
Cfgfg

}︁
F
{︁
Cgggg

}︁
+ σ2

/︁
N

F
{︂

gg + nn
}︂
.

Tämä on helppo ja nopea tapa laskea ratkaisu FFT:n avulla. Jos sopivalla
operaattorilla L pätee ff = L

{︁
gg
}︁

, yhtälöstä tulee

F
{︁ˆ︁ff}︁ =

F
{︁
L
}︁
· F

{︁
Cgggg

}︁
F
{︁
Cgggg

}︁
+ σ2

/︁
N
· F

{︂
gg + nn

}︂
.

Limiitissä, jossa havainnot ovat eksakteja, σ2 = 0 ja siis nn = 0, pätee

F
{︁ˆ︁ff}︁ = F

{︁
L
}︁
· F

{︁
gg
}︁
⇐⇒ ˆ︁ff = L{︁gg

}︁
.

Esimerkiksi jos gg ovat painovoima-anomalioita ja ff häiriöpotentiaalin
arvoja, on1616

F
{︁
L
}︁
=

R
n− 1

.

Lähestymistapaa kutsutaan Fast Collocationiksi, esimerkiksi Bottoni ja
Barzaghi (1993). Luonnollisesti sitä käytetään Maan pinnan kahdessa

16Käytännön laskennassa yhtälöä on kuitenkin muutettava käyttämään globaaliin
pallogeometriaan viittaavan asteluvun n sĳasta käytetyn laskentahilan Fourier’n
aaltolukua.
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Olenko ymmärtänyt tämän? 289
ulottuvuudessa, vaikka esimerkkimme on yksiulotteinen. Kuten aina
se edellyttää, että havaintoaineisto on annettu hilan muodossa, ja tässä
tapauksessa myös aineiston tarkkuuden alueella pitää olla homogeeninen
— kaikkialla sama. Tämä vaatimus täyttyy tuskin koskaan tarkasti.

^ Olenko ymmärtänyt tämän?

1) Mikä on signaalin ja kohinan välinen ero?

2) Mikä on funktionaali?

3) Mikä on lineaarinen funktionaali?

4) Maan pinnalla määritellyn stokastisen prosessin tilastollinen käyt-
täytyminen on samanlaista riippumatta siitä, missä paikassa maa-
pallolla ollaan. Tämän ominaisuuden nimi on isotrooppisuus |
ergodisuus | homogeenisuus | stationaarisuus.

5) Ajan stokastisen prosessin tilastollinen käyttäytyminen on sa-
manlaista rippumatta siitä, missä kohdassa aika-akselilla ollaan.
Tämän ominaisuuden nimi on isotrooppisuus | ergodisuus |
homogeenisuus | stationaarisuus.

6) Miksi Maan painovoimakentän tutkimuksessa käytetään maantie-
teellistä keskiarvoa tilastollisen keskiarvon sĳaan?

7) Mitä kahta eri kovarianssifunktion tyyppiä käytetään Maan pin-
nan painovoima-anomalioille? Anna yhtälöt ja nimeä vapaat pa-
rametrit.

8) Selosta astevarianssit. Mikä on astevarianssien kn ja cn välinen
ero?

9) Mitä Kaulan sääntö ilmaisee?

10) Mikä on Toeplitz-sirkulantti matriisi?

í �Õ ! ¤.�û



10290 Tilastolliset menetelmät

^ Harjoitus 10–1: Ennustusvarianssi

Pisteen P ennustusvarianssin yhtälö on

ΣPP = CPP − CPi(Cij +Dij)
−1CjP,

jossa havaintopisteet ovat i = 1, . . . , N. Oleta, että on vain yksi havain-
topiste, piste P. Silloin

ΣPP = CPP − CPP(CPP +DPP)
−1CPP.

Näytä, että jos Dij ̸= 0, mutta Dij ≪ Cij,

ΣPP ≈ DPP.

^ Harjoitus 10–2: Hirvosen kovarianssiyhtälö ja prediktio

Hirvosen kovarianssiyhtälö on

C(s) =
C0

1+
(︁
s
/︁
d
)︁2 , (10.18)

jossa Ohion parametrit ovatC0 = 337mGal2 ja d = 40 km (Heiskanen ja
Moritz, 1967, yhtälö 7-9). Yhtälö antaa kahden pisteenP jaQpainovoima-
anomalioiden välisen kovarianssin

C
(︁
sPQ

)︁
= Cov

{︂
∆g

P
, ∆g

Q

}︂
.

sPQ on pisteiden välinen lineaarinen etäisyys.

1) Laske Var
{︂
∆g

P

}︂
ja Var

{︂
∆g

Q

}︂
. Muista, että määritelmän mukaan

Var
{︁
x
}︁
= Cov

{︁
x, x

}︁
!

2) Laske Cov
{︂
∆g

P
, ∆g

Q

}︂
jos sPQ = 20 km.

3) Laske korrelaatio

Corr
{︂
∆g

P
, ∆g

Q

}︂
def
=

Cov
{︂
∆g

P
, ∆g

Q

}︂
√︃

Var
{︂
∆g

P

}︂
Var

{︂
∆g

Q

}︂ .
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4) Oleta nyt, että ainoa mittauspiste on P. Mikä on painovoima-

anomalian ”ennustusvarianssi” pisteessäQ, joka on tarkasti sPQ =

10 km matkan päässä annetun anomalian pisteestä P? Sovella yh-
tälöä 10.11 seuraavasti:

ΣQQ = CQQ − CQPC
−1
PPCPQ.

5) Entä kohta 4, jos etäisyys on sPQ = 80 km?

^ Harjoitus 10–3: Painovoima-anomalioiden prediktio

Olkoon annettuna kahdessa pisteessä 1 ja 2 mitatut painovoima-ano-
maliat ℓ1 = ∆g

1
+ n1 ja ℓ2 = ∆g

2
+ n2. Pisteiden välinen etäisyys

on 80 km, ja niiden välissä 40 km etäisyydellä molemmista pisteistä
sĳaitsee piste P. Laske pisteen P painovoima-anomalia ∆gP prediktion
avulla. Prediktion yhtälö on

ˆ︂∆gP = CPi (Cij +Dij)
−1
ℓj,

jossa ℓj = ∆gj+nj on painovoima-anomalioiden havaintojen (abstrakti)
vektori,

Cij =

⎡⎣ Var
{︂
∆g

1

}︂
Cov

{︂
∆g

1
, ∆g

2

}︂
Cov

{︂
∆g

1
, ∆g

2

}︂
Var

{︂
∆g

2

}︂ ⎤⎦
on vektorin ∆g

i
signaalivarianssimatriisi ja

CPi =
[︂

Cov
{︂
∆g

P
, ∆g

1

}︂
Cov

{︂
∆g

P
, ∆g

2

}︂ ]︂
on signaalikovarianssimatriisi ∆g

P
:n ja ∆g

i
:n välillä.Dij on havaintojen

satunnaisen epävarmuuden eli kohinan ni, i = 1, 2 varianssimatriisi:

Dij =

[︄
Var

{︁
n1

}︁
Cov

{︁
n1, n2

}︁
Cov

{︁
n1, n2

}︁
Var

{︁
n2

}︁ ]︄
.

1) Laske matriisi Cij olettamalla taas Hirvosen kovarianssiyhtälö
10.18 ja parametriarvo d = 40 km.
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2) Laske CPi.

3) Laske ˆ︂∆gP ilmaistuna havaittuihin arvoihin ℓ1 ja ℓ2. Oleta Dij = 0
(ja siis ni = 0). Matriisin Cij kääntäminen käsin on mahdollista,
mutta käytä mieluummin Matlab tai octave.

4) Laske ennustusvarianssi (huomaa CjP = CT
Pi) yhtälöllä

ΣPP = CPP − CPiC
−1
ij CjP.

^ Harjoitus 10–4: Painovoima-anomalioiden prediktio (2)

Olkoon taas annettuna pisteet 1 ja 2, joissa on mitatut painovoima-
anomaliat ℓ1 = ∆g1 ja ℓ2 = ∆g2. Nyt kuitenkin pisteet 1, 2 ja P muodos-
tavat kolmion, jossa pisteen P kohdalla on suora kulma. Etäisyys P:stä
pisteisiin 1 ja 2 on edelleen 40 km. Pisteiden 1 ja 2 välinen etäisyys on
nyt vain 40

√
2 km.

1) Laske Cij, CPi, ˆ︂∆gP ja ΣPP.

2) Vertaa tulosta edellisen tuloksen kanssa. Mikä on johtopäätös?

^ Harjoitus 10–5: Kovarianssien kasautuminen

Annettuna on häiriöpotentiaalin kovarianssifunktio 10.17:

Cov
{︁
TP, TQ

}︁
=

∞∑︂
n=2

(︃
R2

rPrQ

)︃n+1
knPn

(︁
cosψPQ

)︁
.

1) Johda painovoimahäiriön δg (yhtälö 5.4) kovarianssifunktio. Vihje:
kirjoita ensin kehitelmä muotoa

δg =

∞∑︂
n=2

LnδgTn

kertoimen Lnδg lausekkeen löytämiseksi. Sen jälkeen

Cov
{︂
δg
P
, δg

Q

}︂
=

∞∑︂
n=2

Lnδg,PL
n
δg,QknPn

(︁
cosψPQ

)︁
.
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2) Johda painovoiman häiriögradientin

∂2

∂r2
T = −

∂
∂r
δg

eli painovoimahäiriön pystygradientin, kovarianssifunktio.

^ Harjoitus 10–6: Kaulan sääntö painovoima-anomalioille

Häiriopotentiaalille

T(ϕ, λ, r) =

∞∑︂
n=2

(︂
R
r

)︂n+1
Tn(ϕ, λ)

eli Maan pinnalla (r = R):

T(ϕ, λ, R) =

∞∑︂
n=2

Tn(ϕ, λ)

Kaulan sääntö pätee astevariansseilla

kn = α
2n+ 1
n4

.

Näistä voi laskea varianssien kasautumislain avulla painovoima-anomali-
oiden

∆g(ϕ, λ, R) =

∞∑︂
n=2

Ln∆g(R) Tn(ϕ, λ) =

∞∑︂
n=2

(︂
n− 1
R

)︂
Tn(ϕ, λ)

astevarianssit:

cn =
(︁
Ln∆g(R)

)︁2
kn =

(︂
n− 1
R

)︂2
kn ≈

2α
nR2

.

Differentioi analogisella tavalla painovoima-anomalian kehitelmä 5.7

∆g(r,φ, λ) =

∞∑︂
n=2

n− 1
r

(︂
R
r

)︂n+1
Tn(ϕ, λ),

tuloksena
∂∆g
∂r

= −

∞∑︂
n=2

(n− 1) (n+ 2)

r2

(︂
R
r

)︂n+1
Tn,
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spektraaliyhteys häiriöpotentiaalin ja anomaalisen painovoimagradientin
välillä.

Maan pinnalla r = R:

∂∆g
∂r

⃓⃓⃓⃓
r=R

= −

∞∑︂
n=2

(n− 1) (n+ 2)

R2
Tn

def
=

∞∑︂
n=2

Ln∆g ′(R) Tn(ϕ, λ)

jossa

Ln∆g ′(R) = −
(n− 1) (n+ 2)

R2
.

1) Johda likimääräinen yhtälö anomaalisen painovoimagradientin as-
tevariansseille. Merkitse ne symbolilla c ′n samalla analogisella
tavalla kuin yllä painovoima-anomalioiden astevariansseille cn:

c ′n = x(n) · kn ≈ y · nz.

Löydä lauseke x(n) ja vakiot y ja zmaapallon tapauksessa.

2) Mikä on johtopäätös?

^ Harjoitus 10–7: Maanalaiset massapisteet

1) Jos massapiste sĳoitetaan Maan sisään syvyyteen D havainto-
pisteen P alapuolella, mikä on sen Maan pinnalla aiheuttaman
koko painovoiman gmuutoksen korrelaatiopituus eli arvo s, jolla
C(s) = 1

2
C0?

2) Siis jos haluamme rakentaa massapistemallin, jossa jokaisen ha-
vaintopisteen ∆gP alapuolella on yksi massapiste, kuinka syvälle
ne pitää laittaa, jos korrelaatiopituus d on annettu?
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^ Gravimetriset mittalaitteet1111
^ 11.1 Historia

Ensimmäinen mittalaite, joka rakennettiin heilurin perusteella oli kello.
Heiluriyhtälö

P = 2π

√︃
ℓ
g

kertoo, että tietyn pituisen heilurin heilahdusaika eli periodi P on vakio,
joka riippuu vain heilurin pituudesta ℓ ja paikallisesta painovoimasta
g sillä edellytyksellä, että heilahdukset ovat pieniä. Alankomaalai-
nen Christiaan Huygens1 rakensi vuonna 1657 ensimmäisen tähän 1

peraatteeseen perustuvan käyttökelpoisen heilurikellon (Wikipedia,
Heilurikello).

Kun nuori ranskalaistutkĳa Jean Richer2 kävi Ranskan Guyanassa 2

vuonna 1671 heilurikello mukanaan, hän huomasi, että kello kulki sel-
västi hitaammin. Asia saatiin korjatuksi yksinkertaisesti lyhentämällä
heiluria. Ilmiön syy ei voinut olla esimerkiksi heilurin lämpölaajenemi-
nen trooppisissa ilmasto-olosuhteissa. Oikea selitys oli, että tropiikissa

1Christiaan Huygens FRS (1629–1695) oli aikansa johtava hollantilainen tiedemies ja
matemaatikko. Heilurikellon keksimisen lisäksi hän oli ensimmäinen, joka oivalsi
vuonna 1655, että Saturnus-planeetalla on rengas.
2Jean Richer (1630?–1696) oli ranskalainen tähtitieteilĳä, joka muistetaan oikeasti vain
heilurilöydöstään.
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11296 Gravimetriset mittalaitteet

Kuva 11.1. Jean Richer’n raportti.^

painovoima g on heikompi kuin Euroopassa. Palattuaan Ranskaan
vuonna 1673 Richer joutui taas pidentämään heiluriaan. Havainnosta
on merkintä raportissa ”Observations astronomiques et physiques faites en
l’isle de Caïenne”, Richer (1731), sivuilla 87–88.

Näin keksittiin heilurigravimetri. Myöhemmin rakennettiin varta vas-
ten paljon tarkempia laitteita, esimerkiksi Katerin3 reversioheiluri ja3

neljän heilurin Von Sterneckin4 koje, jota käytettiin myös Suomessa4

1920- ja 1930-luvuilla (Pesonen, 1930; Hirvonen, 1937).
Mainittavia ovat myös hollantilaisen F. A. Vening Meineszin sukel-

lusvenemittaukset muun muassa Jaavanmerellä. Niissä havaittiin, että
merenpohjalla olevien syvänmeren hautojen yläpuolella vallitsee tun-
tuva painovoimavaje ja että syvänteet ovat näin ollen isostaattisessa
epätasapainossa (Vening Meinesz, 1928).

Tuotantomielessä heilurigravimetrit ovat painovoimamittauksiin liian
hankalia ja hitaita. Kenttämittauksia varten on kehitetty jousigravimetri,
katso osio 11.2.

3Henry Kater FRS FRAS (1777–1835) oli brittiläisfyysikko, joka työskenteli tieteellisten
kojeiden ja metrologian parissa.
4Robert Freiherr (paroni) Daublebsky von Sterneck (1839–1910) oli itävaltalais-
unkarilaisen armejan kenraalimajuri sekä geofyysikko, tähtitieteilĳä ja geodeetti.
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Kuva 11.2. Autograv™ CG-5 -jousigravimetri Scintrexiltä. Kuva Monniaux
(2011).^

Heilurigravimetri on periaatteessa absoluuttinen mittauskoje, koska
painovoima saadaan sen avulla suoraan kiihtyvyyslukuna. Olemassa
on kuitenkin heilurin kiinnitykseen eli tukipisteeseen liittyviä syste-
maattisia efektejä, joiden takia mittauksen absoluuttisuuteen ei voi
luottaa. Yksi kokeiltu ratkaisu on hyvin pitkä lankaheiluri, esimerkik-
si Hytönen (1972). Nykyisin absoluuttimittaukset tehdään kuitenkin
mieluummin ballistisilla gravimetreilla, katso osio 11.3. On havaittu,
että vanhemmat, heilurikojeilla saadut mittausarvot niin sanotussa
Potsdamin järjestelmässä ovat systemaattisesti 14mGal liian korkeita.

^ 11.2 Relatiivinen eli jousigravimetri

Jousigravimetri on yksinkertaisimmillaan sama kuin jousivaaka.
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Lineaarisen jousivaa’an koemassan liikeyhtälö on

m

(︃
d2ℓ
dt2

− g

)︃
= −k (ℓ− ℓ0) , (11.1)

jossam on koemassa, g paikallinen (mitattava) painovoima ja k jousi-
vakio. Suure ℓ0 on jousen ”lepopituus”, joka jousella olisi, jos siihen
ei kohdistuisi ulkopuolisia voimia. ℓ on jousen todellinen hetkellinen
pituus.

Tasapaino jousen voiman ja painovoiman välillä on

d2ℓ
dt2

= 0 =⇒ mg = k (ℓ− ℓ0) = k
(︁
ℓ− ℓ0

)︁
, (11.2)

jossa ℓ on jousen keskimääräinen pituus heilahtelun aikana ja samalla
tasapainopituus, jos heilahtelua ei ole.

Kun koemassaa häiritään, se alkaa heilahdella tasapainopaikkansa
ympäri. Värähtely-yhtälö, joka saadaan summaamalla yhteen yhtälöt
11.1 ja 11.2, on

d2

dt2
(︁
ℓ− ℓ

)︁
= −

k
m

(︁
ℓ− ℓ

)︁
.

Heilahdusaika on

P = 2π
√︂
m
k

= 2π

√︃
ℓ− ℓ0
g = 2π

√︃
δℓ
g , (11.3)

jossa δℓ = ℓ− ℓ0 on tasapainotilassa ja lepotilassa olevan jousen pituuk-
sien välinen ero: jousen pidennys painovoiman vaikutuksesta.

Kojeen herkkyys saadaan differentioimalla yhtälö 11.2 muodossa

mg = k
(︁
ℓ− ℓ0

)︁
= k δℓ

tuloksena
dℓ
dg

=
d (δℓ)
dg

=
m
k

=
P2

4π2
. (11.4)

Sĳoittamalla esimerkiksi δℓ = 5 cm ja g = 10m/s2 yhtälöön 11.3 saadaan
P = 0,44 s. Yhden milligalin muutos painovoimassa g tuottaa yhtälön
11.4 mukaan pidennystä vain 5 ·10−8m = 50nm (tarkista!), yksi kahdes-
toistaosa helium-neonlaserin aallonpituudesta. Liikkeen havaitsevan
tai liikettä kompensoivan anturin on selvästi oltava erittäin herkkä!
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^ 11.2.1 Astatisointi

Astatisoitu gravimetri hyödyntää erilaista mittausgeometriaa. Esimerkki
on pitkään suosiota nauttinut LaCoste-Romberg-gravimetri. Sen sisällä
koemassa on vivun eli puomin päässä, katso kuva 11.3. Vipuun kohdis-
tuu kaksi vääntöä, jotka ovat tasapainossa. Jousen aiheuttama vääntö
on

τs = k
(︁
ℓ− ℓ0

)︁
b sinβ,

jossa ℓ on jousen todellinen venytetty tasapainopituus ja ℓ0 teoreettinen
pituus ilman kuormitusta eli lepopituus.

Sinisäännön mukaan

ℓ sinβ = c sin(90◦ + ϵ) = c cos ϵ,

jonka sĳoitus edelliseen yhtälöön antaa

τs = k
(︁
ℓ− ℓ0

)︁ bc
ℓ

cos ϵ.

Massaa vetävä painovoima onmg ja vastaava vääntö

τg = mgp cos ϵ.

Niiden välillä on oltava tasapaino:

τg − τs = mgp cos ϵ− k
(︁
ℓ− ℓ0

)︁ bc
ℓ

cos ϵ = 0

eli
mgpℓ− kbc

(︁
ℓ− ℓ0

)︁
= 0. (11.5)

Differentioimalla

mpℓdg+mgpdℓ− kbcdℓ = 0,

ja sĳoittamalla siihen yhtälö 11.5 antaa herkkyyskaavan:

dℓ
dg

= −
mpℓ

mgp− kbc
= −

mpℓ

mgp−mgp ℓ
/︂(︁
ℓ− ℓ0

)︁ =
ℓ
g
ℓ− ℓ0
ℓ0

.
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Pituus

Vo
im

a Toiminta-alue

Hooken laki

Todellisuus

ϵ

k
(︁
ℓ− ℓ0

)︁
sinβ

β

c

Jousi, pituus ℓ

bb

p

mg

Koemassan puomi

Kuva 11.3. Jousigravimetrin toimintaperiaate. Oikealla näytetään, miten toteu-
tetaan ”nollapituusjousi”.^

Tästä näkyy, että herkkyyttä voidaan kasvattaa mielivaltaisesti valitse-
malla ℓ0 mahdollisimman lyhyeksi, lähes nollaksi. Tämä ratkaisu on
nimeltään nollapituusjousi (Wikipedia, Zero-length springs).

Tietenkin kojeen tasaus käyttämällä sisäänrakennettua rasiatasainta
ja kolmea jalkaruuvia on kriittisen tärkeää.

Esimerkiksi oletukset ℓ = 5 cm, ℓ0 = 0,1 cm, g = 10m/s2 antavat

dℓ
dg

= 2,5 · 10−6m/mGal ,

50 kertaa5 paremman tuloksen kuin aiemmin! Parannus- eli astatisointi-5

suhde on juuri
(︁
ℓ− ℓ0

)︁/︁
ℓ0 .

5Vertailukelpoisuuden vuoksi pitää kertoa lausekkeen p
/︁
b sinβ kanssa, jos koemas-

san paikka mitataan.
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Tämä on astatisoidun gravimetrin, kuten LaCoste-Romberg-

gravimetrin6, toimintaperiaate. 6

^ 11.2.2 Heilahtelun periodi
Aihetta voi tarkastella myös hieman toisella tavalla. Jos laite ei ole tasa-
painotilassa, puomi heilahtelee hitaasti tasapainoasennon molemmin
puolin. Lähdetään yhtälöstä 11.5:

mgpℓ− kbc
(︁
ℓ− ℓ0

)︁
= 0, (11.6)

mutta sovellettuna epätasapainotilaan. Silloin koemassalla on kiihty-
vyys a, positiivinen alaspäin, ja pätee

m (g− a)pℓ− kbc (ℓ− ℓ0) = 0,

jossa jousen tasapainopituuden ℓ sĳaan on laitettu sen hetkellinen pituus
ℓ. Vähentämällä yllä olevat kaksi yhtälöä toisistaan saadaan

mgp
(︁
ℓ− ℓ

)︁
+mapℓ− kbc

(︁
ℓ− ℓ

)︁
= 0.

Käytetään yhtälöä 11.6 lausekkeen kbc eliminoimiseksi, tuloksena

mgp
(︁
ℓ− ℓ

)︁
+mapℓ−mgp

ℓ

ℓ− ℓ0

(︁
ℓ− ℓ

)︁
= 0.

Termien uudelleenjärjestys antaa

mapℓ = mgp
ℓ0

ℓ− ℓ0

(︁
ℓ− ℓ

)︁
eli

a = −
g
ℓ
ℓ0

ℓ− ℓ0

(︁
ℓ− ℓ

)︁
.

6Lucien LaCoste (1908–1995) oli amerikkalainen fyysikko ja metrologi, joka keksi
ylioppilaana yhdessä fysiikkaprofessorinsa Arnold Rombergin (1882–1974) kanssa
astatisoidun gravimetrin ja nollapituusjousen periaatteen.
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Tähän ilmaantuu jälleen ”astatisointisuhde”
(︁
ℓ− ℓ0

)︁/︁
ℓ0 , joka nollapi-

tuusjouselle (ℓ0 ≈ 0) on hyvin suuri.
Nyt jousen pituuden epätasapaino ℓ − ℓ on yhteydessä koemassan

pystysĳainnin poikkeamaan z (alaspäin kasvava) seuraavasti:

z =
(︁
ℓ− ℓ

)︁ p
b sinβ.

Tämän avulla saadaan

a =
d2

dt2
z = −

g
ℓ
ℓ0

ℓ− ℓ0

b sinβ
p z.

Tämä on värähtely-yhtälö muuttujassa z. Värähtelyaika on

P = 2π

√︃
ℓ
g

p
b sinβ

ℓ− ℓ0
ℓ0

.

Samoille arvoille kuin yllä, ℓ0 = 0,1 cm, ℓ = 5 cm ≈ ℓ, g = 10m/s2 ja
p
/︁
b sinβ = 2, löydämme

P = 4,4 s.

Tämä pitkä värähtelyaika merkitsee, että laite on vähemmän herkkä
korkeataajuuksisille värähtelyille, joita syntyy esimerkiksi ohikulkevasta
liikenteestä tai mikroseismiikasta. Tämä on merkittävä toiminallinen
etu.

^ 11.2.3 Käytännön mittaus
Tavallinen jousigravimetri perustuu elastisuuteen. Koska mikään aine ei
ole täysin elastista, vaan aina myös plastista7, gravimetri itse muuttuu7

mittausprosessin aikana. Tätä muutosta kutsutaan käynniksi. Käynti
otetaan huomioon käytännön mittauksissa seuraavilla toimenpiteillä:

7Metallikiteen plastinen deformaatio tapahtuu kidehilan virheiden, dislokaatioiden,
välityksellä. Kun dislokaatiot kulkevat hilan läpi kiteen kuormittuessa, metallin omi-
naisuudet muuttuvat, mistä voi seurata metalliväsymys, joka on tunnettu ongelma
esimerkiksi ilmailussa. Wikipedia, Dislokaatio. Metallurgian keskeinen käytännön
tehtävä on metallien vahvistaminen estämällä dislokaatioiden liikettä, esimerkiksi
lisäämällä hiiltä rautaan teräksen valmistuksessa. Wikipedia, Strengthening mecha-
nisms of materials.
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mgg

mgg

δ(ε)

F(
ε)
F(
ε) F(ε) cos(α+ δ+ ε)

−ε

α

Kuva 11.4. Astatisoinnin idea. Tavallisen jousen elastinen voima kasvaa jyrkästi
jousen venyessä (vasemmalla), kun taas koemassan paino on vakio.
Puomi- ja diagonaaliasetelman ansiosta (oikea) jousen voiman
osuus puomin liikkumissuunnassa (punainen) pienenee jousen
venymisen myötä, kun taas jousen voima kasvaa lähes samalla
tavalla, kun jousi venyy. Tämä likimääräinen kumoaminen nostaa
herkkyyttä. Käytetty jousi on nollapituusjousi.^

◦ Mitataan pitkin linjoja, jotka lähtevät tunnetusta pisteestä ja päät-
tyvät tunnettuun pisteeseen. Silloin saadaan sulkuvirhe. Mittaus
etenee linjaa pitkin mahdollisimman nopeasti. Sulkuvirhe pois-
tetaan tasoittamalla mittauksesta saadut arvot suhteessa niiden
mittausaikoihin.

◦ Gravimetria kuljetetaan varovasti sitä kolhimatta.

◦ Kuljetuksen aikana muistetaan aina arretoida (laittaa puomi liikku-
mattomaksi)!

◦ Koska jousen elastiset ominaisuudet ja laitteen geometria riippuvat
lämpötilasta, tarkkuusgravimetrit ovat aina termostoituja.

Merigravimetri eroaa tavallisesta (maa-)gravimetrista siinä, että se on
tehokkaasti vaimennettu. Sama pätee myös ilmagravimetrille. Molemmat
asennetaan vakautetulle alustalle, jolloin mittausakseli osoittaa aina
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paikallisen luotiviivan suuntaan kulkuneuvon liikkeistä huolimatta.

^ 11.3 Absoluuttinen eli ballistinen gravimetri

Ballistinen eli absoluuttinen gravimetri on paluuta perusteisiin eli
painovoiman määritelmään: koje mittaa suoraan vapaan putoamisen
kiihtyvyyttä. Laite sisältää tyhjiöputken, jonka sisällä kappale, valoa
heĳastava prisma, putoaa vapaasti. Katso kuva 11.5.

Tässä kuvataan lyhyesti Boulderissa Coloradon yliopistossa Jim Falle-
rin8 ryhmän rakentama JILA-gravimetri, joita Geodeettinen laitos on8

hankkinut kaksi. Kuvassa 11.6 näkyy uudempi saman ryhmän rakenta-
ma laite, FG5. Suomessa tämä laite, jonka sarjanumero on 221, on toi-
minut vapaan putoamisen kiihtyvyyden kansallisena mittanormaalina.
Vuonna 2012 laite päivitettiin FG5X-tyyppiseksi.

Prisman putoamisen aikana ”häkki”, jonka pohjassa on ikkuna, liik-
kuu häkin sisällä olevan prisman mukana siihen kuitenkaan koskematta.
Häkin päätarkoitus on estää jäljellä olevia ilmahiveniä vaikuttamasta
prisman kulkuun. Putken pohjan lähellä häkki, joka kulkee tietokone-
ohjattuna raidetta pitkin, jarruttaa, ja prisma laskeutuu suhteellisen
pehmeästi häkin pohjaan. Sen jälkeen häkki kulkee takaisin putken
yläpäähän ja uusi mittausjakso alkaa.

Laserinterferometri mittaa prisman paikat matkan varrella. Mittauk-
set toistetaan tuhansia kertoja hyvän tarkkuuden aikaansaamiseksi.
Kyse on siis keskiarvostuksesta. Toinen prisma, vertausprisma, on ripus-
tettu toisessa putkessa hyvin löysästä jousesta (oikeastaan elektronisesti
simuloitu ”superjousi”), mikä suojaa prismaa mikroseismiikalta.

Laite on suunniteltu niin, että on mahdollista saavuttaa suurin mah-
dollinen tarkkuus. Esimerkiksi pudottamisen aiheuttama tärinä on
saatu hallintaan hyvin suunnitellun jalustan avulla. Tarkkuudet ovat

8James E. Faller (synt. 1934) on amerikkalainen fyysikko, metrologi, geodeetti ja
gravitaation tutkĳa. Hän ehdotti, että laserheĳastimia asennettaisiin Kuun pinnalle
Apollo-projektissa Kuun etäisyyden mittaamiseksi — LLR, lunar laser ranging.
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Puoliläpäisevä peili

Laser

”Superjousi”

Interferenssin havaintolaite

Putoava prisma

Prisman suojahäkki

Suojahäkin kuljetusjärjestelmä

Peili

Vertausprisma
gg

Tyhjiöpumppujärjestelmä

Kuva 11.5. Ballistisen absoluuttigravimetrin toimintaperiaate.^

muutaman mikrogalin luokkaa eli samaa kuin mihin LaCoste-Romberg-
relatiivigravimetrit pystyvät.

Laite on kuitenkin kookas, ja vaikka sen voi kuljettaa paikasta toi-
seen, sitä ei voi kutsua kenttäkojeeksi. Viime aikoina kehitys on mennyt
pienempien laitteiden suuntaan, koska niiden kuljetettavuus on olen-
naisesti parempi.

Vapaasti putoavan massan liike saadaan yhtälöstä

d2

dt2
z = g(z),

jossa on oletettu — realistisesti — että painovoima g riippuu paikasta
z pudotusputken sisällä, alaspäin kasvava. Jos kuitenkin oletetaan g
vakioksi, saadaan integroimalla

d
dt
z = v0 + gt, z = z0 + v0t+

1

2
gt2,
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Kuva 11.6. FG5-tyyppinen absoluuttinen gravimetri. Valokuva Yhdysvaltojen
National Oceanic and Atmospheric Administration (NOAA).^

josta saadaan mittausprosessin havaintoyhtälöt

zi =
[︂
1 ti

1

2
t2i

]︂
·

⎡⎢⎣ z0v0
g

⎤⎥⎦+ ni.

Tässä estimoitavissa olevat tuntemattomat9 ovat z0, v0 ja g. Suureet zi9

ovat putoavan prisman interferometrisesti mitatut pystysuuntaiset pai-
kat janimittausvirheet eli ”kohina”. Vastaavan mittaushetken eli epookin
ti tarkka määritys laskettuna prisman vapauttamisen hetken lähellä
olevasta nollahetkestä on tietenkin olennaista. Jokaisessa yksittäisessä
pudotuksessa kerättävien mittausarvojen lukumäärä on mittava.

9Olisi helppo (harjoitus!) lisätä tähän painovoiman pystygradienttia edustava tunte-
maton. Se, voidaanko tälle tuntemattomalle saada käyttökelpoinen arvo mittauksista,
on hyvä kysymys.
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Havaintoyhtälöt kirjoitetaan matriisimuotoon:

ℓℓ = Axx + nn,

jossa

ℓℓ =

⎡⎢⎢⎢⎢⎣
z1

z2
...
zn

⎤⎥⎥⎥⎥⎦ , nn =

⎡⎢⎢⎢⎢⎣
n1

n2
...
nn

⎤⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
1 t1

1

2
t21

1 t2
1

2
t22

... ... ...
1 tn

1

2
t2n

⎤⎥⎥⎥⎥⎦ , xx =

⎡⎢⎣ z0v0
g

⎤⎥⎦ .
Ratkaisu seuraa tästä pienimmän neliösumman tasoituksen menetelmän
mukaisesti normaaliyhtälöistä

ATAˆ︁xx = ATℓℓ ,

antaen ratkaisun eli estimaatin

ˆ︁xx =
(︁
ATA

)︁−1
ATℓℓ .

Estimaattien epävarmuus on vektorin varianssimatriisi

Var
{︁ˆ︁xx}︁ = σ2

(︁
ATA

)︁−1
,

jossa σ on yhden havainnon zi epävarmuus eli keskivirhe, ”painoyksi-
kön keskivirhe”.

Vaihtoehtoinen absoluuttigravimetrityyppi heittää prisman ylös put-
ken sisällä, minkä jälkeen prisma kulkee symmetristä rataa. Tällainen
”rise-and-fall” -laite on esimerkiksi italialainen IMGC-02 (d’Agostino ym.,
2008). Teoreettisesti tällä menetelmällä saataisiin tarkempia mittaustu-
loksia, mutta sen tekniset haasteet ovat suurempia kuin pudotusmene-
telmässä. Laitetyyppien väliset vertailut ovat auttaneet identifioimaan
virhelähteitä.

Viime aikoina on rakennettu myös niin sanottuja atomi- eli kvant-
tigravimetreja, joilla mitataan interferometrisesti yksittäisten atomien
putoamisliikettä (de Angelis ym., 2009).
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Laitteen idea on, että painovoiman vaikutus putoavien atomien aine-
aallon vaihekulmaan mitataan. Ensin valmistetaan niin sanottu Bosen ja
Einsteinin kondensaatti äärimmäisellä jäähdytyksellä. Kondensaatissa
on ehkä miljoona atomia, jotka kaikki ovat identtisessä kvanttitilassa.
Atomien vaihekulmat liikkuvat yhdessä, ikään kuin ne olisivat yhdessä
marssivat sotilaat.

Laservalon ja atomien välinen vuorovaikutus perustuu Raman-
ilmiöön, epäelastiseen sirontaprosessiin, jossa atomit vaihtavat sekä
energiaa että liikemäärää lasersäteen fotonien kanssa samalla kun
ne siirtyvät kvanttitilasta toiseen. Sirontaan osallistuu kaksi fotonia:
kyseessä on "kielletty" siirtymä, jolla on hyvin tarkasti määritelty
energian ja liikemäärän muutos.

Kondensaatin annetaan pudota, ja ensimmäinen laserpulssi jakaa
sen kahtia. Puolet atomeista10 putoaa ensin hitaasti ja sitten nopeam-10

min. Toinen puoli putoaa ensin nopeasti ja sitten hitaammin. Tämän
toteuttamiseksi ammutaan toinen laserpulssipari, joka toimii peilin tai
ehkä tennismailan tavoin. Kolmas ja viimeinen laserpulssi yhdistää
säteet. Sen jälkeen havaitaan vahvistavaa tai vaimentavaa interferenssiä
fluoresenssi-ilmaisimen avulla. Havainnoista päätellään interferometrin
kahden haaran välinen vaihe-ero.

Kun atomit kulkevat aika-avaruuden kautta kahta eri reittiä, joiden
painovoimapotentiaalit ovat erilaiset11, syntyy niiden välille vaihe-ero,11

joka periaatteessa voidaan mitata. Katso kuva 11.7, jossa vaaka-akseli
on aika. Ilman painovoimaa (katkoviivat) tämä vaihe-ero olisi nolla.

Kuten kaikissa (ei-kinemaattisissa) interferometrisissa menetelmissä,
ambiguiteettiongelma — se, että mitattu vaihe on aina välillä

[︁
0, 2π

)︁
,

vaikka vaiheen muutos tai vaihe-ero voi sisältää monta kokonaista

10Tämä on kvanttiteoreettisesti väärin sanottu. Jokaisen atomin aineaalto jakautuu
kahteen! Wikipedia, Kaksoisrakokoe.
11Itse asiassa atomin aaltofunktion vaihekulman kiertoliike toimii kellon tavoin, ja
ajan kulun nopeus riippuu paikallisesta geopotentiaalista (Vermeer, 1983a).
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t

z

gg Ilman painovoimaa
Painovoimakentässä

Peilaus-Peilaus-
sädesäde

Yhdistämis-
säde

T T

Jako-
säde

Kuva 11.7. Atomi- eli kvanttigravimetrin toiminta-ajatus. Vaaka-akseli on aika.^

kierrosta — asettaa oman haasteensa. Ambiguiteettien ratkaisu onnistuu
mittaamalla useilla eri pulssien välisillä aikaväleillä T , kuva 11.7.

^ 11.4 Verkkohierarkia gravimetriassa

Gravimetriassa verkkohierarkia on yhtä tärkeä kuin geodeettisissa si-
jainnin tai korkeuden mittauksissa. Menetelmä on yleensä ollut se,
että ylin mittausluokka koostuu absoluuttigravimetrilla — aikanaan
heilurikojeella — mitatuista pisteistä. Tämän ylimmän luokan verkon
vaiheittainen tihennys eli runkoverkon mittaus suoritettiin sen jälkeen
relatiivi- eli jousigravimetreilla, kuten myös alimman luokan mittaukset
eli painovoimakartoitus. Runkomittauksissa käytettiin nopeita kuljetus-
välineitä, kuten lentokoneita, ja kansalliset tai alueelliset vertauspisteet
sĳaitsivat usein lentokentillä.

