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Preface

This book aims to present an overview over the current state of the
study of the Earth’s gravity field and those parts of geophysics closely
related to it, such as especially geodynamics, the study of the changing
Earth. It grew out of two decades of teaching in Helsinki’s two univer-
sities: Helsinki University of Technology — today absorbed into Aalto
University — and the University of Helsinki. As such, it presents a
somewhat Fennoscandian perspective on a very global subject. Also
the author’s own research, on gravimetric geoid determination, helped
shape the presentation. While there exist excellent textbooks on all
parts of what is presented here, he may still hope that this text will
find a niche to fill.

Helsinki, June 21, 2019,

Martin Vermeer
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Fundamentals of the theory of
gravitation

1.1 General

In this chapter we discuss the foundations of Newton’s theory of gravitation.
Intuitively, the theory of gravitation is easiest to understand as “action at
a distance”, latin actio ad distans, where the force between two masses is
proportional to the masses themselves, and inversely proportional to the
square of the distance between them. This is the form of Newton’s general

law of gravitation familiar to all.

There exists an alternative but equivalent presentation, field theory, which
describes gravitation as a phenomenon propagating through space, a field.
The propagation is described in the field equations. The field approach isn’t
quite as intuitive, but is a powerful theoretical tool".

In this chapter we acquaint ourselves with the central concept of field theory,
the gravitational potential. We also get to know the potential fields of the
theoretically interesting single and double mass density layers. Of the practical

*There is also a philosophical side to this. To many, e.g., to Leibniz, the idea
of a force that jumps from object to object was an abomination. Many tried to
explain gravitation — and also electromagnetism etc. — by a “world aether”.
It wasn’t until the advent of relativity theory, that the understanding gained
ground that a physical theory doesn’t have to satisfy our preconceptions
about what constitutes a “sensible explanation” — as long as it describes the
physical phenomena correctly.
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and theoretical applications of these may be mentioned the Bouguer plate
and Helmert condensation. In the following we will discuss their properties
in detail. Mass density layers are also used in deriving the theorems of Green.
We will learn about important integral theorems like the theorems of Gauss
and Green, with the aid of which we may infer the whole potential field
in space from field values given only on a certain surface. Other similar
examples are the Chasles theorem and the solution to Dirichlet’s problem.

In chapter 3 we apply these fundamentals of potential theory to derive a
spectral representation of the Earth’s gravitational field, a so-called spherical-
harmonic expansion.

Here, in the beginning of the text, we derive an extensive set of mathematical
equations, such as well-known integral equations. This is an unfortunately
necessary preliminary work. These equations, however, are no end in them-
selves and they are not worth committing to memory. Try rather to under-
stand their logic, and how historically these various results have been arrived
at. Try as well to acquire an intuition, a fingertip feeling, about the nature of

this theory.

1.2 Gravitation between two masses

We start the investigation of the Earth’s gravity field suitably with Isaac

Newton*’s general law of gravitation:

mymip
/2

F is the attractional force between bodies 1 and 2, m; and m» are the masses

F=G

(1.1)

of the bodies, and ¢ is the distance between them. We assume the masses to
be points. The constant G, the universal gravitational constant, has the value

G =6.6726 - 10 'm%kg 's 2.

2Sir Isaac Newton Prs (1642 —1727) was an English universal genius who de-
rived the mathematical underpinning of astronomy, and much of geophysics,
in his main work “Philosophiee Naturalis Principia Mathematica”, “Mathematical
Foundations of Physics”.

Gravitation between two masses

Figure 1.1. Gravitation is universal. A gravitational lense imaged by the

Hubble Space Telescope, the cluster of galaxies Abell 1689 at a
distance of 2.2 billion light years. ( )-

Credits: Nasa, N. Benitez (jau), T. Broadhurst (The Hebrew
University), H. Ford (jau), M. Clampin (stsc1), G. Hartig (sTscr),
G. Illingworth (uco/Lick Observatory), the acs Science Team and

ESA.
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The value of G was determined for the first time by Henry Cavendish? using
a sensitive torsion balance ( , ).

Let us call the small body, the test mass, e.g., a satellite, m, and the large
mass, the planet or the Sun, M. Then, m; = M may be called the attracting
mass, and m, = m the attracted mass, and we obtain

mM
F - GT.

According to Newton's law of motion
F = ma,

where 7 is the gravitational acceleration of body m. From this follows
a = Gﬁ.

From this equation, the quantity m = mj, has vanished. This is the famous

observation by Galileo, that all bodies fall equally fast*, irrespective of their
mass. This is also known as Einstein>’s principle of equivalence.

Both the force F and the acceleration a have the same direction as the line
connecting the bodies. For this reason one often writes equation 1.1 as a
vector equation, which is more expressive:

r—R

a=-GM e

(1.2)

3Henry Cavendish Frs (1731-1810) was a British natural scientist from a
wealthy nobility background. He did also pioneering work in chemistry. He
was extremely shy, and the renowned neurologist Oliver Sacks retrodiagnosed
him as afflicted with the Asperger syndrome ( , )-

4At least in vacuum. The Apollo astronauts showed impressively how on
the Moon a feather and a hammer fall equally fast!

5Albert Einstein (1879 —1955) was a theoretical physicist of Jewish German
descent, who created both the special and general theories of relativity,
applying the latter to cosmology, and did fundamental work in quantum
theory.

The potential of a point mass

where the three-dimensional vectors of place of both the attracting and
attracted masses are defined as follows in rectangular co-ordinates®:
r=xi+yj+zk,
R = Xi+Yj+Zk,

where the triad of unit vectors {i, j, k} is an orthonormal basis” in Euclidean
space, R® and

(= r—R| =/ (x= X2+ (y— Y+ (z— 2) (1.3)
is the distance between the masses computed by the Pythagoras theorem.

Note that the vector equation 1.2 contains a minus sign! This only tells us,
that the direction of the force is opposite to that of the vector r — R. This
vector is the location of the attracted mass m reckoned from the location of
the attracting mass M. In other words, this tells us that we are dealing with
an attraction and not a repulsion.

1.3 The potential of a point mass

The gravitational field is a special field: if it is stationary, i.e., not time
dependent, it is conservative. This means that a body moving inside the field
along a closed path will, at the end of the journey, not have lost or gained
energy. Because of this, one may attach to each point in the field a “label”
onto which is written the amount of energy gained or lost by a unit or test
mass, when travelling from an agreed-upon starting point to the point under
discussion. The value written on the label is called the potential. (Note, that
the choice of starting point is arbitrary! We will return to this still.)

6As vector notation, one may use either K4 (an arrow above) or v (bold).
Here we use the bold notation, except for vectors designated by Greek letters,
which cannot be bolded.

7This means that ||i|| = ||j|| = ||k|| =1and (i-j) = (i-k) = (j - k) = 0, where
the norm is defined as ||a|| & \/(a-a), and (a-b),a,b € E is the inner or

scalar product of the space.
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The potential function defined in this way for a pointlike body M is:

M GM
V= G7 =7 (1-4)
where / is again, like above, the length of the vectorr — R, £ = |r — R|.

The constant GM has in case of the Earth (according to the Grs8o system,
conventionally) the value

GMg = 3.986005 - 10" m*/s2,
The currently best available physical value again is

GMg, = 3.98600440 - 10" m’/s2,

1.4 Potential of a spherical shell

We may write, based on equation 1.4, the potential of an extended body M
into the following form:

B dm(R) dm(R)
V(r)= G/M = G/M =R’ (1.5)

This is an integral over mass elements dm, where every such mass element is

located at place R. The potential V is evaluated at location r, and the distance
¢ =|r—R|.

We now derive the formula for the potential of a thin spherical shell, see

figure 1.2, where we have placed the centre of the sphere at the origin O.

Because the circumference of a narrow ring, width b - d6, is 27tbsin6, its
surface area is

(27tbsin ) (b - db) .
Let the thickness of the shell be p (small) and its density p. We obtain for the

total mass of the ring
27tppb? sin 0 d.

Because every point of the ring is at the same distance ¢ from point P, we
may write for the potential at point P:

_ 2nGppb?*sin 6 do

Vp 7

Potential of a spherical shell

Figure 1.2. A thin spherical shell consists of rings.

With the cosine rule,
2 =>4+ b*>—2rbcosh, (1.6)

we obtain, using equation 1.5, for the potential of the whole shell

sin 6 d6
V12 + b2 —2rbcosO

In order to evaluate this integral, we must replace the integration variable 6

Vp = 2Gopb?

by £. Differentiating equation 1.6 yields
{dl = brsindb,

and remembering that £ = v/r2 + b2 — 2rb cos § we obtain

G gy

— 2 i
Vp = 2nGppb b

b
In the case that point P is outside the shell, the integration bounds of ¢ are
¢y =r—>band ¢, =r+ b, and we obtain for the potential of point P

f=rib _ 4nGppl?

Vp = 2nGppb? [ﬁ}
l=r—b ¥

br



Page 9

Fundamentals of the theory of gravitation

Because the mass of the whole shell is M, = 47b%pp, it follows that the
potential of the shell is the same as that of an equal sized mass in its centre O:
_ GM,

Vp ,
r

where 7 is now the distance of computation point P from the centre of the
sphere O. We see that this is the same as equation 1.4.

In the same way, the attraction, or rather, acceleration, caused by the spherical
shell is®

rp—t p—t
ap = <§>V>P = —47erpb27P 3 O - —-GM, P P 9,

in which r = ||rp — ro|| . This result is identical with the acceleration caused

by an equal sized point mass located in point O, see equation 1.2.

In the case that point P is inside the shell, {; = b —r and ¢, = b+ and the
above integral changes to the following:
{=b+r

Vp = 2nGpph* {ﬁ} = 4nGppb.

brlpp,
As we see, this is a constant and not dependent upon the location of point
P. Therefore VVp = 0 and the attraction, being the gradient of the potential,

vanishes.
The end result is, that the attraction of a spherical shell is, outside the shell,

oM

a=|a|l = 2

where M is the total mass of the shell and r = ||rp — rp|| the distance of the
observation point from the shell’s centre; and 0 inside the shell.

In figure 1.3 we have drawn the curves of potential and attraction (i.e., acceler-
ation, attractive force per unit of mass). If a body consists of many concentric
spherical shells (like rather precisely the Earth and many celestial bodies),
then inside the body only those layers of mass internal to the observation

point participate in causing attraction, and this attraction is the same as it

8Here, the V (nabla) operator is used, to be explained in section 1.5.

Computing the attraction from the potential

|
47 Gppb Acceleration
anGppt
4tGppb %
Potential
0
0 b —_— 7

Figure 1.3. Dependence of potential and attraction on distance r from the

centre of a spherical shell.

would be if all the mass of these layers was concentrated in the centre of
the body. This case, where the distribution of mass density inside a body
only depends on the distance from its centre, is called an isotropic density
distribution.

1.5 Computing the attraction from the potential

As we argued earlier, the potential V is a path integral. Conversely we can
compute, from the potential, the components of the gravitational acceleration
vector by differentiating V with respect to place, i.e., by applying the gradient

operator:

— oV 9V v
a-?V—gradV—la +]@+ e (1.7)

Here, the symbol V (nabla), is a frequently used partial differential operator

.0 .0 0
Here, {i,j, k} is again a basis of mutually orthogonal unit vectors in Euclidean

space IR® parallel to the (x,y,z) axes.
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Let us try this differentiation in the case of the potential field of the point
mass M. Substitute the above equations for V 1.4 and ¢ 1.3%:
8V78V8€7GM 1 »—X x—X

w oo M =M

Similarly we compute the y and z components:

v y=Y oV z—Z
@——GM B 5 = GM 7

These are the components of gravitational acceleration when the source of the
field is one point mass M. So, in this concrete case the vector equation given
above applies:
PP =
a=gradV =VV.

Remark: in physical geodesy — unlike in physics — the potential is reckoned
always positive if the attracting mass M is positive (as it is known to
always be). However, the potential energy of body m inside the field of
mass M is negative! More precisely, the potential energy of body m is

Epot =—Vm.

In practice one calls the vector of gravitational acceleration the “gravitational

vector”.

9From the equation

NI=

(==X =Y+ -2 = (= X+ (- V) + (- 2)?)
it follows with the chain rule, that

1
2

%_a((x—X)2+(y—Y)2+(z—Z)2> A (x—X)?
ox - a((X—X)2+(y_Y)2+(Z_Z)2) dx

(ST
=

|
i~

(k=X + =Y +(z-27)

N =

Potential of a solid body

1.6 Potential of a solid body

In the following we study a solid body, the mass of which is distributed
throughout space and thus not concentrated in a single point. The Earth
serves as an example of this, as its mass distribution in space may be described
by a matter density function p:
dm(x,y,z)
pvyz) = W(x,;_z),

in which dm is a mass element and dV is the corresponding element of spatial
volume. The dimension of p is density, its unit in the s1 system, kg/m?.

Because the gravitational acceleration 1.7 is a linear expression in the potential
V, and both force and acceleration vectors may be summed linearly, it follows
that also the total potential of the body can be obtained by summing together
the potentials of all its parts. For example, the potential of a set of n mass
points is

3

Voot
i=1

from which we obtain the gravitational acceleration by simply using the

i
’
i

)

gradient theorem 1.7.

The potential of a solid body is obtained similarly by replacing the sum by
an integral, in the following way. (Note that unfortunately almost the same

symbols V and V are used here for the potential and for volume, respectively):

V:G///bOdy%:G///bOdy%dV (1.8)

The symbol p inside the integral designates the matter density at the loca-
tion of dm. £ = [r—R| = \/(x — X2+ (y—Y)* + (z — Z)* is the distance
between point of measurement and attracting mass element. More clearly:

- . 0(X,Y,Z)
Vixyz) = G///body \/(x - X+ -+ (z-2)

As we showed already above for mass points, also the first derivative with

axdy dz.

respect to place or gradient of the potential V of a solid body,

gradV = VV = a, (1.9
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is the acceleration vector caused by the attraction of the body. This applies
generally.
1.6.1 Behaviour at infinity

If a body is of finite extent (i.e., it lies completely within a sphere of size €
around the origin) and also its density is bounded everywhere, it follows that

Ilt] = 0o = V(r) —0,
because, according to the triangle inequality,
C=lr=R[[ = [Ir] = R[] = [[£]| =€
and thus

1
77 0 when |r]| — oo.

For the acceleration of gravitation the same applies for all three components,
and thus also for the length of this vectorial quantity:

x| = 00 = H?VH — 0.

This result can still be sharpened: if |[r|| — oo, then, again by the triangle

inequality,
€= |lr=R| < [Irf| + [R]| < x| +e,
and thus
1 1.1 111 1 1
el +e = £ frfl—e el T4/l = € 7 x| 1 =</l

It is seen, again with the notation 7 = ||r||, that

1 1
r—so0 = - — -,
l r

When we substitute this into the above integral 1.8, it follows that for large

distances r — oo:

V:G/// 3de9/ pay = M
bodyg r body r

in which M, the integral of density over the volume of the body, is precisely
its total mass. From this we see, that at great distance, the field of a finite

Example: The potential of a line of mass

sized body M is nearly identical with the field generated by a point mass the
total mass of which is equal to the total mass of the body. This important
observation was already made by Newton. As a result of this phenomenon
we can treat, in the celestial mechanics of the Solar system, the Sun and

10

planets'® as mass points, although we know that they are not.

1.7 Example: The potential of a line of mass

The potential of a vertical line of mass having a linear mass density of unity
is .

' 1
V(x,y,z) = G/ > > > daz, (1.10)
O X (Y =)+ (Z-2)

where (X,Y) is the location of the mass line, (x,y,z) is the location of the
point in which the potential is being evaluated, and the mass line extends
from sea level Z = 0 to height Z = H.

Firstly we write Ax = X —x, Ay = Y —y, Az = Z — z, and the potential
becomes
"H—z

! d(Az).
2 AX2+ A2+ AZ?

V(Ax, Ay, Az) =G

The indefinite integral is

In(Az 4 \/Ax? + Ay? + Az?)

and substituting the integration bounds yields

H—z+\/Ax2+Ay2+(H—z)2

V=GIn
—z+\/Ax2 + Ay? + 22

Now we can expand this into a Taylor series in H around the point H = 0:

the first derivative of equation 1.10 is
v _ G
X =2+ (g (H =)

~ 0

°The only important exception is formed by the forces between a planet and
its moons, both due to the flattening of the planet and due to tidal effects.



Page 15

14

Fundamentals of the theory of gravitation

in which ¢ (H) = \/(X —x)%+ (Y —y)> + (H — z)°. The second derivative
is (chain rule)
2’V 0

1
_ -1 _ -3 _

H-=z
3

The third derivative, obtained in the same way:

PV a<H—z):G<3(H—z)2 1>:G3(H—z)2—€2

OH3 ~ TOH 03 05 B 05 ’

and so on. The Taylor expansion is

Jy' ™" 14z
-1 1 322143

—_— 1.z,
V= 0 4G Ht5G5H + G
0

3
7 5 63 H>+... (1.11)

in which ¢y = \/(X —x)2+ (Y —y)> + 22, i.e., into the derivatives we have
substituted H = 0.

Question: how can we exploit this result for computing the gravitational
potential of a complete, realistic topography?

11
Answer: in this expansion, the coefficients 7 55—3, ..
0 <%
on the differences Ax = X — x and Ay = Y — y between the co-ordinates

., like £y, depend only

of the location of the mass line (X,Y) and those of the evaluation
location (x,y) — and of the height z of the evaluation point. If the
topography is given in the form of a grid, we may evaluate the above
expansion 1.11 term-wise for the given z value and for all possible
value pairs (Ax, Ay).

Then, if the grid is, e.g., N X N in size, we need only N2 operations for
calculating every coefficient. The brute-force evaluation of the Taylor
expansion itself for the whole topography, i.e., for every point of the
terrain grid and every point of the evaluation grid, requires after that
N* operations, but those are much simpler: the coefficients themselves
have been precomputed. And brute force isn’t even the best approach:
as we shall see, the above convolution can be computed much faster
using the Fast Fourier Transform.

Equations of Laplace and Poisson

We shall return to this subject more extensively in connection with
terrain effect evaluation, sections 6.3 and 9.7.

1.8 Equations of Laplace and Poisson

The second derivative with respect to place of the geopotential, the first deriva-
tive with respect to place of the gravitational acceleration vector, i.e., its

divergence, is also of geophysical interest. We may write:

diva= (V- a>az— (¥ -aﬁv) >az— (V.¥)v=

=AV=gaViaaVtaaY (1.12)

in which

£ (T V)= A

w2 Tar a2
is a well known symbol called the Laplace'* operator.

In equation 1.4 for the potential of a point mass we may show, by performing
all partial derivations 1.12, that

AV =0, (1.13)

the well known Laplace equation. This equation applies outside a point
mass, and more generally everywhere in empty space: all masses can in
the limit be considered to consist of point-like mass elements. Or, in equation
1.8 we may directly differentiate inside the triple integral sign, exploiting
the circumstance that it is allowed to interchange integration and partial
differentiation, if both are defined.

A potential field for which the Laplace equation 1.13 applies, is called a
harmonic field or function.

Pierre-Simon, marquis de Laplace (1749—-1827) was a French universal
genius who contributed to mathematics and natural sciences. He is one of
the 72 French scientists, engineers and mathematicians whose names were

inscribed on the Eiffel Tower,
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In the case where the mass density doesn’t vanish everywhere, we have a
different equation, with p the mass density:

AV = —4nGp. (1.14)

This equation is called the Poisson'* equation.

The pair of equations

gradV = a

diva = —4nGp

is known as the field equations of the gravitational field. They play the same
role as Maxwell’s" field equations in electromagnetism. Unlike in Maxwell’s
equations, however, in the above there is no time co-ordinate. Because of
this, it is not possible to derive a formula for the propagation in space of
gravitational waves, like the one for electromagnetic waves in Maxwell’s
theory.

We know today that these “Newton field equations” are only approximate,
and that a more precise theory is Einstein’s general theory of relativity. Nev-
ertheless, in physical geodesy Newton’s theory is generally precise enough
and we shall use it exclusively.

1.9 Gauge invariance

An important property of the potential is, that, if we add a constant C to it,
nothing related to gravitation that can actually be measured, changes. This
is called gauge invariance. Gravitation itself is obtained by differentiation,

2Siméon Denis Poisson (1781 —1840) was a French mathematician, physicist

and geodesist, one of the 72 names inscribed on the Eiffel Tower,

3James Clerk Maxwell Frs FRSE (1831 —-1879) was a Scottish physicist, the
discoverer of the field equations of electromagnetism. He found a wave-like
solution to the equations, and, based on propagation speed, identified light
as such.

Single mass density layer

an operation that eliminates the constant term. Therefore the definition of
potential is in a sense ambiguous: all potential fields V obtained by different

choices of C are equally valid.

Observations only give us potential differences, as spirit levellers know all too

well.

An often chosen definition of potential is based on requiring that, if ||x|| — oo,
then also V — 0, which makes physical sense and yields simple equations.
However, in work on the Earth’s surface, a more practical alternative may be
V = 0 at the mean sea surface — although also that is not free of problems.

For example, for the mass of the Earth Mg a physically sensible form of the

potential is, in spherical approximation,

_ GMe
.

def
=il
which vanishes at infinity 7 — oo, when again a geodetically sensible defini-

tion would be
_ GMg _ GMg

T R 7
in which R & ||R| is the radius of the Earth sphere. The latter potential
vanishes where r = R, on the surface of a spherical Earth. In the limit r — oo

%4

. . Mg
its value is — ¢ T, not zero.

1.10 Single mass density layer

If we apply to the surface S of a body a “coating” of mass surface density, of

mass density value
_dm
~ds’
we obtain for the potential an integral equation similar to equation 1.8, but a

V:G// @:G// L (1.15)
surface 1 surface 14

Here again / is the distance between the point of consideration or test mass

surface integral:

P and the moving mass element in integration dm (or surface element dS).
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Note that the dimension of the mass surface density « is k&/m?, different from
the dimension of ordinary (volume) mass density.

This case is theoretically interesting, though physically unrealistic. The
function V is everywhere continuous, also at the surface S, however already
its first derivatives with place are discontinuous. The discontinuity appears
in the direction perpendicular to the surface, i.e., in the normal derivative.

Let us look at the simple case where a sphere, radius R, has been coated
with a layer of standard surface density x. By computing the above integral
1.15 we may prove (in a complicated way) that the exterior potential is the
same as it would be if all of the mass of the body were concentrated in the
sphere’s centre. Earlier, in section 1.4, we proved that the potential interior to
the sphere is constant.

Thus, the exterior attraction (¢ > R) is

M K- 4TR?

R 2

The interior attraction (¢ < R) is
ai(f) =0.

This means that on the surface of the sphere, { = R, the attraction is discontin-
UOUS:
ae(R) —a;(R) = 4nGx.

In this symmetric case we see that

a=|al| = 5 (1.16)

in which the differentiation variable 1 represents the normal direction, i.e., the
direction perpendicular to the surface S. If the surface S is an equipotential
surface of the potential V, equation 1.16 applies generally. Then, the attraction
vector — more precisely, the acceleration vector — is perpendicular to the
surface S, and its magnitude is equal to that of the normal derivative of the
potential.

Double mass density layer

Figure 1.4. A double mass density layer.

1.11 Double mass density layer

A double mass density layer may be interpreted as a dipole density layer. The
dipoles are oriented in the direction of the surface’s normal.

If the dipole consists of two “charges” m and —m in locations r; and rp, in
such a way, that the vectorial separation between them is Ar = r{ — 1, then
the dipole moment is d = mAr, a vectorial quantity. See figure 1.4.

Let the dipole surface density be

amM
=5
in which dM is a “dipole layer element”. This layer may be seen as made up
of two single layers. If we have a positive layer at density x and a negative
layer at density —x, and the distance between them is J, we get for small
values of § an approximate correspondence:

U~ oK.

The combined potential of the two single mass density layers computed as
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explained in the previous section is

1 1
veofl w(-l)s
JJ surface . €1 EZ

Between /1, ¢, and ¢ exists the following relationship (Taylor expansion of

bt

in which % is again the derivative of the quantity in the normal direction of

function $):

the surface.

Substitution into the equation yields

J /1 0 /1
V= G//surface K(S% <Z> s=c //surface ,‘”% (Z> .

If 6 is small enough (and x correspondingly large), this holds exactly.

One can easily show that the above potential isn’t even continuous. The
discontinuity happens at the surface S. Let us look again, for the sake of
simplicity, at a sphere, radius R, coated with a double layer of constant mass
density p. The exterior potential is

3 /1
Ve = —Gp //Surface %<Z) S =0, (1.17)

because the integral vanishes. To prove this, we need the Gauss integral

theorem, on which more below.

The interior potential is

9 /1 1\?
Vi=-G —(=)dS = —4nR?Gu | -
V//surface on <€) & H (€>

by computing the surface integral using the sphere’s centre as the evalu-

= —4nGy,
(=R

ation point, and using the earlier established circumstance that inside a
sphere covered by a single constant-density mass density layer the potential

is constant.

Now in the limit /£ — R the result is different for the exterior and interior
potentials. The difference is

Ve(R) — V(R) = 4nGp.

The Gauss integral theorem

1.12 The Gauss integral theorem

1.12.1 Presentation

The Gauss'# integral theorem, famous from physics, looks in its vector form

like this:
///vdivadV = //w(a-n) ds, (1.18)

in which n is the exterior normal to surface S, now as a vector: the length of
the vector is assumed ||n|| = 1. 9V is the total surface of body V.

This theorem applies to all differentiable vector fields a and all “well behaved”
bodies V on whose surface dV, everywhere a normal direction n exists. In
other words, this is not a special property of the gravitational acceleration

vector, though it applies also to this vector field.

1.12.2 Intuitive description

Let us note that
diva = AV = —4nGp

is a source function. It describes the amount, in the part of space inside surface
dV, of positive and negative “sources” and “sinks” of the gravitational field.

The situation is fully analoguous with the flow pattern of a liquid: positive
charges correspond to points where liquid is added to the flow, negative
charges'> correspond to “sinks” through which liquid disappears. The vector
a is in this metaphor the velocity of flow; in the absence of “sources” and
“sinks” it satisfies the condition diva = 0, which describes the conservation
and incompressibility of matter.

On the other hand, the function

lahteet, nielut

)%
(a-n) = mn
is often called the flux, in other words, how much field stuff “flows out” — vuo

*4Johann Carl Friedrich Gauss (1777-1855) was a German mathematician
and universal genius. “Princeps mathematicorum” .

'5But the charges for gravitation, i.e., masses, are always positive.
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Field line

Body
surface

Figure 1.5. A graphical explanation of the Gauss integral theorem. The
concept of field line was Michael Faraday’s invention.

just like a liquid flow — from the space inside the surface S to the outside
through S.

The Gauss integral theorem states the two amounts to be equal: it is in a way
a book-keeping statement demanding that everything which is produced inside
a surface — div a — has also to come out through the surface — (a - n).

In figure 1.5 it is graphically explained, that the sum of “sources” over the
inner space of the body, i.e., Y (+ + +...), has to be the same as the sum
of “flux” Y (111 ...) over the whole boundary surface delimiting this inner
space.

The Gauss integral theorem

1.12.3 The potential version of the Gauss theorem

Let us write the Gauss integral theorem a bit differently, using the potential
instead of the gravitational vector:

Java= s, (1.19)

in which we have done the above substitutions. We also here see the popular
notation 9V for the surface of the body V. The presentational forms 1.19 and
1.18 are connected by the equations 1.12 and 1.9, connecting V and a.

1.12.4 Example 1: a little box

Let us look at a little rectangular box with sides Ax, Ay and Az, so little, that
the field a (x, y, z) is inside it an almost linear function of place. Let us write
a as the gradient of the potential V:

avV, dV, oV

a:VV:gl—i-@]—&-gk:axi—l—ayj—kuzk
in which
P A 1
T Y T oyt 9z

Now the volume integral

. [ oay day  da,
//levadV~ (a—‘-@—l—g) Ax Ay Az (1.20)

while the surface integral

// (a-n)dS~ (af —a;)AyAz+ (a;fay’) Ax Az + (af —a; ) Ax Ay.
Jav

Here a7 is the value of component 4, on the one face in the x direction and
ay its value on the other face, etc. For example, a7 is the value of a, on the
box’s upper and a; on its lower face. A box has of course six faces, in each
of three co-ordinate directions both “up- and downstream”.
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Then
al —a; %% ;
u;—uy’ ~ %Ay,
al —a; N%Az

and by substitution we see that

d
// a-n) S~ P ax. AyAz+ 2 Ay Ax Az + Az Ax Ay =

ox Yy 0z
a, 3uy 94,
(E)x + 3y + == % Ax Ay Az,

the same equation as 1.20. So, in this simple case the Gauss equation applies.

Obviously the equation works also, if we build out of these “LEGo™ bricks” a
larger body, because the faces of the bricks touching each other are oppositely
oriented and cancel from the surface integral of the whole body. It is a
bit harder to prove that the equation also applies to bodies having inclined
surfaces.

The Gauss integral theorem

1.12.5 Example 2: The Poisson equation for a sphere
According to the Poisson equation 1.14 we have
AV = —4nGp.

Assume a sphere, radius R, within which the mass density p is constant. The
volume integral thoughout the sphere gives

/// AV dY = 747'(Gp// dV = —4nGpV = —4nGM, (1.21)
v 12

in which M = pV is the total mass of the sphere.

On the surface of the sphere, the normal derivative is

ov_acM| _ cM
on  or r |,_p R’
a constant, and its integral over the surface of the sphere is
// —ds = ]\f .S = —%4 -47R%? = —4TGM. (1.22)

The results 1.22 and 1.21 are identical, as the Gauss theorem 1.19 requires.

1.12.6 Example 3: a point mass in an eight-unit cube

See figure 1.7.

Let us assume that we have a point mass of size GM in the centre of a cube
bounded by the co-ordinate planes x,y,z € {—1,+1}. In that case the volume

///v AV AV = 747TGM///1;5(1‘) dV = —4nGM,

where 6(r) is Dirac'®’s delta function in space, having an infinite spike at

integral is

the origin, being zero elsewhere, and producing a value of 1 upon volume

16Paul Adrien Maurice Dirac (1902 -1984) was an English quantum physicist
who found the relativistic wave equation for the electron, and theoretically
predicted the existence of antimatter. Physics Nobel laureate 1933, shared
with Erwin Schrodinger. He is also believed to have been on the autism
spectrum ( , ).



Page 27

26

Fundamentals of the theory of gravitation

Figure 1.7. Eight-unit cube.

integration. The surface integral is six times that over the top face

+1 [ 4 1
-1 \J-1 (x24+y2+1)

Integrating with respect to x (expression in square brackets) yields

+1
2

VAR S VAVATER

+1 1 x
dx =
/71 (x2+y2+1)3/2 2+1)/x2+y2+1

Integrating this with respect to y yields

+1 2 y +1
/ ——————dy = 2arctan ——— =
-1 (P41 VyP+2 V42|
1 T 2
=darctan— =4-— ==
arctan 3 6 37T

Adding the six faces together yields

+1 +1 1 2
76~GM/ / x| dy=—6-GM- 5 = —47GM,
-1 \Ja1 (242 +1) 3

Green's theorems
agreeing with the volume result above.

1.13 Green’s theorems

Apply the Gauss integral theorem to the vector field
F=UVV.

Here U and V are two different scalar fields. We obtain:

///ddev /// (uvv))av =
:///UAVdV+// (Vu.9v) v =
- v [ G5 aaﬁ%%%)d"

and
//aV<F-n>dS://av<u€v.n> dS://aV (Vveon dS_//V Eds

The end result is Green'7’s first theorem:
// -— dS

ou BV auadv  oUoV
///UAVdV+///(8x ox By 8y+az az>
This may be cleaned up, because the second term on the left is symmetric

for the interchange of U and V. Let us therefore interchange U and V, and
subtract the equations obtained from each other. The result is Green'’s second

/// (UAV —VAU) dV = // (UB—V—V n)dS

We assume in all operations, that the functions U and V are “well behaved”,

theorem:

i.e., all necessary derivatives etc. exist everywhere in body V.

A useful special case arises by choosing for the function U:

U:E,

7George Green (1793 —1841) was a British mathematical physicist, an auto-
didact, working as a miller near Nottingham. He also invented the word

“potential”. ( ); ( );
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Distance /¢

Surface element 4V

Surface
v normal
n

Surface S = 9V

Figure 1.8. Geometry for deriving Green’s third theorem if point P is outside
surface oV.

in which £ is the distance from the given point of evaluation P. This function
U is well behaved everywhere except precisely in point P, where it is not
defined.

In the case where point P is outside the surface 0V, the result, Green’s third
theorem, is now obtained by substitution:

//KAVdV // (%%— n(%)) as.

This case is depicted in figure 1.8.

In the case that point P is inside surface 9V, the computation becomes a
little more complicated. One ought to learn about the clever technique that —
in this case as in others — comes to the rescue. This is why we describe it
shortly.

We form a small sphere of radius € called V, around point P; now we can
formally define the body (containing a hole) V = V; — V5, and also its surface
0V which consists of two parts, 0V = 9V — dVs.

Now we may write the volume integral into two parts:

// 1AVdvz// 1AVdv_// Lavay,
VE Vi L V, Y4

Green's theorems

Surface 9V, part 1

_ - Surface 9V, part 2
Point P . __

Figure 1.9. Geometry for deriving Green’s third theorem if point P is inside
surface V.

where the second term can be integrated in spherical co-ordinates:

€
/// 1AVdV ~ Avp/ 4n£21de = 2TAVpe?,
vt 0 14

which will go to zero in the limit € — 0.

For the first surface integral we obtain using the Gauss integral theorem 1.19

// lav // —dS== /// AVdelAVp-%ne%
ayzgan y2 V, € 3

which also goes to zero for € — 0.

The second surface integral (the normal is pointing away from P):

// ( )dS— // V. f—d5~4ne le—47TVp
V) Bn W €

By combining all results with their correct algebraic signs we obtain — for
the case where P is inside surface oV, ~ 9V —:

// EAVdV——47'ch+// @3—‘;—\/ (€)> ds.  (1.23)

After this it must be intuitively clear, and we present without formal proof,

that Lav
// EAVdV——Zan—k// (EBn an(£>>d5,

if point P is on the boundary surface of body V), i.e., on dV. This however
presupposes that the normal derivative, and especially the normal direction,
actually exist in precisely point P!
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Point P \ et |

4 Integration space V

N . N

N 4 .
N
N .

~___Boundary 9V, part 2

Boundary 9V, part 1

".Boundary 0V, part 3

(Limit) \

Figure 1.10. Green’s third theorem for the space external to a body.

In geodesy, the typical situation is that where the body V' over the volume
of which one wants to evaluate the volume integral, is the whole space outside
the Earth. In this case, conveniently AV = 0 and the whole volume integral
appearing above vanishes.

The result 1.23 may be generalized to this case, where V is the whole space
outside surface dV. This generalization is done by now choosing as the
surface dV the three-part surface 0V = dV; + 9V, + 9dVs, in which 9Vs is a
sphere of large radius centred on P. Its radius is then allowed to grow in the
limit to infinity, so that all integrals over both the surface dV3 and the part
of space outside it vanish. Also the normal direction to the surface 9V, like
that of the little ball used earlier, is inverted, i.e., now aimed to the inside,
towards the Earth.

The end result is:

1 10V 0 /1

The Chasles theorem

Because in this case, in which V is the part of the space external to the Earth,
the left-hand side volume integral vanishes, we may express the potential at

point P suitably as a two-term surface integral over surface dV. See below.

1.14 The Chasles theorem

We study the above mentioned case where the “body” is the space outside
the surface 0V —i.e., in practice: the space outside the Earth.

From the Green theorem 1.24 derived above, we may derive for a harmonic

function V (so, AV = 0) in the exterior space:

1 10V 1 0 /1

Interpretation: The exterior, harmonic potential of an arbitrarily shaped
body can be represented as the sum of a single and a double mass
density layer on the body’s surface.

Explanation: We obtain the surface density of a single mass layer by equation

1.15,
_ 1 9V
4nGon’
and the surface density of a double mass layer by equation 1.17,
4
"= 4G

If we plug these into equation 1.25, we obtain
K 0 /1

In case that the surface dV is an equipotential surface of potential V, i.e.,
V =V, it follows that a single mass density layer suffices, because in that

Jva(@)s=n a0

The right-hand side integral vanishes based on the Gauss integral theorem.
This is because the function %, with £ the distance from point P, is harmonic
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inside the Earth’s body of which dV is the surface. This is the Chasles
theorem?, also called the Green equivalent-layer theorem.

The theorem is used in Molodensky’s'® theory. Also the representation of the
Earth’s gravity field by underground point-mass layers, e.g., ( )
might be justified with this theorem.

The case where 9V is an equipotential surface is realized if the body is fluid
and seeks by itself an external form equal to an equipotential surface. For
planet Earth, this applies for the ocean surface. Also in electrostatic theory,
for a conductor in which the electrons can move freely, the physical surface
will become one equipotential surface. This is why it is often stated that the
electric charges are on the surface of the conductor. This isn’t necessarily so,
but from a practical viewpoint the result is the same.

Equation 1.25 simplifies in this case as follows:

1 10V K
vp_fﬁ//avzgds_c//wzds. (1.26)

The equation tells us that we can compute the whole potential exterior to
the Earth, if only on the surface of the Earth — the shape of which we also
assume given in order to compute %' — is given the gradient, in the normal,
i.e., vertical, direction, of the potential, a—‘;. This gradient is precisely the
gravitational acceleration, a quantity derivable from measurement. All of
gravimetric geopotential determination (“geoid determination”), ever since
G.G. Stokes, is based on this.

1.15 Boundary-value problems

The boundary-value problem (8vr) is the problem of computing the potential
V throughout space (or throughout the body’s exterior or interior part of

8Michel Chasles (1793 — 1880) was a French mathematician and geometrician,
one of the 72 whose names are inscribed on the Eiffel Tower,

Mikhail Sergeevich Molodensky (1909—-1991) was an illustrious Russian
physical geodesist.

What the boundary-value problem cannot compute

space) from given values relating to V on the boundary surface, e.g., on the
surface of the Earth. The simplest boundary-value problem is Dirichlet**’s
problem: on the boundary surface the potential V itself is given. More
complicated boundary-value problems are based on linear functionals of the
potential: on the boundary, some linear expression in V is given, e.g., a

derivative or a linear combination of derivatives, generally
L{v},
with L{-} being a linear operator.

The Dirichlet boundary-value problem in the form popular in geodesy is: de-
termine the potential field V if its values are given on a closed surface S,
and furthermore is given that V is harmonic (AV = 0) outside surface S. In
the vacuum of space, the potential is always harmonic, as already earlier
noted: the potential of a point mass mp, V = %, is a harmonic function
everywhere except at point P — and an extended body consists, in the limit,

of many point masses or mass elements.

In the general case this is a theoretically challenging problem. The existence

and uniqueness of the solution has been proven very generally, see

( ) page 18.

1.16 What the boundary-value problem cannot

compute

Based on the values of the potential function V on the surface S we may
thus compute the function V(x,y,z) throughout space outside the surface.
The boundary-value problem is a powerful general method also applied in
physical geodesy. One must however note, that from potential values given
on the surface it is not possible to uniquely resolve the mass distribution inside
the Earth, which generates this potential.

This is clear already in the simple case of a constant potential on the surface
of a sphere. If additionally is given that the mass distribution is spherically

*Peter Gustav Lejeune Dirichlet (1805-1859) was a German mathematician
also known for his contributions to number theory.
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symmetric, then nevertheless the density profile along the radius remains
indeterminate. All mass may be concentrated in the centre, or it may be as a
thin layer just under the sphere’s surface, or any alternative between these
two extremes. Without additional information — e.g., from seismic studies

or geophysical density models — we cannot resolve this issue.

Also the Chasles theorem mentioned above, equation 1.25, and its special case,
equation 1.26, are examples of this: the theorem tells how one may describe
the exterior potential as generated by a mass distribution on the surface of a
body, although we know that the field’s origin is a mass distribution extending
throughout the body!

This is a fundamental limitation of all methods that try to obtain information
on the situation inside the Earth based only on gravimetric measurements on
or outside the Earth.

Self-test questions

1. Which instrument was used to determine the constant G? Why is it

difficult to obtain a precise value for this constant?

2. Why do all objects, irrespective of their mass, undergo the same ac-
celeration of free fall, although the gravitational attraction on a more

massive body is obviously stronger?
3. What is a conservative force field?
(a) A force field for which the force can be written as the gradient of
a unique potential.

(b) A force field in which an object carried along a closed loop will
not gain and not lose energy.

(c) An attractive force field from which no object can escape.

(d) A force field the curl of which vanishes everywhere.

4. On the surface of a homogeneous, spherical asteroid the acceleration
of free fall is 1<m /2, What is the acceleration of free fall on another
asteroid that is otherwise similar, but that has twice the diameter?

Exercise 1—1: Core of the Earth

(a) 0.25em/s?

(b) Tem/s

(c) 2em/s

(d) 4em/s2

5. What is a harmonic potential?

6. What is the order of the Laplace differential equation?

7. Is a linear potential, V(x,v,z) & a+ bx + cy +dz, a,b,c,d constants,
harmonic?

8. If the potential in the previous question is a gravitational potential,
calculate its acceleration vector.

9. Under what condition is it possible to describe the external gravitational
field emanating from a body as produced by a single mass density

layer on the surface of that body?
10. The dipole layer density p, section 1.11. What is the s1 unit of this

quantity?

Exercise 1—1: Core of the Earth

1. Derive the equation giving the acceleration of gravity g on the surface
of a homogeneous-density sphere, if given are the density p and radius
Rcore-

2. The Earth’s iron-nickel core has a mean density of 11 8/cm® and its radius
is 3500 km. Compute the acceleration of gravitation on its surface gcore-
3. What is the attraction g at the centre of the core? What can you say in
general about the geopotential in this point (don’t try to calculate it)?
. . . . dg
4. Derive the equation for the gravity gradient 3> on the surface of a
homogeneous-density sphere of density p.

Exercise 1—2: Atmosphere

1. The mean pressure of the atmosphere at sea level is 10° hPa (the unit
Pascal: Pa = Nm~2.) On the Earth surface gravity is 10m/s>. Calculate
the mean surface density as a thin layer x in units of kg/m?.
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Figure 1.11. Iron-ore body.

2. Calculate the total mass of the atmosphere using the spherical shell
approximation. You may take as its radius 6378 km.

3. Calculate the attraction generated by the atmosphere outside it, both
as acceleration and as a fraction of the total Earth attraction.

4. How much is the attraction from the atmosphere inside the atmo-
sphere?

Exercise 1—3: The Gauss theorem

There is a deposit (body) of iron ore inside the Earth, which generates (in
the flat Earth approximation!) an attraction on the Earth’s surface, which has

been drawn as the g curve. See figure 1.11.

The true attraction curve is approximated by a simple function

go if r<d
0 ifr>d

(red dashed line), where r is the distance from the point on the Earth surface

Exercise 1—3: The Gauss theorem

straight above the ore deposit. So, the area where g # 0 for a disk of radius d
on the surface of the Earth.

1. Compute, using the above approximation for g, the surface integral

/ gdo,
%

where ¥ is the surface of the Earth, see 1.11.

2. According to the Gauss equation

//;1 (—g) do + //;2 (+g') do = ///vomme AV —
- ///vmume —47Gpiron dV =

— 4G Mpody,

where X1 4+ ¥, is the (two part) closed surface around the body. (The
parts meet at infinity.) g and ¢’ are the gravity acceleration functions
on the surface of the Earth and on the surface ¥, — positive in the
upward direction®.

Assuming that

/ gda—/ g’d0:2/ gdo = 2/ gdo = 471GMpoay,
N M, b b

calculate GMpoqy-

3. Assuming that the deposit is a sphere at depth d, calculate GM using
Newton's law of gravitation from the value gy straight above the deposit
at the Earth surface.

4. Compare results 2. and 3. and draw conclusions. Is the function g
given above a good approximation?

*'Be careful with the algebraic signs!
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The Laplace equation and its
solutions

2.1 The nature of the Laplace equation

An equation central to the study of the Earth’s gravitational field is the
Laplace equation,

92 02 02
AV—(Q-I—W-F@)VfO.

We call the symbol A the Laplace operator. Often, the alternative notation V2
is used.

If we study gravitation as a field, then the Laplace equation is more natural
than Newton’s formalism. Newton’s equations are used when the mass
distribution is known: it yields directly the gravitational force caused by the
masses.

The Laplace equation on the other hand is a partial differential equation. Its
solution gives the potential V(x,y,z) of the gravitational field thoughout
space or a part of space. From this potential one may then calculate the effect
of the field on a body moving in space at the location where the body is. This
is a two-phased process. The conceptual difference is, that a certain property,
a field, is attributed to empty space, and we no longer talk about action at a

distance directly between two bodies.

Solving the Laplace equation in the general case may be difficult. The
approach generally taken is, that we choose some co-ordinate frame — a

_39_
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rectangular frame (as above), spherical co-ordinates, cylindrical co-ordinates,
toroidal co-ordinates, or whatever — which fits best with the geometry of
the problem at hand. Then, we transform the Laplace equation to those co-
ordinates, we find special solutions of a certain form, and finally we compose
a general — or not-so-general — solution as a linear combination of those

special solutions, i.e., a series expansion.

Fortunately the theory of linear partial differential equations is well developed.
Similar theoretical problems are encountered in the theory of the electromag-
netic field (Maxwell theory) and quantum mechanics (Schrédinger' equation),

not to mention fluid and heat flow.

An important observation is, that the Laplace equation is linear. This means
that, if given are two solutions

AV =0,
AV, =0,

then also their linear combinations
V=aVi+BV, a,BER

are good solutions, i.e.,, AV = 0. This linearity property makes it possible to
seek general solutions as linear combinations or series expansions of basic

solutions.

A peculiarity that also distinguishes the Laplace equation from Newton's
equation is, that it it a local equation. It describes the behaviour of the
potential field in a small neighbourhood of one point. However, the solution
is sought for a whole area. The solution approach commonly used is the
so-called boundary-value problem. This means that the field values (“boundary
values”) have to be given only on the boundary of a certain part of space,

"Erwin Rudolf Josef Alexander Schrodinger (1887-1961) was a German
physicist and quantum theorist, the inventor of the wave equation of matter
named after him which earned him the 1933 physics Nobel (shared with
Paul Dirac), and of the eponymous unobserved cat, which finds itself in a
superposition state of being both alive and dead.

The Laplace equation in rectangular co-ordinates

e.g., on the Earth’s surface. From this, one calculates the values of the field in
outer space — the behaviour of the field inside the Earth remains outside the
scope of our interest. From the perspective of the exterior gravitational field
one doesn’t even need to know the precise mass distribution inside the Earth
— and one cannot even determine it using only measurement values obtained

on and above the Earth’s surface!

2.2 The Laplace equation in rectangular co-ordinates

It is a learning experience to write and solve the Laplace equation in rectan-
gular co-ordinates. The case is analoguous to that of spherical co-ordinates
but the math is much simpler.

Assume that the Earth’s surface is the level surface for z co-ordinates z = o.
Then

2 92 &
AV = <ﬁ + Tf + ﬁ) V= A(X(x) . Y(y) . Z(Z) ),
in which we have “experimentally” written

Vivyz) = X(x) -Y(y) - Z(2).

In other words, we write experimentally V as the product of three factor
functions, with each factor function depending only on one co-ordinate —

“separation of variables”. A realistic potential function V will of course muuttujien

usually not be of this form. We may however hope to write it as a linear erottaminen

combination of terms that are of the above form, thanks to the linearity of the
Laplace equation.

By taking all partial derivatives we obtain

0? 0? 0?
YZo X+ XZa—yZY +XY25Z =0

Dividing by the expression XYZ yields
PX(x) azg(zy) R7(z)
dx2 Y 022
+ + =0.
X(x) Y Z(2)

Because this has to be true for all values x,y, z, it follows that each term must

be a constant. If we take for the first and second constants —k% and —k%, we
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get in conclusion for the third constant k2 + k3. By writing this definition and
result out and moving the denominator to the other side, we obtain

02 >
ﬁx(x) = —kiX(x),
(why the minus sign? We shall presently see. . .)
92

= Y(y) = -KY(y),

and 52
Now, the solution is readily found at least to the first two equations: they are

harmonic oscillators, and their basis solutions? are
X(x) = exp(xikix),
Y(y) = exp(xikyy).

The solution of the Z equation on the other hand is exponential:

Z(z) =exp <iz\/k% +k%).

We can now form basis solutions in space:

Vink,(X,1,2) = exp (i (tkix £hoy) £z/K3 + k%)

The general solution is obtained by summing the terms Vi, i, with varying
coefficients, for different values of kq, kj.

We cannot choose the values ki, ky entirely freely. Which values are allowed,

will depend on the boundary conditions given.

Let us assume that both in the x and in the y direction the size of our world
is L (“shoebox world3”). Let us make things a little simpler by assuming that,
on the borders of our shoebox world, we have the boundary conditions

V(0,y) =V(L,y) =V(x,0) =V(x,L) =0.

2Alternative basis solutions are X(x) = sinkjx, X(x) = coskix etc. They
are equivalent with those presented because exp(ik1x) = coskix + isinkpx,
exp(—ikix) = coskix — isinkjx.

3...though real-world shoeboxes are rarely square.

The Laplace equation in rectangular co-ordinates

It then follows that the only pairs (k1,k>) yielding a solution that fits the box
are . «
Tj k.
ki=-—,kp="—,j, ke,
1 TR L ] ke

and the only suitable functions are sine functions. Thus we obtain as a

Vie(x,y,2) = sin(rc]%) sin(nk%) exp (inm%)

This particular solution may now be generalized by multiplying it

solution:

with suitable coefficients, and summing it over different index values
j=0,%£1,%2,...; k=0,%1,£2,.... We may however remark, that the terms
for which j = 0 or k = 0 will always vanish, and the terms that contain
j=4nandj= —n,ork =4+nand k = —n, n € N, are (apart from their
algebraic signs) identical. Therefore in practice we sum over the values
i=12..;k=12,...

Different boundary conditions will give slightly different general solutions.
Their general form is however always similar.

The zero-level z = 0 expansion resulting from the general solution is the
familiar Fourier* sine expansion:

ngk
ngk

V(x,y,0) = ‘ v Vie(x,y) =

gvjksm<n(fg)>sm<n(kg)), @)

in which the vj are Fourier coefficients, and the expressions

ij(x,y) = sin(n(f)) Sin(n(?))

are two-dimensional basis functions on the Earth’s surface, more precisely,

-
Il
A
-
Il
—

Il
ngk

]

Il
-

on level z = 0.

4Joseph Fourier (1768 —1830) was a French mathematician and physicist —
and some would say, climatologist — one of the Eiffel Tower’s 72 names,
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Sea level

Figure 2.1. The exponential attenuation of gravitational field Fourier wavi-
ness with height. Rectangular geometry, one dimension. Long
waves (small wave numbers, red) attenuate more slowly with
height than short waves (green), meaning that the height acts as a
low-pass filter.

We refer to section B.2.2 in appendix B for a description with illustration how
a Fourier analysis and synthesis on a simple function is done, and how the

Fourier expansion approximates the original function as terms are added.

A complete three-dimensional expansion again is

V(x,y,z) g jk kxy)exp(im/] + k2= >—
vji sin <7‘[<JZ>) sin (n(?)) exp(:l:m/j2 —&—kZ%).

(2.2)

M

gk
e

Il
-

k=1

j
Note, that the z expression may have a positive as well as a negative algebraic

sign! Of course the solution with a positive sign goes to — co when z — oo,
which is not physically realistic in the exterior space.

The Laplace equation in polar co-ordinates

Space domain Frequency domain

Fourier

V(x,y,0) "
‘}Lihm‘d\ x (easy)l
V(x, v, Z) Inverse Fourier F 1 o exp (7 7'[\/]24»7](2%)

Figure 2.2. Vertically shifting the potential field V, in the space and frequency
domains. Rectangular geometry.

Note also that V(x,y,0) and vj describe the same gravitational field in two
essentially different ways: in the space domain, and in the — spatial —
frequency, or wave-number, domain. The information content in the two
is the same. They can be transformed into each other by the forward and

inverse Fourier transforms F and F 1.

In fact, the information content in V(x,y,0) is in principle the same as that
in V(x,y,z) for any level z: knowing the potential of one surface means —
with the Laplace equation — knowing the potential throughout space.

We summarize equations 2.1, 2.2 still in the commutative diagram 2.2.

The takeaway from this is, that the operation of vertically shifting the potential
field V from zero level to the level z, which is not straightforward in the
space domain, becomes simple — as in a straightforward multiplication — in
the frequency domain®. The same applies in spherical co-ordinates, where
the frequency domain means spherical-harmonic coefficients, as we shall see.

2.3 The Laplace equation in polar co-ordinates

In polar co-ordinates, i.e., two-dimensionally, the Laplace equation is

2V 19V 10%V
AV = o Trae T

5The reason for this is, as we shall later discuss more generally, that the
vertical shift operation is a convolution.
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We perform on this the same kind of separation of variables as in section 2.2,
i.e., write first
V(a,r) = A(a) R(r)

and then split the above equation into two equations, one for the right-hand

side function R(r) and one for the function A(x).

What form does the A(«) function of the general solution have? Substitution

yields
PR(r)  Ax) dR(r) | R(r) P*A(a) _
Alw) o T e T2 e O
2
Multiply by the expression m:

> 9*R(r) r  OR(r) 1 0%A(a)
(R(r) or2 JrR(r) or )+A =0

Both terms must be constant:

2
r <ra gr(zr) + alz(:) ) —¥R(r) =0,
2
J g‘“(f) FRA(a) = 0.

Here, the algebraic sign of k* has been chosen so, that A(&) gets a periodic
solution. Such a general solution would be

Ar(w) = agcoska + by sinka,

in which, because the angle a has a period of 27, k has to be a non-negative
integer: k = 0,1,2,3, ... Negative k do not give different solutions, because

ay coska = ay cos(—ka),

—by sin(—ka) .

by sinka

The other equation, in the function R(r), is harder to solve. A test solution is
a power law:
R(r) =i

Spherical, geodetic, ellipsoidal co-ordinates

Substitution yields
' (rq(q_l)rqfhrq’rl) =0 = -k =0 = =k

This works for positive ¢ = 2,3, ... and negative g = —1,—-2,.... Forg =1
we find
r—kr=0 = K¥=1=¢~

For g = 0, besides the trivial constant solution, the non-trivial solution
R(r) =1Inr is found:

r(r-—lz—i-l)—kzlnr:O = k=0.
r2or

Thus we obtain the general solution

1or Inr if k=0,
Ri(r) =

Forrf ifk=1,2,....

We see that, if we require the solution to exist at the origin r = 0, we need

the first solutions, obtaining
Vi(a,r) = a0+ Y r* (axcoska + by sinka),
k=1

but if we require existence — or, at least, good behaviour — at infinity®
r — oo, we need the second solutions,

Va(a,r) =ag+bolnr+ ) % (ax cos ke + by sinka) . (2:3)
k=1

There is a clear similarity here to the three-dimensional (spherical

co-ordinates) case.

2.4 Spherical, geodetic, ellipsoidal co-ordinates

In physical geodesy we use geometrical and physical concepts side by side.
For example, co-ordinates of place can be given in the form (X, Y, Z), which

6In fact, lim V» — oo but lim % =0.
r—oo r—oo
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Equator

Greenwich meridian

Figure 2.3. Definition of spherical co-ordinates.

are in principle geometric — except for the physical assumption that the
origin of the co-ordinate system is in the centre of mass of the Earth.

As the Earth is not precisely a sphere but rather an oblate ellipsoid of
revolution, one cannot use geographical co-ordinates as if they were spherical
co-ordinates. Because the flattening of the Earth — some 0.3% — cannot
be ignored, this difference is significant. The connection between spherical
co-ordinates (r,¢, A) and rectangular ones (X, Y, Z) is the following:

X =rcos¢cosA,
Y =rcos¢sinA, (2-4)
Z =rsing.

Here ¢ and A are geocentric latitude and (ordinary, i.e., geocentric or geodetic
or geographic) longitude. r is the distance from the Earth’s centre. The X
axis points in the direction of the Greenwich meridian. See figure 2.3.

On the Earth’s surface, these spherical co-ordinates are not very useful
because of the Earth’s flattening, but in space, spherical co-ordinates are

Spherical, geodetic, ellipsoidal co-ordinates

4 Ellipsoidal

((1762) N+h> sin ¢

v :
O <l >

Reference (N 4+ h) cos ¢

ellipsoid

Figure 2.4. Definition of geodetic co-ordinates.

much used. On the Earth’s surface, on the other hand, most often geodetic —
or geographical — co-ordinates ¢, A, I are used:

X = (N+h)cosgcosA,
Y = (N +h)cos gsinA, (25)
Z=(N+h —ezN) sin ¢,

where

a az

\/1 —e2sin® ¢ \/a2c052<p+b2sin2cp

The quantity N defined in equation 2.6 is the East-West direction, or trans-

N(¢) (2.6)

versal, radius of curvature of the reference ellipsoid. In the equation, a is
2
a

2.
uzh is the square

of the so-called first eccentricity’, and in equations 2.5, & is the height of the

the equatorial radius of the reference ellipsoid used, ¢ =

point above the reference ellipsoid, see figure 2.4.

Converting rectangular co-ordinates into geodetic ones is easiest to do itera-
tively, although the literature also offers closed formulas.

7The parameter is connected to the Earth’s flattening f through the equation

e =2f — f2
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Spherical co-ordinates and geodetic, i.e., geographical, co-ordinates are con-
siderably different. In latitude, the difference is up to 11 minutes of arc, or

almost 20 km. This maximum is attained for latitudes +45°.

In theoretical work one also uses ellipsoidal co-ordinates u and . The co-
ordinate f is called the reduced latitude. The relationship with rectangular
co-ordinates is

X = +Vu?+ E2cosfBcosA,

Y = Vu?+ E2cos BsinA, (2.7)
Z = usin .

If the semi-major axis of the Earth ellipsoid is 2 and its semi-minor axis b, it
follows — exercise! — that E? = a% — b2.

2.5 The Laplace equation in spherical co-ordinates

The Laplace equation transformed to spherical co-ordinates reads (see ap-
pendix E for a simple geometric proof):

19V tangdV 1 9%V

_ PV 20V ¥V
- 209> 12 9p  r2sin? @ OA?

AV -
oz v or

=0, (2.8)

in which ¢ is the (geocentric) latitude, A is the longitude, and r is the distance
from the origin or centre of the Earth.

We shall here not derive the solution of this equation by separation of vari-
ables, as it is pretty complicated and can be found in ready form in the
literature ( , , section 1-9). What is significant
is, that the solution looks somewhat similar to the solution in rectangular
co-ordinates presented earlier, section 2.2. The basis solutions of the Laplace
equation are

Yu(¢,A)

Vi (@, A1) =1"Yu (¢, M), V(P A1) = T (2.9)

where the first is again nonphysical in outer space, because, unlike the true

geopotential, these expressions grow to infinity for r — oo.

pintapallofunktiot In the above equations, the functions Y}, are called surface spherical harmonics,

Dependence on height

whereas the functions V;, are solid spherical harmonics. The latter are harmonic
functions everywhere in space except at the origin (2.9, rightmost equation)

or at infinity (leftmost, physically unrealistic equation).

The functions Y, are

n
Yu(p,A) = Y Pun(sing) (anm cos mA + by, sinmA) .

m=0

(2.10)

The functions P, are so-called Legendre functions, on which more later on.
With the help of expression 2.10 we obtain, by using the second, physically re-
alistic alternative from equations 2.9, the following solution or series expansion

for the potential V' in space:

Vg, A1) = Z Py (sing) (apm cosmA + by, sinmA) . (2.11)

1
3
t
3
él':

The coefficients a,, and by, are called the coefficients of the spherical-
harmonic expansion, shortly spectral coefficients. Together they describe the
function V, in somewhat the same way that the Fourier coefficients jk do in
rectangular co-ordinates in equation 2.2. The subscripts n and m are called
degree and order.

Often we will be using a somewhat freeer notation for the functions Y. For
example, if we expand the disturbing potential T into spherical harmonics, we
shall use the notation T, (¢, A) for its surface harmonics. Similarly, Ag, (¢, A)
is the surface harmonic of the gravity anomaly Ag for degree n, and so on.

2.6 Dependence on height

From the above equation 2.9 one sees that for different values of the degree n
the function V;, has a different dependence on the distance r from the Earth’s
centre, or equivalently, on the height H = r — R, if by R we denote the radius
of the Earth sphere. The dependence is

Y (o, A
V(A7) = %.

On the surface of the Earth sphere

Ya(g, A
Va($,A,R) = %.

avaruus-
pallofunktiot

pallofunktio-
kehitelma

asteluku,
jarjestysluku
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Therefore, we may write

R\ "+ R+ H —(n+1)
viean = (5) viterr = (FF8) 7 vieam) -

H —(n+1) H
= (1+§> V(¢ A, R) zexp(—i(n—kl))Vn((p,A,R).

We see that the attenuation of the potential with height is again exponential,
and the harmonic degree number n appears in the exponent, as did also the
wave number in rectangular geometry, see equation 2.2 and figure 2.1. The
analogy works.

Legendre functions and spherical
harmonics

3.1 Legendre’s functions

In the above equations, the functions P are so-called Legendre® functions that
pop up whenever we solve a Laplace-like equation in spherical co-ordinates.
There exist various effective, so-called recursive algorithms, e.g., the following

(this one is only for ordinary Legendre polynomials P, = Py):
nPy(t) = —(n—1)Py_a(t) + 2n—1)tP,_1(t). (3.1)

Similar equations exist also for the functions Py;;,m > 0. There are even
alternatives to choose from, though most equations are complicated. One
should be careful that in their computation, the factorials don’t go overboard.
Already 30! (factorial of 30) is a larger number than computers can handle
even as 64-bit integers. .. not to mention 360!. ( )
equation 1-62, contrary to what is stated there, is not directy suitable for
computer use!

The first Legendre polynomials are listed in table 3.1. Higher polynomials

than this are rarely needed in manual computation.