Koska heilurigravimetrit eivät ole riittävän tarkasti absoluuttisia, on
vanhaan Potsdamin järjestelmään jäänyt systemaattinen 14milligalin
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Kuva 11.8. Kansainvälinen absoluuttigravimetrien vertailu Walferdangessa
Luxemburgissa. Kuva © Olivier Francis.^

kokoinen virhe: kaikki arvot ovat sen verran liian korkeita. Nykyisin
käytetäänkin mieluummin ballistisia vapaan putoamisen gravimetreja,
joiden systematiikka on paljon pienempi, vaikkakaan ei olematon:
suuruusluokkaa on mikrogalleja. Koska olemassa ei ole parempia,
siis absoluuttisempia, laitteita, ratkaisua ongelmaan ei lopulta ole.
Siksi alalla järjestetään säännöllisiä kansainvälisiä laitevertailuja, kuten
International Intercomparison of Absolute Gravimeters, jotka ovat
arvokkaita.

Suomessa absoluuttigravimetrilla säännöllisesti mitatut pisteet ovat
Metsähovin lisäksi Vaasassa (kaksi pistettä), Joensuussa (kaksi pistettä),
Kuusamossa, Sodankylässä, Kevolla ja Eurajoella.
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NostokäämiNostokäämi
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Kuva 11.9. Suprajohtavan gravimetrin toimintaperiaate. Pallon paikka luetaan
kapasitiivisesti.^

^ 11.5 Suprajohtava gravimetri

Tämä gravimetrityyppi perustuu magneettikentässä leĳuvaan supra-
johtavaan metallikuulaan, jonka tarkka paikka mitataan elektronisesti.
Koska magneettikenttä ei läpäise suprajohtavaa ainetta, kuula jää ikui-
sesti samaan paikkaan kentän sisälle. Kyseessä on Meissnerin ilmiö.
Kentän on oltava muuttumaton. Kenttä on suprajohtavien käämien ge-
neroima ja mu-metallista tehdyn säilion sisällä (Wikipedia, Mu-metal).
Näin Maan magneettikenttä suljetaan ulkopuolelle.

Suprajohtavuus vaatii edelleen työskentelyä nestemäisen heliumin
(He) lämpötiloilla. Siksi laite ei ole vain kallis, vaan sen käyttö vaatii
kalliita laboratoriotiloja toimivan yhteiskunnallisen infrastruktuurin
ympäristössä.

Suprajohtavia gravimetreja on maailmassa reilut kolmekymmentä.
Työtä koordinoi IAG:n palvelu IGETS, International Geodynamics and Earth
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Tide Service. Yksi GWR20-tyyppinen laite on toiminut vuodesta 1994
Kirkkonummella silloisen Geodeettisen laitoksen, nyt Maanmittauslai-
toksen Metsähovin tutkimusasemalla, Virtanen ja Kääriäinen (1995),
Virtanen (1998). Laite päivitettiin vuonna 2014.

Suprajohtavan gravimetrin tärkein ominaisuus sen ylivoimaisen tark-
kuuden12 lisäksi on stabiilius eli olematon käynti. Siksi se soveltuu12

erinomaisesti pitkäperiodisten ilmiöiden seuraamiseen, kuten suurten
maanjäristysten aiheuttamien kiinteän Maan ominaisvärähtelyjen13,13

joissa koko maapallo soi kirkonkellon tavoin. Se sopii siis mittauksiin,
joihin tavallinen gravimetri ei sovi suuremman käynnin ja heikomman
herkkyyden takia, ja mittauksiin, joihin seismometri ei sovi, koska
mitattavat taajuudet ovat liian matalia.

Viime aikojen trendi on kevyiden, ”kannettavien” ja kauko-
ohjattavien suprajohtavien gravimetrien kehitys, esimerkiksi GWR
iGrav®, joka painaa 30 kg eikä kuluta yhtään nestemäistä heliumia.
Toisaalta se vaatii reilun kilowattin verran verkkovirtaa jäähdytysjärjes-
telmäänsä (GWR Instruments, Inc., iGRAV® Gravity Sensors). Ehkä
tämä tuo parannusta nykytilanteeseen, jossa valtaosa laitteista sĳaitsee
Euroopassa ja Pohjois-Amerikassa.

^ 11.6 Painovoimamittaus ja ilmakehä

Ilmakehä vaikuttaa painovoimaan seuraavalla tavalla:

◦ Laitteeseen liittyvät vaikutukset johtuvat gravimetrin konstruktiosta.
Ainakin ilmanpaineen vaikutus saadaan häviämään sulkemalla
laite painekammioon. Käytännössä helpompaa on kalibroida laite

12Virtanen (2006) kertoo, miten Metsähovin laite havaitsi painovoiman muutoksen,
kun työläiset loivat lunta laboratoriorakennuksen katolta ja pitivät teetauon! Myös
vierailĳoiden ”punnitus” heidän vetovoimansa perusteella on rutiinia.
13Niiden periodit ovat välillä noin 300–30 000 sekuntia — taajuudet 0,03–3mHz — ja
ne ovat geofysikaalisesti hyvin mielenkiintoisia, Wikipedia, Earth normal modes.
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laboratoriossa ja laskea kalibroinnin mukainen korjaus kenttämit-
tauksiin.

◦ Ilmakehän vetovoima on oikea gravitaatio. Se sisältää epäsäännöllisiä
paikasta ja ajasta riippuvaisia vaihteluita, joita pitää korjata pois
painovoiman havaintoarvoista.
Ilmakehän vaikutuksen voi laskea Bouguer-laatta-approksimaa-
tion avulla: jos ilmanpaine on p, on ilmakehän massan pintatiheys

κ = p
/︁
γ ,

jossa γ on edustava painovoima-arvo ilmakehän sisällä. Emme tee
suurta virhettä, jos käytämme merenpinnan arvoa γ ≈ 9,81m/s2.

Merenpinnan standardi-ilmanpaine on 1013,25hPa, jolloin saa-
daan merenpinnan tasolla14 κ ≈ 10 329 kg/m2. Bouguer-laatan vai- 14

kutus on
2πGκ = 0,43mGal (11.7)

ylöspäin.
Olisi kuitenkin väärin käyttää tätä arvoa korjauksena! Standardi-
ilmakehä on oikeasti pallokuori, jonka sisällä mittaukset tehdään,
ja kuoren sisällä sen vetovoima häviää, katso osio 1.4.
Sen sĳaan ilmanpaineen paikallisella vaihteluilla on suhteellinen
vaikutus. Jos ilmanpaineen poikkeama on ∆p = p− p0, jossa p0
on keskimääräinen ilmanpaine, tehtävä painovoimamittauksen
korjaus on

δgA = 0,43
∆p
p0

mGal.

Myrskyn tai säärintaman ylikulun aikana kaunis teoria romahtaa
ja yksinkertaiset kaavat antavat harhaanjohtavia tuloksia. Silloin
on paras olla tekemättä painovoimamittauksia!

14Siis tosiaan, standardi läppärin 14 tuuman näyttöön (kuvasuhde 16 : 9) kohdis-
tuva voima on 547 kg. . . mutta sillä ei ole väliä, koska se ei ole vanhanaikainen
tyhjiökuvaputki.
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◦ Ilmakehän sisällyttäminen maapallon massaan ei ole painovoimamit-
tauksiin tehtävä korjaus, vaan reduktio, jota käytetään painovoima-
anomalioiden laskennassa, mikäli halutaan anomalioita, joissa il-
makehän vaikutus ei aiheuta systematiikkaa.
Muista, että GRS80:n normaalipainovoimakenttä on määritelty
siten, että parametri GM⊕ sisältää koko maapallon massan il-
makehä mukaan lukien. Se on Maan vetovoima sellaisena kuin
satelliitit sen tuntevat (Heikkinen, 1981).
Siksi, jos halutaan laskea painovoima-anomalioita, joiden maa-
ilmanlaajuinen keskiarvo on nolla, pitää redukoida myös mi-
tattu painovoima siirtämällä laskennallisesti koko mittauspaikan
yläpuolella oleva ilmakehä mittauspaikan alapuolelle, esimerkiksi
merenpintaan.
Ilmakehän kokonaismassa on

MA = 4πκR2 = 4π
p
γR

2.

Newtonin mukaan sen vetovoima on

GMA

R2
=
4πGp
γ ,

kaksi kertaa yllä laskettua Bouguer-laatan ilmakehäreduktiota
11.7. Tämä arvo on lisättävä mitattuihin painovoima-arvoihin.
Voi myös ajatella tätä arvoa painovoiman muutoksena, jos paikal-
lisen ilmakehän Bouguer-laatta tiivistettäisiin Helmertin konden-
saation tavoin mittauspaikan alapuolelle, jolloin saadaan kaksin-
kertainen Bouguer-laattakorjaus.
Merenpinnalla korjaus on 0,87mGal. Korkeudella korjaus on

0,87
p(H)
p0

mGal,

jossa p(H) ja p0 ovat ilmanpaineet korkeudellaH ja merenpinnalla.
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^ 11.7 Ilmagravimetria ja GNSS

1990-luvun alussa GPS, globaali paikannusjärjestelmä, ja yleisemmin
satelliittipaikannus, muutti ilmagravimetrian hankalasti toteutettavas-
ta tekniikasta täysin operationaaliseksi. Tämän ymmärtämiseksi on
tunnettava ilmagravimetrian toimintaperiaate.

Lentokoneessa kuljetetaan ilmagravimetria, kojetta, joka on samalla
tavalla vahvasti vaimennettu kuin merigravimetri. Mittaus tapahtuu
automaattisesti, yleensä sähköstaattisen kompensaation avulla. Koje on
asennettu vakautetulle alustalle, joka seuraa paikallista luotiviivaa.

Lennon aikana gravimetri mittaa lentokoneessa kokonaispainovoimaa,
joka koostuu kahdesta osasta:

1) varsinainen painovoima kiinteään Maahan kiinnitetyssä ja sen
mukana pyörivässä vertauskehyksessä

2) lentokoneen kiihtyvyyksien aiheuttamat näennäisvoimat, jopa
suorassa lennossa.

Lentokoneeseen on kiinnitetty muutama GNSS-antenni. Niiden ja geo-
deettisen GNSS-laitteen avulla voidaan lentokoneen liikkeitä seurata
senttimetrin tarkkuudella. Liikkeistä voidaan laskea kohdalla 2 mainitut
näennäisvoimat.

Jos mitataan lentokoneen (eli mittalaitteen) paikka xxi hetkillä ti,
∆t = ti+1 − ti, saadaan kiihtyvyysarvojen estimaatit seuraavasti (inerti-
aalisessa kehyksessä):

aa∗
i ≈

xx∗
i+1 + xx∗

i−1 − 2xx
∗
i

∆t2
. (11.8)

Jos gravimetrilla mitattu kiihtyvyys on ˜︁g ja paikallisen luotiviivan
suunta (ylöspäin) nn, seuraa paikallinen painovoima g seuraavasti:

g = ˜︁g− ⟨︂(︁aa∗ + ffω
)︁
· nn
⟩︂
= ˜︁g− ⟨︁aa∗ · nn

⟩︁
−ω2⊕N(φ) cosφ,

jossa ffω = ω2⊕ (X ii+ Y jj) on Maan pyörähdysliikkeen keskipakoiskiih-
tyvyys, yhtälö 4.1. N(φ) on Maa-ellipsoidin poikittaiskaarevuussäde,
yhtälö 2.6.
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Maan mukana pyörivässä kehyksessä (”Earth centred, Earth fixed”)
keskipakoiskiihtyvyystermi on jätettävä pois. Sen sĳaan on silloin kui-
tenkin otettava huomioon corioliskiihtyvyys, joka johtaa lentokoneen
nopeuden vv vuorovaikutuksesta Maan pyörimisliikkeen kanssa. Kiihty-
vyystermi on

ff ′ω = −2
⟨︁
ωω⊕ × vv

⟩︁
= 2ω⊕ (vY ii− vX jj) ,

ja saadaan

g = ˜︁g− ⟨︂(︁aa⊕ − ff ′ω
)︁
· nn
⟩︂
= ˜︁g− ⟨︁aa⊕ · nn

⟩︁
+ 2ω⊕ vitä cosφ .

Kriittistä tässä menetelmässä on aikavakion ∆t valinta. Parasta on
valita se mahdollisimman pitkäksi, koska silloin laskettujen GNSS-
kiihtyvyyksien aai tarkkuus on mahdollisimman hyvä. Myös gravi-
metrin vaimennus valitaan ∆t:n mukaan, ja havainnot suodatetaan
digitaalisesti: kaikki taajuudet rajan ∆t−1 yläpuolella poistetaan, koska
ne ovat lähes kokonaan lentokoneen liikkeiden aiheuttamia.

Signaalista poistettu korkeataajuuksinen osa on usein 10 000 kertaa
vahvempi kuin etsitty painovoimasignaali! Katso esimerkiksi Lu ym.
(2017) kuva 2.

Jos yhden GNSS-paikkamittauksen pystysuuntaisen koordinaatin epä-
varmuus (keskivirhe) on σz ja eri koordinaatit eivät korreloi keskenään,
on yhtälön 11.8 mukaan pystykiihtyvyyden epävarmuus

σa =
σz
√
6

∆t2
.

Aikavälin∆t tekeminen mahdollisimman pitkäksi ilman, että erotuskyky
kärsii, vaatii matalaa lentonopeutta. Yleensä käytetään potkurikonetta
tai jopa helikopteria. Tietysti mittauksen hinta kasvaa lennon keston
mukaan — helikopterin roottoritunti on kallis!

Lentokorkeus H valitaan erotuskyvyn ∆xmukaan:

H ∼ ∆x = v∆t,
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jossa v on lentonopeus. Vierekkäisten lentoratojen välinen etäisyys
valitaan vastaavalla tavalla.

Ensimmäinen suuri ilmagravimetriaprojekti lienee ollut Grönlannin
painovoimakentän kartoitus ilmasta (Brozena, 1992). Kunnianhimoises-
sa amerikkalais-tanskalaisessa hankkeessa lennettiin kesinä 1991–92 yli
200 000km. Koko ajan mitattiin sekä painovoimaa että magneettikenttää.
Jäänpinnan korkeutta mitattiin altimetrisesti.

Sen jälkeen on kartoitettu muitakin suuria asumattomia alueita poh-
joisella ja eteläisellä napa-alueella, katso Brozena ym. (1996), Brozena
ja Peters (1994). Muista suurista mittauskampanjoista kerrottiin jo ala-
osiossa 9.6.2. Toiminta jatkuu, katso Coakley ym. (2013), Kenyon ym.
(2012). Menetelmä soveltuu suurille asumattomille alueille, mutta myös
esimerkiksi merialueille lähellä rannikkoa tai saaristojen sisällä. Tällai-
sissa paikoissa laivagravimetrilla olisi vaikea navigoida pitkiä suoria
linjoja. Vuonna 1999 suoritettiin ilmagravimetriakampanja Itämeren yli,
ja mukana oli myös Suomenlahti (Jussi Kääriäinen, henkilökohtainen
tiedotus).

Taloudellisuuden lisäksi ilmagravimetrian tärkeä etu on, että laajal-
ta alueelta saadaan homogeeninen painovoima-aineisto. Monien vuosi-
kymmenien aikana kerätyn pintamittausaineiston homogeenisuutta on
vaikea taata samalla tavalla. Myöskään paikallisen maaston vaikutus,
joka on pintamittauksissa etenkin vuoristossa systemaattinen ja hanka-
lasti poistettava häiriötekĳä (katso osio 6.3), ei esiinny samalla tavalla
ilmagravimetriassa.

Satelliittigravimetrian toimintaperiaate on samanlainen, katso osio 13.7.
Olennainen ero on, että satelliitissa oleva laitteisto on painottomassa
tilassa. ˜︁g = 0 korkealla radalla tai jos käytetään ilmanvastuksen kom-
pensaatiomekanismia. ˜︁g on pieni ja mitataan herkän kiihtyvyysmittarin
avulla matalalla radalla, jossa ilmanvastus on merkittävä.

Satelliittipainovoimamission suunnittelun suurin haaste onkin len-
tokorkeuden valinta. Matalin mahdollinen korkeus on noin 200 km.
Sillä korkeudella tarvitaan ajoainetta tankillisen verran, koska muuten
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lento ei kestä kauan. Mittausten erotuskyky Maan pinnalla on rajalli-
nen: esimerkiksi GOCE-satelliittin ”näkemät” Maan painovoimakentän
pienimmät yksityiskohdat ovat läpimitaltaan 50–100 km.

^ 11.8 Painovoimagradientin mittaus

Painovoiman kiihtyvyys gg on geopotentiaalinW gradientti. Painovoi-
man kiihtyvyys vaihtelee paikan mukaan, etenkin massojen lähistöllä.
Puhutaan painovoimagradienttitensorista eli Eötvösin tensorista:

M
def
=

⎡⎢⎢⎢⎢⎢⎣
∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z

∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

⎤⎥⎥⎥⎥⎥⎦W =

⎡⎢⎣ ∂xx ∂xy ∂xz

∂yx ∂yy ∂yz

∂zx ∂zy ∂zz

⎤⎥⎦W.

Tiedämme, että painovoima kasvaa alaspäin, ainakin vapaassa ilmas-
sa. Ylöspäin painovoima vähenee, noin 0,3mGal jokaista korkeusmetriä
kohti.

Toposentrisissä koordinaateissa (x, y, z), joissa z osoittaa zeniitin
suuntaan, on tämä matriisi likimäärin

M ≈

⎡⎢⎣ −0,15 0 0

0 −0,15 0

0 0 0,3

⎤⎥⎦ mGal/m ,

jossa ∂zzW = ∂zgz = −∂zg ≈ 0,3mGal/m on standardiarvo painovoi-
man pystysuuntaiselle ilmagradientille: Newtonin laki antaa pallon
muotoiselle maapallolle

gz = −
GM

(R+ z)
2
.

Miinusmerkki tulee siitä, ettägg:n suunta on alaspäin, kun z-koordinaatti
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kasvaa ylöspäin. Differentiointi antaa

∂
∂z
gz = 2

GM

(R+ z)
3
· ∂ (R+ z)

∂z
= −

2gz
(R+ z)

≈

≈ 3 · 10−6 m/s2
/︁
m = 0,3mGal/m .

Suureet ∂xxW ja ∂yyW taas edustavat tasapotentiaalipintojen kaare-
vuuksia x- ja y-suunnassa, yhtälöt 4.4:

∂xxW =
∂2W
∂x2

= −
g
ρx
, ∂yyW =

∂2W
∂y2

= −
g
ρy
,

jossa ρx ja ρy ovat x- ja y-suunnan kaarevuussäteet. Sĳoittaminen
ρx, ρy ≈ R antaa

∂xxW = ∂yyW ≈ −1,5 · 10−6 m/s2
/︁
m = −0,15mGal/m .

Unkarilainen tutkĳa Loránd Eötvös teki useita neuvokkaita kokeita (Eöt-
vös, 1998) painovoimagradienttitensorin komponenttien mittaamiseksi
rakentamillaan torsiovaaoilla. Menetelmä on edelleen käytössä geofysi-
kaalisessa tutkimuksessa, koska painovoimagradientti on mittaussuu-
reena varsin herkkä paikallisille maankuoren ainetiheysvaihteluille.

Eötvösin kunniaksi painovoimagradientin yksikkönä käytetään eöt-
vösiä, symboli E:

1E = 10−9m/s2
/︁
m = 10−4mGal/m .

Yllä oleva tensori on nyt

M ≈

⎡⎢⎣ −1500 0 0

0 −1500 0

0 0 3000

⎤⎥⎦E.

Huomaa, että

∂2W
∂x2

+
∂2W
∂y2

+
∂2W
∂z2

= ∂xxW + ∂yyW + ∂zzW ≈ 0,
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tuttu Laplacen differentiaaliyhtälö. Yhtälö ei ole kuitenkaan tässä ek-
sakti: Maan mukana pyörivässä koordinaattijärjestelmässä Laplacen
yhtälöön pitää lisätä keskipakoisvoiman divergenssin termi 2ω2⊕, yhtä-
lö 4.2.

Kuun ja Auringon painovoimagradienttikenttä tunnetaan Maan pääl-
lä vuoroveden kenttänä, katso osio 14.1.

^ Olenko ymmärtänyt tämän?

1) Osiossa 11.2 kuvatulla jousigravimetrilla yhden milligalin muutos
painovoimassa g tuottaa yhtälön 11.4 mukaan pidennystä 5 ·
10−8m. Suorita tarkistuslasku.

2) Miksi heilurigravimetri, vaikkakin teoreettisesti absoluuttinen, ei
ole kovin tarkka absoluuttisena gravimetrina?

3) Millaisilla menetelmävalinnoilla otetaan käytännön mittauksissa
huomioon relatiivigravimetrin käynti?

4) Miksi kansainvälisten gravimetristen runkoverkkojen vertauspis-
teet olivat ennen absoluuttisten gravimetrien tuloa usein lento-
kentillä?

5) Mikä on absoluuttisessa eli ballistisessa gravimetrissa seuraavien
osien rooli:

(a) putoavan prisman ympäröivä ”häkki”

(b) ”superjousi”?

6) Googlen mukaan

◦ Persianlahden sota 1990–1991 oli ensimmäinen selkkaus,
jossa sotilaat käyttivät GPS:ää laajasti.

◦ Joulukuussa 1993 GPS saavutti ”initial operational capabilityn”
(IOC), kun täysi konstellaatio, 24 satelliittia, oli käytettävissä.

◦ Greenland Aerogeophysics Project, ensimmäinen suuren
mittakaavan ilmagravimetriakartoitus, kartoitti Grönlannin
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painovoimakenttää kesien 1991 ja 1992 aikana.

Miksi nämä vuosiluvut ovat näin lähellä toisiaan?

^ Harjoitus 11–1: Absoluuttinen gravimetri

Absoluuttisen gravimetrian havaintoprosessin yhtälö on

z = z0 + v0t+
1

2
gt2.

Oletetaan, että putoamismatka on 30 cm.

1) Paljonko on putoamisaika?

2) Jos tavoitetarkkuus on ±10µGal, kuinka tarkasti laserinterfero-
metrin tulee mitata putoamismatka?
Saa vapaasti valita käytettävän analyysimenetelmän: analyyttinen,
numeerinen, . . . . Ajattele olevasi ostotilanteessa absoluuttista
gravimetria rakentaessasi. Karkea arvio riittää!

3) Sama kysymys putoamisajan mittaustarkkuudelle.

^ Harjoitus 11–2: Jousigravimetri

Kun jousigravimetria käytetään kenttätyössä, asetetaan se jokaisella mit-
tausasemalla tukevaan pohjaan, esimerkiksi peruskallioon, ja tasataan.

Tämän lisäksi huolehditaan aina siitä, että

◦ Laite arretoidaan kuljetuksen aikana: puomi kiinnitetään liikku-
mattomaksi.

◦ Laitteen sisäinen lämpötila pidetään vakiona termostaattĳärjestel-
män avulla.

Syynä tähän on se, että jousigravimetrin toiminta riippuu jousen aineen
ominaisuuksista, jotka saattavat muuttua huolimattoman käsittelyn tai
lämpötilan vaihtelujen seurauksena.

Tämän lisäksi jousigravimetrilla on aina käynti: yhteys mitatun ar-
von ja todellisen arvon välillä muuttuu hitaasti ajassa. ”Kypsässä”, ei-
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vastavalmistuneessa gravimetrissa, käynti on kuitenkin hyvin tasainen
ja melkein lineaarinen.

Kysymys Miten jousigravimetrin käyttäytyminen, erityisesti sen käynti,
otetaan huomioon

1) mittausverkon topologian suunnittelussa?

2) verkon eri mittausten aikajärjestyksen suunnittelussa?

3) kulkuneuvojen ja mittauspisteiden sĳaintien valinnassa?

^ Harjoitus 11–3: Ilmanpaine ja painovoima

1) Paljonko 100hPa syvä matalapaineen alue — jolla on siis
100hPa:n vähemmän ilmanpainetta kuin keskimääräinen il-
manpaine 1013,25hPa — vaikuttaa Maan pinnalla mitattuun
painovoimaan? Oleta, että alue on laaja, niin laaja kuin
matalapaineet yleensä.

2) Paljonko merenpinta nousee matalapaineen alla ”ylösalainen
ilmapuntari” -ilmiön takia?

3) Kuinka suuri on kohdassa 2 mainitun ilmiön vaikutus laivalla
mitattuun painovoimaan? Oleta, että olet avomerellä, että paino-
voiman pystygradientti vapaassa ilmassa on −0,3mGal/m ja että
meriveden tiheys on 1030 kg/m3. Analysoi tilanne huolellisesti15.15

15Siis oikein huolellisesti.
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^ Geoidi, keskimerenpinta ja
meritopografia1212

^ 12.1 Peruskäsitteet

Merellä geoidi on keskimäärin samalla tasolla kuin keskimerenpinta, joka
saadaan, jos hetkellisestä merenpinnasta poistetaan kaikki jaksolliset ja
kvasĳaksolliset vaihtelut. Nämä vaihtelut ovat esimerkiksi:

◦ vuorovesi-ilmiöitä (Kuun ja Auringon aiheuttamia), suuruusluok-
kaa ±1m, paikallisesti enemmänkin

◦ ilmanpaineen vaihtelujen aiheuttamia vaihteluja (”ylösalainen
ilmapuntari”), jotka ovat tavallisesti desimetrien luokkaa, mutta
trooppisten hirmumyrskyjen alla jopa metrejä

◦ tuulen aiheuttama vesimassojen kasaantuminen, ”wind pile-up”

◦ reunamerillä makean jokiveden mereen virtaaman vaihteluja

◦ valtamerillä esimerkiksi Golfvirran ja Agulhasinvirran yhteydessä
syntyviä mesomittakaavan pyörteitä (”mesoscale eddies”), joiden
elinkaari voi olla kuukausia ja joissa merenpinta voi olla jopa pari
desimetriä ympäristönsä merenpinnan ala- tai yläpuolella

◦ merivirtausten jatkuva siirtyminen paikasta toiseen

◦ ENSO, El Niño Southern Oscillation, on hyvin pitkä-aikainen, kva-
sijaksollinen sääilmiö, joka tapahtuu pääasiassa Tyynenmeren
vesissä ja sen yläpuolella olevassa ilmassa, mutta joka vaikuttaa
koko maapallon sääilmiöihin. Vaihtelun aikaskaala on kahdesta
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12324 Geoidi, keskimerenpinta ja meritopografia

seitsemään vuoteen. Katso kuva 13.1.

Jos poistetaan kaikki nämä jaksolliset ja kvasijaksolliset vaihtelut, jää
jäljelle keskimerenpinta. Jos merten vesi olisi tasapainotilassa, olisi tämä
keskimerenpinta Maan painovoimakentän tasapotentiaalipinta nimeltä
geoidi.

Näin ei todellisuudessa ole. Keskimerenpinta eroaa tasapotentiaali-
pinnasta muun muassa seuraavien ilmiöiden seurauksena:

◦ Pysyvät virtaukset valtameressä aiheuttavat coriolisvoiman kautta
pysyviä keskimääräisen vedenpinnan tasoeroja.

◦ Myös pysyvät lämpötila- ja suolaisuuserot aiheuttavat pysyviä
keskiveden tason eroja, jälkimmäiset esimerkiksi jokien suiden
edustalla.

Yllä mainitut fysikaaliset ilmiöt aiheuttavat muiden joukossa niin sa-
notun meritopografian, pysyvän erotuksen keskimerenpinnan ja geoidin
välillä. Katso kuva 12.4.

Geoidin klassinen määritelmä on

”Maan painovoimakentän tasapotentiaalipinta, joka yhtyy keskimäärin
lähimmin keskimerenpintaan.”

Tämän määritelmän käytännön ongelma on, että geoidin oikean tason
määritys edellyttää keskimerenpinnan tuntemista kaikkialla maailman
valtamerillä. Siksi monet ”geoidin” mallit käytännössä eivät yhdy
globaaliin keskimerenpintaan, vaan johonkin paikallisesti määritettyyn
keskimerenpintaan. Usein sekin yhteys on likimääräinen.

Keskimerenpintakin on ongelmallinen käsite. Se on merenpinta, josta on
laskennallisesti poistettu kaikki jaksolliset efektit, mutta kuka voi tietää,
onko niin sanottu sekulaarinen efekti todellisuudessa pitkäperiodinen?
Pysyvyyden mittana ovat mittaussarjat, kun mareografimittaukset
ovat olleet laajasti käytössä jo noin vuosisadan ajan. Nykyaikaiset
merenpintaa mittaavat satelliitit, kuten TOPEX/Poseidon ja sen seuraajat,
ovat sen sĳaan olleet käytössä vasta noin neljännesvuosisadan.
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Järkevä kompromissi lienee merenpinnan 18 vuoden jakson keskiarvo

eli Kuun rataliikkeen jaksollisuus saros, Wikipedia, Saros-jakso.

^ 12.2 Geoidimallit ja kansalliset korkeusdatumit

Paikallisesti määritetty geoidin malli on yleensä suhteellinen. Käytettävis-
sä ei ole tekniikkaa, jolla globaali keskimerenpinta voitaisiin määrittää
paikallisesti riittävällä tarkkuudella. Tulevaisuudessa tämä luultavasti
muuttuu uusien teknologioiden ansiosta.

Yleensä paikallinen geoidimalli on sidoksissa kansalliseen korkeus-
järjestelmään ja ero klassisesta määritelmästä on siis sama kuin tasoero
kansallisen korkeusjärjestelmän ja globaalin keskimerenpinnan välillä.

Suomessa korkeudet määritettiin pitkään N60-järjestelmässä, joka on
sidottu keskimerenpintaan Helsingin satamassa vuoden 1960 alussa.
Ero sen ja globaalin keskimerenpinnan välillä on noin 30 cm johtuen
Itämeren topografiasta, katso kuva 12.4. Järjestelmän pääkiintopiste si-
jaitsee Kaivopuistossa, kuva 7.2. Tarkkavaaituksen avulla korkeuksia
on viety kaikkialle Suomeen.

Nykyinen Suomen korkeusjärjestelmä on N2000. Järjestelmä on si-
dottu periaatteessa Amsterdamin keskimerenpinnalle, joka on lähellä
globaalia keskimerenpintaa. Sen pääkiintopiste Suomessa sĳaitsee Met-
sähovin tutkimusasemalla Kirkkonummella.

Vuoden 1960 alussa Suomen N60-korkeusjärjestelmän lähtötaso oli
Maan painovoimakentän tasapotentiaalipinta. Maannousun seurauk-
sena se ei ole sitä enää: postglasiaalinen maannousu vaihtelee Helsingin
seudun noin neljästä millimetristä vuodessa maannousun maksimialu-
een Pohjanmaan jopa kymmeneen millimetriin vuodessa. Tämä on tär-
kein syy, miksi Fennoskandian korkeusjärjestelmillä on ”parasta ennen”
-päivämäärä, ja ne joudutaan uusimaan pari kertaa vuosisadassa.

Yleensä käytännön geoidikartat, kuten Suomen geoidimalli FIN2000
(kuva 9.5), rakennetaan niin, että ne muuntavat kansallisen korkeusjär-
jestelmän mukaiset korkeudet, esimerkiksi N60-korkeudet (Helmertin
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korkeudet), ”keskimerenpinnasta” korkeuksiksi GRS80-järjestelmän ver-
tausellipsoidista.

Koska maannousu on jatkuva prosessi, se on sidottava tiettyyn epook-
kiin eli ajanhetkeen, jolloin tehtiin ne GNSS-mittaukset, joihin alun perin
gravimetrinen geoidiratkaisu on sovitettu. FIN2000:n tapauksessa tämä
oli 1997.0 (Matti Ollikainen, henkilökohtainen tiedotus; Bilker-Koivula
ja Ollikainen, 2009; Häkli ym., 2009).

Tarkasti ottaen FIN2000 ei siis olekaan geoidin malli. Parempi ni-
mitys lienee ”muunnospinta”. Tämä koskee oikeastaan kaikkia kan-
sallisia tai alueellisia geoidimalleja, jotka tehdään ensisĳaisesti sitä
varten, että GNSS-mittauksia voitaisiin käyttää korkeuden määritykseen
(”GNSS-vaaitus”). Nämä ”geoidinkaltaiset pinnat” rakennetaan yleensä
seuraavalla tavalla:

1) Lasketaan gravimetrinen geoidimalli käyttämällä Stokesin inte-
graaliyhtälöä ja poistamis-entistämismenetelmää (remove-restore),
esimerkiksi FFT-laskentatekniikan avulla.

2) Sovitetaan geoidipinnan ratkaisu muutamaan vertailupisteeseen,
joissa sekä korkeus vaaituksesta eli ”merenpinnasta” että GNSS-
menetelmästä eli vertausellipsoidista tunnetaan. Sovitus tapahtuu
esimerkiksi mallintamalla erotukset polynomifunktiona:

δN = a+ b (λ− λ0) + c (φ−φ0) + · · ·

tai jotain monimutkaisempaa, ja ratkaisemalla kertoimet a, b,
c, . . . kahden korkeuden välisistä erotuksista niissä tunnetuissa
vertailupisteissä pienimmän neliösumman menetelmän avulla.

^ 12.3 Geoidi ja postglasiaalinen maannousu

Globaali keskimerenpinnan taso ei ole vakio. Merenpinta nousee hitaasti,
mutta nousuvauhti on viime vuosisadan aikana kasvanut. Koko 1900-
luvun aikana keskimääräinen nousutahti on ollut parhaiden arvoiden
mukaan 1,5–2,0mm/a , esimerkiksi 1,6mm/a (Wöppelmann ym., 2009).
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Muutaman viime vuosikymmenen aikana tahti on kiihtynyt ja on nyt
reilu 3mm/a , katso kuva 13.1.

Tätä arvoa kutsutaan eustaattiseksi keskimerenpinnan nousuksi. Se johtuu
osin jäätiköiden ja mannerjään sulamisesta, osin meriveden lämpölaa-
jenemisesta. Eustaattisen nousun tarkkaa arvoa on vaikea määrittää:
lähes kaikilla merenpinnan tasoa seuraavilla mareografeilla on omat
pystyliikkeensä, ja niiden erottaminen merenpinnan noususta edellyt-
tää mittauspaikkojen edustavaa maantieteellistä jakaumaa. Etenkin
kiinteän Maan vielä käynnissä oleva isostaattinen reaktio viimeisen
jääkauden päättymiseen eli deglasiaatioon, niin sanottu GIA (glacial
isostatic adjustment), on maailmanlaajuinen ilmiö, jota on osattu vasta
viime vuosikymmeninä havainnoida satelliittipaikannuksen avulla.

Eustaattisen merenpinnan nousun takia on tehtävä ero absoluuttisen
ja relatiivisen eli suhteellisen maannousun välillä:

Absoluuttinen maannousu on maankuoren liike maapallon massa-
keskipisteen suhteen — tai vastaavasti geosentrisen vertausellip-
soidin, esimerkiksi GRS80:n, pinnan suhteen. Tämä maannousu
mitataan, kun käytetään satelliitteja, joiden radanmääritys tapah-
tuu Maan massakeskipisteeseen sidotussa vertausjärjestelmässä,
esimerkiksi mareografin paikannus GNSS:n avulla.

Suhteellinen maannousu on maankuoren liike keskimerenpinnan
suhteen. Tämä liike mitataan mareografin avulla.

Geoidin nousu Kun postglasiaalinen maannousu on Maan sisäisten ai-
nemäärien siirtyminen paikasta toiseen, on selvää, että myös geoi-
di muuttuu. Geoidin nousu on kuitenkin pientä maannousuun
verrattuna, vain muutama prosentti.

Yhtälö (piste suureen yläpuolella merkitsee aikaderivaattaa1): 1

Ḣ = ḣ− Ṅ = Ḣr + Ḣe + Ḣt,

1Tämä pistekirjoitustapa eli fluxion on Newtonin keksimä.
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jossa

Ḣ suhteellinen maannousu geoidista

ḣ absoluuttinen maannousu vertausellipsoidista

Ḣr suhteellinen maannousu paikallisesta keskimerenpinnasta

Ḣe eustaattinen (globaalin keskimerenpinnan) nousu

Ḣt meritopografian ajallinen muutos (luultavasti pieni)

Ṅ geoidin nousu vertausellipsoidista.

Geoidin nousu maannousun seurauksena voidaan yksinkertaisesti
laskea Stokesin integraaliyhtälön avulla:

dN
dt

=
R
4πγ

x

σ
S(ψ)

(︂
d
dt
∆g
)︂
dσ.

Tässä d

dt
∆g on painovoima-anomalioiden muutos ajassa maannousun

seurauksena. Valitettavasti emme tunne tarkasti mekanismia, jolla massaa
virtaa Maan vaipassa maannousualueen alle. Voimme olettaa

d
dt
∆g = c

dH
dt

= cḢ,

jossa vakio c voi vaihdella arvojen −0,16 ja −0,31mGal/m välillä.

◦ Arvoa −0,16mGal/m kutsutaan ”Bouguer-hypoteesiksi”: se vas-
taa tilannetta, jossa nousevan maankuoren alle virtaa ylävaipan
ainetta täyttämään vapautunutta tilaa. Aine voidaan karkeasti
mallintaa Bouguer-laataksi.

◦ Arvo−0,31mGal/m on toinen ääripää, ”vapaa-ilmahypoteesi”, jonka
mukaan viime jääkauden jääkuorma on vain puristanut Maan
vaippaa kokoon, ja nyt se laajentuu hitaasti entiseen tilavuuteensa
(”pullataikinamalli”).

Todennäköisin arvo oli pitkään noin −0,2mGal/m , melkoisella epä-
varmuudella. Uusimmat tulokset (Mäkinen ym., 2010; Olsson ym.,
2019) voidaan esittää muodossa −0,16±0,02mGal/m (yksi standardipoik-
keama). Näyttää siltä, että Bouguer-malli on lähempänä fysikaalista
totuutta. Massan virtauksen oletetaan tapahtuvan astenosfäärissä.
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MaankuoriMaankuori

AstenosfääriAstenosfääri

(a)
Bouguer-hypoteesi. . .

MaankuoriMaankuori

YlävaippaYlävaippa

(b)
. . . ja vapaa-ilmahypoteesi.

Kuva 12.1. Postglasiaalisen maannousun mekanismin kaksi eri hypoteesia.^

Tätä ongelmakenttää on tutkittu Pohjoismaissa paljon. Käytetty me-
netelmä on ollut gravimetrinen mittaus 63. pohjoista leveyspiiriä pitkin
(”Blue Road Geotraverse” -projekti). Mittausasemat ulottuvat Norjan ran-
nikolta Venäjän rajalle saakka, ja ne on valittu niin, että painovoima vaih-
telee kapean arvovälin sisällä. Näin vältetään gravimetrien mittakaava-
virheen vaikutus. Eihän meitä kiinnosta absoluuttinen painovoima-arvo,
vaan ainoastaan painovoimaerojen muutos ajassa asemien välillä.

Mittauksia on tehty monen vuoden ajan käyttäen huipputarkkoja
jousi- eli relatiivigravimetreja. Viime vuosina on siirrytty absoluutti-
gravimetrien käyttöön, jolloin mittauslinjoja ei enää tarvita.
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Kuva 12.2. Fennoskandian 63. pohjoisen leveyspiirin painovoimalinja.^

^ 12.4 Meritopografian määritys

Periaatteessa on olemassa kolme geodeettista menetelmää:

◦ satelliittialtimetria ja gravimetrinen geoidimääritys

◦ mareografien paikannus rannikolla GNSS:n avulla gravimetrisen
geoidimäärityksen kanssa

◦ tarkkavaaitus rannikkoa pitkin mareografien välillä.

Tämän lisäksi on olemassa meritieteellinen menetelmä eli fysikaalinen
mallinnus. Menetelmää kutsutaan steeriseksi vaaitukseksi, jos käytetään
lämpötila- ja suolaisuusmittauksia pystyprofiilia pitkin avomerellä, ja
geostrofiseksi vaaitukseksi, jos käytetään virtausmittauksia coriolisvoiman
vaikutuksen määrittämiseksi, yleensä rannikon lähellä.

Kaikkien menetelmien pitäisi antaa samat tulokset. Itämeri on esi-
merkkitapaus, jossa kaikkia kolmea geodeettista menetelmää on käytetty.
Tulos on ollut, että koko Itämeren pinta on ”kallellaan”: tasapotentiaali-
pintaan nähden merenpinta nousee Tanskan salmista Suomenlahden ja
Pohjanlahden pohjukoille 25–30 cm.

Meritieteelliset mallilaskennat antavat ymmärtää, että tämä kalte-
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vuus on peräisin pääosin suolaisuusgradientista: Atlantilla suolaisuus on
30–35 o/oo, kun Itämerellä se laskee tasoon 5–10 o/oo, jokien massiivisen
makean veden tuotannon takia (Ekman, 1992). Tietysti tämän päälle
tulee ajallisia vaihteluita, kuten myrskyjen aiheuttamia heilahteluja
kylpyammeen tapaan. Vaihtelujen amplitudi voi olla yli metri.

Julkaisussa Ekman (1992) kerrotaan lisää Itämeren topografiasta ja
sen määrityksestä.

^ 12.5 Globaali meritopografia ja lämmönkuljetus

Yksi tärkeä syy, miksi tutkĳat ovat kiinnostuneita maailmanlaajuisesta
meritopografiasta, on, että se antaa tilaisuuden tutkia tarkemmin val-
tamerten virtauksia ja niiden kautta Auringon lämpöenergian kulkua
päiväntasaajalta korkeampiin leveysasteisiin. On monia muita asioita,
joita merivirtausten parempi tunteminen auttaisi tutkimaan, esimerkiksi
veteen liuennut hiilidioksidi, lehtivihreä (kasviplankton) ja suolaisuus.

Maan pyörähdysliikkeen aiheuttama coriolisvoima eli -kiihtyvyys on

ff ′ω = −2
⟨︁
ωω⊕ × vv

⟩︁
, (12.1)

jossa vv on vapaasti liikkuvan hiukkasen nopeusvektori pyörivään maa-
palloon kiinnitetyssä järjestelmässä ja ωω⊕ on maapallon pyörähdysliik-
keen vektori. Tämä on aksiaalinen vektori, joka on Maan pyörähdysak-
selin suuntainen.

Jos neste virtaa Maan pinnalla, vaikuttaa yhtälössä 12.1 vain vektorin
ωω⊕ merenpinnan normaalisuunnassa nn oleva osa: se on

⟨︁
ωω⊕ · nn

⟩︁
=

ω⊕ sinφ, eli vektorina

ωω⊕
def
=
⟨︁
ωω⊕ · nn

⟩︁
nn = (ω⊕ sinφ)nn.

Nyt vaakatasoon projisoitu coriolisvektori on

ff ′ω
def
= −2

⟨︁
ωω⊕ × vv

⟩︁
= −2ω⊕ sinφ

⟨︁
nn× vv

⟩︁
,
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jonka pituus on skalaari

f ′ω = ∥ff ′ω∥ = 2vω⊕ sin |φ| .

Tässä v = ∥vv∥ ja ω⊕ = ∥ωω⊕∥ tutulla tavalla. Corioliskiihtyvyyden
suunta on aina kohtisuorassa virtausnopeuteen: virtaussuuntaan nähden
oikealle päin pohjoisella pallonpuoliskolla ja vasemmalle päin eteläisellä
pallonpuoliskolla.

Coriolisvoiman seurauksena merivirtauksen alueella merenpinta on
virtauksen suhteen sivusuunnassa kallellaan, kulmalla

f ′ω
γ = 2v

ω⊕
γ sin |φ| .

Tässä γ on paikallinen painovoima. Tätä tasapainoa coriolisvoiman ja
painovoiman välillä kutsutaan geostrofiseksi tasapainoksi. Kuten yhtälöstä
näkyy, on päiväntasaajalla kaltevuus nolla, mutta kaikkialla muualla
merivirrat ovat kallellaan.

Esimerkiksi Golfvirran tapauksessa efektin aiheuttamat korkeuden
muutokset ovat muutaman desimetrin. Jos määritellään paikallinen
(x, y)-koordinaatisto, jossa x(φ, λ) osoittaa pohjoiseen ja y(φ, λ) itään,
voimme kirjoittaa meritopografialle H geostrofiset yhtälöt

∂H
∂x

= −2vy
ω⊕
γ sinφ, ∂H

∂y
= +2vx

ω⊕
γ sinφ. (12.2)

Kuten tulemme näkemään luvussa 13, voidaan satelliittialtimetrian
avulla mitata merenpinnan paikka avaruudessa muutaman senttimet-
rin tarkkuudella. Jos tämän lisäksi on tarkka geoidikartta, voidaan
laskea meritopografia ja yhtälöiden 12.2 avulla ratkaista virtauksen
nopeusvektorikenttä22 [︂

vx(x, y) vy(x, y)
]︂T

=
[︂
vx(φ, λ) vy(φ, λ)

]︂T
.

Yhtälöiden elegantti ominaisuus on, ettei tarvitse edes tietää kentän
H(x, y) = H(φ, λ) absoluuttista tasoa, koska se häviää differentioinnissa.

2Käypä, vaikkakin epävirallinen, merivirtauksen yksikkö on sverdrup (Wikipedia,
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x

+

−

y

Kuva 12.3. Meritopografian ja merivirtausten välinen yhteys. Nuolet esittävät
merivirtauksia, käyrät meritopografiaa.^

Kuvattu menetelmä, kuva 12.3, edellyttää riittävän tarkan Maan val-
tameren geoidikartan olemassaoloa. Tähän tarpeeseen GOCE-satelliitti
tuli kuin tilattuna, katso alaosio 13.7.3. Hankkeen yhtenä päämääränä
oli, kuten nimestä voi päätellä, saada täydellinen kuva merivirtauksista
ja erityisesti niiden lämmönsiirtokyvysta. Tämä tieto auttaa ymmär-
tämään, miten maapallon ilmasto toimii ja miten se on muuttumassa
myös ihmiskunnan toiminnan seurauksena. Tämä on Euroopalle, Fen-
noskandialle ja myös Suomelle tärkeä asia, ovathan nämä alueet asu-
miskelpoisia myös Golfvirran tuoman lämpöenergian ansiosta (Caesar
ym., 2018).

Satelliittialtimetrian avulla voidaan tutkia merivirtausten vaihtelu-
ja myös ilman geoidimallia. Jo kauan on ollut tiedossa, että Pohjois-
Atlantilla Golfvirran laidalla liikkuu 10–100 kilometrin kokoisia meso-
mittakaavan pyörteitä, jotka näkyvät altimetriakuvissa. Mielenkiintoista

Sverdrup), miljoona kuutiometriä sekunnissa. Maailman kaikki joet muodostavat
yhdessä noin yhden sverdrupin, kun Golfvirta on 30–150 Sv. ”There is a river in
the ocean” – Matthew Fontaine Maury (1806–1873), amerikkalainen yleisnero ja
merentutkimuksen uranuurtaja.
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Kuva 12.4. GOCEn tuottama meritopografiakartta. Pohjakartta © European
Space Agency (ESA). Yksikkö cm. Päälle piirretyt meren pintavir-
taukset NOAA / Rick Lumpkin (NOAA, Ocean currents).^

on, että pyörteet näkyvät myös merenpinnan lämpötilakartoissa, ja
biologit ovat havainneet, että pyörteiden sisäinen eliöstö poikkeaa ulko-
puolisesta (Godø ym., 2012). Pyörteiden elinkaari voi olla viikkoja, jopa
kuukausia.

Hyvä, vaikkakin jo hieman vanha, johdanto ”geodeettiseen meritie-
teeseen” ja satelliittialtimetrian käyttöön on Rummel ja Sansó (1992).

^ 12.6 Merenpinnan globaali käyttäytyminen

Vettä on maapallolla kolmessa eri olomuodossa: nesteenä, jäänä ja
höyrynä. Geologisen historian aikana etenkin nestemäisen veden ja
jään suhde on vaihdellut suuresti. Myös nykyään suuri määrä jäätä on
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sidoksissa mannerjäätiköihin, lähinnä Etelämantereella ja Grönlannissa.
Näistä Itä-Etelämantereen mannerjäätikkö on ylivoimaisesti suurin.

Koska mannerjäätiköihin sidotun veden määrä vaihtelee, vaihtelee
myös merenpinta. Viime jääkauden päättyminen nosti keskimerenpin-
taa jopa 120 metriä. Prosessi tuli päätökseen noin 7000 vuotta sitten3 3

(Wikipedia, Merenpinnan nousu). Vasta parin viime vuosisadan aikana
merenpinta on lähtenyt taas kiihtyvään nousuun globaalin lämpenemi-
sen seurauksena.

Elämme edelleen viimeisen glasiaation jälkimainingeissa. Siellä missä
oli isoja mannerjäätiköitä, kuten Fennoskandiassa ja Kanadassa Lauren-
tian mannerjäätikkö, maa nousee edelleen tasaiseen tahtiin, nopeim-
millaan 10 ja 14millimetriä vuodessa. Maannousualueiden ympärillä
Keski-Euroopassa ja Yhdysvalloissa tapahtuu puolestaan maan vajoa-
mista 0,5–1,7millimetrin vuosivauhdilla, esimerkiksi DeJong ym. (2015).
Välittömästi Maan kovan ulkokerroksen eli litosfäärin alla olevassa ylä-
vaipassa eli astenosfäärissä ainetta virtaa hitaasti sisään päin nousevan
maankuoren alle.

Kuvion mutkistamiseksi mannerjäätiköiden sulamisen aiheuttama
merenpinnan nousu painaa myös valtameren pohjaa alas — jopa 0,3
millimetriä vuodessa. Kyseessä on niin sanottu Peltier’n ilmiö (Peltier,
2009). Siksi joko rannikon mareografeilla tai avaruudesta käsin satelliit-
tialtimetrialla mitattu merenpinnan nousu ei edusta koko valtameren veden
tilavuuden muutosta. Jos jälkimmäinen kuitenkin kiinnostaa, kuten aina
ilmastotutkimuksessa, havaintoarvoihin pitää lisätä Peltier’n korjaus.

Merenpohjan vajoaminen ei ole ollut globaalisti tasaista: mantereiden
reunalla tapahtuu ”vipuliikettä”, kun merenpohja vajoaa, mutta kuiva
maa ei. Intian valtameren ja Tyynenmeren tropiikissa merenpinta saa-
vutti maankuoren suhteen maksimitasonsa jo noin 7000 vuotta sitten:
mid-Holocene highstand. Sen jälkeen paikallinen merenpinta on laskenut,

37000 years ”before present”, 7 ka BP. BP sovitusti merkitsee ennen vuotta 1950.
Nykyisin käytetään myös lyhennettä b2k: ennen vuotta 2000.
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Kuva 12.5. Merenpintayhtälö. Merenpinta reagoi monimutkaisella tavalla man-
nerjäätiköiden sulamiseen.^

ja kuolleita korallimuodostelmia on jäänyt 2–3metriä nykymerenpin-
nan yläpuolelle. Näin esimerkiksi muodostuivat Tuvalu ja Malediivit,
joita moderni merenpinnan nousu on jälleen uhkaamassa.

^ 12.7 Merenpintayhtälö

Tieteellisesti merenpinnan vaihteluja tutkitaan merenpintayhtälön avulla.
Alan uranuurtajia on ollut kanadalainen Richard Peltier, joka on raken-
tanut fysikaalisia malleja siitä, miten sekä kiinteä Maa että merenpinta
reagoi, jos mannerjäätiköiden kokonaismassa muuttuu.

Merenpintayhtälö on (Farrell ja Clark, 1976; Spada ja Melini, 2015):

S = SE +
G
R

(︂
ρi
(︁
Gs ⊗i I−Gs ⊗i I

)︁
+ ρw

(︁
Gs ⊗o S−Gs ⊗o S

)︁)︂
, (12.3)

jossa

◦ S = S(ω, t) = S(ϕ, λ, t) tarkoittaa merenpinnan vaihteluja paikan
ω = (ϕ, λ) ja ajan t funktiona. Vaihtelut ovat suhteessa kiin-
teän Maan pintaan eli meren syvyyden vaihteluja. S on myös
mareografien havaintosuure.

◦ I = I(ω, t) on jäätiköiden paksuuden vaihtelua kuvaava paikan ja
ajan funktio.
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◦ SE on eustaattinen termi, jäämassojen vaihtelu ilmaistuna ”vastaa-

vana globaalin merenpinnan vaihteluna”, yhtälönä

SE(t) = −
mi(t)
ρwAo

,

jossa mi(t) on jään kokonaismassan vaihtelu ajan funktiona, ρw

meriveden tiheys ja Ao valtamerten kokonaispinta-ala.

◦ Ron Maan keskisäde,GNewtonin universaalinen gravitaatiovakio,
osio 1.2.

◦ ρ on aineen tiheys: ρi jään ja ρw meriveden.

◦ ⊗ on Maan pinnan ja aika-akselin konvoluution symboli: ⊗i jää-
tiköiden ja ⊗o valtamerten yli. Greenin funktio kerrotaan jää- ja
merifunktioiden kanssa sekä integroidaan kyseessä olevan mää-
rittelyjoukon yli. Nämä integraalit ovat muuten hyvin samanlaisia
kuin ne, joista puhuttiin osiossa 8.1. Esimerkiksi

{︁
Gs ⊗o S

}︁
(ω, t) =

=
w t
−∞

x

meri
Gs
(︁
ψ(ω,ω ′), (t− t ′)

)︁
S(ω ′, t ′)dω ′ dt ′, (12.4)

jossa ψ(ω,ω ′) on geosentrinen kulmaetäisyys laskentapisteen
ω = (ϕ, λ) ja datapisteen ω ′ = (ϕ ′, λ ′) välillä. Pintaintegraa-
lin mitta on dω = R2 dσ = R2 cosϕdϕdλ. Kuten näkyy, tässä
on kyse sekä Maan pinnalla ω että aika-akselilla t suoritetusta
konvoluutiosta.

◦ Yläpalkki merkitsee keskiarvotusta koko kyseessä olevan alueen yli.

◦ Gs on merenpinnan Greenin funktio

Gs(ψ,∆t) =
1
γGV(ψ,∆t) −Gr(ψ,∆t), (12.5)

jossa ∆t def
= t− t ′ ⩾ 0.

Tämä yhtälö ilmaisee yksinkertaisesti sen, että meren syvyys S on
merenpinnan ja merenpohjan välinen etäisyys ja että syvyyden
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muutos on erotus näissä tapahtuvien pystysuuntaisten siirtymien
välillä: potentiaalin V muutoksesta johtuva merenpinnan siirtymä
ja merenpohjan siirtymä eli paikallisen säteen rmuutos.
Tässä geopotentiaalin Greenin funktio on

GV(ψ,∆t) = G
r
V(ψ,∆t) +G

e
V(ψ,∆t) +G

v
V(ψ,∆t),

Funktio Gr
V(ψ,∆t) = δ(∆t)

/︂
2 sin

(︁
1

2
ψ
)︁ on jäykän (”rigid”) osittai-

nen Greenin funktio, joka edustaa vesi- tai jäämassan aiheuttamaa
potentiaalin muutosta ennen mitään deformaatiota.
Funktiot Ge

V ja Gv
V ovat elastisen ja viskoosin deformaation geopo-

tentiaalin osittaiset Greenin funktiot. Ne siis luonnehtivat maa-
pallon reologista käyttäytymistä, ja niiden teoreettiseen laskemiseen
tarvitaan Maan sisäisiä tiheys- ja viskositeettĳakaumia ρ(r) ja η(r)
— olettaen, että ne ovat isotrooppisia eli riippuvat vain säteestä r.

Gr(ψ,∆t) = G
e
r(ψ,∆t) +G

v
r(ψ,∆t)

on vastaavasti merenpohjan pysty- eli säteittäisen siirtymän Gree-
nin ydinfunktio, samalla tavalla jaettuna elastiseen ja viskoosiin
osuuteen. ”Jäykkä” osuus on triviaalisti nolla.

Merenpinnan käyttäytymisen voi nyt laskea siten, että ensin yritetään
konstruoida ”jääkuorman historia” I(ω, t). Sen jälkeen yritetään laskea
tästä iteratiivisesti merenpintayhtälön 12.3 avulla S(ω, t). Smerkitsee
suhteellista merenpinnan vaihtelua: muutoksia merenpinnan ja Maan
kiinteän kappaleen eli maankuoren välisessä pystysuuntaisessa sĳain-
tierossa. Kyseessä on paikan funktio: ei saa olettaa, että se olisi kaikkialla
sama. Artikkelissa Mitrovica ym. (2001) näytetään, miten esimerkiksi
Grönlannin sulamisvedet pakenevat eteläiselle pallonpuoliskolle, kun
taas Etelämantereen sulamisvedet siirtyvät pohjoiseen. Tämä on seu-
raus siitä, että Maan painovoimakenttä ja geoidi muuttuvat, kun suuret
jäämassat sulavat. Ja myös Maan muoto muuttuu, kun jään kuormitus
muuttuu: glacial isostatic adjustment eli GIA.
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Kuva 12.6. Merenpinnan nousu viime jääkauden jälkeen (Rohde, 2005).^

Tämä hankaloittaa globaalin keskimerenpinnan vaihtelujen seurantaa
paikallisten mittausten avulla: ongelma on tuttu Fennoskandiasta, jossa
maankuori nousee toistaiseksi nopeammin kuin globaali merenpinta.

Merenpintayhtälön Greenin funktiot ovat sekä etäisyyden ψ että
aikaeron ∆t funktioita. Tämä kertoo, että GIA on sekä paikan että
ajan funktio. Pallosymmetriselle Maalle funktioita voidaan kirjoittaa
kehitelmiksi. Katso Wieczerkowski ym. (1999).

Maapallon elastinen vaste kuormitukseen on geologisella aikaskaa-
lalla välitön. Sitä kuvaavat samanlaiset elastiset Loven luvut kuin ne,
jotka esiintyvät vuorovesivoiman aiheuttaman deformaation teoriassa,
pitkille (vaikkakin geologisesti lyhyille) jaksoille P. Katso osio 14.2. Tällä
tavoin:

Ge
s(ψ,∆t) =

1
γ ·

Ge
V(ψ,∆t)⏟ ⏞⏞ ⏟

δ(∆t)

∞∑︂
n=0

knPn(cosψ) −

Ge
r(ψ,∆t)⏟ ⏞⏞ ⏟

1
γ · δ(∆t)

∞∑︂
n=0

hnPn(cosψ),
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jonka kn ja hn esiintyvät myös yhtälöissä 14.4. δ(∆t) on Diracin delta-
funktio.

GIA puolestaan on viskoosi deformaatio monella eri geologisella aika-
skaalalla. Yhtälöstä 12.5 tulee

Gv
s (ψ,∆t) =

1
γ ·

Gv
V(ψ,∆t)⏟ ⏞⏞ ⏟∞∑︂

n=0

kv
n(∆t)Pn(cosψ) −

Gv
r(ψ,∆t)⏟ ⏞⏞ ⏟

1
γ

∞∑︂
n=0

hv
n(∆t)Pn(cosψ),

jossa potentiaalin ja pystysiirtymän viskoosit Loven luvut ovat

kv
n(∆t) =

I∑︂
i=1

rkni exp(−sni∆t), hv
n(∆t) =

I∑︂
i=1

rhni exp(−sni∆t).

Tässä n on asteluku ja indeksi i = 1, . . . , I laskee viskooseja relaksaatiomoo-
deja jokaiselle asteluvulle n. Eri moodien lukumäärä I on käytännössä
kourallinen, joista jokainen liittyy käytetyn Maan tiheys- ja viskositeetti-
mallin eri epäjatkuvuuspintaan. Suhteita rkni

/︁
sni ja rhni

/︁
sni kutsutaan

”moodien vahvuusluvuiksi” ja τni
def
= 1

/︁
sni ovat relaksaatioaikoja, joissa

kyseessä oleva moodi vaimentuu ajan myötä.
Yleensä maannousun kuviot, joilla on pitkät spatiaaliset mittakaavat

— alhaiset asteluvut n — vaimentuvat hitaammin, kun taas paikalli-
set kuviot — korkeat asteluvut — vaimentuvat nopeammin. Viime
jääkauden lopun eli deglasiaation paikalliset kuviot ovat nyttemmin
jo hävinneet. Fennoskandian maannousu on jo nyt maantieteellisesti
hyvin sileä, ja deglasiaation aikainen seisminen toiminta on pitkälti ohi.
Mannerjäätikön vetäytymisen aikana jäätikön reunalla tapahtui voimak-
kaita maanjäristyksiä, joiden jäljet näkyvät maisemassa yhä (Kuivamäki
ym., 1998). Tämän hetken hallitsevat viskoosit maannousukuviot ovat
maantieteelliseltä mittakaavaltaan satoja kilometrejä ja aikaskaalaltaan
tuhansia vuosia.

^ Olenko ymmärtänyt tämän?

1) Luetteloi kaikki tuntemasi syyt merenpinnan vaihteluille.
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2) Mikä on meritopografia?

3) Mikä on eustaattinen merenpinnan nousu?

4) Mistä nimi ”El Niño” on peräisin?

5) Mikä on absoluuttinen ja mikä suhteellinen maannousu? Mistä
ero niiden välillä koostuu?

6) Mitä kahta mallia on pääasiassa tarjolla maannousun mekanis-
miksi?

7) Millä kolmella geodeettisella menetelmällä voidaan määrittää
meritopografia?

8) Minkä muotoinen on Itämeren meritopografia ja mikä on sen syy?

9) Mikä on coriolisvoima ja miten se vaikuttaa merivirtauksiin?

10) Mikä on geostrofinen tasapaino?

11) Kenen kunniaksi yksikkö sverdrup on nimetty?

12) Miten meritopografian kartta voidaan invertoida merivirtausten
kartaksi? Missä maapallolla tämä menetelmä ei toimi?

13) Mikä on Peltier’n ilmiö? Mikä on mid-Holocene highstand?

14) Mitä merenpintayhtälö kuvaa?

15) Miten merenpintayhtälö 12.3 muuttuisi, jos yhtälön 12.4 tyyppiset
konvoluutiointegraalit olisivat yksikköpallon dσ = cosϕdϕdλ
yli eivätkä dω = R2 cosϕdϕdλ yli?

16) Miksi keskimerenpinta Itämerellä ei nouse, kun Grönlan-
nin mannerjäätikkö sulaa? Mitä tapahtuu Itämerellä, kun
Länsi-Etelämantereen mannerjäätikkö sulaa?

^ Harjoitus 12–1: Coriolisvoima ja merivirtaus

Annettuna on, että merivirtauksen virtausnopeus on 0,1m/s ja sen leveys
100 km.

1) Kuinka paljon on korkeusero vasemman ja oikean reunan välillä?
Kumpi reuna on korkeampi? Oleta, että virtaus on pohjoisella
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leveydellä 45◦.

2) Jos sama virtaus olisi 200 km leveä ja sen virtausnopeus olisi
0,05m/s (eli jos oletetaan sama syvyys, myös kuljetetun veden
määrä on sama), laske korkeusero vasemman ja oikean reunan
välillä.

3) (Huvin vuoksi) jos virtauksen syvyys on 1 km, paljonko on kuljete-
tun veden määrä sverdrup-yksikössä?

^ Harjoitus 12–2: Maan vajoaminen ja maannousun

mekanismi

Miten Yhdysvalloissa ja Keski-Euroopassa havaittu postglasiaalinen
maan vajoaminen tukee Bouguer-tyyppistä maannousun mekanismia
(kuva 12.1a) muttei vapaa-ilmamekanismia?
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^ Satelliittialtimetria ja
satelliittipainovoimamissiot1313

^ 13.1 Satelliittialtimetria

Satelliittialtimetria on mittausmenetelmä, jossa mitataan mikroaaltotut-
kan avulla matka satelliitilta suoraan alaspäin merenpintaan. Histo-
riallisesti useilla satelliiteilla on ollut tutka-altimetri mukanaan, katso
taulukko 13.1 (ei välttämättä täydellinen).

◦ GEOS- ja Seasat-satelliitit olivat amerikkalaisia koesatelliitteja alti-
metriamenetelmän kehittämiseksi. Satelliitin GEOS-3 (1975-027A)
mittaustarkkuus oli vielä vaatimaton. Ennen sitä kokeiltiin alti-
metriaa myös avaruuslaboratorio Skylabilla (1973-027A) olevalla
laitteella. Sen tarkkuus oli ±1m.

◦ Seasat (1978-064A) meni epäkuntoon vain kolme kuukautta laukai-
sunsa jälkeen luultavasti oikosulun1 seurauksena. Seasatin aineisto 1

oli kuitenkin ensimmäinen laaja satelliittialtimetria-aineisto, jota
käytettiin keskimerenpinnan määrittämiseksi, maailmanlaajuises-
ti ja myös Itämerellä (Vermeer, 1983b).

◦ Geosat (1985-021A) oli Yhdysvaltain laivaston laukaisema satelliit-
ti, jonka tavoite oli kartoittaa maailman valtameren painovoima-
kenttä, tarkemmin luotiviivan poikkeamat. Niitä tarvitaan oikean
lähtösuunnan antamiseksi sukellusveneestä laukaistaville ballisti-

1Mutta lue tämä: Wikipedia, Seasat conspiracy theory.
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^ Taulukko 13.1. Altimetriasatelliitteja kautta aikojen.

Satelliitti Laukai-
suvuosi

Ratatason
kaltevuus

(◦)

Radan
korkeus

(km)

Toistojaksot
(vrk)

Mittaus-
tarkkuus

(m)

Paikannus-
tekniikka

GEOS-3 1975 115,0 843 ∼ 38 0,20

Seasat 1978 108,0 780 3, 17,07 0,08

Geosat 1985 108,05 786 3, 17,07 0,04

ERS-1 1991 98,5 780 3, 35, 168 0,03

TOPEX/Poseidon 1992 66,0 1337 9,9156 0,033 GPS, DORIS
ERS-2 1995 98,5 780 3, 35 0,03 PRARE
Geosat follow-on 1998 108,0 800 17,07 0,035

Envisat 2001 98,5 784 35 0,045 GPS, DORIS
Jason-1 2001 66,1 1336 9,9156 0,025 GPS, DORIS
Jason-2 2008 66,04 1336 9,9156 0,025 GPS, DORIS
CryoSat-2 2010 92,0 725 369 DORIS
Haiyang-2A 2011 99,3 970 14, 168 0,085 DORIS, GPS
SARAL/AltiKa 2013 98,5 781 35 DORIS
Jason-3 2016 66,04 1338 9,9927 0,025 GPS, DORIS
Sentinel-3A 2016 98,62 804 27 0,03 DORIS, SLR, GNSS

sille ohjuksille. Geodeettisen mission 17 päivän toiston aineisto
oli alun perin salainen. Myöhemmin eteläisen pallonpuoliskon
aineisto julkaistiin tutkĳoiden käyttöön, ja vieläkin myöhemmin
koko aineisto.

◦ Satelliitit ERS-1/2 (1991-050A, 1995-021A) ja Envisat (2002-009A)
olivat ESA:n (Euroopan avaruusjärjestön) laukaisemia. Altimetri oli
vain yksi useista laitteista. ERS-satelliiteilla oli mukana saksalainen
PRARE-paikannuslaite, mutta vain ERS-2-satelliitin laite toimi
laukaisun jälkeen.

◦ TOPEX/Poseidon (1992-052A) oli amerikkalais-ranskalainen yh-
teistyöprojekti, jonka yhtenä tavoitteena oli meritopografian tarkka
kartoitus. Erikoispiirteenä oli tarkka GPS-paikannuslaite, jonka
avulla altimetri osasi määrittää merenpinnan sĳainnin geosent-
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risesti. Yhdessä sen seuraajien Jason-1, -2 ja -3 (2001-055A, 2008-
032A, 2016-002A) kanssa satelliittimissio on tuottanut ja tuottaa
edelleen arvokasta tietoa globaalin keskimerenpinnan noususta
viimeisten 25 vuoden aikana. Tulos on noin 3mm vuodessa. Katso
kuva 13.1.
Kuuluisa merentutkĳa Walter Munk2 luonnehti vuonna 2002 2

TOPEX/Poseidonia sanoilla ”kaikkien aikojen menestyksekkäin
merentutkimushanke” (Munk, 2002).

◦ Haiyang-2A (2011-043A) on kiinalainen, Kiinan laukaisema satel-
liitti.

◦ SARAL (2013-009A) on Intian laukaisema satelliitti. Altimetri
AltiKa ja DORIS ovat Ranskan rakentamia.

◦ CryoSat-2 (2010-013A) on ESA:n laukaisema satelliitti napa-
alueiden merĳään tutkimiseksi. Kiinnostuksen kohteena on
freeboard, varalaita eli paljonko jää törröttää vedestä. Tästä voidaan
laskea jään paksuus ja pinta-alan kanssa sen kokonaistilavuus.
Paikannus tapahtuu ranskalaisen DORIS-järjestelmän avulla.
CryoSat-1-satelliitin laukaisu epäonnistui.

◦ Sentinel-3A (2016-011A) on ESA:n monipuolinen kaukokartoitus-
satelliitti: suunnitellun konstellaation ensimmäinen. Se kantaa
eri havaintolaitteita, joiden joukossa on SRAL: Synthetic Aperture
Radar Altimeter.

Satelliittialtimetrian mittausmenetelmä esitetään kuvassa 13.2. Kuvas-
sa näkyvät kaikki altimetriassa mukana olevat suureet: mitattu etäisyys
s on satelliitin korkeus h vertausellipsoidista korjattuna geoidin korkeu-
dellaN, meritopografialla H ja merenpinnan vaihteluilla, esimerkiksi
vuorovesien, pyörteiden ja vuosisyklin muodossa.

Tämän lisäksi, jos satelliitissa ei ole mukana tarkkaa paikannuslaitetta,

2Walter Heinrich Munk (1917–2019) oli kuuluisa amerikkalainen fysikaalinen meritie-
teilĳä.
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TOPEX/Poseidon, Jason-satelliitit, globaali keskimerenpinta, mm

Trendi 3,1± 0,4mm/a

SOI, siirretty, skaalattu ja käännetty

60

−20

−40

−60
1990 1995 2000 2005 2010 2015 2020

Jason-1

Jason-2

Jason-3
TOPEX/Poseidon

5

1998, 2016 Super El Niño

20

40

0

Kuva 13.1. TOPEX/Poseidon- ja Jason -satelliittien tuottamat tulokset. Vuotui-
nen sykli poistettu. Data © Coloradon yliopisto, Boulder, Yhdysval-
lat, Sea Level Research Group; Nerem ym. (2010). Vertailu ENSO:n
(”El Niñon”) kanssa, SOI = Southern Oscillation Index, Itä-Anglian
yliopisto, Climate Research Unit; Ropelewski ja Jones (1987).^

satelliitin todellinen rata eroaa lasketusta radasta — jopa jälkeenpäin
lasketusta radasta. Siksi

h = h0 + ∆h,

jossa h0 on laskettu rata ja ∆h ratavirheen korjaus.
Mittaukset tehdään lähettämällä joka sekunti alas tuhansia pulsseja,

mittaamalla takaisin heĳastettujen pulssien kulkumatkat, keskiarvos-
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Footprint

KeskimerenpintaKeskimerenpinta

sh

Merenpinta

Geoidi

Geoidin korkeus NGeoidin korkeus N

Laskettu rata

Vertausellipsoidi

Todellinen rata

Meritopografia
H

Meritopografia
H

Kuva 13.2. Satelliittialtimetria mittausmenetelmänä: käsitteet.^

tamalla mittaustahdiksi 10–20 arvoa sekunnissa ja lähettämällä ne
Maahan. Arvoista suurin ja pienin heitetään pois mahdollisina virhe-
mittauksina, ja lopusta lasketaan lineaariregression avulla keskiarvo
pulssisarjan keskiepookkiin. Näin regressioviivasta saatu arvo on varsi-
nainen ”mittaus”: yksi sekunnissa, jolloin tehollinen mittaustahti on
1Hz.

Yksityiskohdat vaihtelevat satelliitista toiseen. Paluupulssin muoto
ei ole koskaan aivan terävä. Heĳastuksen paikka meren pinnalla eli
footprint on läpimitaltaan muutaman kilometrin. Etenkin jos merel-
lä on aallokkoa (merkitsevä aallonkorkeus, significant wave height, SWH),
käsittelyvaiheessa on suoritettava huolellinen korjaus, jottei syntyisi
systematiikkaa. Jos SWH on suuri, on myös altimetrin footprint eli me-
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renpinnan alue, josta vastaanottimeen palaa radioenergiaa, suurempi ja
radioaaltojen kulkumatka keskimäärin hieman pidempi.

Uusimmat satelliitit käyttävät interferometrista tekniikkaa, joka eroaa
hieman yllä kuvatusta.

Kaikista laitteistoon, ilmakehään, mereen ja kiinteään Maahan liitty-
vistä korjauksista mainittakoon

1) meriaaltojen korkeus (SWH)

2) kiinteän Maan vuorovesiliike

3) meren vuorovedet

4) troposfäärin ”kostea” kulku- eli propagaatioviive, joka saadaan
parhaiten satelliitilla olevan alaspäin katsovan vesihöyryradiomet-
rin mittauksista, muuten säämallista

5) troposfäärin ”kuiva” kulku- eli propagaatioviive

6) ionosfääriviive, ainoastaan ionosfäärin osuudesta satelliitin ala-
puolella, riippuu lentokorkeudesta

7) altimetriatutkan oma kalibrointikorjaus. Nykyisin pyritään aina
”in-flight”-kalibrointiin käyttäen GNSS-paikannettujen mareogra-
fien joukkoa, katso osio 13.4.

Mittaukset ja kaikki niihin tehtävät korjaukset kerätään ”geophysical data
record” -nimiseen (GDR) tietueeseen: yksi per havaintoepookki. Näin
rakennetut tiedostot jaetaan tutkĳoille. Tämä mahdollistaa kaikenlaisen
kokeilun, esimerkiksi korjausten korvaamisen paremmilla malleilla
lasketuilla korjauksilla.

^ 13.2 Risteyskohtatasoitus

Kun satelliitti kiertää Maata kuukausien tai vuosien ajan, kertyy tuhansia
pisteitä, joissa radat kulkevat ristin. Jos oletetaan, että merenpinnan
taso oli sama satelliitin molempien ylilentojen aikana, muodostuu ehto,
jota voidaan käyttää ratavirheiden tasoittamiseksi.

í � Õ! ¤.�û



Risteyskohtatasoitus 13.2 349
Havaintoyhtälö on

s = h−N−H− ϵ+ n = h0 + ∆h−N−H− ϵ+ n,

jossa s on altimetrinen merenpinnan korkeuden mittaus (mukaan lu-
kien tunnetut korjaukset 1–7 edellisessä osiossa), h todellinen ja h0
laskettu satelliitin korkeus vertausellipsoidista.N on geoidin korkeus,
H on meritopografia eli keskimerenpinnan pysyvä poikkeama tasapoten-
tiaalipinnasta, ∆h on ratavirheen korjaus, ϵ on merenpinnan jäännös-
vaihtelu eli vaihtelu vuoroveden ja muiden mallinnettavien vaikutusten
korjaamisen jälkeen ja n on altimetriatutkahavaintojen satunnainen
mittausepävarmuus eli kohina.

Tästä saadaan ratojen i ja j risteyskohdassa:

ℓk
def
=
(︁
si − hi0

)︁
−
(︂
sj − hj0

)︂
= (∆hi − ∆hj) − (ϵi − ϵj) +

(︁
ni − nj

)︁
.

Tämä on risteyskohtatasoituksen havaintoyhtälö. Hankaluutena on,
että merenpinnan jäännösvaihtelu ja ratakorjaukset esiintyvät yhtälös-
sä samalla tavalla. Ristikohtatasoituksen avulla niitä ei voi erikseen
määrittää.

Jos unohdetaan toistaiseksi merenpinnan jäännösvaihtelu tai olete-
taan, että se käyttäytyy satunnaisesti, jolloin se kuuluu kohinaan n,
voimme kirjoittaa yksinkertaisemmin

ℓk = ∆hi − ∆hj + nk, jossa nk
def
=
(︁
ni − nj

)︁
− (ϵi − ϵj) .

Indeksi k laskee risteyskohtia, indeksit i ja j laskevat ratoja.
Seuraavaksi valitaan sopiva malli satelliittiradan virheelle. Yksin-

kertaisin valinta, joka riittää pienellä alueella, on oletus, että ratakorjaus
on jokaiselle radalle vakio. Katso yksinkertainen esimerkki, kuva 13.3.

^ 13.2.1 Yksinkertainen esimerkki
Kuvassa 13.3 on kolme rataa ja kaksi risteyskohtaa. Havaintoyhtälöt,
jotka kuvaavat tiedossa olevien risteyskohtien ristiriidat ratakorjausten
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∆h3∆h2

∆h1
∆h1 − ∆h3

∆h2 − ∆h3

Risteyskohta 2

Risteyskohta 1

3

2
1

Kuva 13.3. Eräs risteyskohtien yksinkertainen geometria.^

funktioina, ovat

ℓ1 = ∆h2 − ∆h3 + n1,

ℓ2 = ∆h1 − ∆h3 + n2,

eli matriisimuodossa33

ℓℓ⏟ ⏞⏞ ⏟[︄
ℓ1

ℓ2

]︄
=

A⏟ ⏞⏞ ⏟[︄
0 1 −1

1 0 −1

]︄ xx⏟ ⏞⏞ ⏟⎡⎢⎣ ∆h1∆h2

∆h3

⎤⎥⎦+

nn⏟ ⏞⏞ ⏟[︄
n1

n2

]︄
, (13.1)

í � Õ! ¤.�û



Risteyskohtatasoitus 13.2 351
symbolisesti

ℓℓ = Axx + nn .

Kun nyt yrittää laskea ratkaisun tavallisen pienimmän neliösumman
menetelmän avulla, ˆ︁xx =

(︁
ATA

)︁−1
ATℓℓ ,

se ei onnistu. Normaalimatriisi ATA on singulaarinen (tarkista!). Tämä
käy järkeen, voidaanhan koko rataverkko siirtää ylös tai alas ilman,
että havaintosuureet ℓk muuttuvat. Sellaiseen järjestelmään ei löydy
yksiselitteistä ratkaisua.