*Adrien-Marie Legendre (1752—-1833) was a French mathematician known
for his work on number theory, statistics — he invented independently from
Gauss the method of least squares — and on elliptical functions. His name is
inscribed on the Eiffel Tower,

_53_
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Table 3.1. Legendre polynomials. ¢ = sin¢. Table 3.2. Associated Legendre functions.
Function of ¢ Expressed in sines and cosines Function of ¢ Trigonometric function

Py(t) =1 DPy(sing) =1 P(t) =vV1-1# Py (sing) = cos¢
Pi(t) =t Pi(sing) = sin¢ Py(t) =3tvV1—+#2 Py (sing) = 3sin¢ cos ¢
p(t) =312 -1 Py(sing) = —3cos2¢ + % Py(t) =3(1-12) Py(sing) = 3cos?
Pi(t) =33 — 3t Pi(sing) = —32sin3¢ + sin¢ Py(t) =3 (52 —1)VI—£ Py (sing) = 3 (5sin’¢p — 1) cos ¢
Py(t) = % (35t4 302 4 3) Py (t) =15t (1—1?) P3y(sing) = 15sin ¢ cos® ¢
Ps(t) = L (635 — 708 + 15¢) Py(t) =15 (1—£2)" Pss(singp) = 15cos® ¢
Pg(t) = £ (231t° — 315¢* + 105t — 5)

in which i2 = —1, can be computed recursively:

For comparison, also the Fourier basis functions (like, in a more complicated
Fia(x) = F(x) - Fi(x).

way, also sines and cosines!)

3.1.1 Properties of Legendre polynomials

1. The even polynomials are mirror symmetric through the origin,
Py(—t) = P,(t) — or equivalently P,(sin(—¢)) = P,(sing) —
and the odd ones are antisymmetric, i.e.,, P,(—t) = —P,(t) or
P, (sin(—¢) ) = —Pu(sin¢).

2. Looking at figure 3.1 we see, that the polynomials P,(t) go, on the
whole interval t € [—1,1], or ¢ € [-90°,90°], precisely n times through

zero.
3. As the values in the end points ¢t = +1,¢ = £90° are £1, it follows
that there are precisely n + 1 “algebraic-sign intervals”, i.e., intervals of
t or ¢ on which the polynomial assumes only positive or only negative

values.

3.1.2 Properties of associated Legendre functions

Of the associated Legendre functions Py, m # 0 we give several in table 3.2 Legendren

-1 —-0.5 0 —t 0.5 1 for illustration. liitannaisfunktiot
Figure 3.1. A number of Legendre polynomials Py(t) ... Ps(t) as functions One defining equation for these is
of the argument t = sin ¢. g d"Pu(t)

Pun(t) = (1—17)2 (3-2)

dtm
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50 N
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P 7
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-5+ \\\‘7)‘//’1332 /,f', -
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N Py~
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Py -
.. T P33 ””””
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—1 —-0.5 0 —t 0.5 1

Figure 3.2. Associated Legendre functions.

1. Also the associated Legendre functions are either mirror symmetric
through the origin, Puyu(—t) = Pun(t) or Py (sin(—¢) ) = Pun(sing),
or antisymmetric, i.e., Pyu(—t) = —Puu(t) or Puu(sin(—¢)) =
—Pu(sing) , depending on the values of m and n.

2. Figure 3.2 suggests that the polynomials P,,,(t) goon t € [-1,1], or
¢ € [—90°,90°], precisely n — m times through zero. This is indeed the
case.

3. As also the values in the end points t = £1, ¢ = £90° are zero, it
follows that there are precisely n — m + 1 “algebraic-sign intervals”.

3.1.3 Surface spherical harmonics

Starting from equation 2.10 we may write

™=

Yu(p,A) = (aumPum (sin @) cos mA + ay,—y Py (sing) sinmA) =

Il
<}

m

=

= Z ﬂannm(CP/)\),

m=—n

Legendre's functions

where now m runs from —n to +n. Here

Py (sing) cos mA if m>0,

Vin(p ) = 4 meind) coomt
Pn\m\(mnq)) s11'1|m| A if m<O.

These are the surface spherical harmonics of degree n and order m.
Such surface spherical harmonics come in three kinds:

o Zonal functions: m = 0. These functions depend only on latitude.

o Sectorial functions: m = n. the algebraic signs of these functions depend
only on longitude and not on latitude. The functions themselves
however do depend on both latitude and longitude!

o Tesseral functions: 0 < m < n. These functions, the algebraic sign of
which changes with both latitude and longitude, form a checkerboard
pattern on the surface of the sphere, if the positive values are painted
grey and the negative ones white (Lat. fessera = a tile, as used in a
mosaic).

Every function will, on the interval sin¢$ € [—1, +1], go precisely n — m times
through zero. Every function is either symmetric or antisymmetric through
the origin as a function of ¢ or of t = sin ¢.

Spherical harmonics thus represent a wave phenomenon of sorts. The are

however not wave functions (sines or cosines), the connection to those is

complicated at least. It nevertheless makes sense to speak of their wavelength.

In figure 3.3 is depicted how the algebraic signs of the different spherical
harmonics behave on the Earth’s surface — and above. Note that this is a
perspective sketch and not all white and grey areas are visible!

When looking in equation 2.10 at the expressions cosmA and sinmA, we
observe that around a full circle, the equator, 0 < A < 27, they go precisely

2m times through zero. The “semi-wavelength” is thus
2rR R
2m T m’

where R is again the radius of the Earth.

etumerkit

puoliaallonpituus
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(@ (b)
Zonals: Psp(sin¢) Tesserals:

Pll,é (S]Il (P) cos 6A

Sectorials:
Ps6(sin¢) cos6A

Figure 3.3. The algebraic signs of spherical harmonics on the Earth’s surface.
Grey means positive, white negative. The functions “wave” in a

sine or cosine function like fashion.

A similar formula applies also for functions Py, (sin ¢) : as the function passes
through zero n — m times on the interval — from pole to pole — - < ¢ < 7,

)

% {
©

®
®

o

O

©

@ @ @

&

@

Figure 3.4. Surface spherical harmonics as maps. Horizontal axis A €
[0,360°), vertical axis ¢ € [—90°,90°]. Functions depicted are

Pso(singp) Pes(sing) cos6A  Pyie(sin¢) cos6A
Py(sing) Pgs(sing) cos5A  Pige(sin ) cos6A

Symmetry properties of spherical harmonics

Table 3.3. Semi-wavelengths for different degrees and orders of spherical
harmonics.

morn—m Semi-wavelength (km) In degrees

10 2000 18°
40 500 4°.5
180 111 1°
360 55 0°.5 =30/
1800 11 0°.1=¢6
10800 1.85 Iy

it follows that also here, the semi-wavelength is

TR
n—m

If we plug various values for m and the expression n — m into this, we obtain
table 3.3.

This table also gives the resolution that can be achieved with a spherical-
harmonic expansion, i.e., in how detailed a fashion the expansion can de-
scribe the Earth’s gravity field. The expansions available today, like the model
EGM2008, go to degree n = 2159; the “sharpness” of a geopotential image
based on them is thus 9km. Models based on satellite orbit perturbations
often extend only to degree 40, meaning that only details the size of conti-
nents — order of magnitude 500 km — will be visible. On the other hand,
experimental spherical-harmonic expansions of the topography go even up
to degree 10800 (Balmino et al., 2012).

3.2 Symmetry properties of the spherical-harmonic
expansion

We recapitulate the spherical-harmonic expansion given at the beginning,
equation 2.11:

n
Y Pum(sing) (@umcos mA + byysinmd).  (2.11)

m=0

Vg, A1) = i

n=0

pn+l
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3.2.1 Dependence on latitude ¢

It is seen that the dependence on ¢ only works through the associated
Legendre function Py, (sin (p). This function can, in terms of mirror symmetry
between the Northern and Southern hemispheres, be either symmetric in ¢,

or antisymmetric in ¢. This means that either (symmetric case)
Pun(sing) = Py (sin(—¢) )
or (antisymmetric case)
Pyu(sing) = —Pyy (sin(f(p) )
Equivalently it means, with t = sin ¢, that either (symmetric case)
Pum(t) = Pum(—t)
or (antisymmetric case)
Pum(t) = —Pun(—t).

Which case applies, depends on the values of both n and m. To figure it out,
one can look at, e.g., equation 3.2:

n d"Py(t)

P (t) = (1 - t2) FTORE (3-2)

We need to answer two questions:

1. For which values # is the polynomial Py, (t) symmetric, for which is it
antisymmetric in #? For this, you need to look at the recursive algorithm
for computation of the polynomials, eq. 3.1. We already know that
Py(t) =1 is symmetric, and that P;(t) = t is antisymmetric. The rule
for other n values follows recursively (or you could cheat by looking at
table 3.1).

2. What does differentiation % do to the symmetry or antisymmetry of the
function?

(Multiplication by v/1 — 2 = cos ¢ changes nothing, as this factor is
symmetric in ¢ or ¢.)

Orthogonality, orthonormality of Legendre functions

So, in order to make expansion 2.11 mirror symmetric between Northern
and Southern hemispheres, one has to set those coefficients ay, by for
which the corresponding Py, is antisymmetric, to zero. In other words, the
corresponding terms vanish from the expansion. The coefficients, and terms,

remaining are those for which the corresponding P, is symmetric.

In tableau 3.4 we give a code fragment in the octave rapid-prototyping
language to plot an arbitrary surface spherical harmonic, e.g., in order to

visually judge its symmetry properties. Don’t believe, test.

3.2.2 Dependence on longitude A

This dependence works though the “Fourier basis functions” cosmA and
sinmA. The interesting property here is rotational symmetry: does the spherical-

harmonic expansion 2.11 change when we change A?

We see immediately that, for m # 0, there will be dependence on A if any
coefficient a,,,, by is non-zero. So, in order to obtain rotational symmetry, all
coefficients @, by for values m > 0 must be suppressed: a1 = b1 = ax; =
by =ap =bp=---=0.

Of the remaining coefficients, we can say that for m = 0, sinmA = 0 identi-
cally, so the coefficients boo, b19, bao, - . . simply don’t matter. They may be any
value, including zero. The coefficients ago, a1, 420, . . . however do matter, as
for m = 0, cosmA = 1 identically. So we obtain as the rotationally symmetric
expansion

=1
V((P,)L,T) = V((P,?‘) = Z mﬂnpn(Sil’l(P),

n=0

in which P, = Py are the familiar Legendre polynomials, and a, « ano-
3.3 Orthogonality, orthonormality of Legendre
functions

Legendre’s polynomials are orthogonal: the integral — formally, a scalar product

of vectors —

+1 2 ifn= n,
/ Pu(t) Py(t) dt = { Z71 . (3:3)
-1 0 if n#£n,
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Tableau 3.4. Plotting a surface spherical-harmonic map.

% Plotting surface spherical harmonics
phi=linspace(-90,90,72);
lab=1linspace(0,360,144);
[f,l]=meshgrid(phi,lab);

n=5; m=-3;
leg=legendre(n,sin(phi.*pi./180));
ifm>=0

cs=cos(m.xlab.*xpi./180);

else

cs=sin(abs(m).xlab.*pi./180);

end

v=leg(abs(m)+1,:) *cs;
contourf(l,f,v")

xlabel(’Longitude’, ’FontSize’, 16)
ylabel(’Latitude’, 'FontSize’, 16)
str=sprintf(’Surface spherical harmonic n=%d, m=%d’, n, m)%
title(str, 'FontSize’, 20)

axis ([0 360 -90 90])

colorbar()

print(’legendre2D.jpg’, ' -djpg’)

This orthogonality is just one example of a more general way to look at
functions and integrals over functions. There exists a useful analogy with

vector spaces; see appendix B.

Alternatively we may write, on the surface of a unit sphere o, using a

Orthogonality, orthonormality of Legendre functions

parametrization (¢, a):
21 7
// Py(cos ) Py (cos ) do = / / P, (cosp) Py (cos ) sinypdypda =
o 0 0 o
_ 727'[/ Pa(t) Py (t) dt =

+1
+1
- 27'[/ P (1) Py (1) dt,
-1
in which t = cos ¥ and do = sinyp dip dx. So, we have
AT it n=n,
// Py (cos ) Py(cosyp) do = { *'+1 ' , (3-4)
- 0 if n#£4n,

in which ¢ is the angular distance from some point on the surface of the
sphere. Equation 3.4 tells us that Legendre polynomials are mutually orthogo-
nal if the vectorial product is defined as an integral over the surface of the
unit sphere . Alternatively we may define also fully normalized Legendre
polynomials

Py(cosyp) = V21 + 1P, (cos V), (3-5)

in which case the now modified scalar product — the mean square value
over the unit sphere — is

1 ifn=rn,

1 _ _
E//gpn(COSl/)) Py (cosyp) do = 0 ifn st

showing the polynomials now to be orthonormal®. Similarly fully normalized
associated Legendre functions also exist (without proof, see

, page 31):
= (n—m)!
Pum(cosyp) =4/2(2n+1) mpnm(cos P). (3.6)
2And also
+1 o 1 if — /,
1/ Pt Pu(ydt={ " "
2/ 0 if n#n,

again, the mean square value.
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In this case, the orthonormal functions look like

_ Pum(cosyp) cos ma if m>0,
Ynm(lp, Dé) _ 771771( lrb) =
Py (cosp) sin|m|a if m < 0.

The scalar product that applies is

1 if n=n" and m =n’/,

ﬁ //g?"m(lp'“)yn'm’(l}',oc) do =

0 otherwise.

3.4 Low-degree spherical harmonics

The potential field of a point mass is (equation 1.4):

oM
_oM

1%

The corresponding term in the potential expansion 2.11 for degree n = 0 is

1 . a
Vo= ;agopo (sm(p) = %,

from which
app = GM.

So, ago represents the force field of a point mass or spherically symmetric mass
distribution centred at the origin. The higher spherical-harmonic coefficients
are “perturbations” on top of this.

The expansion for the degree-one coefficients looks as follows:
p— 1 1 1
Vi(g, A1) = 2 (a11 cos p cos A + byy cos Psin A + ajpsing) .
Write this in vector form using the expression for the location vector

r= (rcospcosA)i+ (rcospsinA)j+ (rsing)k

— in which {i,j,k} is an orthonormal basis of the Euclidean space R® —

yielding
1 . .
1% (r) = r—3<(a111 + b11j + a10k) - r>.

Splitting a function into degree constituents

Remember that the potential field of a dipole is

G
V(r) = r—3<d~r>,
in which d is the dipole moment. Comparison yields
ﬂlli + bnj + ulok = Gd,

i.e., the first-degree n = 1 spherical-harmonic coefficients represent the
Earth’s gravitational field’s dipole moment.

Every mass element dm of our Earth may be taken to consist of

o a monopole at the origin of the co-ordinate system, size dm, and

o adipole, size r- dm, in which r is the location vector of the mass element.

In that case we may compute the dipole moment of the whole Earth by
integration:

de = W rdm = /// prdV = Mg - Teentre of masss
Earth Earth

in which, by definition, Teentre of mass 15 the location of the centre of mass of the
Earth! From this follows that, if we choose our co-ordinate system so, that the
origin is in the centre of mass of the Earth, the spherical-harmonic coefficients
a1, b1, a10 vanish. If the equations of motion of satellites are formulated in a
certain co-ordinate system, like in the case of Gps satellites the wGs84 system,
then the origin of the system is automatically in the centre of mass of the

Earth, and the degree one spherical-harmonic coefficients are really zero.

The same logic applies to higher degrees of spherical harmonics. The degree
two coefficients represent the so-called quadrupole moment of the Earth —
corresponding to her inertial tensor — etc.

3.5 Splitting a function into degree constituents

There exists a useful integral equation for surface spherical harmonics, if the
function itself f on the surface of the sphere has been given. The equation is

( ,

, equation 1-71, but using our notation Y;, — f,):
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Figure 3.5. Monopole, dipole, and quadrupole, at the Earth’s centre, and

their effects on the geoid.

= 2”4:[_ 1 //Uf(qﬂ, A")Py(cos ) do’, (3.7)

fal9,A)

where 1 is the geocentric angular distance between evaluation point (¢, A)
and moving data or integration point (¢’, \'), see figure 8.2. In this degree
constituent equation 3.7 there is a certain similarity with the projection or
coefficient computation formula B.10. Nevertheless, here we don’t have a

computation of spectral coefficients, but of “spectral constituent functions”

fa-
We bring to mind the core property of the functions f;,
flg.A) = Zf (¢.4)

n=0
on the surface of the sphere.

For the proof, we choose as the “north pole” of the co-ordinate system the
point (¢, A); then, ¢' = 90° — . By writing (see equation 2.11):

Z Z Py (sing’) (aym cos mA’ + by, sinmA’)

n=0m=

fl@',X)

and substituting this into the degree constituent equation 3.7, we obtain, by

exploiting the orthogonality of the Legendre functions, on the right-hand

Spectral representations of various quantities

side of the degree constituent equation:

_2n+1//f4> A )Py (cos ) dor
= %ano//apﬁ(cos P) do’ =

2 1 27T ) 27T ,
= 1: an/O P2(cos ) - (smtp/ d/\) dyp

2 1 +1 27
— nt a,7/ (sml/)/ ) dt =
4r _ siny
_2ntl 2ma 72 =a
T 4m "1

. def .
where we used the notation a, = 4, as well as equation 3.3.

On the left-hand side of the degree constituent equation we obtain, because,
on the assumed north pole, ¢ = 90° and thus sin¢ = 1:

def

I = fa(9,A) EY,(90°,4) =

= Z Pun(1) (aum cos mA 4 byy, sinmA) = Pyo(1) a0 = ap,
m=0

by using

Po(1) =1,
Pun(1) =0 if m #0.

As this applies for every point (¢, ) — and note that the values a,, depend on
this choice! — it follows that the degree constituent equation 3.7 is generally

true.

3.6 Spectral representations of various quantities

3.6.1  The potential

Starting from equation 2.11 we write the following spectral expansion of the

geopotential V in space:

o R n+1
Vg, A1) Z ( ) Va(p,A), (3.8)

n=0
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Space domain Frequency domain

Va(g,A) = 2”“/ V(¢', A, R) Py(cos y) do’ 0
V((P/ A R) Z (gb )\)
n=0
\‘L:Imrd:‘ X (easy)l
V(A7) L - 5 (4" o)

n=0

Figure 3.6. Vertically shifting the potential field V, in the space and frequency
domains. Spherical geometry.

in which the spectral constituents V;, are the familiar Y; from equation 2.10:

n n
Va(p,A) = Z Py (sing) ( v cosmA+ bV sin m/\) = 2 Onm Youm (9, 1),
m=0 m=—n
in which the basis functions

Py (sing) cosmA if m>0,

Yom (@, A) = { - (3.9)

Py (sing) sin |m| A if m <0,

and coefficients

I al, if m>0, (5.10)
ey, i m<o.

On the Earth’s surface (r = R) we obtain

V($, A R) Z =Y Y ounYum(p,A). (3.11)

n=0m=—n

We may summarize the relationships found in commutative diagram. 3.6.

Again, like in section 2.2 for rectangular geometry, it is seen that the shift of
the potential function V from the spherical level R to the level r = R+ H is

essentially easier in the frequency domain — the degree constituents V,, —

than it is in the space domain.

Spectral representations of various quantities

3.6.2 Gravitation

In the Neumann3 boundary-value problem we solve a function V of which the

normal derivative, %—Z, is given on the surface of a body or a closed surface in
space.

In the case of a spherical body, we may assume % = % and work with

spherical-harmonic expansions. By differentiating equation 3.8 we obtain

© 1 /R n+1 0 1 /R n+2
SRR (T) wen = - L (T) e,
n=0 n=0

(3.12)

On the spherical Earth’s surface this means

Z:n—l—l V().

n=0

v
or r=R

If we also write on the Earth’s surface for the gravitation

ot OV >
gl A R) =S Y gu(p),
r=R n=0
it follows by analogy that
8n(p,A) = Vi(¢,A),
and conversely, that
Valg) = = 2gu(#,)
n 4)/ - n+1gﬂ 4)/ .

As a result of this we obtain the spectral representation of the solution to a certain
Neumann problem:

© /R n+1 ) n+1 gn(fp )L)
voan =1 () wien =k (7)) B2 o)
We may write in an analogue fashion

Z mnm¢/\

HMS

g AR) =Y gulpA) =
n=0

3Carl Gottfried Neumann (1832-1925) was a German mathematician.
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and comparison with the equivalent expression 3.11 for the potential yields

consistently

n+1

8nm = 7TU7’”’”I (314)

see equation 3.10. This is an interesting result worth thinking about:

1. Firstly, note how simple the connection 3.14 between potential v, and

gravitation g, has become in the frequency domain!

2. Secondly, if there are available, over the whole surface area of the Earth,
measurement values of gravitational acceleration g, we may derive from
these the spherical-harmonic coefficients g, and the degree constituent
functions g, (¢, A) using the method explained earlier. In this way we
can then obtain the solution by means of equation 3.13 for the whole
exterior geopotential field! This is the basic idea of geopotential — or
geoid — determination, from the spectral perspective.

3.7 Often used spherical-harmonic expansions

Of the existing global spherical-harmonic expansions must be mentioned the
already outdated EGm96. It was developed by researchers from Ohio State
University using very extensive, mostly gravimetric, data collected by the
American N1MA (National Imagery and Mapping Agency, the former Defense
Mapping Agency pma, the current NGa, National Geospatial-Intelligence Agency).

This expansion goes up to harmonic degree 360. Its standard presentation is*

GM 360 n no_ o _
V= ; ® <1 + (g) Y Pun(sing) (CumcosmA + Sy sinmd) | .
n=2 m=0

(3.15)
This form of presentation — the algebraic sign in front of the expansion, which

starts from degree number n = 2, the number one inside the parentheses
which represents the point mass in the origin equal in magnitude to the
total mass of the Earth, and the “fully normalized” coefficients Cand S —

4Note that here is used a, the equatorial radius of the Earth’s reference
ellipsoid, not R, and ¢, the geocentric latitude. The co-ordinates (7, ¢, A) form
a spherical co-ordinate system.

Often used spherical-harmonic expansions

has been already for some time been an industry standard in the global
research community in the field of computing spherical-harmonic expansions
as models of the Earth’s gravitational field. A pioneer has been Professor
Richard H. Rapp at Ohio State University, which is why the models are often
called osu models.

Generally in these models the lower terms — 2 < n < 20 — are derived
primarily from analysis of satellite orbit perturbations. Because of this, the
models are in a co-ordinate system with the origin in the Earth’s centre of
mass. This explains the absence of the degree-one coefficients, as exposited
earlier.

The higher coefficients again — 20 < n < 360 — were before the year
2000 mostly the result of the analysis of gravimetric data (over land) and
satellite radar altimetric data (over the ocean). After the launches of the
gravimetric satellite missions cHAMP, GRACE and GOCE, and as a result of their
measurements, nowadays at least degree number interval 20 < n < 200 is
the product of space geodesy. Only the still higher degree numbers — the
new model EGM2008 ( , , ) goes up to degree 2159 — are
still due to terrestrial data.

In table 3.5 we give the first and last coefficients of the EGM96 model, the last
and best model from the time just before the satellite gravity missions. The
values tabulated are 1, m, Cpy, Sy and the mean errors (standard deviations)
of both coefficients from their computation. Note that all S,;9 vanish!

Sometimes also non-normalized coefficients are used, and we write

. [e) n
V= GMe (1 — Z (%)n Z Pum(sing) (Jum cos mA + Ky sinmA) | .
m=0

r n=2
(3-16)
Then we use the notation J, o Jno, and ], is the most important, the parameter
of the Earth’s gravity field describing the flattening of the Earth. Based on

ratahairiot
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equations 3.5, 3.6, the relationship with the parameters C, S is

]nO _ 47\/§;Ij;‘i anO
KnO n0 ’
(c (3.17)
T U gy L G L,
Knm (n + m)' Snm

3.8 Ellipsoidal harmonics

The Laplace differential equation 1.12 may be written, and solved, instead
of in spherical co-ordinates, in ellipsoidal co-ordinates. The result is known
as an ellipsoidal-harmonic expansion®. They are little used, because the math
needed is more complicated. Also ellipsoidal co-ordinates are mostly only
theoretically interesting and not in any broad use within geodesy.

The form of presentation is

ViwpA) = iégnﬂ )

in which Qy,, (z) are the so-called Legendre functions of the second kind, sampled

Pym(sin B) (as,, cosmA + b, sinmA), (3.18)

in table 3.6. Though the general argument z is complex, equation 3.18 gives a

real result for real-valued coefficients a¢, , b

nms “nm*

Those interested in the derivation of the above equation can find it in
( ) or other textbooks on potential theory.
give a slightly different form to the equation, the auxiliary equations
needed for the normalization used here can be found on their pages 66-67.

3.8.1 The scaling to standard form of the expansion

Assume aj, = aj; = bj; = 0, i.e., the vanishing of the dipole moment®.

5This expansion for the ellipsoid of revolution differs from the expansion into
Lamé functions found for the triaxial ellipsoid.

bStrictly speaking this works only in case of a spherical-harmonic expansion,

or in the limit E — 0.

Ellipsoidal harmonics

Tableau 3.5. Coefficients and mean errors of the EGM96 spherical-harmonic

expansion.
n om Chum Sum Cpm mean error S, Mean error
2 0 -0.484165371736E-03 0.000000000000E+00 0.35610635E-10 0.00000000E+00
2 1 -0.186987635955E-09 0.119528012031E-08 0.10000000E-29 0.10000000E-29
2 2 0.243914352398E-05 -0.140016683654E-05 0.53739154E-10 0.54353269E-10
3 0 0.957254173792E-06 0.000000000000E+00 0.18094237E-10 0.00000000E+00
3 1 0.904627768605E-06 0.248513158716E-06 0.13965165E-09 0.13645882E-09
3 2 0.904627768605E-06 -0.619025944205E-06 0.10962329E-09 0.11182866E-09
3 3 0.721072657057E-06 0.141435626958E-05 0.95156281E-10 0.93285090E-10
4 0 0.539873863789E-06 0.000000000000E+00 0.10423678E-09 0.00000000E+00
4 1 -0.536321616971E-06 -0.473440265853E-06 0.85674404E-10 0.82408489E-10
4 2 0.350694105785E-06 0.662671572540E-06 0.16000186E-09 0.16390576E-09
4 3 0.990771803829E-06 -0.200928369177E-06 0.84657802E-10 0.82662506E-10
4 4 -0.188560802735E-06 0.308853169333E-06 0.87315359E-10 0.87852819E-10
5 0 0.685323475630E-07 0.000000000000E+00 0.54383090E-10 0.00000000E+00
5 1 -0.621012128528E-07 -0.944226127525E-07 0.27996887E-09 0.28082882E-09
5 2 0.652438297612E-06 -0.323349612668E-06 0.23747375E-09 0.24356998E-09
5 3 -0.451955406071E-06 -0.214847190624E-06 0.17111636E-09 0.16810647E-09
5 4 -0.295301647654E-06 0.496658876769E-07 0.11981266E-09 0.11849793E-09
5 5 0.174971983203E-06 -0.669384278219E-06 0.11642563E-09 0.11590031E-09
6 0 -0.149957994714E-06 0.000000000000E+00 0.14497863E-09 0.00000000E+00
6 1 -0.760879384947E-07 0.262890545501E-07 0.22415138E-09 0.21957296E-09
6 2 0.481732442832E-07 -0.373728201347E-06 0.27697363E-09 0.28105811E-09
6 3 0.571730990516E-07 0.902694517163E-08 0.19432407E-09 0.18682712E-09
6 4 -0.862142660109E-07 -0.471408154267E-06 0.15229150E-09 0.15328004E-09
6 5 -0.267133325490E-06 -0.536488432483E-06 0.89838470E-10 0.87820905E-10
6 6 0.967616121092E-08 -0.237192006935E-06 0.11332010E-09 0.11518036E-09

360 358 0.709604781531E-10 .691761006753E-10
360 359 0.183971631467E-10 -0.310123632209E-10

o
(<]

.50033977E-10
.50033977E-10
.50033977E-10

(<)

360 360 -0.447516389678E-24 -0.830224945525E-10

(<)

0.50033977E-10
0.50033977E-10
0.50033977E-10
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We can also show that in the expansion 3.18 the first coefficient is

GM E
agy = F Y arctan 7

and the expansion specialized for a rotationally symmetric field becomes

Qulig) , i
V(u,B) = nzo W(u, B) = nzo QnEEE;aHOPH(smﬁ),

which yields now

ju
Qo (15) GMo arctan E,
Qo(ig) E b

the gravitational potential of the field constituent of ellipsoidal degree zero.

Vo(u) =

With the substitutions ( , , page 66)

o (3

E
Vo(u) = GZ;/I@ arctan 7

U . E . E
Qo <IE> = —iarctan o = —zarctany (3.19)

we obtain

This corresponds to the “central field” of a spherical harmonic expansion
GM

2.
Using this, we may “scale” equation 3.18 as follows — by substituting the

above identities 3.19 and moving the constant expression

(GM6

- £\ L
E arctan 3)

into the new, standard scaled coefficients C,,,, Sy,

nm’

E
arctan —-
u

V(u,BA) = G]g%
B L S

an ellipsoidal-harmonic expansion that agrees with the spherical-harmonic

arctan ¢ Qnm( )

arctan = Qnm( E)

e
Py (sin B) ( C,,, cos mA+ )

—&—?f,m sinmA

expansion 3.15, with the total mass of the Earth outside brackets and the
coefficients dimensionless. This equation has however apparently not been
used for any geopotential determination.

Ellipsoidal harmonics

Table 3.6. Legendre functions of the second kind.

Qulz) = yn 2
0 2 z—-1 (n+1) Qui1(z) — (2n+1)2Qu(z) +1nQ,_1(z) =0
Qi(z) = zlnz+1 B
! 2 21
3z° — 1 z+1 3z
QZ(Z) = — N ——- - m/y d
4 z—1 2 Qmun(z) = (1—z —Qu(z
Q(Z)_523—3xnz+175722+g mn(2) ( ) dz™ n(2)
BTy z-1 2 '3
3.8.2 Equivalence of the Rapp and ellipsoidal expansions
We can demonstrate the equivalence of spherical expansions 3.15, or 3.16,
and the ellipsoidal expansion 3.18, if the flattening of the Earth — 0, and
thus also a,b — a, B — ¢, and u — r. We assume that
( ) equation 1-112,
i 2 () Qum (i %) _ (g)”“
E=0 Qum ( ) r
is valid. Substitution into equation 3.18 yields
V(u,B,A) =V(r,¢,A) =
© n+1
= Z Z ( ) Pyu(sing) (a5, cosmA + by, sinmA),
which, with the identifications af, = %,aﬁo = aj; = bj; = 0 and, with
relations 3.17,
Ay | _ _GMs | Jwo | _ GMs @111 Cho ,
b,elo a KnO a SnO
ﬂﬁm _ _GMGB ]nm _ GMH 2(2 n4 1) ( m) ?nm m 7& 0
bye,m a Knm a ( +m) Snm

otherwise, corresponds to equations 3.15 and 3.16 for spherical harmonics.

3.8.3 Advantages of using an ellipsoidal harmonic expansion:

1. The expression for the normal gravitational potential is in this form of

presentation simple, see ( ) equation 2-56. A



76

Legendre functions and spherical harmonics

spherical-harmonic expansion of the same field would instead require
theoretically an infinite number of coefficients. In practice, 3 to 4, i.e.,

an expansion up to J¢ or Jg, will suffice.

2. The convergence will be more rapid, as less terms are needed. This
is because, due to the Earth’s flattening, the equator is some 23km
farther from the Earth’s centre than the poles. Therefore, especially high
degree spherical harmonics will have difficulty converging efficiently
both at the poles and in the equatorial region. This problem is worst
for very high degree expansions (e.g., , ). Already for a
degree number of 360, the semi-wavelength of a spherical harmonic
will be only 55km!

3.8.4 Disadvantage of using an ellipsoidal harmonic expansion:

Evaluation of an ellipsoidal-harmonic expansion is clearly more laborious, i.e.,

expensive, than a spherical-harmonic one, in terms of computer resources.

Self-test questions

1. How does separation of variables work?

2. Why does solving the Laplace equation require boundary conditions?

3. What are the harmonic degree and harmonic order in a spherical-
harmonic expansion? How do they relate to the resolution of the
expansion on the Earth’s surface?

4. What types of spherical harmonics are there? Describe their depen-
dence on latitude and longitude.

5. How many times does a surface spherical harmonic Yy, (¢, A) change
its algebraic sign traveling along a meridian from South pole to North
pole? How many times when travelling around the Earth along the
equator?

6. What does it mean if it is said that two functions are mutually orthogo-
nal? Give a possible definition of the scalar product of two functions.

Exercise 3—1: Attenuation with height of a spherical-harmonic expansion

7. How does the attenuation of spherical harmonics with height behave?
Why does a gravimetric satellite that tries to map the gravity field of

the Earth at a high resolution, fly in as low an orbit as possible?
8. What does the degree constituent equation describe?

9. Which spherical-harmonic coefficients are associated with the dipole
moment of the Earth’s mass distribution? Why are they missing from
tableau 3.5?

Exercise 3—1: Attenuation with height of a

spherical-harmonic expansion

It

R n+l n
(—) Y Pu(sing) (aum cos mA + by sinmA) =
m=0

Il
ngk

Vg, A1) .

)
Il
<)

n+1
(5) Va(¢, A, R), (3.20)

7

Il
e

3
Il
o

we may call

V;I((P,/\,T’) B R n+1
V(¢ A R) (7>

r
the attenuation factor of the potential with height.

Differentiation with respect to r yields

ar R

oVu(p, A1) n+l1 (R
;

+2
—) Va(¢p,AR), (3.21)

or, because, on the Earth’s surface, similarly

oVu(¢, A, 1)
ar

__n+l

r=R

Va(¢, A R), (3.22)

it follows that the attenuation factor for the attraction is the ratio of expressions

N

3.21 and 3.22:
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1. Draw a log-linear graph of the attenuation factors of both the potential
and the attraction for values n = 0,...,100, by hand or by machine.
Choose R = 6378km, r = 7378 km — i.e., the height is 1000 km above
the Earth’s surface.

2. Based on this, if the satellite is 1000 km above the Earth’s surface,
for what degree number n will the accelerations aa‘f’ caused by the

attraction on satellite level be less than 1% of what they are on the
Earth’s surface?

3. For what n value will they be less than 107*x of what they are on the
Earth’s surface?

Exercise 3—2: Symmetries of spherical harmonics

See equation 3.20 above. In it, Py (sin¢g) = Pun(t) , t = sin¢ is only a function
of latitude ¢. When ¢ runs from the South pole through the equator to the
North pole, values —90°... 0°... +90°, parameter ¢ will run through values
—1...0... +1 on the interval [-1,1].

For these Legendre functions exists closed expression:

my dm
Pan(t) = (1= )" Z5Pa(t), (-2)

in which the P, () are the ordinary Legendre polynomials:

Pult) = 2"171!;% ((tz _1)n>'

1. Note first, that

(a) Differentiating a symmetric function of t will produce an anti-
symmetric function, and vice versa.

(b) The function (#* — 1) and its powers are symmetric.

(c) Thus: for even n values P, (t) = +P,(—t) —, i.e., P, is symmetric
between the Northern and Southern hemispheres — and for odd
n values P,(t) = —P,(—t), i.e, P, is anti-symmetric between
hemispheres.

(d) Similarly, for even n, P,(sin¢) = +P, (sin(fcp) ), and for odd n,
Py (sing) = —P,(sin(—¢) ).

Exercise 3—3: Algebraic-sign domains of spherical harmonics

Question: what is the corresponding rule for the functions Py, ie.,
for which (n,m) values is it symmetric and for which values
anti-symmetric?

(a) Fill out the diagram (n =0...5, m = 0...n) with symbols
either ‘S’ or ‘A’ in each framed cell:

n=0 1 2 3 4 5
m =

S~ W N R O

5

(b) What is the logic of symmetry?

2. If the field is symmetric between Northern and Southern hemispheres,
ie, V(¢,A,r) = V(—¢, A, r), which of the spherical-harmonic coeffi-
cients a,, by drop out of the series expansion? Why?

(Hint: see the example formulas and graphs for P, (sin¢) in the
lecture notes and try to guess a general rule. Then, verify.)

3. The same question if the potential is rotationally symmetric about the
Earth'’s rotation axis, i.e., V(¢,A, 1) = V(¢,7).

Exercise 3—3: Algebraic-sign domains of spherical

harmonics

We have seen in section 3.1 that the associated Legendre functions Py, (t)
have precisely n — m + 1 algebraic-sign intervals on their interval of definition
¢ € [—90°,90°]. We can show that the functions cosmA and sinmA each
have 2m zero crossings and 2m algebraic-sign intervals on their domain of
definition A € [0,360°) . How many algebraic-sign domains — grey or white
areas, visible or occluded, in figure 3.3 — are there for each surface spherical
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harmonic

Py (sing) cosmA if m>0,

Ynm((Pr /\) = {

Py (sing) sin fm[ A if m <0

Exercise 3 —4: Escape velocity

1. Given a spherically symmetric planet, mass GM, radius R, from the
surface of which a cannon shoots projectiles at a flight velocity v. What
is the minimum value for v — the so-called escape velocity — if it is
desired that the projectile can travel to arbitrarily large distances from
the planet, and never falls back? The kinetic energy of the projectile is
Exin = %mvz, in which m is the projectile’s mass.

2. Given, in two-dimensional geometry, a circularly symmetric planet, mass
GM, radius R. The gravitational field of the planet is described by a
potential V as given in section 2.3. What does V look like, based on

these assumptions?

3. There is again a cannon on the edge of the circle planet. What can you
now say about the escape velocity v (don’t try to compute it!)?

The normal gravity field

4.1 The basic idea of a normal field

Like the figure of the Earth can be approximated by an ellipsoid of revolution,
also the gravity field of the Earth can be just as well approximated by a field
of which one equipotential surface, or level surface, is precisely this ellipsoid
of revolution, the reference ellipsoid.

This brings a logical idea to mind: why not define intercompatibly a reference
ellipsoid, a geopotential or normal potential — one of the equipotential surfaces
of which is the reference ellipsoid — and a gravity formula, computed by
taking the gradient of this normal potential?

After this we may define anomalous quantities, like disturbing potential and
gravity anomaly, which then again will be intercompatible, while being

numerically much smaller.
Let the normal potential be U(x,y,z). Then, normal gravity will be

T = 7] = [Fu| =~ (7 n) = -2,

in which % denotes differentiation in the direction of the exterior surface
normal n to a level surface of the normal field, itself also an ellipsoid, see
figure 4.1. This direction will differ from the direction of the normal to the
level surfaces of the gravity field, or plumb line, by precisely the plumb-line
deflection, typically a very small angle.

— 81—
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Figure 4.1. The normal gravity field of the Earth.

We shall see in the next section that the pseudo-force generated by the Earth’s
rotation may, in a system rotating along with the Earth, be described by a
rotational potential ® — also called centrifugal potential. Also the normal
potential U is defined in such a way, that the rotational potential ® is included
in it: the normal potential is the reference potential of the gravity field, not the
gravitational field. If we denote the normal gravitational potential by ¥ — a
quantity rarely used in geodesy — then the normal gravity potential (“normal
potential”) U is
Uu=vY+o,

in which ® is the centrifugal potential. In other words: ¥, like V, is defined
in a non-rotating (inertial) system, whereas U, like W, is defined in a system
that co-rotates with the Earth and is non-inertial. Just like also the word

painovoima gravity refers to a force acting in a co-rotating system, when in an inertial

The centrifugal force and its potential

Gravitation £ - -

Figure 4.2. Gravitation and centrifugal force.

system we use the word gravitation.

4.2 The centrifugal force and its potential

The rotation of the Earth affects the gravity field. In an inertial reference
system one speaks of gravitation and gravitational potential V, on the Earth’s
surface however, in a non-inertial or co-rotating system, we talk of gravity and
gravity potential W. They are different things, and the rotational motion and
its centrifugal force are the cause of the difference. See figure 4.2.

To derive the equation for centrifugal force, write first
p=Xi+Yj,

when the vectors {i,j, k} form an orthonormal basis along the (X, Y, Z) axes.
Then

p=lpll=V{p-p)=VX+Y2.
Now the centrifugal force — or rather, acceleration — is, in metres per second

squared,
f=awlp = (Xi+Yj),



Page 85

84

painovoima-
potentiaali

The normal gravity field

with wyg, the rotation rate of the Earth in radians per second.

Here on Earth, gravity measurements are generally done with an instrument
that is at rest with respect to the Earth’s surface: it follows the rotation of
the Earth. If the instrument moves, one must, in addition to the centrifugal
force, take into account another pseudo-force: the Coriolis" force. Also fluids
— water, air — on the Earth’s surface, if they are at rest, sense only the
centrifugal force. Currents also sense the Coriolis force, which deflects them
sideways and causes the well known eddy phenomena in the oceans and

atmosphere.

If we forget for the moment about the Coriolis force, we may describe the
centrifugal force as the gradient of a potential. If we write for this centrifugal
potential

o= %wé (X*+Y?),

we may directly calculate the gradient

oo, 0D, 9P

T2
which corresponds to the above centrifugal-force equation.

If we start out with the gravitational potential V and add to it the centrifugal
potential ®, we obtain the gravity potential W:

W=V+o.

We may also derive from the centrifugal potential ® the following equation
by differentiating it twice:

0 0
2 _ 9 9 9 9 — 202 .
AP = V20 = V= Lwh X+ —wdY +0 =202, (4.1)
from which follows, with the Poisson equation 1.14,
AW = —4rGp + 2w, (4.2)

'Gaspard-Gustave Coriolis (1792 —1843) was a French mathematician, physi-

cist and mechanical engineer. His name is inscribed on the Eiffel Tower,

1 1
wfﬁ~2X~i+§wfﬁ~2Y~j+O:w§B (Xi+Yj),

Level surfaces and plumb lines

the Poisson equation for the gravity potential.

The difference between gravitation and gravity is essential. The force, or
acceleration, of gravitation a = V'V is just an attractive force, whereas
the acceleration of gravity g = VW is the vector sum of gravitation and
centrifugal force. Attraction and centrifugal force act in the same fashion;
the force is proportional to the mass of the test object, in other words, the
acceleration is always the same independently of the mass of the test object.
This is the famous equivalence principle (Galileo, Einstein), which has been
proven to hold to very great precision. Especially we may mention the clever

tests by the Hungarian baron Lordnd E6tvos®.

Water masses on the Earth’s surface, like also the atmosphere — and on
a vastly longer time scale also the “solid” Earth rock forming mountain
ranges and ocean depths — react to gravity without distinguishing between
attraction and centrifugal force. For this reason the sea surface coincides
within a metre or so with an equipotential or level surface of the W function
or geopotential. Also on dry land we measure heights from this surface, the
geoid (Gauss: “mathematical figure of the Earth”).

4.3 Level surfaces and plumb lines

Surfaces of the same gravity potential or geopotential, equipotential surfaces

or level surfaces are the following surfaces:
W(x,y,z) = const.

Let {i,j,k} again be an orthonormal basis along the (x,y,z) axes. Then, in
the direction of the unit vector

e = €1i—|—82j + esk

the potential changes as follows:

oW W oW oW
de  ox ay 0z

?Lorand baron Eotvos de Vasarosnamény (1848—-1919) was a Hungarian
physicist and student of gravitation.

tasopinnat
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tangent plane

Figure 4.3. The curvature of level surfaces.

which vanishes if and only if
(e ¥W) =0,

in other words, the potential is stationary only in directions that are perpen-
dicular to the Earth’s gravity vector

?W:g.

Level surfaces and gravity vectors, or plumb lines, are always perpendicular
to each other.

4.3.1 Curvature of level surfaces

Given in point P a plane that in P has the same direction as the level surface,
i.e., its tangent plane. If the local curvature of the level surface in the x

Level surfaces and plumb lines

direction is p1, and the x co-ordinate of point P is xy, we may develop the
distance between the surfaces in a Taylor series:

1 2
eNZTJl(x_xO) .

From this we obtain the difference in W values between the surfaces (¢ = ||g|):

2 &

W = —eg~ — (x — xq) 201

By differentiating (note that W here is now the geopotential on the tangent
plane) we obtain

92 92 g
from which
p1= - &
WX,‘C,

in which the W that is being differentiated with respect to the x co-ordinate
is its restriction to the tangent or horizontal plane.

By determining the curvature in the x direction

ot L P 43)
1= - == ’ .
£ g
and similarly in the y direction
def 1 Wy}/
Kp=—=——>, (4-4)
P2 g
we obtain the mean or Germain’ curvature, in most locations a positive
number: 1 W+ W
_ 1 ENRALE: vy
J =5 (K +x2) T

and by using the Poisson equation 4.2,

AW = Wy + Wy + Wo, = —47Gp + 2w3,

3Marie-Sophie Germain (1776 —1831) was a brilliant French mathematician,
number theorist and student of elasticity. She corresponded with Gauss,
among others, on number theory, and did foundational work toward a proof
of Fermat'’s last theorem. Her name is missing from the Eiffel Tower.

rajoittuma
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we obtain
—2g] + W,, = —47tGp + 2w?,.
By using
_ 9% _ 9%
W= =5, = "an
— in which H is the height co-ordinate — we obtain for the vertical gradient

of gravity ( , , equation 2-20):

98 _ 2
3= —2¢] +4nGp — 2ws,

an equation found by Ernst Heinrich Bruns.

4.4 Natural co-ordinates

Before the satellite era it was impossible to directly measure the geocentric
co-ordinates X,Y and Z. Today this is possible, and we obtain at the same
time the height from the reference ellipsoid /, a purely geometric quantity.

In earlier times one could measure only the direction of the plumb line as
shown in figure 4.4, and the potential difference between an observation point
and sea level. The direction of the plumb line n was measured astronomi-
cally: astronomical latitude ® (don’t confuse with the centrifugal potential)
and astronomical longitude A. The third co-ordinate, the gravity potential
difference W(x,y,z) — W from the potential Wy of sea level, was determined
by levelling. The co-ordinates ®, A and W are called natural co-ordinates.

Often, instead of the potential, orthometric height is used. Its definition is easy
to understand if one writes
Wp 1

1
=—¢ = dH=—-dW = H :—/ ——dW’,
8 g F W, (W)

ow
oH

where the integral is taken along the plumb line of point P. % is the
derivative in the direction of the plumb line, i.e., the local normal to the level
surfaces. g is the acceleration of gravity along the plumb line as a function
of place — or of geopotential level. In this case of orthometric heights, g
is the true gravity inside the rock, which is a non-linear function of place

The normal potential in ellipsoidal co-ordinates

Astronomical
co-ordinates ®, A

’

,/’ 7 Plumb line

Figure 4.4. Natural co-ordinates ®, A. Additionally, a natural height co-ordi-
nate, e.g., the geopotential W, is needed.

and will also depend on rock density. This trickiness of their determination

is a problem specific to orthometric heights. We will return to this later on

( ’

Also the co-ordinates ®, A and H form a natural co-ordinate system.

chapter 4).

4.5 The normal potential in ellipsoidal co-ordinates

We already presented an equation 3.18 for the expansion of the geopotential
into ellipsoidal harmonics. It is demanded of the normal potential U, that
it is a constant on the reference ellipsoid u = b. We expand the centrifugal
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potential ® into ellipsoidal harmonics. We have

D) = 30 (2 +17) = 30 (7 + E¥) cos” f =

W% (u* + E?) (1 —sin?B) =

wi (u* + E?) (%Pz(sin/s) +§P0(sin,8)> =
= 36k (124 E) (Pa(sin ) — P(sing) )

Additionally we have, based on equation 3.18, for a rotationally symmetric

gravitational potential ¥:

[eS)

Z‘Pnuﬁ =L

S
—~
=
s

'E)
%)

APy (sinp). (4.5)

H

(=)

=

—
—

/=y

Now
U(u,p) =Y (u,p) +P(u,p).

On the reference ellipsoid u = b we have as a requirement U(b, ) = Uy,
which is possible only if

1
UO = A0+§(UEP (b2+E2),
0= A,
0=A— gwa; (V*+E?),
0=A,n=345,...

The quantity Up can be computed uniquely, if the Earth’s mass GM and
the measures of the reference ellipsoid 4, b are known. The result, given in
( ) as equation 2-61, is
2 2

Mg E 1
Uy = GE%arctanE—Q—gw@a .

From this follows, with a2 = b2 + E%:

1 M. E
Ag= Uy — gwéaz = GE @ arctan 7

Normal gravity on the reference ellipsoid

The normal gravity potential U is obtained as follows (remember the identities
3.19 and that a? = b% + E?):

U(u,p) =¥ (u,p) +P(u,p) =

Yo(u) Ay Py(sin B) D(u,p)
Mg E.1 Ww? 2Q2( %) 3.2 1 1 o2, 2
= —parctan —+zwia o) \2 Ssin® p—3 +§w9(u + E?) cos” B =
= Cy(u) sin? B+ Ca(u) cos® B,

in which C;, C; are suitable functions of u. The function ¥y is the term for

n = 0 in expansion 4.5.

On the surface of the reference ellipsoid (u = b):

GMg E 1 1 1
ue,p) = ( 3 arctang - gwiaz) + zwﬁa sin? B + 2w2 a*cos? B =
GM; E 1
= F = arctanZ + 3waa2

the constant U, as it better be!

4.6 Normal gravity on the reference ellipsoid

Without proof we mention that for normal gravity (the quantity y = a, 1) the
following equation applies on the reference ellipsoid:

a7y sin? B + by, cos?
’Y(,B) _ Yo ﬁ Ya ﬁ .
\/u2 sin? B + b2 cos? B

By substitution we find immediately, that 7y, is normal gravity on the equator
(8 = 0) and <, normal gravity on the poles (8 = £90°).

Equations 2.5 and 2.7 yield

tzm,B—Sin/3 = % =1 Z = T tan
TcosB VXY T bX24+Y2 b ¢
a
and ,
i T-e)N 1 4 2
tang = Sme _ (AN = a—tamp,

cos ¢ VXIZVH/? 1-e2/X25y?2 b2
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Figure 4.5. The geometry of the meridian ellipse and various types of latitude.

in which ¢ is the geocentric latitude, see equation 2.4. From this follows
directly

tanf = Z tan @,

in which the latitude angle ¢ is the geodetic or geographic latitude. (8 is still
the so-called reduced latitude). Now it is easy to show (exercise!) that

_ ay,co8 @ + by, sin® @
\/ a2 cos? ¢ + b2sin® ¢

v(9) (4.6)

This is the famous Somigliana—Pizzetti* equation. These geodesists demon-
strated for the first time that an “ellipsoidal” normal gravity field, which
has the reference ellipsoid as one of its equipotential or level surfaces, exists

4Carlo Somigliana (1860 —1955) was an Italian mathematician and physicist.
Paolo Pizzetti (1860-1918) was an Italian geodesist.

Numerical values and calculation formulas

exactly, and that also in geographical co-ordinates the gravity formula is a
closed expression in latitude.

4.7 Numerical values and calculation formulas

When the reference ellipsoid has been chosen, we may calculate the normal

potential and normal gravity corresponding to it. The fundamental quantities

are

a the equatorial radius of the ellipsoid of revolution, i.e., its semi-major
axis

f the flattening, f = ”a;b, in which b is the polar radius or semi-minor
axis

wg  the rotation rate of the Earth

GM the total mass of the Earth (including the atmosphere).

Alternatively one may choose also 7, i.e., equatorial gravity.

Nowadays the most commonly used reference ellipsoid cum normal potential
is Grs80, the Geodetic Reference System 1980:

a=6378137m,

%: 298.257222101,

we =7292115-10"1s71,

GM = 3986005 - 10°m®s 2.
In reality f is not a defining constant of Grs80o, but instead is used ], which
is a defining quantity for the gravity field, see equation 3.16.
was84 (World Geodetic System 1984) used by the Grs system has a reference

ellipsoid that is almost identical to that of Grs8o.

The normal potential is ( , ), in units, in the s1 system, of metre
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[m] and second [s]:

U = 62636 860.8500 +

N —9.78032677 — 0.05163075sin” ¢ — N
—0.000227 61sin* ¢ — 0.000001 23 sin® ¢

L [ 001543899 10~ —0.00002195 - 10 *sin® ¢ — .
—0.00000010 - 10 *sin ¢
+ (—0.00002422 - 10~% +0.000000 07 - 10~® sin* ) K?,
and normal gravity (note the minus sign, U is positive and diminishes going
upward):
_ou
TS T o T
+ 9.780326 77 + 0.051 630 75 sin® ¢ +
+0.000227 61 sin* ¢ + 0.000 001 23 sin® ¢ +

L [ 003087798 1074 —0.00004390 - 10~*sin? ¢ — -
—0.000000200 - 10~*sin* ¢

+ (—0.00007265 - 10~ 4 0.00000021 - 10~% sin” ) h*. (4.7)

Here, the unit of potential is m*/s?, and the unit of gravity, m/s%. More precise
equations can be found from ( ). In these equations, the
coefficient 9.78032 ... m/s? is equatorial gravity, and the value 0.03087 ... s72
is the vertical gradient of gravity on the equator. ¢ is geodetic latitude, i (in
metres) is the height above the reference ellipsoid.

Other gravity formulas and reference ellipsoids still in legacy use (and slowly
vanishing) are Helmert’s 1906 ellipsoid, the Krasovsky ellipsoid or sk-42 in
the countries of Eastern Europe, the International or Hayford ellipsoid (1924)
and its gravity formula, and Geodetic Reference System 1967.

4.7-1  Numerical example

According to the above equation, the normal potential over the equator is

U = 62636 860.8500 — 9.780326 77h + 0.01543899 - 10412 —
—0.00002422 - 107845,

Numerical values and calculation formulas

I
Cubic - - - -
80000 000 - Quadratic 7
Linear — —
60000000 =~___ Realistic i
40000000 +
20000000 +
0 <=

1 1 1 1 1 1 N
0 1000 2000 3000 4000 5000 6000 7000

Figure 4.6. The normal field’s potential curve over the equator. Heights in
kilometres.

o Draw this function for values of & in the range 0 — 7000 km.

o Draw for comparison the quadratic version, from which the last term
is left off.

Questions:
1. What is the minimum of the quadratic function?
2. How physically realistic is this?
Answers:
1. See figure 4.6. The minimum of the quadratic function is at
height 3000 km. The cubic function doesn’t have a minimum.

2. Not very physical: the stationary point for potential U (the
normal potential in a co-rotating reference system) should be
located at approx. 36 000 km height, at the geostationary orbit.

This tells us that polynomial approximation cannot be extrapolated
very far. In this case the interval of extrapolation is of the same order
as the radius of the Earth, and that won’t work any more.
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4.8 The normal potential as a spherical-harmonic

expansion

The spherical-harmonic expansion of an ellipsoidal gravitational field con-
tains, besides the second degree harmonic, also higher degree harmonics. If
we write, as is customary, the potential outside the Earth in the following

form ( , section 2-39, also equation 3.16):

r n=2

) I n
V = GM@ <1 — Z <%>n Z an(sirHP) (]nm cosmA + Knm smm/\)> ,
m=0

then we may also write the normal gravitational potential, ¥, into the form

g - OMs (1 . ghn (92” PZn(sin(p)> )

r

which contains only even coefficients J>, = Jou0 as the normal field is sym-

metric about the equatorial plane.

The coefficients for the Grs8o normal gravitational potential are found> in
table 4.1. Higher terms are usually not needed. The relationship between
fully normalized and non-normalized coefficients is [, = [,,v/2n + 1.

Note for comparison that in the expansion of the same field into ellipsoidal
harmonics only the degree zero and degree two coefficients are non-zero!

This is the main reason why these functions are used at all.

Instead of using an ellipsoidal model, we may use as a normal gravity
potential formula also the first two, three terms of the spherical-harmonic
expansion of the real geopotential. Then we obtain, taking the centrifugal

5They can also be calculated from equation (2-97) given in

(1967) :

2 n
Jon = (1)1 3(2) (1—n+5n£—§),

@) @53

starting from the values |, and 2. The results are the same as in the table’s
left column.

The disturbing potential

Table 4.1. GrRs80 normal potential spherical-harmonic coefficients ( ,

; , )-

Non-normalized Fully normalized

Jo = Jo0 = 1082.63 - 107° T, = 484.166 85490 - 10~°
Ja = Jao = —2.37091222-107% ], = —0.790304073 - 10~°
Jo = Joo = +0.00608347-107% ], = +0.001687251 00 - 10~°
Js = Jgo = —0.00001427-10~¢  Jg = —0.00000346 - 10~°

potential along;:

Yo, Va(pA) 1 5 0 \2

with the corresponding equipotential surface being the “Bruns spheroid”, or

ﬁ+ Ya(¢, ) " Ya(¢, A) +1w2@ (X2 +Y?)

u=
r r3 o 2

the “Helmert spheroid”. Here, Y) & GM and Yo (¢, A), Ya(¢,A) are taken

from the true geopotential.

These equations are easy to compute, but their equipotential or level surfaces
are not ellipsoids of revolution, and in fact not even rotationally symmetric.
They are, in fact, quite complicated surfaces ( , ,
section 2-12)!

However, in geometric geodesy we always use a reference ellipsoid, so this is
also a wise thing to do in physical geodesy.

4.9 The disturbing potential

Write the gravity potential
W=VvV+9o,

in which ® is the centrifugal potential (see above), and the normal potential

U=Y+o.
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The difference between them is

def

T=W-U=V-Y,

the disturbing potential.

Both V and ¥ can be expanded into spherical harmonics. If we write the
gravity potential

W=V+4+&=
GMg
’

n

<1 i ( )” Z um (SINP) (Jum cosm)»+Knmsinm/\)> ,

n=2 m=0

=d+

and the normal potential

U ¢+GM@ <1_ i )]n (s1n4>)>
2

we obtain by subtraction for the disturbing potential

T=W-U=
e (£ £ o

n=2 m=0

(sin¢) (6Jum cosmA + 6Ky, sin m)\)) ,

in which
8Jno = Juo — J; if n even,
5]nm = ]nm if n Odd,
and Kym = K-

The above equation for the disturbing potential T is shortened as follows

( ’

, equation 2-152):

()

o0 =X (3 )" g, (48)

where, in every term, the degree constituent T, has the same dimension as T,

and

Tu(p,A) = GM$ Z P (SN @) (8Jum cO8 MA 4 6Ky sin mA) .

Self-test questions

On the surface of the reference sphere of radius a®:

T(p,A) = Z (4-9)

from which we see, that on the reference level, the terms T, (¢, A) are really
the degree constituents for a certain degree number 7 .

The above expansion is missing the terms n = 0, 1. Of these, To(¢, A) = Tp is
a constant — the global average of the disturbing potential — and T; (¢, A)
has the form of a dipole field, the value being proportional to the cosine of
the angular distance from the point on the Earth’s surface pointed to by the
dipole vector. Both vanish because it is assumed that

1. the total mass of the Earth GMg assumed by the normal field is realistic,
and
2. the origin of the co-ordinate reference system is assumed to be at the

centre of mass of the Earth.

See section 3.4 for a discussion.

The higher T), are oscillating functions of ever shorter wavelengths.

Self-test questions

1. What is the basic idea behind using a normal gravity field?
2. What is the difference between gravity and gravitation?
3. Given the centrifugal potential

L aiy2 2

derive the centrifugal acceleration as a vector. X, Y, Z are rectangular

co-ordinates of a frame rotating at angular rate w around the Z axis.

4. Explain the idea of natural co-ordinates.

®Earlier on we have used for this reference radius (in spherical approximation)
also the symbol R.
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What relationhip was there between M. Le Blanc and C.F. Gauss? Use
Google.

What makes the Somigliana-Pizzetti equation 4.6 valuable?

What are the defining parameters of the Geodetic Reference System
19807

Why does the spherical-harmonic expansion of the normal potential
contain only a small number of terms and coefficients?

Why doesn’t the spherical-harmonic expansion of the normal potential
contain any terms with order m # 0?

Why does the spherical-harmonic expansion of the normal potential
contain only terms with even degree numbers 7n?

Exercise 4—1: The Somigliana—Pizetti equation

Given gravity on the equator 7, and on the poles ;. What is gravity on
geodetic latitude ¢ = 45°? Derive an expression that may also contain
aand b.

. And what is gravity on the reduced latitude p = 45°? Compare with

the previous.

. Given the semi-major axis a and semi-minor axis b, what are the

differences, for the same point, between the different latitudes (geodetic
@, geocentric ¢, and reduced p) at most, in minutes of arc? You may
assume that the maximum happens at latitudes +45°.

. Compute for both a geodetic and a reduced latitude of 45° numerical

values of gravity for the case of the Grs8o reference ellipsoid.

Exercise 4—2: The centrifugal force

Given is the rotation rate of the Earth, radians per second: wg = 7292115 -
107 1s 1,

Compute (roughly) the centrifugal force caused by the Earth rotation
at Southern Finland (¢ = 60°, R = 6378 km, spherical Earth). In what
direction does the force point (sketch!)?

Exercise 4—2: The centrifugal force

2. How much does the centrifugal force contribute to local gravity? Both
as an acceleration and as a percentage.

3. Compute from the wg, value given above, the rotation time of the Earth
in hours. Why is it not precisely 24" [difficult]?
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Anomalous quantities of the
gravity field

5.1 Disturbing potential, geoid height, and deflections
of the plumb line

The first anomalous quantity, which we already discussed above, is the differ-
ence between the true gravity potential W and the normal gravity potential
U, the disturbing potential:

TEW-U.

All other anomalous quantities are various functions of this, like the geoid
height N and the plumb-line deflections ¢, 7. They are generally obtained by
subtracting from each other

1. a natural quantity related to the Earth’s real gravity field, and

2. a corresponding quantity related to the normal gravity field of the

reference ellipsoid of the Earth.
For example, deflections of the plumb line
E=®—¢
7= (A—A)cosg,

in which (®, A) are astronomical latitude and longitude, i.e., the direction
of the local plumb line, and the geodetic latitude and longitude (¢, A) form
correspondingly the direction of the surface normal on the reference ellipsoid.
See figure 5.1.

_103_
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Plumb-line ..~
deflections ¢, 1

Topography

Geoid height/N

Reference ellipsoid

JE—

Figure 5.1. Geoid undulations and deflections of the plumb line.

The geoid height or geoid undulation is
N=H-h

in which H is the orthometric height — reckoned from mean sea level — and
h the height above the reference ellipsoid.

Deflections of the plumb line are in Finland a few seconds of arc (”) in
magnitude, geoid undulations range from 15 to 32 m (for comparison, globally
the range of variation is —107m to +85m), relative to the Grs8o ellipsoid
as is today customary. At sea level, the plumb-line deflections — expressed
in radians! — equal the horizontal gradients of the geoid undulation. See
figures 5.1, 5.2.

For any reference ellipsoid, e.g., the Grs8o ellipsoid, there exists its own math-
ematically exact standard or normal gravity field, of which one equipotential
or level surface is precisely that reference ellipsoid. With the aid of this field
we may calculate for each gravity field quantity the corresponding normal
quantity, and by subtracting the two from each other we obtain again the
corresponding anomalous quantity.

For heights above the reference ellipsoid there exists an analoguous expres-
sion to that for orthometric heights, where U is the normal potential and -y

h —_/””Ldu
F w v U) .

normal gravity:

Disturbing potential, geoid height. ..
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Figure 5.2. A geoid model for Finland from 1984. Deflections of the plumb

line from observations in red (Vermeer, 1984).

The geoid height in point P is now

Np=hp—Hp =
W, u
:/ Plﬂw_ / Pl,_ryr_zr
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by re-naming the integration variables W, U — W’ and changing it to a metric
one: dW' = gdH.