Ratkaisun saaminen edellyttää, että jotain kiinnitetään, esimerkiksi
yksi rata — tai demokraattisemmin kaikkien ratojen keskitaso. Kiinnitys
saadaan aikaan lisäämällä seuraava ”havaintoyhtälö”:

ℓ3
def
= 0 =

[︂
c c c

]︂
· xx , (13.2)

jossa c on sopiva vakio. Silloin matriisista A tulee

A =

⎡⎢⎣ 0 1 −1

1 0 −1

c c c

⎤⎥⎦ ,
ja pienimmän neliösumman ratkaisu

ˆ︁xx =

⎡⎢⎣ ˆ︂∆h1ˆ︂∆h2ˆ︂∆h3
⎤⎥⎦ =

(︁
ATA

)︁−1
ATℓℓ =

(︁
ATA

)︁−1
AT

⎡⎢⎣ ℓ1ℓ2
0

⎤⎥⎦ ,
jossa matriisin kääntäminen onnistuu. Tässä nimenomaisessa tapauk-
sessa ˆ︁xx = A−1ℓℓ antaa saman ratkaisun, koska A on neliön muotoinen ja
sen käänteismatriisi on olemassa:(︁

ATA
)︁−1

ATℓℓ = A−1
(︁
AT)︁−1ATℓℓ = A−1

(︂(︁
AT)︁−1AT

)︂
ℓℓ = A−1ℓℓ .

3Huomaa samanlaisuus vaaituksen havaintoyhtälöiden kanssa! Vaaituspisteiden
sĳasta on ratoja ja vaaituslinjojen sĳasta risteyskohtia.
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Nyt symbolisen algebran järjestelmä maxima (SourceForge, Maxima) —
tai raaka laskenta — antaa helposti verifioitavan käänteismatriisin

A−1 =

⎡⎢⎣ 0 1 −1

1 0 −1

c c c

⎤⎥⎦
−1

=

⎛⎜⎝
⎡⎢⎣ 1 1

c

⎤⎥⎦
⎡⎢⎣ 0 1 −1

1 0 −1

1 1 1

⎤⎥⎦
⎞⎟⎠

−1

=

=

⎡⎢⎣ 0 1 −1

1 0 −1

1 1 1

⎤⎥⎦
−1 ⎡⎢⎣ 1 1

c

⎤⎥⎦
−1

=

= 1

3

⎡⎢⎣ −1 2 1

2 −1 1

−1 −1 1

⎤⎥⎦
⎡⎢⎣ 1 1

1
/︁
c

⎤⎥⎦ = 1

3

⎡⎢⎣ −1 2 1
/︁
c

2 −1 1
/︁
c

−1 −1 1
/︁
c

⎤⎥⎦ ,
ja ratkaisu on⎡⎢⎣ ˆ︂∆h1ˆ︂∆h2ˆ︂∆h3

⎤⎥⎦ = A−1ℓℓ =

= 1

3

⎡⎢⎣ −1 2 1
/︁
c

2 −1 1
/︁
c

−1 −1 1
/︁
c

⎤⎥⎦
⎡⎢⎣ ℓ1ℓ2
0

⎤⎥⎦ = 1

3

⎡⎢⎣ −1 2

2 −1

−1 −1

⎤⎥⎦[︄ ℓ1
ℓ2

]︄
,

josta c on hävinnyt.
Toinen tapa tutkia tätä on kirjoittaa havaintoyhtälöt 13.1 ja 13.2

yhdessä näin:

ℓℓ⏟ ⏞⏞ ⏟⎡⎢⎣ ℓ1ℓ2
0

⎤⎥⎦ =

A⏟ ⏞⏞ ⏟⎡⎢⎣ 0 1 −1

1 0 −1

c c c

⎤⎥⎦
xx⏟ ⏞⏞ ⏟⎡⎢⎣ ∆h1∆h2

∆h3

⎤⎥⎦+

nn⏟ ⏞⏞ ⏟⎡⎢⎣ n1n2
0

⎤⎥⎦,
ja kertoa vasen puoli ja molemmat termit oikealla lävistäjämatriisilla

D
def
=

⎡⎢⎣ 1 0 0

0 1 0

0 0 1
/︁
c

⎤⎥⎦ .
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Tulos on

Dℓℓ⏟ ⏞⏞ ⏟⎡⎢⎣ ℓ1ℓ2
0

⎤⎥⎦ =

DA⏟ ⏞⏞ ⏟⎡⎢⎣ 0 1 −1

1 0 −1

1 1 1

⎤⎥⎦
⎡⎢⎣ ∆h1∆h2

∆h3

⎤⎥⎦+

Dnn⏟ ⏞⏞ ⏟⎡⎢⎣ n1n2
0

⎤⎥⎦,
josta c on hävinnyt.

Periaate pätee yleisesti:

Minimaaliset pakkoehdot lisättyinä havaintoyhtälöihin, joissa on
datumivaje, eivät olennaisesti muuta ratkaisua.

^ 13.2.2 Edistyneempi ratakorjausmalli
Edistyneempi ratakorjausten esitystapa, joka kelpaa käytettäväksi suu-
remmalla alueella, on lineaarinen funktio:

∆h = a+ bτ,

jossa parametri τ on paikka radassa laskettuna sen alkupisteestä. Paikan
dimensio voi olla aika sekunteina tai etäisyys asteina tai kilometreinä.
Nyt yllä olevan tilanteen havaintoyhtälöiden ryhmä on

ℓℓ⏟ ⏞⏞ ⏟[︄
ℓ1

ℓ2

]︄
=

A⏟ ⏞⏞ ⏟[︄
0 0 1 τ21 −1 −τ31
1 τ12 0 0 −1 −τ32

]︄
xx⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

a2

b2

a3

b3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

nn⏟ ⏞⏞ ⏟[︄
n1

n2

]︄
.

Rakennematriisi A sisältää arvojen 1 ja −1 lisäksi myös arvoja ±τik,
jossa i on radan ja k risteyskohdan numero. Arvot ovat laskettavissa,
kun ratojen geometria on tiedossa.

Nyt jokaisella radalla on kaksi tuntematonta, a ja b, vakio ja trendi.
Tietysti tämäkin ryhmä osoittautuu singulaariseksi. Singulariteetin
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poistaminen onnistuu kiinnittämällä kaikki kolme b-parametria ja
yhden a-parametrin4.4

Ilmiötä, että ratkaisua ei löydy, mikäli jotain ei kiinnitetä, kutsutaan
datumidefektiksi. Sopivan asian kiinnitys määrittää tietyn datumin. Kah-
den eri datumin välillä on olemassa muunnoskaava: yksinkertaisimmassa
tapauksessa, jolloin jokaisella radalla on vain yksi ratakorjausparametri,
muunnos on yksinkertaisesti kaikkien ratojen translaatio eli siirto ylös
tai alas.

Tilanne on hieman sama kuin kansallista korkeusjärjestelmää määri-
tettäessä. On kiinnitettävä yksi korkeus, esimerkiksi Helsingin sataman.
Jos vaihtoehtoisesti kiinnitetään toinen korkeus, esimerkiksi Turun
sataman, saadaan toinen datumi, jossa kaikki korkeusarvot eroavat
ensimmäisen datumin vastaavista korkeuksista tietyllä vakioarvolla.

Sama argumentti pitää, jos on useita ratoja, esimerkiksi kymmenen
rataa pohjoiseen ja kymmenen etelään, sekä 10×10 risteyskohtaa. Jos
jokaista rataa kohti on kaksi parametria, tuntemattomia olisi 40 ja
havaintoja peräti 100. Onkin asetettava ratojen verkon absoluuttinen taso
sekä kaikenlaiset kaltevuudet ja väännöt. Yksinkertainen lähestymistapa
on asettaa kaikille estimoitavissa oleville tuntemattomille ai ja bi a priori
epävarmuuksia johdettuina esimerkiksi tunnetuista radanmäärityksen
epävarmuuksista. Pienimmän neliösumman tasoituksen yhtälöstä tulee
silloin ˆ︁xx =

(︁
ATA+ σ2Σ−1

)︁−1
ATℓℓ,

jossa Σ on lävistäjämatriisi, jossa on jokaisen radan i parametrien a
priori varianssit5 σ2a,i ja σ2b,i. Tätä lähestymistapaa kutsutaan Tihonovin65

6

4Tämän ymmärtämiseksi rakenna vaikkapa kolmen radan ”rautalankamalli” kolmes-
ta jäykästä rautalangan pätkästä ja sido ne yhteen naruilla risteyskohdista. Risteys-
kohtaehdot eivät millään tavalla kiinnitä kaltevuuksien b arvoja, ja koko häkkyrän
absoluuttinen taso on edelleen kiinnittämättä.
5σ on painoyksikön keskivirhe, tässä tapauksessa risteyskohtahavainnon vakioksi
oletettu keskivirhe.
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Kuva 13.4. Satelliittialtimetrian ratageometrian esimerkki.^

regularisoinniksi.

^ 13.2.3 Toinen esimerkki
Oheisessa satelliittialtimetriaratakuviossa 13.4 on 16 risteyskohtaa. Yri-
tämme suorittaa risteyskohtatasoituksen.

Kysymyksiä

1) Jos jokaisen satelliittiradan ratakorjaus∆h kuvataan mallilla,
jossa on yksi vakio, kuinka monta tuntematonta on?

2) Jos käytettävissä on 16 ”havaintoa” eli risteyskohtaeroa,
kuinka monta on ylimääräistä?

3) Onko mahdollista laskea tämä verkko geometrisesti?

4) Jos kiinnitetään yksi rata etukäteen (a priori tieto), kuinka

6Andrei Nikolajevitš Tihonov (1906–1993) oli venäläinen matemaatikko ja geofyysikko.
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monta ylimääräisyyttä on? Voidaanko tämä verkko laskea?

5) Oletetaan, että jokaisella radalla on kaksi tuntematonta, vakio
ja ajassa lineaarisesti kehittyvä termi eli ”trendi”. Mitä kaik-
kea täytyy kiinnittää, jotta verkko voitaisiin laskea? Montako
ylimääräisyyttä silloin on?

6) Jos kohdassa 3 kiinnitetään yksi rata, minkä niistä valitsisit?
Ehdota vaihtoehtoisesti ratkaisua, joka välttää valinnan.

Vastauksia

1) Yhtä monta kuin on ratoja: 8.

2) 16− 8 = 8.

3) Ei, koska koko verkon absoluuttinen taso ei ole kiinnitetty.

4) 16− (8− 1) = 9. Nyt verkko voidaan laskea.

5) Jos oletetaan, että radat ovat suoria (x, y)-koordinaateissa,
koko verkon sallittujen muunnosten joukko on

∆h = a00 + a10 x+ a01 y+ a11 xy,

jossa on neljä vapausastetta. On siis kiinnitettävä esimer-
kiksi yksi vakio ja kolme trendiä, joista kaikki eivät mene
pohjoiseen tai etelään. Silloin on 16 − (16− 4) = 4 ylimää-
räisyyttä.

6) Mikä tahansa valinta olisi mielivaltainen. Käytä mieluum-
min yllä kuvattua Tihonovin regularisointa.

^ 13.2.4 Globaali risteyskohtatasoitus
Maailmanlaajuisissa risteyskohtatasoituksissa käytetään usein vieläkin
hienompaa mallia

∆h = a+ b sin τ+ c cos τ, (13.3)

jossa τ on kulmamitassa, esimerkiksi paikka radassa laskettuna vii-
meisestä päiväntasaajan ylikulusta etelästä pohjoiseen eli nousevasta
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solmusta. Katso Schrama (1989), jossa tämä ongelma käsitellään laa-
jemmin. Tässä mallissa a edustaa radan kokoa ja b ja c merkitsevät
radan keskipisteen siirtymää Maan keskipisteestä. Malli on kolmiulot-
teinen: ratakaaret risteyskohteineen muodostavat pallon muotoisen
verkon maapallon ympäri. Risteyskohtaehtojen jättämät vapausasteet
ovat pallon koko ja sen keskipisteen siirtymä Maan keskipisteestä:

∆h = a0 + a1 cosϕ cos λ+ a2 cosϕ sin λ+ a3 sinϕ, (13.4)

jossa on neljä vapausastetta7. 7

^ 13.3 Satelliittiradan valinta

Satelliittiradan valinnassa Keplerin rataliikkeen lait ovat keskeisiä.
Keplerin kolmas laki sanoo

GM⊕P
2 = 4π2a3, (13.5)

jossa a = a⊕ + h on satelliittiradan isoakselin puolikas eli keskimääräi-
nen etäisyys Maan keskipisteestä, kun suuretta h kutsutaan satelliitin
keskikorkeudeksi. P on kiertoaika eli periodi, ja a⊕ on Maan päivänta-
saajasäde.

Yhtälöstä 13.5 voi jo päätellä, että satelliittihavaintojen avulla suure
GM⊕, maapallon kokonaismassa kerrottuna Newtonin universaalisen
gravitaatiovakion kanssa8, saadaan määritetyksi tarkasti. Periodi P on 8

määritettävissä tarkasti pitkistä havaintosarjoista, ja myös radan koko a
saadaan hyvin täsmällisesti esimerkiksi satelliittilaserhavaintojen (SLR,

7Voitaisiin väittää, että parametrin a pitäisi olla nolla yhtälössä 13.3, koska Keplerin
kolmannen lain avulla voidaan määrittää radan kokoa hyvin tarkasti, katso osio 13.3.
Silloin myös a0 = 0 yhtälössä 13.4.
8Siksi sanotaan, että ensimmäisenä Henry Cavendish ”punnitsi maapalloa”. . . . Suu-
reen GM⊕ määrittäminen oli jo silloin suoraviivaista Kuun rataliikkeen, tai jopa
maanpinnan painovoiman, avulla. Haasteena oliG:n ja Maan massanM⊕ erottaminen
toisistaan, jotta viimeksi mainittu saataisiin tavallisissa massan yksiköissä.
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Kuva 13.5. Keplerin rata-alkiot: a— isoakselin puolikas, e— eksentrisyys, i
— inklinaatio, Ω — nousevan solmun rektaskensio (taivaallinen
pituus),ω— perigeumin argumentti ja ν— luonnollinen anomalia.^

satellite laser ranging) avulla. Tähän on käytetty esimerkiksi tunnettuja
LAGEOS-satelliitteja (Laser Geodynamic Satellite) 1976-039A ja 1992-
070B, jotka kiertävät maapalloa 5900 kilometrin korkeudella. Etäisyydet
saadaan nykyisin alle senttimetrin tarkkuudella.

Altimetriasatelliittien kiertoradat valitaan paljon matalammiksi, kuten
luvun alussa annetusta taulukosta 13.1 ilmenee. Korkeus säädetään
rakettimoottoreiden avulla tarkasti niin, että satelliitti kulkee saman
paikan yli esimerkiksi kerran päivässä, 14 kierroksen jälkeen. Vaihtoeh-
toisesti valitaan rata, joka kulkee paikan yli joka kolmas päivä, joka
seitsemästoista päivä tai joka 168. päivä. . . . Tätä kutsutaan toistojaksoksi.

Toistojakso valitaan käyttötarkoituksen mukaan:

◦ Jos halutaan tutkia keskimerenpinnan tarkkaa muotoa, valitaan
pitkä toistojakso, jotta maaradat saadaan mahdollisimman lähelle
toisiaan Maan pinnalla.
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◦ Jos halutaan tutkia merenpinnan vaihtelevuutta, valitaan rata, joka

palautuu samaan paikkaan lyhyin aikavälein. Silloin rataverkosto
Maan pinnalla muodostuu harvemmaksi.

Myös Maan muotoparametrit vaikuttavat satelliitin rataliikkeeseen,
esimerkiksi suure J2, dynaaminen litistyneisyys, jonka arvo on J2 =

1082,63 · 10−6. Se on suurin niistä monesta pallofunktiokertoimesta,
jotka yhdessä edustavat Maan muotoa ja vaikuttavat satelliittiratoihin.
Kertoimen J2 tapauksessa vaikutus on sellainen, että satelliitin rata-
taso kiertää tietyllä kulmanopeudella Maan pyörähdysakselin ympäri:
ratatason prekessio. Tästa seuraa tyypillisesti, että jos satelliitti lentää
saman paikan yli seuraavana päivänä, se tapahtuu useita minuutteja
aikaisemmin. Yhtälö ympyrän muotoiselle radalle, jonka säde on a, on

dΩ
dt

= −3
2

√︃
GM⊕
a3

(︂
a⊕
a

)︂2
J2 cos i,

jossaa⊕ on Maan vertausellipsoidin päiväntasaajasäde,M⊕ Maan massa
ja i ratatason kaltevuuskulma eli inklinaatio päiväntasaajan suhteen.

Numeroarvojen sĳoitus tähän antaa

dΩ
dt

= −1,318 95 · 1018m3.5 s−1 · cos i
(a⊕ + h)

3.5
,

jossa h on satelliittiradan keskikorkeus, konventionaalisesti päivänta-
saajasäteen a⊕ kokoisen pallopinnan yläpuolella. Jos tähän sĳoite-
taan vaikkapa satelliitin korkeudeksi h = 800 km (ja käytetään arvoa
a⊕ = 6 378 137m), saadaan

dΩ
dt

=− 1,331 03 · 10−6 rad/s · cos i =
(︁
−6◦, 589

/︁
päivä

)︁
· cos i.

Käytännön syistä, esimerkiksi aurinkopaneelien takia, satelliittirata
valitaan usein niin, että ratataso kiertää Auringon vuosittaisen näennäis-
liikkeen mukana eli 360◦

/︁
365,25päivää = 0◦, 9856

/︁
päivä. Katso kuva

13.6.
Jos inklinaatio i valitaan välillä 96◦–102◦ radan korkeudesta riippuen,

Maan dynaaminen litistyneisyys J2 aiheuttaa juuri sopivan ratatason
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Kuva 13.6. Aurinkosynkronisen kiertoradan mekanismi.^

kiertoliikkeen (”no-shadow / Sun-synchronous / Sun-stationary orbit”).
Kyseessä on varjoton9 aurinkosynkroninen rata, katso kuva 13.7.9

Kiertorataa, jonka inklinaatio- eli kaltevuuskulma i > 90◦, kutsutaan
retrogradiseksi radaksi: satelliitin liike on länteen päin, vastoin Maan
pyörähdysliike, joka on itään päin. Radan inklinaatio i, tai retrogradiselle
radalle sen suplementti 180◦ − i, on korkein pohjoinen tai eteläinen
geosentrinen leveysaste, jonka yli satelliitti voi lentää. Tämä merkitsee
sitä, että jos inklinaatio ei ole tarkasti 90◦, molempien napojen ympäri on
alueita, joiden ylitse satelliitti ei koskaan tule lentämään: ”napareiät”.

Aurinkosynkronisen kiertoradan haittapuoli on puolestaan se, että
altimetriahavainnot tehdään aina samaan paikallisaikaan. Esimerkiksi
Auringon aiheuttamat vuoro- ja puolivuorokautiset vuorovedet ovat
aina samassa vaiheessa (”resonanssi”), jolloin niitä ei voida havaita
tämänlaisella radalla olevan satelliitin avulla. Siksi merentutkimussatel-
liitti TOPEX/Poseidonin ja sen Jason-seuraajasatelliittien radat valittiin
ei-aurinkosynkronisiksi.

9Jos radan korkeus on alle 1400 km, se ei voi olla täysin varjoton. Keskitalvella tai
keskikesällä satelliitti lentää silloin Maan varjon läpi.
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Kuva 13.7. Varjottoman kiertoradan geometria. Kuvan satelliitti lentää pohjoi-
seen paikkojen yli, joissa on aamu, ja etelään paikkojen yli, joissa
on ilta.^

^ 13.3.1 Esimerkki
Satelliitti liikkuu aurinkosynkronisella kiertoradalla, toisin sanoen se
ylittää jokaisen leveyspiirin päivittäin samaan paikalliseen keskiaurinko-
aikaan.

Kysymyksiä

1) Mikä on satelliitin periodi, jos se lentää aina 14 kierroksen
jälkeen saman paikan yli?

2) Sama kysymys, mutta jos satelliitti lentää aina saman paikan
yli 43 kierroksen (kolmen päivän) jälkeen?

3) Entäs 502 kierroksen (35 päivän) jälkeen?

4) Mikä on satelliitin korkeus ”kolmen päivän kiertoradas-
sa”? Käytä Keplerin kolmatta lakia, yhtälö 13.5. GM⊕ =

3 986 005 ·108 m3/s2, ja satelliitin korkeus on h = a−a⊕, jossa
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ii

θ̇

112233

Kuva 13.8. Retrogradisella radalla maapalloa kiertävä satelliitti, joka ylittää
päiväntasaajan etelästä pohjoiseen kolmella peräkkäisellä kierrok-
sella. Kulma radan ja päiväntasaajan välillä eli inklinaatio i, tai
retrogradiselle radalle 180◦ − i, on myös korkein pohjoinen tai
eteläinen leveysaste, jonka satelliitti saavuttaa. Saavuttamattomat
”napareiät” on merkitty sinisillä katkoviivoilla.^

a⊕ = 6 378 137m.

5) Mikä on satelliitin korkeus ”35 päivän kiertoradassa”? Entä
korkeusero edelliseen nähden?

6) Mikä on kolmen päivän kiertoradan pohjoiseen menevien
ratojen keskinäinen etäisyys? Siis kuinka yksityiskohtaisesti
altimetri pystyy kuvaamaan merenpinnan?

7) Sama kysymys 35 päivän kiertoradalle.

8) Pohdi:

(a) Mihin tarkoitukseen käytettäisiin 35 päivän kiertorataa
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ja mihin puolestaan kolmen päivän rataa?

(b) Olisiko mahdollista tai helppoa lentää molemmat radat
samalla satelliitilla? Katso kysymys 5.

Vastauksia

1) Satelliitti tekee 14 kierrosta vuorokaudessa eli 1440minuu-
tissa: P = 1440min/︁14 = 102,857min.

2) Satelliitti tekee 43 kierrosta 3 vuorokaudessa eli 3 × 1440
minuutissa: P = 3× 1440min/︁43 = 100,465min.

3) Satelliitti tekee 502 kierrosta 35 vuorokaudessa eli 35× 1440
minuutissa: P = 35× 1440min/︁502 = 100,398min.

4) Suorita taulun 13.2 octave-koodi. Tulos on 780,604 km.

5) Sama koodi muutoksella P=100.398*60 antaa 777,421 km.
Ero edellisestä on 3,183km.

6) Satelliitilla on 43 eri maarataa. Tämä antaa niiden välisek-
si etäisyydeksi 360◦

/︁
43 = 8◦, 372. Päiväntasaajalla tämä on

40 000 km/︁43 = 930 km. Etäisyys on lyhyempi korkeammil-
la leveysasteilla.

7) 360◦
/︁
502 = 0◦, 717 eli 40 000 km/︁502 = 80 km.

8)

(a) 35 päivän kiertorata olisi mainio yksityiskohtaista kartoi-
tusta varten. Kolmen päivän rata soveltuisi esimerkiksi
vuoroveden tai säähän liittyvien ilmiöiden havainnoi-
miseen, mutta spatiaalinen erotuskyky olisi heikompi.

(b) Ratakorkeuksien ero on vain 3 km ja periodien ero 4 s.
Tarvittava radan muutos on helposti saavutettavissa
jopa pienillä rakettimoottoreilla10. Vastaus on siis kyllä. 10

10Paljastetaan, että tarvittava nopeuden kokonaismuutos on ∆v = 1.6m/s eli reipas
kävelytahti.
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^ Taulu 13.2. Satelliitin korkeuden laskeminen sen kiertoajasta.

format long

GM=3986005e8;

ae=6378137;

P=100.465*60;

fac=4*pi*pi;

a=(GM*P*P/fac)^0.33333333;

h = a - ae;

printf(’\n\nRadan korkeus: %8.3f km.\n’, h/1000);

^ 13.4 In-flight-kalibrointi

Nykyiset huipputarkat GNSS-paikannetut satelliittien tutka-altimetrit
vaativat kunnon kalibrointia. Paras tekniikka tähän on in-flight-kalibrointi.
Siinä käytetään merialuetta tai joskus järvialuetta, jonka vedenpinnan
geosentrinen paikka on tiedossa aluetta ympäröivien mareografien
GNSS-paikannuksen ja tarkan geoidimallin ansiosta. Esimerkin tällaisista
mittauksista antaa Vu ym. (2018).

Yksi syy käyttää in-flight-kalibrointia on, että tutka-altimetreilla on
tuntematon nollavirhe, joka on seurausta siitä, että signaalin polkua
elektroniikan läpi ei tunneta tarkasti. Nollavirhe voi muuttua hitaasti
eli ryömiä ajassa sekä riippua lämpötilasta.

^ 13.5 Retracking

Satelliittialtimetriamission tulokset julkaistaan jo lennon aikana geo-
physical data record -tiedostoina (GDR), joissa kaikki mittaukseen liittyvät
seikat, kuten ilmakehän korjaustermit, vuorovesikorjaukset ja meri-
aaltoparametrit, ovat annettuja.

Nykykäytäntö on käsitellä vanhemmat altimetriamittaukset uudel-
leen soveltaen parannettuja menetelmiä hyödyllisten lisätietojen saami-
seksi. Koko tutkan paluupulssi analysoidaan uudelleen lähestymista-
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Kuva 13.9. Altimetrian paluupulssin analyysi. Klassinen paluupulssin ajan-
mittaus käyttää ”puolikorkeuspistettä”.^

valla nimeltä retracking (Altimetry, Retracking).
Analyysimenetelmä käyttää paluupulssin alkunousun pistettä, jonka

korkeus on puolet pulssin maksimiarvosta. Tämä on todistetusti hyvä
menetelmä saada kulkuaika, joka liittyy footprintin keskipisteeseen
suoraan satelliitin alla. Pulssin takaosassa on heĳastuksia footprintin
kaukaisemmilta reuna-alueilta.

Kolmessa tilanteessa automaattinen menetelmä ei toimi kunnolla
lennon aikana ja tarkempi pulssin analyysi jälkeenpäin kannattaa:

◦ Saaristoissa, kuten Indonesiassa tai Ahvenanmaalla. Silloin voi
esimerkiksi käydä niin, että footprintin keskipiste on kuivalla
maalla. Silloin ensimmäiset vahvat heĳastukset tulevat vinosti
lähimmältä rannikolta ja tarkka rantaviivatiedosto on tarpeen
tulosten käsittelyssä. Mutta jo avomerellä rantaviivojen lähella,
paluupulssi vääristyy.

◦ Merĳääalueilla Pohjoisella ja Eteläisellä jäämerellä. Heĳastukset
voivat tulla merĳään pinnalta, jolloin käsittelyssä on otettava
huomioon freeboard eli varalaita: kuinka korkealla merĳään pinta
on veden yläpuolella.

◦ Mannerjäätiköiden yli. Tässä paluupulssin muoto on hyvin erilai-
nen kuin avomeren yli. Lisäksi paluupulssin kulkuaika vaihtelee
nopeasti, kun satelliitti lentää eteenpäin. Vastaanottoikkuna ei
pysy mukana11. 11
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Näissä tapauksissa perinteinen tosiaikainen käsittely satelliitissa tuot-
taa virheellisiä mittauksia tai ei mittauksia lainkaan. Retrackingilla
mittaukset saadaan pelastettua ja altimetriamittausten kattama alue
laajennettua, erityisesti arktisille ja Etelämantereen alueille.

Freeboard on tärkeä suure jään paksuuden määrittämisessä. Kun jään
tiheys on noin 920kg/m3 ja meriveden tiheys noin 1030kg/m3 , jään paksuus
on noin 8× freeboard12. Jos tämän lisäksi on saatavilla kaukokartoitus-12

tietoa jääpeitteen pinta-alasta, voidaan laskea merĳään kokonaistilavuus
ja -massa.

Arktinen jääpeite on vähentynyt rajusti viime vuosikymmeninä. Kaik-
kein rajuinta on ollut jään kokonaistilavuuden vähentyminen, katso
kuva 13.10. Pinta-alan lisäksi myös jään paksuus vähenee, ja monivuoti-
sesta paksummasta jäästä suuri osa on jo hävinnyt.

^ 13.6 Merentutkimus satelliittialtimetrian avulla

Satelliittialtimetrian ensimmäinen geodeettinen sovellus oli geoidin
määritys. Altimetrinen geoidimääritys onnistuu vain, jos oletetaan, että
merenpinta

◦ on vakio ajassa

◦ yhtyy tasapotentiaalipintaan eli geoidiin.

Käytännössä merenpinta vaihtelee ajassa eikä ole tasapotentiaalipinta.
Siksi on kehitetty toisia lähestymistapoja.

◦ Merenpinnan vaihtelevuutta voidaan tutkia satelliittialtimetrialla
käyttämällä kolmea menetelmää:

– Saman satelliitin toistuvat maaradat. Radat voidaan pinota
ja tasoittaa yhteen käyttämällä yksinkertaista ratavirheen

11Uusimmat satelliitit, kuten Sentinel-3, käyttävät digitaalista maastomallia
vastaanottoikkunan ohjaamiseen muualla kuin avomeren yllä.
12Olettaen, että jään päällä ei ole lunta. Jään tiheys myös vaihtelee, ja yksivuotisen ja
monivuotisen jään tiheydet ovat erilaisia.
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Kuva 13.10. Jään tilavuus Pohjoisella jäämerellä. PIOMAS; Schweiger ym.
(2011).

^

korjausmallia. Jäljelle jäävät ratakohtaiset jäännösvirheet ker-
tovat jotain merenpinnan vaihtelevuudesta, vaikkeivät koko
tarina.

– Risteyskohtatasoituksesta voidaan saada tietoa merenpinnan
vaihtelevuudesta. Kun merenpinta vaihtelee, risteyskohtata-
soituksesta saadut tulokset huononevat: a posteriori (lasken-
nan jälkeen) risteyskohtaerojen neliöllinen summa kasvaa.
Varsinainen vaihtelevuuden tutkimus tällä menetelmällä on
haastavampaa. Sitä voidaan kuitenkin käyttää vaihtelevuu-
den suuruuden arvioimiseen.

– Nykyisin altimetriasatelliiteissa on aina mukana GNSS-
paikannuslaite, joka mittaa tutkalaitteiston absoluuttisen
geosentrisen sĳainnin mittaushetkellä. Sen avulla voi seurata
merenpinnan vaihteluita suoraan mittaamalla, olettaen että
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mittausten ajallinen ja maantieteellinen tiheys on riittävä.

◦ Merenpinnan poikkeamia tasapotentiaalipinnasta eli geoidista
voidaan tutkia vain, jos on saatavilla riippumatonta tietoa todelli-
sesta geoidipinnasta. Mikäli koealueelta on saatavilla hyvät, tiheät
painovoimamittaukset, voidaan näistä estimoida geoidi ja sen
jälkeen laskea meritopografia.
Tarvittavan tarkan ja tiheän painovoima-aineiston saaminen ko-
koon onnistuu laiva- tai ilmagravimetrian avulla. Myös mittausta
erikoissatelliitin avulla (gravitaatiogradiometria, GOCE-satelliitti)
suunniteltiin pitkään, ja se toteutui vihdoin, katso alaosio 13.7.3.

^ 13.7 Satelliittipainovoimamissiot

2000-luvun alkuvuosina laukaistiin kolme satelliittimissiota Maan pai-
novoimakentän eli geopotentiaalin hienorakenteen selvittämiseksi. Toi-
sin sanoen, missioiden tavoitteena oli määrittää maailmanlaajuinen
geoidimalli, jolla on korkea erotuskyky.

^ 13.7.1 CHAMP
CHAMP (Challenging Minisatellite Payload for Geophysical Research
and Applications, 2000-039B) oli saksalainen satelliittiprojekti, jonka
vetäjänä oli Deutsches Geoforschungszentrum GFZ. Satelliitti laukaistiin
radalleen Plesetskistä Venäjältä vuonna 2000. CHAMP-satelliitin radan
korkeus oli alussa 454 km, ja se laski lennon aikana noin 300 kilometriin
ilmakehän vastuksen takia. Ratatason kaltevuus eli inklinaatio oli
87◦. Syyskuun 19. päivänä 2010 satelliitti palasi ilmakehään. Projektin
kuvaus: CHAMP Mission.

CHAMP sisälsi GPS-vastaanottimen, jonka avulla määritettiin satellii-
tin paikka xx(t) avaruudessa ajan t funktiona. Peräkkäisistä satelliitin
paikoista voi laskea geometrista kiihtyvyyttä aa(t) differentioimalla:

aa(t) =
d2

dt2
xx(t).
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Kuva 13.11. Maan painovoimakentän määrittäminen matalalla lentävän satel-
liitin GPS-rataseurannan avulla.^

Differentiointi tapahtuu numeerisesti tavalla, joka esitettiin ilmagravi-
metrian osuudessa, yhtälö 11.8.

Satelliitti sisälsi myös kiihtyvyysmittarin, jonka avulla eliminoitiin
ilmakehän aerodynaamisten voimien aiheuttamat satelliitin kiihtyvyy-
det eli poikkeamat vapaan putoamisen liikkeestä. Jäljelle jäävät silloin
vain Maan gravitaatiokentän aiheuttamat kiihtyvyydet, joista laske-
taan tarkka geopotentiaali- eli geoidimalli käyttäen aiemmin kuvattuja
menetelmiä.

Muutamia CHAMPin dataan perustuvia globaaleja geopotentiaali-
malleja on laskettu ja julkaistu.

^ 13.7.2 GRACE
GRACE (Gravity Recovery And Climate Experiment Mission, 2002-012
A ja B) mittasi Maan painovoimakentän ajallisia muutoksia erittäin tar-
kasti, mutta melko karkealla maantieteellisellä erotuskyvyllä. Ajalliset
muutokset johtuivat lähinnä Maan ”sinisen kalvon”, ilmakehän ja ve-
sivaipan, liikkeistä. Mitattavaa suuretta kutsutaan myös merenpohjan
paineeksi, mikä on hieman yllättävä ilmaisu, kunnes oivaltaa, että se
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Satelliitti 1 Etäisyys 220 km

Kiihtyvyyksien ero näköviivan suunnassa

Satelliitti 2

Korkeus 450
km

Tarkka
etäisyys-
mittaus,

aallonpituus
1,5 cm

Kuva 13.12. GRACE-satelliittien perusidea: painovoimakentän pienenpienten
ajallisten vaihtelujen mittaaminen SST:n (Satellite-to-Satellite Trac-
kingin) avulla. Vaihteluita aiheuttavat massasiirtymät Maan ”sini-
sessä kalvossa” eli ilmakehässä ja vesivaipassa, ilmaistuna ”me-
renpohjan kokonaispaineen” vaihteluina (↓).^

edustaa todella koko ilma- ja vesipatsaan sisältämää, ajassa vaihtelevaa
kokonaismassaa.

Tehollinen aikaresoluutio oli koko maapallon kartoitus kerran kuus-
sa. Projektin kuvaus: GRACE Mission. Projekti oli yhdysvaltalais-
saksalainen yhteistyö, jonka päävetäjänä toimi Center for Space Re-
search Texasin yliopistolla Austinissa.

GRACE oli satelliittipari (”Tom ja Jerry”), jonka satelliitit lensivät samal-
la radalla toinen toisensa perässä aluksi noin 500 kilometrin korkeudella
ja 220 kilometrin keskinäisellä etäisyydellä. Ratatason kaltevuus oli 89◦,
eli kyseessä oli lähes polaarinen rata, joka antoi täydellisen globaalin
peittävyyden. Satelliittien välisiä etäisyysmuutoksia mittasi mikroaalto-
linkki tarkkuudella ±1—m/s . Molemmissa satelliiteissa oli myös herkät
kiihtyvyysmittarit ilmakehän vastuksen vaikutuksen mittaamiseksi ja
poistamiseksi.

Mittausjärjestelmä oli niin herkkä, että jopa millimetrin paksuisen
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Kuva 13.13. GRACE-mission tulokset: massan pintakerros vesisenttimetreinä
ilmaistuna. Hiirennapsautus antaa animaation (e-kirja).^

vesikerroksen liikkeet voitiin huomata, jos kerros vain ulottui mantereen
kokoiselle alueelle, noin 1000 km.

Julkaistuissa tuloksissa näkyvät vakuuttavasti esimerkiksi kostean ja
kuivan monsuunin mukanaan tuomat kausittaiset vaihtelut vastavai-
heessa pohjoisella ja eteläisellä pallonpuoliskolla suurissa trooppisissa
jokialtaissa, kuten Amazonas, Kongo, Mekong, Intia ja Indonesia. . . .
GRACE Mission, hydrology.

Vuonna 2017 missio päättyi 15 vuoden jalkeen. GRACEn seuraajamissio
laukaistiin vuonna 2018, GRACE Follow-On Mission.

^ 13.7.3 GOCE
GOCE (2009-013A, Geopotential and Steady-state Ocean Circulation
Explorer) oli satelliiteista kaikkein kunnianhimoisin. Euroopan avaruus-
järjestö ESA:n rakentama satelliitti laukaistiin onnistuneesti Plesetskistä
maaliskuussa 2009. Radan korkeus oli mission aikana vain 270–235 km,
ja satelliitti sisälsi rakettimoottorin (jonimoottorin) ja ajoainevarannon
radan ylläpitämiseksi ilmakehän vastusta vastaan. Ratatason kaltevuus-
kulma oli 96◦, 7 eli rata oli aurinkosynkroninen13. 13
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Satelliitissa oli mukana hyvin herkkää gravitaatiogradiometri, joka
mittasi tarkasti Maan vetovoiman gradientin eri komponentteja eli veto-
voimavektorin komponenttien riippuvuuksia paikkakoordinaateista.
Gradiometri koostui kuudesta pareittain kehikkoon kiinnitetystä äärim-
mäisen herkästä kolmiakselisesta kiihtyvyysmittarista. Missio loppui
vuonna 2013 ja satelliitti palasi näyttävästi ilmakehään 11. marraskuuta
Falklandin saarten yläpuolella (Scuka, 2013).

Teoreettisesta analyysista on saatu selville, että gravitaatiogradio-
metria on paras tapa mitata painovoimakentän paikallisimmat piirteet:
parempi kuin rataseuranta GNSS:n avulla. Pienimmät geoidikartan yk-
sityiskohdat, jotka GOCE näki, ovat läpimitaltaan vain noin 100 km, ja
niiden tarkkuus on niinkin hyvä kuin ±2 cm.