In equation 5.1 the last term vanishes if we assume’ Uy = Wy. Now in the
definition of geoid heights, point P is at mean sea level — the zero point of
the height system used. It follows that also the first term vanishes (it would
in any case always be small, except in the mountains). So

Ur 1 1 T T

sz—/ —dU ~ —(Wp—Up) = = or N = ~. (5.2)
W Y Yp Yp Y

where we have substituted T = W — U, the disturbing potential. All quantities

are assumed to be at sea level. This is the famous Bruns> equation (Heiskanen

and Moritz, 1967, equation 2-144).

Figure 5.3 depicts the situation still better. In this figure, the gradient vectors
= grad W and 7 = grad U have lengths 3 and 34, f hich it foll

g = gra and 7 = gra ave lengths §7 and §p, from which it follows,

with equation T = W — U, that the separation between “matching” surfaces

W = Wp and U = Up, when Wp = Uy, is

_Ug-Up  Wp—Up T

N .
Y Y v

5.2 Gravity disturbances

The difference between the true and normal gravity accelerations is called
the gravity disturbance, 6g. An exact equation would be

o _ (OW U,
8=~\oH o)’

'This is not self-evident! In a local vertical datum the potential of the zero

point could well differ by even as much as a metre from the normal potential
of a global reference ellipsoid.

2Ernst Heinrich Bruns (1848 —1919) was an eminent German mathematician
and mathematical geodesist.

Gravity disturbances

Figure 5.3. Equipotential surfaces of the gravity field (W) and the normal
gravity field (U).

where differentiation takes place along the plumb line for W, and along the
ellipsoidal normal for U. The directions of plumb line and ellipsoidal surface
normal are actually very close to each other.

In spherical approximation we have

s (W ouy o
8= or or/)  or

We already expanded the disturbing potential into constituents for different
spherical-harmonic degree numbers — equation 4.8 — and now we obtain
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by differentiating with respect to r3:

d A,
5g(¢, A7) = _% =

(£ () )

%

) R n+1
% 2 (n+1) < ) Tu(¢, ), (5:3)
or on the Earth’s surface (r = R):
3g(¢, A, R) —Z (n+1) Tu(¢, A) - (5-4)

This is the spectral representation of the gravity disturbance on the surface of
the Earth — more precisely, on a sphere of radius R. As a suitable value for
the reference radius R one may take the equatorial radius a of a reference
ellipsoid for the Earth.

We can observe gravity disturbances only if, in addition to measuring the

_
H | p

P:s location in space, relative to the geocentre, so one may calculate normal
gravity yp = %—ﬂp
but traditionally it has been impossible. For this reason gravity disturbances

acceleration of gravity gp ( ) in point P, we have a way to measure
in the same point. Nowadays this is even easy using Gps,

are little used. One rather uses gravity anomalies, about which more below.

5.3 Gravity anomalies

Normal gravity is calculated as a function of location expressed in geodetic
co-ordinates (¢, A, h). However, in traditional gravimetric field work, before
the satellite positioning era, one only had access to the geodetic co-ordinates

3Note that, if the normal field that defines T has a reference ellipsoid centred
on the Earth’s centre of mass, and the implied total mass GM of the normal
field equals that of the true Earth, then the first two constituents Ty (¢, 1) =
Ti (¢,A) = 0, and the sum may be taken as } ;- , . This was assumed here.
See section 3.4.

Gravity anomalies

Topography

Telluroid P = observation point

Mean sea
level (geoid)

Ellipsoid

Figure 5.4. Reference ellipsoid, mean sea level (geoid), and gravity measure-

ment.

@ and A, not any accurate height / above the reference ellipsoid. One only
had access to the height H above sea level (the geoid), obtained, e.g., through
a national levelling network — or, in the worst case, barometrically.

This means that, though the true gravity g is measured in point P the height of
which above sea level is Hp, normal gravity -y must of necessity be calculated
in another point Q, the height of which above the reference ellipsoid is hg = Hp.
See figure 5.4.

In other words, the measured height of point P above mean sea level is sub-
stituted, brute-force style, into the normal gravity formula, that however
expects a height above the reference ellipsoid! This special trait of the definition
of gravity anomalies may be called a “free boundary-value problem”.
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According to this we calculate gravity anomalies as follows:

Agp=gp—r0=1(gp— 1)+ (P—70) =

_ (oW _oupy _(eu) ou
9H |, , n |, ol

on

o(W-1U) oy|
*TPJF(hP*hQ)*P
aT )
=— 2 4 (hp—Hp) ZL| =
P
aT )
=~ 3|,V om 2 =

_ ,alﬂfﬂ
~\ 90H ' yoH

using almost all equations above.

’
P

The equation derived looks familiar: it is the boundary condition of the third
boundary-value problem ( , , section 1-17). It enables
the solution of T in the exterior space, if Ag is given everywhere on the

Earth’s surface.
If we assume that the Earth’s normal gravity field is spherically symmetric,
we may approximate (exercise: show this!):

oT 2

in which » = R + H is the distance from the Earth’s centre.

By substituting into this the equation for g, and » = R, we obtain on the
Earth’s surface:

2
Ag=0og— T (56)
From this we obtain directly by using the above spectral representations 4.9,
and 5.4 for T and dg:

Ag:%i((nnLl

% \

2 n—1)
Choose the following notation, still on the Earth’s surface:

Ag = Z Agn,
n=2

Units used for gravity anomalies

in which the degree constituents of the gravity anomaly are

ot 11— 1
Agn = R Ty (5.7)

The presence of the factor n — 1 shows that gravity anomalies cannot contain
n = 1 constituents, even if T would contain them. It is always wise to choose
the origin of the co-ordinate system to be in the centre of mass of the Earth,
but if it is not, at least gravity anomalies do not change.

Equation 5.7 applies only on a spherical Earth of radius R. In the space out-
side the Earth we obtain, using equations 4.8, 5.3 and 5.5, the corresponding
equation

>
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5.4 Units used for gravity anomalies

The most common unit of measurement for gravity variations is the milligal.
The connection with the SI system is 1mGal = 10~>m/¢. Also uGal or
1078 m/s is used. In modern books are also used ™/s and nm/¢, which
formally belong to the st system. Nevertheless, milligals and microgals are
more familiar still, and correspond to 1ppm (part per million) and 1ppb
(part per billion) of ambient gravity close to the Earth’s surface.

A popular unit for measuring gravity gradients is the Ettvos, symbol E.
In sI units it is 1072572, corresponding to 10 *mGal/m. In table 5.1 we
give a few values in order to get an idea of the orders of magnitude of
phenomena. On the Earth’s surface the vertical gradient g—‘}; is on average

some —0.3mGal/m = —3000E.

5.5 The boundary-value problem of physical geodesy

As we explained in the above section, gravimetric measurement is more
complicated than just measuring the quantity %—Vr‘/. When we measure the
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Table 5.1. Orders of magnitude of gravity variations.

Phenomenon Fraction of gravity SI units mGal
Ambient gravity 1 9.8 980000
Variation with location +10~* +1073 4100
Difference equator — poles 0.5% 0.05 5000
Difference sea surface — 10 km high 0.3% 0.03 3000
Gravimeter accuracy +108-1077 +1077-10"% +0.01-0.1

radial derivative of the geopotential, we do it in a place we don’t precisely know.
Even if we knew the height of the measurement location above sea level,
that still doesn’t give us the measurement point’s location in space. This
location depends additionally on the location in space of sea level, i.e., the
geoid, specifically its height above or below the reference ellipsoid.

This is how we arrive at the third boundary-value problem+*. The boundary-
value problem of physical geodesy is to determine the potential V outside a body
if given on its surface is the linear combination

)%
aV +b—,
on
with a, b suitable constants. The variable 1 represents here differentiation in
the direction of the normal to the Earth’s surface, in practice the same as r or

h.

In physical geodesy is given, in spherical approximation, the following linear
combination (gravity anomaly, equation 5.6):

Ag=—=_—xT. (59)

4The third or mixed boundary-value problem is associated with Victor Gus-
tave Robin (1855-1897), a French mathematician. Then, the Dirichlet problem
could be called the first, the Neumann problem the second boundary-value

problem.

The boundary-value problem of physical geodesy

The equation, or boundary condition, 5.9 is called the fundamental equation of
physical geodesy.

Above we already obtained equations 3.8 and 3.12, that apply equally well to
the disturbing potential T as to the general potential V:

oT ) 1/R n+1
T (57

= T r
o R n+1
T= ;(7) Ta(p,A).

se= 3 (-2 (B) e,

n=0

or on the Earth’s surface (R = r):
dg=Y "9, 0) = Y Ag(,A),
n=0 n=0

where the quantities Ag,(¢,A) = ”T’lTn (¢,A) are defined in equation 5.7.
Remember that the functions Ag, (¢, A) are computable with the help of the
degree constituent equation 3.7 when Ag(¢, A) is known all over the Earth.

Observe also that the term n = 1 vanishes: Ag; = 0. We assume also
Ago = f% = 0, i.e., the true exterior potential, and thus the total mass
of the Earth GM, and her volume’, is in global average the same as the
normal potential and its assumed total mass, and the volume of the reference
ellipsoid. The assumption is largely justified because GM can be, and has
been, determined very precisely by satellites, and modern models for the
normal potential, like Grs80, are based on these determinations®.

5In fact, the atmosphere complicates this matter.

®Note, however, that Grs8o has an equatorial radius of 6378137.0m, while
the newer models like EGM2008 give a smaller value of 6378136.3m as
the location of global mean sea level. Uncertainty continues to be in the

decimetres.



Page 115

114

Anomalous quantities of the gravity field

Thus we obtain the solution also of this boundary-value problem in spectral
representation (which is thus valid in the whole exterior space) by using the

degree constituent equation” 3.7:

(E) " A (¢,A)

n—1

R & 2n+1 (R\"™ [1 L ,
=i Z“z :71 (7) //aAg(gb,/\)Pn(cosl[J) do’.  (5.10)

This is precisely the boundary-value problem that is created if everywhere
on the Earth, land and sea, surface gravity anomalies are given.

The integral equation corresponding to the above spectral equation 5.10 is
known as the Stokes® equation:

R Iy .
T = 3 [[ s ag(@, 1) i,

in which the Stokes kernel is

) =Y.

n=2

2n41 (R\"™

P <7) Py(cosy). (5.11)
In section 8.1 we will give a closed expression 8.2 for this function, for the
case ¥ = R, and a graph.

5.6 The telluroid mapping and the “quasi-geoid”

If we measure the astronomical latitude and longitude ®, A and interpret
them as geodetic (geographical) co-ordinates ¢, A, and also interpret the po-
tential difference — (W — W) as a measure for the height above the reference
ellipsoid h, we perform, as it were, a mapping, which adds to every point P a

def

7We write Ag(¢’,A)
Earth sphere » = R.

Ag(¢’, A, R), the integral being evaluated on the

8Sir George Gabriel Stokes Prs (1819 -1903) was an Irish-born, gifted mathe-

matician and physicist making his career in Cambridge.

The telluroid mapping and the “quasi-geoid”

corresponding point Q, the geodetic co-ordinates of which are the same as the
natural co-ordinates of point P.

This approach is called the telluroid mapping. The telluroid is the surface
that follows the shapes of Earth’s topography, but is everywhere below
the topography by an amount ( if positive, or above it by an amount —(
otherwise. The quantity ( is called a height anomaly.

The telluroid mapping is an important tool in Molodensky’s gravity field
theory. It is however a pretty abstract concept. One may say that the telluroid
is a model of the Earth’s surface, obtained by starting from the assumptions
that

o the true potential field of the Earth is the normal potential, and

o the mathematical mean sea surface or geoid, the reference surface for

height measurement, coincides with the reference ellipsoid.

In other words, the telluroid is a model for the Earth’s topographic surface
that is obtained by taking levelled heights — more precisely, geopotential
numbers obtained from levelling — as if they represented differences in
normal potential with that of the reference ellipsoid.

In practice, a map of values ( is often called a “quasi-geoid” model. The
quasi-geoid is usually close to the geoid, except in the mountains, where the
differences can exceed a metre.

One should however remember, that the height anomaly { is defined on
the topographic surface, a surface that is quite rough in many places. This
means also that all variations in topographic height will be reflected also as
variations in the “quasi-geoid”, in such a way, that the quasi-geoid correlates
strongly with the small details in the topography. One can thus not say that
the shape of the quasi-geoid only describes the Earth’s potential field. In it,
variations in potential and variations in topographic height are hopelessly

mixed up.

This is why the quasi-geoid is an unfortunate compromise, a concession to
“reference-surface thinking”, which only really works within the classical
geoid concept. Better stick — within Molodensky’s theory — to the concept



Page 117

116

Anomalous quantities of the gravity field

height anomaly, which is a three-dimensional function or field

XY, Z) =g, Ah).

5.7 Free-air anomalies

If we measure gravity g in point P, the height of which over sea level is H
and its latitude ®, we may calculate the gravity anomaly Ag in the point as

follows:
def

Ag=g—7(H®),
in which y(H, ®) is normal gravity calculated according to its definition at
height H and latitude ®.

This is how we define free-air anomalies.

We linearize this as follows:

Ag=g—v(H®) ~

~ o S H-T o &
~ 9y 9 _
~ g 7(0,¢) ~H2T — (H 1) T =

9y

where we make the approximation, that the vertical gradient ‘3—; of normal
gravity is constant®.

Thus, free-air anomalies can be calculated in a simpler way. The gravity
formula of the normal field 4.7 gives for latitude 60°:

v =974147.516 — 0.3084494 H + ... mGal.

9For greatest precision one should consider that also the latitude ® may
not be a latitude on a geocentric reference ellipsoid, but, e.g., astronomical
latitude, or latitude in some old national co-ordinate system computed on a
non-geocentric ellipsoid, like in Finland xkj, the National Grid Co-ordinate
System, which was computed on the Hayford ellipsoid. The error caused by
this is however of order a thousand times smaller than the effect caused by
H-h

Self-test questions

So, in linear approximation (close to the Earth’s surface) gravity attenuates
some 0.3 mGal for every metre in height. This value is worth committing to

memory.

An approximate equation for calculating free-air anomalies then is
Agp = gp — Yo(¢) +0.3084 [mGal/m| H, (5.12)

in which 70(¢) £ (0, ¢), normal gravity at sea level, is only a function of
latitude. In a country like Finland, equation 5.12 is often sulfficiently precise,

though today also the evaluation of original equation 4.7 is easy.

Free-air anomalies are widely used. Generally, when one discusses gravity
anomalies, one means just this, free-air anomalies. They describe the Earth’s
exterior gravity field, including mountains, valleys and everything.

Questions:

1. If gravity on the Earth’s surface is 9.8 m/s?, at what height will
gravity disappear, as computed according to the above men-
tioned vertical gravity gradient —0.3 mGal/m?

2. How physically realistic is this?
Answers:
1. At —0.3mGal/n, it takes %m = 3267 km to go to zero.

2. Not very. The gravity gradient itself drops quickly from the value
of —0.3mGal/m going up, so this linear extrapolation is simply

wrong.

Self-test questions

F
1. How do deflections of the plumb line and geoid heights relate to each
other?

2. What is the fundamental equation of physical geodesy in spherical
approximation?
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[e%p] 2015 Mar 22 17:40:39

Figure 5.5. Free-air gravity anomalies for Southern Finland, computed from
the EGM2008 spherical-harmonic expansion. Data © Bureau
Gravimétrique International (BcI) / International Association of

Geodesy. Web service

3. In what way is a gravity disturbance different from a gravity anomaly?

4. What units are used for measuring gravity anomalies and gravity
gradients? How are they related to the s1 system?

5. How does the geoid height and the disturbing potential relate to each
other?

6. Explain the telluroid mapping and height anomalies.

Exercise 5—1: The spectrum of gravity anomalies

Exercise 5 —1: The spectrum of gravity anomalies

Use equation 5.7. If we assume that the mean magnitude of the spectral

components Ag, of gravity anomalies

Bg & ﬁn | 352 0.0y d0

does not depend on the chosen degree number 7, how then does the similarly

defined T, depend on n?

In other words: which degree numbers of the gravity field are relatively

strongest in the disturbing potential, and which in the gravity anomalies?

Exercise 5 —2: Deflections of the plumb line and geoid
tilt

If, in the North-South components of plumb-line deflections in some country,
there is a systematic error of one arc second, what error does this cause in the
difference N, — N; between the geoid heights in points 1 and 2, inter-point
distance approx. 1000 km? See figure 5.1.

Exercise 5 —3: Gravity anomaly, geoid height

In Finland there is a place where the gravity anomaly (free air) is Ag =
100mGal = 1073m/s2. In the same place the disturbing potential T is
200m?s 2.
1. Using the equation
_or 2
§=m R
calculate 3T, and compare it with the quantity 2T. Which of the two

T,

(3—5 or %T) dominates?

2. Using the Bruns equation

woT
Y

where 7 is average gravity 9.8 m/s2, compute the geoid height N of the

point.
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6.1 General

We see that integral equations, like Green’s third theorem 1.24, offer a pos-
sibility to calculate the whole exterior potential of the Earth — as well as
all quantities that may be calculated from the potential, like the acceleration
of gravity, etc. — from observed values V and %—‘Vf on the boundary surface
only. Green’s third theorem is but one example out of many: every integral
theorem is the solution of some boundary-value problem.

There are three alternatives concerning the choice of boundary surface:

1. Choose the topographic surface of the Earth.

2. Choose mean sea level, more precisely, a equipotential surface close to
mean sea level called the geoid.

3. Choose the reference ellipsoid.

o Alternative 1 has been developed most of all by the Molodensky school
( , ) in the Soviet Union. The advantage of the
method is that we need no gravity reduction, as all significant masses are
already inside the boundary surface. Its disadvantage is, that the, often
complex, shape of the topography must be taken into account when
the boundary-value problem is formulated and solved.

o Alternative 2 is classical geoid or geopotential determination. In this
case geophysical reductions are needed to the input gravity data: some

- 121 —
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masses are outside the computation boundary and need to be compu-
tationally moved to the inside.

A further complication of the method then is, that the geopotential or
geoid solution obtained is not that of the original mass distribution,
but of the reduced one. This surface is called the co-geoid. We need
a “restoration step” where this influence of the reduction step on the
geopotential and geoid is determined and reversed".

In the literature this method is also referred to as the Remove-Restore
method.

o Alternative 3 has been used rarely, because it has not been traditionally
possible to do gravity measurements in a location known in the absolute
sense, relative to the geocentre or the reference ellipsoid. Nowadays
this is possible using GNss, e.g., in Antarctica and Greenland’s interior,
where there is no sea-level bound height system.

We may expect this approach to gain more traction as heights, also of
gravimetric stations, are determined more and more directly with Gnss.
See, e.g., ( ).

6.2 Bouguer anomalies

Free-air anomalies depend on the topography. This is clear, because gravity
itself contains the attractive effect of topographic masses. A map of free-air
anomalies shows the same small details as seen in the topography. One way
of removing the effect of the topography is the so-called Bouguer* reduction.

1This influence is called the “indirect effect”.

2Pierre Bouguer (1698 —1758) was a French professor in hydrography, who
participated in the public discussion on the figure of the Earth, and in 1735-
1743 led an expedition of the French Academy of Sciences doing a grade
measurement in Peru, South America, at the same time when De Maupertuis
carried out a similar grade measurement in Lapland. In addition to geodesy,

he was also active in astronomy.

Bouguer anomalies

Figure 6.1. The attraction of a Bouguer plate.

6.2.1 Calculation

We calculate the effect of a homogeneous plate on gravity. Assume that the
plate is infinite in size; thickness d, matter density p, and height of point P
above the lower surface of the plate H. See figure 6.1. The attraction in point
P (which is directed straight downward for symmetry reasons) is obtained

by integrating. The volume integral to be computed has a volume element
AV = ds- dz-sdn

in the cylindrical co-ordinates (s, z, a). We transform this to the co-ordinates
(B,z,a). We forget about « and study the surface element (figure6.1, top
right)
dsdz = L dBdz,
cos

in which the determinant of Jacobi needed is seen.
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We carry out the integration:

def
a= |l =

= G///C"s/8 v =
m cosﬁ
= Gp/ / / ~dsdz - sda =
2 cos,B L
—Gp/0 /0 /0 7 -Cosﬁdﬁdz-sda—
d rr/2 g
:27er/ / —dBdz =
o Jo ¢
d /2
:27er/ (/ sinﬁd/%) dz
0 \Jo

Here, the integral

/2
/ sinBdp = [—cos Bl =1,
0

and the end result is
a =2nGpd. (6.1)

This is the formula for the attraction of a Bouguer plate. As a side result we
obtain the attraction of a circular disk of radius r:

/ﬁO(Z) sinBdp = [~ cos Bl =1 cos (Bo(2)),
0

and the whole integral

2nGp / ( \/%) dz.

The indefinite integral is

H—-z _
/\/(171—2)2442{le

Substituting the bounds yields

d
/ 1l ———— | dz=d+/(H- d + 72— H2+ 712
: (H =2+

(H—2)*>+12.

Bouguer anomalies

Evaluation point P

Bouguer plate 1

‘Topography,

Figure 6.2. The Bouguer plate as an approximation to the topography.

If we define
0z) ¥ \/(H=-2)*+72

we obtain for the whole integral

2nGp(d + ¢(d) — £(0)).

In the limit r — oo, and thus ¢(d) — (o, this is identical to equation 6.1.

Bouguer anomalies are computed in order to remove the attraction of masses
of the Earth’s crust above sea level, i.e., the geoid. The true topography is
approximated by a Bouguer plate, see figure 6.2. There is no standard way to
treat sea-covered areas:

o Sometimes maps are drawn on which there are Bouguer anomalies
over land and free-air anomalies over the sea.

o A more correct way is to replace sea water by a rocky Bouguer plate,
the thickness of which equals the local sea depth, i.e., the bathymetry.

The calculation goes as follows:
Agp = Agra —2tGpH = Agpa — 0.1119H, (6.2)

where we assume for the density p of the plate an often used value for the
average density of the Earth’s crust, p = 2670ks/m>. By substituting into this
equation 5.12 we obtain

Ags = gp — 70(p) + (0.3084 — 0.1119)H = gp — 7o(¢) +0.1965H. (6.3)
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Figure 6.3. The behaviour of different anomaly types in mountainous terrain.

The quantity Agp is called a (simple) Bouguer anomaly.

The difference between the attraction of a Bouguer plate and that of the true
topography is called the terrain correction TC (the volumes I and II in figure
6.2). We shall return to its computation later on.

6.2.2 Properties

Bouguer anomalies are, unlike free-air anomalies that vary on both sides of
zero, especially in the mountains strongly negative. For example, if the mean
elevation of a mountain range is H = 1000 m, the Bouguer anomalies will, as

systematiikka a consequence of this, contain a bias of 1000 x (—0.1119 mGal) = —112mGal,

about —100mGal for every kilometre of elevation.

The advantage of Bouguer anomalies is their smaller variation with place. For
this reason they are suited especially for interpolation and prediction of gravity
anomalies, in situations where the available gravimetric material is sparse.

However, one then has to have access to topographic heights.

6.3 Terrain effect and terrain correction

Using the simple Bouguer reduction does not remove precisely the attractive
effect of the whole topography. Figure 6.2 shows that we make two types of

error:

Terrain effect and terrain correction

18

Reti¥pd 2015 Mar 23 16:56:09

Figure 6.4. Terrain corrected Bouguer anomalies for Southern Finland, com-
puted from the spherical-harmonic expansion EGm2008. Data
© Bureau Gravimétrique International (sc1) / International As-
sociation of Geodesy. Web service Note, in

comparison to figure 5.5 on page 118, the strong negative bias of

Bouguer anomalies — although part of this is due to post-glacial

isostatic unbalance and also visible in the free-air map. Bouguer

anomalies are also smoother, but that is harder to see here, as

Southern Finland is already a smooth area.

o The attraction of volumes I is taken along, though there is nothing
there.

o The attraction of volumes II, where there actually is stuff, is ignored.

Both errors work in the same direction! Because volumes I are below the point of
evaluation, their attraction — which the simple Bouguer reduction considers
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Figure 6.5. Calculating the classical terrain correction by the prism method.

present, and removes — would act downward. And because volumes II are
above the point of evaluation, their attraction — which in the simple Bouguer
reduction is not corrected for — acts upward. The error made is in the same
direction as in the previous case.

The terrain correction is always positive!

We write
Agh = Ags + TC,

where TC — the “terrain correction” — is positive. Agf is called the terrain
corrected Bouguer anomaly.

The terrain correction is calculated by numerical integration. Figure 6.5 shows
the prism integration method, and how both prisms, I and II, lead to a positive
correction, because prism I is computationally added and prism II removed
when applying the terrain correction. One needs a digital terrain model,
pTM, which must be, especially around the evaluation point, extremely dense:
according to experience, 500 m is the maximum inter-point separation in a
country like Finland, in the mountains one needs even 50 m. The systematic
nature of the terrain correction makes a too sparse terrain model cause,

possibly serious, biases in the insufficiently corrected gravity anomalies.

For computing the terrain correction with the prism method we use the
following equation, assuming a constant crustal density p and a flat Earth, in

Terrain effect and terrain correction
rectangular map co-ordinates x, y:

1 +D  p+D 2
TC(x,y) = EGP/,D [D (H(x’,y/) fH(x,y)) 3 dx dy,

in which

2
(= wx’ —0 (Y — )+ (%(H(xﬁy’) - H(w))

T
is the distance between the evaluation point [ x y H(xy) ] and the
T

1 . Of course

centre point of the prism [ x vy 3(Hxy) +HEX,Y)
this is only an approximation, but it works well enough in terrain where
slopes generally do not exceed 45°. In the integral above, the limit D is
typically tens or hundreds of kilometres. In the latter case, the curvature of
the Earth already starts having an effect, which the formula does not consider.

The values of the terrain correction TC vary from fractions of a milligal
(Southern Finland) to hundreds of milligals (high mountain ranges). In the
“arm” of Finland — the North-Western, somewhat mountainous border area

with Sweden and Norway — the terrain correction may be tens of milligals.

In figure 6.6 we depict the stages of calculating Bouguer anomalies from
gravity observations through terrain correction, Bouguer plate correction and
free-air reduction.

6.3.1  Example: applying the terrain correction in a special case

Given the special terrain shape rendered in quasi 3D in figure 6.7. Here, the
height differences are PQ’ = 300m and QQ' = 200 m. Rock density is the
standard crustal density, 2670 kg/ms.

Questions:

1. Calculate the terrain correction at point P (hint: use the attraction
formula for the Bouguer plate). Algebraic sign?

2. Calculate the terrain correction at point Q. Algebraic sign?
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on terrain Terrain Bouguer
correction plate
- correction

Free-air

reduction Subtract normal gravity
® to sea at sea level:
\}/ level —70(9)

Figure 6.6. The steps in calculating the Bouguer anomaly. Note that the
reduction to sea level uses the standard free-air vertical gravity
gradient, —0.3084 mGal/m, i.e., the vertical gradient of normal gravity.

3. If in point P is given that the free-air anomaly is 50 mGal, how

much is then the Bouguer anomaly in the point?

4. If in point Q is given that the Bouguer anomaly is 22 mGal, how
much is then the free-air anomaly in the point?

Answers:

1. The terrain correction at point P is the change in gravity, if the

Q Sea level

Figure 6.7. A special terrain shape. The vertical rock wall at PQ is also
straight on a map and extends to infinity in both directions.

terrain is filled up on the left side up to level 300 metres. This
means the adding of half a Bouguer plate, thickness 100 m, below

the level of P. The effect (projected onto the vertical direction) is

TC = % -2nGp-H = % -0.1119 mGal/m - 100 m = 5.595 mGal.

. The terrain correction at point Q is the change in gravity, if we

remove the half Bouguer plate to the right of the point, which is
100m thick. Its vertical gravity effect is, as calculated above,

TC = 5.595mGal,

and, because a semi-plate is removed that is above the level of
point Q, the algebraic sign of TC is again positive.

3. Free air to Bouguer:

Agra(P) 50.000 mGal
TC +5.595 mGal
Bouguer plate removal, 300 m —33.570mGal
Ags(P) 22.025 mGal
Agra  +TC —Plate AgB

4. Bouguer to free air:

Ags(Q) 22.000 mGal
Bouguer plate addition, 200 m +22.380 mGal
TC “uncorrection” —5.595mGal
Agra(Q) 38.785mGal

Agg  +Plate —-TC Agra
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6.4 Spherical Bouguer anomalies

More recently, also spherical Bouguer anomalies have been calculated, e.g.,

(2012); (2009); (2014). In this
calculation, the topography and bathymetry of the whole Earth is taken into
account, in spherical geometry (the error caused by neglecting the Earth’s
flattening is in this calculation negligible). This causes four differences with
the Bouguer plate anomalies:

1. the attraction of a Bouguer shell of thickness H is 47GpH, twice as
much as the corresponding Bouguer plate attraction. The remote part
of the shell contributes as much attraction as the neighbourhood of the

evaluation point!

2. The bathymetry of the oceans is accounted for> by replacing the water
by standard-density crustal rock; this contribution to the anomalies is
positive.

3. Also the topography and bathymetry of remote parts of the globe are
taken into account realistically. As most of the Earth is covered by deep
ocean, this causes a strong positive general bias, which in moderately
elevated areas like Southern Finland more than cancels the negative
one caused by the local topography!

4. As now also the terrain correction is calculated over the whole globe, in
spherical geometry, it is no longer a small number and may be strongly

negative as well as positive.

Between the planar and spherical Bouguer anomalies exists a large systematic
difference, which however is very long-wavelength in nature, and even in an
area the size of Australia almost a constant, —18.6 mGal within a variation
interval of a few milligals. The details in the Bouguer maps look the same

( , 2009).

Just for fun, we compute the net mass effect of doing the complete spherical
Bouguer reduction globally. The mean height of the land topography is

30ne can do so, and often does, also in connection with the Bouguer plate

correction.

Helmert condensation

800m, land occupying 29% of the globe. The mean ocean depth is 3700 m,
corresponding to an equivalent rock depth to be “filled in” of

2.67 —1.03

3700
T 67

m = 2272 m,

assuming a density for crustal rock of 2670ke/m* and a sea-water density of
1030 k8/m?, and ocean occupying 71% of the globe. The sum weighted by area
is thus

(0.29 x 800 — 0.71 x 2272) m = —1381 m.

Interpretation: there is not enough topography to fill all of the oceans, even
if we’re allowed to compress sea water into standard crustal rock. If
we try this bulldozing experiment, we’ll end up 1381 m short.

If, instead, we add standard crustal rock to end up at current sea level
— the definition of spherical Bouguer reduction! — we’ll add to the
Earth’s attraction as sensed from space an amount 4771Gp x 1381m =
309 mGal.

The global mean planar Bouguer reduction, as well as the difference
between planar and spherical Bouguer reductions, on average over
the globe, will be half of this, ~ +155mGal. Even coastal locations,
at zero height above sea level, will have similarly positive spherical

Bouguer anomalies!

6.5 Helmert condensation

An often used method, proposed by Friedrich Robert Helmert* , for removing
the effect of the masses exterior to the geoid is condensation. In this method,
we shift mathematically all the continental masses vertically downward to
mean sea level into a simple mass density layer x = Hp — more precisely:

x = Hp (1 + %) (6.4)

on a spherical Earth, radius R — where H is the height of the topogra-
phy above sea level and p its mean density. The advantage of Helmert
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Figure 6.8. Helmert condensation and the changes it causes in the gravity
field.

condensation over Bouguer reduction is, that no mass is being removed. The
Bouguer reduction amounts to the computational removal of topographic
masses on a large scale. Therefore, unlike with Bouguer reduction, in Helmert
condensation gravity anomalies will not change systematically.

In appendix D we derive series expansions in spherical geometry, which
describe both the external and the internal potential as functions of the
“degree constituents” of the various powers of the topography H(¢$, A). The
extensively presented derivation in the appendix is much used in gravity
field theory to model the gravity effect of the topography. In this theory,
issues of convergence are difficult, though we gloss over those here.

4Friedrich Robert Helmert (1843 —1917) was an eminent German geodesist
known for his work on mathematical and statistical geodesy.

Isostasy

TR Kot~

Figure 6.9. Friedrich Robert Helmert. Humboldt University Berlin (2017).

6.6 Isostasy

6.6.1 Classical hypotheses

Already in the 18th and 19th centuries, e.g., thanks to Bouguer’s work in
South America, as well as that of British geodesists in the Indian Himalayas, it
was understood that mountain ranges weren't just piles of rock on top of the
Earth’s crust. The gravity field surrounding the mountains, specifically the
plumb line deflections, could only be explained by assuming that under every
mountain range there was also a “root” made from lighter rock species. The
origin of this root was speculated to be the almost hydrostatic behaviour of
the Earth’s crust over geological time scales. This assumption of hydrostatic
equilibrium was called the hypothesis of isostasy, also isostatic compensation.

Back then, unlike now, it was not yet possible to get a precise or even
correct picture using physical methods (seismology) of how these mountain
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Plumb-line deflections

Geoid

Figure 6.10. Isostasy and the bending of plumb lines towards the mountain.

roots were really shaped. That’s why simplified working hypotheses were
formulated.

One older isostatic hypothesis is the Pratt-Hayford hypothesis. This was
proposed by J.H. Pratt> in the middle of the 19th century (Pratt, 1855, 1859,
1864), and J.F. Hayford® developed the mathematical tools needed for com-
putation. According to this hypothesis, the density of the “root” under a
mountain would vary with the height of the mountain, so that under the
highest mountains would be the lightest material, and the boundary between
this light root material and the denser Earth mantle material would be at a
fixed depth. This model, which nowadays finds little acceptance anymore, is
illustrated in figure 6.11.

5John Henry Pratt (1809 —1871) was a British clergyman and mathematician
who worked as the archdeacon of Kolkata, India. Wikipedia, John Pratt.

%John Fillmore Hayford (1868 -1925) was a United States geodesist who
studied isostasy and the figure of the Earth.

Isostasy
Mountains
Compen-
sation
depth
Compen-
- ‘sation
level

Mantle:

Figure 6.11. Pratt-Hayford isostatic hypothesis.

Another classical isostatic hypothesis is due to G.B. Airy”. Because V. A.
Heiskanen® used it extensively and developed its mathematical form, it is
called the Airy—Heiskanen model. In this model it is assumed that the
mass density of the “root” is fixed, and that the isostatic compensation is
realized by varying the depth to which the root extends down into the Earth’s
mantle. In our current understanding this corresponds better to what is really
happening inside the Earth. This hypothesis is illustrated in figure 6.12.

6.6.2 Calculation formulas

Airy’s isostatic hypothesis assumes that in every place the total mass of a
column of matter is the same. So, let the density of the Earth crust be p,

7George Biddell Airy rrs (1801 —1892) was an English mathematician and
astronomer, “Astronomer Royal” 1835—1881.

8Veikko Aleksanteri Heiskanen (1895-1971), “the great Heiskanen” (Ier-
mans, 2007). was an eminent Finnish geodesist who also worked in Ohio,
USA He is known for his work on isostasy and global geoid modelling. See
Kakkuri (2008).

137
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Figure 6.12. Airy—-Heiskanen isostatic hypothesis.

the density of the mantle pr,, and the density of sea water p,,; sea depth d,
crustal thickness ¢ and topographic height H. We have

tpc+dpw—(t+d)pm=c:>t=_w
Om — Pc
on the sea, and
Hom — ¢
toc—(t—H)pm=c = t=
pe—( )p F—

on land. ¢ is a suitable constant’. Here we have conveniently forgotten about
the curvature of the Earth, i.e., we use the “flat Earth model”.

Under land, the depth of a mountain root is

e t_H— Hpm —c¢ _ Hpm —hpe _
Pm — Pc Pm — Pc

Hp.—c¢
Pm — P

91ts dimension, after multiplication with ambient gravity g, is pressure: accord-

ing to Archimedes’ law, the pressure of the crustal (plus sea-water) column
minus the pressure of the column of displaced mantle material.

Isostasy

Figure 6.13. Quantities in isostatic compensation.

Similarly under the sea

r—trd— _4om—pw) tc dom —dpe _

Pm — Pc Pm — Pc

d (pe —pw) +¢
Pm — Pc

Note that the constant ¢ is arbitrary and expresses the fact that the level from
which one computes the depth of the root — less precisely, the “average
thickness of the crust” — can be chosen arbitrarily.

Another approach: instead of c, use the “zero topography compensation level”
to, to be computed from the above equations by setting H = d = 0:

to (e — pm) = c.
This yields under the land the root depth
Hpc —to (oc — Pm 5
o Hoe—tolpe—pm) _ 0\ Pe ©65)
Pm — Pc Pm — Pc

and under the sea

;= _d(Pc_PW)+t0(Pc_Pm) — _ch—Pw
- = 1o 7
Pm — Pc Pm — Pc

somewhat simpler equations that are also more intuitive:

6.6)

Hpe + (=7) (om — pc) = —to;
(—=d) (pc — pw) + (=7) (Pm — pc) = —to.
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In other words,
Y (deviation x density contrast) = const.
interfaces
However, the effect of the different isostatic hypotheses on gravity is pretty
much the same: the hypotheses can not be distinguished based on gravity
measurements only. The effect of the hypothesis on the geoid is stronger.

6.6.3 Example: Norway

The Southern Norwegian Hardangar plateau (Hardangarvidda) is a highland at,
on average, 1100 m above sea level. It is the largest peneplain in Europe, a
national park and a popular tourist attraction, being traversed by Bergensbanen,
the highest regular railway in Northern Europe.

The Norwegian Sea is the part of the Atlantic Ocean adjoining Norway, and
does not belong to the continental shelf. It is on average 2 km deep.

Questions:

1. What is the depth of the root under the Hardanger plateau,
relative to the compensation depth t¢?

2. What is the negative depth of the anti-root under the Norwegian
Sea, relative to the same compensation depth?

3. What is the relative depth of the root of the Hardanger plateau,
compared to the nearby Norwegian Sea?

Answers:

1. We use the equation 6.5, finding

k: 3
rtg= H—P  —1100m x —2070%®/m

O — e 3370 — 2670ke/my 196

Here we have used standard densities for crustal and mantle
rock, respectively.

2. We use the equation 6.6, finding

2670 — 1027 kg/m?

g gPe T Pw 2670 — W7 %/ m”
r—to=—d 2000 m X o 2670 ke /o

pm _pc

using the standard density value for sea water.

= —4694m,

Isostasy

Mid-Atlantic ridge
‘ Plate motion
. Deep-sea trench

Lithosphere
Asthenosphere

Benioff'zone.

Figure 6.14. The modern understanding of isostasy and plate tectonics. Deep-
sea trenches are known to be in isostatic disequilibrium.

3. The depth contrast between root and anti-root is 4196 —
(—4694) m = 8890 m (for perspective, Mount Everest is 8848 m
above sea level).

6.6.4 The modern understanding of isostasy

Nowadays we have a much better understanding of the internal situation in
the Earth. However, isostasy continues to be a valid concept. A more realistic
picture of the internal structure of the Earth is given in figure 6.14.

An important subject for current research is the effect on vertical motion
of the Earth’s crust of the growing and melting of the ice masses of the
Earth, like the continental ice sheets. To this belongs both the direct effect
of the varying ice masses, and the effect of the changes caused in the water

Conrad
discontinuity

Mohorovici¢
discontinuity

Bottom of
lithosphere

660 km
discontinuity

mannerjaatikot
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masses of the ocean. So-called paleo-research concentrates on the changes
over the glacial cycle, while modern retreats of glaciers, e.g., in Alaska and
on Spitsbergen, cause their own, observable local uplift of the Earth’s crust.

More in chapter 12.

6.6.5 Example: Fennoscandian land uplift

During the last glacial maximum, some 20000 years ago, Fennoscandia was
covered by a continental ice sheet of thickness up to 3 km.

Questions:

1. How much was the Earth’s surface depressed by this load, as-
suming isostatic equilibrium?

2. Currently the land is rising in central Fennoscandia, where the
ice thickness was maximal, at a rate of 10 mm/a. How long would

it take at this rate for the depression to disappear?
Answers:

1. We assume for the ice density a value of 920kg/m?. Then, with
an upper mantle density of 3370ks/m? — note that it is Earth’s
mantle material that is being displaced by the ice, the Earth’s
crust just transmits the load! See figure 12.1a — we find for the
depression:

920 k/m
3370ke/m3
2. At the rate of 10mm/a it will take 819m/0.01m/a = 81900 years

total. Part of this uplift has already taken place since the last

AH = 3000m x =819 m.

deglaciation.
In reality, of course, the rate has decreased substantially, and will

continue to decrease, over time.

6.7 Isostatic reductions

The computational removal of both the topography and its isostatic com-
pensation from the measured quantities of the gravity field is called isostatic

Isostatic reductions

reduction. It serves two purposes.

1. By removing as many as possible “superficial” effects from the gravity
field, we are left with a field where only the effect of the Earth’s deep
layers remains. This is useful for geophysical studies.

2. These “superficial” effects are also generally very local: in spectral
language, very short wavelength. By removing those, we are left with a
residual field that is much smoother, and that can be interpolated or
predicted better. This is important especially in areas where there is a
paucity of real measurement data, like the oceans, deserts, polar areas
etc.

For example, isostatic anomalies, i.e., free-air anomalies to which isostatic
reduction has been applied, are very smooth (like also Bouguer anomalies),
and their predictive properties are good. However, unlike Bouguer anomalies,
isostatic anomalies are on average zero. They lack the large bias that makes
Bouguer anomalies strongly negative especially in mountainous areas (see
section 6.2). This of course is because isostatic reduction is only the shifting
of masses from one place to another — from mountains to roots beneath the
same mountains, the mass deficit of which is pretty precisely the same as the
mass of the mountains themselves sticking out above sea level — rather than
removal of masses, which is what Bouguer reduction does.

The reduction methods used in isostatic calculations are the same as in other
reductions, and we will discuss them later: numerical integration in the
space domain — grid integration, spherical-cap integration, least-squares
collocation (Lsc), finite elements, etc. — or in the spectral domain (rFr, “Fast
Collocation”, etc.).

The question of the hypothesis assumed to apply is a more interesting one.
Traditionally, the Pratt or Airy hypotheses have been used, developed into
quantitative methodologies by Hayford or Heiskanen or Vening Meinesz .
A newer approach has been to use real measurement data from seismic

"°Felix Andries Vening Meinesz (1887 —1966) was a Dutch geophysicist, geode-
sist and gravimetrist. He wrote together with V. A. Heiskanen the textbook
The Earth and its Gravity Field (1958).
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Figure 6.15. Isostatic gravity anomalies for Southern Finland. Airy-Heis-
kanen hypothesis, compensation depth 30km. Data © Bureau
Gravimétrique International (BcI) / International Association
of Geodesy, World Gravity Map project. Web service

. Note that here, on the thick, rigid Fennoscandian
Shield, the local features of the topography are not isostatically
compensated and the map looks rather similar to the free-air
anomaly map 5.5 on page 118.

tomography in order to model the interior structure of the Earth. With real
measurement data, if reliable, one should get better results.

6.8 The “isostatic geoid”

Let us look at how the “isostatic geoid”, more precisely the co-geoid of isostatic
reduction, is computed. Isostatic reduction is one possible method for com-

The “isostatic geoid”

putationally removing the masses outside the geoid, in order to formulate a
boundary-value problem on the geoid.

We can show ( , page 142), that the isostatic co-
geoid is under the continents as much as several metres below the geoid, i.e.,
the indirect effect (“Restore” step) is of this order. Under the oceans, similarly

the isostatic co-geoid is somewhat above the geoid.

As one of the requirements for geoid determination methods is a small
indirect effect, it follows that isostatic methods are not (contrary to what is
said on page 152) the best possible if the intent is
to calculate a model of the geoid or quasi-geoid representing the exterior
potential'*. However, isostatic methods are very suitable for elucidating
the interior structure of the Earth, because both the topography and the
“impression” it makes on the Earth’s mantle, the isostatic compensation, are
computationally removed. Research has shown that the great topographic
features of the Earth are some 85 — 90% isostatically compensated. This is
valuable information if no other knowledge is available.

This is the second reason why the isostatic geoid is of interest: the gravity
field of an Earth from which the effect of mountains has been removed
completely — mountain roots and all — can uncover physical unbalances
existing in deeper layers, and processes causing these. Such processes are
especially convection currents in the Earth’s mantle as well as the possible
effect of the liquid core of the Earth on these currents. Interesting correlations
have been found between mantle convection patterns, the global map of
the geoid, and the electric current patterns in the core causing the Earth’s
magnetic field ( , ; , ; , ).

Isostatic reduction consists of two parts:
1. computational removal of the topography
2. computational removal of the isostatic compensation of the topography.

It is possible to calculate both these parts exactly using prism integration,
see section 6.3. Here however we shall gain understanding by a qualitative

Of course Bouguer reduction is even worse! The indirect effect can be
hundreds of metres.
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approach. We approximate both parts with a single mass density layer, density,
e.g., k = pH for the topography. We place the first layer at level H = 0,
and the second, density -«, at compensation depth H = —D. The situation is
depicted in figure 6.16.

In the following we use the “generating function” equation 8.5,

S} R n+1
% = % ) (—) Py(cosp),

n=0 r

together with the single mass density layer equation 1.15:

V:G// Eazs:GRz// o,
surface 14 surface 14

We obtain for the potential field mass density layer at sea level, when also
the evaluation point is placed at sealevel, H=0 = r = R:

Trop = GR//K Z P, (cos ) do
o n=0

and with the density layer at compensation depth (source level R — D, evalu-

(R D> P, (cos ) do =
n=0

) ' P, (cos ) do,

ation level R):

Teomp — GR2 //
— —GR // (

from which the combined effect (1 = 0 drops out)

R-D

0Tiso = — (Tiop + Teomp) = —GR // Z [1 - (7> ] Py (cos ) do.
U (6.7)

Here, the mass density per unit of surface area « is
PCH if H>0,
K=
(pe —pw) H if H<O,

i.e., we replace ocean depths by equivalent “dry” depths™>. Now we use

*2This works on dry land and on the ocean. Lakes, glaciers and areas like the
Dead Sea are more complicated.

The “isostatic geoid”

Sea level

-+ 0000000 @i 0000 O b0
Compensationidepth

Figure 6.16. Isostatic reduction as a pair of surface density layers.

again the degree constituent equation, ( ) equation

1-71, or our equation 3.7, in the following form:

kn (¢, A) / x(¢',A') Py(cos ) do

Multiplying both sides of this with the factor
4n {1 B (Rf D)”}

2n+1 R

and moving it inside the integral, we obtain
n
. ;:ili {1 - (RI_{D> } k(@A) =
= - GR/ k(¢ A") {1 - (%)ﬂ] Py (cos ) do
v

Summation yields the expression 6.7 above:

~ERS[-(57) e -

o e o (152) o
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so that

> 2 R—D\"
6Tso=— Y -———R {1— <7) }271@;@1 =
% n;znﬂ R

- _’;ﬁzz {1 - (%)n} [As], -

Here we have used the notation Ag = 271Gk, the equivalent Bouguer plate
attraction of a mass density layer x, and its degree constituent [Ag],, = 271Gxk,,.

Let us first look at the contribution from*3 0 < n < N = %. Then the
following approximation holds, as (8z2)" ~ 1 — 2.
N N
2nD
0Two~ — ¥ = [Ag] ~— Y D[Ag] ~ —DAg,
. n;lznﬂ[ ol n;l [4s], B
and OT; DA
ONjso = —= =~ 74- (6.8)
Y Y

This is the indirect effect of isostatic reduction.

Let’s substitute realistic values. Let the Mohorovic¢i¢'+ discontinuity’s depth

be on average ~ 20km™.

On land H = 0.8km, The Earth’s mean topographic height, and we obtain
ONjso = —1.8m.

3The contribution from degree numbers n > R/D is

> 2R
Taom — Y o [Ag],,
50 Wi 2n+1 n

where the terms are small and rapidly falling to zero. In this degree range
also the mass density layer approximation for the topography breaks down.

Andrija Mohorovici¢ (1857-1936) was a Croatian meteorologist and a
pioneer of modern seismology.

15Under the continents 35km, under the oceans 7 km below the sea floor,
according to Encyclopaedia Brittannica. Using these values, we find 6 N5, =
—3.2m on land, +2.8 m on the ocean.

Self-test questions

On the ocean H ~ —3.7km on average. We must remember to multiply by
% because of the water, and we obtain 6N, =~ +5.0m.

In other words, this effect can be sizable!

Note that equation 6.8 is linear in the height H. This means that, under the
continents, the isostatic co-geoid will run on the order of a couple of metres
below the classical geoid, when on the oceans again it must be a few metres
above the geoid (mean sea level). We may also conclude that in the isostatic
reduction’s effect on the geoid — at least for longer wavelengths 27R/x, longer
than the compensation depth D — all wavelengths are represented in the
spectrum in approximately in the same proportions as in the topography
itself, and the effect is in fact proportional to the topography.

Self-test questions

1. Which effects are computationally removed in
(a) the simple Bouguer reduction?
(b) the terrain corrected Bouguer reduction?
(c) the isostatic reduction?

2. Why is the terrain correction always positive?

3. Why do Bouguer anomalies have good interpolation properties, and
on what condition (i.e., which additional information must be available
at the interpolation stage)?

4. How was it discovered that mountains have roots?

5. Describe the isostatic hypotheses of Pratt-Hayford and Airy-

Heiskanen.

Exercise 6 —1: Gravity anomaly

Given point P, height above sea level H = 500m. Local gravity
is gp = 9.82m/s?, normal gravity at sea level for local latitude ¢ is
Y0 (@) = 9.820192m/s2,
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1. Compute point P’s free-air anomaly Ag.

2. Compute point P’s Bouguer anomaly (without terrain correction) Agg.

Exercise 6 —2: Bouguer reduction

1. Point P is 500 m above sea level. Its free-air anomaly is Agpa = 25 mGal.

Calculate the Bouguer anomaly Agg of the point. Forget about the

terrain correction.

2. See section 6.2: Bouguer anomalies. Derive the equations 6.2 and
6.3 anew, assuming that the mean density of the Earth crust were
p = 3370ks/m’.

Exercise 6 —3: Terrain correction, Bouguer reduction

Given the terrain shape:

Q Sea level

The vertical rock wall PQ is also straight on a map and extends in both
directions (“into” and “out of” the paper) to infinity.

Height differences: PQ’ = 600 m, QQ" = 300 m.
1. Compute in point P the terrain correction (hint: use the formula for the

attraction of a Bouguer plate. We have here a half Bouguer plate, with
only half the attraction of a full one.)

2. Compute in point Q the terrain correction. Algebraic sign?

Exercise 6 —4: lsostasy

3. If in point P is given that the free-air anomaly is 60 mGal, how much is
then the Bouguer anomaly in the point? (Use the complete Bouguer

reduction.)

4. If it is given in point Q that the Bouguer anomaly is 10mGal, how

much is the point’s free-air anomaly?

Exercise 6 —4: Isostasy

Assume Airy-Heiskanen isostatic compensation (figure 6.12). Density of
Earth’s crust p. = 2670kg/m?, density of mantle p, = 3370k8/m? i.e., the
density contrast at the crust-mantle interface is 700ks/m*. Let the reference
level for the interface corresponding to zero topography be —25km, i.e.
to = 25km.

1. Calculate the depth of the “root” of an 8 km high mountain below the
reference level —25km, assuming it is isostatically compensated.

2. Mauna Kea is 4km above sea level, however the surrounding sea is
5km deep. How deep is the “root” of Mauna Kea below the reference
level?

3. How much is the “anti-root” of the surrounding sea above the reference
level? Let the density of sea water be 1027 kg/m?.

4. So, how deep is the “root” of Mauna Kea relative to its surroundings?
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7-1 Levelling, orthometric heights and the geoid

Heights have traditionally been determined by levelling. Levelling is a tech-
nique for determining height differences using a level (levelling instrument)
and two rods or staffs. The level comprises a telescope and a spirit level,
and in the measurement situation the telescope’s optical axis, the sight axis,
is pointing along the local horizon. Levelling staffs are placed on two mea-
surement points, and through the measuring telescope, measurement values
are read off them. The difference between the two values gives the height

difference between the two points in metres.

The distance between level and staffs is 40 — 70 m, as longer distances would
cause too large errors due to the effect of atmospheric refraction. Longer
distances are measured by repeat measurements using several instrument

stations and intermediate points.

The height differences AH thus obtained are not, however, directly useable.
The “height difference” between two points P and Q, obtained by directly
summing height differences AH, depends namely also on the path chosen
when levelling from P to Q. Also the sum of height differences } ~ AH
around a closed path is generally not zero.

Geometric height is not a conservative field.

_153_
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Figure 7.1. The principle of levelling.

This is why, in precise levelling, the height differences are always converted
to potential differences: AW = —AH - g, in which g is the local gravity, which is
either measured or — e.g., in Finland — interpolated from an existing gravity
survey data base. The sum of potential differences around a closed loop is
always zero: Y AW = 0.

For the potential of an arbitrary terrain point P we find

P
Wp=Wo— ) (AH-g),

sea level

the summation being done directly from sea level (potential Wp) up to point
P. The quantity
P
CP:_(WP_WQ): Z (AHg),
sealevel

positive above sea level, is called the geopotential number of point P.

Wy is the potential of the national height reference level. In Finland, the
reference level of the old N60 system is in principle mean sea level in Helsinki

harbour at the beginning of 1960, which is why the system is called N6o.

However, the precise realization is a special pillar in the garden of Helsinki

Orthometric heights

astronomical observatory in Kaivopuisto'. The new Finnish height system
is called N2000, and the realization of its reference level is a pillar at the
Metsdhovi research station. In practice N20ooo heights are, at the decimetric

precision level, heights over the Amsterdam Nar datum.

Other countries have their own, similar height reference or datum points:
Russia has Kronstadt, Western Europe the widely used Amsterdam datum
NAr, Southern Europe has Trieste, North America the North American Ver-
tical Datum 1988 (NavD88), datum point Father Point (Pointe-au-Pére)> in
Rimouski, Quebec, Canada, etc.

7-2 Orthometric heights

For creating a vertical reference, it would be simplest to use the original
geopotential differences from sea level, i.e., the geopotential numbers de-
fined above, C = — (W — W)), directly as height values. However, this is
psychologically and practically difficult: people want their heights to be in
metres. Geopotential numbers have their clear advantages: they represent
the amount of energy that is needed (for a unit test mass) to move to the point
from the reference level. Fluids (sea water, but also air, or, on geological time
scales, even bedrock!) flow always downward and seek the state of minimum

energy.

In Finland, as in many other countries, orthometric heights have been long in
use. They are physically defined heights above “mean sea level” or the geoid.
See figure 7.3.

The classical geoid is defined as

"However, the value engraved in the pillar is the reference height of the still
older system NN, not of N6o. The correct reference value for N6o for this

pillar, 30.51376 m, is given in the publication ( )

*The district Pointe-au-Peére of the city of Rimouski was named after the
Jesuit priest Father Henri Nouvel (16217 - 1701?), who served forty years with
the native population of New France, today’s Quebec. Pointe-au-Pere is also
notorious as the location of the RMS Empress of Ireland shipwreck in 1914, in
which over a thousand passengers perished.
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Figure 7.3. Levelled heights and geopotential numbers. The height obtained
by summing levelled height differences, Y3 ; AH;, is not the “cor-
rect” height above the geoid, i.e., Y7, AH] computed along the
plumb line.

Note how the equipotential or level surfaces of the geopotential are
not parallel: because of this, a journey along the Earth’s surface
may well go “upward”, to increasing heights above the geoid,

although the geopotential number decreases. Thus, water may
Figure 7.2. Height reference pillar in the garden of Helsinki astronomical flow “upward”.

observatory in Kaivopuisto, Kaaridinen (1966). Text: The gravity vector g is everywhere perpendicular to the level

surfaces, and its length is inversely proportional to the distance

separating the surfaces.

Suomen Utgdngspunkt for

tarkka precisionsnivellementet

vaakituksen i Finland The orthometric height H of point P is defined as the height obtained by
pdaikiintopiste 30,4652 m dfver noll measuring along the plumb line the distance of P from the geoid.

30,4652 m yli nollan This is a very physical definition, hoewever not a very operational one,

(Reference bench mark of precise levelling of Finland, 30.4652 m because we (generally) do not get to measure along a plumb line inside the

above zero). Earth, and the geoid isn’t visible there. This is why orthometric heights are

calculated from geopotential numbers: if the geopotential number of point P

o o is Cp, we calculate the orthometric height with the formula
“The level surface of the Earth’s gravity field which fits on average best to

mean sea level.” H= %,
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\'Lake Pijjanne: C = — (W — Wp) = 76.9 GPU lgs

gN

Lake: Pdiijanne.

Figure 7.4. Considered in terms of orthometric heights, water may sometimes
flow “upward”. Although the North and South ends of Lake
Péijanne are on the same geopotential level — 76.9 geopotential

units below that of mean sea level — the orthometric height of the
South end Hg is greater than that of the North end Hy, because
local gravity g is stronger in the North than in the South. The
height difference in the case of Lake Piijanne is 8 mm (Jaakko
Maékinen, personal comm.). Calculation using the normal gravity
field yields 6 mm. The balance of 2mm comes from the difference
between gravity anomalies at the Northern and Southern ends.

where g, the average gravity along the plumb line, is

_ 1 [H
T [ s

and z is the measured distance from the geoid along the plumb line. Because
the formula for g already itself contains H, we obtain the solution iteratively,
using initially a crude estimate for H. The iteration converges fast.

We shall see that determining very precise orthometric heights is challenging,
especially in the mountains.

7-3 Normal heights

In Finland, currently, with the height system N200o, normal heights are used.
They are, like orthometric heights, heights above mean sea level. The mathe-
matical representation of mean sea level in this case is the quasi-geoid. In sea
areas, the quasi-geoid is identical to the geoid. Over land, it differs a little
from the geoid, and in mountainous areas the difference may be substantial.

Normal heights

7-3.1  Molodensky’s theory

M. S. Molodensky developed a theory in which the height of a point from
“mean sea level” would be defined by the following equation:

H* & i
YoH

where 7y is the average normal gravity computed between the zero level
(reference ellipsoid) and H* along the ellipsoidal normal. So, the same way of
computing as in the case of orthometric heights, but using the normal gravity
field instead of the true gravity field.

Heights “above sea level” are for practical reasons given in metres. For large,
continental networks we want to give heights above a computational reference
ellipsoid in metres, and thus also heights above “sea level” have to be in

metres.

Molodensky proposed also that instead of the geoid, height anomalies would
be used, the definition of which is

= (7.1)

ﬁ/
where now 7y, is the average normal gravity at terrain level. More precisely:
the average of normal gravity along the ellipsoidal normal over the interval
z € [H *, h] , in which H* is the normal height of the point and  its height
from the reference ellipsoid. The parameter z is the distance from the ref-
erence ellipsoid reckoned along the ellipsoidal normal. T is the disturbing
potential at the point.

Based on these assumptions, Molodensky showed that
H +7=h

This equation is very similar to the corresponding one for orthometric heights
and geoid heights
H+ N =h.

Also otherwise (, the height anomaly, also called “quasi-geoid height”, is very
close to N, and correspondingly H* close to H.
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Figure 7.5. Mikhail Sergeevich Molodensky, source obscure. More pho-
tographs and background information ( )

7-3.2 Molodensky’s proof

The realization of the Molodensky school was, that, because normal gravity
is along the plumb line very close to a linear function of place, one could
define a height type that can be computed directly from geopotential num-
bers, and that also would be compatible with similarly defined, so-called
height anomalies, and with geometric heights & reckoned from the reference
ellipsoid.

The geometric height I from the reference ellipsoid may be connected to
the potential U of the normal gravity field indirectly, though the following

integral equation:
h
u= llof/ v(z) dz.
0

Here, U is the normal potential and « normal gravity. One level surface of U,
U = Uy, is also the reference ellipsoid. The variable z is the distance from the

ellipsoid along the local normal.

By defining

Normal heights

we obtain
u— U
h= —
Yon
By using W = U 4 T and dividing by 7, we obtain
W-_Wo_ T _,
Yo Yon

assuming Wy = Uy, the normal potential on the reference ellipsoid.

Next, one could define

H+ 2 _ W— WO
Yon
as a new height type, and
N* 2 h— Ht = L
Yo

as the corresponding new geoid height type. It has however the esthetic
flaw, that we divide here by the average normal gravity computed between
the levels 0 and h. This quantity is not operational without a means of
determining the ellipsoidal height .

This suggests the following improvement based on the circumstance that
7 (z) is a nearly linear function. This means that the vertical derivative %—Z is
nearly constant in the height interval considered.

We define
Jor e L ' (z) dz 7d—3fi/H+ (2) dz 7d—efi/h (z) dz
Vo;z—hO'Y + TOH = 7 A Y + o THRE = g H+'Y .
Now . N+
Yort ~ Yor — 3N d—~m(1 R) (7:2)
(R is the Earth’s radius, and d—j R 2% is assumed constant), and
. 1_.d __ HT
YHK = Yon + §H+d;: ~ Yon <1 + T) . (7:3)

Next, we also exploit that both % < 1and HT+ < 1,s0

N\ N+ H*\ ! H+
(“T) ~(1+?)' (1‘?) N(”T)’
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and with equations 7.2, 7.3 and the definitions above of H*, N+,

NtH*

W — Wy :7W—W0.W
[E— — R 7

N+
:%H_F <1+7>:H++
YoH Yon YoH R
é’d:efi:l.ﬂzj\]*'(l_ﬂ) :N+_N+H+_
YHrR  Yoh YHK R R

H* ¥

Because the, already small, correction terms N +RH i cancel, we finally obtain

H*4+=H"+N" =h. (7-4)

The quantity 7op, and thus also normal height H*, can be, unlike 7, com-
puted using only information obtained by (spirit or trigonometric) levelling,

without having to know the height & above the reference ellipsoid, which

would require again knowledge of the local geoid.

This was Molodensky’s realization (Molodensky et al., 1962) already in 1945, Figure 7.6. A graphic cartoon of Molodensky’s proof. The blue and red areas,
long before the global positioning system crs, or a global, geocentric reference which are equal, represent the correction terms which convert
ellipsoid, existed. Back then, continental triangulation networks, like the N* to { and H* to H* respectively. The red and blue arrows
one of the Soviet Union, were computed on their own, regionally defined describe the conversion process. The balls represent midpoints of
reference ellipsoids. 2] averaging intervals for the function 1 (z).

The size of the correction term % is, for heights of the global geoid up

to 110m, 17 mm for each kilometre of terrain height. The errors remaining Height anomaly:

after applying this term are microscopically small, because normal gravity 7= W;U

is, unlike true gravity, extremely linear along the plumb line — as equations 7.2 VHh

and 7.3 already assumed.
Topography
Figure 7.6 attempts to visualize the derivation.

Telluroid :

‘I 7.3.3 Normal height and height anomaly

Normal height:
* C W — WO .
H" = % = ¥ (7:5) Geoid - H Reference ellipsoid N¢ “Quasi-geoid
in which (recursive definition!) Figure 7.7. Geoid, quasi-geoid, telluroid and topography. Note the correla-
1 B4 tion between quasi-geoid and topography.
’Y:’YOH=§/ 7(z) dz
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in which

1 [k

Yan == | 7(z) dz.

¢
The height anomaly ¢, which otherwise is a quantity similar to the
geoid height N, however is located at the level of the topography, not at
sea level. The surface formed by points which are a distance H* above
the reference ellipsoid (and thus a distance { below the topography),
is called the telluroid. It is a mapping of sorts of the topographic
surface: the set of points Q whose normal potential Uy is the same as
the true potential Wp of the true topography’s corresponding point P.
See figure 5.4.
Often, as a concession to old habits, we construct a surface that is at
a distance { above the reference ellipsoid. This surface is called the
quasi-geoid. It lacks physical meaning; it is not a level surface, although
out at sea it coincides with the geoid. Its short-wave features, unlike
those of the geoid, correlate with the short-wavelength features of the
topography.

Height above the ellipsoid (assumed Uy = Wp):

u-U
You

h

7

where

1 h
o= [ () d
0

The relationship between the three quantities is
h=H"+¢.

In all three cases, the quantity is defined by dividing the potential difference
by some sort of “average normal gravity”, suitably computed along a segment
of the local plumb line. In the case of the height anomaly {, a piece of plumb
line is used high up, close to the topographic surface, between level H* (telluroid)
and level & (topography).

Difference between geoid height and height anomaly

7-4 Difference between geoid height and height

anomaly

Normal heights are very operational. They are always used together with
“quasi-geoid” heights — more correctly: height anomalies — (. Orthometric
heights — e.g., Helmert heights — on the other hand are always used
together with geoid heights N. For computing both, H and N, one needs
the topographic mass density p, for which often a standard constant value
is assumed (2670k8/m?), and the local vertical gradient of gravity, for which

generally the vertical normal gravity gradient (—0.3086 mGal/m) is assumed.

The difference between height anomaly and geoid height is calculated as
follows.

1. First, calculate the separation between the quasi-geoid and the “free-air
geoid”. The free-air geoid is an equipotential surface of the harmon-
ically downward continued, exterior potential. If T is the disturbing
potential of the exterior, harmonically downward continued field, then
its difference between topography level and sea level is:

Hor

Ty —Ty = o dh ~ —AgraH, (7.6)
0

T
and by using the Bruns equation twice, { = % (height anomaly or

quasi-geoid height) and Npa = % ("free-air geoid height”, FA = Free

Air) we obtain?
_ A gFAH
i

2. Thus we have obtained the difference between height anomalies and

¢ — Npa = (7.7)

heights of the “free-air geoid”; what is left is determining the separation
between “free-air geoid” and geoid.

Let us approximate the topography by a Bouguer plate. Then

3Here we made the approximation, that 7 is the same on topography level as
on sea level.
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o in the case of the “free-air geoid” Nga the thickness of the plate
is the height H of point P. This is because the free-air geoid is
based on the harmonically downward continued exterior field,
meaning that also the Bouguer-plate attraction acting at P must
be continued downward, i.e., taken fully into account.

Because the surface mass density of the plate is Hp, its assumed

attraction is everywhere on point P:s plumb line:
2nGHp.
o Now in the case of the geoid, we have to be physically realistic: in
an arbitrary point P’ on the plumb line of point P, the Bouguer

plate is partly below the point, and partly above the point. The
attraction is then only

2nGH'p —2nG (H—H') p =2nG (2H' — H) p,
in which H' is now the height of point P'.

By integrating the difference, like we did for equation 7.6, we obtain
H
T—TFA:27IGp/ ((H —H) - H) dH' =
0

= 2nGp [(H')? — 2HH']},,_, = —2nGpH? ~ — AgH,

in which Ag is the attraction of a Bouguer plate of thickness H. We
obtain again by dividing by the average normal gravity:
AgH

N — Npa = —

By subtracting this latest result from equation 7.7 we find:
(*AgFA + AB) H _ _AgBH
v v

See also ( , pages 8-13). As in the mountains the

{-N= (7:8)

Bouguer anomaly is strongly negative, it follows that the quasi-geoid is there
always above the geoid: approximately, using equation 6.2:

0.1119 mGal/m
9.8 m/s2
Or, if H is in units of [km] and { — N in units of [m]:

{— N [m] ~ 0.1H? [km] .

{—N= H?>~10"m'H2

Difference between orthometric and normal heights

7-5 Difference between orthometric and normal
heights

The geoid is the level from which orthometric heights are measured. There-
fore we may write

h=H+N,
where F is height above the reference ellipsoid and H orthometric height.

We may also bring back to memory equation 7.4:
h=H"+1,

in which { is the height anomaly, and H* the normal height.

We obtain simply:

AgsH

H-H*=(-N=—=58
5

, (7.9)

using equation 7.8.

7.6 Calculating orthometric heights precisely

Orthometric heights are a traditional way of expressing height “above sea
level”. Orthometric heights are heights above a real geoid, i.e., a level surface

inside the Earth and in the mean located at the same level as mean sea level.

We may write
H
W:WO—/ g(z) dz
0

where ¢ is the true gravity inside the topographic masses. From this we
obtain

)

8 8

in which the mean gravity along the plumb line is

_ 1 (H
3= ) s

The method is recursive: H appears both on the left and on the right side.
This is not a problem: both H and g are obtained iteratively. Convergence is
fast.
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In practice one calculates orthometic height using an approximate formula.
In Finland, Helmert orthometric heights have long been used, for which grav-
ity measured on the Earth’s surface, g(H), is extrapolated downward by
using the estimated vertical gravity gradient interior to the rock. It is as-
sumed that its standard value outside the rock, the value, —0.3086 mGal/m (the
free-air gradient), changes to a value that is 4-0.2238 mGal/m greater (double
Bouguer plate effect): the end result is the total inside-rock gravity gradient,
—0.0848 mGal/m,

This is called the Prey* reduction. The end result is the following equations
(the coefficient is half the gravity gradient, i.e., the mean gravity along the
plumb line is the same as gravity at the midpoint of the plumb line):

g = g(H) —0.0848 mGal/m <%H) = g(H) + 0.0424mGal/m - H, thus

C

g(H) +0.0424 mGal/m - H’ (7.10)

H=S =
8

in which C is the geopotential number (potential difference with mean sea
level) and g (H) is gravity at the Earth’s surface. See also

( ) pages 163—-167. Note that the term 0.0424 mGal/m - H is typically
much smaller than g(H) , which is about 9.8 m/s» = 980 000 mGal! So, iteration,
in which the above denominator is first calculated using a crude H value,
converges really fast.

The use of Helmert heights as an approximation to orthometric heights is
imprecise for the following reasons:

o The assumption that gravity changes linearly along the plumb line.
This is not the case, especially not because of the terrain correction. In
the precise computation of orthometric heights, one ought to compute

the terrain correction separately for every point on the plumb line.

o The assumption that the free-air vertical gravity gradient is a constant,
—0.3086 mGal/m. This is not the case, the gradient can easily vary by
£10%.

4Adalbert Prey (1873 -1949) was an Austrian astronomer and geodesist and
an author of textbooks.

Calculating normal heights precisely

o The assumption that rock density is p = 2.67 8/cm*>. The true density
value may easily vary by £10% or more around this assumed value.

The first approximation, neglecting the terrain effect, can be corrected by

) page 167). It
requires that, also in geoid computation, the terrain is correspondingly taken

using Niethammer®’s method (see (

into account.

The third approximation, the density, can be removed as a problem by
conventionally agreeing to use also in the corresponding geoid computation
a standard density p = 2.678/cme. The surface thus obtained isn’t any more
a true geoid then, but a “fake geoid”, for which no suitable name comes to
mind.

The second approximation could be eliminated by using the true free-air
gravity gradient instead of a standard value. However, the true gravity
gradient depends on local density variations. One can use, e.g., the Poisson
equation for computing the gradient, on which more later.

The precise calculation of orthometric heights is thus laborious. Just as
laborious as the precise determination of the geoid, and for the same reasons.
Fortunately in non-mountainous countries Helmert heights are good enough.
In Finland they were even computed using as p values “true” crustal densities

according to a geological map. ..

7.7 Calculating normal heights precisely

For this we use the equation 7.5:

g=S-_W-W

v Y

where the average value of normal gravity along the plumb line is

1
7:’7(7{:?/0 7(z) dz.

5Theodor Niethammer (1876 —1947) was a Swiss astronomer and geodesist
who was the first to map the gravity field of the Swiss Alps.
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Because normal gravity is in good approximation a linear function of z, we
may write
1 H E)l

7:704_5 0z

in which aa% = —0.3086 mGal/m and 79 = 7 (0, ¢) is normal gravity computed
at height zero. We obtain

Y= — 0.1543 mGal/m - H*,

The solution is again obtained iteratively:

C C
¥ 90— 0.1543 mGal/m - H*

H" = (7.11)

in which 99 = (0, ¢) can be calculated exactly when local latitude ¢
is known. H* appears on both sides of the equation, but it converges
fast because again, the first term of the denominator g, some 9.8m/s2 =
980000 mGal, is a lot larger than 0.1543 mGal/m - H*.

Calculating normal heights is not in the same way sensitive to Earth crustal
density and similar hypotheses, like calculation of orthometric heights is. It

depends however on the choice of normal field, i.e., the reference ellipsoid.

7.8 Calculation example for heights

At point P the potential difference with sea level is C = 5000m™*/s2. Local
gravity is ¢ = 9.820000m /s2.
Normal gravity calculated at level zero under point P equals 7y =
9.821500m/s.
Questions:

1. Calculate the orthometric height of the point.

2. Calculate the free-air gravity anomaly Agga of point P.

3. Calculate the Bouguer anomaly (without terrain correction) Agg

of the point.
4. Calculate the normal height of point P.

Calculation

Answers:

1.

example for heights

. If the geoid height at point P is N = 25.000 m, how much is then

the height anomaly (“quasi-geoid height”) ¢?

First attempt: H() = % = % m = 519.165m. Second attempt

(equation 7.10):

5000 m?/s2

M —
H 9.820000m/s2 + 0.0424 - 10-5s=2 - 519.165m

= 509.154 m.

After that, the millimetres don’t change any more.

. The free-air anomaly is

Agra = (9.820 000 — (9.821500 — 0.3086 - 10~ - 509.154)) m/s =

= 7.125 mGal.

. The Bouguer anomaly is (equation 6.2):

Agp = Agra — 0.1119mGal/m - H = —49.849 mGal.

. The first attempt is again H*(?)) = £ = 509.087 m. The second,

T
equation 7.11:

5000 m?/s2

*(1)
H 9.821500m/s2 — 0.1543 - 10552 - 509.087 m

= 509.128 m,

also final on the millimetre level.

. The difference equation 7.9 yields

{—N= —A%H — —0.026m.

Also (check) H* — H = —0.026 m. So

{=N—(-0.026m) = 25.026m.
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7.9 Orthometric and normal corrections

In practical orthometric height calculations, one often adds together at first
the height differences AH measured by levelling (“staff reading differences”)
between points A and B as a tentative or crude height difference

B
Y AH,
A

after which the non-exactness of this method is accounted for by applying

the “orthometric correction” (OC):

B
Hp = Hy+ ) AH + OCygp.
A

The fact that the difference in orthometric heights between two points A and
B is not equal to the sum of the levelled height differences is due to gravity

not being the same everywhere.

With C4, Cg, AC the geopotential numbers at A and B, and the geopotential
differences along the levelling line, we have Cp — C4 — zﬁ AC = 0 because of
the conservative nature of the geopotential. Dividing by a constant -y yields

GG gioc,

Yo Yo Yo

=0.

On the other hand we have

OCAB:HB—HA—iAH:g—S—A— ; &/
A & 84 & &
with g ,, g, average gravities along the plumb lines of A and B, g gravity
along the levelling line. In this expression, we compare Y5 AH, the naively
calculated sum of levelled height differences, with the difference between the
orthometric heights of the end points A and B, calculated according to the

definition.
Subtraction yields

ocu 0= (S0} (Sa o) (AC Ay

g 70 84 0

Orthometric and normal corrections

in which

GG (n o8 G (n k),
Sz Y0 Y0 35 Y0 ’

Ca_Ca_ (WO_EA)HA

8a M0 Y0
AC _AC — (u) AH,
8 Y0 Yo

yielding the orthometric correction

B _ T, —
O0Cas =Y (8 ’70) AH + (gA,y ’YO> Hy — (gBr)/
0 0

A Yo

) Hg, (7.12)

which is identical to ( ) equation 4-33.
The choice of the constant -y is arbitrary; it is wise to choose it close to the

average gravity in the general area of (A, B) to keep the numerics small.

Similarly we may also compute the normal correction (NC) in calculating
normal heights. Start from the equation
. AC

yan=SoSy

NCap = Hp — 5 2’
B A A

from which, like above, follows by subtraction
B
_ g*%) (n vo) . (73 70) .
NCyp = S " |AH+ Hj — H3. 1
AB ; ( - 7 A - B (7.13)

Note that the identical first term in both equation 7.12 and equation 7.13

derives from the term
— = ZAH
A

the naive summation of height differences AH in the case of both orthometric
and normal correction, which is the generic basis of the concept of both

corrections.
Applying result 7.13:

B
Hi = Hj) +) AH+ NCyp.
A



Page 175

174

yleinen
suhteellisuusteoria

metriikka

Vertical reference systems

What changes between the orthometric and normal corrections is the defini-
tion of heights: H* instead of H, requiring division by the average of normal
gravity along the plumb line ¥, not by that of true gravity g.

Note that both the orthometric correction 7.12 and the normal correction 7.13
can be calculated one staff interval at a time: one must know, in addition to
the levelled height difference AH, local gravity g along the levelling line, and
also at the end points g(H) or y(H*) for calculating mean gravity g or 7
along the plumb lines of those end points. This goes well with the equations
given above. Remember that gravity ¢ along the levelling line is needed in
order to reduce the individual levelled height differences AH to geopotential
number differences AC. This reduction is part of the computation of both the
orthometric and the normal correction.

7-10 A vision for the future: relativistic levelling

According to general relativity, the deeper a clock is inside the potential
well of masses, the slower it ticks. This is most easily seen by looking at the

Schwarzschild® metric for a spherically symmetric field:

-1
Fdr? = (1 - %) A — (1 - 22321:4) dr® —r* (dg* + cos® pdA?) =

2W PIAN
= (1 — C—Z) cdt? — (1 - CT) dr* — r* (dg? + cos® pdA?) ,

in spherical co-ordinates plus time (7, ¢, A, t) . Here we see, how the rate of
the proper time 7 is slowed down compared to stationary co-ordinate time
t (time at infinity » — o0), when the geopotential W increases closer to the
mass. The slowing-down ratio is

oT 2W w

—=4\/l1-—=1- .
ot c? c?

®Karl Schwarzschild (1873 -1916) was a German physicist who was the first
to derive, in 1915 while serving on the Russian front, a closed spherically
symmetric, i.e., non-rotating, solution to the field equation of Albert Einstein’s
general theory of relativity, the Schwarzschild metric.

A vision for the future: relativistic levelling

Braunschweig

Garching

Figure 7.8. An optical lattice clock: the ultra-precise atomic clock of the future
operates at optical wavelengths. To the right, the trajectory of the

experiment.

Now c? is, in the units of daily life, a huge number: 107 m*/s2. This means
that measuring a potential difference of 1m*/s2 — corresponding to a height
difference of 10cm — using this method, requires a precision of 1 : 10V.
More traditional, microwave based atomic clocks can do precisions of 10712 —
1071 ( ,
achievable and relativistic levelling may become a reality.

)- With the new optical clocks the objective should be

The clock works in this way, that an extremely cold, so-called Bose-Einstein
condensate of atoms is trapped inside an optical lattice formed by six laser
beams, an electromagnetic pattern of standing waves. The readout beam of
the clock oscillation uses a different frequency. A Bose-Einstein condensate
has the property that all atoms are in precisely the same quantum state —
like the photons in an operating laser — i.e., their matter waves are coherent.
In a way, all atoms together act as one virtual atom.

The condensate may consist of millions of atoms, and can actually be seen

optinen hila
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through the window of the vacuum chamber as a small plasma blob.

Unfortunately it is not enough, that just one laboratory measures time to
extreme precision — one also has to be able to compare the ticking rates of
different clocks over geographical distances. Also for this, a solution has
been found: existing optic-fibre cables already in global use for Internet and
telephony are useable for this with small modifications. The modifications
concern the amplifiers in the cables at distances of some 100 km, which must
). In this way both the
traditional precise levelling networks and the height systems based on cnss

be replaced by modified ones ( ,

technology and geoid determination may be replaced by this hi-tech (and

hi-science!) solution.

Self-test questions

1. Why are heights calculated directly from levelled height differences
not good enough as a height system?

2. What is a geopotential number?

What are orthometric heights?

What are normal heights?

What is the classical definition of the geoid?
. What is a height anomaly?

. What is the quasi-geoid?

© N v s

. Why may water sometimes flow in the “wrong” direction, i.e., to a
greater height?

9. What is the telluroid?

10. What are the orthometric correction and the normal correction?

Exercise 7—1: Calculating orthometric heights

The potential difference with sea level at point P, — (W — Wo), equals
1000m*/s2. Gravity in the point is gp = 9.820000m/s2. Calculate the
orthometric height of the point. Aim for millimetre precision.

Exercise 7—2: Calculating normal heights

Exercise 7—2: Calculating normal heights

In point P the potential difference with sea level is
— (W — W) = 5000 m*/s2,

Below the point at sea level, normal gravity is o = 9.821 500 m/s?. Calculate
the normal height of the point.

Exercise 7—3: Difference between orthometric and
normal height

In point P the Bouguer anomaly is Agg = —120mGal. The orthometric height
of the point is 1150 m.

1. Calculate the normal height of point P.

2. If the geoid height in point P is N = 21.75m, calculate the height
anomaly ¢ of the point.
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8.1 The Stokes equation and the Stokes integral
kernel

By suitably combining the equations in section 5.3 one obtains on the surface
of a spherical Earth

T:iTn:Ri B8n
n=2 11:2”71

with T, = T,,(¢,A) the degree constituents of the disturbing potential field
T=T(¢,A), and Ag, = Agu(¢p,A) those of the gravity anomaly field Ag =
Ag(p,A) = Lo Agn(g, A) .

This is now the Stokes equation’s spectral form.

Substituting into this the degree constituent equation 3.7 one obtains the

'For the degree numbers n = 0,1, the Ag, are assumed to vanish, as Agg # 0
would mean a different total mass for the normal field than for the Earth, and
Ag1 # 0 an offset of the co-ordinate origin from the Earth’s centre of mass,
see section 3.4.

_179_
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3

Mass excess

Mass
deficit

Figure 8.1. The principle of gravimetric geoid determination.

integral equation

in which

the Stokes kernel function. The angle ¢ is the geocentric angular distance

The Stokes equation and the Stokes integral kernel

. Ag(¢ N') dg
' Movmg data or
Ly L integration point

Figure 8.2. Integrating the Stokes equation geometrically.

between evaluation point and moving observation point, see figure 8.2. The
equation above allows the calculation, from global gravimetric data and for
every point on the surface of the Earth sphere, of the disturbing potential T,
and from that the geoid height N using the Bruns equation 5.2, N = w1th
the result

N =T B [ s ag(e a6

in which (¢,A) and (¢, A’) are the evaluation point and the moving point
(“observation point”), respectively, and the distance between them is 1. Equa-

tion 8.1 is the classical Stokes equation of gravimetric geoid determination.

The above illustrates the correspondence between integral equations and
spectral equations. There are other examples of this. Earlier we presented
the spectral representation of the function 7, ( )
equation 1-81. Of course 7 is also the kernel function of an integral equation,
the one yielding the potential V if given is the single layer mass density «.

Also a version of the Stokes equation for the exterior space exists. We gave it
earlier, equation 5.10. The spectral form of its kernel function, see equation
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— S(y)

_ 1
7
sin 5

- +6sin%+175cosyb

-- -3 coswln(sin% + sin? %)

So 951 a5 @ 25 5 as

Figure 8.3. The Stokes kernel function S(i). The argument ¢ is in radians
[0, 7T). Also plotted are the three parts of the analytical expression
8.2 with their different asymptotic behaviours.

5.11, is

) n+1
ﬂan):23(5)+2n+lﬂ@m¢y

=\ n—1

The Stokes kernel function on the Earth’s surface is depicted in figure 8.3, in
which the angle ¥ is in radians (1rad ~ 57°3).

This curve was calculated using the following closed expression (
, , section 2-16, equation 2-164):

1
S(y) = i 6sir1f +1—5cosyp — Z’acosz[;hn(silr\E + sin? f) (8.2)
sin? 2 2 2
This closed expression helps us to understand better how the function behaves
-1
close to the origin ¢ = 0: the first term, (sin %) , goes to infinity when

1 — 0. The next three terms, —6 sin% +1—5cos, are all bounded on the

Example: the Stokes equation in polar co-ordinates

whole interval [0, 77) and the limit for ¢ — 0 is —4. The last, complicated
term —3 coszpln(sin% + sin? %) goes also to infinity — positive infinity! —
for ¢ — 0, but much more slowly, because of the logarithm.

8.2 Example: the Stokes equation in polar
co-ordinates

In section 2.3 we derived a general solution to the Laplace equation in two
dimensions in polar co-ordinates. Below we develop a “toy” computational
framework for gravimetric geoid determination in two dimensions, which
allows us to do simple numerical simulations, to get a feel for the behaviour
of these things.

Firstly we derive the disturbing potential, gravity anomaly, and Stokes in-
tegral kernel for this solution, equation 2.3, assuming a normal potential
U(r) =ap+bolnr.

o Disturbing potential:
T(a,r) = Va(a,r) — (ag+bolnr) = ) r~ ¥ (ay cos ka + by sinka) .

o Normal gravity:

o Normal gravity gradient:

3y *U by

Frimir i
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o Gravity anomaly, equation 5.5:

Agla,r) = ——+—— =

(e

2 r’k (ag coska + by sinka) =

=Y (k + la—’y) r* (ag coska + by sinka) =
rooyor
k

= (ay coska + by sinka) .
We see that, if we write

=) k
T(a,r) =Y (5) Te with Ty & R™¥ (ay cos ka + by sinka),

it follows that

© /R k+1
Ag(ar) = <7) Age(a)
k=1
with Agi(a) & (k—1) R~V (g, coska + by sinka),

and, like in the case of spherical co-ordinates,

k—1
Agk = —— T (8:3)

According to Fourier theory, the base functions cos ka, sinka are orthonormal

on the circle r = R when choosing the following integral as the scalar product:

1 [ 1 [ ) 0 if k#m,
—/ cos ka cosma du = —/ sin ko sin ma da =
T Jo T Jo 1 if k=m

27
pos / coskasinmadu =0 always.

This means that, with Ag(a) = Y32 ; Agx(a), we may decompose Ag into its

Example: the Stokes equation in polar co-ordinates

Fourier terms by projection, yielding the following Fourier coefficients®

27T
Ak =l/ Agla) 45K gy 1y pteen J kL
By T Jo sin ka by

It follows that
ar| Rk+1 Ay
bef k=1]Bf’

and, using the cosine difference equation (

),

© © Rk+1 Rk+1
T(x) = T(a,R) = ;T(zx) :k;R—k <k71Akcosknc+k7 Bksmkuc) =
27
= COSle (a) cosko/do/—f—sinkoc/ Ag(a') sinka' do/) =
0 0

e T8
» ”\

= :HH

»
ll

-~

I

—_
c\

g(oc’) cos(k [x —a']) da.

We collect everything dependent on k into a single sum, the Stokes kernel for
this two-dimensional situation:
_ T( (X) B i 27T
Y Ty Jo

with  S(a —a ‘1:27.

Note that, as in the spherical case, Ag; = 0, and k = 1 is also missing from
the kernel.

?So, really

Ag () = Ag(a,r) |,_g = Y (Axcoska + By sinka) .
k=1
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For small values of « — &’ we may approximate

o0 cos((k+1)(06—0¢')> S(k("‘_“,))

S(a—a') :k; . zk; - =
1 1
5 In ~ —In(a —a').
2 (2 (1cos(1xoc’)>> (lX ‘X)

More abstractly we may write relationship 8.3 also in terms of the discrete
Fourier transform and its inverse, as

Flag) = LR = 10 = F {2 Rdfag ).

Here, Fi{f} represents the Fourier transform of a function f («) of spatial
co-ordinate «, as a function of the spatial wave number (number of waves
around the circle) k. This formulation has the merit of being able to use
any standard rrr software library offering compatible versions of both the

forward Fourier transform F { } and the inverse transform F 1 { . }
More about Frr in appendix C.

In figure 8.5 we show a simulation result where a randomly generated set
of gravity anomalies on the circle r = R has been used to estimate geoid
undulations on the same circle. Both curves display fairly realistic statistical
behaviour. The code used is given in tableau 8.1.

8.3 Plumb-line deflections and Vening Meinesz
equations

By differentiating the Stokes equation with respect to place we obtain integral

equations for the components of the deflection of the plumb line (

, equation 2-210"):
gl 1 dS(y) | cosa _
{17}_47T7//0Ag dy {sina}da_
_ 1 dS(yp) Jeosa|
= I //UAgidl,b {sina} sin ¢ da dip, (8.4)

Plumb-line deflections and Vening Meinesz equations

Tableau 8.1. Stokes equation in two dimensions, octave code.

% Stokes equation simulator in two dimensions
R = 6378137;
g = 9.8;
ak(1:180)
bk(1:180)
dg(1:360)
T(1:360) = 0.0;
for i=1:359
% Gauss-Markov

dg(i+l) = 0.8*dg(i) + 50%(rand()-0.5);

n
o © ©

end
dgsum = 0.0;
for i=1:360

% Enforce circularity
dg(i) = dg(i) - (dg(360) - dg(1l)) * (i/359);
dgsum = dgsum + dg(i);
end
for i = 1:360
% Enforce zero expectation
dg(i) = dg(i) - dgsum/360;
for k = 2:180
ak(k) = ak(k) + dg(i) = cos(kxixpi/180)/180;
bk(k) = bk(k) + dg(i) * sin(kxixpi/180)/180;
end
end
for i=1:360
for k = 2:180
T(i) = T(i) +(ak(k)*cos(kxixpi/180)+bk(k)*sin(k*xixpi/180))*R/(k-1);
end
end
hold on
plot(1:360, dg, 'b’') plot(1:360, 0.00001xT/g, 'm’)
print -dpdf stokes2D-out.pdf
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Figure 8.4. The Stokes kernel function on the circle r = R in two-dimensional
geometry. Note the symmetry and periodicity. Compare with the
spherical Stokes kernel, figure 8.3.

where ¢, 7 are the North-South and East-West direction deflections of the

plumb line, and the unit-sphere surface element do = sin i da dip, in which

100 —

S
50LEE | |

Xz i ‘
LT ; M‘ A
AT
ol W |
0L —=2 () ‘ ‘
0 90 180 270 360

Figure 8.5. Simulation of gravity anomalies (Gauss—Markov process) and
geoid undulations (green) in two-dimensional geometry on the
circle. Note the spectral behaviour of both.

The Poisson integral equation

siny is Jacobi®’s determinant of the («, ) co-ordinates.

These equations were derived for the first time by the Dutch geophysicist
F. A. Vening Meinesz. The angle « is the azimuth or direction angle between
the calculation or evaluation point (¢, A) and the moving integration or
observation point (¢/,A’). These equations are much harder to write in
spectral form, as the kernel functions are now also functions of the azimuth
direction «, in other words, they are anisotropic.

The disturbing potential, the gravity disturbance, and the gravity anomaly,
are all so-called isotropic quantities: they do not depend on the azimuth, and
therefore, in the spectral representation, the transformations between them
are only functions of harmonic degree 7.

8.4 The Poisson integral equation

Look at figure 8.6. The point Q of the body is located at R, and the observation
point P at r. The geocentric angular distance between the two location vectors,
as seen from the origin, is 1. The distance between points P and Q is /.

With R ¥ ||R|| and r & ||r||, we may write (cosine rule):

= \/r2+R2—2ch051p.

We may also write the function 1 as the following expansion (for proof, see
(1967) page 33):

1_ ! -1 i (B)nHP (cos ) (8.5)
¢ \/rP+R2—2Rrcosyp R, z\r ! 2

in which 7 = ||r|| and R = ||R|| are the distances of points P and Q from
the origin, the centre of the Earth. The function 8.5 is called the generating
function of the Legendre polynomials.

Differentiating equation 8.5 with respect to r yields

) n+1
7r—Rcostp:7lZn+1(§) Py (cos ).

& R&= r

3Carl Gustav Jacob Jacobi (1804 —1851) was a German mathematician.
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Figure 8.6. The geometry of the generating function of the Legendre polyno-
mials.

This we multiply by 2r:

2r> —2rRcosyp 1
B L

=

o R n+1
Y (2n+2) (7) Py(cos ).
n=0
Now we add together this equation and equation 8.5:
—2r2 4 2rRcosp+ (2 1 & R\"!
= ¥ =% Y (2n+1) (7) Py (cos ).
n

=0

The left-hand side is simplified by using —r? + 2rR cos ¢ + £> = R*:
—2r* +2rRcosp+(* R*—r?
& B
and the end result is, by multiplying with —R,
R 7’2 _ RZ 0 R n+1
% — Y @nt1) (7) Pa(cos ). (86)

n=0

Applying now the degree constituent equation 3.7 to the harmonic potential
field V on the spherical Earth’s surface, radius R:

2n+1

Va(p,A) = i //HV(¢',A',R)P,1(C051[)) do’,

The Poisson integral equation

as well as the spectral expansion of the field in space 3.8:

o -5 (5) v,

n=0

we obtain

[e9)

Vg, A1) = ﬁ i <§>”+1 (2n+1)//(TV(ql)’,/\’,R)Pn(coslp) do' =
= ﬁ//vV(qb’,)\',R) <§ (2n+1) <1:>"+1 Pn(cos¢)> do’ =
-2 // <r27R2>£V3(¢’,A’,R> o’

by substituting the expression in square brackets directly into equation 8.6.

Thus we have obtained the Poisson equation for computing a harmonic field
V from values given on the Earth’s surface:

R [fr*—R?
Vp = E//VTVQdUQ, (87)

in which £ is again the straight distance between evaluation point P (where Vp
is being computed) and moving data point Q (on the surface of the sphere, V
under the integral sign). In this equation we have given the points symbolic
names: the co-ordinates of evaluation point P are (¢, A, r), the co-ordinates
of the data point Q are (¢, A/, R).

Still a third way to write the same equation, useful when the function or
field V isn’t actually defined between the topographic Earth’s surface and

sea level, is

in which V* denotes the value of a harmonically downward continued function
V — downward continued into the topography, all the way down to sea level,
or, in spherical approximation, to the surface of the sphere r = R. This is a
function that above the topography is identical to V, that is harmonic, and
that also exists between topography and sea level. The existence of such a
function has been a classical theoretical nut to crack. ..
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Equation 8.7 solves the so-called Dirichlet boundary-value problem, finding a
function in an area of space when the value of the function on its boundary

has been given.

8.5 Gravity anomalies in the exterior space

The equation derived in the previous section 8.4, equation 8.7, applies for
an arbitrary harmonic field V, i.e., a field for which AV = 0. The equation
may be conveniently applied to the expression rAg, i.e., the gravity anomaly
multiplied by the radius, which is also a harmonic field. This is how we can
express the gravity anomaly in the external space Ag(¢, A, ) as a function of
gravity anomalies Ag(¢’,A’, R) on a sphere of radius R. The function rAg is

harmonic, because according to equation 5.8

1> R n+1
Ag:;Z(n—l) (7) To,

n=2

=% () o-nm =5 (5) 5

n=2 n=2

def

in which T,(¢,A) =

harmonic just like T, (¢, A) itself. Also, the dependence on the radius r, the

factor (%)VHrl

(n—1)Tu(¢,A) is a perfectly legal surface spherical

, is the same as for the (harmonic) potential. So, Poisson’s
integral equation 8.7 applies to function rAg:

// ) RAg(</> MR o
// g(¢',A',R) do’. (8.8)
47tr//r 7R2Ag "do,

[rAg(p, A, 1)

or

Ag(p, A1) =

An alternative notation:

Gravity anomalies in the exterior space

in which Ag* denotes the gravity anomaly at sea level, again calculated by
harmonic downward continuation of the exterior field, in this case the expression
rAg.

See also (
tion r + R ~ 2r yields still

cp)\r%—// 7 Ag(¢', N, R)do’.

Alternatively we derive the spectral form:

Ag = ! i (BYH (n=1)T, = i (B)M Agn.

r n=2 r n=2 r

) equation 2-160. Using the approxima-

The degree constituent equation 3.7 gives the functions Agy:

2n+1
= I //UAan(costp) do

with the aid of which
1 = R n+2
Ag = En;z(?) (2n+1)//AgP cos ¢
1 oo R n+2
= E//a (,122 (7> (2n+1)Pn(cos1p)>Agda—

in which
(o]

n+2
K(r,p,R) =} (?) (2n+1) Py(cos y)

n=2
is a (modified) Poisson kernel for gravity anomalies. Its closed form can be
lifted from equation 8.8:

R%y2 - R2

Ky ) = S22 K

Compared to the Stokes kernel, the Poisson kernel drops off fast to zero for
growing /¢ values. In other words, the evaluation of the integral equation

may be restricted to a very local area, e.g., a cap of radius 1°. See figure

kalotti
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0.2 ‘ ‘ ‘ ‘ Agy is, as calculated according to the degree constituent equation 3.7 from
Poisson kernel, dimensionless the anomaly field at sea level:
01
1km —— 2” +1 /
b = [ aste N R)Pu(cos ) o
Of-----—= - ie.,

00 n+3
oil Gravity-gradient kernel, unit km ™' 9ng(9, A1) (ZJ;M) _ ﬁ (5) (2n+1) (n+2) // Ag(¢/, A, R) P, (cos ) do’ =
1km — o
1.25 km / / o,
—02r 15 km = 11k //K 7,9, R) Ag (p A, ) (8.9)
2km —— where now the kernel function is
—031L =) R n+3
‘ K(r,p,R) ==Y <—) (2n+1) (n+2) Py(cos ).
Distance (km) — n=2 \T

\ \ \ \ \ \ Alternatively we derive a closed expression. We start from the Poisson

0 1 2 3 4 5 6 7 equation 8.8 for gravity anomalies, and differentiate* with respect to r:
Figure 8.7. The Poisson kernel function for gravity anomalies as well as the
kernel for the anomalous vertical gravity gradient, both at various BAg (9,A,1) - ( // (tp’, N, R) do’ ) =
height levels. These are kernel values to be used when evaluating o amr (r?+ R* — 2rR cos 1/’)
the surface integral in map co-ordinates in km. B 2 —R* 3(2r—2Rcos) (r* — R?) L ;o
il (2 7 wi ) A -
8.7. The main use of Poisson’s kernel is the harmonic continuation, upward or £2 42— RZ) ( RZ) ,
downward, i.e., the shifting of gravity anomalies measured and computed at // 6\ 27202 (9", A", R) do’~
various levels to the same reference level. 1 R72 // 2 Rz Ag ¢/,\',R) o
In the limit r — R (sea level becomes the level of evaluation) this kernel rdmr
function goes asymptotically to the Dirac § function. // 3(rP - Rz) 3(r*—R?) (r*—R?) Ag(¢/, V' R) do’—
03 2r? 2r202
8.6 The vertical gradient of the gravity anomaly _ 7Ag(qb Ar) =
Differentiate a formula obtained from formulas 5.7, 5.8: 3 (1‘2 - R2)2 1 3
Sy I :7//73 2— — 202 Ag(qyr/\/zR)dU/*( + 5 )Ag(¢Ar) =
o R\ ong 143 4t J), 0 2r2¢ 2r
Ag:n;z<7> B = 5 = 772( ) (n+2) g —52//1 , 302 —R) Ag(¢, N, R) do’ — 2 Ag(9, A7) (8.10)
T Ug3 21242 g‘PI 7 2 g¢, s 1) .

This equation is exact in spherical approximation. Its kernel function is well

localized, in other words, it drops off to zero very fast, i.e., a small “cap” also

here suffices for calculation. 4Hint: use symbolic algebra software.
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In the final right-hand side, the last term is very small, of order less than one
part in a thousand, compared to the leftmost term. Both terms inside the

square brackets are of the same order of magnitude.

Finally, note that, if we are integrating over the surface of the Earth sphere,
radius R, rather than the unit sphere o, radius 1, the coefficient R? drops out
from both equation 8.8 and equation 8.10.

In Molodensky’s method this or similar equations can be rapidly evaluated
from very local gravimetric data.

The closed expression given in ( ), expression
2-2175, is the anomalous vertical gravity gradient evaluated at sea level (on
the reference sphere). That is why it differs from expression 8.10 given above.
Also in the expression given here, like in expression 8.9, we need gravity
anomalies at sea level. Available however are anomalies at the topographic
surface level. In practice we can proceed iteratively, by first assuming that the

anomaly values observed at topography level are at sea level:
AgO (¢, ), R) =~ Ag(¢, A1) = Ag(¢', N, R+ H),

where H = H(¢',A’) is the topographic height at point (¢, A’). When the
first, crude anomalous gradient has been calculated, e.g., using equation 8.10,
we may perform a real reduction to sea level, initially linearly:

(0)
AgW (¢, N, R) ~ Ag(¢', M, R+ H) — a# H,

and so forth.

8.7 Gravity reductions in geoid determination

8.7.1 Classical methods

Use of the Stokes equation for gravimetric geoid determination presupposes
that all masses are inside the geoid — and the exterior field thus harmonic. For

5In the derivation there it is assumed that Ag is harmonic. Not so: rAg is

harmonic. The error made is small.

Gravity reductions in geoid determination

this reason we move the topographic masses computationally to inside the
geoid, in a way that needs to be specified. The classical methods for this are

o Helmert’s (second) condensation method, section 6.5: the masses are
shifted vertically down to the geoid into a surface density layer. After
this, shifting gravity down from the topographic surface to sea level is
easy. The indirect effect (the effect of the mass shifts on the geoid, the
“Restore” step) is small.

o Isostatic reduction, in which the effects of both the topography and
its compensation, i.e., the “roots” of mountains below sea level, are
computationally removed. The indirect effect of this method is larger.
See section 6.7 and equation 6.8.

o Bouguer reduction, section 6.2: the effect of the topographic masses
is brutally removed from the observed gravity data, and, after geoid
calculation, it is equally brutally restored to the result.

Bouguer anomalies contain large negative biases in the mountains and
therefore, the indirect effect of Bouguer reduction is excessive and
extends over a large area. This is why the reduction is used more

rarely.

8.7.2 The Residual Terrain Modelling (rtm) method

Imagine that, conceptually, the topographic masses are shifted into the geoid,
to below sea level, in a way that does not change the exterior field. This is
materially the same as determining the geoid associated with the harmonically
downward continued exterior field.

The problem here is, that such a mass distribution below sea level, which
produces the harmonically downward continued external potential in the
space between topographic surface and geoid, doesn’t always precisely exist.
Or, that a suitable mass distribution will contain extremely large positive and
negative masses close to each other, which are physically unrealistic.

One expresses this by saying that the problem is “ill posed”. In such cases
one uses regularization: one changes a little — as little as possible — the
exterior field, so that it corresponds precisely to some sensible field that can

huonosti asetettu



Page 199

198

puskutraktori

The Stokes equation and other integral equations

be harmonically continued below the topographic surface, and some sensible
mass distribution interior to the geoid that produces it.

One can start, e.g., by filtering out the short-wave parts caused by the topog-
raphy using a high resolution digital terrain model. This is called the RT™M

(residual terrain modelling) method.

In this method, we do not actually move all topographic masses to below the
geoid. Instead, we use a bulldozer technique, figure 8.8: only masses close to
the topographic surface are either removed or filled in, in a way which creates
a smooth replacement topography that is long-wavelength only. The exterior
field of this smoothed topography, unlike that of the original topography,
lacks the shortest wavelengths. It may thus be downward continued to the
geoid with sufficient precision.

First we computationally remove from the topography only the short wave-
lengths (under 30 km) by moving the masses of the peaks into the valleys, i.e.,
we do a low-pass filtering. The effect of this on the free-air gravity anomalies
Ag calculated from measurements is evaluated and taken into account: the
“Remove” step.

In detail:

1. In each point P we apply the terrain correction as described in section
6.3 to the gravity anomalies.

2. Next, we remove the attraction of a Bouguer plate, thickness H — Hgrm,
where H stands for the terrain height of point P, and Hrry for the
height of the smoothed, or low-pass filtered, terrain at the location of

P. This effect is, according to equation 6.2 on page 125, equal to
271'Gp (H — HRTM) ”

in which p is the rock density assumed in the calculation.

3. After this, the location of the gravity anomaly is moved down® — “down-
ward continuation” — from the original terrain level H to the surface
of the new, smoothed terrain, Hrrym. For this, the Poisson equation may

be used as described in section 8.8.

°Or up!

Gravity reductions in geoid determination

If the vertical gravity gradient of the terrain-reduced field equals the
normal vertical gradient of gravity — according to section 5.4, 0.3 mGal/m
— this will leave the anomaly unchanged. Typically, there will be a
small change: one may show — exercise 1—1 item 4 — that on the
surface of a buried sphere of anomalous density Ap, there will be a
radial anomalous gravity gradient of $ TGAp. For Ap < p, this will be
negligible compared to the Bouguer-plate coefficient in item 2.

4. Rigorously speaking, an inverse terrain correction for the shapes of
the smoothed terrain should be applied, to arrive at gravity anomalies
realistic for this new replacement topography. Often this step is left
out as the effect is small.

5. After that, harmonic downward continuation of the exterior field suc-
ceeds: in the exterior field remain nearly only the long wavelengths.

Because the mass shifts in the RTM method are so small, take place over such
small distances, and are so short wavelength in nature, the indirect effect or
“Restore” step — the change in geopotential due to the mass shifts that has to
be applied in reverse to arrive at the final geopotential or geoid solution — is
so small as to be often negligible. For the same reason the effect of unknown

topographic density will remain small.

Finally we note that, because the RTM method removes the effect of the short-
wavelength topography;, it is also a suitable method for interpolating gravity
anomalies. See ( ).

8.7.3 Downward continuation in linear approximation

The approach described above can, following Molodensky, be linearized:

R oA oT
T(¢,A H) = yp //{7 (Ag(gb’,/\’,H') - BH%H/) S(y) do’ + s (8.11)

So, first we reduce the Ag measured and calculated at the topographic surface
to sea level using the gradient of the anomalies and the terrain height H' of

the measurement point, with the result

Ag=Ag —
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Terrain correction

Bouguer/plate, down- Inverse

ward continuation terrain correction

Figure 8.8. Residual terrain modelling (rTnm). One removes from the terrain
computationally the short wavelengths, i.e., the differences from
the red dashed line: the masses rising above it are removed, the
valleys below it are filled. After reduction, the red line, smoother
than the original terrain, is the new terrain surface. The exterior
potential of the new mass distribution will differ only little from
the original one, but may be harmonically downward continued
to sea level.

Left, terrain correction for point P; middle, Bouguer plate and
gradient reduction to the level of the smoothed terrain point P’;

and right, the inverse terrain correction for point P’

After this, we apply, at sea level, the Stokes equation, and obtain the disturb-
ing potential at sea level T*. After this, the disturbing potential is “unreduced”
back to terrain level, to the evaluation point, with the equation

oT
T=T"+ ﬁH
In these equations T, its vertical derivative, and Ag and its vertical derivative
always belong to the exterior harmonic gravity field, and the connection
between them is the fundamental equation of physical geodesy, equation 5.5,
in spherical geometry:

aT 2
88="3g ;1

in which r = R+ H. Here, we need firstly the vertical derivative of the
disturbing potential. This is easy: we have

oT

2
ar — 8T

Gravity reductions in geoid determination

where the first term on the right is directly measured, and the second term’s
T is obtained iteratively from the main product of the solution process.

Calculating the vertical gradient of gravity anomalies, i.e., the anomalous
vertical gradient of gravity, is harder. For this, we have the integral equation
8.9

oA A, / , o
9819 ) *MR//KHPR Ag(¢, N, R) do

K'(r,9,R) = Z (?) (2n+1) (n+2) Py(cosy) .

n=2
Luckily for practical calculations, the kernel K’ of this integral is very localized
and one does not need gravimetric data Ag from a very large area.

8.7.4 The evaluation point as the reference level

In the above equation 8.11 we used as the reference level the sea surface. This
is arbitrary: we may use whatever reference level, e.g., Hy, in which case

T(g, A, H) R+H°//( (¢f, N, 1) — 08 (H'—Ho))S(IP) do’+

+ T 5 L (H~ Hy).
If we now choose Ho = H, the last term drops off, and we obtain
T(¢, A, H) // (Ag ¢\, H') — aAg (H - H)) S(y) do.

In this case the reduction takes place from the helght of the Ag measurement
point to the height of the T evaluation point, probably a shorter distance than
from sea level to evaluation height, especially in the immediate surrounding
of the evaluation point. This means that the linearization error will remain
smaller. What is bad, on the other hand, is that the expression in parentheses
is now different for each evaluation point. This complicates the use of FFT
based computation techniques, on which more later.

Here, we were all the time discussing the determination of the disturbing
potential T(¢, A, H); this is in practice the same as determining the height
anomaly

T(p,\H) _ T(g,AH)

(A H) == S e )
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equation 7.1. Here, v is normal gravity calculated for point latitude ¢ (=~ ¢)
and height H.

8.8 The Remove-Restore method

All geoid determination methods currently in use are in one way or another

“Remove-Restore” methods, even in several different ways.

1. From the observed gravity values, first the effect of the a global gravity
field model is removed. This model is generally given in the form of a
spherical-harmonic expansion. Thus, a residual gravity field is obtained

o that has numerically smaller values — easier to work with — and

o that is more local: the long “wavelengths”, the patterns extending
over large areas, have been removed from the residual field, only
the local details remain.

2. From the observed gravity, the effects are removed of all masses that
are outside the geoid — in practice, the topography. The purpose of this
is to obtain a residual gravity field

o on which the Stokes equation may be applied, because no masses
are left outside the boundary surface, and

o from which especially the very small “wavelengths” — details
the size of which is of order a few kilometres — caused by the
topography, are gone. After this, prediction of gravity values from

sparse measurement values will work better.

Some gravity reduction methods — i.e., methods which computationally
remove the gravity effect of the exterior masses — with good prediction
properties, were already presented in subsection 8.7.1: Helmert condensation,
Bouguer reduction, and isostatic reduction.

We may illustrate the Remove-Restore method by commutative diagram 8.9.

In this diagram the arrows with black text denote calculations that are
recommended, because they are easy and accurate. Thearrow with grey
text refers to direct computation, which again is troublesome and compute

intensive.

The Remove-Restore method

“Remove” “Restore”
Ag Brute force ; N
Global Global
— l Gravity field + T Gravity field
model model
Agloc Nloc
Exterior masses Exterior masses
- +
(topography) (topography)
Stokes
Ag red N, red

Figure 8.9. The Remove-Restore method as a commutative diagram.

8.8.1 Kernel modification in the Remove-Restore method

In the Remove-Restore method described above, the handling of reduced
gravity anomalies Ag,.q and geoid heights N,.q happens typically within a
relatively small area. For example, when using the ¥¥1 method, the area of

computation is often a rectangular area in the map projection plane, drawn

generously around the country or area the geoid of which is being computed.

Also if we compute the geoid directly by integrating the Stokes equation, we
will evaluate this integral, after removing the effect of the global model from
the given gravity data, only over a limited area or cap: evaluate the equation

R
Nred - m //70 S(lr’]) Agred dU/

where 0y is a cap on the unit sphere, the radius of which is, say, .

(8.12)

The assumption behind this is, that, outside the cap, Ageq is both small
and rapidly varying, because the longer wavelengths have been removed
from it with the global-model reduction. This may however be a dangerous

assumption.

Write, in the above equation 8.12,

S(y) = f

2n+1
P,
p— 1 (cos 1)

and

Agrea(P,A) = Y Agu(¢,A),

n=L+1

kalotti
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assuming that L is the largest degree number that is still along in the global
spherical-harmonic expansion, or gravity model, that was subtracted from
the data’.

Now, because Ag, is a certain linear combination of the surface spherical
harmonics

Pyjm|(cos ) sin|m|a if m=—n,..., 1,

Py (cos ) cosma if m=0,...,n,

Ynm(lpr OC) = {

ie.,

Ag‘ﬂ(w/“) = Z Agannm(lp,“),

m=—n
and also
Yuo (¢, &) = Py(cosy),

it follows from the orthogonality of the Y functions, that

// P,(cos lp) Y, mdo = //YnOYn’mdU =0
I I

if n # n' or m # 0. Now we may write — note that the terms n < L drop

away:

S(lp) Agred ((P/ /\) = S(lp) Agred(lpllx) =

n=L+1m=—n

n=L+1m=—n

in which

stg) = 3 Db (cosy)

is a so-called modified Stokes kernel function. The degree number L is called
the modification degree. The size of the evaluation area oy is chosen to be
compatible with this.

7...and that the model is accurate!

i 2n+1Pn(COSl/J)> X ( i i Agannm(llJ,oc)> _
i Z:jllp,,(cosl}')) x ( i i Agan,,m(w,a)> —

The Remove-Restore method

25 T
S(p) —

20 B 3( ) n
S(y) — —
si(y) - -

B () -
$°(y)

10 - -
5 - ]
0 e ;—?::‘_‘:/*:f;?

‘ ‘Angular Flistance l/J‘ (rad) — ‘
0 05 1 15 2 25 3 35

Figure 8.10. Modified Stokes kernel functions. Note how the kernel value

outside the local area goes to zero for higher L values.

The modification method described here, restricting the Legendre expansion
of the S function to higher degree numbers, is called the Wcmg—Gore8 mod-
ification ( , ). A desirable property of the new kernel
function S is, that it would be — at least compared to the original function S
— small outside the cap area 0y. In that case restricting the integral to the cap
instead of the whole unit sphere (equation 8.12) does not do much damage.
It is clear that S' is much narrower than S, as in it, only the higher harmonic
degrees are represented. This can be verified by plotting a graph of both
curves. It doesn’t go totally to zero outside the cap, however, but oscillates

somewhat.

The reason for this oscillation is, that in the frequency (i.e., degree number)
domain, the cut-off of the modified kernel is quite sharp. Transforming such
a sharp edge between space and frequency domains will invariably produce

81.. Wong and R.C. Gore worked at the Aerospace Corporation, a space
technology research institution in California.



Page 207

206

The Stokes equation and other integral equations

Gibbsin ilmié an oscillation, which is related to the so-called Gibbs® phenomenon.

8.8.2 Advanced kernel modifications

In the literature, other kernel modification methods are found. Their general

form is

) L
SL(lp) — Z 27’l+1 COSl/) Z ;fpn(coslp) =

n=L

n—1
L on + 1,
E ——Pu(cos ), (8.13)

L can be chosen®®

where the modification coefficients s,,,n = 2,.. ., . They are
chosen so as to minimize the values of S’ in the area outside the cap, 0 — 0yp.
In this way one may eliminate the truncation error of equation 8.12, and the
oscillation of the Wong-Gore modification, almost entirely.

( ) developed already earlier such a method.

In the above equation 8.13 we want to minimize the function

SL(IIJ) =Sy P, (cos )

L 2p41
“ L

over the area outside a local cap, ¢ — 0p. Let us multiply this expression
with each of the Legendre polynomials P,(cos®),n =2,...,L in turn, and

integrate over the area o — 0y outside the local cap:

L
/7 S(y) Py(cosy) do — an/Zn j_ll /7 Py (cos ) Py(cosp) do =0,

n=2,...,L,

a system of L — 1 equations in the L — 1 unknowns s,

L
Z ApwSw = by,
n'=2

9Josiah Willard Gibbs (1839 -1903) was an American physicist, chemist, math-
ematician and engineer.

°The choice s, = 1 again gives the simply modified Stokes kernel from
which the low degrees have been completely removed.

The Remove-Restore method

with
b, = / S(y) Py(cos ) do
and

!
Apy = 2”/ + 1/ P, (cos ) Py(cosp) do
n —1 o—op

From this we can solve the s, for every degree number n from 2 to L.

This solution sets to zero the expressions

/ ) SL(y) Py(cos y) do, (8.14)

also for all values n from 2 to L.

The expressions 8.14 can be understood as inner or scalar products, between
the functions S* and P,. Similarly the elements of A, contain the scalar
products between the functions P, and P,s. Note that these scalar products
do not vanish: when integrating over ¢ — 0y, unlike over ¢, the Legendre
polynomials are not mutually orthogonal. Therefore, the A matrix is a
full, symmetric, positive-definite matrix, not a diagonal matrix like when
integrating over the full unit sphere ¢.

The Legendre polynomials are however independent of each other also on

this domain, and together span an L — 1 -dimensional linear vector space.

Now, outside the cap op of radius ¢y, the Stokes kernel S(¢), by visual
inspection, is “smooth”. Depending of course on the values of ¢y and L,
it may be so smooth that it does not contain any significant contribution
from degree numbers higher than L. If this applies for S, it will also apply
for SL. This means that S’ will be a linear combination of the Legendre
polynomials, i.e., an element of the vector space spanned by the polynomials
P,,n =2,...,L. But if this is so, and the scalar products 8.14 with each of the
basis vectors vanish, then St must be the zero function on o — 0y.

See also ( ).

Appendix A.1 explains more about linear vector spaces and the scalar product

of vectors.



Page 209

208

The Stokes equation and other integral equations

8.9 The effect of the local zone

In numerical gravimetric geoid computation one uses averages of anomalies
computed over standard-sized cells or blocks, generally 5 x 5/, 10’ x 10/,
30" x 30’ etc. At European latitudes, often sizes 3’ x 5,5’ x 10/, 6/ x 10’ etc.,
are used, which are approximately square.

The following equation applies when evaluating an integral using block

averages:

N = ch‘rg,‘l
i

in which Ag; is the mean of block 7, and the weight

§09) = gz [ s

where 0; is the surface area of block i.

Numerical evaluation of such an integral, or quadrature, is done conveniently

using Simpson’s rule’":

Az 2
ci(A, 9) R /4’ S(A, ¢, A, ") cospdg’ dA' ~

7471’7 Mo S

Y

1 1
VLY 0 L wsuh),

j==1 k=-1

where AA and Ag are the block sizes in the latitude and longitude directions,

and w_1 = w; = %,wo = % are the weights.

Sik = S(A, ¢, Ay + jAA, ¢y + kAP) cos p, j, k= —1,0,1

are the values of expression [S(A,¢,A’,¢') cos¢] at the nodal points used
in the evaluation, 3 x 3 of them. See figure 8.11. Also more complicated
formulas (repeated Simpson or Romberg) can be employed.

"Thomas Simpson Frs (1710—1761) was an English mathematician and
textbook writer. Actually Simpson’s rule was used already a century earlier
by Johannes Kepler.

The effect of the local zone

4
1 36 1
36 %6 1
16
4 36 4 _
3% @ 3% k=0
1 1 k=-1
36 4 36
36
j= -1 o) 1

Figure 8.11. Simpson integration nodal weights in two dimensions.

One can show that the effect of the local (inner) zone on the geoid in the

evaluation point (¢, A) is proportional to the gravity anomaly in the point

-1
itself, Ag. Starting from the Stokes equation 8.1 with S(y) =~ <sin %) ~ %,

we find, for a circular inner zone of radius p:

R [% (Vo2 R S0
Ni“f—m/o /0 @Agsmll)dll’d“fvm‘ZN‘AgO'ZlPo—;Ago.

Here s9 = Ryy is the radius of the local block or cap in metres. Agp is a
special average of the gravity anomaly, the average of “ring averages” for
radii between zero and sy. If sy is small, one may take for this the anomaly

value at the centre without incurring much error.

The local contributions to the deflections of the plumb line again are pro-
portional to the horizontal gradients of gravity anomalies. We start from the
Vening-Meinesz equations 8.4, with the above approximations for a local cap:

Cint 1 /"’0 /2” ( 2 ) cos .
~— —— A . da dip.
{ int } 4y Jo Jo 92) "8\ sina sy

We expand Ag into local rectangular metric co-ordinates x, y:

- 0Ag = OJAg . 0Ag . 0Ag
Ag = Ago+x o +y 3y 7Ag0+Rs1n1[J(cos¢x Fp +sina )
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and substitute:

o 27 AAg AAg
Cint & 47T’Y/ / ( ) {Ago + Rsiny (cossz + SIH“W”

-cosasin da dip,

1 (o 2mso2 . 0Ag oAg
Mint =2 m/o /0 <7?> {Ag0+Rsmlp<cosaW+sm W)}

-sina sin i da dip.

Here, the terms in Agp drop out in a integration (because fozn sina

2 . o L
fo "cosa = 0), as do the mixed terms in sin « cos «. What remains is

1 (Yo 2w 0Ag ,
Cint"“_m/ / —ZRsmtpcosaWcosa-smlpdtxdlp~
Yo (2T 9Ag % 9Ag
27_[7 / — cos o dedip = 7—7 g dyp,
1 0Ag
Mint ~ 47T'Y A lpz R sin ¢ sin oc@ sina - sinpdadip ~
Yo 27 dAg Yo aAg
~ 27_[7 / —sm o dedyp = —E ay
Carrying out the final i integration yields now, with Ry = so:
sp 0Ag sp 0Ag

Cint = 27 o’ Hint = *EW

Sometimes these equations are useful, e.g., when estimating the errors of
grid based methods. Let the mesh size of a grid be Ax, then we may set in

the above equations sy ~ %, and for Ag we take

Agobs _ Aggrid

in which Ag8"d is the gravity anomaly value interpolated from the grid file at
the evaluation point. In this way one obtains a rough estimate of how much

error is due to the mesh size of the grid.

Self-test questions

1. What do the Stokes equation and its spectral form look like?

Exercise 8 —1:

Exercise 8—1: The Stokes equation

2. What does the Stokes kernel function S(1p) look like when expanded
in Legendre polynomials?

3. What is a suitable aaproximation of the Stokes kernel when  is small?

4. What is an isotropic, what an anisotropic quantity on the Earth’s
surface? Give an example of the latter.

5. What does the Poisson integral equation describe?

6. Why are gravity reductions necessary when using the Stokes equation
for computing a geoid model?

7. Which various gravity reduction methods are available?
8. Describe the Residual Terrain Modelling (RTM) method.
9. Describe the Remove-Restore method.

10. Why, in geoid determination, is the Stokes kernel function often midi-
fied? What does such a modification look like?

11. What is the Gibbs phenomenon?

The Stokes equation

1. Derive a simpler form of the Stokes function S (i), which is valid when
the angular distance ¢ is small. Really only one term!

2. Using this term, write the integral equation

= %//{;S(IP)AWU

into polar co-ordinates, i.e., an integral of the form

27 )
/ / <o+ dsda,
o Jo

in which s = ¥R is the metric distance from the evaluation point, and
« the azimuth angle (direction angle) from the evaluation point for N
to the moving integration point for Ag.
[Hint: you need to consider Jacobi’s determinant for the polar
co-ordinates (s, a)]

3. Compute N (as a formula) if Ag = Ago only within a circular disk
s < s, and outside it Ag = 0. Assume that s is small.
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9.1 The Stokes theorem as a convolution

We start from the Stokes equation
R [f
T(p2) = - [[ s ag(@x)ac
JIT

in which (¢’, \) is the location of the moving point — i.e., the integration
or observation point — on the Earth’s surface, and (¢, A) the location of the
evaluation point, it too on the Earth’s surface. Generally the locations of both
points are given in spherical co-ordinates (¢, A), and correspondingly the
integration is executed over the surface of the unit sphere o: a surface element
is do = cos ¢ dpdA, in which the factor cos ¢ represents the determinant of
Jacobi, for these spherical co-ordinates (¢, A).

However locally, in a sufficiently small area, one may write the point co-
ordinates also in rectangular form, and then express also the integral in
rectangular co-ordinates. Suitable rectangular co-ordinates are, e.g., map
projection co-ordinates, see figure 9.1.

A simple example of rectangular co-ordinates in the tangent plane would be
x = Rsinw,

(9-1)
Yy = ¢PRcosun,

in which « is the azimuth of the connection between evaluation point and
moving data point. The centre of this projection is the point where the tangent

_213_
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Figure 9.1. Map projection co-ordinates x, y in the local tangent plane.

plane touches the sphere. The locations of other points are measured by the
angle at the Earth’s centre, ¢, i.e., the geocentric angular distance, and by the
direction angle in the tangent plane or azimuth «.

A more realistic example uses a popular conformal map projection, the
stereographic projection:

X = 2sin<%>Rsintx,

_osin(¥
y= 251n<2)Rcosoc.
In the limit for small values of ¢ this corresponds to equations 9.1.

Taking the squares of equations 9.1, summing them, and dividing them by
R? yields

2.2
2 Xty
VR TR

More generally ¢ is the angular distance between the two points (x,y) (eval-

uation point) and (x',y’) (data, integration or moving point) seen from the
Earth’s centre, approximately

s (x=2\? (y—v}
v () (7))

The Stokes theorem as a convolution

Furthermore we must account for Jacobi’s determinant of the projection:
do = R™2dx dy

and the Stokes equation becomes now

1 o0
T(x,y) =~ IR //_oo S(x—x',y—y)Ag(x,y') dx' dy, (9.2)
a two-dimensional convolution®.

Convolutions have nice properties in Fourier theory. If we designate the
Fourier transform with the symbol F, and convolution with the symbol ®,
we may abbreviate the above equation as follows:
T= LS ®Ag,
47R
and according to the convolution theorem (“Fourier transforms a convolution

into a multiplication”):
1
FTY = g F1S1F{Ag)

This (x,y) plane approximation works only, if integration can be restricted to
a local area, where the curvature of the Earth’s surface may be neglected.
This is possible thanks to the use of global spherical-harmonic expansions,
because these describe the long-wavelength part of the spatial variability of
the Earth’s gravity field. After we have removed from the observed gravity
anomalies Ag the effect of the global spherical-harmonic model (the “Remove”
step) we may safely forget the effect of areas far removed from the evaluation
point: after this removal, the anomaly field will contain only the remaining
short-wavelength parts, the effect of which cancels out at greater distances. Of
course, once the integral has been computed and the local disturbing potential
Tioc has been obtained, we must remember to add to it again the T, effect
of the global spherical-harmonic expansion to be calculated separately (the
“Restore” step).