Niin tarkan maailmanlaajuisen geoidimallin avulla voidaan laskea
merenpinnan poikkeamat geoidista, siis tasapotentiaalipinnasta, vas-
taavalla tarkkuudella. Nähtiin, että merenpinnan todellinen paikka
avaruudessa saadaan satelliittialtimetrian avulla muutaman senttimet-
rin tarkkuudella. Tämä tasoero merenpinnan ja tasapotentiaalipinnan
välillä taas voidaan invertoida merivirtauksiksi, katso osio 12.5 ja kuva
12.4. Tämä on GOCE-satelliitin nimen tausta.

^ Olenko ymmärtänyt tämän?

1) Mikä on tutka-altimetrin jalanjälki (”footprint”)? Miten se riippuu
aallokosta?

2) Mikä on merĳään freeboard? Miten sitä voidaan käyttää jään tila-
vuuden määrittämiseksi?

13Tämän kaltevuuskulman seurauksena oli kummallakin navalla kalotti, jonka säde oli
6◦, 7 ja jonka sisältä ei saatu mittauksia. Viime vuosien aikana nama ”tietämättömyyden
navat” on saatu vähitellen kartoitetuksi ilmagravimetrian avulla, esimerkiksi Forsberg
ym. (2017).
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Kuva 13.14. Maan painovoimakentän määrittäminen GOCE-satelliitin gravi-
taatiogradiometrin avulla.^

3) Mitä kolme vaihtoehtoista satelliitin ratavirheen korjausmallia on
olemassa?

4) Mikä on satelliittialtimetrian risteyskohtatasoituksessa datumide-
fekti ja miten sen voi korjata?

5) Miten Keplerin kolmatta lakia voidaan käyttää satelliittiradan kes-
kikorkeuden määrittämiseksi, jos satelliitin periodi on annettuna?

6) Mikä on satelliittiradan toistojakso?
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7) Mikä on J2 ja miten se vaikuttaa satelliitin liikkeeseen?

8) Mikä on aurinkosynkroninen rata ja miksi se on hyödyllinen?

9) Mikä on retrogradinen rata?

10) Miksi TOPEX/Poseidon- ja Jason-satelliittien radat eivät ole aurinko-
synkronisia?

11) Taulukossa 13.1 joidenkin satelliittien toistojakso on kokonais-
lukumäärä vuorokausia, joidenkin ei. Mitä yhteistä näyttää olevan
satelliiteilla, joiden toistajakso ei ole kokonaisluku?

12) Millä kolmella satelliittialtimetrian menetelmällä voidaan tutkia
merenpinnan vaihtelevuutta?

13) Maan painovoimakentän hienorakenteen ja ajallisen vaihtelevuu-
den tutkimiseksi on toistaiseksi lentänyt kolme satelliittimissiota.
Esitä ne ja niiden käyttämät menetelmät.

^ Harjoitus 13–1: Altimetria ja risteyskohtatasoitus

Annettuna on kaksi pohjoiseen menevää satelliittirataa ja kolme etelään
menevää rataa. On olemassa kuusi risteyskohtaa, katso kuva 13.15.

1) Jos jokaisen radan ratavirheen korjaukset kuvataan lineaarisena
paikan funktiona

∆h = a+ bτ,

montako tuntematonta a ja b tarvitaan yhteensä?

2) Kirjoita auki havaintoyhtälöt. Havainnot ovat risteyskohtien erot.
Tuntemattomat ovat eri maaratojen kertoimet a ja b.

3) Saadaanko näistä havaintoyhtälöistä yksiselitteistä ratkaisua? Mik-
sei?

4) Kuinka monta tuntematonta on kiinnitettävä, jotta saadaan yksi-
selitteinen ratkaisu? Mitkä kertoimet kiinnittäisit?

5) Onko ylimääräisiä havaintoja? Oliko viisasta valita ratavirheen
korjausmalli, jossa on kaksi tuntematonta maarataa kohden?

í � Õ! ¤.�û



Harjoitus 13–2: Satelliittirata 375

Kuva 13.15. Satelliittialtimetrian ratageometrian esimerkki.^

^ Harjoitus 13–2: Satelliittirata

Satelliitti liikkuu aurinkosynkronisella radalla, ja 419 kierroksen ja 30
päivän jälkeen se on taas tarkasti saman paikan yläpuolella.

1) Mikä on satelliitin periodi?

2) Kuinka pitkä on etäisyys lännestä itään kilometreissä pohjoiseen
menevien ratojen välillä päiväntasaajalla?

3) Koska aurinkosynkroninen rata eli ole polaarirata, on korkein
pohjoinen leveysaste, jonka yli satelliitti voi lentää pienempi kuin
90◦. Mihin kompassisuuntaan satelliitti lentää siinä pisteessä?

^ Harjoitus 13–3: Keplerin kolmas laki

1) Paljonko on satelliitin korkeus h, jos sen periodi on 98minuuttia?
Käytä Keplerin kolmatta lakia 13.5,

GM⊕P
2 = 4π2a3,
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GM⊕ = 3 986 005 · 108m3
/s2 , ja satelliitin korkeus on h = a − a⊕,

jossa a⊕ = 6 378 137m.

2) Mikä on satelliitin kiertoradan inklinaatio i, jos annettuna on, että
rata on ympyrä ja aurinkosynkroninen? Katso osio 13.3.
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^ Vuorovesi, ilmakehä ja
maankuoren liikkeet1414

^ 14.1 Teoreettinen vuorovesi

Vuorovesi on seurausta ulkoisten taivaankappaleiden, Maan tapaukses-
sa Kuun ja Auringon, vetovoimasta sekä Maan vapaasta putoamisesta
vetovoiman lähteitä kohtaan. Voimme kirjoittaa vetovoimakentän po-
tentiaalin seuraavasti:

V ′ =
GM
ℓ
,

jossa ℓ on vetovoiman lähteen etäisyys potentiaalin laskentapisteestä,
katso kuva 14.1. GM on Auringon tai Kuun massa kerrottuna New-
tonin gravitaatiovakiolla. Vetovoima voidaan ilmaista kiihtyvyys- eli
”voimakenttänä”, jonka suuruus on

a ′ =
GM
ℓ2
.

Vapaasti avaruudessa kelluva Maa vastaa tähän putoamalla vapaasti
kohti vetovoiman lähdettä kiihtyvyydellä (katso osio 1.4):

a ′′ =
GM
d2

,

jossa d on vetovoiman lähteen etäisyys Maan keskipisteestä.
Kiihtyvyys a ′′ on vakio. Avaruuden kenttänä siihen voidaan liittää

potentiaalin:

V ′′ =
GM
d2

z =
GM
R

(︂
R
d

)︂2 z
R
=
GM
R

(︂
R
d

)︂2
cos ζ ,
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Kuva 14.1. Teoreettinen vuorovesi. ζ ′ on Kuun (tai Auringon) paikallinen
zeniittikulma, ζ vastaava geosentrinen kulma.^

jossa z on koordinaatti, joka on määritelty Maan keskipisteen ja veto-
voiman lähteen yhdistävää viivaa pitkin, katso kuva 14.1. R on pallon
muotoisen Maan säde.

Nettovuorovesipotentiaali, sellaisena kuin massa-alkiot Maan pinnal-
la tuntevat sen, on nyt

V = V ′ − V ′′ =
GM
ℓ

−
GM
R

(︂
R
d

)︂2
cos ζ =

=
GM
R

∞∑︂
n=0

(︂
R
d

)︂n+1
Pn(cos ζ) − GM

R

(︂
R
d

)︂2
cos ζ

käyttäen kehitelmää 8.7. Tässä termi n = 0 on vakio ja siten potentiaalin
tapauksessa mielivaltainen, ja se poistetaan. Termi n = 1 tuottaa tarkan
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kumoamisen. Jää

V =
GM
R

∞∑︂
n=2

(︂
R
d

)︂n+1
Pn(cos ζ),

jossa asteluvun 2 termi on hallitseva.
Kirjoitetaan nyt vuorovesi- eli vuoksipotentiaali V seuraavasti:

V =
GMR2

d3
P2(cos ζ) + · · · = GMR2

2d3
(︁
3 cos2 ζ− 1

)︁
+ · · · ,

jossa ζ on paikan Auringon tai Kuun geosentrinen zeniittikulma eli
paikallinen zeniitikulma ζ ′, josta parallaksi on korjattu pois, katso kuva
14.1. P2(cos ζ) on toisen asteluvun Legendren polynomi. Auringon ja
Kuun tapauksessa korkeampien astelukujen lisätermit (· · · ) voidaan
jättää huomiotta, koska ne ovat niin kaukaisia kappaleita: d≫ R.

Kosinisääntö pallolla kertoo, että

cos ζ = sinϕ sin δ+ cosϕ cos δ cosh,

jossa ϕ on leveysaste, δ on Kuun deklinaatio1 ja h on Kuun tuntikulma2. 1
2Pallofunktioiden summauslauseen (Wolfram MathWorld, Spherical Har-

monic Addition Theorem) perusteella on

Pn(cos ζ) = Pn(sinϕ)Pn(sin δ) +

+ 2

n∑︂
m=1

(n−m)!
(n+m)!Pnm(sinϕ)Pnm(sin δ) cosmh,

eli kun n = 2,

P2(cos ζ) = P2(sinϕ)P2(sin δ) +

1Deklinaatio on taivaankappaleen leveysaste taivaanpallolla eli sen kulmaetäisyys
taivaan ekvaattorilta (Wikipedia, Deklinaatio), tässä tapauksessa katsottuna Maan
keskipisteestä.
2Tuntikulma on taivaankappaleen meridiaanin ja paikallisen meridiaanin välinen
kulma eli pituusasteiden ero mitattuna taivaan ekvaattoria pitkin (Wikipedia, Tuntikul-
ma), tässä tapauksessa katsottuna Maan keskipisteestä. Se häviää, kun taivaankappale
on yläkulminaatiossa eli paikallisessa meridiaanissa korkeimmillaan.
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+ 1

3
P21(sinϕ)P21(sin δ) cosh+ 1

12
P22(sinϕ)P22(sin δ) cos 2h.

Taulukon 3.2 mukaan

P21(sinϕ) = 3 sinϕ cosϕ, P21(sin δ) = 3 sin δ cos δ,
P22(sinϕ) = 3 cos2ϕ, P22(sin δ) = 3 cos2 δ,

ja saadaan

P2(cos ζ) = P2(sinϕ)P2(sin δ) +
+ 3 sinϕ cosϕ sin δ cos δ cosh+ 3

4
cos2ϕ cos2 δ cos 2h =

= 1

2

(︁
3 sin2ϕ− 1

)︁
1

2

(︁
3 sin2 δ− 1

)︁
+ 3

4
sin 2ϕ sin 2δ cosh+

+ 3

4
cos2ϕ cos2 δ cos 2h.

Tästä

V =
GMR2

4d3

⎛⎜⎜⎝
(︁
3 sin2ϕ− 1

)︁ (︁
3 sin2 δ− 1

)︁
+

+ 3 sin 2ϕ sin 2δ cosh+

+ 3 cos2ϕ cos2 δ cos 2h

⎞⎟⎟⎠ .
Tämä on vuoroveden jako osiin Laplacen mukaan.

Siinä on kolme osaa:

◦ Hitaasti vaihteleva osa,

V1 =
GMR2

4d3
(︁
3 sin2ϕ− 1

)︁ (︁
3 sin2 δ− 1

)︁
,

joka riippuu myös Kuun deklinaatiosta δ ja on näin ollen pe-
riodinen 14 päivän (puolen kuukauden) jaksoissa. Käyttämällä
pallotrigonometriaa:

sin δ = sin ϵ sin ℓ
=⇒ sin2 δ = sin2 ϵ sin2 ℓ = sin2 ϵ

(︁
1

2
− 1

2
cos 2ℓ

)︁
, (14.1)

jossa ℓ on Kuun pituus eli longitudi radallaan laskettuna päi-
väntasaajan ylityspisteestä, ja ϵ on Kuun ratatason kaltevuus
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eli inklinaatio päiväntasaajaan nähden, keskimäärin 23◦, 5, mutta
vaihteleva arvojen 18◦, 3 ja 28◦, 6 välillä. Näin saadaan

V1 =
GMR2

4d3
(︁
3 sin2ϕ− 1

)︁ (︂
3 sin2 ϵ

(︁
1

2
− 1

2
cos 2ℓ

)︁
− 1
)︂
,

jossa on käytetty tulosta 14.1. Hajotetaan V1 = V1a + V1b kahteen
osaan, joista toinen on vakio-osa3 ja toinen jaksollinen, puolikuu- 3

kausittainen osa:

V1a =
GMR2

4d3
(︁
3 sin2ϕ− 1

)︁ (︁
3

2
sin2 ϵ− 1

)︁
, (14.2)

V1b = −
GMR2

4d3
(︁
3 sin2ϕ− 1

)︁ (︁
3

2
sin2 ϵ cos 2ℓ

)︁
.

◦ Tämän lisäksi on pari termiä, joissa Kuun tuntikulma h esiintyy,
periodina noin vuorokausi ja noin puoli vuorokautta:

V2 =
GMR2

4d3
· 3 sin 2ϕ sin 2δ cosh,

V3 =
GMR2

4d3
· 3 cos2ϕ cos2 δ cos 2h.

Molemmissa on h:n lisäksi δ ”hitaana” muuttujana. Yhtälöt voi-
taisiin kirjoittaa Kuun longitudin ℓ eri funktioiden summiksi.
Käytä taas perustrigonometriaa, yhtälö 14.1:

cos2 δ = 1− sin2 δ = 1− sin2 ϵ sin2 ℓ =
= 1− sin2 ϵ

(︁
1

2
− 1

2
cos 2ℓ

)︁
,

cos 2ℓ cos 2h = 1

2

(︁
cos(2ℓ+ 2h) + cos(2ℓ− 2h)

)︁
,

sin 2δ = 2 sin δ cos δ = 2
√︂

sin2 δ
(︁
1− sin2 δ

)︁
=

= 2 sin ϵ
√︃(︁

1

2
− 1

2
cos 2ℓ

)︁ (︂
1− sin2 ϵ

(︁
1

2
− 1

2
cos 2ℓ

)︁)︂
,

mikä johtaa Kuun longitudin ℓ trigonometriseen kehitelmään ja
niin edelleen. Katso esimerkiksi Melchiorin4 kuuluisa kirja (1978). 4

3Kuun tapauksessa ei tarkasti, koska ϵ$ on (hitaasti) aikariippuvainen.
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14382 Vuorovesi, ilmakehä ja maankuoren liikkeet

^ Taulukko 14.1. Teoreettisen vuoroveden eri jaksoja. Laajasti käytössä olevat
symbolit ovat George Darwinin standardisoimia.

Muuttuva
funktio

Jakso Darwin-symboli
Nimi

Kuu Aur. Kuu Aur.

V1a - - - M0 S0 Pysyvä vuorovesi
V1b cos 2ℓ 14d 182d Mf a Ssab Deklinaatiov.
V2 cosh 24h50m 24h K1, O1 S1, P1 Päivittäinen
V3 cos 2h 12h25m 12h M2 S2 Puolipäivittäinen

aLunar fortnightly, Kuun puolikuukausittainen
bSolar semi-annual, Auringon puolivuotuinen

Yllä olevista yhtälöistä erotetaan kerroin

D
def
=
3GMR2

4d3
= 3

4

GM
d

(︂
R
d

)︂2
, (14.3)

”Doodsonin5 vakio”. Kuun vakio on D$ = 26,8 cm × γ ja Auringon5

D⊙ = 12,3 cm× γ, jossa γ ≈ 9,81m/s2 . Katso kuva 14.2.
Jaksot on lueteltu taulukossa 14.1 Darwinin6 symboleineen.6

Käytännössä vuorokautiset ja puolivuorokautiset vuorovedet voidaan
jakaa moniin hyvin lähellä toisiaan oleviin ”spektraaliviivoihin”, myös
siksi että Kuun rata, kuten myös Maan rata, on merkittävästi eksentrinen.

4Paul Jacques Léon Camille paroni Melchior (1925–2004) oli belgialainen geofyysikko
ja kiinteän Maan vuoksen tutkĳa sekä Luxemburgissa sĳaitsevan Walferdangen
maanalaisen geodynamiikan laboratorion perustaja.
5Arthur Thomas Doodson FRS (1890–1968) oli brittiläinen merentutkĳa, vuorovesiteo-
rian pioneeri ja vuoroveden laskentaan soveltuvien koneiden suunnittelĳa. Hän oli
täysin kuuro.
6Sir George Howard Darwin FRS FRSE (1845–1912) oli englantilainen tähtitieteilĳä ja
matemaatikko. Hän oli kuuluisan Lajien Synnyn Charles Darwinin poika.
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Kuva 14.2. Teoreettisen vuoroveden pääkomponentit. Nämä arvot on vielä
kerrottava Doodsonin vakion D kanssa.^

^ 14.2 Vuorovesipotentiaalin aiheuttama deformaatio

Vuorovesipotentiaali eli teoreettinen vuorovesi, mistä puhuttiin jo aiem-
min, ei ole sama asia kuin sen aiheuttama kiinteän Maan deformaatio.
Tämä deformaatio riippuu Maan sisäisistä elastisuusominaisuuksista.
Näitä ominaisuuksia luonnehditaan usein elastisten Loven7 lukujen avulla 7

7Augustus Edward Hough Love FRS (1863–1940) oli brittiläinen matemaatikko ja Maan
elastisuuden tutkĳa.
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14384 Vuorovesi, ilmakehä ja maankuoren liikkeet

(Love, 1909; Melchior, 1978).
Kirjoitetaan ensin vuorovesipotentiaali V = V(ϕ, λ, r) seuraavalla

tavalla:

V(ϕ, λ, r) =

∞∑︂
n=2

(︂
r
R

)︂n
Vn(ϕ, λ) =

∞∑︂
n=2

Vsis
n (ϕ, λ, r),

jossa indeksi n on pallofunktioiden asteluku. Vn(ϕ, λ) on potentiaalin
V asteosuus ja

Vsis
n (ϕ, λ, r)

def
=
(︂
r
R

)︂n
Vn(ϕ, λ)

sen sisäinen avaruuspallofunktio asteluvulle n.
Kutsutaan kiinteän Maan ainealkion lineaarista8 siirtymää säteittäi-8

seen suuntaan ur, pohjoissuuntaan uϕ ja itäsuuntaan uλ. Seuraavat
yhtälöt pätevät:

ur(ϕ, λ, r) =
1
γ

∞∑︂
n=2

Hn(r)V
sis
n (ϕ, λ, r) =

∞∑︂
n=2

Hn(r) ζn(ϕ, λ, r),

uϕ(ϕ, λ, r) =
1
γ

∞∑︂
n=2

Ln(r)
∂Vsis
n (ϕ, λ, r)
∂ϕ

= r

∞∑︂
n=2

Ln(r) ξn(ϕ, λ, r),

uλ(ϕ, λ, r) =
1
γ

∞∑︂
n=2

Ln(r)
∂Vsis
n (ϕ, λ, r)
cosϕ∂λ = r

∞∑︂
n=2

Ln(r)ηn(ϕ, λ, r).

Tässä r on etäisyys Maan keskipisteestä. Oletetaan, että Loven luvut
Hn ja Ln ovat vain r:n funktioita: Maan elastisuusominaisuudet ovat
pallosymmetrisiä. Symbolit ζn, ξn ja ηn edustavat vuorovesipotentiaalin
asteluvun n vaikutuksen tasapotentiaalipinnan tasoon ja luotiviivan
suunnan komponentteihin.

Maan deformaatio aiheuttaa myös muutoksen, ”epäsuoran vaikutuk-
sen” Kuun alkuperäisen vuorovesipotentiaalin V lisäksi, geopotentiaa-
lissa. Kirjoitetaan

δV(ϕ, λ, r) =

∞∑︂
n=2

Kn(r)V
sis
n (ϕ, λ, r),

8Eli niiden yksikkö on metri eikä aste myös uϕ:n ja uλ:n tapauksessa!
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Vuorovesipotentiaalin aiheuttama deformaatio 14.2 385
jossa käytetään jo kolmatta Loven lukujen lajia.

Maan pinnalla r = R tehdään seuraava erikoistus:

hn
def
= Hn

(︁
R
)︁
, ℓn

def
= Ln

(︁
R
)︁
, kn

def
= Kn

(︁
R
)︁
. (14.4)

Kuun ja Auringon suuren etäisyyden takia ainoa merkittävä vuoro-
vesipotentiaalin V osa on asteluvun n = 2 osuus, ”rugbypallo-osuus”
Vsis
2 .
Loven luvut riippuvat vielä taajuudesta eli vuoroveden jaksosta P:

hn = hn
(︁
P
)︁
, ℓn = ℓn

(︁
P
)︁
, kn = kn

(︁
P
)︁
.

Vuorovedet tarjoavat oivallisen Loven lukujen h2
(︁
P
)︁
, ℓ2
(︁
P
)︁

ja k2
(︁
P
)︁

empiirisen määrittämisen keinon, koska jaksollisina vaihteluina ne
aiheuttavat maapallossa samojen jaksojen, mutta eri amplitudien ja
vaihekulmien9, deformaatioita. Näin saadaan määritetyksi ainakin ne 9

Loven luvut, jotka vastaavat teoreettisessa vuorovedessä esiintyviä
jaksoja.

Luvut h ja ℓ saadaan nykyisin muun muassa GNSS-paikannuksesta.
GNSS-laskentaohjelmiin on ohjelmoitu valmiiksi reduktio tätä ilmiötä
varten. Painovoimamittauksesta saadaan tietoa koskien erästä h:n ja k:n
lineaariyhdistelmää, δ = 1 + h − 3

2
k: Kuun vuorovesivoima muuttaa

suoraan painovoimaa, pystyliike muuttaa painovoimaa sen gradientin
kautta, ja myös Maan deformaatio eli massojen siirtyminen muuttaa
painovoimaa suoraan.

Käyttökelpoinen tutkimusväline on pitkä vesivaaka, kuten Geodeetti-
sen laitoksen laite, kallistusmittari joka on ollut pitkään käytössä Tytyrin
kalkkikivikaivoksessa (Tytyri Elämyskaivos) Lohjalla (Kääriäinen ja
Ruotsalainen, 1989). Laitteen moderni parannettu versio esitetään julkai-
sussa Ruotsalainen (2017). Sama koskee herkkiä klinometreja yleensä,
kuten Verbaandertin ja Melchiorin heiluri. Klinometri mittaa maankuo-
ren ja paikallisen luotiviivan välisiä suunnanmuutoksia. Tämä voi antaa
tietoja h:n ja k:n toisesta lineaariyhdistelmästä, γ = 1− h+ k.

9Vaihekulmat voidaan esittää tekemällä Loven luvuista kompleksilukuja.
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Luotiviivan absoluuttisen suunnan mittaus, esimerkiksi zeniittiputken
avulla, voi antaa tietoja lineaariyhdistelmästä Λ = 1 − ℓ + k, tosin
vasta erilaisten reduktioiden (Maan asentoparametrit kuten napaliike
ja pyörähdysnopeuden vaihtelut) jälkeen, Vondrák ym. (2010). Loven
luku ℓ10 vaikuttaa zeniittiputken vaakasiirtymän kautta paikkaan, jossa10

luotiviivan suunta on erilainen.

^ 14.3 Vuoroveden pysyvä osa

Kuten yllä näytettiin, teoreettinen vuorovesiyhtälö sisältää vakio-osan,
joka ei vaihtele edes pitkäperiodisesti. Tietysti maapallo reagoi tähänkin
vuorovesivoiman osaan, mutta sitä ei ole mahdollista mitata, koska
muodonmuutos ei ole jaksollinen. Lisäksi kiinteän Maan elastisuus-
ominaisuuksien mekaaninen teoria ja tietämyksemme Maan sisäisestä
tilasta eivät kerrassaan riitä vasteen teoreettiseen laskentaan.

Tästä syystä on yleisesti hyväksytty käsitys, että vuoroveden pysyvän
osan vaikutusta Maan deformaatiotilaan ei tule sisällyttää mihinkään
vuorovesireduktioon (Ekman, 1992). Silti monesti, esimerkiksi GNSS-
havaintojen käsittelyssä tai Maan painovoimakentän pallofunktiokehi-
telmien määrittelyssä, vuorovesireduktio sisältää tämänkin termin, jota
on teoreettisesti ja käytännössä mahdoton tuntea. Katso Poutanen ym.
(1996).

Yleisemmin geodeettisen suureen, esimerkiksi geoidin korkeuden,
reduktion vuoroveden pysyvää osaa varten voi suorittaa kolmella eri
tavalla:

◦ Ei suoriteta mitään vuoroveden pysyvän osuuden reduktiota.
Näin saatua suuretta kutsutaan nimellä ”mean geoid” eli ”keskigeoi-
di”. Saatu pinta on hydrodynamiikan kannalta tasapainopinta ja
suoraan käyttökelpoinen merentutkimuksessa.

10Myös Shidan luku. Toshi Shida (1876–1936) oli japanilainen kiinteän Maan vuoksen
tutkĳa.
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Korkeusjärjestelmien väliset vuorovesikorjaukset 14.4 387
Keski- eli nollamaankuori

Keskigeoidi
Vertausellipsoidi

Nollageoidi

Vuorovesivapaa maankuori

Vuorovesivapaa geoidi

Maan pysyvä vuorovesideformaatio
Kuun ja Auringon suora pysyvä vaikutus
geoidiin

Maan pysyvän vuorovesideformaation
(massasiirtojen) vaikutus geoidiin

Kuva 14.3. Käsitteellinen kuva pysyvän vuoroveden eri osista.^

◦ Kuun ja Auringon vuoroveden kentän suora vaikutus poistetaan
suureesta kokonaan, mutta sen aiheuttaman Maan deformaation
vaikutus jätetään korjaamatta. Näin saatua suuretta kutsutaan
nimellä ”zero geoid” eli ”nollageoidi”.

◦ Taivaankappaleen oman voimakentän vaikutus ja sen aiheutta-
man deformaation vaikutus lasketaan tietyn deformaatiomallin
(Loven lukujen) mukaan ja poistetaan. Näin saatua tulosta kutsu-
taan nimellä ”tide-free geoid”, vaikkapa ”vuorovesivapaa geoidi”. Sen
ongelmana on käytetyn elastisuusmallin empiirinen määrittämät-
tömyys.

Katso kuva 14.3. Kannattaa olla kriittinen ja analysoida tarkasti, miten
aineistojen reduktio on suoritettu!

^ 14.4 Korkeusjärjestelmien väliset vuorovesikorjaukset

Yhtälöstä 14.2 nähdään, että kun ϵ = 23◦, 5, vuorovesipotentiaalin
pysyvä osa on
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Vpys =
GMR2

4d3
(︁
3 sin2ϕ− 1

)︁ (︁
3

2
sin2 ϵ− 1

)︁
≈

≈ −0,7615 · 3GMR
2

4d3
(︁
sin2ϕ− 1

3

)︁
.

Kun Auringon ja Kuun yhdistetty Doodsonin vakio 14.3 on

D =
3GM⊙R2

4d3⊙
+
3GM$R

2

4d3$
=

= (12,3 cm + 26,8 cm)× γ = 39,1 cm× γ

saadaan
Vpys = 29,77 cm×

(︁
1

3
− sin2ϕ

)︁
× γ.

Brunsin yhtälön 5.2 avulla voimme ilmaista tämän pysyväksi vuorove-
sivaikutukseksi geoidiin:

Npys = 29,77 cm×
(︁
1

3
− sin2ϕ

)︁
.

Tästä Npys(0
◦) = 9,92 cm päiväntasaajalla ja Npys(±90◦) = −19,85 cm

navoilla.
Tämä ulkoisen Auringon ja Kuun potentiaalin pysyvän osan vaikutus

geoidiin on myös erotus yllä määritettyjen keskigeoidin ja nollageoidin
välillä:

∆keski
nollaN

def
= Nkeski −Nnolla = 29,77 cm×

(︁
1

3
− sin2ϕ

)︁
.

Korkeuksille Hmerenpinnasta pätee H = h−N, jolloin saadaan

∆keski
nollaH

def
= Hkeski −Hnolla = −29,77 cm×

(︁
1

3
− sin2ϕ

)︁
,

ja kahdelle eri leveysasteelle ϕ1 ja ϕ2 saadaan vaikutukseksi korkeus-
eroon

∆keski
nollaH(ϕ2) − ∆

keski
nollaH(ϕ1) = 29,77 cm×

(︁
sin2ϕ2 − sin2ϕ1

)︁
.

Tämä arvo on lisättävä, kun mennään nollageoidin korkeusjärjestelmästä
keskigeoidin järjestelmään, ja vähennettävä, kun mennään keskigeoidin
järjestelmästä nollageoidin korkeusjärjestelmään.
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Kun seuraavaksi katsotaan vuorovesivapaata geoidia ja maankuorta,

tarvitaan pysyvän vuorovesideformaation Loven lukuja h ja k, jotka
ilmaisevat deformaation ja sen potentiaalin murto-osina alkuperäisestä
ulkoisesta vuorovesipotentiaalista11. Kuten olemme nähneet, näitä lu- 11

kuja ei ole mahdollista määrittää empiirisesti. Usein käytetyt arvot ovat
h ≈ 0,6, k ≈ 0,3. Tämän kanssa yllä olevat yhtälöt pätevät kertoimella
29,77 cm kerrottuna lineaariyhdistelmällä γ = 1−h+ k ≈ 0,7. Tulos on

∆keski
vvv H

def
= Hkeski −Hvvv = −20,84 cm×

(︁
1

3
− sin2ϕ

)︁
,

∆keski
vvv H(ϕ2) − ∆

keski
vvv H(ϕ1) = 20,84 cm×

(︁
sin2ϕ2 − sin2ϕ1

)︁
.

Minkä tahansa muun korjausyhtälön voi johtaa näistä, esimerkiksi

∆nolla
vvv H(ϕ2) − ∆

nolla
vvv H(ϕ1) = −8,93 cm×

(︁
sin2ϕ2 − sin2ϕ1

)︁
.

^ 14.5 Meren ja ilmakehän kuormitus maankuoreen

Vuorovesivoiman aiheuttaman deformaation lisäksi maankuori defor-
moituu meren ja ilmakehän kuormituksesta. Etenkin rannikon lähellä
meren vuorovesiliike aiheuttaa moniperiodisen kuormituksen, joka
liikuttaa maankuorta ylös ja alas jopa senttimetrien verran.

Tämä ilmiö voidaan mallintaa laskennallisesti, jos kiinteän Maan elas-
tiset ominaisuudet, meren vuorovesiliike ja rantaviivan tarkka muoto
ovat tiedossa. Eräs tunnettu ohjelmisto tähän tarkoitukseen on saksa-
laisen Hans-Georg Wenzelin12 laatima Eterna, jota on käytetty myös 12

Suomessa.
Toisaalta, kun on olemassa sopivia työkaluja, vuorovesikuormitus an-

taa oivan mahdollisuuden tutkia myös maankuoren hyvinkin paikallisia
elastisia ominaisuuksia.

11Molemmat tarvitaan: vuorovesideformaatio siirtää sekä maankuorta että geoidia.
12Hans-Georg Wenzel (1945–1999) oli saksalainen fysikaalinen geodeetti ja geofyysik-
ko.
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Deformaation mittaamiseksi käytetään yleensä rekisteröivää gravi-
metria. Maankuorihan liikkuu elastisesti ylös ja alas, mikä muuttaa
painovoimaa likimäärin ilmagradientin arvon −0,3mGal/m suhteessa.
Torge (1992) kuvaa menetelmää osiossa 4.2.

GNSS:n käyttö meren vuorovesikuormituksen mittaamiseksi ei ole
vielä yleistynyt.

Kuten meri, aiheuttaa myös ilmakehä ilmanpaineen vaihtelujen kaut-
ta maankuoren vaihtelevia deformaatioita. Ilmiö on hyvin pieni, kor-
keintaan pari senttimetriä. Painovoimamittaus ei ole kovin hyvä keino
tämän ilmiön tutkimiseksi, koska paikalliseen painovoimaan vaikuttaa
moni muukin paikallinen ilmiö, joita ei tunneta kovin tarkasti. Mittaus
GNSS:n avulla on lupaavaa, mutta myös vaikeaa.

^ Olenko ymmärtänyt tämän?

1) Kuvaile sanoin Laplacen jakomenetelmän tuottamaa teoreettisen
vuoroveden kolmea osaa.

2) Miten teoreettisen vuoroveden hitaasti vaihteleva osa voidaan
edelleen hajottaa kahteen osaan? Esitä sanoin osat.

3) Mitkä ovat taivaankappaleen, esimerkiksi Kuun, deklinaatio ja
tuntikulma?

4) Mikä on Doodsonin vakio?

5) Mitä Loven luvut ilmaisevat?

6) Miksi vuoroveden pysyvän osuuden aiheuttamaa deformaatiota
ei voida määrittää empiirisesti?

7) Esitä kolme eri tapaa ottaa huomioon vuoroveden pysyvä osa,
kun määritetään geoidia.
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Harjoitus 14–1: Pysyvä vuorovesi 391
^ Harjoitus 14–1: Pysyvä vuorovesi

Vuoroveden pysyvän osan yhtälö on

V1a =
GMR2

4d3
(︁
3 sin2ϕ− 1

)︁ (︁
3

2
sin2 ϵ− 1

)︁
,

jossa ϕ on leveysaste ja ϵmaapallon pyörähdysakselin kaltevuus, tällä
hetkellä noin 23◦, 5.

1) Millä leveysasteen ϕ arvolla vuoroveden pysyvä osa häviää? Mitä
on tulkintasi?

2) Millä kaltevuuden ϵ arvolla vuoroveden pysyvä osa häviää? Mitä
on tulkintasi?
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^ Maan painovoimakentän
tutkimus1515

^ 15.1 Kansainvälinen tutkimus

Kansainvälisen geodeettisen assosiaation (IAG, International Association
of Geodesy) puitteissa Maan painovoimakentän tutkimus on tällä hetkel-
lä International Gravity Field Servicen (IGFS) vastuulla. IGFS perustettiin
vuonna 2003 IUGG:n yleiskokouksessa Sapporossa Japanissa, ja se toimii
IAG:n uuden Komission 2 alaisuudessa, jonka aiheena on painovoi-
makenttä. Yhdysvaltalainen National Geospatial-Intelligence Agency
(NGA) toimii sen teknisenä keskuksena.

Tärkeä ja maineikas IAG:n palvelu on Kansainvälinen gravimetrinen
toimisto, Bureau Gravimétrique International (BGI), joka sĳaitsee Toulouses-
sa Ranskassa (http://bgi.obs-mip.fr/). Toimisto toimii kansainvälisenä
välittäjänä, jolle maat voivat lähettää painovoima-aineistonsa. Jos tutkĳa
tarvitsee toisen maan painovoima-aineistoa esimerkiksi geoidimääritys-
tä varten, hän voi pyytää sitä BGI:stä, joka luovuttaa sen alkuperämaan
luvalla, mikäli tutkĳan oma maa on vastaavalla tavalla antanut omaa
painovoima-aineistoaan BGI:n käyttöön.

Ranskan valtio on sĳoittanut tähän elintärkeään kansainväliseen
toimintaan merkittävästi rahaa.

Toinen tärkeä IAG:n palvelu alalla on International Service for the
Geoid (ISG). Se on itse asiassa toiminut jo vuodesta 1992 Internatio-
nal Geoid Servicen (IGeS) nimellä International Geoid Commissionin
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(IGeC) toimeenpanevana elimenä. ISG:n päämaja on Milanossa Italias-
sa (http://www.isgeoid.polimi.it/). Palvelun tehtävänä on tukea
geoidimääritystä eri maissa. Olemassa olevat geoidiratkaisut kerätään
yhteiseen tietokantaan, ja lisäksi järjestetään kansainvälisiä tutkĳa-
kouluja geoiditietoisuuden ja geoidilaskennan kehittämiseksi, etenkin
kehitysmaissa. Italian valtio on rahoittanut toimintaa merkittävästi.

Molemmat palvelut, BGI ja ISG, ovat International Gravity Field Ser-
vicen (IGFS) alaisia: kaksi IAG:n monista virallisista palveluista. Muut
IGFS:n palvelut ovat International Center for Earth Tides (ICET), Interna-
tional Center for Global Earth Models (ICGEM) ja International Digital
Elevation Model Service (IDEMS).

^ 15.2 Eurooppalainen tutkimus

Euroopassa toimii European Geosciences Union (EGU), joka koordinoi
painovoimakenttään ja geoidilaskentaan liittyvää julkaisu- ja kokous-
toimintaa. EGU järjestää vuosittain symposioita, joissa on aina myös
istuntoja painovoimakenttään ja geoidiin liittyvistä aiheista. Kokouksiin
osallistuu myös amerikkalaisia tutkĳoita. Vastaavasti American Geophy-
sical Unionin (AGU) syys- ja kevätkokoukset1 ovat myös eurooppalaisten1

tutkĳoiden suosiossa.
Yksi mainitsemisen arvoinen tutkimuslaitos on Hannoverissa Saksas-

sa sĳaitseva Leibnizin yliopiston Geodesian laitos (Institut für Erdmes-
sung). Se on toiminut vuodesta 1990 lähtien Kansainvälisen geoidikomis-
sion (IGeC) Euroopan alakommission laskentakeskuksena ja tuottanut
laadukkaita geoidimalleja Euroopasta (Denker, 1998; European geoid
calculations). Työ jatkuu vuodesta 2011 IAG:n alakomissio 2.4a Gravity
and Geoid in Europen puitteissa.

1Syyskokoukset pidetään aina San Franciscossa, kevätkokoukset jossain muualla. AGU,
vaikkakin amerikkalainen, on hyvin kosmopoliittinen vaikuttaja.
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^ 15.3 Pohjoismainen tutkimus

Pohjoismaissa toimintaa koordinoi Nordiska Kommissionen för Geodesi
(NKG) ja sen geoidin ja korkeusjärjestelmien työryhmä. Toimintaan
kuuluu geoidimääritys, uusien, tarkempien geoidimallien laskennan
edellytyksien selvittäminen, uudet vaaitusteknologiat ja postglasiaalisen
maannousun tutkimus.

Ryhmä on laskenut Kööpenhaminan laskentakeskuksessaan jo pit-
kään laadukkaita pohjoismaisia geoidimalleja. Toiseksi viimeinen malli
on NKG2004 (Forsberg ja Kaminskis, 1996; Forsberg ja Strykowski, 2010).
Uusin malli NKG2015 on eri maiden, muun muassa Ruotsin ja Viron,
laskentakeskusten työn tulos. Se julkaistiin lokakuussa 2016.

^ 15.4 Suomalainen tutkimus

Suomessa Maan painovoimakentän tutkimus on ollut pääosin vuonna
1918 perustetun Geodeettisen laitoksen käsissä. Laitos on ollut vastuussa
vaaituksen ja painovoiman valtakunnallisista perusmittauksista ja nii-
den kansainvälisistä kytkennöistä. Vuonna 2001 Geodeettisen laitoksen
painovoimaosasto ja geodesian osasto yhdistettiin uudeksi geodesian ja
geodynamiikan osastoksi, johon myös painovoimatutkimus kuuluu.