'The integration extends from minus to plus infinity in both co-ordinates x
and y. This can only be kept physically realistic on a curved Earth if it is
assumed that the kernel S is of bounded support, i.e., it differs from zero only
in a bounded area. This is the case for the modified kernels discussed in
section 8.8.1.
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9.2 Integration by FFT

The Fourier transform needed for applying the convolution theorem is calcu-
lated as a discrete Fourier transform. For this purpose exists the highly efficient
Fast Fourier Transform, FrT (e.g., , ). There are several slightly
differing formulations of the discrete Fourier transform to be found in the
literature. It doesn’t really matter which one is chosen, as long as it is a
compatible pair of a forward Fourier transform F and a reverse Fourier

transform F L.

In preparation for this we first compute a discrete grid representation of the
function Ag(x,y), a rectangular table of Ag values on an equidistant (x,y)
grid of points. The values may be, e.g., the function values themselves at the
grid points*:

Agij = Ag (xiy;),

in which the co-ordinates of the grid points are

N N_
5y
. . N N
y]»:]éy, ]:—5,...,5—1,

xX;=10x, i=— 1,

for suitably chosen grid spacings (dx,dy). The sequence of values of the
subscripts i and j has been chosen so, that the centre of the area (x = y = 0)
is also in the centre of the constructed data table Ag;;, (i = j = 0). The integer
N, assumed even, is here the grid size, assumed for simplicity the same in
both directions.

Next, we do the same for the kernel function
S(p) =S(x—x",y—y') = S(Ax,Ay),

i.e., we write
Sij =S (Axl—, Ay]'),

*There exist alternatives to this. For example, one could calculate for every
grid point the average over a square cell surrounding the point.

Integration by FFT

where again (N being the grid size):

Ax;=1idx, i=— 1,

N
ey
N

Ayj=joy, j=-— -1

N[z N Z

ey
Also here, the choice of the value sequences for the i and j subscripts is
based in the wish to get the central peak at the origin of the S function —
S(Ax, Ay) — co when (Ax, Ay) — (0,0) — placed at the centre of the grid of
values S;;3.

Next:

1. The grid representations S;; and Ag;; thus obtained of the functions
S and Ag are transformed to the frequency domain — they become
functions S, and G, of the two “frequencies”, the wave numbers 1 and
v in the x and y directions. The spatial frequencies are w, = ¥, wy, = ¢,
in which L is the size of the area, assumed square.

2. They are multiplied with each other “one frequency pair at a time”, i.e.,
we calculate

1
Tow = 727_[1{81”,9“,,, uv=0...N—-1

3. We transform the result, 7, = F { Tij}, back to the space domain: Tj; =
F Y Tuw}, a grid Ty = T(x;, ;) describing the disturbing potential T.
The disturbing potential of an arbitrary point can be obtained from this
grid by interpolation. The co-ordinates x;,y; run as functions of 7, in

the same way as described above for Ag* .

This method is good for computing the disturbing potential T — and similarly
the geoid height N = % — from gravity anomalies using the Stokes equation.
It is just as good for evaluating other quantities, like, e.g., the vertical gradient

3Without this measure the result of the calculation would be correct, but in
the wrong place. ..

4In fact, for both Ag and T we could choose the simpler grid geometry in
which the subscript sequences are i,j = 0,--- , N — 1; however, for S it is
mandatory to have the origin in the middle of the grid.
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Free observation Regular

Interpolation

point selection point grid

|
l Direct solution lFFT
Solution points in Regular

Interpolation

their own places point grid

Figure 9.2. Commutative diagram for Frr.

of the gravity anomaly by the Poisson equation. The only requirement is,
that the equation can be expressed as a convolution.

Also the inversion calculation is easy, as we shall see: in the frequency domain
it is just a simple division.

Using the discrete Fourier transform requires that the input data in a field to
be integrated — in the example, gravity anomalies — is given on a regular
grid covering the area of computation, or can be converted to one. The result
— e.g., the disturbing potential — is obtained on a regular grid in the same
geometry. Values can then be interpolated to chosen locations.

The rFT method may again be depicted as a commutative diagram, figure 9.2.

Appendix C offers a short explanation of why rrr works and what makes it

as efficient as it is.

9.3 Solution in rectangular co-ordinates

In the above equation 9.2, the grid co-ordinates x and y are rectangular. For
practical reasons, we would rather use latitude and longitude (¢, A) as grid
co-ordinates. In that way, the need to generate a new (x,y) point grid by
interpolating from the given (¢, A) one through a map projection calculation
is avoided. However, working in geographic co-ordinates causes errors due
to meridian convergence — as a latitude and longitude co-ordinate system isn’t
actually rectangular. Slightly more suitable would be the pair (¢, A cos¢).

The problem has also been addressed on a more conceptual level.

Solution in rectangular co-ordinates

9.3.1 The Strang van Hees method

The Stokes kernel function S(¢) depends only on the geocentric angular
distance y between evaluation point (¢, A) and observation point (¢, ).
The angular distance may be written as follows (cosine rule on the sphere):

cos i = sin¢’ sin¢ + cos ¢’ cos pcos(A' — A).

Substitute

I
cos(M —A) =1—2sin? A 5 /\,
4

cosyp =1 — 2sin? 7
¢ —¢

o —1_ s 2
cos(¢' —¢) =1—2sin 5

and obtain the half-angle cosine rule:

cosip = cos (¢’ — ¢) —2cos ¢’ cos ¢ sin’

f— A=A
= sin? % = sin? % + cos ¢’ cos ¢ sin’ —

Here we may use the following approximation:
/ def
cos ¢’ ~ cos ¢ = cos ¢y,

in which ¢y is a reference latitude in the middle of the calculation area. Now

the above equation becomes

2N —

I
2 % + cos? ¢o sin — (9.3)

.o Y .
sin® = = sin
2

def def

which depends only on the differences Ap = ¢’ —¢p and AL = AV — A, a

requirement for convolution.

After this, the FFT method may be applied by using co-ordinates (¢, A)> and
the re-written Stokes kernel

S*(Ap,AN) =8 (2 arcsin \/sin2 % + cos? ¢y sin? A;‘) .

5In practice one uses the geodetic or geographic latitude ¢ instead of ¢
without significant error.
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This clever way of using FrT in geographic co-ordinates was invented by the
Dutchman G. Strang van Hees® in 1990.

9.3.2 “Spherical FFT”, multi-band model

We divide the area in several narrow latitude bands. In each band we apply
the Strang van Hees method using its own optimal central latitude.

Write the Stokes equation as follows:

N@A) = o [ S92 = X0) [Bg(9),N) cose/] gk, (09

4717

where we have expressed S(-) as a function of latitude difference, longitude
difference and evaluation latitude. Now, choose two support latitudes: ¢; and
¢ir1. Assume furthermore that S is between these a linear function of ¢. In
that case we may write

(¢ — i) Siv1(Ap, AA) + (Piv1 — P) Si(Ap, AA)
Pit1 — i ’

S(Ap, AN ) =
where Ap = ¢ —¢/,AA = A — A and

Si(Ap,AN) =S(p— ¢, A=A ¢r),
Siv1(Ap, AN) =S(p— ¢/, A — A ¢isr).

We obtain by substitution into integral equation 9.4

R $it1 —¢ . ¢ —¢i )
N(‘P/)‘) 47_[7 (‘PH—l o I + bir1 — i i1 (9-5)

with
L= / Si(Ap,AN) [Ag(¢',A') cos¢'] d¢’ dA',
Ii+1 = //SZ+I(A(P,A/\) [Ag(q)l,/\,) COS¢/} dq),d)\,

This equation is the linear combination of two convolutions. Both are evaluated by
FrT and from the solutions obtained one forms the weighted mean according
to equation 9.5.

Govert L. Strang van Hees (1932 -2012) was a Dutch gravimetric geodesist.

Solution in rectangular co-ordinates

In this method we use, instead of the approximative equation 9.3, an exact
equation, in which ¢’ is expressed into ¢ and A¢:

Sizf 2P —¢ / o A=A

n° o =sin T+cos<p Cos ¢ sin =

A AA
= sin’ T(P + cos (¢ — A¢) cos ¢ sin® -5

Here again, we calculate S; and S;1; for the values ¢ = ¢; and ¢ = ¢; 11,
we evaluate the integrals with the aid of the convolution theorem, and
interpolate N(¢, A) according to equation 9.5 when ¢; < ¢ < ¢;11. After this,
the solution isn’t entirely exact, because inside every band we still use linear
interpolation. However by making the bands narrower, we can keep the error
arbitrarily small.

9.3.3 “Spherical FFT”, Taylor expansion model

This somewhat more complicated but also more versatile approach expands
the Stokes kernel into a Taylor expansion with respect to latitude about a
reference latitude located in the middle of the computation area”. Each term
in the expansion depends only on the difference in latitude. The integral to
be calculated similarly expands into terms, of which each contains a pure

convolution.

Let us write the general problem as follows:

27 +"/2
/ / Clo, ¢, AA) [m(¢',\') cos ¢'] dg’ d)’,
/2

in which ¢ contains values to be computed, m values given, and C is the
coefficient or kernel function. Here is assumed only rotational symmetry
around the Earth’s axis for the geometry, i.e., the kernel function depends only
on the difference between longitudes AA rather than the absolute longitudes
AN

7In the literature the method has been generalized by expanding the kernel
also with respect to height.
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In a concrete case m contains for example gravity anomaly values Ag in
various points (¢’,A’), £ contains geoid heights N in various points (¢, ),

and C contains coefficients calculated using the Stokes kernel function.
We first change the dependence upon ¢, ¢’ into a dependence upon ¢, Ag:
C=C(p, ¢, ML) =C(Ap, AN, ).
Linearize:
C = Co(Ap,AL) + (¢ — 90) Co(Ap, AX) + ...
where we define for a suitable reference latitude ¢o,

def

Co(Ag,AN) = C(Dg, AN, o),

Co(Ap,AN) = aiC(A(p, AA, @)
¢ 9=p0

Note that this expansion into two terms will work only for a limited range
in Ag, and that the kernel function C is assumed to be of bounded support.
In this case, the integrals may be calculated within a limited area instead of
over the whole Earth.

Substitution yields
g, A) = // C(Ap, AN, @) -m (¢, \') cos ¢’ dg’ A\ =
:// (Co+ (¢ — 90) Cy) - mcos ¢’ dg' dA' =
://CU -mcos ¢’ de’ d\'+
+ (¢ — o) // Cy-mcos ¢’ dg' d)\. (9-6)
Important here is now, that the integrals in the first and second terms,
// Co(Ag, AN) [m(¢',A") cos ¢'] dg’ AN = Co @ [m cos ¢],
// Co(Ag,AN) [m(¢',A") cos ¢'] dg’ dA' = Cy @ [m cos ¢],

are both convolutions: both C functions depend only on Ag and AA. Both
integrals can be calculated only if the corresponding A¢ = ¢ — ¢’ and

Solution in rectangular co-ordinates

AA = A — )/, and the corresponding coefficient grids Co, Cy, are calculated
first in preparation. After this — in principle expensive, but, thanks to
rrT and the convolution theorem, a lot cheaper — integration, computing
the compound 9.6 is cheap: one multiplication and one addition for each
evaluation point (¢, ).

Example: let the evaluation area at latitude 60° be 10° x 20° in size. If the
grid mesh size is 5’ x 10/, the number of cells is 120 x 120. Let us
choose, e.g., a 256 x 256 grid (i.e., N = 256) and fill the missing values

with extrapolated values.

Also the values of the kernel functions Cy and C, are calculated on
a 256 x 256 size (A@,AA) grid. The number of these is thus also
65536. Calculating the convolutions Co ® [11 cos @] and Cy, ® [ cos ¢]
by means of F¥T — i.e,,

/ Co(Agp, ML) m (¢, A") cos ¢’ dg' A\ = Co ® [m cos @] =
= F Y F{Co}F{mcosg}},
// Co(Ap, AN) m(¢',\') cos ¢’ dg' dA' = Cp ® [m cos ¢] =
= F H{F{Cy} F{mcos ¢}},
requires (N?) x2log (N?) = 65536 x 16 = more than a million oper-
ations, multiplication with (¢ — @) and adding together, each again
65536 operations.
The grid matrices corresponding to functions Cy and C,, are obtained
as follows: for three reference latitudes ¢_1, ¢o, 911 we compute
numerically the grids
C*l = C(A(PI A)\/ (P—l)/
Co = C(Ag, AN, g9),
Ci1=C(Ag, AN, 911),
in which Cy is directly available, and

Cq, 2 7C+1 — Cil.
P+1— P
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Also inversion calculation is thus directly feasible. Let £ be given in suitable
point grid form. We compute the first approximation to m as follows:

The second approximation is obtained by first calculating
00 = Cy@ [meos ¢]” + (¢ — o) - Cy ® [m cos o],
after which we make the improvement:

F{t— 00} }

F{Co}

and so on, iteratively. Two, three interations are usually enough. This method

[m cos 9]V = [m cos ¢]©) + ]-"1{

has been used to compute underground mass points from gravity anomalies
to represent the exterior gravity field of the Earth. More is explained in

(1992).
9.3.4 “1D-fft”

This is a limiting case of the previous ones, in which FrT is used only in
the longitude direction. In other words, a zones method where the zones
have a width of only a single grid row. This method is exact if all longitudes
(0° —360°) are along in the calculation. It requires a bit more computing
time compared to the previous methods. In fact, it is identical to a Fourier
transform in variable A, longitude. Details are found in

(1993)-

9.4 Bordering and tapering of the data area

The discrete Fourier transform presupposes the data to be periodically continu-
ous. In other words, it is assumed that when connecting the Eastern edge of
the data area to the Western edge, and the Northern edge to the Southern
edge, the data has to be continuous across these edges®. In practice this is
not the case. We are faced with two different problems:

8Topologically the area with the edges thus connected is equivalent to a torus,
and the data is presupposed to be continuous on the surface of the torus.

Bordering and tapering of the data area

1. the data on the opposite side of an edge must be so far away to have
no noticeable influence on the result of the calculation, and

2. the data must be continuous across the edges.

Therefore, always when using rr1 with the convolution theorem 9.2, two

measures need to be taken.

1. we continue the data by adding a border area to the data area, so-called

bordering. Often the border area is 25% of the size of the data area; then,
the size of the whole calculation area will become four times that of
the data area itself. The border is often filled with zeroes, although
predicted values — or even measured values, if those exist — are a
better choice.
Also the calculation area for the kernel function is made similarly four
times larger. In this case, as the function is symmetric, the border
area is filled with real (computable) values, making it automatically
periodically continuous.

2. Because the discrete Fourier transform assumes periodicity, one must
make sure that the data really is periodic. If the values at the borders
are not zero, they may be forced to zero by multiplying the whole
data area by a so-called tapering function, which goes smoothly to
zero towards the edges. Such a function can easily be built, e.g., a
cubic spline polynomial or a Tukey or cosine tapering. See figure 9.3,
showing a 25% tapering function, as well as example images 9.4, where
one sees how non-periodicity — differing left and right, and upper and
lower, edges — causes horizontal and vertical artefacts in the Fourier
transform. These artefacts are called the Gibbs phenomenon, already
mentioned in section 8.8.1: a sharp cut-off or edge in the space domain
will produce signal in all frequencies up to the highest ones.

Many journal articles have appeared on these technicalities. Groups that have
been involved in early development of FrT geoid determination already in
the 1980s are Forsberg’s group in Copenhagen, the group of Schwarz and
Sideris in Calgary, Canada, the Delft group (Strang van Hees, Haagmans, De
Min, Van Gelderen), the Milanese (Sanso, Barzaghi, Brovelli), Heiner Denker
at the Hannover “Institut fiir Erdmessung”, and many others.
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Data area

Figure 9.3. “Tapering” 25%.

Figure 9.4. Example images for FrT transform without (above) and with
(below) tapering. Used on-line F¥T service Watts (2004).

Computing a geoid model with FFT

9.5 Computing a geoid model with fft

Nowadays computing a geoid or quasi-geoid model is easy thanks to in-
creased computing power, especially using ¥r1. On the other hand the spread
of precise geodetic satellite positioning has made the availability of precise
geoid models an important issue, so that one can use GNss technology for
rapid and inexpensive height determination.

9.5.1 The GRAVSOFT software

The GravsorT geoid computation software has been mainly produced in
Denmark. Authors include Carl Christian Tscherning?, René Forsberg, Per
Knudsen, the Norwegian Dag Solheim, and the Greek Dimitris Arabelos. The

manual is Forsberg and Tscherning (2008).

This package is in widespread use and offers, in addition to variants of
FFT geoid determination, also, e.g., least-squares collocation, routines for
evaluation of various terrain effects, etc. Its spread can be partly explained
by it being free for scientific use, and being distributed as source code. It is
also well documented. Therefore it has also found commercial use, e.g., in
the petroleum extraction industry.

GRAVSOFT has been used a lot also for teaching, e.g., at many research schools
organized by the 1aG (International Association of Geodesy) in various coun-
tries. ISG, Geoid Schools.

9.5.2 The Finnish FIN2000 geoid

Currently two geoid models are in use in Finland: rin2o000 (figure 9.5)
and FIN2005N00 (Bilker-Koivula and Ollikainen, 2009). The first model is
a reference surface for the N6o height system: using it together with GNss
positioning allows determination of the N6o heights of points. The model

9Carl Christian Tscherning (1942-2014) was a Danish physical geodesist
well known for his research into the gravity field of the Earth. He did
groundbreaking work on statistical computation methods for modelling the
Earth’s gravity field from many different measurement types.
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Figure 9.5. The Finnish rin2000 geoid. Data source: Finnish Geodetic Insti-
tute.

gives geoid heights above the Grs8o reference ellipsoid. The second model is
similarly a reference surface for the new n2000 height system. It too gives

heights from the Grs8o reference ellipsoid.

The precisions (mean errors) of FIN2000 and FIN2005N00 are on the level of
+2 —3cm.

Use of FFT in other contexts

9.6 Use of FFT computation in other contexts

9.6.1 Satellite altimetry

The Danish researchers Per Knudsen and Ole Balthasar Andersen have
computed a gravity map of the world ocean by starting from satellite altimetry
derived “geoid heights” and inverting them to gravity anomalies (

, )- A pioneer of the method has been David Sandwell from the
Scripps Institute of Oceanography in California (e.g., , )

The short-wavelength features in the map can tell us about the sea-floor

topography.
9.6.2 Satellite gravity missions and airborne gravimetry

Also the data from satellite gravity missions (like cHAMP, GRACE and GOCE)
can be regionally processed using the ¥¥1 method: in the case of Gocg, the
inversion of gradiometric measurements, i.e., calculating geoid heights on
the Earth’s surface from measurements made at satellite level. Also airborne
gravity measurements are processed in this way. The problem is called

“harmonic downward continuation” and is in principle unstable.

Airborne gravimetry is a practical method for gravimetric mapping of large
areas. In the pioneering days, the gravity field over Greenland was mapped,
as well as many areas around the Arctic and Antarctic. Later, areas were
measured like the Brazilian Amazonas, Mongolia and Ethiopia ( , ),
where no full-coverage terrestrial gravimetric data existed. The advantage of
this method is that one measures rapidly large areas in a homogeneous way.
Also for the processing of airborne gravimetry data, rrr is suitable.

9.7 Computing terrain corrections with FFT

The terrain correction is a very localized phenomenon, the calculation of which
requires high-resolution terrain data from a relatively small area surrounding
the computation point. Thus, calculating the terrain correction is ideally
suited for the ¥rT method.

We show how, with FFT, we can simply and efficiently evaluate the terrain
correction. We make the following simplifying assumptions:
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1. Terrain slopes are relatively small.
2. The density p of the Earth’s crust is constant.

3. The Earth is flat — the “shoebox world”.

These assumptions are not mandatory. The general case however leads us

into a jungle of equations without aiding the conceptual picture.

The terrain correction, the joint effect of all the topographic masses, or lacking
topographic masses, above and below the height level H of the evaluation
point, can be calculated under these assumptions using the following rect-
angular equation, which describes the attraction of rock columns projected
vertically (figure 6.5):

—+o00 ! _
TC(x,y) = ﬂ wcosedx’dy’

+o Go(H' —H) 1H —H
:// 7 ~§ 7 dx' dy'

- 1Gp // - H/ H B 4oy, 97)

H) ¢~ is the attraction of the column and } (H' — H) ¢~ is

Here Gp (H' —
the cosine of the angle 6 between the force vector — assumed coming from
the midpoint of the rock column — and the vertical direction. This is the
so-called prism method.

We will make a linear approximation, wherein /, the slant distance between
the evaluation point (x,y) and the moving data point (x/,y’), is also the
horizontal distance:

Cr (¥ =2+ (v )
Equation 9.7 is easy to check straight from Newton’s law of gravitation. When

it is assumed that the terrain is relatively free of steep slopes, then / is large
compared to H' — H.

Computing terrain corrections with FFT

From equation 9.7 we obtain by development into terms:
TC(x,y) 7Gth2 // — ' dy’

+oo
- GpH// dx dy'+
+o0 H/ , ,
+ EGP /[m 7 dx'dy’, (9.8)

in which every integral is a convolution with kernel ¢ =3, and functions to be
integrated are 1, H' and (H')*.

Unfortunately the function £~3 as implicitly defined above has no Fourier
transform, wherefore we change the above definition a tiny bit by adding a
small term:

= —x)P?+ -y + 8 (9.9)

Then, the terms in the above sum are large numbers that almost cancel
each other, giving a nearly correct result. Numerically this is however an
unpleasant situation.

If ¢ is defined according to equation 9.9, then the Fourier transform of kernel
073 s ( , ):
20252
q 6
1—2md )y

. . def . . .
in which g £ vu2 + 92, and u, v are wave numbers (i.e., “frequencies”) in

F{e3}) = 277-[ exp(—27éq) =

the x and y directions in the (x,y) plane. If we substitute this into equation
9.8, we notice that the terms containing 6~1 sum to zero, and of course also

the terms containing positive powers of § vanish when é — 0. As follows

( , 1989):
F{TC} =~ Gsz}'{l} ( (1- 2msq))
— GoHF{H'} (27 (1— 27'[(511))
+ %pr{ (H')*} (27” 1- 2n5q))

where we leave off all terms in higher powers of 4.
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Re-order the terms: Self-test questions

_ 2 o / 72
]-'{TC} = Gp (H F{1} - 2HF{H} + ]:{ (H ) }) + 1. What is the definition of a convolution?

+4m%q <—%GPH2]:{1} + GpHF{H'} - %Gp]:{ (H')2}> . 2. Explain the convolution theorem.

Because F{1} = 0if q # 0, the first term inside the second term will always 3. Explain the basic idea of the Strang van Hees method.

vanish. We obtain (remember that H is a constant, the height of the evaluation 4. What other approaches are there to apply the rFT method on a curved

point): (spherical or ellipsoidal) surface?
F{TC} = e 0 ( ]_—{ H2 — 2HH' + ( H’)2}> + 5. Why are bordering of the data area and tapering of the data necessary?
0 1 s 6. In addition to geoid determination, where in physical geodesy is the

2
+4mq <GPH]:{H,} - EGP]:{ (H') }) FFT method also used?
and the reverse Fourier transform yields 7. When computing the terrain correction on the Earth’s surface, describe
2 1 1 the 74 trick” used in the derivation. Why is it necessary, and how does
re=2"P (1 iy ). L
P 2 2 one make the ¢ vanish again?

+GpHF " { F{H'} - 4%}

1 -1 N2\ 12
sz}' {J—'{(H) } 47 q}.
In the first term

Ly 1

1 2 g/ 22 ’
GH? —H'H+ 5 (H)* = 5 (H ~H)

in point (x,y) in which H' = H, and we obtain

TC = 47'[2Gp]-"1{q : (H]-'{H/} - %]-'{ (H/)Z}) }

from which now the troublesome 5! has vanished.

2_¢

A condition for this “regularization” or “renormalization” is, that at point (x, y)
H' = H, i.e,, the evaluation happens at the Earth’s surface. The convolutions
above are evaluated by the FrT technique. A more detailed account is found,
e.g., in the article ( ).

For calculating the terrain correction TC in the exterior space — airborne
gravimetry, but also the effect of the sea floor at the sea surface, or the effect
of the Mohorovici¢ discontinuity at the Earth’s surface — there are techniques
that express TC as a sum of convolutions, as a Taylor series expansion. An
early paper on this is ( ).
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10.1 The role of uncertainty in geophysics

In geophysics, we often obtain results based on uncertain, incomplete, or
otherwise deficient observational data. This applies also in the study of the
Earth’s gravity field: e.g., the density of gravity observations on the Earth
surface varies a lot, and large areas on the oceans and polar regions are
covered only by a very sparse network of measurements. We speak of spatial
undersampling.

Measurement technologies that work from space typically provide coverage
of the whole globe, oceans, poles and all. They however don’t measure at a
very high resolution. Either the resolution of the method is limited — e.g., the
gravity field parameters calculated from satellite orbit perturbations — or
the instruments measure only straight underneath the satellite’s path — like
satellite altimetry.

Another often relevant uncertainty factor is, that one can do precise mea-
surements on the Earth surface, but inside the Earth the uncertainty is much

larger and the data is obtained much more indirectly.

In previous chapters we described techniques by which we could calculate
desired values or parameters for the Earth’s gravity field, assuming that, e.g.,
gravity anomalies are available everywhere on the Earth surface, and with
arbitrarily high resolution. In this chapter we look at mathematical means to
handle real-world situations where this is not the case.
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10.2 Linear functionals

In mathematics, an operator or mapping that associates with every function
in a given function space a certain numerical value is called a functional. One

such is, e.g., a (partial) derivative in a certain point:
d
fr 52 f(x)
ax X=Xq

A trivial functional is also the evaluation functional, the function value itself

for a certain argument value,
f f(xo).
Other functionals are, e.g., the integral over a given area:

£ [ £ d
and so on.

We may write symbolically

d
=35

,ie, L{f} = %

X=Xp X=Xp

A functional or operator is linear if

L{af + Bg} = aL{f} + pL{g} Va, p € R.
Note that all partial derivatives, as also the Laplace operator A, are linear.

In physical geodesy, all interesting functionals are functionals of the function
T(¢,A,R) = T(¢,A, 1) |,_g, ie., the disturbing potential on the surface of the
Earth sphere. The theory thus uses the spherical approximation’, and the
surface of the sphere, radius R, corresponds to mean sea level. For example,
the disturbing potential Tp « T(¢p, Ap,R) in a point P at sea-level location
(¢p, Ap) is such a functional:

T(-,-,R) s T(¢,A,R).

'This is not mandatory, but the error of approximation is small.

Statistics on the Earth's surface

Even if point P is not at sea level, a suitable functional exists:
T(-,,R) = T(p,A,7).

Even if the quantity is not the disturbing potential, but, e.g., the gravity
anomaly or the deflection of the plumb line:

T(-,-,R) — Ag(p,A, 1),
T('/ '/R) = é((Pf /\, r) ’
T(-,+,R) = n(¢,A,1).

All these are also linear functionals. In fact, if we write

) R n+1 n
T=Y (7) Y Pun(sing) (aum cos mA + byy sinmA),

n=2 m=0

then even the spherical-harmonic coefficients a,,,;, by, are all linear functionals
of the disturbing potential T:

T('/ ‘y R) — Aum,
T(-,+,R) — bup.

Here, T(+,+,R) is shorthand for the whole function

T($,A,R), ¢p¢€ [f§+§] ,Ae0,2m).

10.3 Statistics on the Earth’s surface

In statistics we define a stochastic process as a stochastic quantity, or random
variable, the domain of which is a function space. In other words, a random
variable the realization values of which are functions. A stochastic process
may be a quantity developing over time, the precise behaviour of which
is uncertain, e.g., a satellite orbit. In the same way as for a (real-valued)
stochastic quantity x, we may calculate an expected value or expectancy E{x}

and a variance

Cor = Var{z) = E{(x ~ E{x})*},
we may also do so for a stochastic process. The only difference is, that by
doing so we obtain functions.

madrittelyjoukko

odotusarvo
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Let, e.g., the stochastic process x (t) be a function of time. Then we may
compute its variance function as follows:

Cxx(t) = Var{x(t) }.

For a stochastic process however, much more can be computed: e.g., the
covariance of values of the same function taken at different points in time,
the so-called autocovariance:

Awx(tit2) = Covix(t), x(t) } = E{ (x(t) — E{x(t) }) (x(t2) — E{x(t2) }) }.

Similarly if we have two different functions, we may compute between them
the so-called cross covariance, etc.

The argument of a stochastic process is commonly time, t. However in geo-
physics we study stochastic processes the arguments of which are locations
on the Earth’s surface, i.e., we talk of processes of the form x(¢,A). The
definitions of auto- and cross-covariances work otherwise in the same way,
but in case of the Earth we have a special problem. A stochastic quantity
is generally defined as a quantity x, from which realizations x1,x, x3,... are
obtained, which have certain statistical properties. The classical example is
the dice throw. A die can be thrown again and again, and one can practice
the art of statistics on the results of the throws. Another classic example
is measurement. Measurement of the same quantity can be repeated, and is

repeated, in order to improve precision.

For a stochastic process defined on the Earth’s surface, the situation is differ-
ent.

We have only one Earth.

For this reason, statistics must be done in a somewhat different fashion.

Given a stochastic process on the surface of the Earth, x(¢, A), we define a
quantity similar to the statistical expectancy E{-}, the geographic mean

et 1 1 27T +7/2
M{x} = H//Ux(cp,/\) do = H/o /4/2 x(¢p,A) cospdpdr.  (10.1)

The covariance function of the gravity field

Here x(¢, A) is the one and only realization of process x that we have available
on this Earth.

Clearly this definition makes sense only in the case where the statistical
behaviour of the process x(¢, A) is the same everywhere on Earth, indepen-
dently of the value of (¢, A). This is called the assumption of homogeneity. It is
in fact the assumption that the spherical symmetry of the Earth extends to
the statistical behaviour of her gravity field.

Similarly to the statistical variance based on expectancy, we may define the
geographic variance:

Cax(9,A) & Var{x(g,A) } 2 M{ (x — M{x})*}. (10.2)

The global average of gravity anomalies Ag(¢, A) vanishes based on their
definition:
M{Ag} =0.

In that case, equation 10.2 is simplified as follows:

Cane(9, ) = Var{g(p,1) } = M{ag?} = o [ (g9 1) ) o

The definition given here of the geographic mean M{-} is based on integration
of the one and only realization over the surface of the Earth. As has been
seen, in statistics the mean is defined slightly differently, as the expectancy of
a stochastic process. For gravity anomalies this means E{Ag}, where Ag is
the anomaly considered as a stochastic process, i.e., the series of values of / Ag
that results if we look at an infinitely long series of randomly formed Earths.

Not very practical!

If the expectancy of a stochastic process is the same as the mean of one real-
ization computed by integration, we speak of an ergodic process. Establishing
empirically that a process is ergodic is in geophysics typically difficult to
impossible.

10.4 The covariance function of the gravity field

Defining a covariance function between points P and Q is more complicated.
Something like equations 10.1, 10.2 cannot be used directly, because both Agp

homogeenisuus

ergodisuus
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— - — —

Figure 10.1. Definition of geocentric angular distance and azimuth.

and Agg can move over the whole Earth’s surface. We have

Agp = Ag(pp, Ap),
Ago = Ag(¢po,A)-

In the following we assume that the covariance to be calculated will only
depend on the relative location of points P and Q. In a homogeneous gravity
field, the covariance function will not depend on the absolute location of the

points, but only on the difference in location between points P and Q.

Write

$o = ¢o(Pr, Ap, Pro,arg),
Ag = Ag(¢p, A, g, apg).

(¢, Ag) can be computed? if we know (¢pp, Ap) and both the geocentric angular
distance ppg and the azimuth angle apg. See figure 10.1.

Now we may write

Agq = Agg <¢Q (¢p, Ap, Prg, apg), Ao (¢p, Ap, IPPQf“PQ)) =

= Ago(Pp, Ap, Pro, apg),

*This is called the geodetic forward problem on the sphere.

Least-squares collocation

and we may define as the covariance function
Cagag (¥ro, apQ) = M{Agp(¢p, Ap)Aga (¢, Ap, Ppg, apq) } =
1
T in // Agp(¢p, Ar)Aga(Pr, Ap, Yr, apq) dop.
o

Also here, M is a geographic-mean operator. First we fix point Q in relation
to point P: both azimuth apg and distance 1pg are held fixed. The point P —
and with it, point Q — is moved over the whole Earth’s surface. We compute

the corresponding integral over the unit sphere op, and divide by 47t:

1
Cagag (Yro apg) = M{AgPAZo(p) } = 71— // AgpBgop) dop =
o
1 +7/2 27T
/0 AgpAgo(p) dAp cos Pp dpp,

in which was used do = cos ¢ dA dp, with cos ¢ Jacobi’s determinant for the

co-ordinates (¢, A) on the unit sphere.

i/,

In addition to the assumption of homogeneity, we may make still the assump-
tion of isotropy: the covariance function — or more generally, the statistical
behaviour of the gravity field — does not depend on the relative direction
or azimuth apg of point pair (P,Q), but only on the angular distance pg
between them. (This too is, like homogeneity, one of the forms in which
the Earth’s spherical symmetry is expressed.) In this case we may compute
the geographic mean in a slightly different way, by also averaging over all
azimuth angles app € [0,27):

1 27T
Cagag(¥ro) = M'{BgrBgor } = 57 /0 M{AgpAgo(p) } dapg =

1 2 p+n/2 (271
~ 82 /0 / /0 AgpDgQ(p) dAp cos pp ddpp dapg.  (10.3)

—n/2
Remark: The true gravity field of the Earth isn’t terribly homogeneous or
isotropic, but in spite of this, both hypotheses are widely used.

10.5 Least-squares collocation

10.5.1 Stochastic processes in one dimension

Collocation is a statistical estimation technique used to estimate the values of

pienimmaén
neliosumman
kollokaatio
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a stochastic process, and calculate the uncertainties (e.g., mean errors) of the
estimates.

Let s(t) be a stochastic process, the autocovariance function of which is
C (ti, tj). Let the process furthermore be stationary, i.e., for any two moments
in time t;,t; we have C(t,-,t]-) = C(t]- —t;) = C(At). The argument ¢ is
generally time, but could be any parameter, e.g., distance of a journey.

Of this process, we have observations made at times ty, 1, ..., ¢y, when the
corresponding process values for those times are s(t1),s(t2),...,s(tn). Let
us assume, for the moment, that these values are error free observations. Then
the observations are function values of process s, stochastic quantities, the

variance matrix of which we may write as follows:

C(ti,t1) Clt2, 1) C(t,tn)
Varfs} = | Clve) Cls) '
C(t1,tn) Clt2, tn) C(tn,tN)

We call this autocovariance matrix also the signal variance matrix of s. We use
for this the symbol Cj;,
for the whole matrix, C;j = [C(t;,t;),i,j =1,...,N]. The symbol s; again

both for one element C;j = C(t;,t;) of the matrix, and

denotes a vector [s(t;),i =1,...,N] consisting of process values — or one of

its elements s (t,-).

Note that, if the function C (ti, tj), or C(At), is known, then the whole ma-
trix and all of its elements can be calculated provided all argument values
(observation times) ¢; are known.

Let the shape of the problem now be, that one should estimate, i.e., predict,
the value of process s at the moment in time T, i.e., s(T), based on our
knowledge of the above described observations s(t;),i =1,...,N.

In the same way as we calculated above the covariances between s(#;) and
s (t/-) (elements of the signal variance matrix C;j), we also compute the covari-
ances between s(T) and all s(t;),i =1,..., N. We obtain

Cov{s(T),s(t)} = | C(T,t1) C(T,h) c(T,ty) |-

Least-squares collocation

For this we may again use the notation Cr;. It is assumed here, that there is
only one point in time T for which estimation is done. Generalization to the
case where there are several T), p = 1,..., M, is straightforward. In that case,

the signal covariance matrix will be of size M x N:

C(Tit)  C(Tub) C(Ty, by)
Cov{g(Tp),§(ti)} _ C(T?’tl) C(T?, tz) C(Tzz, tN)
C(TM,tl) C(TM, tz) C(TM, tN)

For this we may use the more general notation Cy;.

10.5.2 Signal and noise

The process s(t) is called the signal. It is a physical phenomenon that we are
interested in. There exist also physical phenomena that are otherwise similar,
but that we are not interested in: to the contrary, we wish to remove their
influence. Such stochastic processes are called noise.

When we make an observation, the purpose of which is to obtain a value for
the quantity s(#;), we obtain in reality a value that is not absolutely precise.
The real observation thus is

L =s(t) +n;. (10.4)

Here, n; is a stochastic quantity: observational error or noise. Let its variance —
or more precisely, the joint noise variance matrix of multiple observations —
be Dj;. This is a very similar matrix to the above Cjj, and also symmetric and
positive definite. The only difference is that D;; designates noise, which we
are not interested in. Often it may be assumed, that the errors n;, 11; of two

different observations ¢;, ﬁj do not correlate, in which case Dj; is a diagonal

matrix.

10.5.3 Estimator and variance of prediction

Now we construct an estimator

S(Tp) £ Y Apils,
1



Page 245

244

varianssien
kasautuminen

Statistical methods

a linear combination of the observations at our disposal ¢;. The purpose in
life of this estimator is to get as closely as possible to 5(T;) . So, the quantity

to be minimized is the difference

S(Ty) = s(Tp) = Apiti = s(Ty) = Api(s(t) +15) = (T,)-

Here, for the sake of writing convenience, we left the summation sign ) off
(Einstein summation convention): We always sum over adjacent, identical
indices, in this case i.

Study the variance of this difference, the so-called variance of prediction:
def ~
Zpp = Var{s(T,) —s(Tp) }.

We exploit propagation of variances, the notations introduced above, and our
knowledge that surely there is no physical relationship, or correlation, between
observation process noise 1 and signal s:

Cov{ (g(ti) —l—ﬂi), (g(t]') +ﬂj>} = Cov{g(ti),g(tj)} +COV{ﬂi,ﬂj} = Cij+ Dy,

and

Zpg = Cov{ <§(Tp) —E(Tp)>/ <§(Tq) - Q(Tq))} =
= A Cov{ (s(t) +m:), (s(t) + ;) JAT, + Cov{s(Ty),s(Ty) } -
= Npi Cov{s(ti),s(T;) } — Cov{s(Tp),s(t)) } A, =

i)s
T T
= Api (C,‘j + Di]‘ A]-q + Cpq — A,,iciq — ijqu. (10.5)

The variances, or diagonal elements, ¥, of the matrix are now obtained by
setting g = p.

10.5.4 Showing optimality

Here we show that the optimal estimator is indeed the one producing the
minimum possible variances.

Choose

def

-1
Apj = Cyi (Cij+ D)

Least-squares collocation

Then, from equation 10.5, and exploiting the symmetry of the C and D
matrices, we obtain

Zpp = Cpi (Cij+ Dyj) ' Cjp + Cpp—
—Cpi (Cyj+Dyj) " Cjp = Ci (Cyj+ Dy) ' Cjp =
= Cpp — Cpi (Cij + Dyy) ™' G- (10.6)
Let us study next the alternative choice
Apj = Cpi (Cij+ Dij) " + 8.
In this case we obtain
Epp = Cpp = Cpi (Cyj+ Dyj) ' Cjp+
+ 00y [(Cy+ D) AT + (A (G + D)) 60+
+0Api (Cij + Djj) 6A], — A, Cip — Cpi6A], =
= Cpp — Cpi (Cij + Dyj) ™' Cjp + 6ApiCip + CpiAT,—
— 6A,iCiy — CpjAJ, + 5/, (Cij+ Dij) SAS, =
= Cpp — Cyi (Cij + Dys) ™ Cjp + 6/ (Cyi + Dyj) 6A],
Here, the last term — the only difference with result 10.6 — is positive,

because the matrices C;; and Dj; are positive definite: Xj,, > X,,, except

when 6A,; = 0. In other words, the solution given above,
-1 N -1
Ay = Gy (G Dy) ! = 5(1) = G (G +Dy)

is optimal in the sense of least squares — more precisely, in the sense of

minimizing the variance of prediction X;,.

10.5.5 The covariance function of gravity anomalies
Least-squares collocation is used much to optimally estimate gravity values
and other functionals of the gravity field on the Earth’s surface.

If we have two points, P and Q, with measured gravity anomalies Ag, =
%(qh), )Lp) and %Q = %(sz, AQ), we would like to have the covariance
between these two anomalies,

Cov{%P,%Q}.
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As argued in section 10.4, we can only empirically derive such a covariance by
looking at all point pairs (P, Q) that are in the same relative position around
the globe, and averaging over them using the M or M’ operator.

Normally the covariance is assumed to depend only on the geocentric an-
gular distance i between points P, Q. Then, we speak of an isotropic process
Ag(¢,A) . Then also, the covariance will be

Cov{Ag, A8, } = M'{AgrAgo(r) } = C(¥rq)-
A popular covariance function for gravity anomalies is Hirvonen3’s equation:

Co

= T%)z, (10.7)

C(y)

where Cy = C(0) and ¢y are parameters describing the behaviour of the
gravity field. Cy is called the signal variance, o the correlation length. 1y gives
the distance at which the correlation between the gravity anomalies in two
points is still 50%.

In local applications, instead of the angular distance ¢ one uses the metric
distance
s = YR,

where R is the mean Earth radius. Then
Co
C(S) = ﬁ.

1+ (3)
This equation was derived from gravimetric data for Ohio state, USA, but
it has broader validity. C(0) = Cy, the signal variance when s = 0. Also
the variable d is called the correlation length. It is the distance d for which
Cd) = %Co, as seen from the equation.

The quantity Cy varies considerably between areas, from hundreds to thou-
sands of mGal?, and is largest in mountainous areas. The quantity 4 is
generally order of magnitude tens of km.

3Reino Antero Hirvonen (1908 -1989) was a Finnish physical and mathemati-
cal geodesist.

Least-squares collocation

/ A\

7/ \

7N
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Figure 10.2. Hirvonen’s covariance function in two dimensions. Assumed is
Co=d=1.

Warning: The Hirvonen covariance function is meant for use with (free-air)
gravity anomalies, i.e., quantities obtained by subtracting normal
gravity from the measured gravity. Nowadays anomalies are often
obtained by subtracting from the observations a high-degree “normal
field”, i.e., a spherical-harmonic expansion. Then one uses Hirvonen’s
formula at one’s own risk!

Alternative functions that are also often used in local applications are the
covariance functions of first and second order autoregressive processes, or
AR(1) or AR(2) processes:

Cly) = Coe_'*% or C(yp) = Coe_<%) .

An AR(1) process is also called a Gauss—-Markov process.

10.5.6 Least-squares collocation for gravity anomalies

If given are N points P;,i = 1,..., N, where were measured gravity values —
more precisely, anomalies — Ag, = Ag (i, Ai), we may, like above, construct
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Figure 10.3. An example of least-squares collocation. Here are given two
data points (stars); the surface plotted gives the estimated value
Z\gp for each point P in the area. Here we use least-squares
collocation for inter- and extrapolating gravimetric data.

a signal variance matrix

[ Co C(pzn) - C(yn1)
c C - C
Var{%i} = (I.Pu) .0 (IITNZ) =

L C(yin) Clypn) -+ Go
[ Co Ca -+ Cwm

_ C.u CjO A C{qz det Cij,

: : d :

L CGin Con - G

where all elements C(;;) are calculated using the covariance function 10.7

given above.
If we also compute for the point P in which gravity is unknown:

Cov{Ag, Ag} = [ C(yp) C(¢p2) --- C(ypn) ] = Cpi,

Least-squares collocation

y
1 (15 mGal)

30| e X

L op!

7 (20 mGal)
20| ex?
10[ op

X

10 20 30

Figure 10.4. Collocation example.

we obtain, in the same way as before, for the least-squares collocation solution
Agp = Cri (Cij+Dij) £~ CiCyj Ly,

where the {; = Ag. + n; are gravity anomaly observations made in points
j=1,...,N. The matrix D;; (which we leave out of consideration here) again
describes the random observation error, observation uncertainty, or noise n;
associated with making those observations. Usually D;; is a diagonal matrix,
i.e., the observations are statistically independent and don’t correlate with
each other.

We may also compute a precision assessment of this solution, i.e., the variance
of prediction, equation 10.10:

Xpg & CPQ — CpiCZ?lC]'Q.
In the case of one unknown prediction point P, Q = P and
Ypp = Co— Cpnglcjp.

Its square root
Oagp = V ZppP

is the mean error of estimator Agp.

ennustusvarianssi
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10.5.7 Calculation example

See figure 10.4. Given two points where gravity has been measured and grav-
ity anomalies calculated: Ag = 15mGal, Ag, = 20 mGal. The co-ordinates in
the x and y directions are in kilometres. Assumed is that between the gravity

anomalies of different points, Hirvonen'’s covariance function,

Co
C(s) = —2—,
O =Gy

applies, in which d = 20km and Cy = #1000 mGal®. Additionally it is
assumed that the gravity measurements done (including height determination

of the gravity points!) were errorless. So, D;; = 0,i,j = 1,2.

Calculate an estimate of the gravity anomaly @P at point P and its mean

error opp = \/pr.

Calculate first the distances s and the corresponding covariances C.

2, = ((30 —20)%+ (20 — 30)2) km? = 200 km?,

2
Cip = Cpy = 1000MGal_ (o 66 mGal?,
1+ %0
stp = ((30—10)* + (20~ 10)°) km? = 500 km?,
2
Cip = 10(1)0% — 444.44... mGal?,

400
$3p = ((20-10)? + (30~ 10)°) km? = 500km?,

1 P
Cop = 2000mGAl_ )y 44 mGal
1+ 100

From this follows

Cn C 1000 666.66
Cij+Dij=Cjj = o=z mGal?,
Cyi Cx» 666.66 1000
and its inverse matrix
_ 0.0018 —0.0012
(Cj+Dy) " = [ mGal 2.

—0.0012  0.0018

Least-squares collocation

We also have

Cpi = [ Cp1 Cpa ] = [ 44444 444.44 ] mGal.
REE
- { 20

0.0018 —0.0012} {15

As the vector of observations is

[Agl

= mGal,
48,

28;

we get the result

mGal = 9.333 mGal.

Agp=| 44444 22044 |
~0.0012  0.0018 | | 20

Precision, i.e., the variance of prediction, equation 10.10:

Epp = Cpp — Cp; (G + Dii)_l Cip =

0018 —0.0012 | [ 444.44
0.0018 —0.00 H Al —

—Cy— [444.44 444.44}
—0.0012  0.0018 | | 444.44

= 762.96 mGal?,
ie.,
Oagr = V/Zpp = £27.622mGal.

Summarizing the result:
Agp = 9.333 £ 27.622 mGal.

Observe that the gravity anomaly estimate found is much smaller than its
own uncertainty, and thus does not differ significantly from zero. In fact, not
using the observational data at all would leave us with the a priori estimate

Z(\gp = 0+ v1000 mGal = 0 & 31.623 mGal,

almost as good.

If, instead, we would choose to locate point P’ in between points 1 and 2,

at location (25km, 25km), then Cp; = Cpp = 105)0%%‘# = 888.89 mGal? and
+100
Agp = 18.667 &= 7.201 mGal, which is clearly better than the a priori estimate

of zero.
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And if we had chosen instead the Gauss-Markov covariance function
C = Coe”?

we would have obtained the results K\gp = 7.663 +29.272 mGal for the orig-
inal point location, and Z:gp, = 16.460 + 18.426 mGal for the shifted point

location.

10.5.8 Theory of least-squares collocation

Above we presented one popular application of least-squares collocation.
Here we look at the method more generally. The basic equation is

= Cfy [Cyg + Dgg] B [g+n]. (10.8)

The vector g contains observed quantities 8, the vector n contains the obser-
vational noise, and T is a vector of quantities ﬁ to be predicted. The hat is a
commonly used symbol for an estimator.

Both vectors g and f can, e.g., be gravity anomalies, in which case we have
homogeneous prediction, a type of interpolation or extrapolation. More gener-
ally f and g are of different type, e.g., T consists of geoid heights N; and g
of gravity anomalies Ag;. In the latter case, the Stokes equation is “covertly”
along in the structure of the C matrices.

These matrices are built from covariance functions. Their elements can be

expressed as follows:*

[Cfg]ij = M{figj},
[ng}]‘k = M{g;gi},

[Dgg]j = E{njme},

4Note that here we use the geographic mean M{-} for evaluating the signal
covariances. In doing so, f and g are no longer considered stochastic. It
is however assumed that their global geographic mean vanishes: M{f} =

M{g} =0.

Prediction of gravity anomalies

where 7;, an element of vector n, represents the uncertainty of the observation
process appearing in the observation equation 10.4:

bi=gi+n+—L=g+n

£ is the vector of the observation values themselves, including observation

uncertainty n.

The D is the variance matrix of observational uncertainty, the noise variance
matrix describing a property of the observational process, not of the gravity
field. While the values of M{Ag;Ag;} can be as large as 1200 mGal?, the
values of E{ ﬂiﬂj} can be much smaller, depending on the measurement

technique used, e.g., as small as 0.01 mGal®.

Not however in the case of block averages — e.g., averages over blocks of
size 1° x 1°, computed from scattered measurements — which often are very

imprecise.

The great advantage of least-squares collocation is its flexibility. Different
observation types may be handled with a single unified theory and method,
the locations of observation points (or blocks) are totally free, and the result is
obtained directly as freely choosable quantities in locations where one wants
them.

10.6 Prediction of gravity anomalies

If the quantity to be calculated or estimated, f, is of the same type as the ob-
served quantity, g, we often speak of (homogeneous) prediction. For example,
the prediction equation for gravity anomalies already presented in subsection
10.5.6 is obtained from equation 10.8 by substitution:

Agp = Cp; (Cij + Dyj) ! L. (10.9)

Here are several points j where gravity is given: let us say, N observations
ﬁj = %}_ + 1, j=1,...,N. The number of points to be predicted may be
one, P, or also many. The matrices C;; and D;; are square, and the inverse of
their sum exists. Cp; is a rectangular matrix. If there is only one point P, it is

a size 1 x N row matrix.
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The prediction error is now the difference quantity® g\gp — %p’ and its variance
(“variance of prediction”) is
pr d:erar{Z\gp — %P} =
=Var{Agp} + Var{%P} — Cov{Agp,ﬁp} - Cov{%P, Agp}.
Here (propagation of variances applied to equation 10.9):
— -1 —
Var{Agp} = Cp; (Cij+ Djj) (Cik + Dj) (Cr + Die) ™' Cop =
= Cpi (Cyj+ Dyj) ' Cep
and
Cov{Agp, Ag,} =Cov{Ag, Agp} = Cpi(Cij+ Dij) ' Cip.
Here, C;'I; (or C}';,, or CZP) is the transpose of Cp;. The matrix (Cij + Dij) is
symmetric and its own transpose.
The end result is (remember that the signal variance Var{%l)} = Cpp):
Zpp = Cpp + Cpi(Cij + Dyj) "' Cjp—
— Cpi(Cij+ Dij) "'Cjp — Cpi(Cij + Dyj) "'Cjp =
= Cpp — Cpi(Cij + Dij) ~'Cjp.
In case D;; < Cjj, we obtain a simpler, often used result:

Ypp ~ Cpp — Cp,‘Cl;lep. (10.10)

Borderline cases:

1. Point P is far from all points i. Then Cp; ~ 0 and Zpp ~ Cpp, i.e.,
prediction is impossible in practice and the prediction equation
10.9 will yield the value zero. The mean error of prediction /Zpp
is the same as the variability \/Cpp of the gravity anomaly signal.

°Note that here, Ag , is the true value of the gravity anomaly at point P, which
we don’t know empirically. The measured value is {p = Ag, +np, in which np

is the random error or “noise” of the gravimetric observation.

Covariance function and degree variances

2. Point P is identical with one of the points i. Then, if we use only
that point 7, we obtain

Ypp = Cpp — CppCppClp = 0,

no prediction error whatsoever — as the value at the prediction
point was already known!.
However, if Dpp # 0 (but small), the result is pp ~ Dpp. Show.

10.7 Covariance function and degree variances

10.7.1 The covariance function of the disturbing potential

In theoretical work we use, instead of gravity anomalies, rather the covariance

function of the disturbing potential T on the Earth’s surface:

K(P,Q) = M{TpTy(p)}-

We write this in the following form using the definition of M'{-}, equation

10.3:
K(ypo) = M'{TrTyp)} =

1 2 p4+7/2 p21
= TpT, dAp cos ¢pp dpp dapo. (10.11)
87r2/0 / /o pTo(p) dAp cos Pp dpp dapg

—7/2
Here it is assumed that the disturbing potential is isotropic: K does not depend
on a but only on 9.
We choose on the unit sphere a co-ordinate system where point P is a “pole”.

In this system, the parameters apg and ¢pg are the spherical co-ordinates of
point Q. The covariance function is expanded into the following sum:

kannm (BC, ll])

n

K(yp) =

2m

e
\I\M=

n

with Yy, defined as in equation 3.9.
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Based on isotropy, all coefficients vanish® for which m # 0:

K(p) = Y kuoYuo () & Z P, (cosp).

n=2

The coefficients k;, are called the degree variances (of the disturbing potential).

For isotropic covariance functions K(¢) the information content of the degree

variances k,,n = 2,3, ... is the same as that of the function itself, and is in

fact its spectral representation.

10.7.2 Degree variances and spherical-harmonic coefficients

We can in a simple way specialize the degree constituent equation 3.7:

72n+1//f Py(cos ) do 2n+1/ F

if the expansion of function f is

P, (cos ) sinypdyp

Z fuPu(cosip).
Comparison with the previous yields
2 1 (7
k= 20 [T K@) Pucosy) sinp dy,
0

ie., if K(¢) is given, we can calculate all k;,.

Substituting K(¢pg) from equation 10.11 yields

n

n 4 1 /2 27 T P27
= > / / Tp / / TQ(p) dD{pQPn(COS lp) sin llJpQ lepQ d)\p COos (Pp d¢P
16m* J =y Jo o Jo

Here we have already interchanged the order of the integrals, as is allowed,
and moved Tp to another place.

®because

Py (cosip) cos ma if m>0,

if m <O,

YHM(“rlP) = {

Py (cos ) sin [m|a

an expression that can only be independent of « if m = 0.

Covariance function and degree variances

The expression inside the large parentheses is a surface integral over the unit
sphere

T 21
/0 /0 TQ(p)Pn (COS l,DpQ) dBCpQ sin [1426) lepQ =
4

// ToPy(cos Ppg) dog = ot 7T (P),

where T, is the constituent of T for the harmonic degree number n, compare

the degree constituent equation 3.7. Substitution yields
+7/2 21
k, = / TT, cos¢pdAdp =

—n/2

= G//UTTHUZJ:M{TT”} = E//JTﬁdU:M{T,%},

according to the definition of operator M, and considering the orthogonality
of the functions T),.

If we now write, with the familiar definitions,

T(9,A) =} Tu(p,A) =

n=2
(o] n _ _ _

= 2 2 (EW,,an(sinq’)) €08 MA + Dy Py (Sin ) sinm/\) =
n=2m=0
(o] n _

= Z Z Enmynm(ﬁbr)\)/
n=2m=—n

we obtain

K(y)

Py(cos ) ( // T2d0> (cosyp) =

2 (Z (7 nm+bnm)> J(cos ) = Y ( ¥ aﬁm> Py (cos ).

n=2 \m=-n

Here, we have exploited the orthonormality of the fully normalized basis
functions

cosmA it m>0

sin|m|A if m <0

?nm = Fn|m\(5in4>) {
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on the surface of unit sphere ¢. One sees from the equation, that
Sy 72 =)
ky = Z G + Uy = Z Tms
m=0 m=—n

ie.,

The degree variances ky, of the disturbing potential can be calculated directly
from the spherical-harmonic coefficients.

The literature offers many alternative notations for the degree variances, like

def def
el 2 46t T

10.8 Propagation of covariances

The covariance function K derived above can be used to also derive the
covariance functions of other quantities. This works in principle for quantities
that can be expressed as linear functionals of the disturbing potential T(-, -, R)
on the surface of the Earth sphere, as explained in section 10.2.

10.8.1 Example: upward continuation of the potential

Let us write the disturbing potential in space T(¢,A,r) as a functional of
the surface disturbing potential. T(¢, A, R) = T(-,-,R) We know, with the

definition of T, with equation 3.7, being

T(p,\,R) £ Y Tu(g,7),
n=2

that

i) = ¥ (R)M T,(9,1).

Symbolically
T(¢, A1) = L{T(¢, A, R) },
Here, L is the linear operator

L =Y (B)M fu

n=2 r

Propagation of covariances

where the f, are defined according to the degree constituent equation 3.7, so
that on the surface of the sphere

f = an
n=2
Symbolically
L{f} = Y L"fu,
n=2
where

R n+1
n _ —
w=(7)

is the spectral representation of the operator L.

We may still write in a certain point P (¢p, Ap,rp) in space:

ZL o

R n+1
- (2)"
rp

Concretely, for the disturbing potential T(cpp, Ap, rp) in point P, this means

Lp{f} =

in which

T((Pp,)\p,‘r‘p) = LpT{((P,)\, R)} =

=Y LpT, =

n=2
) R n+1
5 <;> T,.

n=2

Now the covariance function in space of T is obtained:

= M{Tp, T} = M{T(¢p, Ap, 7p) T(9q, A, 7o) } =
= M{Lp{T(¢,A,R) }Lo{T(¢,A,R) } } =

{Z (LBT,) i (Lng,)} =

n=2 n'=2

K(rp,rq,¥po)

-y YL LY M{T, Ty }.

n=2n'=2
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Based on the orthogonality of the functions T, it holds that

kyPy(cosyppg) if n=n’,

M{T, Ty} = :
0 if n#n,

i.e., the harmonic components of the surface covariance function

K(ypg) = Z M{T,T,} = Z kn Py (cos Ppg). (10.12)
Thus we obtain”

L” tknPy (cos Ppg) =

n+1 n+1
<R> <B> kP (cosppg) =

e

K(rp,rq, ¢rq) =

Ms

n+1
(rPrQ) ku Py (cos Ppg). (10.13)

Here we have expressed the covariance function of the disturbing potential
in space T(¢,A,r) into an expansion into the degree variances k, of the
corresponding Earth’s surface disturbing potential T(¢, A, R), by applying
propagation of covariances on the expansion 10.12 of the function K. Thus
we have obtained the three-dimensional covariance function for the disturb-
ing potential, needed, e.g., in mountainous countries and in air and space
applications.

10.8.2 Example: the covariance function of gravity anomalies

We know (equation 5.8) that there exists the following relationship between
gravity anomalies and the disturbing potential:

,%i( )"H(n—nn,

7This works only this cleanly because in this case the operator L" is of
)n+1

multiplier type, (&

r

Propagation of covariances

symbolically: Ag = Lo{T} for a suitable operator Lg:

Le{f} = Z Lefn,

where now

Again, in a concrete point P,

Ag(¢p, Ap,7p) = Lo p(T

) R n+1
B
n=2 rp

Now we can show in the same way as above, that

Cov{Ag,, AgQ} M{AgpAgo} = 2 Ly

n=2

co 1 R n+1_- 1 R n+1
=) " <—) " (—) ku Py (cos ppg) =

o \"Q

[ 2 n+2 _ 2
= Z ( R ) <nR1> knP”(COSQUpQ).

pLY GM{T, T} =

Often we write

. o R2 n+2
C(¢ro rr.rq) = M{AgpAgo} = Y ( ) cnPu(cos ppg),

n=2 rprQ

where the degree variances of gravity anomalies are

n—1)\2
o ()
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Similarly we calculate also the “mixed covariances” between disturbing
potential and gravity anomaly:

Cov{zp,ﬁQ} = M{TpAgo} = Y LiL! oM{T,T,} =
n=2

n+1 n+1
<R> n— 1(5) knPa (cos Ppg) =

rp i’Q TQ
Rz n+1
( ) ku Py (cos lpr) .

rprQ

All these are examples of propagatzon of covariances, when applied to a series

expansion:
Cov{L1{Tp}, La{To} } = L L1 pLsoM{Tu T} =
n
=) LY p L oknPa(cos ¥pg),
n

for arbitrary linear functionals

Li{Tp} = ) L{pTs,

Lo{To} = ), L3oTw
n=2 n=2
where the T, = T,,(¢,A) are the degree constituents of the disturbing po-
tential on the Earth’s surface. The problem, in each case, is identifying the
spectral form of this linear functional. This is done by expanding the quantity
concerned into T, and lifting the coefficient found from the equation. These

coefficients are indicated above by red and blue colourings.

10.9 Global covariance functions

Empirical covariance functions have been calculated a lot. Empirical covari-
ance functions for the whole Earth there have been only a few. Typically they
are given in the form of a degree variance formula. The best known is the rule
observed by William Kaula®:

ky = an™*.

8William M. Kaula (1926 —2000) was an American geophysicist and space
geodesist who studied the determination of the Earth’s gravity field by means
of satellite geodesy.

Collocation and the spectral viewpoint

n—1\2
Cn:<T> kn,

where ¢, are the degree variances of gravity anomalies, we obtain

By writing

v (n—12 a
“TRT A TR

Here, ¢ is a planet specific constant, value about 1200 mGal® for the Earth.
The Kaula rule does not hold very precisely for very high degree numbers. It
applies, by the way, fairly well for the gravity field of Mars, of course with a

different constant ( , ).
Another well known rule is the Tscherning-Rapp equation (
7 ):
o Amn-1)  (n-1 2k
"T m-2)(n+B) \ R "

The constants are, according to the authors, A = 425.28 mGal® and B = 24
(exactly). As a technical detail, one usually chooses R = Rp = 0.999R, the

radius of a Bjerhammar® sphere inside the Earth (R is the Earth mean radius).
The form of the above equation is chosen so the covariance functions of

various quantities will be closed expressions.

10.10 Collocation and the spectral viewpoint

Also the calculations in least-squares collocation can be executed efficiently
by way of Frr. For this one should study the symmetries present in the
geometry, especially the rotational symmetry, which exists, e.g., in the direction
of longitude on the whole Earth: nothing changes when we turn the whole
Earth by a certain angle 6 around its axis of rotation: for all longitudes, what
happens is A — A + 6.

In the following we discuss a simplified example in two dimensions. Let
observations ¢; = g+ n; of a field g(y), ¢ € [0,27) be given on the edge

of a circle, in points ; o 27'[%,1' =0,1,2,...,N — 1. Let us assume that also

9Arne Bjerhammar (1917—-2011) was an eminent Swedish geodesist.
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Figure 10.5. Global covariance functions as degree variances. The coce model
cuts off at degree 280.

the results of the calculation, i.e., estimates fA, of the result function f (y) are
desired in the same points. Then equation 10.8 yields

f= Crg [ng + Dgg] - (g+n) (10.14)

with
[Crel;; = Cre (f(#’i) .8(¥i) ) = Cro(91,95),
[Coslij = Cas (8(4’1‘) ,g(l[)ﬂ) = Cos (i, ¥j),
[Dgg];; = Dgs <g(lPi) /8(¥i) ) = Dgg (i, 95) -

If the physics of the whole situation, including the physics of the measurement

Collocation and the spectral viewpoint

process, is rotationally symmetric, we must have

N-1
[Cre] i = Mo {f(v) g(¥je) } = % ;) Fi) g(¥iciy).

in which j(i) = (i + k) mod N. Here, the operator Mg, is again the “circle
average” of a function,

e 1 N2
Moy 5 Y h(),
i=0

which, like the geographic average in section 10.4, replaces the statistical
average.

In the same way we obtain

1 N—-1
[Cosl i = Mo{s(wi) 8 (¥jw) } = ;} 8(wi) 8 (¥ji)-

Now Cy,, Cg are only functions of k, and we may write them

[Crs] i Cre(ig5) = Cre(Athr) = [Cre],,

[Cegly; = Cos (i tj) = Cog(Atpr) = [Cyg.,
in which Ay = (y; — ¢;) mod 27 and k = (j — i) mod N.
Furthermore

[Dgslij = Dsg (i, ;) = Dgg(Ati) = [Dggly = E{mini) },

the traditional statistical variance of the observation noise. Also because
generally the observations do not correlate with each other, we have'®

2
Dgg =0 IN,

In fact, the unit or identity matrix is also known as the Kronecker delta,
and as a Toeplitz matrix may be interpreted as a discrete version of the Dirac
delta function. Its discrete Fourier transform is

F{I} =1

(and yes, this extends to infinite frequencies, and contains an infinite amount
of power...).
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Figure 10.6. Circular geometry.

0 (the variance of observations, assumed equal for all) times the N x N sized
unit matrix.

Matrices of this form are called Toeplitz circulant'*. Thanks to this property,
equation 10.14 is a string of convolutions.

Without proof we present that the spectral version of equation 10.14 looks
like this:

o F(C
A= F{Cge} +§:{Dgg}
_ FC

Flg+n}=

(10.15)

This is an easy and rapid way to calculate the solution using Frr. In the limit
in which the observations are exact, i.e., 0% = 0, by equation 10.15 T follows
straight from g + n = g. If for a suitable operator L we have f = L{g}, the
equation simplifies as follows:

FALYF{Cys}

= Feg e

F{g+n},

and if also 02 = 0, i.e.,, n = 0, then

F{f} =F{L}F{e} = F=L{g}

Otto Toeplitz (1881 —-1940) was a German Jewish mathematician who con-
tributed to functional analysis.

Self-test questions

For example, if the g are gravity anomalies and the f are values of the
disturbing potential, then'

R
F{L} = 1
The approach is called Fast Collocation, e.g., ( )
Of course it is used in two dimensions on the Earth’s surface, though our
example is one-dimensional. As always, it requires that the observations are
given on a grid, and in this case also, that the precision of the material is
homogeneous — the same everywhere — over the area. This requirement is

hardly ever precisely fulfilled.

Self-test questions

1. What is the difference between signal and noise?
(a) Signal is not a random stochastic process, whereas noise is.

(b) Signal is a stochastic process that we are interested in and wish
to estimate, while noise is a stochastic process that we are not
interested in and that we would like to filter out.

(c) Signal is a stochastic process with a greater variance and is there-
fore more easily detectable than noise.

(d) Signal is a property of a real-world system, while noise is a

property of an observation instrument or method.
2. What is a functional?

(a) A mapping from a function space to a set of numbers, e.g., the

real numbers.
(b) A random-valued function.

(c) A functional associates with every (well behaved) function defined
on some domain, a number.

*2In real computation it is not so simple. .. the degree number 1, which refers
to global spherical geometry, must first be converted to the Fourier wave
number expressed on the computational grid used.
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(d) A function of a vectorial argument.
3. What is a linear functional?
(a) A linear functional associates a number L{f} with any linear
function f(x) = a + bx defined on some domain

(b) If, for functions f and g, it holds for a functional L that

L{af +bg} = aL{f} + bL{g}

for any real values 4, b, then L is a linear functional.
(c) A linear functional associates with any (well behaved) function

defined on some domain, a linear expression L{f} = a + bx.

4. The statistical behaviour of a stochastic process defined on the Earth’s
surface is the same independently of where on Earth you are. This
property is called isotropy | ergodicity | homogeneity | stationarity.

5. The statistical behaviour of a stochastic process of time is the same
independently of where on the time axis you are. This property is
called isotropy | ergodicity | homogeneity | stationarity.

6. Why, in the study of the Earth’s gravity field, one uses as the average of

quantities the geographical average rather than the statistical average?

7. Which two different kinds of covariance functions are used for gravity
anomalies on the Earth’s surface? Give the formulas and name the free

parameters.

8. Explain degree variances. What is the difference between degree vari-
ances k, and ¢,,?

9. Describe Kaula’s rule.

10. What is a Toeplitz circulant matrix?

Exercise 10 —1: Variance of prediction

The equation for the variance of prediction in a point P is

Epp = Cpp — Cpi(Cij + Dyj) "' Cjp,

Exercise 10—2: Hirvonen's covariance equation and prediction

in which the observation points are i = 1,..., N. Assume there is only one
observation point, point P. Then

Xpp = Cpp — Cpp(Cpp + Dpp) "' Cpp.
Show that, if D;; # 0 but however D;; < Cjj,

pr =~ Dpp.

Exercise 10 —2: Hirvonen’s covariance equation and

prediction

Hirvonen’s covariance equation is
C(s) = iz'
1+(3)
with the Ohio parameters Cy = 337 mGal?> and d = 40km. The equation
gives the covariance between the gravity anomalies in two points P and Q
C(SPQ) = Cov{ﬁp,ﬁQ}.

spg is the metric distance between the points.

1. Calculate Var{ %P} and Var{Ag Q}' Remember that according to the
definition Var{x} = Cov{x, x}!

2. Calculate Cov{%l), §Q} if spg = 20km.

3. Calculate the correlation

a Cov{Ag, Ag o }
\/Var{§P} Var{%Q} .

4. Assume now, that we only have a measurement in point P. What is the

Corr{ Ag,, %Q

“variance of prediction” of the gravity anomaly in point Q which is at a
distance spg = 10km from the (precisely!) given anomaly in point P?
Apply equation 10.10 as follows:

2 -1
U’QQ = CQQ — CQPCppCPQ-

5. And item 4 if the distance is spg = 80 km?
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Exercise 10 — 3: Predicting gravity anomalies

Let in two points 1 and 2 be given the measured gravity anomalies {; =
%l +nyand 4, = %2 + n,. The distance between the points is 80 km and
between them, at the same distance of 40 km from both, is located point P.
Compute the gravity anomaly of point P, Agp by means of prediction. The
prediction equation is

Agp = Cpi (Cij + ij)71 ¢,

where {; = %}_ + n; is the (abstract) vector of gravity anomaly observations,

Var{%i}
Cov{Ag, Ag }

Cov{ Ag, %}}

Ci=
/ Var{%},}

is the signal variance matrix of the vector Ag., and

Cp; = [ Cov{Ag, Ag } Cov{Ag, Ag,} ]

is the signal covariance matrix between Ag, and Ag.. Dj; is the variance

matrix of the observation random uncertainty or noise n;,i = 1,2:

Dij =

Var{m;} ~ Cov{nm,nj} }

COV{ﬂi/ﬂj} Var{ﬁj}

1. Compute the matrix Cjj, assuming again Hirvonen’s covariance formula
(previous exercise) and a parameter value of d = 40 km.

2. Compute Cp;.

3. Compute Ejgp expressed in the observed values ¢; and £,. Assume
D;; = 0 (and thus n; = 0). (Inverting the C;; matrix is possible by hand,
but just use Matlab.)

4. Compute the variance of prediction (note C;p = CJ,) using
(7'1271) = Cpp — Cpicl;lc]‘p.
Exercise 10 —4: Predicting gravity anomalies (2)

Let us again have points 1 and 2 with measured gravity anomalies {; = Ag,
and £, = Ag,. Now however the points 1, 2 and P are in a triangular

Exercise 10—5: Propagation of covariances

configuration, with a right angle at point P, and the distances from P to points
1 and 2 still 40 km. The distance between points 1 and 2 is now only 40+/2 km.

1. Compute Cyj, Cp;, Agp and 0.

2. Compare the result with the previous one. Conclusion?

Exercise 10 —5: Propagation of covariances

Given the covariance function 10.13 of the disturbing potential
o Rz n+1
Cov{Tp T} =}, (7) knPu (cos Prq),
n=2

rprQ

1. calculate the covariance function of the gravity disturbance g (equation

5.3). Hint: write first an expansion of form
58 = ¥ LT,
n=2

in order to find the expression for the coefficient Lj,. After this

Cov{éép,ééQ} =Y Ljg pLig oknPu(cos Ypq).
n=2

az
2. Compute the covariance function of the gravity gmdlent 5> (i.e., the

vertical gradient of the gravity disturbance!).

Exercise 10 —6: Kaula’s rule for gravity gradients

For the disturbing potential

(@A) = Y, ( )"H Tu(9,A) (10.16)

n=2
or on the Earth’s surface (r = R)

[oe]

T(¢,A,R) = Y Tu(¢,A)

n=2



Page 273

272

Statistical methods

Kaula’s rule applies, with the degree variances

kn = an™*.

From these one can derive, using propagation of variances, the degree vari-
ances of gravity anomalies

as follows:

2 n—1)\2 [
Cn:<L§> k,,:( R )knzﬁn 2,

By differentiating the above expansion 10.16 for the disturbing potential

T(r,p,A) = i (§>”+1 Tu(g, A)

n=2

we obtain the second derivative

PT _ i (n+1)(n+2) (R)"“ I

or? r2 r

n=2

the connection between the disturbing potential and the gravity gradient in

the spectral domain.

On the Earth’s surface r = R, or

o°T

> (n+1)(1’l+2) def
2 = Z R2 Tw= Z ngT”
r=R n=2 n=2

with
(n+1)(n+2)
R2 '

1. Derive an (approximate) equation for the degree variances for the

no_
LSX_

gravity gradient, which we may call g, in an analogue fashion as above

for the gravity anomaly degree variances c;:
?

Qn =2k, =?-n".

2. Conclusion?

Exercise 10—-7: Underground mass points

Exercise 10 —7: Underground mass points

1. If a mass point is placed inside the Earth at a depth D beneath an obser-
vation point P, what then is the correlation length s of the gravitational
field it causes on the Earth’s surface, for which C(s) = Llcy?

2. Thus, if we wish to construct a model made of mass points, where

under each observation point Agp there is one mass point, how deep
should we place them if the correlation length d is given?
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11.1 History

The first measurement device ever built based on a pendulum was a clock.

P=2n g,
8

tells that the swinging time or period P of a pendulum of a given length is a

The pendulum equation,

constant that depends only on the length ¢ and local gravity g, on condition
that the swings are small. The Dutch Christiaan Huygens' built in 1657 the
first useable pendulum clock based on this

When the young French researcher Jean Richer® visited French Guyana in
1671 with a pendulum clock, he noticed that the clock ran clearly slower. The
matter was corrected simply by shortening the pendulum. The cause of the
effect could not be the climatic conditions in the tropics, i.e., the thermal
expansion of the pendulum. The right explanation was that in the tropics,
gravity g is weaker than in Europe. After return to France, Richer had

*Christiaan Huygens (1629 -1695) was a leading Dutch natural scientist and
mathematician. Besides inventing the pendulum clock, he also was the first
to realize (in 1655) that the planet Saturn has a ring.

*Jean Richer (1630—-1696) was a French astronomer. He is really only remem-
bered for his pendulum finding.

_275_
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De I longuenr du pendule 4 fecondes de temps.
suxe des plus conﬂder;\bles Obfervations que j’ay faites, eft
L ‘c]:l]i de laplorigucur du pendale & fecondes de temps, laquel-

fe seft trouvée plus courte en Cajenne qu'a Paris: car la mefme
mefure qui avoit efté marquée en ce lieu-13 fur une verge de fer,
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38 OBSERVATIONS ASTRONOMIQUES-

_ comparée avec celle de Paris, leur difference a efté trouvée d’une
- ligne & un quart, dont celle de Caienne eft moindre que celle

de Paris, laquelle eft de 3. pieds 8. lignes §. Cette Obfervation .
= efté réiterée pendant dix mois entiers, ol il ne s'eft point paflé
de femaine qu'elle n’ait efté faite plufieurs fois avec beaucoup de
foin. Les vibrations du pendule fimple dont on fe fervoit,
eftoient fort petites, & duroient fore fenfibles jufques 4 cinquan=

The relative or spring gravimeter

te-deux minutes de temps, & ont efté comparées a celles d’une
horloge tres-excellente, dont les vibrations marquoient les fecon~
des de temps.

fuivant la longueur qui s'eftoit trouvée neceflaire pour fairc un

pendule 3 fecondes de temps, ayant efté apportée en France , &
. com-~

Figure 11.1. Jean Richer’s report.

again to make his pendulum longer. The observation is described in just
one paragraph on pages 87—88 in his report “Observations astronomiques et
physiques faites en 'isle de Caienne”, Richer (1731).

This is how the pendulum gravimeter was invented. Later, much more precise Figure 11.2. Autograv CG5 spring gravimeter. Image Autograv CGs.

special devices were built, e.g., Kater? ’s reversion pendulum, and the four-

pendulum Von Sterneck* device, which was also used in Finland in the 1920’s ) o ) .
, . . . absolute measurements are made with ballistic gravimeters, cf. section 11.3.
and 1930’s. We must mention also the submarine measurements, e.g., in the It has b b 4 that the old : 4 h dul
. . . Lo as been observed that the older measurements made with pendulum
Java Sea by the Dutch F. A. Vening Meinesz in which it was observed that . . P
. . . . apparatus in the so-called Potsdam system are systematically 14 mGal too
syvdnmeren hauta above the trenches in the ocean floor there is a notable shortage of gravity,

. . L S . large. ..
and that they thus are in a state of strong isostatic disequilibrium (Vening

Meinesz, 1928).

For production gravimetric observations, pendulum gravimeters are however 11.2  The relative or spring gravimeter

too hard to operate and too slow. For that purpose the spring gravimeter has

A spring gravimeter is at its simplest the same as a spring balance. jousivaaka

been developed, see section 11.2.
In a linear spring balance the equation of motion of the test mass is

d2¢
m<E7g> =—k({—1{),

where m is the test mass, g the local (to be measured) gravity, k the spring

Pendulum gravimeters are in principle absolute measurement devices, i.e.,
gravity is obtained directly as an acceleration. There are, however, systematic
effects associated with the suspension of the pendulum that make that one
cannot trust in the absoluteness of measurement after all. One tried out solu-

tion is the very long wire pendulum, e.g., Hytonen (1972). However, nowadays constant. The quantity (g is the “rest length” of the spring, its length if there

were no external forces acting on it. £ is the true, instantaneous length of the

3Henry Kater (1777-1835) was an English physicist. string.

4Robert von Sterneck (1839 —1910) was an Austrian-Hungarian scientist.
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The equilibrium between the spring force and gravity is
d2(

— =0 = mg:k(éffo):k(sz()),

= (11.1)

in which £ is the mean length of the spring during the oscillation, and also
the equilibrium length in the absence of oscillations.

When the test mass is disturbed, it starts oscillating about its equilibrium
position. The oscillation equation, obtained by summing the above two

()= -5 ().

P:27T\/E:2m/£_€0 =27 5—6,
k g g

in which 6¢ = £ — £, denotes the difference between the equilibrium length

equations, is

The period is

(11.2)

and the length in the state of rest, i.e., the lengthening of the spring by gravity.

The sensitivity of the instrument is obtained by differentiating equation 11.1

in the form

mgzk(ZfZO) = kot

with the result B

¢ d@t) m _ p?

@:ngﬁzm. (11.3)
Substitution, e.g., of §¢ = 5cm and g = 10m/s? into equation 11.2 yields P =
0.44s. One milligal of change in gravity g produces according to equation 11.3
a lengthening of only 5- 1078 m (check)! Clearly then, the sensor observing
or compensating this displacement must be extremely sensitive!

11.2.1 Astatization

An astatized gravimeter offers a different measurement geometry. We use

as our example the LaCoste-Romberg gravimeter which long enjoyed great

popularity. In it, the test mass is at the end of a lever beam, see figure 11.3.

Two torques are operating on the beam, which are in equilibrium. The torque
by the spring is
7 =k (0~ t) bsing,

The relative or spring gravimeter

in which ¢ is the spring’s true, stretched equilibrium length, and ¢, the
theoretical or state-of-rest length without loading.

According to the sine rule
£sin B = csin(90° +€) = ccose,
from which upon substitution in the previous:

Ts :k(?—éo) %cose.

Gravity pulling at the mass again is mg, and the corresponding torque

Ty = MgP COSE.
Between these there has to be equilibrium:

Tg— Ts :mgpcose—k@—ﬁo) %Ccose:O,

or

mgpl — kbc (Z — €0> =0. (11.4)

By differentiation
mpldg +mgpdl —kbcdl =0
from which we obtain, by substituting equation 11.4, a sensitivity equation:
at mpl mpl

a _ 00—
dg mgp — kbc mgp—mgpﬁ g by

From this we see that the sensitivity can be driven up arbitrarily by choosing
£y as short as possible, almost zero — a so-called zero-length spring solution

( )-

Of course, levelling the instrument, using its bull’s eye level and three foot-
screws, is critical.
For example, assuming ¢ = 5cm, ¢y = 0.1cm, g = 10m/s? gives
2 551075 m /G,
dg

tasaus
rasiatasain
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Reality

Figure 11.3. Operating principle of spring gravimeter. On the right, how to
build a “zero-length spring”.

a 50 times® better result than earlier! The improvement or astatization ratio is
precisely %
This is the operating principle of an astatized gravimeter, like the LaCoste-

Romberg®.

11.2.2 Period of oscillation

There is another way to look at this: if the instrument is not in equilibrium,

the lever beam will slowly oscillate about the equilibrium position. We start

5For comparability we should still multiply by ﬁ, if we measure the
position of the test mass.

®Lucien LaCoste (1908 —1995) was an American physicist and metrologist,
who, as an undergraduate, together with his physics professor Arnold
Romberg (1882—-1974) discovered the principle of the astatized gravimeter
and zero-length spring.

The relative or spring gravimeter

from equation 11.4:

mgpz — kbe (Z - £0> =0, (11.5)
but for a state of disequilibrium. Then, the test mass will be undergoing an
acceleration a4, and we have

m (g —a) pl —kbc (¢ —£y) =0,

where, instead of the equilibrium spring length ¢, we have the instantaneous
length ¢. Subtracting the above two equations yields

mgp (Z—E) —map ¢ — kbc (Z—Z) =0.
We use equation 11.5 again to eliminate kbc, yielding
_ 7
mgp (Z ,g) —map l — mgpﬂ <€ - E) =0.

Rearranging terms gives

map { = mgpziézo (Z - 6)

; fozo (z - ?) .

Here we see again the “astatization ratio” 5—0&’ appear, which for a zero-length

or

a =

(09

spring ({p ~ 0) is very large.

Now the string length disequilibrium ¢ — ¢ is connected with the vertical

displacement z (reckoned upward) of the test mass, as follows:

= ((—Z) bsipnﬁ’

With this we obtain

2 g L bsinf

At T Ty

This is again an oscillation equation in z, with a period of

- y4 p z—éo
P=am gbsing
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Figure 11.4. The idea of astatization. The elastic force of an ordinary spring
grows steeply with extension (left), whereas the weight of the
test mass is constant. The lever beam and diagonal arrangement
(right) causes the part of the force of the spring in the direction
of motion of the lever (red) to diminish with extension, while
the spring force itself grows similarly with extension. This near-
cancellation boosts sensitivity. The spring used is a zero-length

spring.

For the same values as above, fy = 0.1cm, ¢ = 5em =~ /, g = 10m/s?, and
ﬁ =2, we find

P=44s.
What this long oscillation period also means is, that the instrument is less
sensitive to high-frequency vibrations by passing traffic, microseismicity, etc.

This is a significant operational advantage.

11.2.3 Practicalities of measurement

An ordinary spring gravimeter is based on elasticity. Because there is no mate-
rial that is perfectly elastic, but always also plastic” (viscous), the gravimeter
itself changes during the measurement process. This change is called drift.

7Plastic deformation in a metal crystal is mediated by crystal-lattice defects
called dislocations. As dislocations travel through the crystal lattice under

The absolute or ballistic gravimeter

The drift is managed in practical measurements by the following measures:

o we measure along lines starting from a known point and ending on
a known point, producing a closing error. The line is traversed as
rapidly as possible. The closing error is eliminated by adjusting the
values obtained from the measurement in proportion to their times of

measurement.
o The gravimeter is transported carefully without bumping it, and

o we remember always to arrest (clamp down the lever beam) during
transport!

o Because the elastic properties of the spring and the instrument geom-
etry both depend on temperature, precision gravimeters are always
thermostated.

A sea gravimeter differs from an ordinary (land) gravimeter in having a
powerful damping. This applies also for an airborne gravimeter. Both types
are mounted on a stabilized platform, keeping the axis of measurement along
the local vertical in spite of vehicle motions.

11.3 The absolute or ballistic gravimeter

The ballistic or absolute gravimeter is a return to roots, the definition of
gravity: it measures directly the acceleration of free fall. The instrument
comprises a vacuum tube, inside of which an object, a prism reflecting light,

falls freely. See figure 11.5.

Here we describe shortly the JILA gravimeter, built at the University of
Colorado at Boulder by Jim Faller® of which the Finnish Geodetic Institute
has acquired two. Figure 11.6 shows the newer model, FGs5, built by the

load, the properties of the metal change, which may eventually result in
metal fatigue, a known problem, i.a., in aviation. . The
art of making metals stronger by inhibiting the motion of dislocations, e.g.,
by adding carbon to iron to form steel, forms a large part of metallurgy.

8James E. Faller (1934-) is an American physicist, metrologist, geodesist and

arretointi

vaimennus
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! Vacuum pump system

! .. Cage transporter
.- Prism protective cage

-~ Falling prism

...~ "Superspring”

e Reference prism

Semi-transparent mirror

Mirrm\

.

. Interference observation device

Figure 11.5. Operating principle of a ballistic absolute gravimeter.

same group. In Finland this instrument, serial number 221, has served as the
national standard for the acceleration of free fall. It was upgraded to a model

FG5X in 2012.

During the fall of the prism, a “cage” with a window in the bottom moves
along with the prism inside it without touching it. The purpose of the cage is
to prevent the last remaining traces of air from affecting the motion of the
prism. Approaching the bottom, the cage, which moves along a rail under
computer control, decelerates, and the prism lands relatively softly on its
bottom. After that, the cage moves back to the top of the tube and a new

measurement cycle starts.

A laser interferometer measures the locations of the prism during its fall;

student of gravitation. He proposed the installation of laser retroreflectors on
the lunar surface in the context of the Apollo project, in order to measure the
distance to the Moon — LLR, lunar laser ranging.

The absolute or ballistic gravimeter

e

Figure 11.6. FG5 absolute gravimeter. Figure © National Oceanic and Atmos-
pheric Administration.

the measurements are repeated thousands of times to get a good precision
through averaging. Another prism, the reference prism, is suspended in
another tube from a very soft spring (actually an electronically simulated
“superspring”) to protect it from microseismicity. The instrument is designed
to achieve the greatest precision possible, e.g., the vibration caused by the
drop is controlled by a well-designed mount. Precisions are of order several
uGal, similar to what ordinary LaCoste-Romberg relative gravimeters are
capable of. The instrument is however large and, though transportable, it
cannot be called a field instrument. Of late, development has gone in the
direction of smaller devices, which are essentially better portable.

The motion of a freely falling mass is described by the equation
4?2
apc=8 (2),

where it is assumed — realistically — that gravity g depends on the location
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z within the drop tube. If we nevertheless take g to be constant, we obtain by
integration

—z =100+ gt,
1 5
z:zo—Q—vgt—i—Egt,

from which we obtain the observation equations of the measurement process

Here, the unknowns? are Zj, 99 and . The quantities z; are the interferometri-
cally measured vertical locations of the falling prism, and #; are the residuals
of the measurements. Determining precisely the corresponding measurement
time or epoch t; is of course essential. The volume of measurements obtained
from each drop is large.

We write the observation equations in matric form:

{=Ax+n,
in which
[ z; ] [ m | [1 1 2 ]
2z 1, 1 t £
. . . Zp
E = ;, h= ’ A= ) > and x= 0o
Zj n; 1 tof
. 8
_Zn_ _ﬂn_ _1 tn t%l_

From this, the solution follows according to the method of least-squares
adjustment, from the normal equations

ATAR=AT¢

91t would be easy (exercise!) to add an unknown representing the vertical
gradient of gravity to this.

The absolute or ballistic gravimeter

giving the solution (estimate)
5= (ATA) TATL
The uncertainty of the estimates is given by the variance matrix
Var{} = o2 (ATA)7",

o being the uncertainty (mean error) of a single observation, also known as
the mean error of unit weight. z;

An alternative type of absolute gravimeter throws the prism up (inside the
tube), after which it moves along a symmetric parabolic path. Such a “rise-
and-fall” instrument is, e.g., the Italian IMGC-o02 ( , ).
Theoretically this method would give more precise results, however, the
technical challenges are larger than in case of the dropping method. Inter-
comparisons between instruments of these two types have helped to identify

€rror sources.

Recently also so-called atomic or quantum gravimeters have been built,
in which interferometrically the falling of individual atoms is measured

( ’

of gravity on the phase angle of the matter wave of falling atoms. Firstly an

). The idea of the device is, that it measures the effect

extremely cold, so-called Bose-Einstein condensate is prepared; perhaps a
million atoms in identical quantum states, with the same phase angle like
marching soldiers. The condensate is dropped, and the first laser pulse splits
it into two. Half of the atoms' fall first slowly, then faster; the other half fast
at first and then slower. In order to achieve this, a second laser pulse pair is
used that acts like a mirror, or perhaps a tennis racket. The third and last
laser pulse is for reading out interferometrically the phase difference between
the two merging atomic beams. The interaction between light and atoms is
based on the Raman effect.

As the atoms travel two different paths through space-time where the gravity

*°This is a quantum theoretically erroneous statement. The matter wave of

each individual atom splits into two!
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Figure 11.7. Principle of operation of an atomic gravimeter.

potential is different’’, a phase difference is formed between these which can
be measured. Without gravity (dashed lines) this phase difference would be
zero. See figure 11.7, where the horizontal axis is time.

11.4 Network hierarchy in gravimetry

In gravimetry, network hierarchy is just as important as in measurements
of location or height. The procedure has typically been, that the highest
measurement order consisted of points measured by absolute gravimeters —
in the old days this meant pendulum measurements. Stepwise densification
of this network, i.e., measurement of the base network, was then done with
relative or spring gravimeters, like also the lowest-order measurements,
gravity mapping surveys. In base network measurement, fast transportation

"In fact, the spinning of the atom’s phase angle acts like a clock, and the
speed at which time elapses depends on the local geopotential (Vermeer,

1983).

The superconducting gravimeter

Figure 11.8. International intercomparison of absolute gravimeters. Image ©
2003 EGCS, Luxembourg.

was used, such as aircraft: national or regional reference points often were
located at airports.

Because pendulum instruments were not genuinely absolute, the old, so-
called Potsdam system collected a 14 mGal systematic error: all values were
that much too high. Nowadays we use instead ballistic free-fall gravimeters,
the possible systematics of which are much smaller — but not nonexistent,
order of magnitude microgals. As there are no better, i.e., more absolute,
instruments than these, the issue cannot really be resolved. Nevertheless,
international instrument intercomparisons, like the International Intercom-

parison of Absolute Gravimeters, are organized regularly and are valuable.

In Finland, regular absolute gravimetric measurements have been made
besides in Metsdhovi, also in Vaasa (two points), Joensuu (two points), Kuu-
samo, Sodankyld, Kevo and Eurajoki.

11.5 The superconducting gravimeter

This gravimeter type is based on a superconducting metal sphere levitating
on a magnetic field, the precise place of which is measured electronically.
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coil

L Vo Levitation coil

Figure 11.9. Principle of operation of a superconducting gravimeter. Reading

out the sphere position is done capacitively.

Because a superconducting material is impenetrable by a magnetic field, the
sphere will remain forever in the same spot inside the field: the Meissner
effect. Of course the field itself must be constant; it is generated by supercon-
ducting solenoids inside a vessel made of mu-metal,Wikipedia, Mu-metal,
which keeps out the Earth’s magnetic field.

Superconductivity in these applications still demands working at the temper-
ature of liquid helium (He). For this reason the device is not only expensive,
but requires also an expensive laboratory in an environment where societal

infrastructure works.

The number of these superconducting gravimeters in the world is over twenty.
One GWR 20 type instrument has worked from 1994 in Kirkkonummi at the
Metsidhovi research station of the then Finnish Geodetic Institute, now the
National Land Survey. See Virtanen and Kadridinen (1995), Virtanen (1998).
The instrument was upgraded in 2014.

The most important property of a superconducting gravimeter is, in addition

Atmospheric influence on gravity measurement

to its precision'?, its stability, i.e., its small drift. For this reason it is extremely
suited for monitoring long period phenomena, like the free oscillations of the
solid Earth after large earthquakes'>. Thus it is suitable for measurements
that are unsuitable for an ordinary gravimeter because of its larger drift and
poorer sensitivity, and measurements for which a seismometer is unsuited

because the frequencies are too low.

A recent trend is the development of lightweight, “portable” and remotely
controllable superconducting gravimeters, e.g., the GWR iGrav, weighing
30kg and not consuming any liquid helium at all. On the other hand it needs
over a kilowatt in grid power for its refrigeration system (GWR Instruments,
Inc., IGRAV® Gravity Sensors). Perhaps this will lead to improvement over
the current situation where the bulk of instruments is located in Europe and
North America.

11.6 Atmospheric influence on gravity measurement

The atmosphere has the following two effects on gravity:

1. Instrumental effects. These are due to the way the gravimeter is con-
structed. By putting the instrument in a pressure chamber, one makes
these effects go away. In practice it is easier to calibrate the instrument
(in the laboratory) and calculate a correction term according to the
calibration certificate to be applied to the field measurements.

2. Attraction of the atmosphere. This is real gravitation. It contains irreg-
ular variations with place and time that we need to remove from the
observed gravity values.

The effect of the atmosphere can be evaluated with the aid of the
Bouguer plate approximation: if air pressure is p, then the surface mass

2Virtanen (2000) reports how the instrument at Metsdhovi detected the
change in gravity as workmen cleared snow from its laboratory roof, includ-
ing a tea break! “Weighing” visitors to the lab by their gravitational attraction
is also standard fare.

BTheir periods range from under an hour to over twenty hours, and they are
of considerable geophysical interest.
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density of the atmosphere is

K==,
8

where g is a representative gravity value inside the atmosphere. We

don’t make a very large error by assuming

g~ 9.8 m/sz,

giving us on sea level'* k¥ ~ 10000ke/m?. The effect of the Bouguer
plate is
—21Gx = —0.43 mGal.

Variations in air pressure affect proportionally. If the air pressure
disturbance is Ap = p — po, in which py is mean air pressure, 1015hP,
its effect on gravity measurement will be

A
5ga = —0.432PmGal.
Po
During the passage of a storm or weather front, this beautiful theory
collapses, and simple equations give misleading results. Then it is best
to just not do any gravity measurements!

3. Including the atmosphere into the mass of the Earth. This is not a correction
to be applied to gravity measurements. It is a reduction which is applied
in the calculation of gravity anomalies, if we want anomalies from which
the effect of the atmosphere has been removed.

Remember that the reference or normal gravity field of Grs8o is de-
fined in such a way, that the parameter GM contains the whole mass
of the Earth including atmosphere, i.e., the Earth’s gravitational field
as satellites are observing it ( , ). Therefore, also when
calculating gravity anomalies Ag, one should reduce gravity by compu-
tationally moving the whole atmosphere above the point of measurement to

below the measurement point, e.g., to sea level.

4S50 yes, the force acting on a standard 14-inch laptop screen is 540kg. ..

fortunately it’s not an oldfashioned vacuum image tube.

Airborne gravimetry and GNSS

The total mass of the atmosphere is
My = 47kR? = 4n§R2.

According to Newton its attraction is

GM, 4nGp

RZ ¢’

twice the atmospheric reduction given above. At sea level, the effect is
0.86 mGal. At height, the effect is

H
0.86MmGal,
Po
in which p(H) and py are the air pressures at height H and at sea level,
respectively.

11.7 Airborne gravimetry and gnss

In the early years of the 1990s crs, the Global Positioning System, and more
generally, satellite positioning, has changed airborne gravimetry from a difficult
technology to something completely operational. To understand this, one
must know the principle of operation of airborne gravimetry.

An aircraft carries an airborne gravimeter, an instrument that, in the same
way as a sea gravimeter, is strongly damped. The measurement is done
automatically, generally using electrostatic compensation. The instrument is

mounted on a stabilized platform that follows the local vertical.

During flight, the gravimeter measures total gravity on board the aircraft,
consisting of two parts:

1. gravity proper — i.e., gravity as felt in a reference frame connected to
the Earth’s surface — and
2. the pseudo-forces caused by the inevitable accelerations of the aircraft

even in cruise flight.

Attached to the aircraft are a number of GNss antennas. With these, and a
geodetic GNss instrument, the motions of the aircraft can be monitored with

vaimennus
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centrimetre accuracy. From these can then be calculated the pseudo-forces
mentioned above under item 2.

If we measure the position of the plane (or instrument) x; at moment ¢;,
At = t;11 — t;, we obtain estimated acceleration values as follows:

o Xit1 + X1 — 2

(At)z (11.6)

When the acceleration measured by the gravimeter is I'; and the direction of

the local plumb line n;, local gravity g; follows:
gi=Ti—(ai-m).

Critical in the whole method is the choice of the time constant At. It is best
to choose it as long as possible; then, the precision of the calculated cnss
accelerations a; is as good as possible. Also the damping of the gravimeter
is chosen in accordance with At, and the observations are filtered digitally:
all frequencies above the bound At~! are removed, because they are largely
caused by the motions of the aircraft.

In practice, often the high-frequency part removed from the signal is 10 000
times larger than the gravity signal we are after!

If the uncertainty (mean error) of one GNss position co-ordinate measurement
is 0y (and the different co-ordinates don’t correlate with each other!), then
according to equation 11.6 the uncertainty of the vertical acceleration is

_ /6

e

Making the time interval At as long as possible without resolution suffering,
requires a low flight speed. Generally a propeller aircraft or even a helicopter
is used. Of course the price of the measurement grows with the duration of

the flight — a helicopter rotor hour is expensive!

For the flight height H we choose in accordance with resolution Ax:
H~ Ax =vAt,

where v is the flight speed. The separation between adjacent flight lines is
chosen similarly.

Airborne gravimetry and GNSS

The first major airborne gravimetry project was probably the Greenland Aero-
geophysics Project ( , ). In this ambitious American-Danish project
in the summers of 1991 and 1992, over 200000 km was flown, all the time
measuring gravity and the magnetic field, and the height of the ice surface

using a radar altimeter ( , ).

After that, also other large uninhabited areas in the Arctic and Antarctic

regions have been mapped, see ( ),
( ). Already in subsection 9.6.2 on page 229 we made mention of other
large surveys. Activity continues, see ( ),

( ). The method is well suitable for large, uninhabited areas, but also, e.g.,
for sea areas close to the coast where ship gravimeters would have difficulty
navigating long straight tracks. In 1999 an airborne gravimetry campaign was
undertaken over the Baltic, including the Gulf of Finland (Jussi Kédaridinen,

personal comm.).

In addition to the economic viewpoint, an important advantage of airborne
gravimetry is, that a homogeneous coverage by gravimetric data is obtained
from a large area. The homogeneity of surface gravimetric data collected over
many decades is difficult to guarantee in the same way. Also the effect of
the very local terrain, which for surface measurements is a hard to remove
systematic error source especially in mountainous terrain, (see section 6.3 on

page 126), does not come into play for airborne gravimetry.

The operating principle of satellite gravimetry, e.g., GOCk (Geopotential and
Steady-state Ocean Circulation Explorer) is similar. An essential difference
is however, that the instrumentation on the satellite is in a state of weight-
lessness: T' = 0 (in a high orbit, or when using an air drag compensation
mechanism), or I' is small and is measured using a sensitive accelerometer

(in a low orbit, where air drag is notable).

The greatest challenge in planning a satellite mission is choosing the flight
height. The lowest possible height is some 150 km. At that height, already a
tankload of propellant is needed, or the flight will not last long. However,
the resolution of the measurements on the Earth’s surface is limited, e.g., the
smallest details in the Earth’s gravity field “seen” by the Gock satellite are
50 — 100 km in diameter.

ilmanvastus
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11.8 Measuring the gravity gradient

The acceleration of gravity g is the gradient of the geopotential W. It varies
with place, especially close to masses. We speak of the gravity-gradient tensor

or Eotvos tensor:
9 9? 9?
ox2  Jxdy 0x0z
dif aZ aZ 32
M= oydx  9y?  dydz w.
92 92 92
dzox  0z0y  0Z2

We know that gravity increases going down, at least in free air. Going up,
gravity diminishes, about 0.3 mGal for every metre of height.

In topocentric co-ordinates (x,y,z), where z points to the zenith, this matrix
is approximately

-0.15 0 0
M=~ 0 —-015 0 mGal/m,
0 0 0.3
where B;TVZV = % gz ~ 0.3 mGal/m is the standard value for the free-air vertical

gravity gradient: Newton’s law gives for a spherical Earth (the minus sign is
because g points downward while the z co-ordinate increases going up):

_ GM
£ (R+z)*

Derivation gives

? GM 3(R+z)  2g

2257 (R+z)° 0z ~(R+2)

~ 31070/ /;m = (0.3 mGal/m,

The quantities aavazv and 83271/2v again describe the curvatures of the equipotential
or level surfaces in the x and y directions, equations 4.3, 4.4
I*W g ?’W g
Y
where p1 and p; are the radii of curvature in the x and y directions. Substitution
p1 = p2 = R =~ 6378 km yields

2 2
683:/2\/ = aayV;f ~ —1.5-107%/m = —0.15mGal/m,

Self-test questions

The Hungarian researcher Lordnd Ectvos did a number of clever experiments

( ,

with torsion balances built by him. The method continues to be in use in

) in order to measure components of the gravity-gradient tensor

geophysical research, as the gravity gradient as a measured quantity is very
sensitive to local variations in matter density in the Earth’s crust.

In honour of Edtvos we use as the unit of gravity gradient the E6tvés, symbol
E:
1E = 1072%%/m = 10~ * mGal/m,

The above tensor is now

—1500 0 0
M = 0 —-1500 O E.
0 0 3000

Note that
W W
axz  Jy?

*W

* 0z2

~ 0,

the familiar Laplace differential equation. However, the equation is not exact
here: in a co-ordinate system co-rotating with the Earth, the term for the
centrifugal force, Zwé, must be added, equation 4.1.

The gravity-gradient field of Sun and Moon is known on the Earth’s surface
as the tidal field, see section 14.1.

Self-test questions

1. For the spring gravimeter described in section 11.2 , one milligal of
change in gravity g produces according to equation 11.3 a lengthening
of 5-107¥m. Do a calculational check.

2. Why is a pendulum gravimeter, although theoretically absolute, not
very accurate as an absolute gravimeter?

3. By which method choices do we, in practical measurements, take the
drift of a relative gravimeter into account?

torsiovaaka
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4. Why were, before the advent of absolute gravimeters, the reference
points of international fundamental gravimetric networks often on
airports?

5. What is, in an absolute or ballistic gravimeter, the role of:

(a) the “cage” surrounding the falling prism, and
(b) the “superspring”?
6. According to Google
o the Gulf War from 1990 to 1991 was the first conflict in which the
military widely used crs,
o by December 1993, Gprs achieved initial operational capability

(IOC), indicating a full constellation (24 satellites) was available,
and

o the Greenland Aerogeophysics Project, the first ever large-scale
airborne gravimetric mission, mapped the gravity field of Green-

land during the summers of 1991 and 1992.

Why are these three dates so close together?

Exercise 11—1: Absolute gravimeter

The observation process of absolute gravimetry is described by
1o
z:zo—&—vot—i-igt .

Let us assume that the distance of falling is 30 cm.

1. How much is the time of falling?

2. If we aim at an accuracy of +10uGal, how precisely should the laser
interferometer then measure the falling distance of the prism? (A very
crude order-of-magnitude guesstimate is enough!)

3. Same question for the time registration of the falling time.

Exercise 11—2: Spring gravimeter

Exercise 11—2: Spring gravimeter

When we use a spring gravimeter in the field, we place the device at every
measurement station on a solid base, e.g., bedrock, for measurement, and
level it.

Furthermore we always take care that
o the device is arrested during transport, i.e., the beam is clamped to be
motionless;
o the internal temperature of the device is kept constant by a thermostat

system.

The reason for this is that the functioning of a spring gravimeter depends
on the properties of the spring material, which may change as a result of

careless handling or temperature variations.

Furthermore a gravimeter always has a drift, i.e., the relationship between
measured value and true value changes slowly over time. In a non- factory
fresh gravimeter this drift is however very regular and almost linear.

As a result of the drift, a spring gravimeter cannot be used for absolute

gravity measurement and is therefore called a relative gravimeter.
Question: how is the relative nature of a spring gravimeter and its drift
taken into account
1. in planning the topology of the measurement network?

2. In planning the time order of the different measurements in a
network?

3. In the choice of vehicles and point locations?

Exercise 11—3: Air pressure and gravity

1. How much does a low-pressure zone of 100hPa (i.e., the pressure
is 100hPa lower than average air pressure 1015 hPa) affect gravity
measured on the Earth surface? (You may assume the low-pressure
zone to be very extended in area.)
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2. How much does sea water rise due to the “upside-down barometer

effect” under a low-pressure zone?

. How much does the effect from point 2 amount to in local gravity

measured on a ship? On the open sea, with a free-air gravity gradient
of —0.3mGal/m, density of sea water 1000 kg/m3. Analyze the situation
carefully™.

'5And I mean really carefully.

12.1

The geoid, mean sea level,
sea-surface topography

Basic concepts

On the ocean, the geoid is on average at the same level as mean sea level, the

surface obtained by removing from the instantaneous sea surface all periodic

and quasi-periodic variations. These variations are, for example:

o

tidal phenomena, caused by Sun and Moon, order of magnitude £1m,
locally even more

variations caused by air pressure variations (“inverted barometer ef-
fect”). Typically of order decimetres, but up to metres under tropical
cyclones

“wind pile-up”, water being pushed by winds

littoral seas: variation in the volume of sweet water flowing out from
rivers into the sea

eddies that are formed in the oceans in connection with, e.g., the Gulf
Stream and the Agulhas Stream (“mesoscale eddies”) that may live for
months, and inside of which the sea surface may be even decimetres
above or below that of the surroundings

the continual shifting of ocean currents from one place to another
ENso, El Nifio Southern Oscillation, is a very long time scale, quasi-
periodic weather phenomenon happening in the waters of the Pacific
Ocean and the air above it, but affecting weather phenomena world-

_301_



Page 303

302

The geoid, mean sea level, sea-surface topography

wide. The time scale of variability ranges from two to seven years. See
figure 13.1.

If we remove all these periodic and quasi-periodic variations, we are left with
mean sea level. If the water of the seas was in a state of equilibrium, then this
mean sea surface would be an equipotential or level surface of the Earth’s
gravity field, the geoid.

This is however not how things really are. Mean sea level differs from a level
surface due to the following phenomena:

o Permanent ocean currents cause, though the Coriolis force, permanent

differences in mean water level.

o Also permanent differences in temperature and salinity cause perma-
nent differences in mean water level, the latter, e.g., in front of the

mouths of rivers.

These physical phenomena, among others, cause the so-called sea-surface

topography, a permanent separation between sea surface and geoid.

The classical definition of the geoid is

“the level surface of the Earth’s gravity field that agrees most closely with
mean sea level.”

The practical problem with this definition is, that determining the correct
level of the geoid requires knowledge of mean sea level everywhere on the
world ocean. This is why many “geoid” models in practice don’t coincide
with global mean sea level, but with some locally defined mean sea level —
and often only approximately.

Mean sea level in its turn is also a problematic concept. It is sea level from
which has been computationally removed all periodic effects — but who can
know if a so-called secular effect in reality is perhaps long period? A sensible
compromise is the average sea level over 18 years — an important periodicity,

saros, , in the orbital motion of the Moon.

meritopografia The sea-surface topography again is defined as that part of the difference

Geoids and national height datums

between mean sea level and the geoid, which is permanent. Also here, the
measure of permanency is the time series that are available, as tide gauges
have been widely operating already for about a century, when again many
satellite time series — TOPEX/Poseidon and its successors — are just about
a quarter of a century long. See figure 13.1.

12.2 Geoids and national height datums

A locally determined geoid model is generally relative. Locally, at the current
state of the art, one has no access to global mean sea level at an acceptable

precision. This may change with technology development.

In general, a local geoid model is tied to a national height system, and the
difference from the classical definition is thus the same as the difference
of the national height system from global mean sea level. In the case of
Finland, the difference is about 30 cm, almost entirely caused by the sea-
surface topography in the Baltic Sea, see figure 12.4.

In Finland, heights were determined for a long time in the N60 height system,
which is tied to mean sea level in Helsinki harbour at the start of 1960.
The reference benchmark however is located in nearby Kaivopuisto. Precise
levelling disseminated heights from here all over Finland. The modern
Finnish height system is N2000, which is in principle tied to sea level in
Amsterdam, but the reference benchmark in Finland is similarly located at
the Metsdhovi research station in the Kirkkonummi municipality, West of
Helsinki.

At the beginning of 1960, the reference surface of the Finnish height system
N60 was an equipotential or level surface of the Earth’s gravity field. However,
due to post-glacial land uplift, that is no longer the case: the post-glacial land
uplift varies from some four millimetres per year in the Helsinki area to
some ten millimetres per year in the area of maximum land uplift near
Ostrobothnia. This is the main reason why in Fennoscandia height systems
have a “best before” date and must be modernized a couple of times per
century.

Generally, geoid maps for practical use, like FIN2000, the Finnish geoid model
(figure 9.5), are constructed so, that they transform heights in the national

mareografi
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height system, e.g., N6o heights (Helmert heights) above “mean sea level”
to heights above the Grs8o reference ellipsoid. As, however, land uplift is
an ongoing process, it must be tied to a certain epoch, a point in time at
which the GNss measurements were done to which the original gravimetric
geoid solution has been fitted. In the case of Fin2000 this was 1997.0 (Matti
Ollikainen, several sources).

Strictly speaking then, FIN2000 is not a model of the geoid. A better name
might be “transformation surface”. This holds true, in fact, for all national or
regional geoid models that are built primarily for the purpose of enabling
the use of GNss in height determination (“Gnss levelling”). These “geoid-like

surfaces” are constructed generally in the following way:

1. We calculate a gravimetric geoid model by using the Stokes method
and Remove-Restore, e.g., by the FFT method.

2. We fit this geoid surface solution to a number of comparison points, in
which both the height from levelling — “above sea level” — and from
the cNss method — above the reference ellipsoid — are known. The
fit takes place, e.g., by describing the differerences by a polynomial
function:

IN=a+b(A—Ao)+c(¢—¢o)+ ..

or something more complicated, and solving the coefficients 4,b,c
from the geoid differences in the known comparison points by using the
least-squares method.

12.3 The geoid and post-glacial land uplift

Global mean sea level is not constant. It rises slowly by an amount that, over
the past century, has slowly grown. Over the whole 20th century, the rate has
been 1.5 — 2.0mm/4, e.g., 1.6 mm/a ( , ). Over the last
couple of decades, the rate has accelerated and is now over 3mm/a, see figure

13.1.

This value is called the eustatic rise of mean sea level. 1t is caused partly by
the melting of glaciers, ice caps and continental ice sheets, partly by thermal
expansion of sea water. A precise value for the eustatic rise is hard to

The geoid and post-glacial land uplift

determine: almost all tide gauges used for monitoring sea level have their
own vertical motions, and distinguishing these from the rise of sea level
requires a representative geographic distribution of measurement locations.
Especially the ongoing response of the solid Earth to the end of the last ice
age, the latest deglaciation: so-called c1a (glacial isostatic adjustment) is a
global phenomenon that it only in the latest decades has been possible to
observe by satellite positioning.

Because of eustatic sea-level rise, a distinction must be made between absolute

and relative land uplift:

Absolute land uplift is the motion of the Earth’s crust relative to the centre
of mass of the Earth. This land uplift is measured when using satellites
the orbits of which are determined in a co-ordinate reference system
tied to the Earth’s centre of mass. For example, GNss positioning of
tide gauges.

Relative land uplift is the motion of the Earth’s crust relative to mean sea
level. This motion is measured by tide gauges, also called mareographs.

Geoid rise: as the post-glacial land uplift is the shifting of masses internal
to the Earth from one place to another, it is clear that also the geoid
must change. The geoid rise is however small compared to the land
uplift, only a few percent of it.

Equation (the point above a quantity denotes the time derivative %):

h=H +He+H+N,
in which
h is the absolute land uplift,
H,  is the relative land uplift,
H. is the eustatic (mean sea level) rise,

H, is the change over time of the sea-surface topography (likely small),

N is the geoid rise.
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The rise in the geoid as a result of land uplift can be simply calculated with

dt 4%7// ( >dg

Here, %Ag is the change of gravity anomalies over time due to land uplift.

the Stokes equation:

Unfortunately we do not precisely know the mechanism by which mass flows
into the land uplift area in the Earth’s mantle. We may write

d dh
—Ag = Cdt

in which the constant ¢ may range from —0.16 to —0.31 mGal/m,

o The value —0.16 mGal/m is called the “Bouguer hypothesis”: it corre-
sponds to the situation where upper mantle material flows into the

space freed up underneath the rising Earth’s crust, in order to fill it.

o The value —0.31 mGal/m is the opposite extreme, the “free-air hypothe-
sis”. By this hypothesis, the ice load during the last ice age has only
compressed the Earth’s mantle, and now it is slowly expanding again
into its former volume (“rising dough model”).

Up until fairly recently, the most likely value was about —0.2 mGal/m, with
) give —0.16 +
0.02 mGal/m (one standard deviation), which would seem to settle the issue. It

substantial uncertainty. The latest results ( ,

looks like the Bouguer hypothesis is closer to physical reality. The flow of
mass happens probably within the asthenosphere.

This problem has been studied much in the Nordic countries. The method
has been gravimetric measurement along the 63°N parallel (“Blue Road
Geotraverse” project). The measurement stations extend from the Norwegian
coast to the Russian border, and have been chosen so, that gravity along them
varies within a narrow range. In this way, the effect of the scale error of the
gravimeters is avoided. Clearly, absolute gravity is of no interest here, only
the change in gravity differences over time between the stations.

These measurements have been made over many years using high precision
spring or relative gravimeters. In recent years, there has been a shift to using
absolute gravimeters, obviating the need for measurement lines.

Methods for determining the sea-surface topography

Earth’s crust

Asthenosphere

(@)
Bouguer hypothesis. ..

__//\, & / N —
Earth’s crust

Upper mantle $ $

(b)

..and free-air hypothesis.

Figure 12.1. The two different hypotheses on the mechanism of post-glacial
land uplift.

12.4 Methods for determining the sea-surface

topography

In principle three geodetic methods exist:

1. satellite radar altimetry and gravimetric geoid determination

2. GNss positioning along the coast (tide gauges) and gravimetric geoid
determination

3. precise levelling along the coast.

In addition to this, we still have the oceanographic method, i.e., physical
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Figure 12.2. The Fennoscandian 63°N parallel gravity line.

modelling. The method is termed steric levelling if temperature and salin-
ity measurements along vertical profiles are used on the open ocean, and
geostrophic levelling if ocean current measurements are used to determine the

Coriolis effect, generally close to the coast.

All methods should give the same results. The Baltic Sea is a textbook
example, where all three methods have been used. A result was that the
whole Baltic Sea surface is tilted: relative to a level surface, the sea surface
goes up from the Danish straits to the bottoms of the Gulf of Finland and the
Bothnian Bay by some 25 — 30 cm.

Oceanographic model calculations show, that this tilt is mainly due to a
salinity gradient: in the Atlantic Ocean, salinity is 30 — 359/00, when in the
Baltic it drops to 5 — 10°/00 due to the massive production of sweet water

( ,

oscillations like in a bathtub, the amplitude of which can be over a metre.

). Of course on top of this come temporal variations, like

In (

and its determination.

) more is said about the sea-surface topography of the Baltic

Global sea-surface topography and heat transport

12.5 Global sea-surface topography and heat transport

One important reason why researchers are interested in the global sea-surface
topography, is that it offers an opportunity to study more precisely the
currents in the oceans and thus the transport of the Sun’s energy from the
equator to higher latitudes. There are many things the study of which is
helped by precise knowledge of ocean currents: carbon dioxide dissolved
into the water, chlorophyll (phytoplankton), salinity, etc.

The Coriolis force, or acceleration, caused by the Earth’s rotation is:
a:2<v><a76>>, (12.1)

in which v is the velocity vector in a system attached to the rotating Earth,
and (7{, is the rotation vector of the Earth.

If a fluid flows on the Earth’s surface, then, in the above equation 12.1, only
the part of @< normal to the surface will have an effect: this part has a length
of (ang ‘n) = wg sin ¢, and the vector equation 12.1 may be replaced by a
simpler scalar equation:
a = 2vwg sin @,

where 1 & ||a — (a- n)]|, i.e., the length of the projection of a onto the tangent
plane to the Earth, and v £ ||v||,we £ ||@2| etc. in the familiar way.
The direction of the Coriolis acceleration is always perpendicular to the flow
velocity: when watching along the flow direction, to the right on the Northern
hemisphere, to the left on the Southern hemisphere.

As a result of the Coriolis force, the sea surface in the area of an ocean current
is tilted sideways with respect to the current, at an angle

This equilibrium between Coriolis force and the horizontal gradient of pres-
sure is called the geostrophic equilibrium. On the equator it can be seen from
the equation that the tilt is zero, but everywhere else, ocean currents are
tilted. For example, in case of the Gulf Stream, the height variation caused by
this effect is several decimetres. If we define a local (x,y) co-ordinate system
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%y

Figure 12.3. Connection between sea-surface topography and ocean currents.
Red arrows depict the ocean currents; curves, the sea-surface

topography.

in which x(¢, A) is pointing North and y(¢, A) East, we may write for the
sea-surface topography H the geostrophic equations

oH We oH We

— = —2v,—sin @, — = +2v,—sin g, 12.2

As we will see in chapter 13, we can measure the location in space of the
sea surface at this precision using satellite radar altimetry. If we further-
more have a precise geoid map, we may calculate the sea-surface topogra-

phy, and with the aid of equations 12.2 solve for the flow velocity field*
T T

[ oeoy) vyry) | = [ oo d) vy(90) |

An elegant property of these equations is, that we don’t even have to know

the absolute level of the field H(x,y) = H(¢,A) because that vanishes in
differentiation.

'A popular, though unofficial, unit for ocean current is the sverdrup
(Wikipedia, Sverdrup), a million cubic metres per second. All the rivers
of the world together make about one sverdrup, while the Gulf Stream is
30 — 150 Sv.

Global sea-surface topography and heat transport
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Figure 12.4. Sea-surface topography map produced by coct. © European
Space Agency. Unit: cm. Ocean currents superimposed: NoAA /
Rick Lumpkin (Lumpkin and Garraffo, 2005).

The method described, figure 12.3, requires a sufficiently precise geoid map
of the oceans of the world. To this need, the cock satellite fits like a glove, see
section 13.7. One objective of the mission was, as the name indicates, to get a
full picture of ocean currents and especially their capacity for heat transport.
This knowledge helps understand how the Earth’s climate functions and
how it is changing, also as a result of human activity. This is for Europe
and Fennoscandia, and also Finland, an important issue, as the heat energy

brought by the Gulf Stream helps to keep these areas habitable.

Even without a geoid model we can study, using satellite altimetry, the
variations of ocean currents. It has been known for long that in the North
Atlantic Ocean, mesoscale eddies have been moving alongside the Gulf Stream,
eddies of size 10 — 100 km which show up in altimetric imagery. Interesting
is that the eddies also show up in maps of the ocean surface temperature, and
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biologists have observed that life inside the eddies differs from that outside
( ,

A good, though somewhat dated, introduction into “geodetic oceanography

). The life span of the eddies can be weeks, even months.

”

is given by ( ).

12.6 The global behaviour of sea level

Water exists on the Earth in three phases: liquid, ice, and vapour. During
geological history, especially the ratio between liquid water and ice has varied
substantially. Also today, a large amount of ice is tied up in continental ice
sheets, specifically Antarctica and Greenland. Of these, Eastern Antarctica is

the overwhelmingly largest.

When the amount of water tied up in continental ice sheets varies, so does
sea level. The end of the last ice age has raised sea level by as much as 120m,
a process that ran to completion some 6000 years ago> (

). Not until the last century or two has sea level again started rising, and

the rise accelerating, as a consequence of global warming.

We still live in the aftermath of the last glaciation; there were large continental
ice sheets which have since molten away, like in Fennoscandia and Canada
(the so-called Laurentide ice sheet), the land is still rising at an even pace, in
places even 10 millimetres per year. Around the land uplift areas, in central
Europe and the United States, again takes place a subsidence of the land at
an annual pace of 1 — 1.5mm, as directly underneath the hard crust of the
Earth or lithosphere, in the upper mantle layer called asthenosphere, material
is flowing slowly inward under the rising Earth’s crust.

In order to complicate the picture, the sea-level rise caused by the melting
of continental ice sheets also presses the ocean floor down — by as much
). Therefore, the
measured sea-level rise — whether on the coast by tide gauges, or from space

as 0.3mm per year, the so-called Peltier effect ( ,

using satellite altimetry — does not represent the whole change in total ocean

26000 years “before present”, 6 ka BP. BP conventionally means: before 1950.

Nowadays is also used b2k, before the year 2000.

The sea-level equation

Sea level
drops Sea level
o B rises

Sea level
drops

Figure 12.5. The sea-level equation. Sea level reacts in a complicated way
when continental ice sheets melt.

water volume. If that is what interests us, as it always does in climate research,

this Peltier correction must still be added to the observation values.

The subsidence of the sea floor hasn’t even been globally uniform: at the
edges of the continents happens a “lever motion” when the sea floor subsides
but dry land doesn’t. And in the tropics in the Indian and Pacific Oceans, sea
level reached 6000 years ago its maximum level, the so-called mid-Holocene
highstand, relative to the Earth’s crust. After this, local sea level has subsided
and the coral formations from that age have remained, dead, some 2 —3m
above modern sea level. This is how, e.g., Tuvalu and the Maldives were
formed, which are now again being threatened by modern sea-level rise.

12.7 The sea-level equation

Scientifically the variations in sea level are studied using the sea-level equation.
A pioneer in this field has been the Canadian W. Richard Peltier (

), who has constructed physics-based models of how both
the solid Earth and sea level respond when the total mass of the continental
ice sheets changes.

The sea-level equation ( ) is

S:SE+&[GS®117GS®11}+%[GS®057GS®OS], (12.3)

Yo

vipuliike
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in which

- Post-Glacial

oS = S(w,t) = S(¢,A,t) describes the variations of sea level as a -

function of place w = (¢, A) and time ¢,

I = I(w,t) is similarly a function of place and time describing the

geometry of ice sheets and glaciers,

Sk is the eustatic term, i.e., the variation in ice volume converted to

4

‘equivalent global sea-level variation”, in an equation

_ mi(t)
T poAs’

Sg(t)

in which m;(t) is the variation in total ice mass as a function of time,

po the density of sea water, and A, the total surface area of the oceans,
p is the density of matter: p; that of ice, and p, that of sea water,

® is the symbol of a convolution on the surface of the Earth and the
time axis, ®; over land ice, ®, over the oceans — i.e., Green’s function
is multiplied with the ice and sea functions and integrated over the
domain in question. These integrals are by the way very similar to the
ones discussed in section 8.1, e.g.:

{Gs®o 5} (w, 1) :/joo //Ocean Gs{p(w, "), {t —'}}S(, 1) de' dt,

in which ¢(w, w’) is the geocentric angular distance between evalua-
tion point w = (¢, A) and data point w’' = (¢, ') . The measure of the
surface integral is dw = N(¢) M(¢) cos ¢dgd), in which N,M ~ R
are the principal radii of curvature of the Earth ellipsoid. As can be
seen, we have here a convolution applied both over the Earth’s surface
w and over the time axis ¢.

The overbar designates averaging over the whole ocean surface,
Y0 is an average acceleration of gravity,
G is the so-called Green'’s function of sea level:

Gs = Gv — 710Gy,

where the Green’s function of the geopotential is

Gv(y,t) = Gy(p 1) + Gy (¢, t) +Gy(y,t)
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Figure 12.6. Sea-level rise after the last ice age (Wikimedia Commons, ©

Robert A. Rohde, GNU Free Documentation License).

where again 1 is the distance of evaluation point from integration point,
and G, Gy, ja Gy, are the rigid, elastic and plastic (“viscous”) partial
Green'’s functions of deformation. These thus describe the rheological
behaviour of the Earth, and their theoretical calculation requires the
internal viscosity distribution #(r) of the Earth, assuming it is isotropic,

i.e., only dependent upon r.

Gu(,t) = Gu(¢ 1) +Gu(y,t)

is again similarly Green’s function function of vertical displacement, in the

same way split into elastic and plastic parts.

The behaviour of sea level can now be computed in this way, that one first

tries to construct an “ice-load history”, i.e., I(w,t). Then, from this one tries

to calulate iteratively, using the sea-level equation 12.3, S(w, t). Note that

S describes relative sea-level variation, i.e., changes in the relative positions

of sea level and the Earth’s solid body or Earth’s crust. It is a function of
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place: one may not assume that it would be the same everywhere. In the
article ( ) it is shown how, e.g., the melting water from
Greenland flees to the Southern hemisphere, when the melting water from
Antarctica again comes similarly to the North. This is a consequence from

the change in the Earth’s gravity field and the geoid, when large volumes of

ice melt. Another factor is that also the physical shape of the Earth changes,

when the ice load changes: so-called glacial isostatic adjustment, GIA.

This also complicates the monitoring of global mean sea level from local

measurements: the problem is familiar in Fennoscandia, as the Earth’s crust,

for now, moves up faster than global sea-level rise. ..

Green'’s functions in the sea-level equation are functions of both ¢ and time
difference At; this tells us that c1a is a function of both place and time. On a
spherically symmetric Earth, the functions may be written as expansions, e.g.