Tutkittujen asioiden joukkoon kuuluvat kiinteän Maan vuorovesi ja
ominaisvärähtelyt, postglasiaalinen maannousu ja korkeusjärjestelmät.

Geoidimalleja on laskettu laitoksessa alusta lähtien, aina Hirvosen
globaalista mallista (Hirvonen, 1934) toistaiseksi uusimpaan Suomen
FIN2005N00-malliin (Bilker-Koivula, 2010). Nämä geoidimallit perus-
tuvat yhteispohjoismaiseen gravimetriseen geoidiin NKG2004, ja ne
sovitettiin Suomen alueen GNSS-vaaituspisteisiin korkeuksien muun-
nospinnaksi.

Vuonna 2015 Geodeettinen laitos yhdistettiin Maanmittauslaitokseen
sen paikkatieto- ja tutkimuskeskuksena. Englanninkielinen lyhenne on
edelleen FGI, Finnish Geospatial Research Institute (https://www.ma
anmittauslaitos.fi/tutkimus).
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Myös Teknillinen korkeakoulu (nykyisin osa Aalto-yliopistoa) on ollut
aktiivinen Maan painovoimakentän tutkimuksessa. Vuosina 1928–1949
TKK:n professorina toiminut V. A. Heiskanen toimi myös Isostaattisen
laitoksen (International Isostatic Institute) johtajana 1936–1949. Lisäksi
hän työskenteli Ohion valtionyliopistossa Yhdysvalloissa monien mui-
den, myös suomalaisten ja suomalaissyntyisten, geodeettien kanssa
ensimmäisen suuren maailmanlaajuisen geoidimallin, ”Columbuksen
geoidin” laskentatyön parissa (Kakkuri, 2008).

^ 15.5 Oppikirjat

Maan painovoimakentän tutkimuksesta on olemassa monia hyviä oppi-
kirjoja. Heiskasen ja Moritzin suurilta osin jo vanhentuneen klassikon
(1967) lisäksi voidaan mainita Wolfgang Torgen kirja (1989). Vaikea
mutta hyvä on myös Moritz (1980). Samalla tavalla vaativa on Molo-
denski ym. (1962). Lukemisen arvoisia ovat myös fysikaalisen geodesian
kannalta Vaníček ja Krakiwsky (1987). Alan uudempi kirja on Hofmann-
Wellenhof ja Moritz (2006).
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^ Kenttäteoria ja vektorianalyysi
lyhyesti

AA
^ A.1 Vektorilaskenta

Fysiikassa monet suureet ovat vektorisuureita, esimerkiksi voima, nopeus
ja sähkömagneettinen kenttä. Vektorin määrittelevä ominaisuus on, että
koordinaattimuunnoksissa se käyttäytyy identtisesti kahden naapu-
ripisteen välisen sĳaintieron kanssa. Olkoon sĳaintiero ∆rr = rr2 − rr1,
jossa rr1 ja rr2 ovat pisteiden 1 ja 2 paikkavektorit. Koordinaattimuunnok-
sessa vektori ei objektina muutu, mutta sen komponenttien lukuarvot,
osio A.2.2, ovat erilaiset eri koordinaatistoissa. Muunnoksen vaiku-
tus komponentteihin on sama, kuin jos vektori olisi kahden pisteen
sĳaintiero.

Tämä on perimmäinen syy, miksi on mahdollista piirtää vektorit
nuoleina.

Notaatiosta Painetussa tekstissä vektorit kirjoitetaan usein lihavoituna:
vv. Käsin kirjoitetussa tekstissä voidaan käyttää nuolta merkin
yläpuolella: −→v .

^ A.1.1 Skalaaritulo
Kahden vektorin välillä voidaan määritellä skalaaritulo eli pistetulo,
joka on itse skalaariarvo. Fysiikassa skalaari on yksittäinen numeroar-
vo, vaikkapa paine tai lämpötila. Jos kyse on kahden vektorikentän
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skalaaritulosta, puhutaan skalaarikentästä: jokainen skalaariarvo on si-
dottu paikkaan, mutta vaikka koordinaattimuunnos muuttaisi paikan
koordinaattiarvot, skalaarin arvo ei muutu: se on invariantti.

Esimerkki skalaaritulosta: työ ∆E on

∆E =
⟨︁
FF · ∆rr

⟩︁
,

voiman FF ja matkan eli polun ∆rr skalaaritulo. Usein jätetään hakasulut⟨︁
·
⟩︁

pois.
Myöhemmin nähdään, että jos pisteet 1 ja 2, ∆rr = rr2 − rr1, ovat hyvin

lähellä toisiaan, voidaan kirjoittaa

dE =
⟨︁
FF · drr

⟩︁
,

jossa drr ja dE ovat infinitesimaaleja polku- ja energia-alkioita. Jos
pisteidenA ja B välillä on kaareva polku, tästä voidaan saada integraali-
yhtälö, työintegraali

∆EAB =
w B
A
dE =

w B
A

⟨︁
FF · drr

⟩︁
.

^ A.1.2 Skalaaritulo muodollisesti
Olkoon

s
def
=
⟨︁
aa · bb

⟩︁
vektoreiden aa ja bb skalaaritulo. Pätee (µ ∈ R):⟨︁

µaa · bb
⟩︁
=
⟨︁
aa · µbb

⟩︁
= µ

⟨︁
aa · bb

⟩︁
, (homogeenisuus)⟨︁

aa · (bb+ cc)
⟩︁
=
⟨︁
aa · bb

⟩︁
+
⟨︁
aa · cc

⟩︁
, (osittelulaki)⟨︁

aa · bb
⟩︁
=
⟨︁
bb · aa

⟩︁
, (vaihdannnaisuus)

ja kutsutaan
∥aa∥ def

=
√︂⟨︁

aa · aa
⟩︁

vektorin aa normiksi eli pituudeksi.
Pätee myös

s = ∥aa∥ ∥bb∥ cosα,

jossa α on vektorien aa ja bb suuntien välinen kulma.

í � Õ! ¤.�û



Vektorilaskenta A.1 399
^ A.1.3 Ulkoinen tulo eli vektoritulo

Kahden vektorin ulkoinen tulo eli ristitulo on itsekin vektori nimeltä
vektoritulo, ainakin kulmiulotteisessa euklidisessa avaruudessa. Esimer-
kiksi pyörähdysmomentti LL:

LL =
⟨︁
rr× pp

⟩︁
,

jossapp = mrṙ on liikemomentti, rr kappaleen paikkavektori tietyn origon
suhteen,m kappaleen massa ja

ṙṙ =
drr
dt

(A.1)

on paikan aikaderivaatta eli nopeus. Kirjoitetaan

LL = m
⟨︁
rr× rṙ

⟩︁
. (A.2)

^ A.1.4 Vektoritulo muodollisesti
Olkoon

xx
def
=
⟨︁
aa× bb

⟩︁
kahden vektorin aa ja bb vektoritulo. Silloin (µ ∈ R):⟨︁

µaa× bb
⟩︁
=
⟨︁
aa× µbb

⟩︁
= µ

⟨︁
aa× bb

⟩︁
, (homogeenisuus)⟨︁

aa× (bb+ cc)
⟩︁
=
⟨︁
aa× bb

⟩︁
+
⟨︁
aa× cc

⟩︁
, (osittelulaki)⟨︁

aa× bb
⟩︁
= −

⟨︁
bb× aa

⟩︁
, (antivaihdannaisuus)

ja siis
⟨︁
aa× aa

⟩︁
= 0.

Tulosvektori xx on aina kohtisuorassa vektoreihinaa jabb nähden. Vektorin
xx pituus vastaa vektorien aa ja bb virittämän suunnikkaan pinta-alaa:

∥xx∥ = ∥aa∥ ∥bb∥ sinα, (A.3)

jossa α on jälleen vektorien aa ja bb suuntien välinen kulma. Jos kulma on
nolla, myös vektoritulo on nolla, koska silloin aa = µbb sopivalle arvolle
µ.

Ellei kulma ole nolla, tarvitaan lisäksi korkkiruuvisääntö, joka sanoo,
että jos korkkiruuvi käännetään vektorista aa vektoriin bb, se etenee
tulovektorin xx =

⟨︁
aa× bb

⟩︁
suuntaan.
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bb

xx =
⟨︁
aa× bb

⟩︁

aa

α
∥xx∥

Kuva A.1. Ulkoinen tulo eli vektoritulo.^

^ A.1.5 Keplerin toinen laki
Olkoon rr kappaleen, esimerkiksi planeetan, paikkavektori liikekeskuk-
sen, kuten Auringon, suhteen ja ṙṙ (yhtälö A.1) sen nopeusvektori. Silloin
vektoritulo ⟨︁

rr× rṙ
⟩︁
=
⟨︂
rr× drr

dt

⟩︂
(A.4)

on juuri kaksi kertaa aikayksikössä peitetyn kolmion eli ”alueen” pinta-
ala.

Lasketaan tämän tulon, lausekkeen A.4, aikaderivaatta:

d
dt

⟨︁
rr× rṙ

⟩︁
=
⟨︂
drr
dt
× drr
dt

⟩︂
+

⟨︃
rr× d

2rr
dt2

⟩︃
=
⟨︁
rṙ× rṙ

⟩︁
+
⟨︁
rr× rr̈

⟩︁
. (A.5)

Ensimmäinen termi häviää, koska mielivaltaiselle vektorille
⟨︁
aa×aa

⟩︁
= 0.

Toisessa termissä voimme hyödyntää tietoamme, että Auringon vetovoi-
ma FF, joka aiheuttaa planeetan rataliikkeen, ja vetovoiman aiheuttama
kiihtyvyys

rr̈ =
d2rr
dt2

,

ovat keskeisiä:
FF = m r̈r̈ = −

GMm

∥rr∥3
rr.

G on universaalinen gravitaatiovakio,M on Auringon massa jam on
planeetan massa.

Sĳoitetaan tämä yhtälöön A.5:

d
dt

⟨︁
rr× rṙ

⟩︁
= 0−

GM

∥rr∥3
⟨︁
rr× rr

⟩︁
= 0.
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Nopeus-
vektoriSädevektori

rṙ
Aurinko

Planeetta

⟨︁
rr× rṙ

⟩︁Pyörähdysmomentti

rr

1
2

⃦⃦⟨︁
rr× rṙ

⟩︁⃦⃦

Kuva A.2. Keplerin toinen laki. Samassa ajassa planeetan sädevektori ”pyyh-
kii” samankokoisen alueen yli. Kyseessä on pyörähdysmomentin
säilyminen.^

Siis vasemmalla puolella oleva suure, pyörähdysmomentti LL per massa-
yksikköm, yhtälö A.2, säilyy:⟨︁

rr× rṙ
⟩︁
=

LL
m.

Kuten esimerkiksi energian, sähkövarauksen ja monen muun suureen
kokonaismäärä, suljetun järjestelmän pyörähdysmomentin kokonais-
määrä on vakio.

^ A.2 Skalaari- ja vektorikenttiä

^ A.2.1 Määritelmät
Euklidisessä avaruudessa voidaan määrittää funktioita eli kenttiä.

Skalaarikenttä on skalaariarvoinen funktio, joka on määritelty koko
avaruudessa tai sen osa-alueella. Esimerkki on lämpötila T(rr). Siis
jokaiselle paikkavektorin arvolle rr kuuluu lämpötila-arvo T(rr).

Vektorikenttä on vektoriarvoinen funktio, joka on määritelty avaruu-
dessa. Esimerkki on sähköstaattinen kenttä EE(rr).
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^ A.2.2 Avaruuden kanta
Voimme valita avaruudessa kolmen vektorin kannan, joka virittää ky-
seessä olevan avaruuden. Yleensä valitaan kolme kantavektoria ii, jj ja
kk, jotka ovat keskenään kohtisuoria ja joiden normi eli pituus on 1,
jolloin kyseessä on ortonormaali kanta. Kahden vektorin ortogonaalisuus
merkitsee, että niiden skalaaritulo häviää; siis

ii ⊥ jj, ii ⊥ kk, jj ⊥ kk

merkitsee, että ⟨︁
ii · jj
⟩︁
=
⟨︁
ii · kk

⟩︁
=
⟨︁
jj · kk

⟩︁
= 0. (A.6)

Ortonormaalius merkitsee lisäksi, että

∥ii∥ = ∥jj∥ = ∥kk∥ = 1. (A.7)

Nyt voimme kehittää avaruuden vektoreita komponentteihinsa:

aa = a1ii+ a2jj+ a3kk,

ja myös skalaari- ja vektoritulot voidaan nyt laskea komponenttien
avulla:

s =
⟨︁
aa · bb

⟩︁
=
⟨︁
(a1ii+ a2jj+ a3kk) · (b1ii+ b2jj+ b3kk)

⟩︁
=

= a1b1 + a2b2 + a3b3 =

3∑︂
i=1

aibi,

käyttämällä yllä esitettyjä kantavektorien identiteettejä A.6 ja A.7.
Vektoritulon tapauksessa laskenta on monimutkaisempaa. Ortogo-

naalisille vektoreille kulma α yhtälössä A.3 on 90◦, siis⃦⃦⟨︁
ii× jj

⟩︁⃦⃦
=
⃦⃦⟨︁

ii× kk
⟩︁⃦⃦

=
⃦⃦⟨︁

jj× kk
⟩︁⃦⃦

= 1.

Korkkiruuvisääntö sanoo nyt, että

kk =
⟨︁
ii× jj

⟩︁
= −

⟨︁
jj× ii

⟩︁
,

ii =
⟨︁
jj× kk

⟩︁
= −

⟨︁
kk× jj

⟩︁
,

jj =
⟨︁
kk× ii

⟩︁
= −

⟨︁
ii× kk

⟩︁
.
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Saamme lopputulokseksi determinantin

cc =
⟨︁
aa× bb

⟩︁
= det

⎡⎢⎣ ii jj kk

a1 a2 a3

b1 b2 b3

⎤⎥⎦ =

= (a2b3 − a3b2) ii+ (a3b1 − a1b3) jj+ (a1b2 − a2b1)kk.

Siis

c1 = a2b3 − a3b2, c2 = a3b1 − a1b3, c3 = a1b2 − a2b1.

Nämä lausekkeetkin ovat determinantteja:⎡⎢⎣ c1c2
c3

⎤⎥⎦ =

[︄
det

[︄
a2 a3

b2 b3

]︄
det

[︄
a3 a1

b3 b1

]︄
det

[︄
a1 a2

b1 b2

]︄ ]︄T

.

^ A.2.3 Nabla-operaattori
Paikkavektori rr voidaan kirjoittaa

{︁
ii, jj,kk

}︁
-kannalle seuraavasti:

rr = xii+ yjj+ zkk,

joka määrittelee avaruuden (x, y, z)-koordinaatit.
Määritellään vektorioperaattori nimeltä nabla (∇) seuraavasti:

∇ def
= ii

∂
∂x

+ jj
∂
∂y

+ kk
∂
∂z
.

Operaattori on sellaisenaan merkityksetön. Se saa merkityksen vas-
ta, kun operoi johonkin, jolloin voidaan laskea oikean puolen kolme
osittaisderivaattaa.

^ A.2.4 Gradientti
Olkoon V(rr) = V(x, y, z) skalaarikenttä avaruudessa. Nabla-operaattori
antaa sen gradientin gg, joka on saman avaruuden vektorikenttä:

gg = gradV = ∇V = ii
∂V
∂x

+ jj
∂V
∂y

+ kk
∂V
∂z
.
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Kuva A.3. Gradientti. Skalaarikentän tasokäyrät sinisinä katkoviivoina.^

Siis kenttä gg(rr) = gg(x, y, z) on kentän V gradienttikenttä. Fysiikassa gg

on usein voimakenttä ja V sen potentiaali.

Tulkinta Gradientti kuvaa skalaarikentän kaltevuutta. Vektorin suunta
on se suunta, johon skalaarikentän arvo muuttuu nopeimmin, ja
sen pituus kuvaa muutoksen nopeutta paikan mukaan. Kuvittele
kukkulamaisema: maan korkeus merenpinnasta on skalaarikent-
tä ja sen gradientti osoittaa kaikkialla ylämäkeen, pois laaksoista
huippuja kohti. gg-nuolet ovat sitä pidempiä, mitä jyrkempi on
maanpinnan kaltevuus.
Gradientti-operaattori, kuten myös divergenssi ja roottori, on
lineaarinen:

grad (U+ V) = gradU+ gradV.
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Kuva A.4. Divergenssi. Positiiviset (”lähteet”) ja negatiiviset divergenssit (”nie-
lut”). Kenttäviivat punaisina katkoviivoina.^

^ A.2.5 Divergenssi
Olkoon annettuna vektorikenttä aa(x, y, z) = a1ii+ a2jj+ a3kk. Muodos-
tetaan tämän ja nabla-operaattorin skalaaritulo s:

s = divaa =
⟨︁
∇ · aa

⟩︁
=
∂a1
∂x

+
∂a2
∂y

+
∂a3
∂z
.

Tulkinta Divergenssi kuvaa vektorikentän lähteitä, sekä positiivisia että
negatiivisia. Ajattele veden virtausnopeus vektorikenttänä. ”Läh-
teiden” kohdalla divergenssi on positiivinen, ”nielujen” kohdalla
negatiivinen. Kaikkialla muualla divergenssi on nolla, koska
nestettä ei ilmaannu tyhjästä eikä sitä häviä tyhjään.

^ A.2.6 Roottori (engl. curl)
Olkoon taas annettuna vektorikenttä aa(x, y, z). Muodostetaan tämän ja
nabla-operaattorin vektoritulo cc, joka on itse vektorikenttä:

cc = rotaa =
⟨︁
∇× aa

⟩︁
= det

⎡⎢⎢⎣
ii jj kk
∂
∂x

∂
∂y

∂
∂z

a1 a2 a3

⎤⎥⎥⎦ =
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Kuva A.5. Roottori. Positiiviset (vastapäivään) ja negatiiviset (myötäpäivään)
pyörteet.^

= det

⎡⎣ ∂
∂y

∂
∂z

a2 a3

⎤⎦ ii− det
[︄
∂
∂x

∂
∂z

a1 a3

]︄
jj+ det

⎡⎣ ∂
∂x

∂
∂y

a1 a2

⎤⎦kk =

=

(︃
∂a3
∂y

−
∂a2
∂z

)︃
ii+

(︂
∂a1
∂z

−
∂a3
∂x

)︂
jj+

(︃
∂a2
∂x

−
∂a1
∂y

)︃
kk,

käyttäen determinanttien laskentasääntöjä.

Tulkinta Roottori kuvaa vektorikentässä olevaa pyörteisyyttä.
Kuvittele sääkartta, jossa on kuvattu matala- ja korkeapainei-
ta. Vektorikenttämme on tuulikenttä. Tuuli kiertää pohjoisel-
la pallonpuoliskolla myötäpäivään korkeapaineiden ympäri ja
vastapäivään matalapaineiden ympäri. Voidaan sanoa, että tuu-
likentän roottori on korkeapaineiden kohdalla positiivinen ja
matalapaineiden kohdalla negatiivinen.
(Tämä on heikko vertauskuva, koska se on kaksiulotteinen.R2:ssä
roottori on skalaari eikä vektori. Samalla tavalla kierron luonneh-
timiseksi tarvitaan vain yksi kulma, kun R3:ssä tarvitaan kolme
Eulerin kulmaa.)
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^ A.2.7 Konservatiiviset kentät

Mitä tapahtuu, jos vektorikenttä aa on skalaarikentän V gradientti ja
yritämme laskea sen roottorin bb, joka on sekin vektori? Kirjoita

bb = rotaa = rot gradV = det

⎡⎢⎢⎢⎣
ii jj kk
∂
∂x

∂
∂y

∂
∂z

∂
∂x

∂
∂y

∂
∂z

⎤⎥⎥⎥⎦V
ja olkoon

bb = b1ii+ b2jj+ b3kk.

Silloin determinantin kehittäminen tuottaa

b1 =
∂
∂y

∂
∂z
V −

∂
∂z

∂
∂y
V = 0,

b2 =
∂
∂z
∂
∂x
V −

∂
∂x

∂
∂z
V = 0,

b3 =
∂
∂x

∂
∂y
V −

∂
∂y

∂
∂x
V = 0,

siis
bb = rotaa = 0 !

Toisin sanoen, jos vektorikenttä aa(x, y, z) on skalaarikentän V(x, y, z)
gradientti, sen roottori häviää:

rot gradV =
⟨︁
∇×∇V

⟩︁
=
⟨︁
∇×∇

⟩︁
V = 0,

siis∇:n vektoritulo itsensä kanssa häviää aivan kuin se olisi tavallinen
vektori!

Määritelmä Vektorikenttää aa, jonka roottori häviää, kutsutaan konser-
vatiiviseksi, ja vastaavaa skalaarikenttää V , aa = gradV , kutsutaan
kentän aa potentiaaliksi.

Huomataan heti, että jos

aa(x, y, z) = gradV(x, y, z),
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silloin myös
aa(x, y, z) = grad (V(x, y, z) + V0) ,

jossa V0 on mielivaltainen vakio, koska

gradV0 = ii
∂V0
∂x

+ jj
∂V0
∂y

+ kk
∂V0
∂z

= 0.

Siis potentiaalia ei ole määritelty yksiselitteisesti.

^ A.2.8 Laplacen operaattori
Olkoon konservatiivinen kenttä aa, siis rotaa = 0. Silloin voimme kirjoit-
taa

aa = gradV = ∇V,

jossa V on potentiaali.
Ilmaistaan kentän aa divergenssi nyt potentiaaliin:

divaa =
⟨︁
∇ · aa

⟩︁
=
⟨︁
∇ · ∇V

⟩︁
=
∂
∂x

∂
∂x
V +

∂
∂y

∂
∂y
V +

∂
∂z
∂
∂z
V =

=

(︃
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)︃
V

def
= ∆V,

jossa olemme ottaneet käyttöön uuden differentiaalioperaattorin, ranska-
laisen Pierre-Simon Laplacen keksimän Delta-operaattorin,

∆ =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
=
⟨︁
∇ · ∇

⟩︁
= ∇2.

Kun operaattorin kohteena on ”lähdevapaan” kentän potentiaali, kuten
gravitaatiopotentiaali tyhjiössä tai sähköstaattinen potentiaali avaruu-
den alueella, jossa ei ole sähköisiä varauksia, tämän Delta- eli Laplacen
operaattorin tulos häviää.

^ A.3 Integraalit

^ A.3.1 Käyräintegraali
Aiemmin nähtiin, että työ ∆E voidaan kirjoittaa voiman FF ja matkan ∆rr
skalaaritulona:

∆E =
⟨︁
FF · ∆rr

⟩︁
.
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Tämän differentiaalimuoto on

dE =
⟨︁
FF · drr

⟩︁
,

josta saa integraalimuodon eli työintegraalin

∆EAB =
w B
A

⟨︁
FF · drr

⟩︁
.

Tässä lasketaan kappaleen siirtämisen pisteestäA pisteeseen B tuottama
työmäärä integroimalla

⟨︁
FF · drr

⟩︁
polkua AB pitkin.

Jos polkua parametrisoidaan kaaren pituuden s mukaan ja polun
tangenttivektoria kutsutaan

tt
def
=
dx
ds

ii+
dy
ds

jj+
dz
ds

kk,

saa myös kirjoittaa
∆EAB =

w B
A

⟨︁
FF · tt

⟩︁
ds,

joka on integraalin parametrisoitu versio.

^ A.3.2 Pintaintegraali
Olkoon taas annettuna joku vektorikenttä aa ja avaruudessa oleva pinta
S. Usein pyritään integroimaan pinnan yli vektorikentän normaalikom-
ponentti eli vektorin aa projektio pinnan S normaalivektoriin, vektoriin,
joka on pinta-alkiossa dS kohtisuorassa pintaan nähden.

Olkoon pinnan normaalivektori nn. Silloin on integroitava
x

S

⟨︁
aa · nn

⟩︁
dS,

symbolisesti kirjoitettuna
x

S

⟨︁
aa · dSS

⟩︁
,

jossa kirjoitustapaa dSS kutsutaan suunnistetuksi pinta-alkioksi. Se on
normaalivektorin nn suuntainen vektori.
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Tangenttivektori tt

Integraaliz

∂S

⟨︁
aa · tt

⟩︁
ds

Suljettu
polku ∂S

rotaa

rotaa

rotaa

Integraalis
S

⟨︁
rotaa · nn

⟩︁
dS

Kuva A.6. Stokesin roottorilause.^

Kuten käyrää, voidaan myös pintaa parametrisoida. Esimerkiksi maa-
pallon pinta, jos se oletetaan pallopinnaksi, voidaan parametrisoida
leveysasteen ϕ ja pituusasteen λ avulla: rr = rr(ϕ, λ). Tässä tapauksessa
kirjoitetaan pinta-alkioksi

dS = R2 cosϕdϕdλ,

jossa R2 cosϕ on parametriparin (ϕ, λ) Jacobin determinantti. Tässä para-
metrisoinnissa integraali lasketaan seuraavasti:

x

S

⟨︁
aa · dSS

⟩︁
=

x

S

⟨︁
aa · nn

⟩︁
dS =

w 2π
0

w +π/2

−π/2

⟨︁
aa · nn

⟩︁
R2 cosϕdϕdλ.

Muilla pinnoilla ja parametrisoinneilla on erilaiset Jacobin determinantit.
Determinantti edustaa aina ”parametripinta-alkion” dϕdλ todellista
pinta-alaa ”luonnossa”. Esimerkiksi Maan pinnalla aste-kertaa-aste-
ruutu on suurin päiväntasaajan lähistöllä. Napakoordinaateissa (ρ, θ)

tasossa (x = ρ cos θ, y = ρ sin θ) Jacobin determinantti on ρ. Tavallisessa
pinnan (x, y)-parametrisoinnissa Jacobin determinantti on 1, eli sen voi
jättää kokonaan pois.
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^ A.3.3 Stokesin roottorilause

Olkoon Smahdollisesti kaareva pinta avaruudessa ja ∂S sen reunakäyrä.
Oletetaan, että pinta ja sen reuna ovat sen verran hyväkäytöksisiä, että
kaikki tarvittavat integroinnit ja differentioinnit voi suorittaa. Silloin
(myös tunnettu Kelvinin1 ja Stokesin lauseena): 1

x

S

⟨︁
rotaa · dSS

⟩︁
=

z

∂S

⟨︁
aa · drr

⟩︁
,

jossa rr on reunakäyrän paikkavektori. Lauseen parametrisoitu muoto
on x

S

⟨︁
rotaa · nn

⟩︁
dS =

z

∂S

⟨︁
aa · tt

⟩︁
ds,

jossa nn on pinnan S normaali ja tt reunakäyrän ∂S tangenttivektori.

Sanoin Vektorikentän roottorin pintaintegraali pinnan yli on sama
kuin kentän suljettu polkuintegraali pinnan reunan ympäri.

Erikoistapaus Konservatiiviselle vektorikentälle aa pätee rotaa = 0

kaikkialla. Silloin z

∂S

⟨︁
aa · drr

⟩︁
= 0,

siis myös w B
A

polku 1

⟨︁
aa · drr

⟩︁
=

w B
A

polku 2

⟨︁
aa · drr

⟩︁
.

Olkoon aa kentän voimavektori, esimerkiksi painovoimakentän ai-
heuttama kiihtyvyys eli voima per massayksikkö. Silloin tulkinta
on

Työintegraali pisteestä A pisteeseen B ei riipu valitusta polusta. Ja
suljetun polun ympäri kuljetetun kappaleen tekemä työ on nolla.

Tämä saattaa selittää konservatiivisen voimakentän olemuksen
paremmin. Konservatiivinen kenttä voidaan esittää potentiaalin

1William Thomson, lordi Kelvin PRS FRSE (1824–1907) oli brittiläisfyysikko, matemaa-
tikko, insinööri ja keksĳä. Hän on kuuluisa lähinnä ehdotuksestaan absoluuttiseksi
lämpötila-asteikoksi vuodesta 1848.
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gradienttina aa = gradV, jossa V on kentän potentiaali. Maan
painovoimakenttä gg(x, y, z) on Maan painovoimapotentiaalin
eli geopotentiaalinW(x, y, z) gradientti. Keskimerenpinnalla —
tarkemmin geoidilla — painovoimapotentiaali on vakio ja paino-
voimavektori gg on kaikkialla kohtisuorassa geoidiin nähden.

^ A.3.4 Gaussin divergenssilause
Olkoon V avaruuden osa-alue ja ∂V sen suljettu reuna: pintojen yhdistel-
mä. Oletetaan taas, että molemmat ovat matemaattisesti hyväkäytöksisiä.
Silloin pätee seuraava lause (Gauss):

y

V
divaadV =

x

∂V

⟨︁
aa · dSS

⟩︁
=

x

∂V

⟨︁
aa · nn

⟩︁
dS.

Sanoin Kaiken, mikä syntyy kappaleen sisällä (”lähteet”, divergenssi),
on tultava sen pintojen kautta ulos.

Tavallisesti pinnan ∂V suunnistus otetaan positiiviseksi ulkoapäin:
pinnan normaalivektori nn osoittaa ulospäin.

^ A.4 Aineen jatkuvuus

Usein käytetty yhtälö hydro- ja aerodynamiikassa on jatkuvuusyhtälö.
Se ilmaisee, ettei aine voi noin vain hävitä tai lisääntyä. Yleisessä
tapauksessa yhtälö on tämän näköinen:

div(ρvv) + d
dt
ρ = 0.

Tässä lauseke ρvv merkitsee massavirtausta, ρ on aineen tiheys ja vv on
virtauksen nopeus. Termi div(ρvv) ilmaisee, paljonko enemmän ainetta
lähtee aika-yksikössä tila-alkiosta pois kuin tulee sisään tilavuusyksik-
köä kohti. Toinen termi, tiheyden ρ aikaderivaatta, merkitsee tila-alkion
sisällä olevan massamäärän muutosta ajassa myös tilavuusyksikköä
kohti. Termien on oltava keskenään tasapainossa, jotta ”ainekirjanpito”
täsmää.
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V

nn

divaa

∂V

aa

Kuva A.7. Gaussin divergenssilause. nn on ulkopinnan normaalivektori. Gaus-
sin divergenssilause voidaan esittää myös Michael Faraday’n kenttä-
viivojen avulla: kenttäviiva alkaa tai päättyy sähkövarauksen koh-
dalla eli paikalla, jossa divaa ̸= 0, tai kulkee äärettömyyteen pinnan
∂V läpi.^

Mikäli virtaava aine on kokoonpuristumaton, ρ on vakio:

d
dt
ρ = 0 =⇒ div(ρvv) = ρdiv vv = 0 =⇒ div vv = 0.

Kun puhutaan nesteen tai kaasun virtauksesta, pitää olla tietoinen,
että pyörteisyys rot vv ei välttämättä häviä, eli virtaus ei välttämättä
ole pyörrevapaa. Toisin sanoen potentiaalia V , jolle vv = gradV , ei ole
välttämättä olemassa. Itse asiassa pyörteiset virtaukset ovat hyvin yleisiä,
ja jopa laminaarisessa virtauksessa tavallisesti rot vv ̸= 0.
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^ Funktioavaruudet

BB
^ B.1 Abstrakti vektoriavaruus

Abstraktissa vektoriavaruudessa voidaan luoda kanta, jonka avulla jokainen
vektori avaruudessa voidaan ilmaista kantavektoreiden lineaariyhdis-
telmäksi. Esimerkiksi jos kanta on konkreettisessa kolmiulotteisessa
avaruudessa

{︁
ee1,ee2,ee3

}︁
, voidaan kirjoittaa mielivaltainen vektori rr

muotoon

rr = r1ee1 + r2ee2 + r3ee3 =

3∑︂
i=1

rieei.

Koska kolme kantavektoria (jotka eivät ole samassa tasossa) riittää aina,
kutsutaan tavallista (euklidista) avaruutta kolmiulotteiseksi.

Vektoriavaruudessa voidaan määrittää skalaaritulo, joka on lineaari-
kuvaus kahdesta vektorista yhteen lukuun (”bilineaarinen muoto”):⟨︁

rr · ss
⟩︁
.

Lineaarisuus merkitsee, että⟨︁
(αrr1 + βrr2) · ss

⟩︁
= α

⟨︁
rr1 · ss

⟩︁
+ β

⟨︁
rr2 · ss

⟩︁
α,β ∈ R

ja vaihdannaisuus sitä, että⟨︁
rr · ss

⟩︁
=
⟨︁
ss · rr

⟩︁
.
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Jos kantavektorit ovat keskenään ortogonaaleja, toisin sanoen
⟨︁
eei ·eej

⟩︁
= 0

jos i ̸= j, voidaan laskea kertoimet ri yksinkertaisella tavalla:

rr =

3∑︂
i=1

rieei, ri =

⟨︁
rr · eei

⟩︁⟨︁
eei · eei

⟩︁ =

⟨︁
rr · eei

⟩︁
∥eei∥2

. (B.1)

Jos tämän lisäksi⟨︁
eei · eei

⟩︁
= ∥eei∥2 = 1, i ∈

{︁
1, 2, 3

}︁
,

toisin sanoen kantavektorit ovat ortonormaaleja, yhtälö B.1 yksinkertais-
tuu edelleen:

rr =

3∑︂
i=1

rieei, ri =
⟨︁
rr · eei

⟩︁
. (B.2)

Suuretta
∥eei∥

def
=
√︂⟨︁

eei · eei
⟩︁

kutsutaan vektorin eei normiksi.
Toisin kuin tavallinen avaruus, joka on kolmiulotteinen, funktioava-

ruus on äärettömän ulotteinen abstrakti vektoriavaruus, joka auttaa
meitä konkretisoimaan tiettyjä abstrakteja, mutta hyvin hyödyllisiä
funktioteorian perusasioita.

^ B.2 Fourier’n funktioavaruus

^ B.2.1 Kuvaus
Funktiot voidaan katsoa vektoriavaruuden alkioiksi. Jos määritellään
kahden funktion f ja g skalaaritulo seuraavaksi integraaliksi11

⟨︁
f · g

⟩︁
=
⟨︂−→
f · −→g

⟩︂
def
=
1
π

w 2π
0
f(x)g(x)dx, (B.3)

1Nuolet funktioiden nimien f ja g yläpuolella vahvistavat psykologisesti sen, että
funktiot ovat todella ”vektoreita”. Niitä nuoleja ei normaalisti käytetä.
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on helppo todeta, että yllä mainitut skalaaritulon vaatimukset täyttyvät.

Tämän vektoriavaruuden eli funktioavaruuden erään kannan muodos-
tavat Fourier’n kantafunktiot,

e0 =
1
2

√
2,

ek = coskx, k = 1, 2, 3, . . . , (B.4)
e−k = sinkx, k = 1, 2, 3, . . . .

Tämä kanta on ortonormaali (todistus: harjoitus). Se on myös täydellinen
kanta, jota emme todista. Koska kantavektorien määrä on numeroi-
tuvasti ääretön, sanotaan, että tämä funktioavaruus on äärettömän
ulotteinen.

Nyt jokainen funktio f(x), joka täyttää tietyt vaatimukset, voidaan
kehittää yhtälön B.2 tapaan seuraavasti:

f(x) =
1
2
a0
√
2+

∞∑︂
k=1

(ak coskx+ bk sinkx) ,

joka on tuttu Fourier’n sarjakehitelmä, jossa kertoimet ovat

a0 =
⟨︁
f · e0

⟩︁
=
1
2π

√
2
w 2π
0
f(x)dx =

√
2 · f(x),

ak =
⟨︁
f · ek

⟩︁
=
1
π

w 2π
0
f(x) coskxdx, k = 1, 2, 3, . . . ,

bk =
⟨︁
f · e−k

⟩︁
=
1
π

w 2π
0
f(x) sinkxdx, k = 1, 2, 3, . . . .

Tämä on tunnettu tapa laskea Fourier’n sarjan kertoimet.

^ B.2.2 Esimerkki
Fourier’n analyysin esimerkkinä esitetään askelfunktio välillä

[︁
0, 2π

)︁
:

f(x) =

⎧⎨⎩0 x ∈
[︁
0, π
)︁
,

1 x ∈
[︁
π, 2π

)︁
.
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Tämän funktion Fourier’n kertoimet voidaan laskea seuraavasti:

a0 =
1
2π

√
2 ·

w 2π
0
f(x)dx =

1
2π

√
2 · π =

1
2

√
2,

ak =
1
π

w 2π
0
f(x) coskxdx = 1

π

w 2π
π

coskxdx =

=
1
π

[︂
1
k

sinkx
]︂2π
π

=
1
kπ

(sin 2kπ− sinkπ) = 0,

bk =
1
π

w 2π
0
f(x) sinkxdx = 1

π

w 2π
π

sinkxdx =

=
1
π

[︂
−
1
k

coskx
]︂2π
π

=
1
kπ

(coskπ− cos 2kπ) =

=
1
kπ

(︂
(−1)

k
− 1
)︂
=

⎧⎨⎩0 jos k parillinen,

−
2
kπ

jos k pariton.

Numeroarvot: a0 = 1

2

√
2 = 0,707 10 . . . , b1 = − 2

/︁
π = −0,636 62 . . . ,

b3 = − 2
/︁
3π = −0,212 20 . . . , b5 = −0,127 32 . . . , ja niin edelleen.

Kehitelmä on nyt

f(x) = 1

2

√
2 a0 +

∞∑︂
k=1

bk sinkx = 1

2
−
2
π

∞∑︂
k=1

pariton

1
k

sinkx.

Näemme, että kehitelmä sisältää vain sinejä eikä lainkaan kosineja. Se
on seurausta funktion symmetriaominaisuuksista.

Kuvassa B.1 näytämme tämän funktion katkaistuja kehitelmiä:

f(K)(x)
def
= 1

2
a0
√
2+

K∑︂
k=1

bk sinkx = 1

2
−
2
π

K∑︂
k=1

pariton

1
k

sinkx, (B.5)

jossa K on katkaisuparametri.

^ B.2.3 Suppeneminen
Fourier’n kehitelmä suppenee neliöintegraalin merkityksessä. Jos mää-
ritellään katkaistu kehitelmä

f(K)(x)
def
= 1

2
a0
√
2+

K∑︂
k=1

(ak coskx+ bk sinkx) ,
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X

0,2

0,4

0,6

0,8

1,0

0

0 1 3 4 5 62

−0,2

K = 25 K = 3
K = 1

K = 5

f(x)f(x)

f(x)f(x)

a0

a b

b5

b3

b1

Kuva B.1. Askelfunktion Fourier’n analyysi. Piirrettyinä ovat katkaistut Fou-
rier’n kehitelmät f(K)(x), yhtälö B.5, K-arvoille 1, 3, 5 ja 25. Upotet-
tuna funktion spektri.^

silloin
lim
K→∞ 1π

w 2π
0

(︁
f(K)(x) − f(x)

)︁2
dx = 0.