W’y; (Zk/e selh )P/ cosy),

Gy(p At) =
in which H is a step function, the “Heaviside function”, which is zero for
negative and +1 for positive arguments. The index i counts the so-called
viscous relaxation modes for every degree number /; ky; are “viscous loading
deformation coefficients” and t; = 517 correspond to the relaxation times in
which the mode in question will decay over time. Generally the modes that
are of large spatial extent — i.e., low ¢ values — decay slower, when again
the local modes — high ¢ values — tend to decay faster, and the local modes
of the last deglaciation have today already vanished: the geographic pattern
of the Fennoscandian land uplift is already very smooth, and the seismicity
accompanying the deglaciation is pretty much over. Back then, immediately
after the retreat of the ice sheet at its edge, there were strong earthquakes, the
traces of which are visible in the landscape ( , ). The now
dominant viscoelastic modes are many hundreds of kilometres in geographic
extent, and correspondingly of time scales thousands of years.

3We consider here only the plastic or viscous deformation.

Self-test questions

Self-test questions

1. List all the causes you are aware of of sea-level variations.
2. What is the sea-surface topography?
3. What is eustatic sea-level rise?

4. What is absolute, what relative land uplift? What does the difference

between the two consist of?
5. What two main models are on offer for the mechanism of land uplift?
6. What three geodetic techniques are available for determining the sea-
surface topography?
7. What is the shape of the sea-surface topography of the Baltic Sea, and
what is its cause?
8. What is the Coriolis force, and how does it affect ocean currents?
9. What is the geostrophic balance?
10. How can one invert a map of the sea-surface topography into a map of
ocean currents? Where on Earth does this not work?
11. What is the Peltier effect? What is the mid-Holocene highstand?
12. What does the sea-level equation describe?
13. Why does mean sea level in the Baltic Sea not rise when the Greenland

continental ice sheet melts? What will happen in the Baltic Sea when
the West Antarctic ice sheet melts?

Exercise 12—1: Coriolis force, ocean current

If the velocity of flow of an ocean current is 0.1m/s and its width 100 km,
compute:

1. How much at latitude 45° N is the height difference between its left
and right edges?

2. If the same current was 200 km broad and the velocity of flow 0.05m/s
(i.e., assuming the same depth, also the transport of water would be
the same), compute for that case the height difference between the left
and the right edges.
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3. [For fun] if the depth of the current is 1km, what is the water transport
in sverdrup?

Exercise 12—2: Land subsidence and the mechanism of
land uplift
How does the post-glacial land subsidence observed in the United States

and central Europe support a Bouguer type of land-uplift mechanism (figure

12.1a), rather than a free-air mechanism?

Satellite altimetry and satellite
gravity missions

13.1 Satellite altimetry

Satellite altimetry measures, using microwave radar, the distance from a
satellite straight downward to the sea surface. Historically there have been
many satellites carrying an altimetry radar, see table 13.1, which may not be

complete.

o The GEOS-3 (1975-027A) and Seasat satellites were American testing
satellites aimed at developing the altimetric technique. The measure-
ment precision of GEOS-3 was still rather poor. Before that, satellite
altimetry was also tested with a device on board the orbital laboratory
Skylab (1973-027A).

o Seasat (1978-064A) broke down only three months after launch, prob-
ably due to a short-circuit'. However, the data from Seasat was the
first large satellite altimetry data set used for determining the mean
sea surface, also of the Baltic Sea.

o Geosat (1985-021A) was a satellite launched by the U.S. Navy, intended
to map the gravity field on the world’s oceans, more precisely the
deflections of the plumb line, which are needed to impart the correct
departure direction to ballistic missiles launched from submarines. The
17-day repeat data from the geodetic mission was initially classified.

But read this:

_319_
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Table 13.1. Altimetric satellites through the ages.
Satellite Launch Orbital Orbital  Repeat Measure- Positioning
year inclina- height  periods ment technique
tion (°)  (km) (days) precision
(m)
GEOS-3 1975 115.0 843 — 0.20
Seasat 1978  108.0 780 3 (17) 0.08
Geosat 1985  108.0 780 3,17 0.04
ERS-1 1991 98.5 780 3,35,2x168  0.03
TOPEX/Poseidon 1992 66.0 1337 10 0.033 GPS, DORIS
ERS-2 1995 98.5 780 35 0.03 PRARE
Geosat follow-on 1998  108.0 800 17 0.035
Envisat 2001 98.5 784 35 0.045 GPS, DORIS
Jason-1 2001 66.1 1336 9.9156 0.025 GPS, DORIS
Jason-2 2008 66.04 1336 9.9156 0.025 GPS, DORIS
Cryosat-2 2010 92.0 725 369, 30 DORIS
HY-2A 2011 99.3 970 14, 168 0.085 DORIS, GPS
SARAL/AIltiKa 2013 98.5 781 35 DORIS
Jason-3 2016 66.04 1338 9.9927 0.025 GPS, DORIS
Sentinel-3A 2016 98.62 804 27 0.03 DORIS, SLR, GNSS

Later however, the data from the Southern hemisphere was published
for scientists to use, and currently the whole data set is public.

o The satellites ERS-1/2 (1991-0504A, 1995-021A) and Envisat (2002-009A)
were launched by Esa, the European Space Agency. The altimeter
was just one among many packages. On the ERS satellites a German
positioning device called PRARE was along, but only on ERS-2 it
functioned after launch.

o TOPEX/Poseidon (1992-052A) was an American-French collaboration,
one goal of which was to precisely map the sea-surface topography.
A special feature was the on-board precise Grs positioning device,
which allowed the determination of the location of the sea surface

Satellite altimetry

geocentrically. Together with her successors Jason-1, 2 and 3 (2001-055A4,
2008-032A, 2016-002A), this satellite mission has also produced, and
continues to produce, valuable information on the global rise of sea
level over the last 20 years, about 3 mm per year. See figure 13.1.

The famous oceanographer Walter Munk (1917-2019) described
TOPEX/Poseidon in 2002 as “the most successful ocean experiment of
all time” ( )-

o HY-2A (2011-043A) is a Chinese satellite also launched by China.

o SARAL/AltiKa (2013-009A) is a satellite launched by India. The altime-
ter and DORIS are French contributions.

o Cryosat-2 (2010-013A) is a satellite launched by the Esa, the European
Space Agency, to study polar sea ice. Of special interest is the so-called
freeboard, the amount by which the ice sticks out of the water. From
this, the thickness, and with surface area, the total volume may be
calculated. The launch of Cryosat-1 failed. In-orbit positioning is done
with the French pORis system.

o Sentinel 3A (2016-011A) is a versatile Esa remote-sensing satellite, the
first of a planned constellation. She carries several instruments, among
them srAL, Synthetic Aperture Radar Altimeter.

The measurement method of satellite radar altimetry is depicted in figure
13.2. Here we see all the quantities that are along in altimetry: the measured
range /¢ is the height & of the satellite above the reference ellipsoid, corrected
for the geoid height N, sea-surface topography H, and variations of the sea
surface, like tides, eddies, annual variation etc.

Furthermore, if the satellite does not contain a precise positioning device, the
true orbit of the satellite will differ from the calculated orbit — even from the

orbit calculated afterward. Therefore
hsat = hO,Sat + Ah/

where hq s, is the calculated orbit, and Ah the orbit-error correction.

The measurements are performed by sending thousands of pulses per second

down, measuring and averaging the travel times of the reflected return
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Figure 13.1. Results from the TOPEX/Poseidon and Jason satellites. © Col-
orado Univiisity at B ulder’s Gee *ovel Research Group; Nerem

et al. (2010).
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receiver — will be larger, and the distance travelled by the radio waves will
on average be a little longer.

Newer satellites use an interferometric technique that differs somewhat from
the description above.

Of all the corrections related to instrumentation, atmosphere, ocean, and
solid Earth, we mention

o the height of sea waves (swH)

o solid-Earth tides

o ocean tides

o the “wet” tropospheric propagation delay, best computed from water
vapour content measured with a water vapour radiometer on the
satellite, otherwise from an atmospheric model

o the “dry” tropospheric propagation delay

o the ionospheric delay, only for the part of the ionosphere below the
satellite, depending on flight height

o the altimeter’s own calibration correction. Nowadays “in-flight” cali-
bration is always strived for, using an ensemble of GNss-positioned tide

gauges.

The measurements and all corrections to be made to them are collected into a
“geophysical data record” (GDR), one per observation epoch. The files built this
way are distributed to researchers. This allows all kind of experimentation,
e.g., the replacement of a correction by one calculated from improved models,
etc.

13.2 Crossover adjustment

When a satellite orbits the Earth over months or years, thousands of points
are formed where the tracks cross each other. If we assume that sea level is
the same for both satellite overflights, then this forms a condition that can be
used to adjust orbit errors.

The observation equations are

hy=N+H+A+e+n,

Crossover adjustment

in which #, is the altimetric measurement of the height of the sea surface, N is
the geoid height, H is the sea-surface topography, or the permanent deviation of
the sea surface from an equipotential surface, Ah is the orbit-error correction,
€ is the variability of the sea surface due to, e.g., the tides among other causes,
and 7 is the noise in the radar altimetry observations.

From this we obtain in the crossing point of tracks i and j:
L ZH, — By = (Ahj — M) + (e —€)) + (ﬂﬁﬂj) :

This is the observation equation of crossover adjustment. Here we see the
complication that in both, sea-surface variability and orbit errors are along
in the equation in the same way. They cannot be separately determined by

crossover adjustment.

If we forget for now the sea-surface variability — or assume that it behaves
randomly, in other words it is part of the noise 1 — we may write more
simply

ﬁk = Ahi — Ahj + ny.

The index k counts crossover points, the indices i, j count tracks.

Next, we choose a suitable model for the satellite orbit error. The simplest
choice, sufficient for a small area, is the assumption that the orbit error is a
constant for each track. See a simple example, figure 13.3.

13.2.1 A simple example

In the figure we have three tracks and two crossing points. The observation
equations, which describe the discrepancies in the known crossover points as
functions of the orbit errors, are

£y = Ahy — Ah3 + 1y
ﬁz = Ahl — Al’l3 +n,
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Figure 13.3. A simple crossover geometry.

or in matric form?

A ——— n
™ Al
E] 01 1 ny
P =110 -1 Ahy | + o | (13.1)
2 Ahs ny
symbolically
{ = Ax+n.

*Note the similarity with the observation equations for levelling! Instead of
benchmarks, we have tracks, instead of levelling lines, crossover points.

Crossover adjustment

If one now tries to calculate the solution with ordinary least squares,
5= (ATA) AT,

one will notice that this doesn’t work. The normal matrix AT A is singular
(check!). This makes sense, as one can move the whole track network up
or down without the observations ¢; changing. No unique solution can be
found for such a system.

Finding a solution requires that something must be fixed. For example, one
track, or, more democratically, the mean level of all tracks. This fixing is
achieved by adding the following “observation equation”:

def

63:0:{c c c]'x, (13.2)

where c is some suitable constant. Then the matrix A becomes

-1
A= -1 |,
cc ¢
and the least-squares solution
ﬁll El
= | Al | = (ATA) TATL=(ATA) AT | o, |,
Al 0

where the matrix inversion is now possible. Note that X = A~1£ will in this
case give the same solution, as A is square and invertible:

(ATA) TATL=ATH(AT) T ATL= AT ((AT) AT L= A7

Now the symbolic algebra system maxima ( ) — or brute-
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force calculation — gives the readily verified inverse
_ -1

-1
Al=110 -1 =
Cc C
_ -1
1 01 -1
= [ 1 0 -1 =
I ¢ 11 1
001 -1 '[1 !
=10 -1 1 =
11 1 c
(-1 2 1 1
:% 2 -1 1 1 =
| -1 -1 1 1
) [-1 2 1
=312 1|
[ -1 -1 1]
and the solution is
Ay -1 2 177T74 -1 2
Al :A*lg:% 2 -1 1 A T {il}
Ah3 -1 -1 1]]o -1 1] L7

from which ¢ has vanished.

Another way to look at this is to first write the observation equations 13.1
and 13.2 together as

4 A X n
—N——

El 01 -1 Ah] ﬂl

Ll=|10 1|8k |+]|n]

0 c ¢ ¢ Ahs 0

and then multiply both sides, and both terms on the right, with the diagonal

matrix

S = O
al= O O

Crossover adjustment

The result is

DL DA Dn
—N— ——— —
‘0 01 -177[an n
Ll=10 -1||am|+|nl
0 11 1 Ahs 0

from which also ¢ has vanished.

The principle applies generally:

Minimal constraints added to observation equations with a datum defect do
not essentially change the solution.

13.2.2 A more advanced orbit correction model

A more advanced representation of orbit errors more suitable for use in a

larger area, is a linear function:
Ah =a+bT,

where the parameter 7 is the location along the track reckoned from its
starting point. The dimension of this location can be time (seconds) or
angular distance (degrees). Now the set of observation equations for the
situation described above is

L A bl

L |0 0|1 7|-1 -7 ap n
L) |19 m |

0 0 3
Here the design matrix contains, besides the values 1 and —1, also the

},

-1 -7

expressions T,i, in which i is the number of the track, k that of the crossover
point. These are computable when the geometry of the tracks is known.
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Now there are two unknowns for every track, a and b, a constant and a trend.
Of course also this system will prove to be singular. Removing the singularity

can be done by fixing all three parameters b and one parameter a3.

The phenomenon that no solution can be found unless something is fixed, is
called a datum defect. Fixing something suitable will define a certain datum.
Between two different datums exists a transformation formula: in the case of
one orbit error parameter per track, this transformation is a simple parallel
shift or translation of all tracks up or down.

The situation is somewhat similar as when defining a height or vertical refer-
ence system, for a country. One needs to fix one point, e.g., Helsinki harbour.
If alternatively one fixes another point, e.g., Turku harbour, the result is
another datum, in which all height values differ from the corresponding ones
in the first datum by a certain fixed amount.

The argument continues to hold if there is a large number of tracks: say, ten
Northgoing and ten Southgoing tracks, crossing in 10 x 10 crossover points.
Here, for two parameters per track, we would have 40 unknowns and no
less than 100 observations. Still, we must constrain the absolute level and
the various trends and possible other deformations of the whole network
of tracks. It gets complicated, but a simple approach is to attach a priori
uncertainties to the unknowns a;, b; to be estimated, e.g., from the known
uncertainties of the orbit prediction available. The least-squares adjustment

equation then becomes
-1
% = (ATA + 2*1> ATy,

where ¥ is the diagonal matrix containing the a priori variances* o2

2 O'Iii of

the parameters of each track i. This is referred to as Tikhonov> regularization.

3In order to understand this, build, e.g., a three track “wire-frame model”
from pieces of iron wire, tied together by pieces of string at the crossover
points. Crossover conditions don’t in any way fix the values of the trends b,

and the whole absolute level of the frame continues to be unconstrained.
4We assume the mean error of unit weight to be 1.

5Andrey Nikolayevich Tikhonov (1906 -1993) was a Russian Soviet mathe-

Crossover adjustment

Figure 13.4. Example of track geometry of satellite altimetry

13.2.3 Another example

In diagram 13.4 describing a satellite altimetry geometry, there are 16 cross-
over points. We attempt a crossover adjustment.

Questions:
1. If the orbital error Ak of each satellite track is described by a
model with a single bias term, how many unknowns are there?
2. If we have available 16 “observations”, i.e., crossover differences,
how many of them are redundant?
3. Is it geometrically possible to calculate this network?
4. If we fix one track in advance (so-called a priori information),

how many redundant observations are there? Can this network
be calculated?

matician and geophysicist.
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5. If every track has two unknowns, a bias as well as an error
growing linearly with time, i.e., a trend, what then needs to
be fixed in order to make the network calculable? How many
redundancies are there then?

6. If, in case 3, we fix one track, which one would you choose?
Propose alternatively a solution where you do not have to make
a choice.

Answers:

1. As many as there are tracks: 8.
2. 16 -8 =28.
3. No, because the absolute level of the whole network is indeter-

minate.

4. 16 — (8 — 1) = 9. Now the network can be calculated.

5. If we assume that the tracks are “straight” in (x,y) co-ordinates,
then the set of allowable transformations on the whole network
is

Ah = ay + ar0x + any + anxy
with four degrees of freedom. So, fix one bias and three trends,
not all North- or all Southgoing.

6. Any such choice would be arbitrary. Rather use the method
described above instead, Tikhonov regularization.

13.2.4 Global crossover adjustment

In a global crossover adjustment, often a still more sophisticated model is
used,

Ah=a+bsint+ccosT, (13.3)

where now T is an angular measure, e.g., the place along the track measured
from the last South-North equator crossing. See ( ), where this
problem is treated more extensively. In this model, a represents the size
of the orbit, while (b,c) describe the offset of the centre of the orbit from

Choice of satellite orbit

the geocentre. This model is three-dimensional: the orbital arcs with their
crossovers form a spherical network surrounding the Earth. The degrees
of freedom left by the crossover conditions are now the size of this sphere
and the offset of its centre from the geocentre: with (X,Y,Z) geocentric

co-ordinates, we have
A =ag+m X+ aY +azZ (13.4)

with four degrees of freedom®.

13.3 Choice of satellite orbit

In choosing a satellite orbit, Kepler’s orbital laws are central. Kepler’s third
law says:
GM P? = 4722, (13.5)

where a = ag + I is the satellite orbit’s semi-major axis (i.e., the mean distance
from the geocentre), while / is called the satellite’s mean height. P is the
orbital period, ag the equatorial radius of the Earth ellipsoid.

From equation 13.5 one can already infer that using satellite observations one
can precisely determine the quantity GM, the mass of the Earth multiplied
by Newton’s universal gravitational constant”. The period P can be precisely
determined from long observation series, and also the size of the orbit a4 can
be obtained very precisely, e.g., from satellite laser ranging (sLr) observa-
tions. For this purpose have been used, e.g., the well known Lageos (Laser
Geodynamic Satellite) satellites, which orbit the Earth at a height of 6000 km.

Ranges are nowadays obtained with better than centimetre precision.

0One could argue that, in eq. 13.3, the parameter a should be zero, as Kepler’s
third law allows a very precise determination of the orbital size, see section
13.3. Then, also a9 = 0 in equation 13.4.

7This is why it is said that Henry Cavendish was the first to “weigh the
Earth”... determining GM was already straightforward back then using the
orbital motion of the Moon. The challenge was separating G and the mass of
the Earth M, obtaining the latter in ordinary units of mass.
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Figure 13.5. Kepler’s orbital elements: 2 — semi-major axis, ¢ — eccentricity,
i — inclination, () — right ascension (celestial longitude) of
the ascending node, w — argument of perigee, and v — true
anomaly.

The orbits of altimetric satellites are chosen much lower, as is seen from table
13.1 at the start of the chapter. The height is fine tuned using on-board

rakettimoottorit thrusters, so that the satellite passes over the same place, e.g., once a day,
after 14 orbital periods. Alternatively one chooses an orbit that flies over
the same place every third, seventeenth, 168th day... this is called the repeat
period.

The choice of the repeat period depends on the mission objective:
o If one wishes to study the precise shape of the mean sea surface, one

chooses a long repeat period, in order to get the tracks as close together
as possible on the Earth’s surface.

o If one wishes to study the variability of the sea surface, one chooses an
orbit that returns to the same location after a short time interval. Then,
the grid of tracks on the Earth’s surface will be sparser.

Also parameters describing the figure of the Earth affect satellite motion, e.g.,

Choice of satellite orbit

the quantity />, the dynamic flattening, having a value of J, = 1082.6267 - 10-°.
It is just one of many so-called spherical-harmonic coefficients that describe
the figure of the Earth and affect satellite orbits. In the case of ], the effect is,
that the plane of the satellite orbit rotates at a certain rate (orbital precession),
which make the satellite, if she flies over the same location the next day, do
so several minutes earlier. The equation is, for a circular orbit of radius a:

dQ 3 |GMd} .
a2\ plaeost

in which again ag is the equatorial radius of the Earth reference ellipsoid, and
i the inclination of the orbital plane relative to the equator. If we substitute

numerical values into this, we obtain

aQ ]

£2 = -131895-10% 2 [m?3s71]

at (ag +h)™

where h is the mean height of the satellite orbit, conventionally above a sphere
of size equatorial radius ag. If we substitute into this, e.g., the satellite height

h = 800km (and use ag = 6378 137 m) we obtain

dQ

a0 —6°.589
dt o

— 13310210 cosi [rad sfl} -
day

- Cos .

For practical reasons — solar panels! — we often choose the satellite orbit
such, that the orbital plane turns along with the annual apparent motion of

360°  _ 0°.9856 .
the Sun, 35555 s = ~qay - See figure 13.6.

If the inclination i is chosen in the range 96° — 102°, depending on the orbital
height, then the Earth’s dynamic flattening ], will cause just the suitable
rotational motion of the orbital plane (“no-shadow / Sun-synchronous /
Sun-stationary orbit”), see figure 13.7.

An orbit with an inclination i > 90° is called a retrograde orbit: the satellite
is moving Westward in longitude, opposite to the direction of the Earth’s
rotation, which is Eastward. The orbital inclination i, or for a retrograde orbit,
its supplement 180° — i, is also the greatest Northern or Southern latitude a
satellite can fly over. This means that, unless the inclination is precisely 90°,
there will be areas around both poles that the satellite will never overfly: the
“polar holes”.
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Figure 13.6. The mechanism of a Sun-stationary orbit.

A drawback of a Sun-stationary orbit is, that the altimetric observations are
made at always the same local time of day. For example, the diurnal and
semi-diurnal tides caused by the Sun will always have the same phase angle,

Autumn

Figure 13.7. Geometry of a “no-shadow” orbit. Season names are boreal.

Choice of satellite orbit

Figure 13.8. A satellite in a retrograde orbit around the rotating Earth, cross-
ing the equator South to North three successive times. The
angle between the orbit and the equator, the inclination 7, or for
a retrograde orbit, its supplement 180° — i, is also the highest
Northern or Southern latitude that the satellite can fly over. The
unreachable “polar holes” are indicated by white dashed lines.

and thus they cannot be observed with this kind of satellite (“resonance”).
Therefore, the oceanographic satellite TOPEX/Poseidon, and her follow-up
Jason satellites, were placed in non-Sun-stationary orbits.

13.3.1 Example

A satellite moves in an Sun-stationary orbit, i.e., she always, day after day,
flies over the same latitude at the same local (mean) Solar time.
Questions:

1. What is the period of the satellite if she always after 14 revolu-

tions flies again over the same spot?
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. Same question if she always flies over the same spot after 43

revolutions (3 days)?

. And after 502 revolutions (35 days)?

. What is the height of the satellite in a “three-day orbit”? Use

Kepler’s third law, equation 13.5. GM = 3986005 - 108 m®s~2,
and the height of the satellite is 1 = ag — a, with a = 6378137 m.

. What is the satellite height in a “35-day orbit”? And the height

difference with the previous question?

. What is, for the three-day orbit, the mean separation between

North-going orbital tracks (i.e., at what level of detail is the

altimeter able to image the sea surface!)?

7. Same question for a 35-day orbit.

8. Questions for reflection:

Answers:

1.

(a) for what purpose would you use a 35-day orbit, for what
purpose a three-day orbit?
(b) Would it be possible, or easy, to fly both orbits with the

same satellite (see question 5)?

The satellite completes 14 orbits per day, i.e., per 1440 minutes:
P = 140 — 102.857 min.

. The satellite completes 43 orbits in three days, i.e., per 3 x 1440

minutes: P = 3% min = 100.465 min.

. The satellite completes 502 orbits in 35 days, i.e., per 35 x 1440

minutes: P = 22340 min = 100.398 min.

. Execute the octave code in tableau 13.2. The result is 780.604 km.

5. The same code, with P=100.398+60, yields 777.421 km. The dif-

ference with the previous is 3.183 km.

. There are 43 orbits with different ground tracks. That means

a separation of 3% = 8.372 degrees, or at the equator, 230 =

930 km; less at higher latitudes.
360

. 355 = 0.717 degrees, or % = 80km.

In-flight calibration

Tableau 13.2. Calculating the height of a satellite from her period.

format long

GM=3986005e8;

ae=6378137;

P=100.465x60; % seconds

fac=4xpixpi; % four pi square
a=(GM+PxP/fac)"0.33333333;

h =a - ae;

printf(’\n\nOrbital height: %8.3f km.\n’, h/1000);

8. (a) The 35-day orbit would be excellent for detailed mapping.
The three-day orbit would be able to see, e.g., tides or
weather-related phenomena, but at poor resolution.

(b) The difference in height being only 3 km, and in period, 4s,
the change in orbit between the two repeat periods should
be easily within reach of even small on-board thrusters. So,
yes.

13.4 In-flight calibration

The highly precise, GNss positioned satellite radar altimeters in use today
require proper calibration. The technique of choice for this is in-flight calibration,
using an ocean area — or sometimes a lake area — the geocentric location of
the water surface of which is known thanks to surrounding GNss-positioned
tide gauges combined with a precise geoid model of the area. An example of

such measurements is ( ).

One reason for in-flight calibration is the circumstance that radar altimeters
not only have an unknown zero offset — due to the not precisely known signal
paths through the electronic circuitry — but this offset may slowly change or

drift over time.
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Travel time

Half-
height
rule

Sent pulse

Received pulse

Figure 13.9. Analyzing the altimeter return pulse. The classical return pulse
time measurement uses the “half-height point”.

13.5 Retracking

The results of a satellite altimetry mission are published already during
flight in the form of a so-called geophysical data record (GDR) file, containing
everything related to the measurement and, e.g., atmospheric correction

terms, tidal corrections, wave parameters, etc.

It is common practice today to process again altimetry measurements already
collected earlier, in order to extract further useful information. The complete
return pulse is analyzed again, in a method called retracking (

).

The standard method of analysis is based on that point on leading edge of the
return pulse, which is at half height from the maximum value of the pulse.
This is according to experience a good way to get the travel time associated
with the point in the centre of the footprint, directly underneath the satellite.
In the back part of the pulse are reflections from the further-away peripheral
areas of the footprint.

There are however two situations where this method doesn’t work prop-
erly during flight, and a more careful a posteriori analysis of the pulse is
worthwhile:

1. Archipelagos like Indonesia, Aland, ... Here it may happen, e.g., that
the centre point of the footprint is on land. Then, the first strong
bounces will come under an angle from the nearest coast. A precise

coastline mask is then essential for processing.

2. Sea ice areas in the Arctic and Antarctic Oceans. Bounces may come

Oceanographic research using satellite altimetry

from the surface of the sea ice, in which case one should consider
freeboard in the processing, i.e., how much the ice sticks out of the

water.

In both cases the traditional real-time processing on-board produces erro-
neous measurements, as the travel time of the return pulse varies too rapidly
as the satellite flies on. With retracking, such measurements have been saved,
and the area covered by altimetric measurements has been extended into the

Arctic and Antarctic Oceans.

Freeboard is an important quantity in determining the thickness of the ice.
As the density of ice is about 920kg/m* and the density of sea water about
1027 kg/m?, the ice thickness is about 8x freeboard®. If additionally there
is remote-sensing data on the area of ice cover, one can calculate the total

volume and mass of sea ice.

The Arctic ice cover has diminished radically over the last decades. However,
the most radical reduction has been that of ice volume, see figure 13.10: in
addition to surface area, also thickness goes down, and especially of the
multi-year, thicker ice, a large part has already vanished.

13.6 Oceanographic research using satellite altimetry

The interest of geodesy into satellite altimetry has traditionally been into its
use for determining the geoid. Altimetric geoid determination works only is
we assume that the sea surface

1. is constant

2. coincides with a level surface, i.e., is the same as the geoid.

In practice however the ocean surface is variable in time and is also not a
level surface. Therefore, other approaches have appeared.

1. The variability of the sea surface can be studied by satellite altimetry

using three methods:

8Assuming that there is no snow on the ice. Also, ice density varies, and
differs between one-year and multi-year ice.
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PIOMAS Arctic Sea Ice Volume
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Figure 13.10. Ice volume on the Arctic Ocean. ;

(2011).

(a) Repeat tracks from the same satellite. The tracks can be stacked
and adjusted using a simple orbit error model, and the remaining
per-track residuals tell something (but, not everything!) about the
variability of the sea surface.

(b) Also the crossovers may provide information on sea-surface vari-
ability. When the sea surface varies, the results from the crossover
adjustment will get poorer: the root-mean-square a posteriori (after
calculation) crossover difference will become larger. Using this
method to actually study sea-surface variability is more difficult:
it is mostly just able to establish that it exists, and estimate its
magnitude.

(c) Nowadays altimetric satellites always carry a GNss positioning
instrument, providing the absolute, geocentric location of the mi-
crowave radar device at the moment of measurement. With it, the
variations of sea level can be monitored by direct measurement,

assuming that both temporal and spatial measurement densities

Satellite gravity missions

are sufficient.

2. The deviations of sea level from a level surface — the geoid — can

be studied only, if we have access to independent information on the
true geoid surface. If dense, high-quality gravity measurements are
available for an area, this is the case, and we may estimate the sea-surface
topography.
Collecting sufficiently precise and dense gravimetric data is possible
with a sea gravimeter or with airborne gravimetry. Also, measurement
with a special satellite (gravitational gradiometry, cock satellite) has
long been planned and was finally realized, see section 13.7.

13.7 Satellite gravity missions

During the early years of the 21% century three satellites were launched for
investigating the fine structure of the Earth’s gravity field or geopotential,
i.e., for determining a global, high resolution model of the geoid.

cuaMP (Challenging Minisatellite Payload for Geophysical Research and

Applications, 2000-099A) was a German satellite project under the
auspices of the German Research Centre for Geosciences Grz. She was
launched into orbit from Plesetsk, Russia, in 2000. The orbit height
of cHaMP was initially 454km, diminishing over the mission time
to ~ 300km due to atmospheric drag. The orbital inclination was
87°. On September 19, 2010 the satellite returned into the atmosphere.
Project description:
cHAMP contained a Grs receiver. This allowed the determination of her
location in space x (t) for any moment in time ¢. From a succession of
such locations one may calculate the geometric acceleration a (t) by
differentiation:
dZ

at) = ﬁx(t).
The differentiation is done numerically in the way that was described
in the part on airborne gravimetry, equation 11.6.
The satellite also contained an accelerometer, which eliminated the
satellite accelerations caused by the atmosphere’s aerodynamic forces,
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Figure 13.11. Determining the Earth’s gravity field from Grs orbital tracking

GRACE

of a low flying satellite.

i.e., the deviations from free-fall motion. Then, only the accelerations
caused by the Earth’s gravitational field remain, from which a precise
geopotential or geoid model may be calculated by the techniques
described earlier.

A number of global geopotential models based on cHamr data have
been calculated and published.

(Gravity Recovery And Climate Experiment Mission, 2002-012 A and
B) measured temporal changes in the Earth’s gravity field at intervals of
about a month extremely precisely, but at a rather crude geographic
resolution. These temporal changes are caused by motions in the
Earth’s “blue film”, i.e., atmosphere and hydrosphere. The quantity
measured is also called the “sea-floor pressure”, a somewhat surpris-
ing expression, until one sees that it really represents the total mass of
a column of air and water. Project description: GRACE Mission. It was
a collaborative American —German undertaking under the leadership
of the Center for Space Research, University of Texas at Austin.

GRACE was a satellite pair (“Tom and Jerry”): the satellites flew in the
same orbit in a tandem configuration at initially about 500 km height,

at an inter-satellite separation of 220 km. The orbital inclination was

Satellite gravity missions

Difference between line-of-sight accelerations

Figure 13.12. The principle of the GRACE satellites: measuring the minute

variations in time of the gravity field using sst (satellite-to-
satellite tracking). The changes are due to mass shifts in the
“blue film” — the atmosphere and hydrosphere — and expressed

as variations in “total sea-floor pressure” (|).

89°, i.e., the orbit was almost polar, providing complete global cover-
age. The changes in distance between the satellites were measured by
a microwave link at a precision of 1#m/s. Both satellites also carried
sensitive accelerometers for measuring and eliminating the effect of
atmospheric drag.

The measurement system was so sensitive, that even the movement of
a water layer of one millimetre thickness could be noticed, as long as
it extended over an area the size of a continent (some 500 km).
Published results show impressively, e.g., the wet and dry monsoons,
seasonal variations in opposite phase in the Northern and Southern
hemispheres, in the great tropical river basins: Amazonas, Congo, the
Mekong, India, Indonesia... GRACE Mission, hydrology.

The mission ended in 2017 after 15 years, three times the planned
mission duration. A GRACE follow-on mission was launched in 2018,
GRACE Follow-On Mission.
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Figure 13.13. GRACE mission results: surface mass layer, in centimetres of

water equivalent. Click for animation.

GOCE (2009-013A, Geopotential and Steady-state Ocean Circulation Explorer)

was the most ambitious of all the satellites. Built by the European
Space Agency Esa she was launched successfully from Plesetsk in
March 2009. The orbital height was only 270 — 235km during the
mission and the satellite contained an ionic rocket engine with a stock
of propellant in order to maintain the orbit against atmospheric drag.
The orbital inclination was 96°7, i.e., the orbit was Sun-stationary®.
GOCE carried a very sensitive gravitational gradiometer, a device that
measured precisely components of the gradient of the Earth’s attrac-
tion, i.e., the dependence of components of the attraction vector on
the various co-ordinates of place. The gradiometer consisted of six
extremely sensitive, three-axes accelerometers mounted pairwise on a
frame. The mission ended in 2013 and the satellite was seen to burn
up in the atmosphere November 11 over the Falkland islands (Scuka,
2013).

Theoretical analysis has shown that a gravitational gradiometer is the
best way to measure the very local features of the Earth’s gravity field,

9Because of this inclination angle, there was a cap of radius 3°3 at each pole
within which no measurements were obtained.

Satellite gravity missions

GOCE satellite

g @ Mea

Unknown
density variations

Figure 13.14. Determining the Earth’s gravity field with the gravitational

gradiometer on the GOCE satellite.

better than orbital tracking by GNss. The smallest details in the geoid
map seen by Gock are only 100 km in diameter, and their precision is
as good as £2cm.

With a global geoid model this precise, we may calculate the deviations
of the sea surface from the geoid, or equipotential or level surface,
at the same precision. We saw that the true location in space of
the sea surface is obtained from satellite radar altimetry, also at a

surement of
acceleration
differences
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few centimetres precision. This separation between sea surface and
equipotential surface can again be inverted to ocean currents, see section
12.5. This is the background for the name of the Gock satellite.

Self-test questions

o *® 3

10.

11.

12.

. What is the footprint of a radar altimeter? How does it depend on wave

height?
What is the freeboard of ocean ice? How can it be used to determine

the volume of the ice?

. What three alternative models for the satellite orbit error correction

exist?

What is, in the case of satellite altimetry, a datum defect, and how can it
be fixed?

How can Kepler’s third law be used to determine the mean height of a
satellite if its period is given?

What is the repeat period of a satellite orbit?

What is ], and how does it affect the motion of a satellite?

What is a Sun-synchronous orbit, and why is it useful?

What is a retrograde orbit?

Why are the orbits of the TOPEX/Poseidon and Jason satellites not

Sun-synchronous?
With which three satellite altimetric methods can one study sea-surface
variability?

For the study of the fine structure of the Earth’s gravity field and its

temporal variability, so far three satellite missions have been launched.

Describe them and the methods used by them.

Exercise 13 —1: Altimetry, crossover adjustment

Given are two Northgoing satellite tracks and three Southgoing ones. There

are six crossover sites, see figure 13.15.

Exercise 13—2: Satellite orbit

Figure 13.15. Example of satellite altimetric track geometry.

1. If the orbit errors of every track are described as a linear function of
place:
Ah =a+br,
how many coefficients 2 and b are then needed?

2. Write out the observation equations. The observations are the crossover
differences, the unknowns are the coefficients a and b for the different
tracks.

3. Can these observation equations give a unique solution? Why / why

not?

Exercise 13 —2: Satellite orbit

A satellite moves in a Sun-synchronous orbit, where after 419 orbits and 30
days, she again moves over exactly the same spot.

1. How much is the period of the satellite?
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2. How lorTg is the distance (West to East), in kilometres, between the Tldes’ atmosphere and
Northgoing tracks at the equator?
3. What is the highest Northern latitude that the satellite can fly over? Earth CrUStal movements
And...

4. ...in what compass direction does the satellite fly at that point?

Exercise 13—3: Kepler’s third law

What is the satellite height if the period is 98 minutes? Use Kepler’s third law
GMP? = 4rc%a3,
14.1 Theoretical tide
GM = 3986005 - 108 m*/s2, and the height of a satellite is hs = a5 — ag, where
ag = 6378137 m. The tidal potential W can be written as follows:

2 2
W MR gy o= GV

pE (3c052§—1)+...,

in which d is the distance to either the Moon or the Sun, R the radius of
the Earth, and  the local zenith angle of the Sun or Moon. P;(cos () is the
Legendre polynomial of degree two. GM is the mass of the Sun or Moon
multiplied by Newton’s gravitational constant. In the case of Sun and Moon,

the extra terms (...) can be neglected, because these are such remote bodies:
d> R.

The cosine rule on the sphere tells us that
cos{ = sin¢gsind + cos ¢ cosdcosh,

where ¢ is the latitude, J is the declination’ of the Moon, and # is the hour

angle® of the Moon.

'The declination of a celestial body is its geocentric latitude.

*The hour angle is the difference in longitude between the Moon and the
local meridian. It vanishes when the Moon is in upper culmination, due South

when seen from Northern non-tropical latitudes.

- 351 -
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Low tide

Figure 14.1. Theoretical tide. { is the local zenith angle of the Moon (or Sun).
According to the spherical-harmonic addition theorem (Wolfram Mathworld,
Spherical Harmonic Addition Theorem) we have now

P,(cos{) = Py(sin¢) P,(siné) +

n !
+2) Wm;ian(sin ¢) Pun(sind) cosmh,

or forn =2,
Py(cos{) = Py(sin¢) Pa(siné) +
+ %Pﬂ(sinql) Pyy(sind) cosh+
+ %Pzz(sin ¢) Pap(sin ) cos2h.
In this, according to table 3.2,

Py (sing) = 3sin¢cos ¢,
Py (sing) = 3cos® ¢,

Theoretical tide

and we obtain
Py(cosq) = % (3cos®{ — 1) = Py(sin¢) Py(sin ) +
+ 3sin ¢ cos ¢ sin 4 cos d cos h+
+ Z cos?® ¢ cos* § cos 2h =
= % (3sin” ¢ — 1) % (3sin?5 — 1) +
+ %sin2¢ sin 24 cos h+

+ 2 cos? ¢ cos® § cos 2h.

From this

(3sin*¢ —1) (3sin®6 — 1) +
+3sin2¢sin2dcosh +
+ 3 cos? ¢ cos® 5 cos 2h

GMR?
W= 443

This is the so-called Laplace tidal decomposition equation.
It has three parts:

1. A slowly varying part,

2
W = Gﬁf ((3sin?¢ — 1) (3sin’6 — 1)),

that still depends on ¢ and is therefore periodic with a 14-day (half-

month) period. Again by using spherical trigonometry:
. . . .2 ) .2 1 1
sind = sinesin/ = sin“d = sin“esin“/ = sin“ ¢ 5~ ECOSZE ,
(14.1)

where / is the longitude of the Moon in its orbit, reckoned from the
ascending node (equator crossing), and € is the inclination of the
Moon’s orbit with respect to the equator, on average 23° but rather
variable, between 18°.3 and 28°.6 . Thus we obtain

~ GMR? 5 .. (1 1
Wy = ¥ [(3sm ¢—1) (3sm e(i—icos%) —1)],
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where we have used result 14.1. We split W; = Wy, + Wy, into two
parts, a constant® and a periodic or semi-monthly (“fortnightly”) part:

GMR? o 3.2
Wi, = 5 |:(3Sll’1 ¢—1) (E sin” € — 1)] , (14.2)
GMR? o 3.,
Wiy = — P {(35111 p—1) (E sin® e COSZE):| .

2. Additionally we have a couple of terms in which the hour angle &
appears (periods roughly a day and roughly half a day):

GMR* _ .
W, = e (3sin2¢sin2d cosh),
R2
W3 = % (3 cos? ¢ cos® 5 cos 21) .

In both, we have in addition to #, still § as a “slow” variable. These
equations could be written out as sums of various functions of the
longitude of the Moon /.

Use again basic trigonometry, equation 14.1:

cos’5 =1—sin?6 =1 —sin’e sin* ¢ = 1 — sin® (% —%cos%) ,

cos 20 cos2h = = (cos(2¢ + 2h) + cos(2¢ —2h) ),

N =

§in26 = 2sincosd = 2sin 6vcos? § =

1 1
= 25inesin€\/1 —sine (E — Ecos%),

leading to a trigonometric expansion in ¢, and so on. See, e.g., Mel-

chior’s* famous book ( ).

3Not precisely, because € is (slowly) time dependent.

4Paul Melchior (1925-2004) was an eminent Belgian geophysicist and Earth
tides researcher.

Deformation caused by the tidal force

Table 14.1. The various periods in the theoretical tide. The widely used
symbols were standardized by George Darwin.

Changing Period Darwin symbol

Name

function Moon Sun Moon  Sun

Wia - - - My So Permanent tide
Wiy cos2/ 144 1824 M Ssa’  Declination tide
W, cosh 24h50m  24h K1 O S, Py Diurnal

W3  cos2h 12hp5m  12h M, S, Semi-diurnal

“Lunar fortnightly

bSolar semi-annual

From the above equations, often the coefficient

st SGMR?
= —ap (14-3)

“Doodson’’s constant” is taken separately. The value for the Moon equals
D = 26.75cm x g and for the Sun 12.3 cm x g. See figure 14.2.

The periods are tabulated in table 14.1 with their Darwin® symbols.

In practice, the diurnal and semi-diurnal tides can be divided further into
many “spectral lines” close to each other, also because the lunar orbit (like

the Earth’s orbit) is an ellipse, not a circle.

14.2 Deformation caused by the tidal force

The tidal force, or theoretical tide, of which we spoke above, is not the same
as the deformation it causes in the solid Earth. This deformation will depend

5 Arthur Thomas Doodson (1890 —1968) was a British oceanographer, a pioneer
of tidal theory, also involved in designing machines for computing the tides.
He was stone deaf.

6Sir George Howard Darwin (1845—1912) was an English astronomer and
mathematician, son of Charles Darwin of Origin of Species fame.
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Wia, permanent Wiy, fortnightly, e = 23° in which the index 1 denotes the degree number of spherical harmonics.
0.15
80 ” Call the displacement of an element of matter of the solid Earth in the radial
Zg 0.1 direction, u,, in the North direction, uy, and in the East direction, u,. The
N 20 0.05 following equations apply:
%]
ks
o & 0 = W
20 s
3 0 005 =
1 oW,
—60 \ oy ulp:fZLn()
—80 ' -
Obliquity €,0° — 90° Ecliptic longitude, 0° — 360° iy = Ly L W

g5 ! cospor’

Wz, diurnal, § = 23° W3, semi diurnal 6= 230 Here r is the distance from the geocentre. It is assumed here that the Love

80 80 0.6 numbers H,, L, depend only on 7, i.e., the elastic properties of the Earth are
60 04 60 0.4 spherically symmetric.
~ 40 0.2 40 02 . c . .
- 20 20 : The deformation of the Earth causes also a change (the “indirect effect”, in
’qg: 0 0 0 0 addition to the Moon’s original potential W) in the gravity potential. We
’:é -20 -02 _»ppo —0.2 write
——40 _04 —40 —04 SW = Z Ko (r) Wy,
—60 —60 —06 n=2
—80 ‘ —06 —80 08 where we use already a third type of Love numbers.
0 5 10 20 10 15 2 h " . B ke the follow < lization:
Hour angle Hour angle On the Earth’s surface r = R we make the following specialization:
def
Figure 14.2. The main components of the theoretical tide. These values must hn = Hy (R)'
still be multiplied by Doodson’s constant D. LEL, (R),
kn = Ky (R).
upon the elastic properties inside the Earth. These elastic properties are often ) ) )
described by so-called (elastic) Love” numbers (Melchior, 1978). In practice, because of the large distances to Sun and Moon, the only impor-
tant part of the tidal potential W is the part for the degree number n = 2, ie,,

Let us first write the external (tidal, or generally, disturbing) potential in the W,
following way: .
The Love numbers will depend still on the frequency, i.e., the tidal period P:

weE ()

h(P),
0 (P),
Kk (P).

h
7Augustus Edward Hough Love (1863 —1940) was a British mathematician b
and student of Earth elasticity. k
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The tides offer an excellent means of determining all these Love numbers
hy(P), £ (P) and k; (P) empirically, because, being periodic variations, they
cause in the Earth deformations at the same periods, but different amplitudes
and phase angles. In this way we may determine at least those Love numbers
that correspond to periods occurring in the theoretical tide.

The h and ¢ numbers are nowadays obtained, e.g., by GNss positioning. The
GNSs processing software contains a built-in reduction for this phenomenon.
From gravity measurements one obtains information on a certain linear com-
bination of & and k (vertical displacement changes gravity though its gradient,
and deformation of the Earth, the shifting of masses, also changes gravity).
A useful research instrument is also the long water-tube clinometer, like the
tube of the Finnish Geodetic Institute that has long been in use in the Tytyri
limestone mine in Lohja ( , ). A modern,
improved version of this instrument is presented in ( )
The same applies for sensitive clinometers in general, like the Verbaandert—
Melchior pendulum etc. A clinometer measures the change in orientation

between the Earth’s crust and the local plumb line.

Measuring the absolute direction of the plumb line, e.g., with a zenith tube,
can again give information on a certain linear combination of ¢ and k, but

only after various reductions (Earth polar motion).

14.3 The permanent part of the tide

As shown above, the theoretical tide equation contains a constant part that
doesn’t even vary in a long-period way. Of course the Earth responds also to
this part of the tidal force. However, because the deformation isn’t periodic,
it is not possible to measure it. And the mechanical theory of the solid Earth,
and our knowledge of the state of matter inside of the Earth, just aren’t good
enough for prediction of the response.

For this reason the understanding is generally accepted that the effect of the
permanent part of the tide on the Earth’s state of deformation should not be
included in any tidal reduction ( , ). However, often, e.g., in the

processing of GNss observations or in defining spherical-harmonic expansions

Tidal corrections between height systems

of the Earth’s gravity field, the tidal reduction does include this term which it
is theoretically and practically impossible to know. See (1996).

More generally we can say, that a geodetic quantity, e.g., the height of the
geoid, can be reduced for the permanent part of the tide in three different ways:

o No reduction whatever is made for the permanent part; the quantity
thus obtained is called the “mean geoid”. The surface obtained is in
the hydrodynamic sense an equilibrium surface, and is therefore the
best surface to use in oceanography.

o The effect of the gravitational field emanating from celestial objects is
removed in its entirety from the quantity, but the Earth’s deformation
it causes is left completely uncorrected; the quantity thus obtained is
called the “zero geoid”.

o Both the gravitational effect of a celestial body, and the indirect effect of
the deformation it causes, can be calculated according to a certain de-
formation model (Love number), and corrected for. The result obtained
is called the “tide-free geoid”. Its problem is precisely the empirical
indeterminacy of the elasticity model used.

See figure 14.3. It is good to be critical and precisely analyze in which way
the data reduction has been done!

14.4 Tidal corrections between height systems

We see from equation 14.2 that, with € = 23°.5, the permanent part of the
tidal potential is equal to

2
:% ((3sin2q>—1) (%sin26—1)> ~

2
~ — 0.7615°C MR (sin2 ¢— %) :

Wperm

443

With the combined Doodson’s constant 14.3 for Sun and Moon equal to

3GMsunR? | 3GMpioonR?
D= Sun Moon= = (12.3cm +26.75cm) x g = 39.05cm x g
4d5un 4dMoon
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Earth

Direct effect on geoid of Moon and Sun

Effect of Earth permanent tidal
deformation (mass displacement) on
geoid

Tides, atmosphere and Earth crustal movements

Tide-free Earth crust

permanent tidal deformation
Mean Earth crust

fffffffffff Tide-free geoid

— — —  Zero geoid
Mean geoid

Reference ellipsoid

Figure 14.3. Conceptual diagram showing the constituents of the permanent
tide.

we obtain 1
Wperm = 29.74 cm X (5 — sin? 47) X g.

We can express this, with the Bruns equation 5.2, into a permanent tidal geoid
effect: 1
Nperm = 29.74 cm X <§ — sin? (p) .

From this, Nperm(0°) = 9.91 cm on the equator, and Nperm(90°) = —29.74cm
on the poles.

This, the geoid effect of the permanent part of the external potential of Sun
and Moon, is also equal to the difference between the mean geoid and the
zero geoid as defined above:

def

1
ATCNN = Npean — Nyero = 29.74 cm % (5 — sin? <p> .

zero

For heights H above sea level, with H = h — N, we have

mean gy def
A H= Hmean -

zero

1
Hyero = —29.74 cm X (§ — sin? 47) ,

Loading of the Earth’s crust by sea and atmosphere

and for two different latitudes ¢; and ¢ we have for the effect on the height
difference

ARSI H (¢n) — AT H(¢y) = 29.74cm x (sin® ¢ — sin® ) .

This is the value to be added when going from a zero-geoid to a mean-geoid
height system, and subtracted when going from a mean-geoid to a zero-geoid
height system.

When the tide-free geoid enters into the picture, we need a value for the Love
number kj for the permanent tidal deformation, describing the potential of
this deformation as a fraction of the original external tidal potential. As we
have seen, this number cannot really be empirically determined; a value often
used is ko ~ 0.3. With this, the above equations apply with the coefficient
29.68 cm multiplied by 1 + ko, yielding

o 1 .
AT an — Hidofree = —38.66cm X (5 — sin? 4)) ,

tidefree

Al H(¢2) — AfiefecH(¢1) = 38.66cm x (sin® ¢ —sin’ ) .

Any other correction equation can be obtained from these. Like

zero H(<P2) __ AZzero

tidefree tidefree

H(¢1) =892cm x (sin® ¢ — sin® ¢y ) .

14.5 Loading of the Earth’s crust by sea and

atmosphere

In addition to the deformation caused by the tidal force, the Earth’s crust
also deforms due to the loading by sea and atmosphere. Especially close to
the coast, the tidal motion of the sea causes a multi-period deformation that
moves the Earth’s crust up and down by as much as centimetres.

This phenomenon can be computationally modelled if the elastic properties
of the solid Earth, the tidal motion of the sea, and the precise shape of the
coastline are known. One known programme for this purpose is the package
Eterna written by the German H.-G. Wenzel®, which has been used also in
Finland.

8Hans-Georg Wenzel (1945-1999) was a German physical geodesist and
geophysicist.
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On the other hand, when such a tool exists, then tidal loading offers also an
excellent opportunity for studying precisely the very local elastic properties
of the Earth’s crust.

For measuring the deformation, generally a registering gravimeter is used.
The Earth’s crust moves up and down, which changes gravity in proportion

to the free-air gradient value —0.3 mGal/m ( , ).

The use of GNss for measuring the ocean tidal loading has not yet become

common.

Like the ocean, also the atmosphere causes, through changes in air pressure,
varying deformations of the Earth’s crust. The phenomenon is very small, at
most a couple of cm. Gravity measurement is not a very good way to study
this phenomenon, because many more local, often poorly known, factors

affect local gravity. Measurement by GNss is promising but also challenging.

Self-test questions

1. Describe in words the three components of the theoretical tide produced
by the Laplace decomposition method.

2. How may the slowly varying part of the theoretical tide be further
decomposed into two parts? Describe the parts in words.

3. What are the declination and hour angle of a celestial body, e.g., the
Moon?

4. What is Doodson’s constant?
5. What do Love numbers describe?

6. Why is it not possible to empirically determine the deformation caused
by the permanent part of the tide?

7. Describe three different ways to take the permanent part of the tide
into account when defining the geoid.

Exercise 14—1: Tide

The formula for the permanent tide is

Exercise 14—1: Tide

GMR? 5 3 .,
Wl":74d3 ((3sm p—1) (Esm e—l)),

where ¢ is latitude and e is the obliquity of the Earth’s axis of rotation,

currently about 23°.

1. For what value ¢ the permanent tide vanishes? Interpretation?

2. For what value € the permanent tide vanishes? Interpretation?
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15.1 Internationally

In the framework of the 1AG, the International Association of Geodesy, re-
search into the Earth’s gravity field is currently the responsibility of the
International Gravity Field Service. The 1GFs was created in 2003 at the
TUGG General Assembly in Sapporo, Japan, and it operates under the 1AG’s
new Commission 2 “Gravity Field”. The United States National Geospatial-
Intelligence Agency (NGA) serves as its technical centre.

An important 1AG service of great reputation is the International Gravity
Bureau, BG1, Bureau Gravimétrique International, located in Toulouse, France
(http:/ /bgi.omp.obs-mip.fr/). The bureau works as an international broker
to which countries can submit their gravimetric materials. If some researcher
needs gravimetric material from another country, e.g., for geoid computation,
he can request it from the Bc1, who will provide it with the permission of
the country of origin, provided the country of the researcher has in its turn

submitted its own gravimetric materials for BcI use.
The French state has invested significant funds into this vital international
activity.

Another important 1AG service in this field is the 156, the International Service
for the Geoid. It has in fact already operated since 1992 under the name
International Geoid Service (IGEs), the executive arm of the International
Geoid Commission (1GEc). The 15G office is located in Milano (http://www.

_365_
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isgeoid.polimi.it/) also with substantial support by the Italian state. The task
of this service is to support geoid determination in different countries, for
which purpose existing geoid solutions are collected in a common data base,
and international research schools are organized to develop knowledgability
and skills in the art of geoid computation, especially in developing countries.

Both services, Bcr and 156, are under the auspices of the International Gravity
Field Service 1Grs, as two of the many official services of the 1aG. Other
IGFs services are the International Center for Earth Tides (1CET), the Interna-
tional Center for Global Earth Models (1cGEm), and the International Digital
Elevation Model Service (IDEMS).

15.2 Europe

In Europe operates the EGu, the European Geosciences Union, in the frame
of which much publication and meeting activities relating to gravity field
and geoid are being co-ordinated. The EGU organizes annually symposia,
where always also sessions are included on subjects related to gravity field
and geoid. Also American scientists participate. Conversely the American
Geophysical Union’s (acu) fall and spring meetings" are also favoured by
European researchers.

To be mentioned is the Geodetic Institute (“Institut fiir Erdmessung”) of
Leibniz University in Hannover, Germany, which since 1990 has acted as the
European computing centre of the International Geoid Commission (IGEC,

and produced high quality geoid models for use in Europe ( , ;

)-

15.3 The Nordic countries

In the Nordic countries, important work is being co-ordinated by the Nkg,
Nordiska Kommissionen for Geodesiand its Working Group for Geoid and Height

'Fall (autumn) meetings in San Francisco, spring meetings somewhere in the

world. The acu, though American, is a very cosmopolitan player.

Finland

Systems. To its activities belongs geoid determination, studying the precon-
ditions for still more precise geoid models, new levelling technologies, and
the study of post-glacial land uplift.

The group has for a long time computed, at its computing centre in Copen-
hagen, high-quality geoid models, the next to last such being NkG2004 (
, ; , ). The newest model,

NKG2015, is the result of calculations by the computing centres of several

countries including Sweden and Estonia. It was published in October 2016.

15.4 Finland

In Finland the study of the Earth’s gravity field has mainly been in the hands
of the Finnish Geodetic Institute, founded in 1918, one year after Finnish in-
dependence. The institute has been responsible for the national fundamental
levelling and gravimetric networks and their international connections. In
2001 the Finnish Geodetic Institute’s gravity and geodesy departments were
joined into a new department of geodesy and geodynamics, to which also
gravity research belongs. Among matters studied are, e.g., solid-Earth tides,
the free oscillations of the solid Earth, post-glacial land uplift, and vertical
reference or height systems.

Geoid models have been computed all the time, starting with Hirvonen’s
global model ( , ) and ending, for now, with the Finnish model
FIN2005N00 ( , ). These geoid models are actually based on
the Nordic NKG2004 gravimetric geoid, and are only fitted to a Finnish set of

GNss levelling control points through a transformation surface.

In 2015, the Finnish Geodetic Institute was merged into the National Land
Survey as its geospatial data centre and research facility. The English-lan-
guage acronym continues as ¥cI, the Finnish Geospatial Research Institute
(http:/ /www.fgi.fi/fgi).

Also Helsinki University of Technology (today part of Aalto University) has
been active in research on the Earth’s gravity field. V. A. Heiskanen, who
was a professor at HUT in 1928 —1949, acted 1936—-1949 as the director of

the International Isostatic Institute. After moving to Ohio State University
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he worked with many other, including Finnish and Finnish-born, geodesists

on calculating the first major global geoid model, the “Columbus geoid”

( , 2008).

15.5 Textbooks

There are many good textbooks on the study of the Earth’s gravity field. In

addition to the already mentioned classic ( ), which
is in large part obsolete, we may mention Wolfgang Torge’s book ( )-
Difficult but good is ( ). Similarly difficult is

(1962). Worth reading also from the perspective of physical geodesy is
( )- A new book in this field is

Field theory and vector calculus
— core knowledge

A.1 Vector calculus

In physics, we decribe many quantities as vector quantities. For example, force,
velocity, electrostatic field, and many more. A vector behaves in the same way
as the location difference between two neighbouring points. Velocity v, force
F, location difference Ar = r, — r1, where r; and r;, are the location vectors
of points 1 and 2. In a co-ordinate transformation, the vector considered as
an object does not change, but the numerical values of its components are
co-ordinate system dependent and will change, see subsection A.2.2.

About notation: in printed text, vectors are most often written in bold. In
handwritten text one may use an arrow above the symbol: 7.

A.1.1  Scalar product

Between two vectors, a scalar product or dot product can be defined, which
is itself a scalar value. A scalar is in physics a single numeric value, e.g.,
pressure or temperature. In the case of a scalar product of two vector fields, the
value is tied to a location, but, even if a co-ordinate transformation changes

the co-ordinate values of the location, the scalar itself remains unchanged.

An example of a scalar product: work AE is

AE = (F-Ar),

_369_



Page 371

370

Field theory and vector calculus — core knowledge

the scalar product of force F and path Ar. Often, also in the sequel, we leave

the angle brackets (-) off.

Later we shall see that if the points 1 and 2, Ar = r, — 11, are very close to

each other, we may write
dE = (F - dr),

in which dr and dE are infinitesimal elements of path and energy. If now
there is between the points A and B a curved path, we may get from this an

integral equation:
B
AEAB:/ <Fd1‘>
A

This is the work integral.

A.1.2 The scalar product, formally

Let
s (a-b)

be the scalar product of the vectors a and b. Then
(ha-b) = (a-ub) =p(a-b),
(a-b)=(b-a),
and often we call
lall = v/{a-a)
the norm or length of vector a.

The following also applies:

(a-b) = | [|b] cosa,

where « is the angle between the directions of the vectors a and b.

A.1.3 Exterior or vectorial product

The exterior product, or cross product, of two vectors is itself a vector called

the vectorial product (at least in three-dimensional Euclidean space R3). For

example, the angular momentum q:

q=(rxp),

Vector calculus

Figure A.1. Exterior or vectorial product.

where p = mv is linear momentum, r the location vector of the body relative

. dr . . I
to some origin, m the mass of the body, and v = T the time derivative of

the location, or velocity. We write

=m rxﬂ
1= dt/’

A.1.4 The vectorial product, formally
Let
c® (axb)
be the vectorial product of the two vectors a and b. Then (4 € R):
(naxb) = (ax ub) = p(axb),
(axb)=—(bxa),
and thus (a x a) =0.
The resulting vector c is always orthogonal to the vectors a and b; the length

of vector ¢ corresponds to the surface area of the parallellogram spanned by suunnikas
the vectors a and b. In a formula:

llell = llall [[b]| sin«,

where again « is the angle between the directions of vectors a and b. If the
angle is zero, then also the vectorial product is zero (because then, a = ub
for some suitable value of p).
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A.1.5 Kepler's second law

If r is the location vector of the body (planet) relative to the centre of motion

d
(the Sun), and d—; is the velocity vector, then the product

(ex ) a

is precisely twice the surface area of the triangle or “area” swept over.

Let us take the time derivative of this product, i.e., the expression A.1:

E rxﬂ = ﬂxﬂ + r><é
dt dt/ — \dt = dt a2 /°

Here, the first term vanishes, because (a x a) = 0. In the second term, we
can exploit our knowledge that the attractive force F emanating from the Sun

that causes planetary orbital motion — and also the acceleration it causes,

P dir is central:
T ar '
GMm
a=— 3T
[[x

Substitute into the above:

d< dr>:0_Gﬂ<rxr>:o.

dt dt (x|
. dr ) q )
So: the quantity ( r X ) angular momentum per unit of mass . — is

conserved. Like, e.g., the total amount of energy, electric charge and many
other quantitites, the amount of angular momentum in a closed system is

constant.

G is the universal gravitational constant, M is the mass of the Sun, m the

mass of the planet.

A.2 Scalar and vector fields

A.2.1 Definitions

In the space R3 we may define functions, or fields.

Scalar and vector fields

Angular momentum

A<r><v>

Planet

Sun

Velocity
vector

Radius vector

Figure A.2. Kepler’s second law. In the same amount of time, the radius
vector of a planet will “sweep over” a same-sized area — conser-

vation of angular momentum.

A scalar field is a scalar-valued function, which is defined throughout the

space (or a part of it), e.g., temperature T:
T(r).
Le., for every value of the location vector r there is a temperature value T.

A vector field is a vector-valued function that again is defined throughout

space, e.g., the electrostatic field E:

E(r).

A.2.2 A basis in space

In the space R® we may choose a basis made up of three vectors which span
the space in question. Generally we choose three basis vectors i, j, k, that
are orthogonal to each other, and the norms, or lengths, of which are 1, a
so-called orthonormal basis:

iljillkjLk i =jll = k] =1
Now we may write vectors out into their components:

a:a1i+a2j+a3k
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and also scalar and vectorial products can now be calculated with the aid of
their components:

3
s={(a-b)= < (a1 4 azj + ask) - (b1i+boj + b3k)> = a1by + axby + azbs = Zaibi,
i=1

using the above identities for the basis vectors.

For the vectorial product, the calculation is more involved; we get as the final

outcome the determinant

c=(axb)=
i j ok
=\ a ay az | =
by by b3

= (ﬂ2b3 — a3b2) i+ (a3b1 — u1b3)j + (ﬂlbz - azbl) k.
Le.,

c1 = azbz — azbs,
c2 = asby — a1bs,

C3 = 1111]2 — Ilzbl.

Also these expressions are determinants:

1
Co = |:

c3

a; as
by b3

[
bz b

a; a
by b

|

The location vector r can be written on the {i, j, k} basis as follows:

A.2.3 The nabla operator

r=xi+yj+zk,
which defines (x,y,z) co-ordinates in space.

Let us now define a vector operator called nabla (V) as follows:

@i, 0 .0 d

Scalar and vector fields

The operator, or function, is on its own without meaning. It acquires meaning
only when it operates on something, in which case the three partial derivatives
on the right-hand side can be calculated.