Tämä ei merkitse, että mielivaltaisen pienelle arvolle ε pätee⃓⃓
f(K)(x) − f(x)

⃓⃓
< ε jokaiselle x ∈

[︁
0, 2π

)︁
, kun K→∞. Kuva B.1 kertoo,

että jäljelle jää aina pieni pisteen x = π ympäristö, jossa on olemassa
pisteitä x ′ ̸= π, joiden absoluuttinen erotus

⃓⃓
f(K)(x ′) − f(x ′)

⃓⃓
> 0,1 (tai

mikä tahansa positiivinen raja < 0,5) myös mielivaltaisen suurille
K:n arvoille. Sanotaan, että Fourier’n kehitelmä suppenee, mutta se ei
suppene tasaisesti.

Fourier’n kehitelmä suppenee pisteittäisesti ”melkein kaikkialla”
välillä x ∈

[︁
0, 2π

)︁
: kaikissa pisteissä paitsi erikoispisteissä x = 0 ja x = π.

Määrittelemällä f(0) = f(π)
def
= 0,5 kehitelmä saadaan suppenemaan

pisteittäisesti kaikkialla.
Huomaa myös kehitelmän ”olkapää” jopa arvolle K = 25. Olkapää
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kapenee korkeammille K:n arvoille, mutta sen korkeus ei pienene, vaan
jää arvoon noin 0,09. Tämä tunnetaan Gibbsin ilmiönä.

^ B.3 Sturmin ja Liouvillen differentiaaliyhtälöt

^ B.3.1 Ominaisarvotehtävä
Abstraktissa vektoriavaruudessa voidaan formuloida ominaisarvotehtävä.
Kun on annettu lineaarinen operaattori (kuvaus) L, voidaan kirjoittaa

Lxx − λxx = 0,

jossa tehtävänä on määrittää ominaisarvot λ, joille löytyy yksi tai useampi
ratkaisu eli ominaisvektori xx.

Konkreettisessa n-ulotteisessa vektoriavaruudessa, jossa on ortonor-
maali kanta

{︁
eei, i = 1, . . . , n

}︁
, voidaan kirjoittaa vektori

xx =

n∑︂
i=1

xieei,

ja lineaarisuuden ansiosta

Lxx = L

(︃ n∑︂
i=1

xieei

)︃
=

n∑︂
i=1

xi · Leei.

Toisaalta voidaan kirjoittaa n eri vektoria Leei kannalle
{︁
eej
}︁

seuraavalla
tavalla:

Leei =

n∑︂
j=1

aijeej, i = 1, . . . , n.

Tämä määrittää kertoimet aij, jotka voidaan kerätä n× n -kokoiseksi
matriisiksi A.

Nyt sĳoittamalla saadaan

Lxx =

n∑︂
i=1

xi ·
n∑︂
j=1

aijeej =

n∑︂
j=1

(︃ n∑︂
i=1

aijxi

)︃
eej. (B.6)
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Myös

λxx = λ

n∑︂
i=1

xieei =

n∑︂
j=1

(λxj)eej. (B.7)

Yhdistämällä yhtälöt B.6 ja B.7, joiden kaikkien kertoimien on oltava
identtisiä, saadaan

n∑︂
i=1

aijxi − λxj = 0, j = 1, . . . , n,

eli matriisiyhtälönä
Axx− λxx = 0, (B.8)

jossaA on kertoimista aij koostuva matriisi ja xx kertoimista xi koostuva
sarakevektori: xx =

[︂
x1 x2 · · · xn

]︂T
.

Tietenkin myös yhtälö B.8 edustaa ominaisarvotehtävää, mutta nyt
lineaarisessa vektoriavaruudessa Rn, joka koostuu kaikista kerroin-
vektoreista xx. Jokainen xx on vektorin xx numeerinen esitys valitulla
kannalla

{︁
eei
}︁

. Matriisi A taas on operaattorin L numeerinen esitys
samalla kannalla2. 2

^ B.3.2 Itseadjungoitu operaattori
Olkoon L lineaarinen operaattori vektoriavaruudessa, jossa on olemassa
skalaaritulo, siis bilineaarinen muoto

⟨︁
xx · yy

⟩︁
, joka on symmetrinen eli

vaihdannainen.
Silloin L on itseadjungoitu, jos jokaiselle vektoriparille xx,yy pätee⟨︁

xx · Lyy
⟩︁
=
⟨︁
Lxx · yy

⟩︁
.

Jos vastaava matriisi A on itseadjungoitu, se merkitsee, että⟨︁
xx ·Ayy

⟩︁
=
⟨︁
Axx · yy

⟩︁
2Numeeristen esitysten etuna on tietenkin, että niillä voi oikeasti laskea.
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eli
n∑︂
i=1

xi

(︃ n∑︂
j=1

aijyj

)︃
=

n∑︂
i=1

(︃ n∑︂
j=1

aijxj

)︃
yi,

mikä on triviaalisti totta, jos

aij = aji, i, j ∈ 1, . . . , n, eli A = AT.

Toisin sanoen

symmetrinen matriisi on itseadjungoitu operaattori.

Lineaarialgebrasta on tuttua, että symmetrisen n × n -kokoisen mat-
riisin eri ominaisarvoille λp ̸= λq kuuluvat ominaisvektorit xxp, xxq ovat
keskenään ortogonaaleja: xxp ⊥ xxq. Jos kaikki ominaisarvot λp, p = 1, . . . ,
n ovat erilaisia, ominaisvektorit xxp, p = 1, . . . , nmuodostavat täydellisen
ortogonaalin kannan3 vektoriavaruudessa Rn.3

Todistus ei ole vaikea. Lähdetään ominaisarvotehtävän yhtälöstä
ominaisvektoreille ja -arvoille xxp, λp:

Lxxp = λpxxp,

ja kerrotaan vasemmalta vektorilla xxq:⟨︁
xxq · Lxxp

⟩︁
= λp

⟨︁
xxq · xxp

⟩︁
.

Samoin ominaisvektorille ja -arvolle xxq, λq kerrottuna vasemmalta
vektorilla xxp: ⟨︁

xxp · Lxxq
⟩︁
= λq

⟨︁
xxp · xxq

⟩︁
.

Jos L on itseadjungoitu, on⟨︁
xxq · Lxxp

⟩︁
=
⟨︁
Lxxq · xxp

⟩︁
=
⟨︁
xxp · Lxxq

⟩︁
=⇒ λp

⟨︁
xxq · xxp

⟩︁
= λq

⟨︁
xxp · xxq

⟩︁
.

3Itse asiassa ominaisvektorit voidaan skaalata mielivaltaisesti: jos xx on ominaisvektori,
on myös ee def

= xx/︁∥xx∥ . Näin saadaan ortonormaali kanta.
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Seuraa, että

(λp − λq)
⟨︁
xxp · xxq

⟩︁
= 0.

Muista, että skalaaritulo on symmetrinen. Jos λp ̸= λq, on siis oltava⟨︁
xxp · xxq

⟩︁
= 0 eli xxp ⊥ xxq, mikä oli todistettava.

Esimerkki Paikan varianssimatriisi tasossa. Pisteen P koordinaattien va-
rianssimatriisi tasossa on

Var
{︁
xxP

}︁
= Var

{︄[︄
xP

y
P

]︄}︄
= ΣPP =

[︄
σ2x σxy

σxy σ2y

]︄
,

symmetrinen matriisi. Tässä σ2x ja σ2y ovat x- ja y-koordinaattien
varianssit eli keskivirheen neliöt, kun σxy on koordinaattien
välinen kovarianssi.
Tämän matriisin ΣPP ominaisarvot ovat karakteristisen yhtälön

det
(︁
ΣPP − λI

)︁
= det

[︄
σ2x − λ σxy

σxy σ2y − λ

]︄
= 0,

siis yhtälön (︁
σ2x − λ

)︁ (︁
σ2y − λ

)︁
− σ2xy = 0

ratkaisut. Saadaan

λ1,2 =
1

2

(︁
σ2x + σ

2
y

)︁
± 1

2

√︂(︁
σ2x + σ

2
y

)︁2
− 4

(︁
σ2xσ

2
y − σ

2
xy

)︁
=

= 1

2

(︁
σ2x + σ

2
y

)︁
± 1

2

√︂(︁
σ2x − σ

2
y

)︁2
+ 4σ2xy.

Varianssimatriisin visuaalinen esitys on varianssi- eli virhe-ellipsi.
Sen pääakseleiden puolipituudet ovat

√
λ1 ja

√
λ2, ja pääakse-

leiden suunnat ovat ΣPP:n ominaisvektorit xx1 ja xx2, jotka ovat
keskenään kohtisuoria. Kun koordinaatiston akselit käännetään
xx1,2-suuntaisiksi, matriisi ΣPP saa muodon

Σ ′
PP =

[︄
σ2x ′ 0

0 σ2y ′

]︄
=

[︄
λ1 0

0 λ2

]︄
.

Ominaisarvojen summa ja matriisin jälki λ1 + λ2 = σ2x + σ
2
y on

invariantti, jota kutsutaan pistevarianssiksi.
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^ B.3.3 Itseadjungoidut differentiaaliyhtälöt
Funktioavaruudessa on olemassa myös itseadjungoituja eli ”symmetri-
siä” differentiaaliyhtälöitä. Itse asiassa fysiikan kuuluisimmat yhtälöt
ovat tätä tyyppiä.

Tutki vaikkapa värähtely-yhtälöä, jossa x(t) on paikka ajan funktiona:

d2

dt2
x(t) +ω2x(t) = 0. (B.9)

Ratkaisu on yleistä muotoa (α amplitudi, ϕ vaihevakio)

x(t) = α sin(ωt− ϕ).

Välillä t ∈
[︁
0, T
]︁

vaaditaan jaksollisuutta:

x(0) = x
(︁
T
)︁
,

d
dt
x
⃓⃓⃓
x=0

=
d
dt
x
⃓⃓⃓
x=T

.

Nämä reunaehdot ovat olennainen osa itseadjungoituneisuutta. Silloin
ratkaisu löytyy vain tietyilleω:n arvoille. Ilmiön nimi on kvantisointi.

Yhtälö B.9 on muodoltaan ominaisarvotehtävä:

Lx+ω2x = 0,

jossa operaattori on

L =
d2

dt2
.

Näytetään ensin, että tämä operaattori on välillä
[︁
0, T
]︁

itseadjungoitu.
Jos skalaaritulo määritellään seuraavasti⟨︁−→x · −→y ⟩︁ def

=
w T
0
x(t)y(t)dt,

on (osittaisintegrointi):

⟨︁−→x · L−→y ⟩︁ = w T
0
x(t)

d2y(t)

dt2
dt =

[︃
x(t)

dy(t)
dt

]︃T
0

−
w T
0

dx(t)
dt

dy(t)
dt

dt,

⟨︁
L−→x · −→y

⟩︁
=

w T
0

d2x(t)

dt2
y(t)dt =

[︃
dx(t)
dt

y(t)

]︃T
0

−
w T
0

dx(t)
dt

dy(t)
dt

dt.
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Koska oikealla puolella ensimmäiset termit häviävät ja toiset ovat
identtisiä, on ⟨︁−→x · L−→y ⟩︁ = ⟨︁L−→x · −→y ⟩︁ ,
mikä oli todistettava.

Itseadjungoidulla operaattorilla on ominaisarvot ja ominaisvektorit.
Ominaisvektorit ovat tässä tapauksessa funktioita, jotka ovat keskenään
ortogonaaleja eriω-arvoille4. Yllä olevilla jaksollisuusehdoilla ne ovat 4

värähtely-yhtälön ratkaisufunktiot

sin(ωkt− ϕ) = sin
(︂
2πk
T
t− ϕ

)︂
, (B.10)

joissa taajuus
ωk =

2πk
T

on kvantisoitu ”kvanttiluvun” k ∈ N mukaan.
Jos annetaan T →∞, taajuudetωk menevät yhä lähemmäs toisiaan

ja lopulta muodostuvat jatkumon.
Fysiikasta löytyy laaja joukko differentiaaliyhtälöitä, jotka ovat jos-

sakin funktioavaruudessa itseadjungoituja. Joukko käy nimellä ”Stur-
min5 ja Liouvillen6 tyypin ongelmat”. Niihin kuuluvat värähtely-yhtälö, 5

6Legendren yhtälö, Besselin yhtälö ja monet muut. Jokainen generoi
luonnollisella tavalla joukon keskenään ortogonaaleja funktioita, jotka
toimivat monen osittaisdifferentiaaliyhtälön yleisen ratkaisun kanta-
funktioina.

4Itse asiassa samalle ωk-arvolle löytyy kaksi keskenään ortogonaalista jaksollista
ratkaisua

sinωkt = sin 2πkt
T
, cosωkt = cos 2πkt

T
.

Myös niiden mielivaltainen lineaariyhdistelmä on toimiva ratkaisu ja yleistä muotoa
B.10.
5Jacques Charles François Sturm FRS FAS (1803–1855) oli ranskalainen matemaatikko
ja yksi 72 Eiffel-torniin kaiverretusta nimestä.
6Joseph Liouville FRS FRSE FAS (1809–1882) oli ranskalainen matemaatikko.
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^ B.4 Legendren polynomit

Myös tavalliset Legendren polynomit Pn(t) muodostavat kannan funk-
tioavaruudessa, jossa skalaaritulon määritelmä on⟨︂−→

f · −→g
⟩︂

def
=

w +1

−1
f(t)g(t)dt.

Ne eivät kuitenkaan muodosta ortonormaalia kantaa, vaan ainoastaan
ortogonaalin kannan:

∥Pn∥2 =
⟨︁
Pn · Pn

⟩︁
=

w +1

−1
P2n(t)dt =

2
2n+ 1

.

^ B.5 Pallofunktiot

Pallon pinnalla kaikkien funktioiden voidaan katsoa olevan funktioava-
ruuden alkioita. Jokainen funktio, joka täyttää tietyt hyvän käytöksen
vaatimukset, kuten integroitavuuden, on sen alkio. Funktiot

Rnm(ϕ, λ) = Pnm(sinϕ) cosmλ, n = 0, 1, 2, . . . , m = 0, . . . , n,

Snm(ϕ, λ) = Pnm(sinϕ) sinmλ, n = 0, 1, 2, . . . , m = 1, . . . , n,

yhdessä muodostavat tämän vektoriavaruuden täydellisen kannan siten,
että jokainen funktio voidaan kirjoittaa niiden kantafunktioiden — tar-
vittaessa äärettömäksi — lineaariyhdistelmäksi. Tilanne on analoginen
kolmiulotteisen avaruuden kanssa, jossa täydellinen kanta koostuu
kolmesta vektorista, jotka eivät ole samassa tasossa.

Vaihtoehtoinen ja tiivimpi kirjoitustapa on

Ynm(ϕ, λ) =

⎧⎨⎩Pnm(sinϕ) cosmλ josm ⩾ 0,

Pn|m|(sinϕ) sin |m| λ josm < 0,

arvoille n = 0, 1, 2, . . . ,m = −n, . . . , n.
Tässä funktioavaruudessa määritellään skalaaritulo:⟨︂−→

f · −→g
⟩︂
=
1
4π

x

σ
f(ϕ, λ)g(ϕ, λ)dσ,
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jossaσ on yksikköpallon (”suuntapallon” tai jopa ”taivaanpallon”) pinta,
dσ = cosϕdϕdλ on pallon pinta-ala-alkio ja cosϕ on koordinaattien
(ϕ, λ) Jacobin determinantti.

Tämän määritelmän mukaan voidaan näyttää toteen, että kaksi eri
funktiota, Ynm ja Yn ′m ′ , ovat ortogonaaleja toisiinsa nähden:⟨︁

Ynm · Yn ′m ′
⟩︁
=
1
4π

x

σ
Ynm(ϕ, λ) Yn ′m ′(ϕ, λ)dσ = 0

jos n ̸= n ′ taim ̸= m ′.
Kanta

{︁
Ynm, n = 0, 1, 2, . . . ,m = −n, . . . , n

}︁
on ortogonaali, muttei

ortonormaali: vektoreiden pituudet eroavat arvosta 1.

∥Ynm∥2 =
⟨︁
Ynm · Ynm

⟩︁
=

=
1
4π

x

σ
Y2nm(ϕ, λ)dσ =

⎧⎪⎨⎪⎩
1

2n+ 1
josm = 0,

1
2(2n+ 1)

(n+ |m|)!
(n− |m|)! josm ̸= 0,

katso Heiskanen ja Moritz (1967, yhtälö 1-69). Tämän ortogonaalisuuden
todistaminen ei ole suoraviivaista.

Jos nyt jaetaan funktiot Ynm tai vastaavasti Rnm, Snm yllä olevien
tekĳöiden neliöjuurilla, saadaan täysin normalisoidut pintapallofunktiot
Ynm, joille pätee ⃦⃦

Ynm
⃦⃦2

=
1
4π

x

σ
Y
2

nm(ϕ, λ)dσ = 1.

Niiden avulla on taas helppo laskea annetun yleisen pallopinnan
funktion f(ϕ, λ) kertoimet fnm. Yläviiva merkitsee, että nämä ovat täysin
normalisoituja kertoimia:

fnm =
⟨︁
f · Ynm

⟩︁
=
1
4π

x

σ
f(ϕ, λ) Ynm(ϕ, λ)dσ. (B.11)

Tämä on geometrisessa analogiassa suora projektio kannan yksikkövek-
toreihin.

Yllä olevassa integraalissa f(ϕ, λ) on funktio f Maan pinnalla: jos
maapallon säde on R, silloin f(ϕ, λ) = f(ϕ, λ, R).
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Kehitelmää 2.12 vastaava täysin normalisoitu yhtälö on

V(ϕ, λ, r) =

∞∑︂
n=0

1
rn+1

n∑︂
m=0

Pnm(sinϕ)
(︁
anm cosmλ+ bnm sinmλ

)︁
.

Voimme kirjoittaa myös

Ynm(ϕ, λ) =

⎧⎨⎩Pnm(sinϕ) cosmλ josm ⩾ 0,

Pn|m|(sinϕ) sin |m| λ josm < 0,

mikä vastaa täysin normalisoitujen Legendren funktioiden määritelmää:

Pn0(sinϕ) =
√
2n+ 1 Pn0 (sinϕ) ,

Pnm(sinϕ) =

√︄
2(2n+ 1)

(n−m)!
(n+m)! Pnm(sinϕ), m > 0.

Nyt yllä olevasta potentiaalin yhtälöstä tulee

V(ϕ, λ, r) =

∞∑︂
n=0

1
rn+1

n∑︂
m=−n

vnmYnm(ϕ, λ),

jossa

vnm =

⎧⎨⎩anm josm ⩾ 0,

bn|m| josm < 0.

Pallolla r = R saadaan

V(ϕ, λ, R) =

∞∑︂
n=0

1
Rn+1

n∑︂
m=−n

vnmYnm(ϕ, λ),

josta ortogonaalilla projektiolla (yhtälö B.11) seuraa

vnm = Rn+1
⟨︁
V · Ynm

⟩︁
=
Rn+1

4π

x

σ
V(ϕ, λ, R) Ynm(ϕ, λ)dσ

eli

anm =
Rn+1

4π

x

σ
V(ϕ, λ, R)Pnm(ϕ, λ) cosmλdσ,

bnm =
Rn+1

4π

x

σ
V(ϕ, λ, R)Pnm(ϕ, λ) sinmλdσ.
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^ Olenko ymmärtänyt tämän?

1) Identiteetti
⟨︁
rr·ss
⟩︁
=
⟨︁
ss·rr
⟩︁

kahdelle vektoriavaruuden alkiolle rr ja ss
ilmaisee seuraavan ominaisuuden: lineaarisuus | vaihdannaisuus
| liitännäisyys.

^ Harjoitus B–1: Fourier’n kantafunktioiden

ortonormaalius

Näytä Fourier’n kantafunktioiden, yhtälö B.4, ortonormaalius johtamal-
la niiden skalaaritulot yhtälön B.3 mukaan.
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^ Miksi FFT toimii?

CC
FFT on faktorointi- eli tekĳöihinjakomenetelmä diskreetin Fourier’n
muunnoksen laskemiseksi. Menetelmä pienentää tuntuvasti tarvittavien
laskentatoimitusten lukumäärää ja nopeuttaa laskentaa. Se kuitenkin
edellyttää, että datahilan pistemäärä on jaollinen luku.

FFT-menetelmän valinnassa on vaihtoehtoja. Nopein FFT vaatii hilan,
jonka pistemäärä on kahden potenssi. Hila on silloin 2n× 2m -kokoinen.
Myös vaihtoehtoiset ”mixed radix” -menetelmät tulevat kysymykseen ja
suoriutuvat hyvin, jos hilan koko on jotain 360× 480 -tapaista, esimer-
kiksi N = 360 = 2× 2× 2× 3× 3× 5. Jos hilan koko on alkuluku, FFT

ei ole parempi kuin tavallinen diskreetti Fourier’n muunnos.
Jos funktio f(x) on annettu väliin x ∈

[︁
0, L
)︁

tasavälisellä hilalla
xk = kL

/︁
N arvoina fk = f(xk), k = 0, . . . ,N− 1, on diskreetti Fourier’n

muunnos yhdessä ulottuvuudessa

F
{︁
f(x)

}︁
= F(˜︁ν),

jossa

F(˜︁νj) = 1
N

N−1∑︂
k=0

f(xk) exp
(︂
−2πi

jk
N

)︂
, j = 0, . . . ,N− 1. (C.1)

Taajuusargumentti, spatiaalitaajuus eli aaltoluku, ˜︁νj = j
/︁
L , j = 0, . . . ,

N−1 on määritelty väliin1
[︂
0, (N− 1)

/︂
L

]︂
. i on imaginaarinen yksikkö: 1
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i2 = −1. Käytämme exp(x) merkitsemään ex.
Vastaavasti käänteinen diskreetti Fourier’n muunnos,

F−1
{︁
F(˜︁ν)}︁ = f(x),

on

f(xk) =

N−1∑︂
j=0

F(˜︁νj) exp
(︂
2πi

jk
N

)︂
, k = 0, . . . ,N− 1. (C.2)

FFT on vain raa’an tehokas tapa laskea molemmat yhtälöt C.1 ja C.2.
Yhtälöiden raaka laskeminen vaatii suuruusluokkaa N2 ”standardilas-
kutoimitusta”, kun jokainen standardilaskutoimitus on yksi kertolasku
plus yksi yhteen- tai vähennyslasku. Jos N on parillinen, voi kirjoittaa

F(˜︁νj) = 1
N

⎛⎝1

2
N−1∑︂
k=0

fk exp
(︂
−2πi

jk
N

)︂
+

N−1∑︂
k=
1

2
N

fk exp
(︂
−2πi

jk
N

)︂⎞⎠ =

=
1
N

⎛⎝1

2
N−1∑︂
k=0

fk exp
(︂
−2πi

jk
N

)︂
+ exp

(︃
−2πij

1

2
N

N

)︃ 1

2
N−1∑︂
k ′=0

f
k ′+

1

2
N

exp
(︂
−2πi

jk ′

N

)︂⎞⎠ =

=
1
N

⎛⎝1

2
N−1∑︂
k=0

fk exp
(︂
−2πi

jk
N

)︂
+ exp(−πij)

1

2
N−1∑︂
k=0

f
k+
1

2
N

exp
(︂
−2πi

jk
N

)︂⎞⎠ =

=
1
N

1

2
N−1∑︂
k=0

⎡⎣fk j

± f
k+
1

2
N

⎤⎦ exp
(︂
−2πi

jk
N

)︂
,

{︄
+ jos j parillinen
− jos j pariton

}︄
(C.3)

minkä summan laskeminen vaatii vain N · 1
2
N kerto- sekä yhteen- tai

vähennyslaskua, esilaskentoja lukuunottamatta.
Tässä käytettiin Eulerin identiteettiä exp(−πi) = −1, siis e−πij =(︁
e−πi

)︁j
= (−1)

j, joko +1 tai −12. Hakasulkeissa on jokaiselle k:n arvolle2

1Vaihtoehtoiseksi määrittelyväliksi voidaan valita
[︂
−1
2
N
/︁
L ,
(︁
1
2
N− 1

)︁/︂
L

]︂
. Tämä

onnistuu kuvaamalla ˜︁vj → ˜︁vj − N
/︁
L eli j→ j−N arvoille j > 1

2
N− 1. Tämän hyvä

puoli on, että nyt taajuus nolla on keskellä. Se ei olennaisesti muuta mitään, koska se
yksinkertaisesti vain kertoo F(˜︁νj) arvolla yksi: exp

(︁
−2πi Nk

/︁
N
)︁
= exp(−2πik) = 1,

diskreetin Fourier’n muunnoksen jaksollisuusominaisuus.
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k = 0, 1, . . . , 1

2
N− 1 joko summaus parillisille j:n arvolle tai vähennys-

lasku parittomille j:n arvoille. Yhteensä esilasketaan 1

2
N summaa ja 1

2
N

erotusta. Myös exp-lausekkeet esilasketaan hakutaulukkoon.
Yhteensä tarvitaan noin 1

2
N2 standardilaskutoimitusta, puolet alku-

peräisestä.
Yhtälö C.3 tunnistetaan Fourier’n sarjaksi, mutta tukipisteiden määrä

on N:n sĳasta vain 1

2
N. Jos myös 1

2
N on parillinen, voidaan toistaa yllä

kuvattu temppu, jolloin lopputuloksena on lauseke, joka vaatii vain
luokkaa 1

4
N2 laskutoimitusta. Toistetaan taas, ja operaatioiden määrästä

tulee 1
8
N2, 1

16
N2, 1

32
N2, jne. . . . Tarkempi analyysi näyttää, että josN on

kahden potenssi, saadaan koko diskreetti Fourier’n muunnos lasketuksi
suuruusluokkaa N · 2logN laskutoimituksessa!

Kirjallisuudesta löytyy älykkäitä algoritmeja esitetyn menetelmän
toteuttamiseksi, esimerkiksi fftw (”Fastest Fourier Transform in the
West”, FFTW Home Page; Frigo ja Johnson, 2005).

2Näitä arvoja kutsutaan ”nypläyskertoimiksi” (engl. ”twiddle factors”).
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^ Helmertin kondensaatio

DD
Helmertin kondensaatioyhtälön johtamiseksi johdetaan ensin topogra-
fian potentiaalin yhtälö:

Vtop(ϕ, λ, r) = G
y

top

ρ(ϕ ′, λ ′, r ′)

ℓ(ψ, r, r ′)
dV ′ ≈ Gρ

y

top
1

ℓ(ψ, r, r ′)
dV ′,

jossa ψ on geosentrinen kulmaetäisyys laskentapisteen (ϕ, λ, r) ja data-
pisteen (ϕ ′, λ ′, r ′) välillä. Oletetaan vakiotiheys ρ.

Samalla tavalla saadaan kondensaatiokerroksen potentiaalin yhtälö:

Vkond(ϕ, λ, r) = Gρ
y

kond
1

ℓ(ψ, r, R)
dV ′.

Integroidaan pallokoordinaateissa:

y

top
1

ℓ(ψ, r, r ′)
dV ′ =

w

σ

w R+H(ϕ ′,λ ′)

R

1
ℓ(ψ, r, r ′)

(r ′)
2
dr ′ dσ ′,

y

kond
1

ℓ(ψ, r, R)
dV ′ =

w

σ

1
ℓ(ψ, r, R)

w R+H(ϕ ′,λ ′)

R
(r ′)

2
dr ′ dσ ′ =

= R2
w

σ

H(ϕ ′, λ ′)

ℓ(ψ, r, R)

(︃
1+

H(ϕ ′, λ ′)
R

+
H2(ϕ ′, λ ′)

3R2

)︃
dσ ′, (D.1)

jossa H on topografian korkeus.
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D436 Helmertin kondensaatio

^ D.1 Topografian ulkoinen potentiaali

Topografian ulkoisen potentiaalin laskemiseksi käytetään käänteisen
etäisyyden kehitelmää (yhtälö 8.7):

1
ℓ
=

∞∑︂
n=0

1
r ′

(︃
r ′

r

)︃n+1
Pn(cosψ) =

∞∑︂
n=0

1
r

(︃
r ′

r

)︃n
Pn(cosψ).

Tämä kehitelmä suppenee tasaisesti1ψ:n suhteen, jos r > r ′. Seuraavassa1

oletetaan aina suppenemista, vaikka oletus on vaarallinen etenkin
rosoisen topografian pinnan lähellä. Jos asian filosofia kiinnostaa, lue
Moritz (1980).

Sĳoitus antaa

Vulk
top(ϕ, λ, r) = Gρ

y

top

∞∑︂
n=0

1
r

(︃
r ′

r

)︃n
Pn(cosψ)dV ′ =

= Gρ
x

σ

(︄
w R+H(ϕ ′,λ ′)

R

∞∑︂
n=0

1
r

(︃
r ′

r

)︃n
(r ′)

2
dr ′

)︄
Pn(cosψ)dσ ′ =

= Gρ
x

σ

[︄ ∞∑︂
n=0

1
rn+1

1
n+ 3

(r ′)
n+3

]︄R+H
r ′=R

Pn(cosψ)dσ ′ =

= Gρ
x

σ

∞∑︂
n=0

1
rn+1

1
n+ 3

(︂
(R+H)

n+3
− Rn+3

)︂
Pn(cosψ)dσ ′.

Nyt käytetään seuraavaa Taylorin kehitelmää:

1Tasainen suppeneminen tarkoittaa, että kun annettuna on r ja r ′, jokaiselle ϵ > 0 on
olemassa Nmin, jolle ⃓⃓⃓⃓

⃓1ℓ − 1

r

N∑︂
n=0

(︃
r ′

r

)︃n
Pn(cosψ)

⃓⃓⃓⃓
⃓ < ϵ

kaikille N > Nmin ja kaikille ψ:n arvoille. Tämä on tavallista suppenemista vahvempi
ominaisuus.
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Topografian sisäinen potentiaali D.2 437
(R+H)

n+3
=

= Rn+3
(︃
1+ (n+ 3)

H
R

+
(n+ 3) (n+ 2)

2
H2

R2
+

(n+ 3) (n+ 2) (n+ 1)
2 · 3

H3

R3
+ · · ·

)︃
.

(D.2)

Sĳoitus antaa

Vulk
top(ϕ, λ, r) = GρR

2 ·

·
x

σ

∞∑︂
n=0

(︂
R
r

)︂n+1(︃H
R

+ 1

2
(n+ 2)

H2

R2
+ 1

6
(n+ 2) (n+ 1)

H3

R3
+ · · ·

)︃
Pn(cosψ)dσ ′.

(D.3)

Tämä on siis topografian ulkoinen potentiaali — tai topografisten massojen
sisällä ulkoisen potentiaalin harmoninen jatko alaspäin olettaen, että
tämä on matemaattisesti mahdollinen eikä hajaannu. Vuoristoisessa
topografiassa tämä voi olla ongelma.

^ D.2 Topografian sisäinen potentiaali

Samalla tavalla voimme laskea topografian eli merenpinnan ja maaston
pinnan välisten massojen sisäisen potentiaalin yhtälö. Avaruusetäisyy-
delle ℓ käytetään sisäistä kehitelmää, yhtälö 8.7, joka pätee jos r < r ′:

1
ℓ
=
1
r

∞∑︂
n=0

(︂
r
r ′

)︂n+1
Pn(cosψ).

Sĳoitetaan:

Vsis
top(ϕ, λ, r) = Gρ

y

top
1
r

∞∑︂
n=0

(︂
r
r ′

)︂n+1
Pn(cosψ)dV ′ =

= Gρ
x

σ

I⏟ ⏞⏞ ⏟
w R+H(ϕ ′,λ ′)

R

1
r

∞∑︂
n=0

(︂
r
r ′

)︂n+1
(r ′)

2
dr ′ Pn(cosψ)dσ ′.
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Tässä korkeusintegraali I on

I =
w R+H(ϕ ′,λ ′)

R

1
r

∞∑︂
n=0

(︂
r
r ′

)︂n+1
(r ′)

2
dr ′ =

=

⎡⎢⎢⎣ ∞∑︂
n=0
n ̸=2

rn

(︄
−
(r ′)

−(n−2)

n− 2

)︄
+ r2 ln r ′

⎤⎥⎥⎦
R+H(ϕ ′,λ ′)

r ′=R

=

=

∞∑︂
n=0
n ̸=2

rn

n− 2

(︂
R−(n−2) − (R+H)

−(n−2)
)︂
+ r2 ln R+H

R
,

antaen

Vsis
top(ϕ, λ, r) =

= Gρ
x

σ

⎛⎜⎜⎝ ∞∑︂
n=0
n ̸=2

rn

n− 2

(︂
R−(n−2) − (R+H)

−(n−2)
)︂
+ r2 ln R+H

R

⎞⎟⎟⎠Pn(cosψ)dσ ′.

Tähän käytetään Taylorin kehitelmää

(R+H)
−(n−2)

=

= R−(n−2)

(︃
1− (n− 2)

H
R

+
(n− 2) (n− 1)

2
H2

R2
−

(n− 2) (n− 1)n
2 · 3

H3

R3
+ · · ·

)︃
.

Myös erikoistapaus n = 2,

r2 ln R+H
R

= r2
(︃
H
R

−
1
2
H2

R2
+
1
3
H3

R3
−
1
4
H4

R4
+ . . .

)︃
=

=
rn

Rn−2

(︃
H
R

−
n− 1
2

H2

R2
+

(n− 1)n
2 · 3

H3

R3
−

(n− 1)n(n+ 1)
2 · 3 · 4

H4

R4
+ · · ·

)︃
,

otetaan siististi mukaan seuraavaan sĳoituksella saatuun lausekkeeseen:

Vsis
top(ϕ, λ, r) =

= Gρ
x

σ

∞∑︂
n=0

rn

Rn−2

(︃
H
R

− 1

2
(n− 1)

H2

R2
+ 1

6
(n− 1)n

H3

R3
− · · ·

)︃
Pn(cosψ)dσ ′. (D.4)
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^ D.3 Kondensaatiokerroksen ulkoinen potentiaali

Tämä lasketaan erikoistamalla yhtälö D.3 tapaukselle H → 0, mutta
kuitenkin ρ→∞niin, että κ = ρH jää äärelliseksi. Tässä limiitissä kaikki
termit, joissa onH2,H3 ja korkeammat potenssit menevät nollaan. Tulos
on silloin

Vulk
kond(ϕ, λ, r) = GρR

2
x

σ

∞∑︂
n=0

(︂
R
r

)︂n+1 H
R
Pn(cosψ)dσ ′ =

= GR
x

σ

∞∑︂
n=0

(︂
R
r

)︂n+1
κPn(cosψ)dσ ′.

Aiemmin meillä oli tarkempana κ-yhtälönä 6.4 pallon muotoisen Maan
pinnalla:

κ = ρH

(︃
1+

H
R

+ 1

3

H2

R2

)︃
. (6.4)

Sĳoittamalla tämä edelliseen saadaan (katso myös yhtälö D.1):

Vulk
kond = GρR2

x

σ

∞∑︂
n=0

(︂
R
r

)︂n+1(︃H
R

+
H2

R2
+ 1

3

H3

R3

)︃
Pn(cosψ)dσ ′.

(D.5)

^ D.4 Helmertin kondensaation kokonaispotentiaali

Tämä saadaan vähentämällä yhtälöt D.5 ja D.3 toisistaan. Tulos, joka
pätee ulkoisessa avaruudessa2, on 2

δVulk
Helmert(ϕ, λ, r) = V

ulk
kond(ϕ, λ, r) − V

ulk
top(ϕ, λ, r) = −GρR2 ·

·
x

σ

∞∑︂
n=0

(︂
R
r

)︂n+1(︃(︁
1

2
(n+ 2) − 1

)︁ H2
R2

+
(︁
1

6
(n+ 2) (n+ 1) − 1

3

)︁ H3
R3

+ · · ·
)︃
·

· Pn(cosψ)dσ ′ =

= −Gρ
x

σ

∞∑︂
n=0

(︂
R
r

)︂n+1(︃
1

2
nH2 + 1

6
n (n+ 3)

H3

R
+ · · ·

)︃
Pn(cosψ)dσ ′.

2Teoriassa ulkoinen avaruus on avaruus koko Maan topografian sisältävän pallon,
niin sanotun Brillouinin pallon, ulkopuolella. Käytäntö on sallivampi.
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Usein määritellään korkeuden H potenssien asteosuudet (vertaa aste-
osuusyhtälö 3.9) seuraavasti:

Hνn(ϕ, λ)
def
=
2n+ 1
4π

x

σ
Hν(ϕ ′, λ ′)Pn(cosψ)dσ ′, (D.6)

jolloin pätee

Hν(ϕ, λ) =

∞∑︂
n=0

Hνn(ϕ, λ).

Silloin

δVulk
Helmert =

= −4πGρ

∞∑︂
n=0

(︂
R
r

)︂n+1 1
2n+ 1

(︃
1

2
nH2n + 1

6
n (n+ 3)

H3n
R

+ · · ·
)︃
.

Jos topografia on vakio, kaikki termit, joille n ̸= 0, häviävät. Yllä
olevassa kehitelmässä myös ensimmäinen ja toinen termi häviävät.
Tässä tapauksessä n = 0 sitä seuraavat termit eivät ole edes olemassa:
kehitelmä D.2 on binomikehitelmä

(R+H)
3
= R3 + 3R2H+ 3RH2 +H3.

Siis
δVulk

Helmert = 0

kuten oli odotettavissa osion 1.4 perusteella: pallon muotoisen kuoren
kondensaatio ei muuta ulkoista kenttää.

^ D.4.1 Helmertin kondensaation painovoimavaikutus
Lasketaan Helmertin kondensaation potentiaalin vaikutus painovoima-
anomalioihin:

∆gulk
Helmert = −

∂
∂r
δVulk

Helmert −
2
rδV

ulk
Helmert ≈

≈ 4πGρ
∞∑︂
n=0

1
2n+ 1

(︂−(n+ 1)
r +

2
r

)︂(︂
R
r

)︂n+1(︃
1

2
nH2n + 1

6
n (n+ 3)

H3n
R

+ · · ·
)︃

=

= −4πGρ · 1r
∞∑︂
n=0

n− 1
2n+ 1

(︂
R
r

)︂n+1(︃
1

2
nH2n + 1

6
n (n+ 3)

H3n
R

+ · · ·
)︃
. (D.7)
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Nyt myös n = 1 antaa nollatuloksen, kuten odotettavissa oli, kun
painovoima-anomaliat eivät sisällä mitään asteluvun 1 osuuksia.

Tulos D.7 on likimääräinen eikä tarkoitettu käytettäväksi topografian
pinnan lähistöllä. Huomaa vahva riippuvuus asteluvusta n: Helmertin
kondensaation painovoimavaikutusta hallitsevat lyhyet aallonpituudet
eli topografian paikalliset piirteet.

^ D.4.2 Helmertin kondensaation sisäinen potentiaali
Tämä suure lasketaan geoidin tasolla. Se edustaa Helmertin kondensaa-
tion epäsuoraa vaikutusta eli massojen siirron aiheuttamaa geoidipinnan
siirtymistä avaruudessa. Vähennetään yhtälöt D.5 ja D.4 toisistaan:

δVsis
Helmert(ϕ, λ, R) = V

ulk
kond(ϕ, λ, R) − V

sis
top(ϕ, λ, R) =

= GρR2
x

σ

∞∑︂
n=0

(︃
H
R

+
H2

R2
+ 1

3

H3

R3

)︃
Pn(cosψ)dσ ′ −

−GρR2
x

σ

∞∑︂
n=0

(︃
H
R

− 1

2
(n− 1)

H2

R2
+ 1

6
(n− 1)n

H3

R3
− · · ·

)︃
Pn(cosψ)dσ ′ =

= Gρ
x

σ

∞∑︂
n=0

(︃
1

2
(n+ 1)H2 − 1

6
(n− 2) (n+ 1)

H3

R
+ · · ·

)︃
Pn(cosψ)dσ ′.

Käyttämällä H:n potenssien asteosuuksien määritelmää D.6 saadaan

δVsis
Helmert = 4πGρ

∞∑︂
n=0

n+ 1
2n+ 1

(︃
1

2
H2n − 1

6
(n− 2)

H3n
R

+ · · ·
)︃
,

josta saa Brunsin yhtälön 5.2 avulla Helmertin kondensaation epäsuoran
vaikutuksen:

δNHelmert =
δVsis

Helmert
γ =

=
4πGρ
γ

∞∑︂
n=0

n+ 1
2n+ 1

(︃
1

2
H2n − 1

6
(n− 2)

H3n
R

+ · · ·
)︃
. (D.8)
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Termi n = 0 antaa vakiomaaston H = H = H0 epäsuoran vaikutuksen:
vain ensimmäisen suluissa olevan termin käyttö antaa

δNHelmert,vakio ≈
2πGρ
γ H

2
,

jota ei voida jättää huomiotta.

^ D.5 Dipolimenetelmä

Järkevyyskokeena voidaan kuvata Helmertin kondensaation vaikutus
ensimmäisessä approksimaatiossa dipolitiheyskerroskenttänä µ. Topogra-
finen massa, pintatiheys κ = ρH, siirtyy alaspäin keskimäärin matkan
1

2
H verran. Efekti olisi sama, jos keskimerenpinta3 olisi kaksinkertaisen3

massatiheyskerroksen
µ = 1

2
ρH2 (D.9)

peitossa. Tämän kerroksen potentiaali on palloapproksimaatiossa (yh-
tälö 1.18):

V = G
x

S
µ
∂
∂n

(︂
1
ℓ

)︂
dS ≈ GR2

x

σ
µ
∂
∂n

(︂
1
ℓ

)︂
dσ.

Selkeämmin kirjoitettuna pallogeometriassa:

VP = GR2
x

σ
µQ

∂
∂rQ

(︃
1
ℓPQ

)︃
dσQ.

Käytetään kehitelmää Legendren polynomeihin, yhtälö 8.7:

1
ℓPQ

=
1
rQ

∞∑︂
n=0

(︂rQ
rP

)︂n+1
Pn(cosψPQ),

differentioidaan rQ:n suhteen ja sĳoitetaan:

VP = GR2
x

σ

1

r2Q
µQ

∞∑︂
n=0

n
(︂rQ
rP

)︂n+1
Pn(cosψPQ)dσQ.

3Itse asiassa parempi paikka tähän korvaavaan kerrokseen olisi taso 1
4
H.
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Sĳoittamalla tähän kaksoistiheyskerroksen yhtälö D.9 µQ:n tilalle ja
ottamalla limiitti rP, rQ ↓ R saadaan

V =
1
4π

∞∑︂
n=0

n
x

σ
(2πGρH)HPn(cosψ)dσ ′ =

=
1
4π

∞∑︂
n=0

n
x

σ
ABHPn(cosψ)dσ ′.

Olemme jättäneet selventävät P- ja Q-merkinnät pois tarpeettomina.
Symboli AB ilmaisee sellaisen Bouguer-laatan vetovoimaa, jonka

paksuus on H ja ainetiheys ρ.
Kehitetään suure (ABH) pallofunktiokehitelmäksi. Asteosuusyhtälön

3.9 mukaan

(ABH)n =
2n+ 1
4π

x

σ
(ABH)Pn(cosψ)dσ ′,

jolloin saadaan

V =

∞∑︂
n=0

n
2n+ 1

(ABH)n ≈
1

2
(ABH) ,

ainakin korkeampien asteluvun n arvojen osalta, eli alueellisesti vaikkei
globaalisti.

Näin saadaan jälleen arvion Helmertin kondensaation epäsuorasta
vaikutuksesta. Epäsuora vaikutus on kondensaation aiheuttama geoidi-
pinnan muutos, joka geoidin laskennassa kondensaatiomenetelmän
avulla on otettava huomioon käänteisellä etumerkillä. Tosin sanoen,
jos menetelmä ymmärretään poistamis-entistämis- eli remove-restore-
menetelmäksi, epäsuora vaikutus edustaa sen entistämisvaihetta:

δNHelmert =
V
γ ≈

1

2

ABH
γ =

πGρH2

γ .

Vertailun vuoksi tarkempi kehitelmä D.8 antaa suurempien n-arvojen
approksimaatiossa

δNHelmert ≈
4πGρ
γ · 1

2

∞∑︂
n=0

n+ 1
2n+ 1

H2n ≈
πGρ
γ

∞∑︂
n=0

H2n =
πGρH2

γ ,

mikä on olennaisesti sama tulos.

í �Õ ! ¤.�û





^ Laplacen yhtälö
pallokoordinaateissa

EE
^ E.1 Johtaminen

Tarkastellaan pientä tilavuusalkiota, jonka mitat koordinaattisuunnissa
ovat ∆ϕ, ∆λ ja ∆r. Tutkitaan vektorikentän aa

def
= ∇V vuon erotusta

vastakkaisten tahkojen kautta sisään tulevan ja ulos menevän välillä.
Toimitaan samanlaisella tavalla kuin alaosiossa 1.12.4 käyttämällä

kappaletta eli tilavuusalkiota, jonka pinnat on suunnattu koordinaat-
tilinjojen mukaisesti. Annetaan alkion koon mennä nollaan limiitissä
käyttäen hyväksi Gaussin divergenssilausetta 1.19. Suure divaa = ∆V

on lähdetiheysarvo avaruudessa, ja sen keskiarvon kerrottuna alkion
tilavuuden kanssa on oltava sama kuin kokonaisvuo alkion pintojen
kautta.

Määritellään kappaleen kohdalla paikallinen ortonormaali kanta{︁
ee1,ee2,ee3

}︁
, tyyppi ”north-east-up”. Vektori ee1 osoittaa paikalliseen

pohjoissuuntaan, vektori ee2 itäsuuntaan ja vektori ee3 ”ylöspäin” eli
säteittäissuuntaan. Voidaan kirjoittaa

aa = a1ee1 + a2ee2 + a3ee3.

Osa vuon f erotuksesta vastakkaisten tahkojen välillä aiheutuu vektorin
aa normaalikomponentin muutoksesta tahkojen välillä. Osa on tahkojen
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ϕ

λ

Päiväntasaajan taso

r∆λ cosϕ

r∆ϕ

∆λ

∆r

∆ϕ

r cosϕ

r

aa

ee2ee2

ee3ee3ee1ee1

Kuva E.1. Gaussin divergenssilause sovellettuna koordinaattilinjojen mukai-
seen tilavuusalkioon.^

pinta-alojenω erotuksen aiheuttamaa:

f+ − f− ≈
I⏟ ⏞⏞ ⏟

ω (a+ − a−) +

II⏟ ⏞⏞ ⏟
a (ω+ −ω−).

Katso kuva E.1.

◦ Leveysasteen ϕ suuntainen, ”etelä–pohjoinen”:

ω−
ϕ = r cosϕ∆r∆λ, ω+

ϕ = r cos(ϕ+ ∆ϕ)∆r∆λ,
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erotus

ω+
ϕ −ω−

ϕ ≈ −r sinϕ∆ϕ · ∆r∆λ.

Kerro arvolla
a1 =

∂V
∂ (rϕ)

=
1
r
∂V
∂ϕ

ja jaa alkion tilavuudella r2 cosϕ∆r∆ϕ∆λ, jolloin saadaan

∆II
ϕV = −

tanϕ
r2

∂V
∂ϕ
.

Tämän lisäksi on tietysti ykkösosuus

∆I
ϕV = ⟨∇a1 · ee1⟩ =

a+
1 − a−

1

r · ∆ϕ ,

jossa

a+
1 − a−

1 =

[︃
∂V
∂ (rϕ)

]︃+
−

=
1
r

[︃
∂V
∂ϕ

]︃+
−

,

tuloksena

∆I
ϕV =

1
r ·
1
r ·

[︂
∂

∂ϕ
V
]︂+
−

∆ϕ
≈ 1
r2
∂2V
∂ϕ2

.

◦ Pituusasteen λ suuntainen, ”länsi–itä”: pinta-alaωλ = r∆r∆ϕ ei
muutu pyörähdyssymmetrian takia:

∆II
λV = 0.

On vain
∆I
λV = ⟨∇a2 · ee2⟩ =

a+
2 − a−

2

r cosϕ · ∆λ,

jossa

a+
2 − a−

2 =

[︃
∂V

∂ (λr cosϕ)

]︃+
−

=
1

r cosϕ
[︂
∂V
∂λ

]︂+
−
.

Sĳoitus antaa

∆I
λV =

1
r cosϕ ·

1
r cosϕ ·

[︁
∂

∂λ
V
]︁+
−

∆λ
≈ 1
r2 cos2ϕ

∂2V
∂λ2

.
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◦ Säteittäisessä suunnassa vastakkaisten tahkojen eli ”sisäisen” ja
”ulkoisen” tahkon pinta-alat ovat

ω−
r = r2 cosϕ∆ϕ∆λ, ω+

r = (r+ ∆r)
2 cosϕ∆ϕ∆λ,

ja erotus on
ω+
r −ω−

r ≈ 2r∆r · cosϕ∆ϕ∆λ.

Tämä kerrotaan arvolla
a3 =

∂V
∂r

ja jaetaan alkion tilavuudella r2 cosϕ∆r∆ϕ∆λ antaen Laplace-
operaattorin kakkososuudeksi

∆II
rV =

2
r
∂V
∂r
.

Tämän lisäksi on ykkösosuus

∆I
rV = ⟨∇a3 · ee3⟩ =

a+
3 − a−

3

∆r
=

[︁
∂

∂r
V
]︁+
−

∆r
≈ ∂

2V
∂r2

.

Kaikki tämä antaa lopputulokseksi

∆V = ∆I
rV + ∆I

λV + ∆I
ϕV + ∆II

rV + ∆II
ϕV =

=
∂2V
∂r2

+
1

r2 cos2ϕ
∂2V
∂λ2

+
1
r2
∂2V
∂ϕ2

+
2
r
∂V
∂r

−
tanϕ
r2

∂V
∂ϕ
, (E.1)

mikä vastaa yhtälöä 2.9.

^ E.2 Ratkaiseminen

^ E.2.1 Säteittäisen riippuvuuden erottaminen
Yritetään muuttujien erottamista seuraavasti:

V(ϕ, λ, r) = R(r) Y(ϕ, λ).

Sĳoitus yhtälöön E.1 ja kertominen lausekkeella r2
/︁
RY antaa

1
R

(︃
r2
∂2R
∂r2

+ 2r
∂R
∂r

)︃
= −

1
Y

(︃
1

cos2ϕ
∂2Y
∂λ2

+
∂2Y
∂ϕ2

− tanϕ∂Y
∂ϕ

)︃
.
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Tämän on taas pädettävä kaikille arvoille r ja ϕ, ja näin ollen molemmat
lausekkeet voivat vain olla yhtä suuria kuin vakio, p. Tämä antaa kaksi
yhtälöä: (︃

r2
∂2R
∂r2

+ 2r
∂R
∂r

)︃
− pR = 0,(︃

1
cos2ϕ

∂2Y
∂λ2

+
∂2Y
∂ϕ2

− tanϕ∂Y
∂ϕ

)︃
+ pY = 0.

Ensimmäiselle yhtälölle kokeillaan potenssilakia,

R(r) = rq,

joka antaa

q (q− 1) rq + 2qrq − prq = 0 =⇒ (q (q+ 1) − p) rq = 0

ratkaisulla
p = q (q+ 1) .

Toisen yhtälön ratkaiseminen funktiolle Y(ϕ, λ),(︃
1

cos2ϕ
∂2Y
∂λ2

+
∂2Y
∂ϕ2

− tanϕ∂Y
∂ϕ

)︃
+ q (q+ 1) Y = 0, (E.2)

on hankalampaa. q:n on oltava kokonaisluku. Kun n ∈ N0, löydetään,
että on ei-negatiivisia ratkaisuja q = n ja negatiivisia ratkaisuja q =

−(n+ 1), jossa n = 0, 1, 2, . . . . Tämän kanssa koko erikoisratkaisujen
joukko on

Vsis
n (ϕ, λ, r) = rnYn(ϕ, λ), Vulk

n (ϕ, λ, r) =
Yn(ϕ, λ)

rn+1
, n ∈ N0,

yhtälöt 2.10.

^ E.2.2 Pintapallofunktioiden ratkaisu
Molemmat ratkaisut q, sekä ei-negatiivinen että negatiivinen, antavat
sĳoitettuna yhtälöön E.2 saman n-arvon yhtälön:(︃

1
cos2ϕ

∂2Y
∂λ2

+
∂2Y
∂ϕ2

− tanϕ∂Y
∂ϕ

)︃
+ n (n+ 1) Y = 0.
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Yritetään muuttujien erottamista:

Y(ϕ, λ) = F(ϕ)L(λ).

Sĳoitus ja kertominen lausekkeella cos2ϕ
/︂
FL antaa

cos2ϕ
F

(︃
∂2F
∂ϕ2

− tanϕ ∂F
∂ϕ

+ n (n+ 1) F

)︃
= −

1
L
∂2L
∂λ2

.

Molempien puolten on taas oltava sama vakio, jonka oletetaan olevan
positiivinen ja jota kutsutaan nimelläm2:

∂2F
∂ϕ2

− tanϕ ∂F
∂ϕ

+

(︃
n (n+ 1) −

m2

cos2ϕ

)︃
F = 0,

∂2L
∂λ2

+m2L = 0.

Ensimmäinen yhtälö tunnetaan Legendren yhtälönä. Sen ratkaisut ovat
Legendren funktiot Pnm(sinϕ), jossa kokonaisluku m = 0, 1, . . . , n.
Toinen on klassinen harmoninen värähtelĳä, jonka ratkaisut ovat11

Lm,1(λ) = cosmλ, Lm,2(λ) = sinmλ.

Näin löytyvät pintapallofunktiot lineaariyhdistelminä

Yn(ϕ, λ) =

n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) .

Yleinen ratkaisu saadaan nyt seuraavasti:

Vsis(ϕ, λ, r) =

∞∑︂
n=0

rn
n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) ,

Vulk(ϕ, λ, r) =

∞∑︂
n=0

1
rn+1

n∑︂
m=0

Pnm(sinϕ) (anm cosmλ+ bnm sinmλ) .

Tässä anm ja bnm ovat pallofunktiokertoimia, jotka määrittelevät eri-
koisratkaisujen lineaariyhdistelmän. Maan ulkoisen gravitaatiokentän
esittämiseksi kelpaa fysikaalisesti vain toinen ratkaisu, koska se menee
nollaan äärettömyydessä r→∞.

1Tämä selittää myös, miksi vakionm on oltava kokonaisluku: pituusaste λ on jaksolli-
nen periodilla 2π.
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katso GRS80

geofysikaalinen reduktio, 128
geoidi

määritelmä, 91, 165
klassinen, 324

geoidilaskennan koulutus kehitysmaissa,
394

geoidilaskennan tutkĳakoulu,
kansainvälinen, 394

geoidimalli
Columbuksen, 144
laskenta, 243
maailmanlaajuinen korkean

erotuskyvyn, 368
Suomen, 111

geoidimääritys
1-D-FFT, 241
FFT, 245

tutkimusryhmät, 243
gravimetrinen, 34, 191

periaate, 190
2-D laskentakehys, 193

klassinen, 128
maankuoren vakiotiheys, 178
NKG, 395
ohjelmisto, 244
pallokalotti, 217
satelliittialtimetria, 366
spektraalinäkökulma, 75
spherical FFT

monivyöhyke, 236
Taylorin kehitelmä, 238

vertailupiste, 326
geoidin ja korkeusjärjestelmien työryhmä

(NKG), 395
geoidin korkeus eli undulaatio

määritelmä, 110
maailmanlaajuisesti, 110
satelliittialtimetriasta, 245
Suomessa, 110

geoidin nousu, 327, 328
geologinen kartta, tiheysarvot, 178
geophysical data record (GDR), 348, 364
geopotentiaali

kuvan terävyys, 63
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spektraaliesitys, 72
tasapotentiaalipinta, 91

geopotentiaaliluku
määritelmä, 162
energiatasona, 163
ja vaaittu korkeus, 165

GEOS-3 (satelliitti), 343
Geosat (satelliitti), 343
geostrofinen tasapaino, 332
geostrofiset yhtälöt, 332
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Germainin kaarevuus, 93
GFZ (German Research Centre for

Geosciences), 368
Gibbs, Josiah Willard, 219
Gibbsin ilmiö

askelfunktio, 420
Fourier’n muunnos, 243
ydinmodifikaatio, 219

glacial isostatic adjustment (GIA), 327, 338
GM⊕, paras arvo, 6
GNSS

altimetriasatelliitilla, 367
gravimetristen asemien korkeus, 128
ilmagravimetriassa, 315
korkeudenmäärityksessä, 243
mareografin paikannus, 327, 330
meren vuorovesikuormituksen

mittaus, 390
GNSS-vaaitus, 326
GOCE (satelliitti)

kuvaus, 371
erotuskyky, 318, 372
kuva, 373
meritopografia, 334
merivirtaukset ja lämmönkuljetus,

333
nimi, 372
tarkkuus, 372

GPS
CHAMP-satelliitilla, 368
vertausjärjestelmä, 101

GRACE (satelliittipari)
kuvaus, 369, 370
kiihyvyysmittari, 370
mikroaaltolinkki, 370

tulokset, video, 371
GRACE:n seuraajamissio, 371
gradientti

painovoimahäiriön, 293
potentiaalin pystysuuntainen, 34
vetovoiman, 372

gradientti (operaattori), 9
kuva, 404
lineaarisuus, 404
skalaarikentän, 403
tulkinta, 404

gravimetri
absoluuttinen eli ballistinen, 304

toimintaperiaate, 305
häkki, 304
laserinterferometri, 304
superjousi, 304

astatisoitu, 299, 301
keksintö, 301

atomi- eli kvantti-
toimintaperiaate, 307, 309
ambiguiteettiongelma, 308
kuva, 309

FG5, 304
valokuva, 306

heiluri-, 296
sukellusvenemittaus, 296

herkkyys, 298, 299
ilmakehän vetovoima, 313
ilmanpaineen vaihtelut, 313
IMGC-02, 307
JILA, 304
jousi

hetkellinen pituus, 301
lepopituus, 298, 299
pidennys, 298
tasapainopituus, 298, 299

jousi- eli relatiivinen, 297, 300
aineen ominaisuudet, 302
arretointi, 303
käynti, 302
termostointi, 303

kalibrointi, 312
LaCoste-Romberg, 299, 301, 305
puomi, 299
rekisteröivä, 390
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suprajohtava, 311
toimintaperiaate, 311
stabiilius, 312
trendi, 312

vaimennus, 303, 315, 316
gravitaatio

kenttäteoria, 1
on vetovoima, 5
teoria, 1

gravitaatioaalto, 17
gravitaatiogradiometri (GOCE)

kiihtyvyysmittari, 372
kuva, 373
kuvaus, 372
teoria, 372

gravitaatiokenttä
konservatiivisuus, 5
stationaarisuus, 5

gravitaatiolinssi, 2
gravitaation laki, 3
gravitaatiovakio, universaalinen, 3
GRAVSOFT (ohjelmisto), 244
Green, George, 28
Greenin ensimmäinen lause, 28
Greenin funktio

geopotentiaalin, 338
merenpinnan, 337
pystysiirtymän, 338

Greenin kolmas lause, 29
kappaleen ulkoavaruudelle, 32
piste rajapinnalla, 30
sisäinen piste, 29, 31
ulkoinen piste, 29

Greenin toinen lause, 28
Greenin vastaavan kerroksen lause, 33
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317
Greenwichin meridiaani, 50
GRS80

määritelmä, 101
GM⊕, 6
ilmakehän massa, 314
pallofunktiokertoimet, 104
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ilmagravimetria, 317
mannerjäätikkö, 335

sulamisvesi, 338
Guyana, Ranskan, 295
GWR iGrav (gravimetri), 312
GWR20 (gravimetri), 312
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Haiyang-2A (satelliitti), 345
hakutaulukko (FFT), 433
Hardangerin ylänkö (Norja), 147
harmoninen jatkaminen alaspäin

Helmertin kondensaatio, 437
lauseke r∆g, 203
olemassaolo, 202, 212
painovoima-anomalian, 213
ulkoisen kentän, 214, 215

harmoninen kenttä
määritelmä, 16
lauseke r∆g, 202
pystysuuntainen siirto, 46, 47
säteittäinen siirto, 74
vaimennus korkeuden mukaan, 55

kuva, 47
harmoninen värähtelĳä, 44, 450
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heiluri

heilahdusaika, 295
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heilurikello, 295
heiluriyhtälö, 295
Heiskanen, Veikko Aleksanteri, 144, 396
helikopteri (ilmagravimetria), 316
Helmert, Friedrich Robert, 140
Helmertin kondensaatio, 209

kuvaus, 140
dipolitiheyskerroksena, 442
epäsuora vaikutus, 441

dipolimenetelmä, 443
vakiomaasto, 442

kokonaispotentiaali, 439
kondensaatiokerroksen potentiaali,

435
kuva, 141
massan säilyminen, 141
painovoimavaikutus, 441
topografian potentiaali, 435
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Helmertin korkeus

määritys, 176
approksimaationa, 177

Helsingin observatorio, pääkiintopiste,
163, 164

Helsingin satama (N60), 325
hila (Fourier)

häiriöpotentiaalin, 234
interpolointi, 234
muodostus, 232
painovoima-anomalioiden, 232
Stokesin ytimen, 233

Hirvonen, Reino Antero, 266
Hirvosen geoidimalli, 395
Hofmann-Wellenhof, Bernhard, 396
mid-Holocene highstand, 335
homogeeninen prediktio, 272, 273
homogeenisuus, painovoimadatan, 317
homogeenisuusolettamus, 257

ja kovarianssifunktio, 258
Hubblen avaruusteleskooppi, 2
huonosti asetettu ongelma, 212
Huygens, Christiaan, 295
häiriöpotentiaali, 109

määritelmä, 105
asteluvut 0 ja 1, 106, 117
asteosuudet, 106
isotropia, 276
pallofunktiokehitelmä, 105

I
IAG, 245, 393
ikkunointi, datan (Fourier), 242
ikkunointifunktio (Fourier), 243
ilma-anomalia

määritelmä, 121
Etelä-Suomi, 123
käyttö, 122
laskenta, 122

ilmageoidi, 174
ilmagravimetri, 303
ilmagravimetria

kuvaus, 315
corioliskiihtyvyys, 316
GNSS, 315
gravimetrinen kartoitus, 247
homogeenisuus, 317

koneessa mitattu painovoima, 315
lentokoneen liikkeet, 315
lentokorkeus, 316
painovoima, 315
pystykiihtyvyyden epävarmuus, 316

ilmakehä
kokonaismassa, 314
massan pintatiheys, 313

ilmakehän kuormitus, 390
ilmakehän vastuksen kompensaatio, 317
inklinaatio, ratatason, 358, 362

Kuun, 381
Institut für Erdmessung (Hannover, Saksa),

243, 394
International Geodynamics and Earth

Tide Service (IGETS), 312
International Geoid Commission (IGeC),

393
Euroopan alakommissio, 394

International Geoid Service (IGeS), 393
International Gravity Field Service

(IGFS), 393, 394
International Service for the Geoid (ISG),

393
International Union of Geodesy and

Geophysics (IUGG), 393
invariantti, 398, 423
inversiolasku (FFT), 240
isoakselin puolikas, radan, 358
isostaattinen anomalia

määritelmä, 150
Etelä-Suomi, 151

isostaattinen geoidi, 152
miksi kiinnostaa, 153

isostaattinen hypoteesi, 152
isostaattinen kompensaatio, 145

määritelmä, 142
prosenttimäärä, 153

Isostaattinen laitos, 396
isostaattinen reduktio

kuvaus, 153
epäsuora vaikutus, 152, 156, 210
jäännöskenttä, 150
kogeoidi, 152
massan säilyminen, 150
massatiheyskerrosmenetelmä, 153
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kuva, 155
tavoitteet, 150

isostasia
kuva, 143
mannerjäätiköt, 148
nykykäsitys, 148, 149
paleotutkimus, 148

isostasiahypoteesi, 142
isotrooppinen prosessi, 266
isotrooppinen tiheysjakauma, 9
isotropia ja spektraaliesitys, 199
isotropiaolettamus, 260
Italian valtio (ISG, rahoitus), 394
itseadjungoitu differentiaaliyhtälö, 424
itseadjungoitu operaattori

määritelmä, 421
symmetrinen matriisi, 422

Itämeri
ilmagravimetria, 317
merenpinnan heilahtelu, 331
meritopografia, 330, 331
Seasat-aineisto, 343
suolaisuusgradientti, 331

J
J2 (dynaaminen litistyneisyys), 77, 101,

359
Jaavanmeri (Hollannin Intia, Indonesia),

296
Jacobi, Carl Gustav Jacob, 67
Jacobin determinantti

määritelmä, 410
Bouguer-laatan muunnos, 129
karttaprojektiokoordinaatit, 231
napakoordinaatit, 410
pallokoordinaatit (ϕ, λ), 229
pallokoordinaatit (ψ,α), 67
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kuvaus, 345
radan valinta, 360

jatkuvuusyhtälö, 412
Jerry (GRACE-satellitti), 370
jokiallas, trooppinen, 371
jousivaaka, lineaarinen, 298
juuri, vuoriston, 142

ainetiheys, 143
syvyys, 144, 146

jälki, matriisin, 423
järjestysluku, harmoninen, 54
jää, monivuotinen, 366
jääkuorman historia, 338
jäännösmaastomallinnus (RTM), 213, 214

epäsuora vaikutus, 215
interpolointimenetelmänä, 215

jäännöspainovoimakenttä, 215
jäätiköiden vetäytyminen, 148

K
Kaivopuisto (Helsinki), pääkiintopiste,

163, 164, 325
kaksoisrakokoe (kvanttiteoria), 308
kalotti, pallo- (geoidimääritys), 217
kaltevuus, Maan pyörähdysakselin, 391
Kansainvälinen geodeettinen assosiaatio

(IAG), 245, 393
Kansainvälinen gravimetrinen toimisto

(BGI), 123, 133, 151, 393
kappale (laaja), potentiaali, 6
kappale (pistemäinen), potentiaali, 5
kappale, ulkoinen potentiaali, 35
karakteristinen yhtälö, 423
Kartastokoordinaattĳärjestelmä (KKJ),

122
karttaprojektiokoordinaatit (kuva), 230
Kater, Henry, 296
kaukovaikutus, 1
Kaula, William, 284
kenkälaatikkomaailma, 44, 45
kenttä, käsite, 41
kenttäteoria, gravitaation, 1
kenttäviiva, 22, 413
kenttäyhtälöt

gravitaation, 1, 16
sähkömagnetismin, 16, 17

Kepler, Johannes, 357
Simpsonin sääntö, 223

Keplerin kolmas laki, 357
octave-skripti, 364

Keplerin rata-alkiot, 358
Keplerin toinen laki, 400

kuva, 401
kertoma, 57
keskigeoidi, 386
keskimerenpinta
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määritelmä, 323
käsite, 324
globaali, 326

keskisĳainti, 117
keskipakoispotentiaali, 88

lauseke, 90
keskipakoisvoima, 89, 108

lauseke, 90
kuva, 89

kiertoheiluri (Cavendish), 4
kiihtyvyys, GNSS:n mittaama, 315, 316
kiihtyvyysmittari satelliitilla, 317
kiinteä kappale, 11

kenttä äärettömyydellä, 12
kokonaismassa, 13
potentiaali, 11
vetovoima, 12

KKJ, 122
Knudsen, Per, 245
kogeoidi, 128
kohina (määritelmä), 262
kohinavarianssimatriisi, 263, 273
kokoonpuristumattomuus, 23, 413
Kolkata (Intia), 143
kollokaatio, pienimmän neliösumman

(LSC), 245
kuvaus, 261
FFT, 285
joustavuus, 273
kuva, 268
ratkaisu, 269
teoria, 272

kommutoiva kaavio
FFT, 234
poistamis-entistämismenetelmä, 216
pystysuuntainen siirto, 47
säteittäinen siirto, 74

kompensaatiosyvyys, 146, 151
komponentit, vektorin, 402
kondensaatiokerros, ulkoinen potentiaali,

439
konfokaalisuus, 52
konservatiivinen kenttä

määritelmä, 5, 407
divergenssi, 408
potentiaali, 407

potentiaalin gradienttina, 411
konvektio, Maan vaipassa, 153
konvoluutio

kirjoitustapa, 231
laskenta FFT:llä, 239

konvoluutiolause, 231
koordinaatit

ellipsoidiset, 52
geodeettiset, 50

määritelmä, 52
luonnolliset, 96, 97

kuva, 96
koordinaattiaika (suhteellisuusteoria),

184
korkeuden potenssien asteosuudet, 440
korkeuksien muunnospinta, 326, 395
korkeus

ja geopotentiaaliluku, 165
vertausellipsoidista, 51, 111

korkeusanomalia
määritelmä, 167
kolmiulotteinen, 121
telluroidikuvaus, 120

korkeusjärjestelmä, kansallinen, 325
korkkiruuvisääntö, vektoritulon, 399, 402
korrelaatio, kvasigeoidi & topografia, 172,

173
korrelaatiopituus, 266, 267
kosinisääntö pallolla, 235, 379

puolikulman, 235
kovarianssifunktio

määritelmä, 259
empiirinen, 284
Gaussin ja Markovin, 267
globaali, 286
Hirvosen, 266, 269

kuva, 267
häiriöpotentiaalin, 275, 292

avaruudessa, 280, 282
isotropia, 276
painovoima-anomalioiden, 282
spektraaliesitys, 276

Kronstadt (Venäjä) datumi, 163
kulmaetäisyys, geosentrinen, 235

kuva, 259
kvadratuuri, blokkikeskiarvo, 223
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kvadrupoli Maan keskuksessa, 70
kvasigeoidi

käsite, 121, 173
kuva, 172

käynti (gravimetri), 302
Kääriäinen, Jussi, 317
Kööpenhamina (Tanska), geoidimääritys,

395
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laattatektoniikka, 149
LaCoste, Lucien, 301
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lankaheiluri, hyvin pitkä, 297
Laplace, Pierre-Simon, 16, 408
Laplacen operaattori (∆), 408

määritelmä, 16, 41
lineaarisuus, 254

Laplacen yhtälö, 16
määritelmä, 41
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kentän paikallinen käyttäytyminen,

42
koordinaattimuunnos, 42
lineaarisuus, 42
napakoordinaateissa, 48
pallokoordinaateissa, 53, 445
perusratkaisut, 53
ratkaiseminen, 41
suorakulmaisissa koordinaateissa, 43

Lappi, astemittaus, 129
lattalukemien ero, 181
Laurentian mannerjäätikkö, 335
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Legendren funktio, 53, 57
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taulukko, 79

täysin normalisoitu, 428
Legendren liitännäisfunktio

etumerkkialueet, 85
etumerkkivälit, 61
kuva, 60
symmetriat, 59, 64, 84
taulukko, 60
täysin normalisoitu, 68

Legendren polynomi
etumerkkivälit, 59

kuva, 58
symmetriat, 59
taulukko, 58
täysin normalisoitu, 68

Legendren polynomit
generoiva funktio, 200

geometria, 199
kantana, 426
ortogonaalisuus
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−1,+1

]︁
, 67

yksikköpallolla, 68
ortonormaalius yksikköpallolla, 68

Legendren yhtälö, 450
Lego™-palikka, 25
Leibniz, Gottfried Wilhelm, 1
Leibnizin yliopisto (Hannover, Saksa),

394
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geosentrinen, 50
redukoitu, 100

määritelmä, 52
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kuva, 99
suhteet, 100

liikelaki, Newtonin, 4
linearisointi, ilma-anomalian, 122
Liouville, Joseph, 425
longitudi, Kuun, 380
Love, Augustus, 383
Loven luku

elastinen, 339, 383
Hn, 384
Kn, 385
Ln, 384
määritys, 385

GNSS, 385
riippuvuus vuoroveden jaksosta, 385
viskoosi, 340

LSC, katso kollokaatio, pienimmän
neliösumman

lumenluonti, 312
lunar laser ranging (LLR), 304
luonnollinen anomalia, 358
luotiviiva

määritelmä, 87
kaarevuus, 94, 95
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kuva, 94

taipuminen vuoreen päin, 143
luotiviivan poikkeama

määritelmä, 87, 109
funktionaalina, 255
havaittu, 111
ja geoidi, 110, 125, 198
merellä, 343
sisäinen vyöhyke, 224
Suomessa, 110

luotiviivan suunta, 109
absoluuttinen, 386

lähde, vektorikentän, 23, 405
kuva, 405

M
Maa

dipolimomentti, 70
hitaustensori, 71
kaarevuussäde, poikittainen, 51
kokonaismassa, 76, 101
kvadrupolimomentti, 71
litistyneisyys, 100
magneettikenttä, 153
pyörähdysnopeus, 101
reologia, 338
sisäinen massajakauma, 35
säde, 18
ulkoinen potentiaali, 152

Maa-ellipsoidi
ensimmäinen eksentrisyys, 51
isoakselin puolikas, 100
napasäde, 100
pikkuakselin puolikas, 100
päiväntasaajasäde, 51, 100

maailmaneetteri, 1
Maan massakeskipiste origona, 70, 117
Maan muoto, 91
maannousu

absoluuttinen, 327
postglasiaalinen

mekanismi, 329
suhteellinen, 327
vaikutus korkeusjärjestelmään, 325

maantieteellinen keskiarvo
määritelmä, 257
M, 258

M ′, 260
maantieteellinen varianssi, 257
maastokorjaus (TC)

määritelmä, 132
arvot, 135
esimerkki, 137
etumerkki, 134
FFT, 247, 248
konvoluutio, 249
pallogeometriassa, 139
prismamenetelmä, 134, 135, 248
systemaattinen virhe, 134
ulkoisessa tilassa, 250
yhtälö, 134

maaston potentiaali, 15
maaston vaikutus ilmagravimetriassa,

317
maastopisteen potentiaali, 162
makea jokivesi, vaihtelu, 323
Malediivit (Intian valtameri), 336
mannerjäätiköt ja merenpinta, 335
mareografi

havaintosuure, 336
maannousu, 327

Mars (planeetta), painovoimakenttä, 284
massapintatiheys, SI-yksikkö, 18
massapiste

maanalainen, 33
vetovoimavektori, 10

massapisteiden joukko, potentiaali, 11
massatiheyskerros

Helmertin kondensaatio, 140
kaksinkertainen, 19, 20
yksinkertainen, 18

massaviiva, potentiaali, 13
Mauna Kea (Havaji), 160
Maupertuis, Pierre de, 129
Maxwell, James Clerk, 16
mean geoid, 386
Meissnerin ilmiö, 311
Melchior, Paul, 381
meren vuorovesikuormitus, 389
merenpinnan jäännösvaihtelu, 349
merenpinnan nousu, 326

globaali, 345
Holoseeni, kuva, 339
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merenpinnan vaihtelu, 323
merenpintayhtälö, 336

Greenin funktio, 337, 339
konvoluutio, 337
kuva, 336
yhtälö, 336

merenpohjan paine, 369
meridiaaniellipsi

kuva, 99
polttopisteet, 52

meridiaanikonvergenssi, 235
merigravimetri, 303
merĳään kaukokartoitus, 366
meritopografia, 332

määritelmä, 324
ajallinen muutos, 328
GOCEn tuottama kartta, 334
ja lämmönkuljetus, 331
ja merivirtaukset, 333
kartoitus, 344
määritys, 330

merivirtaus
inversiotehtävä, 372
poikittaiskallistus, 332
vaihtelu, 333

merkitsevä aallonkorkeus (SWH), 347
mesomittakaavan pyörre, 323, 333
metalliväsymys, 302
metallurgia, 302
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kirja, 396
valokuva, 168

Molodenskin katkaisukertoimet, 221
Molodenskin menetelmä

korkeusanomalia, 212
laskentapiste vertaustasoksi, 212
linearisointi, 210
painovoiman pystygradientti, 208

Molodenskin oivallus, 168, 171
graafinen aasinsilta, 171

Molodenskin teoria, 33, 120, 127, 167
monopoli Maan keskuksessa, 70
monsuuni, 371
moodin relaksaatioaika, 340
moodin vahvuusluku, 340
Moritz, Helmut, 396
mu-metalli, 311
Munk, Walter, 345
muuttujien erottaminen

napakoordinaatit, 48
pallokoordinaatit, 448
pallon pintakoordinaatit, 450
suorakulmaiset koordinaatit, 43

Mäkinen, Jaakko, 166

N
N60 (korkeusjärjestelmä), 162, 325

maannousu, 325
vertauspinta, 245

N2000 (korkeusjärjestelmä), 163, 245, 325
nabla (∇, operaattori), 9, 403
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(NGA), Yhdysvaltojen, 75, 393
National Imagery and Mapping Agency

(NIMA), Yhdysvaltojen, 75
NAVD88, North American
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Neumann, Carl Gottfried, 73
Newton, Isaac, 3
Newtonin gravitaation laki, 3
Newtonin gravitaatioteoria, 1
Newtonin liikelaki, 4
nielu, vektorikentän, 23, 405

kuva, 405
Niethammer, Theodor, 178
Niethammerin menetelmä, 178
NKG2004 (geoidimalli), 395
NKG2015 (geoidimalli), 395
NN (korkeusjärjestelmä), 163
nollageoidi, 387
nollapituusjousi, 300, 302
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keksintö, 301
miten rakennetaan, 300

nollapotentiaali, konventio
keskimerenpinnalla, 17
äärettömyydellä, 17

nopea Fourier’n muunnos (FFT)
algoritmit, 433
geoidimääritys, 234
ja konvoluutio, 232
kollokaatio, 285, 288
kommutoiva kaavio, 234
maastokorjaus, 247, 250
mixed-radix, 431
radix 2, 431
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