A.2.4 The gradient

Let F(r) = F(x,y,z) be a scalar field in space. The nabla operator will give
its gradient g, a vector field in the same space:

_.OF _OF oF
g=gradF = VF = 1£+]@+k$'
So, the field g(r) = g(x,y,z) is a vector field in the same space, the gradient
field of F.

Interpretation: the gradient describes the slope of the scalar field. The di-
rection of the vector is the direction in which the value of the scalar
field changes fastest, and its length describes the rate of change with
location. Imaging a hilly landscape: the height if the ground above
sea level is the scalar field, and its gradient is pointing everywhere
uphill, away from the valleys toward the hilltops. The g arrows are the
longer, the steeper is the slope of the ground surface.

The gradient operator (like also the divergence and the curl, see later)
is linear:
grad (F+ G) = grad F + grad G.

A.2.5 The divergence

Given a vector field a(x,y,z). We form the scalar product s of this and the

nabla operator:

T _ _ a(ll allz 8a3
sfdlva7<V~a>f§ ETR S
Interpretation: The divergence describes the “sources” of a vector field, both

the positive and the negative ones. Imagine the velocity of flow of

water as a vector field. At the locations of the “sources” the divergence
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A.2.6 The curl

Given a vector field a(x,y,z). We form the vectorial product ¢ of this and the

nabla operator, producing again a vector field:

i j k
_ _ _ e 8 a9 |_
c=rota=Vxa=| 5 oz | T
ay az 4as
9 9 9 9 9 9
— | ox oy i—| ox oz ] + dy oz k=
a a ap as ap az

(o | (n aw. (o
_<8y Bz)l+<8z Bx)]+(8x ay)k'

using the evaluation rules for determinants.

Figure A.3. The gradient. The level curves of the scalar field in blue.
Interpretation: the curl describes the eddiness or turbulence present in a vector

is positive, at the locations of the “sewer holes” or sinks, negative, field.

everywhere else zero (because liquid cannot appear out of nothing or
disappear into nothing). Imagine a weather map, where low- and high-pressure zones are drawn.
Our vector field is the wind field. The wind circulates (on the Northern
hemisphere) clockwise around the high-pressure zones, and counterclockwise
/ = T around the low-pressure zones. We may say that the curl of the wind field is

positive at the high pressures and negative at the low pressures.

/ \ / (This is a poor metaphor as it is two-dimensional. In R?, the curl is a scalar,
\ @

not a vector. Just like we need only one angle to describe a rotational motion,

\ / -~ D when in R we need the three Euler angles.)
:>\@ //,;/ | f
No—

Figure A.4. The divergence. Positive divergences (“sources”) and negative

ones (“sinks”).
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J then also
\ \] S~ a(x,y,z) =grad (F(x,y,z) + F),
h Fi tant, b
where F is a constant, because
2N
— .0F .dFR oF
\ O =

/ gradFozlg—F]@—l—kg 0.

So the potential is not uniquely defined.

—_
- \ A.2.8 The Laplace operator

Assume a conservative field a, i.e., rot a = 0. Then we may write

Figure A.5. The curl. Positive (clockwise) and negative (counterclockwise)

eddies a=grad F = VF,

where F is the potential.

A.2.7 Conservative fields , ) ) )
Let us now express the divergence of field a into the potential:

What happens if a vector field a is the gradient of a scalar field F, and we try 3 9 3 9 39 P 2 »
G i

i ? . iva = = == Z =
to calculate its curl? As follows: diva=Va=VVF e BxF + 3y 3y 3292

rota = rotgrad F = where we have introduced a new differential operator: the Delta operator

i j k invented by the French Pierre-Simon de Laplace,
= % % E;lz = w2 2 2

d 9 09 ). d d d 9 d 9 Jd 9
= (@& ~ dzay ) 1+ <£$ T oxoz ) )+ (ﬂ@ ~ dyox ) = For the potential of a “source free” field — e.g., for the gravitational potential
— 0! in vacuum, the electrostatic potential in an area of space free of electric

charges — this Delta, or Laplace, operator vanishes.
In other words, if the vector field a(x,y,z) is the gradient of the scalar field

F(x,y,z), its curl will vanish.
A.3 Integrals

Definition: this kind of vector field a is called conservative, and the corre-
sponding scalar field F, a = gradF, is called the potential of field A.3.1  The curve integral
a.

We saw earlier, that work AE can be written as the scalar product of force F
Note that if and path Ar:

a(x,y,z) =grad F(x,y,z), AE = (F - Ar).
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Tangent vector t

o

Q rota
Closed Q

path S Q Q

Integral

$ (a-tyds

Figure A.6. The Stokes curl theorem.

The differential form of this is
dE = (F - dr),

from which one obtains the integral form, the work integral
B
AEAB:/ (Fdr)
Ja
Here is computed the amount of work needed to move a body from point A
to point B by integrating (F - dr) along the path AB.

If we parametrize the path according to arc length s, and the tangent vector

to the path is called

_dx, dy, dz
t—%l El+%k’

we may also write
B
AEp = / (F-t) ds,
A
the parametrized version of the integral.
A.3.2 The surface integral

Assume given again some vector field a and a surface in space S. Often, one
needs to integrate over the surface S the normal component of a vector field,
the projection of a onto the normal vector of the surface.

Integrals

Let the normal vector of the surface be n. Then we must integrate

ﬂ(am)ds,
[ a-as),

where the notation dS is called an oriented surface element. It is a vector

symbolically written

pointing in the same direction as the normal vector n.

Like a curve, also a surface can be parametrized. For example, the Earth’s
surface (assumed a sphere) can be parametrized by latitude ¢ and longitude
Arr=r(¢p,A). In this case we write as the surface element

dS = R%cos pdgpdA,

in which R? cos ¢ is Jacobi’s determinant, of the parameter pair (¢, A). In this
parametrization, the integral is calculated as follows:

//5<a'ds>://s<a'n>R2COS4>dqbdA,

Other surfaces and parametrizations have other Jacobi’s determinants. The
determinant always describes the true area of a “parameter surface element”
d¢ dA “in nature”. For example on the Earth’s surface, a degree times degree
patch is the largest near the equator. In polar co-ordinates (p, #) in the plane
(x = pcos b,y = psinb) the determinant of Jacobi is p. In the ordinary (x,y)

parametrization in the plane, it is 1 and thus can be left out altogether.

A.3.3 The Stokes curl theorem

Let S be a surface in space (not necessarily flat) and 0S its edge curve. Assume
that the surface and its edge are well-behaved enough for all necessary
integations and differentiations to be possible. Then (Stokes):

/]S(rota~ das) = ygs (a- dr).

In words: The surface integral of the curl of a vector field over a surface is
the same as the closed path integral of the field around the edge of
the surface.
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Special case: If rot a = 0 everywhere (a conservative vector field) then

és (a-dr) =0,

B B
/ (a-dr):/ (a- dr).
A, pathl A, path2

In other words, the work integral from point A to point B does not depend

i.e., also

on the path chosen. And the work done by a body transported around a
closed path is zero.

This explains perhaps better the essence of a conservative force field.

A conservative field can be represented as the gradient of a potential:
a = grad F, where F is the potential of the field. The Earth’s gravity
vector field g(x,y,z) is the gradient of the Earth’s gravity potential
W(x,y,z). At mean sea level — more precisely, at the geoid — the
gravity potential is constant; the gravity vector g stands everywhere
orthogonally on the geoid.

A.3.4 The Gauss integral theorem

Let V be a certain volume of space, and 9V its closed boundary, a union of
surfaces. Assume again that both are mathematically well behaved. Then the

following theorem applies (Gauss):

//X/divadV://aV(a‘d5>://av<a.n>d5.

In words: what is created inside a body (i.e., “sources”, divergence) must
come out through its surfaces.

Remark: generally the orientation of surface dV is taken as positive on the
outside, i.e., the normal vector n of the surface points outward.

A.4 The continuity of matter

An often used equation in, e.g., hydro- or aerodynamics is the continuity
equation. This describes that matter cannot just disappear or increase in

The continuity of matter

Figure A.7. The Gauss integral theorem. n is the normal vector to the exte-
rior surface. Note that the Gauss intregral theorem can also be
formulated with the aid of (Michael Faraday’s) field lines: a field
line starts or terminates on an electric charge (i.e., a place where
diva # 0) or runs to infinity (i.e., through the surface oV).

amount. In the general case, this equation looks like this:
div(pv) + ip =0.
dt
Here, the expression pv describes mass currents; p is the matter density, v
is the current flow velocity. The term div(pv) describes how much more
matter, in a unit of time, exits the volume element than enters it, per unit of
volume. The second term again, %p, describes the change in the amount of

matter inside the volume element over time. The two terms must balance for

the “matter accounting” to close.

If the moving fluid is incompressible, then p is constant and

d

FTid 0 and div(pv) =pdivy,
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and we obtain
pdivv=0=divv =0.

Remember, however, that not necessarily rotv = 0 — ie., the flow isn’t
necessarily eddy free — i.e., a potential F for which v = grad F does not

necessarily exist.

Function spaces

B.1 An abstract vector space

In an abstract vector space we may create a basis, with the help of which each
vector can be written as a linear combination of the basis vectors: e.g., if the
basis, in a three-dimensional space, is {e1, e, €3}, we may write an arbitrary
vector r in the form

3
r=r1e; +1mex +rze3 = Er,'e,-.
i=1
Precisely because three basis vectors are always enough, we call the ordinary

(Euclidean) space [E three-dimensional, also R5.

In a vector space one can define a scalar product, which is a linear mapping

from two vectors to one number (“bilinear form”):

(r-s).
Linearity means that
(ary 4+ Bro-s) =a(r;-s)+ B (r-s),
and commutativity, that
(r-s)=(s-1)
If the basis vectors are orthogonal to each other, in other words, <ei . ej> =0

if i # j, we may calculate the coefficients r; simply as

{r -.e"? e; (B.1)
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If, additionally, also (e; - e;) = lleil|*> = 1 Vi € {1,2,3}, i.e., the basis vectors
are orthonormal, equation B.1 becomes simpler still:

r=

Mw

(r-eje = iriei- (B.2)
i

Il
-

Here, the coefficients are, according to definition, ; = (r - e;). The quantity

lleill = v/(ei-e:)

is called the norm of the vector e;.

B.2 Fourier function space

B.2.1 Description

Also functions can be considered elements in a vector space. If we define the
scalar product of two functions f, g as the following integral:

27T
(F7)= 5 [ s i (B:3)

U
it is easily verified that the above requirements for a scalar product are met.

One basis in this vector space (a function space) is formed by the so-called
Fourier basis functions,

1
€_0> = E\/E (k=0)
o =coskx, k=1,2,3,.. (B.4)
e =sinkx, k=1,2,3,..
This basis is orthonormal (proof: exercise). It is also a complete basis, which we
shall not prove. As the number of basis vectors is countably infinite, we say

that this function space is infinitely dimensional.
Now every function f(x) meeting certain conditions can be expanded in the

way of equation (B.2), i.e,,

flx) = %ﬂo\ﬁ+ Z (ay cos kx + by sinkx)
k=1

Fourier function space

— the familiar Fourier expansion — in which the coefficients are

w= (7 @)= 2 [ ) dx = V2T,

ak:<?.?k>:% 027rf(x) coskxdx, k=1,2,...

bk:<7~ef>k>:% 2nf(x)sinkxalx, k=1,2,...
0

This is the familiar way in which the coefficients of a Fourier series are
calculated.

B.2.2 Example

As an example of Fourier analysis we may take a step function on the interval

[0,27):
flx) = {0 x €0, m) .

1 x¢€|m2n)
We can derive the Fourier coefficients of this function as follows:

a—iﬁ 2nf(x)alx—i 27(-1\[2
"7 21 0 L T2V

1 27T 1 27T
a = — ; f(x) coskxdx:;/ coskxdx =
T

(1 !
I sin kx} i = {sin2km — sinkm} =0,

27T 1 271
f(x) sinkxdx = ;/ sinkx dx =

T

S
S
I

0

e N

k krt

{(_1)k B 1} _ 0 if k even,
—% if k odd.

ro1 2r
— = cos kx} = — {coskrm — cos 2k}

gl=
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. 1 . 2 13 4 5 . 6
Figure B.1. Fourier analysis on a step function. Plotted are the
Fourier expansions FE) (x) e %ao\/i—l— Eszl brsinkx = %—
%2,521,3,5”_' % sinkx, for values of K of 1, 3, 5, and 25. The in-

set gives the spectrum of the function.

Or, in numbers, ag = /2 = 0.70710,b; = —2 = —0.63662...,b3 = —& =

T

—0.21220, bs = —0.12732, and so forth. The expansion becomes now

1 o 1 2 & 1.,
flx) = E\ﬁﬂoJrk:Elkalnkx =5~ ;k:;s:&“%smkx =
1 2& 1 .
:E—;Zzn_lsm(Zn—l)x.
n=1

Note that it only contains sines, no cosines. This is a consequence of the

function’s symmetry properties.

In figure B.1 we show truncated expansions for this function.

Sturm—Liouville differential equations

B.2.3 Convergence

The Fourier expansion converges in the square integral sense, i.e., if we define

the truncated expansion

K

R (x) & %aoﬁ+ Y (ax coskx + by sinkx),
k=1
then )
1 [ 2
im — (K) _ -
Jm {900 - ) f e =0.

Note that this does not mean that, for every x € [0,277), f(x) — f(x)
when K — co. Looking at figure B.1, there will always remain a small
neighbourhood of x = 7r where the absolute difference ‘ FE(x) — f(x) | will
be almost %, even for arbitrarily large values of K. We say that the Fourier
expansion is convergent, but not uniformly convergent.

The Fourier series converges pointwise “almost everywhere” in x € [0,27):
in all points except in the two special points x = 0 and x = 7.

Also, note the “shoulder” of the expansion even for K = 25. This shoulder
will get narrower for higher K, but not any lower, remaining at approximately
0.09. It is known as the Gibbs phenomenon.

B.3 Sturm-Liouville differential equations

B.3.1 The eigenvalue problem

In an abstract vector space we may formulate an eigenvalue problem: if there

exists a linear operator (mapping) L, we may write
Lx—Ax =0,

where the problem consists of determining the values A; for which solutions
X; exist.

In a concrete n-dimensional vector space we may write the vector

n
x =) xej
i=1
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and, thanks to linearity,

n n
Ix=1L (Z xiei> =) %-Le;
i=1 i=1

on the other hand we may write n different vectors Le; on the basis {ej} in
the following way:

n
Le,‘ = Z lll‘]‘e]‘.
j=1

This defines the coefficients 4;;, which may be collected into an 1 X n matrix
A.

Now by substitution

n n
Lx=), ( ”i/'xi> e, (B.5)
i=1

j=1 \i=
when also . .
Ax=2A)Y xie; =) (Axj)e;. (B.6)
i=1 j=1

By combining equations B.5, B.6, of which all coefficients must be identical,
we obtain

n
Zaijxi —)LX]' :O,j = 1,...,1’!,
i=1

or, as a matric equation,

AX—AX =0, (B.7)
in which A is a matrix consisting of the coefficients 4;;, and X a column vector

T

consisting of the coefficients x;: X = [ X1 X2 e Xp
Of course also equation B.7 represents an eigenvalue problem, but now in
the linear vector space consisting of all coefficient vectors X. Every X is the
numerical representation of a vector x on the chosen basis {e;}. The matrix

A again is the numerical representation of operator L on the same basis’.

*An advantage of the numerical representations is of course that one can

really calculate with them.

Sturm—Liouville differential equations

B.3.2 A self-adjoint operator

Let L be a linear operator in a vector space where there exists a scalar product,

i.e.,, a bilinear form (x - y) which is symmetric or commutative.

Then L is self-adjoint, if for each pair of vectors x, y it holds that
{x-Ly) = (Lx"y).

If the matrix A is self-adjoint, that means that
(x-Ay) = (Ax-y)

ie.,
n n

i=1
which is trivially true if, for all 7,j values 1,...,n,
61,‘]‘ = ll]‘,‘, ie, A= AT.

In other words:
A symmetric matrix is a self-adjoint operator.

From linear algebra it is undoubtedly familiar, that the eigenvectors X, X,
belonging to different eigenvalues A, # A4 of a symmetric n x n matrix are mutually
orthogonal: Xp L Xg. If all eigenvalues )\p, p =1,...,n are different, then the
eigenvectors X, p = 1,...,n will constitute a complete orthogonal basis® in the
vector space R".

The proof is not hard. We start from the equation for the eigenvalue problem

for eigenvectors and -values x,, Ap:

Lxp = Apxp,

2Actually the eigenvectors may be arbitrarily re-scaled: if x is an eigenvector,

def . . .
then also e = ﬁ is. Thus we obtain an orthonormal basis.
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and multiply from the left by vector x,:

(Xg - Lxp) = Ap (Xg - Xp) .

Similarly for eigenvectors and -values x,;, A; multiplied from the left by vector
Xp:
(xp - Lxg) = Aq (xp - xq) -

If now L is self-adjoint, then

(Xg - Lxp) = (Lxg - xp) = (xp - Lxg)

(remember that the scalar product is symmetric) and thus, that

Ap (Xg - Xp) = Aq (Xp - Xq)
ie.,
(Ap = Aq) (xp - xq) = 0.
If Ay # Ay, we thus must have <x,,J . x,,7> =0, or x, L x;. What was to be

proven.

Example: the variance matrix of location in the plane. The variance matrix of
the co-ordinates of point P in the plane is

2
Oy Uxy
Var{xP} =Xpp = x 2/ ’
Oxy O’y

a symmetric matrix. Here, 02 and 175 are the variances, or squares of the
mean errors, of the x and y co-ordinates, whereas oy, is the covariance
between the co-ordinates.

The eigenvalues of this matrix Xpp are the solutions of the characteristic

equation

det| %A Jw o=,
Oxy o —A

ie.,

(02— A) (Uj*/\)fﬂz =0.

Sturm—Liouville differential equations

This yields

ma= () 3y ot -] —afrhcg -] -

1 1 2
— 2 g2 2
=3 (Uf—l—af) £ 5 [ax (Ty] + 403,
The variance matrix has a variance or error ellipse. The semi-lengths
of its principal axes are v/A1, v/A, and the directions of the principal
axes are the eigenvectors of Xpp, x1, X2, mutually orthogonal. If the

co-ordinate axes are turned into the directions of x;, then the matrix

Y.pp will assume the form

5 ;o (% ;%/ 0 o /\1 0
PP — 2 - .
0 oy 0 A
The sum of the eigenvalues (and the frace of this matrix), A +A; =
0%+ Uyz, is an invariant called the point variance.

B.3.3 Self-adjoint differential equations

In a function space there are also self-adjoint or “symmetric” differential
equations. In fact, the most famous equations of physics are of this type.

Take a good look at, e.g., the oscillation equation

d2
Wx(t) —w?x(t) = 0. (B.8)

The solution has the general form (« amplitude, ¢ phase constant)
x () = asin(tw — ¢) .

a0 =4,
" dt x=0 B dt x=T
periodicity. These boundary conditions are an essential part of being self-adjoint.

On the interval t € [0, T] we require xo = x(T) , e,

Then, a solution is found only for certain values of w — quantization.

Note that equation B.8 is an eigenvalue problem, form-wise:

Lx — w?x = 0,
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where the operator is

d2

ﬁ.

We first show that this operator is on the interval [0, T] self-adjoint. If the

L=

scalar product is defined as follows:

T
370 [ xve a

it holds that (integration by parts):

T 2
(F17) = [ o) vl de =

- T T
— [x) %y(t)}o - [ v

2

(LY -7)= /0 ' (%x(t) ) y(t) dt =

-[(50) y(t)I— [ ) Sy

As on the right-hand side the first terms vanish and the second terms are

(F17) = (17 -7),

identical, we have

which was to be proven.

Self-adjoint operators have eigenvalues and eigenvectors, in this case functions,
that are mutually orthogonal for different values of w3. For the oscillation
equation with the above periodicity conditions they are just the solution

functions otk
U
sin(wit — ¢) = sin (Tt — (p) , (B.9)
3In fact, for the same value w there exist two mutually orthogonal periodic
solutions,
. . 27kt 27kt
sin wit = sin ——, COs wit = cos

T T

Any linear combination of these is also a valid solution, and is of the general
form B.g.

Legendre polynomials

in which the frequency
_ 2k
T

is quantized by a “quantum number” k € IN.

Wk

If we let T — oo, the frequencies wy get closer and closer to each other, and

in the end morph into a continuum.

In physics there is a broad class of differential equations that are self-adjoint
in some function space. The class is known as “Sturm*-Liouville> type
problems”. To it belongs, e.g., the oscillation equation, Legendre’s equation,
Bessel’s equation, and many more. Every one of them generates, in a natural
way, its own set of mutually orthogonal functions that serve as the basis
functions for the general solution of many partial differential equations.

B.4 Legendre polynomials

Also the ordinary Legendre polynomials P, (t) constitute a basis in a function
space, with the scalar product definition

7-3)= [ soswa

They don’t however constitute an orthornormal basis, but only an orthogonal

) 2:<17;.17n>>_/+1p,3(t)dt: !

- 1 2n+1 ’
Unlike ordinary space, which is three-dimensional, a function space is an

one:

—
Pﬂ

oo-dimensional, abstract vector space, that nevertheless helps us make more
concrete certain abstract, but very useful fundamentals of function theory!

4Jacques Charles Frangois Sturm Frs Fas (1803 —1855) was an eminent French
mathematician, one of the 72 names engraved on the Eiffel Tower.

5Joseph Liouville Frs FRSE FAS (1809—1882) was an eminent French mathe-

matician.
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B.5 Spherical harmonics

On the surface of the sphere also all functions can be considered elements of a

function space. Every function meeting certain “well-behavedness properties

— like integrability — is an element. The functions

Rum(¢p,A) = Py (sing) cosmA,

Sum(p,A) = Py (sing) sinmA,

together, for the values n =0...0c0,m = 0...n, form a complete basis for this
vector space in such a way, that every function can be written as an — if
necessary infinite — linear combination of these basis functions. The situation
is analogous to three-dimensional space, where a complete basis consists of

three vectors not in the same plane.

An alternative, more compact way of writing this is

Py (sin¢) cos mA
Yum(p,A) = . . . :
Py (sing) (sing)sin|m|A if m <0,

if m>0,
forvaluesn =0...0c0,m = —n...n.

In this function space, a scalar product is defined:

(V.= ﬁ/ﬂ Vg, A) W(g,A) do,

in which ¢ is the surface of the unit sphere (“directional sphere”, or even
“celestial sphere”). According to this definition we can show, that two different
functions, namely Y, Ys, are orthogonal with respect to each other:

<m17;> - %//gYnm((p,A) Yo (9, A) do =

if n # s orm #r, etc.

—
The basis {Ynm} is orthogonal but not orthonormal: the “length” of every vector

(0,A) do = Tnt if m=0,
7’”" 1 (n+|m])! if m #O,

2(2n+1) (n—|m])!

differs from unity.

2

— —
Ynm = <Ynm : Ynm =

Spherical harmonics

see also ( ). Proving this with the help of equation

3.3 is a long process.

If we now divide the functions Yy, (or, equivalently, Ry, Sum) by the square
roots of the above factors, we obtain the fully normalized surface spherical

harmonics Y.

With those it is again easy to calculate the coefficients f,,, of a given gen-

eral function f(¢,A) (the overline means that these are fully normalized

Fom = <f ?AnZ> = % //,, F(p, M) Youm(op, A) do. (B.10)

This is a straightforward projection on the unit vectors of the basis (geometric

coefficients):

analogue).

In the above integral, f(¢, A) is the function f on the Earth’s surface, i.e., if the
mean radius of the Earth is R, f(¢,A) = f(¢, A R).

The equation corresponding to expansion 2.11 is

Vg, A1) = i

i: m(sing) (E,,m COS MA + by sin m/\) .

We may write also

T 1) = {an(sirup) cos mA

Pn‘m‘(sinqb) sin|m| A if m <0,

if m>0,

which corresponds to the definition of the fully normalized Legendre func-

tions:
Puo(sing) = v2n+ 1Py (sing),

Pum(sing) = /2(2n + 1)%&,”@&1([)) (sing), m > 0.

Then the above equation for the potential becomes

[ee]

V(g A1) = Z r"“ Z Unm nm(‘f) A),

=0 m=—n
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in which

_ Anm if m>0,
Unm =

En\m| if m <O.

Self-test questions
1. The identity (r-s) = (s - r), for two elements r and s of a vector space,

expresses the property of: linearity | commutativity | associativity.

Exercise B—1: Orthonormality of the Fourier basis

functions

Show the orthonormality of the Fourier basis functions, equation B.4 by

deriving their scalar products by equation B.3.

Why does FFT work?

FFT is a factorization method for computing the discrete Fourier transform
that spectacularly reduces the number of calculations needed and speeds
up the calculation. It requires the number of grid points to be a factorizable

number.

There are alternatives in choosing precisely which rrr method to use. The
fastest F¥T requires a grid the number of points of which is a power of 2.
The size of the grid is then 2" x 2™. Alternative, “mixed-radix” methods,
may also be considered and perform well if the grid size is something like
360 x 480, e.g.,, N =360 = 2 x 2 x 2 x 3 x 3 x 5. If the grid size is a prime
number, F¥T does not give any advantage over the ordinary discrete Fourier

transform.
If the function f(x) is defined on the interval' x € [0,1) on an equi-spaced

grid as values f(xx),k=0,...,N — 1, then the discrete Fourier transform in

one dimension is

F{f(x)} = Flw),

in which
1 N-1 ]k )
F(wj) = N I;)f(xk) exp(Zmﬁ), j=0,...,N—1 (C.1)
Here, also the frequency argument wj,j = 0,...,N — 1 is defined on the
interval w € [0,1]. Here, i is the imaginary unit i> = —1. We use exp (x) to
denote ¢*.

'For simplicity’s sake. An arbitrary interval will work.

—399 —
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Why does FFT work?

Correspondingly, the inverse discrete Fourier transform
FHF(w)}

is

N—lP 5 .jk k=0 N1 c
fw) = X Fle) ep(-2nik), k=0 N-1 (€2

FFT is just a very efficient method for computing both these formulas C.1, C.2.

A brute-force calculation of these formulas requires of order N2 “standard
operations”, each of them a single multiplication plus a single addition or

subtraction. If N is even, we may write

s Jky jk
L Fx) exp<72nzﬁ) +k:2% fx) exp<72mﬁ) =
= ¥-1 y

z |5

fx) EXP(_ZNI'%) + exp <—27Ti ) kr:0f<xk/+%> exp(—Zm’%) =

1

[z
N
N4
|

fx) exp(—Zm’%) + exp(—rtif)

Of(xH%) exp(—Zm’%) =

o gm0

the computation of which sum requires only N - § multiplications and § + &

T
o
-
0

(C3)

additions and subtractions. Here we used Euler’s identity exp (—mi) = —1,

ie, e = (e-) = (—1)/, either +1 or —1.

1
CON
1, is either a summation, for even values of j, or a subtraction, for odd values

Note that the expression in square brackets, for each k value k =0, 1,.

of j. In total, 2- % = N different values are computed, % sums and %
differences. After that, there are N- Y = NTZ multiplications. We assume that
the exp expressions are pre-calculated into a lookup table. Altogether some

NTZ standard operations are needed, half the original number.

Equation C.3 is itself recognised as a Fourier series, but the number of support
points is instead of N only % If also % is even, we may repeat the above

trick, resulting in an expression requiring only of order NT operations. Lather,

N2 N* N2
8 16’ 327 etc... A

more precise analysis shows that, if N is a power of 2, then the whole discrete

rinse, repeat, and the number of operations becomes

Fourier transform may be computed in order N x 2log N operations!

In the literature, smart algorithms are found implementing the above method,
e.g., fftw (“Fastest Fourier Transform in the West”, ( ).
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Helmert condensation

D.1 The interior potential of the topography

In order to derive the equation for Helmert condensation, we first derive the
equation for the interior potential of the topography, i.e., the masses between

sea level and the terrain surface:

To(r, ¢, A) —G// pr‘fl;‘/ av,

where 1 is the angular distance between the evaluation point (7, ¢, A) and
the observation point (1/,¢’, A'). The spatial distance ¢ between those points
again is written using the interior expansion (equation 8.5):

P 1E () e

This expansion converges uniformly” with respect to ¢ if r < 7/,

"Uniform convergence means that, given r, 1/, for every € > 0 there is an Npin
for which

<e€

1 18 frymtl
177 L (5) Pucosy)

for all N > Nmin, and for all values of . This is a stronger property than mere

convergence.

_403_
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Substitute:

+1
Tint(r, $, A) 7Gp//t 2 r/ n Py(cosyp) dV =
op ¥

= Gp//(r (/:+H % i ( > 2 dr’) Py(cosp) do =

R+H

n—2)
= Gp// Zr <—> +72Iny Py(cos ) do =
n#Z F=R
(”72> _ (R + H)—(H—Z) +
=Gp P, (cos ) do
e ( P REH ) rleosy
n;éZ R

Here, we shall expand the following expression into a Taylor series:

H (n-2)(n—1)H>

1-(n—2)= + -
(R+H)7(H72) — R—(ﬂ—z) ( ) R 2 R2
(n=2)(n-1)nH
2.3 R3

Also the special case nn = 2,

R 2R 3R ARE
" (H n—1H*> (n-1)nH> (n—-1)n (n+1)H4+ )

rIn =

R+H_r2<H 1H> 1H® 1H* )
R — - ...

“R2\R 2 R 2.3 R% 2.3.4 R4

is cleanly included into the following expression obtained by substitution:

; S (H n—1H> (n—-1)nH3
™ (r,p,A) =G // ! (—f — + —f...)P cos ) do
Cned) =G | Y \R 2w T n(cos )

D.2 The exterior potential of the topography

In the same way we may derive the exterior potential of the topography. Now
we use for the expansion of the inverse distance (equation 8.5):

L () e - £ (2) o,

n=0

The exterior potential of the condensation layer

which converges uniformly if r > .

Substitution yields

Text — Gp//topn Or( ) P, (cos ) dV —
—Gp//</R+H i)i(r) (’)Zdr/>Pn(cos¢)da—

sl 1 1 R+H
= nn+3 B
= GP//T (ﬂZO M+ 3 (') ) . Py(cosp) do =
e 1 S
_GP//‘”;),,H+1H+3<(R+H) R )Pn(coslp) do

Here again we use the Taylor expansion:

H (n+3)(n+2) H

1 =
(R+H)n+3:Rn+3 +(n+3) R + 2 RZ +
N (n+3)(n+2) (n+1) H?
2-3 R3
Substitution yields
H 2 H?
n+1 R + nre —; i +
TS = GpR? / < > s P, (cosy) do

e L+ (n+ )
6 R3

(D.1)
This is thus the exterior potential of the topography, or, inside the topographic
masses, the harmonic downward continuation of the exterior potential, assuming
that this is mathematically possible (in the case of mountainous topography,
generally not) and doesn’t diverge.

D.3 The exterior potential of the condensation layer

This is derived by specializing equation D.1 to the case H — 0, but neverthe-
less p — o0, so that ¥ = pH is finite. in this limit, all terms containing H?, H°
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etc. are going to zero. The result is then

T = GpR? / i

7 n=0

e R n+1
=GR [ ) <7> kP, (cos ) do.

7 n=0

R n+1 H
(7> iPH(COS Y) do =

Earlier on we had a more precise formula 6.4 for x on the surface of a spherical

Earth: H
=oH[1+ = );
K=p ( + R)’

by substituting this in the previous, we obtain

oo n+1
Tt = GPRZ/ E <§> (% + %j) P, (cos ) do. (D.2)

T n=0

D.4 The total potential of Helmert condensation

This is obtained by subtracting equations D.1 and D.2 from each other. The
result (which thus applies in the exterior space) is

ext __ Text ext
T o= T — T =

elmert
+2 +1) H?

oo n+1
o ()
7 n=0 r
6 R

=) n+1 3
=Gp U;<§> (gHZ-FWH?-F...)Pn(COSIP)dU.

2
(52
P, (cosy) do =

Often we define the degree constituents of powers of height H (compare the
degree constituent equation 3.7), as follows:

HV*anL

i i ! //‘THVPH(COS P) do, (D.3)

after which we may expand

00
H'= Y Hy.
n=0

The total potential of Helmert condensation

Then

) n+1 3
+2)(n+1)H
Text =4 - n H2 (I’l — e ]
Helmert ”GPW;J(r) (2(2n+1) "t e@n+1) R T
(D.4)
If the topography is constant, then all terms for which # # 0 vanish; in the

above expression, also the first term vanishes, and the second and further

terms are very small. So, in practice®

TI(_eIxt 4

elmert — 5

nﬁ3~%+...z0

as was to be expected. The exterior field remains in this special case almost
unchanged as a result of Helmert condensation.

D.4.1 The gravity effect of Helmert condensation
Let us calculate gravity anomalies from the Helmert potential, but only using
the first term of equation D.4:

oT 2

AgHelmelrt = a + ;T -

S n —(n+1) 2\ (R\"T_,

) _ n+1
= _zncp% Z M (5) H2.
n=0

2n + r

Now, also n = 1 gives a zero result, expected as gravity anomalies do not

contain any components of degree number 1.

Note in this equation also a dependence upon n: The gravity effect of Helmert
condensation is dominated by short wavelengths or the very local features of
the topography. The appearance of the square of height in this equation is

again related to the terrain correction, in which also the square of the terrain

2As a curiosity, this result can be interpreted as the potential of a sphere of
crustal matter with radius H (the average height of the topography) located
at the geocentre. Even for a topographic mean height of 10 km the effect on
the geoid would only be 12mm (exercise!).
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height figures. When we are summing squares, leaving out terms will always
cause a systematic error: also very short wavelengths, i.e., high values of #,

must be taken along in the summation.

D.4.2 The interior potential of Helmert condensation

This quantity is evaluated on the level of the geoid. It represents the indirect
effect of Helmert condensation, i.e., the shift of the geoid surface caused by
the mass shift in space.

Tll-?etlmert = Tmt TeXt =
n—1H> (n—1)nH®
—GpRz/gz;J<—— Rz g F—...)Pn(cosw)da—
n

2
—GRZ/ ( )Pncos

p o= R R2 ( IP)
B n+l o, (n-1)nH>
=Cp MO< y B+ ¢ R

Using again the definition of the degree constituents of the powers of height

. > P, (cos ) do

H, equation D.3:
2n+1
H} = i /U HYP,(cos ¢) do,

we obtain

o n+1 (n=1)n Hy
Tmt =4 _ H2
Helmert — HGPIEO < 2 (21’! + 1) n + 6 (21’! + 1) R !

from which one obtains the indirect effect of Helmert condensation:

Tint 47Gp & n+1 (n—1)n H?
O = ——Hgpet = - 7p2(_2(2n+1)H5+6(2n+1)R ):

_4nGp (1 & n4+1 ., 1 & (n—1)n_4
I (2%211—1—11_1" 6R = 2n+1 Hy = ) D5

The term 1 = 0 yields the indirect effect of a constant terrain H = H = Hy:
using only the first term inside the brackets yields
21Gp—2
(SNHC,Const = %H

which can not be neglected.

The dipole method

D.5 The dipole method

As a sanity test, we may describe the effect of Helmert condensation in first
approximation as a dipole density layer field p. The topographic mass, density
x = Hp, moves downward by on average ;H. The effect would be the same
if mean sea level®> was covered by a double mass density layer

1
= EHzp. (D.6)

The potential of this layer is, in spherical approximation,

T = G//ya dSNGRZ/]ya

Written more explicitly:

d 1
_ 2
TP =GR /(7 HQaTQ (KPQ> d(TQ

We use the expansion into Legendre polynomials, equation 8.5:

1 1 ) VQ ) n+1
—= —= Py (cos ,
o = 10 n;) <rp 2 (Cos Ppq)

differentiate with respect to ro, and substitute:

) 1 ) o n+1
Tp = GR // 2 Mo Y.n (;) Py (cos ppg) doyg.
7'Q n=0

By substituting into this the equation D.6 for the ug double mass density
layer, we obtain, by taking the limit rp, 7o | R:

77r i n// (2nGHp) HP,(cos ) do =
; //ABHP (cos ) do

3In fact, a better place for this layer would be level {H. This is one of the

approximations made here.
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Here, we have left the designations P, Q again off as no longer needed for
clarity.

The symbol Ag denotes the attraction of a Bouguer plate of thickness H and
density p.

Let us develop the quantity [AgH] into a spherical-harmonic expansion

( )
(equation 3.7):

equation 1-71). then, each degree constituent is

2n+1
[AgH], = 2210 // [AgH] P, (cos ) do,
T (8
in which case (note that the term n = 0 vanishes):
T=Y " [AgH], ~ } [AgH]
= on+1 ) '

at least for the higher n values, i.e., regionally if not globally.

Thus is obtained again the indirect effect of Helmert condensation, in geoid

computation by means of this method the shift in geoid surface caused by

the condensation, which must be accounted for with opposite algebraic sign.

In other words, looked upon as a Remove-Restore method, its “Restore” step:

T _1AgH _ mnGpH?

5NHC:: —
Y 27 0

For comparison, the more precise expansion D.5 yields in approximation for

larger n values

SNewe o 4GP 1 n 1 , . nGpH?
BTy a&mr Ty

n=0

essentially the same result.

The Laplace equation in spherical
co-ordinates

E.1 Derivation

Consider a small volume element with sizes in co-ordinate directions of Ar,
A$, AA. Look at the difference in flux of vector field a % V'V between what
comes in and what goes out through opposite faces.

We do the analogue of what was shown in subsection 1.12.4, using a body
with surfaces aligned along co-ordinate lines, allowing the size of the body
to go to zero in the limit, and exploiting the Gauss integral theorem 1.18. The
quantity diva = AV is a volume density, and its average value multiplied by
the volume of a body must equal the total flux through the surface of the
body.

Part of the difference in flux f between opposing faces is due to a change in
the normal component of a between the faces, part is due to a difference in
face surface area w:

ff=fmw(@ —a)+a(w"—w).

See figure E.1.

1. In the radial direction, the surface areas of opposing faces — “inner —

outer” — are

W = (r+ Ar)* cos pAPAA,
w; = 12 cos pAPAA,

_411_
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2. Longitudinal direction, A, “West—East”: no change in surface area
wy = rArA¢ because of rotational symmetry. We only have

ALY = al —a; _ 1 ( oVt 9v- )z
rcospAA  rcosAA \drAcos¢p  OrAcos¢

1

T 12cos? ¢ 9A2”

3. Latitudinal direction, ¢, “South—North”:

=rcos(¢ + Ap) ArAA,

wg
w(; = rcos pArAA,
difference

wy —w, A —rsinpAPATAA.

Multiply by ay = a% and divide by body volume r?cos pArAPAA,

yielding

This of course in addition to the regular contribution

Equatorial plane aj — ay 1 (E)V+ E)V*) 1 9%V

-9 9 _ - (27 97 \x22Y
V=8 “rap \org g ) T ogr

All of this gives us the end result
Figure E.1. Gauss integral theorem applied to a co-ordinate conformal vol-

ume element. AV = AV + MV + BV + AV + AV =
RV BV 1RV 20 gV
difference T or2 | r2cos2¢p dA2 T r29¢? ' r or 2 9p’

+ -~
W, —w, = 2rArcos pAPAA. equivalent to equation 2.8.

This is be multiplied by a, = %—Y, and divided by the volume of the

body 72 cos pArApAA, yielding for the contribution to the Laplacian E.2 Solution
ALV — 20V
" Y o E.2.1 Separating the radial dependency

This in addition to the “regular” contribution Let us attempt separation of variables as follows:

at —a; _0*V
xS V(r, ¢, A) = R(r) Y(,A) .

AV =
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Substitution into equation 2.8 and multiplication by lg—zy yields

1 827R+287R 1/ BZY+82Y
R or? ar) Y \cos2¢ar2 " o¢? ¢a¢

This must again apply for all values 7, ¢, A and thus can only be a constant, p.

This yields two equations

or? ]
! aZfYJriftan = | +pY =0
cos?2 g 9AZ ~ 9¢? (PE)zp pr==5

2
( a7R+2 aR)—pRZO,

For the first equation we try a power law,
R=r11,
yielding
q(q—1))r1+2qr7 —pri =0
with the solution
p=q(+1).
Solving the second equation for Y (¢, A),

( 1 9%y 0%y

Mﬁ—'—a(l; —ta n¢a¢)+‘7(‘1+1) =0, (E.1)

is trickier. It turns out that ¢ must be an integer. One finds, for n € INy, that
there are positive solutions® g = n and negative solutions ¢ = — (n + 1), with
n=0,1,2,... With this, the full set of special solutions is

Y (o, A
an =r Yn((P )L) Vn,2 = nr(;#l—l)’ n € INp.

i.e., equations 2.9.

'The above derivation logic doesn’t work for the exponent values g4 = 1 or
g = 0, but the result holds also for these values.

Solution

E.2.2 Solving for surface harmonics

Note that both solutions g, the positive and the negative one, produce on
substitution into equation E.1 the same equation for #:

( 1 ?Y 0%

c032¢8)\2+8¢ ¢8¢)+n(ﬂ+1)¥:0'

We attempt again separation of variables:

Y(¢,A) = F(¢) L(A).

Substitution and multiplication by <% cos? 2 yields
cos’¢p (9°F o 10%L

Both sides must be again equal to the same constant, which we shall assume
positive and call m?:
9°F m?
1)——— | F=

Py tanc,ba(;J (n (n+1) o2 ¢) 0,

2L,

W +m L=0.
The first equation is known as Legendre’s equation. Its solutions are the
Legendre functions Py, (sin¢) , with the integer m = 0,1,2,...,n. The second

is the classical harmonic oscillator, with solutions?
Ly1(A) =cosmA, Lyp=sinmA .
With this, we find for the surface spherical harmonics the linear combinations

n
Yu(p,A) = Y Pum(sing) (anm cos mA + by sinmA) .
m=0

The general solution is now formed as follows:

(o] n

Vi(r,,A) = Z Z Pum(sing) (@um cos mA + by, sinmA),
" X =,

Vo(r,¢,A) = Z e Z Py (sing) (aym cos mA + by sinmA) .
n=0 m=0

*This also explains why m must be an integer.
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Here, a,,, and by, are the spherical-harmonic coefficients describing the linear
combination of special solutions. For describing the Earth’s gravitational
field, only the second solution is physically realistic, going to zero at infinity
r — oo.
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a priori information, 331
a priori variance, 330
Aalto University, 367
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acceleration
geometric, 343
measured by GNSS, 294
measured by gravimeter, 294
of aircraft, 293
of free fall, 283, 284
satellite, 343
accelerometer, 295, 343, 346
on GRACE, 345
action at a distance, 1
Agulhas Stream, 301
air drag compensation, 295
air pressure, variations, 292
airborne gravimetry, 229, 343
description, 293
homogeneity, 295
Airy, George Biddell, 137
Airy-Heiskanen hypothesis, 138, 144
Airy-Heiskanen model, 137
Aland, 340
Alaska (USA), 142
algebraic-sign domain, 79
algebraic-sign interval, 55, 56
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altimetric satellite, 320, 334
Amazonas (Brazil), 229, 345
American Geophysical Union (AGU),
366
amplifier, in optic fible cable, 176
Amsterdam (The Netherlands), 155, 303
analysis, a posteriori, 340
angular distance, geocentric
definition, 240
covariance function, 241, 246
degree constituent equation, 66
forward geodetic problem, 240
generating function, 189
Helmert condensation, 403
sea-level equation, 314
Stokes kernel, 180, 219
tangent plane, 214
anisotropy, 189
anomalous quantity, 81, 103, 104
Antarctic Ocean, 340, 341
Antarctica, 122, 229, 295, 312, 316
antimatter, 25
anti-root, under sea, 140
Apollo project, 4, 284
Arabelos, Dimitris, 227
Archimedes’ law, 138
archipelago, 340
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ice volume, 341, 342
argument of perigee, 334
arrest (gravimeter), 283
ascending node, 334

of the Moon, 353
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associated Legendre function, 55

fully normalized, 63

symmetry, 60, 79
associated Legendre functions

figure, 56

table, 55
astatization, 282
astatization ratio, 280, 281
asthenosphere, 306, 312
Atlantic Ocean

North, 311

salinity, 308
atmosphere

attraction, 291

surface mass density, 292

total mass, 293
atmospheric drag, 343, 345, 346
atmospheric loading, 362
atmospheric refraction, 153
atomic clock, 175
attenuation factor, 77, 78
attenuation with height, 44, 52
attraction

exterior, 18

interior, 18

spherical shell, 8, 9
attraction, gravitational, 5
autocovariance, 238
autoregressive process, 247
average density, of Earth’s crust, 125
averaging over ocean surface, 314
azimuth, 189, 213, 214, 240, 241

definition, 240

B

Baltic Sea
airborne gravimetry, 295
mean sea surface, 319
salinity, 308
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sea-surface topography, 303, 308
barometer, 109
Barzaghi, Riccardo, 225
base network measurement, 288
basis
complete, 386, 396
in a function space, 395
in a vector space, 385, 390
basis vector, 385, 386
bathymetry, 125, 132
benchmark, 326
Bergensbanen, 140
Bessel’s equation, 395
BGlI, 365
bias, of measurement, 323
bilinear form, 385, 391
Bjerhammar sphere, 263
Bjerhammar, Arne, 263
block surface area, 208
block weight, 208
blue film, Earth'’s, 344
Blue Road Geotraverse project, 306
book-keeping, 22
bordering, 225
Bose-Einstein condensate, 175, 287
Bothnian Bay (Finland, Sweden), 308
Bouguer anomalies
interpolation, 126
prediction, 126
Bouguer anomaly, 125, 150
bias, 126, 127
calculation, 170
calculation steps, 129, 130
example, 130
properties, 126
simple, 126
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spherical, 132
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terrain corrected, 128
Bouguer hypothesis, 306
Bouguer hypothesis, of land uplift, 306,
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as approximation, 125, 165
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double, 168
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simple, 126
Bouguer shell
attraction, 132
Bouguer, Pierre, 122, 135
Boulder, University of Colorado at, USA,
283, 322
boundary condition, 42, 43, 113, 393
boundary surface
choice, 121
boundary-value problem, 33, 40, 121
definition, 32
free, 109
of Dirichlet, 33, 112, 192
of Neumann, 69, 112
of physical geodesy, 112
spectral solution, 114
third, 110, 112
bounded support, 215
box, rectangular, 23, 24
Brovelli, Maria, 225
Bruns equation, 106, 119, 165, 181, 360
Bruns vertical-gradient equation, 88
Bruns, Ernst Heinrich, 88, 106
bulldozer, 198

C
cage, in absolute gravimeter, 284
Calgary (Canada), 225
calibration

gravimeter, 291

in-flight, 324, 339

radar altimeter, 324, 339
calibration certificate, 291
cannon, 80
carbon dioxide, 309
Cavendish, Henry, 4, 333
celestial mechanics, 13
central force field, 372
centrifugal acceleration, 83
centrifugal force, 83, 100, 297
centrifugal potential, 82

expression, 84
CHAMP (satellite), 71, 229, 343, 344

characteristic equation, 392
Chasles theorem, 2, 32, 34
Chasles, Michel, 32
checkerboard, 57
chlorophyll, 309
circular disk, attraction, 124
climate research, 313
climate, of Earth, 311
clinometer, 358
clock, 174
pendulum, 275
closing error, 283
coastline, 340, 361
coefficient vector, 390
co-geoid, 122
of isostatic reduction, 144, 145, 149
coherence, of matter waves, 175
collocation, least-squares (LSC), 143, 227,
245, 248, 252
description, 241, 249
FFT, 263
flexibility, 253
Columbus geoid (model), 368
commutative diagram, 45, 68, 202, 203,
218
comparison point, for geoid
determination, 304
compensation depth, 144, 146
component, of a vector, 373
Congo (Africa), 345
conservation, of matter, 21
conservative field, 153, 172
definition, 5, 378
curl, 382
potential, 378, 382
continental ice sheet, 141, 142, 304, 312
continental ice sheets, total mass, 313
continental shelf, 140
continuity equation, 382
convection, in the Earth’s mantle, 145
convolution, 45, 222, 266
calculation, 223
kirjoitustapa, 215
linear combination, 220
terrain correction, 231
two-dimensional, 215
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co-ordinate conversion, 49
co-ordinate reference system
co-rotating, 82, 297
inertial, 82
co-ordinate time, 174
co-ordinate transformation, 369
co-ordinates
cylindrical, 40
ellipsoidal, 50
geodetic, 49
definition, 49
geographic, 220
geographical, 48
natural, 88, 89
polar, 381
rectangular, 5, 48
spherical, 29, 40, 48, 53
definition, 48
topocentric, 296
toroidal, 40
Copenhagen (Denmark), 225, 367
coral, 313
Coriolis acceleration, 309
direction, 309
Coriolis effect, 308
Coriolis force, 84, 302, 309
Coriolis, Gaspard-Gustave, 84
correlation, 244
correlation length, 246, 273
correlation, quasi-geoid & topography,
163, 164
correspondence, integral & spectral
equations, 181
cosine rule, 219, 351
half-angle, 219
cosine taper, 225
covariance function, 239, 240, 252
definition, 241
empirical, 262
Gauss-Markov, 252
global, 264
gradient of gravity, 271
isotropic, 256
of gravity anomalies, 260
of Hirvonen, 246—248, 250

Index

of the disturbing potential, 255, 271
in space, 259, 260
on the Earth surface, 260
spectral representation, 256
cross covariance, 238
cross product, 370
crossover
geometry, 326
crossover adjustment, 331, 342, 348
global, 332
crossover condition, 333
crossover difference, 331, 342, 349
crossover point, 325, 326, 330, 331
crustal density, 137, 230
Cryosat-2 (satellite), 321
curl (operator), 377, 378
interpretation, 377
lineaarisuus, 375
of gradient, 378
of wind field, 377
curvature
of a level surface, 86, 296
of the Earth, 129, 138, 215
cyclone, tropical, 301

D
damping, of gravimeter, 283, 293, 294
Danish straits, 308
Darwin, Sir George, 355
datum, 330
datum defect, 330
datum point, 155
datum transformation, 330, 332
De Maupertuis, Pierre, 122
Dead Sea, 146
declination, of the Moon, 351
deformation
of the Earth, 355
plastic, 316
deformation coefficient, for viscous
loading, 316
deglaciation, last, 142, 305, 316
degree constituent
disturbing potential, 99
gravity anomaly, 111
powers of height, 406, 408

Index

degree constituent equation, 66, 67, 113,
114, 179
data point, 66
evaluation point, 66
harmonic field, 190
degree number
of tidal force, 357
degree of freedom, 333
degree variance
disturbing potential, 256, 258
on the Earth surface, 260
gravity anomalies, 261, 263
notation, 258
degree variance formula, 262
degree, harmonic, 51
degrees of freedom, 332
Delft (The Netherlands), 225
delta function, Dirac’s, 25, 194, 265
Denker, Heiner, 225
density
ice, 142, 314, 341
mantle, 138
rock, 89, 169
sea water, 138, 140, 314, 341
standard crustal, 169
topography, 165, 199
upper mantle, 142
density model, 34
density profile, 34
density, SI unit, 11
developing country, education, 366
dice throw, 238
difference, geoid - free-air geoid, 166
difference, height anomaly — geoid
height, 165
difference, orthometric height — normal
height, 167
difference, quasi-geoid — geoid, 166, 171
differential operator, 379
digital terrain model (DTM), 128, 198
dipole, 19, 65, 66
dipole density layer, 19, 409
dipole field, 99
dipole layer element, 19
dipole moment, 65
definition, 19

of the Earth, 65
vanishing, 72
dipole surface density, 19
Dirac, Paul, 25
directional sphere, 396
Dirichlet, Peter Gustav Lejeune, 33
Dirichlet’s problem, 2
dislocation (crystal), 282
disturbing potential, 103, 113, 119
definition, 98
at terrain level, 200
in spherical harmonics, 98
local, 215
surface harmonics, 51
divergence (operator), 15, 21, 376, 379,
382
interpretation, 375
lineaarisuus, 375
DMA (Defense Mapping Agency, U.S.),
70
Doodson, Arthur Thomas, 355
Doodson’s constant, 355, 359
DORIS (instrument), 321
dot product, 369
downward continuation, harmonic, 165,
166, 197-200, 229, 405
existence, 191, 197
of rAg, 193
drift (gravimeter), 282, 291

E

Earth centre of mass, 48, 65, 71, 99, 111

Earth radius, 17

Earth rotation rate, 84, 93

earthquake, 291, 316

Earth'’s flattening, 48, 49, 71, 93

Earth’s gravitational field, 39, 292, 344
spectral representation, 2

Earth’s gravity field, 71

eccentricity
orbital, 334

eddiness, in a vector field, 377

eddy, 321

eddy phenomena, 84

eddy-free flow, 384

EGMo6 (geopotential model), 70
coefficients, mean errors, 73
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EGM2008 (geopotential model), 59, 71,
118, 127
Eiffel Tower, 87
Eiffel Tower’s 72 names, 15, 16, 32, 43, 53,
84,395
eigenvalue, 391
eigenvalue problem, 389-391
eigenvector, 391, 393
eight-unit cube, 26
Einstein summation convention, 244
Einstein, Albert, 4
El Nino Southern Oscillation (ENSO),
301
elasticity, 87, 282
of Earth, 356
of the Earth, 356, 361
of the Earth’s crust, 362
elasticity model, 359
electric charge, conservation, 372
electric currents, in the Earth’s core, 145
electrostatic compensation, 293
electrostatic potential, 379
ellipsoid of revolution, 48
ellipsoidal harmonic, 89
ellipsoidal harmonic expansion
centrifugal potential, 9o
convergence, 76
normal potential, 75
ellipsoidal-harmonic expansion, 74
definition, 72
computation, 76
RMS Empress of Ireland, 155
energy, conservation, 372
energy, of place, 155
Envisat (satellite), 320
E6tvos (unit), 111, 297
Eotvos tensor, 296
Eo6tvos, Lorand, 85
epoch, of land uplift, 304
equations of motion, of satellites, 65
equatorial radius, 49, 93, 333
equilibrium length, of spring, 278, 279
equipotential surface, 18
as boundary, 31, 32
figure, 107
equivalence principle, 4, 85

Index
ergodicity, 239
erotus, height anomaly — free-air geoid,
165

error ellipse, 393
ERS-1 (satellite), 320
ERS-2 (satellite), 320
escape velocity, 8o
estimation, 242
estimator, 243
mean error, 249
optimal, 244
Eterna (software), 361
Ethiopia, 229
Euclidean space, 5, 9, 385
Euler angle, 377
Euler’s identity, 400
Eurajoki (Finland), 289
European climate, 311
European Geosciences Union (EGU), 366
European Space Agency (ESA), 320, 321,
346
eustatic rise, of mean sea level, 304, 305,
314
evaluation functional, 236
evaluation latitude, 220
Everest, Mount, 141
expectancy
of a stochastic process, 239
statistical, 238
exterior product, 370
exterior surface normal, 21
ellipsoidal, 81

F

factorial, 53

Falkland islands, 346

Faller, James E., 283

Faraday, Michael, 22, 383

Fast Collocation, 143, 267

Fast Fourier Transform (FFT), 143
and convolution, 216
and tapering, 226
collocation, 263, 266
mixed-radix, 399
radix 2, 399
terrain correction, 229, 232

fast Fourier transform (FFT), 218

Index

algorithms, 401
Fastest Fourier Transform in the West
(fftw, software), 401
Father Point / Pointe-au-Pere (Rimouski,
Quebec, Canada), 155
Fennoscandia, 142, 303, 316
Fennoscandian Shield, 144
field equations, 1
of electromagnetism, 16
of gravitation, 16
field line, 22, 383
field theory
electromagnetism, 40
gravitation, 1
field, the concept, 39
figure of the Earth, 81, 122, 136, 334, 335
mathematical, 85
FIN2000 (geoid model), 227, 228, 303, 304
precision, 228
FIN2005Noo (geoid model), 227, 367
precision, 228
finite elements method (FEM), 143
Finland, 154, 168, 227, 284, 303
Finnish climate, 311
Finnish Geodetic Institute (FGI), 283, 290,
358, 367
Finnish Geospatial Research Institute
(FGI), 367
first eccentricity, 49
flat Earth model, 138
flattening
of a planet, 13
flight height, 294
flow velocity, 21, 375, 383
flow velocity field, 310
fluid motion, 155
flux, 21
footprint, radar altimeter, 323, 340
footscrew, 279
Forsberg, René, 225, 227
Fourier basis function, 43, 54, 61, 386
Fourier coefficient, 43, 51
Fourier expansion, 387
Fourier series, 387, 400
Fourier sine expansion, 43
Fourier theory, 184

Fourier transform, 45
artefacts, 225
discrete, 216, 218, 399, 401
periodicity, 224, 225
reverse, 400
forward, 216
notation, 215
of (73, 231
reverse, 216, 232
Fourier, Joseph, 43
France, 365
free oscillations, of the solid Earth, 291,
367
periods, 291
free-air anomaly
definition, 116
calculation, 117, 170
linearization, 116
Southern Finland, 118
use, 117
free-air hypothesis, of land uplift, 306,
307
free-air reduction, 129
freeboard, 321, 341
French Academy of Sciences, 122
frequency domain, 45, 217, 218
function space, 236, 237, 386, 393, 395
on the sphre, 396
function theory, 395
functional, 258
definition, 236
linear, 33, 237, 258, 262
definition, 236
of the disturbing potential, 237
of the disturbing potential, 236
fundamental equation of physical
geodesy, 113, 200

G
Galilei, Galileo, 4
gauge invariance, 16
Gauss integral theorem, 2, 20, 22, 27, 29,
31, 382, 411, 412
figure, 22, 383
presentation, 21
in terms of potential, 23
Gauss, Carl Friedrich, 21
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Gauss-Markov process, 247
Gelderen, Martin van, 225
general relativity, 16, 174
generating function
geometry, 190
of the Legendre polynomials, 146,
189
geodetic forward problem on the sphere,
240
Geodetic Reference System 1967 (GRS67),
94
geographic mean, 239, 241
definition, 238
geographic variance, 239
geoid, 109, 145, 158, 301, 302, 407
definition, 85, 155
classical, 302
fake, 169
free-air, 165, 166
true, 343
geoid computation, 203
gravimetric, 208
software, 227
geoid determination, 32, 70, 341, 365, 366
1D-FFT, 224
classical, 121
FFT, 225, 227
gravimetric, 181, 307
principle, 180
computational framework, 183
NKG, 367
precise, 169
Spherical FFT
multi-band, 220
Taylorin kehitelmd, 221
geoid height, 103, 112, 165, 171, 321, 325
definition, 104
from satellite altimetry, 229
redukoitu, 203
geoid map, 347
geoid model, 145, 344
computation, 227
Finland, 105
global
high resolution, 343

precise, 347

Index

gravimetric, 304
local, 303
geoid modelling
global, 137
geoid rise, 305, 306
geoid undulation, 104
globally, 104
in Finland, 104
geological map, 169
geometric geodesy, 97
geophysical data record (GDR), 324, 340
geophysical reduction, 121
geopotential, 89
gradient, 296
level surface, 85
on the tangent plane, 87
spectral expansion, 67
geopotential image, sharpness, 59
geopotential model, 344
global, 344
geopotential number, 155, 157
definition, 154
GEOS-3 (satellite), 319
Geosat (satellite), 319
geostrophic equilibrium, 309
Germain curvature, 87
Germain, Marie-Sophie, 87
German Research Centre for Geosciences
(GFZ), 343
Gibbs phenomenon, 206, 225, 389
Gibbs, Josiah Willard, 206
glacial isostatic adjustment (GIA), 305,
316
glacial maximum, last, 142
glacier, 146, 304, 314
retreat, 142
global warming, 312
GMyg, best value, 6
GNSS
height of gravimetric stations, 122
in airborne gravimetry, 293
in height determination, 227
measuring atmospheric loading, 362
measuring ocean tidal loading, 362
orbital tracking, 347
positioning of tide gauges, 305, 307

Index

GNSS antenna, 293
GNSS instrument
in aircraft, 293
in altimetric satellite, 342
GNSS levelling, 304
GOCE, 71, 229, 295, 311, 347
description, 346
name, 348
GPS
on satellite, 320, 343
orbital tracking, 344
reference system, 93
GRACE (satellite pair)
description, 344
GRACE (satellites), 71, 229
principle, 345
GRACE follow-on mission, 345
grade measurement, 122
gradient
of Earth attraction, 346
of gravity disturbance, 271
of the potential
in the normal direction, 32

gradient (operator), 9, 11, 23, 376, 378

interpretation, 375
linearity, 375
of scalar field, 375
gradient vector, 106
gravimeter
absolute, 283, 306
principle of operation, 284
airborne, 283, 293
astatized, 278, 280
atomic, 287
principle of operation, 288
ballistic, 277, 283
FGs, 283, 285
IMGC-o02, 287
JILA, 283

LaCoste-Romberg, 278, 280, 285

pendulum, 276

quantum, 287

registering, 362

relative, 306

sea, 283, 343

spring, 276, 277, 280, 282, 288

superconducting, 289-291
gravimetry, 71
limitation, 34
satellite, 295
gravitation, 3
gravitational acceleration, 4, 11, 12, 32, 85
measurements, 70
gravitational acceleration vector, 9, 10, 15
gravitational constant, universal, 2, 351,
372
gravitational field, 5, 21
of celestial objects, 359
gravitational gradiometer (GOCE), 343
description, 346, 347
gravitational lense, 3
gravitational potential, 1
in vacuum, 379
rotationally symmetric, 9o
gravitational vector, 10
gravitational wave, 16
gravity, 123, 276, 285, 287, 293, 306
definition, 283
absolute measurement, Finland, 289
along levelling line, 174
equatorial, 93, 94
in airborne gravimetry, 293
in the tropics, 275
local, 158, 275, 294
measured, 277
measurement, 109
measurements, 84
prediction, 202
total, 293
gravity acceleration, 85
average, 314
from pendulum, 276
on the plumb line, 88
gravity anomaly, 108, 255
a priori estimate, 251
as a boundary condition, 112
as a functional, 237
at sea level, 193, 196
at topography level, 196
atmospheric reduction, 292
availability, 235
block average, 208, 209, 253
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calculation, 110, 116
change, 306
estimate, 250, 251
from satellite altimetry, 229
global average, 239
in the external space, 192
interpolated from grid, 210
mean error, 250
observations, 249
reduced, 203
surface harmonics, 51
gravity disturbance, 271
definition, 106
observing, 108
spectral representation, 108
gravity field, 2, 81, 156
behaviour, 246
change, 316
determination, 262, 344, 347
exterior, 117, 200
fine structure, 343
GOCE resolution, 295
observations, 235
oceanic, 319
of mountains, 135
research in Europe, 366
research in Finland, 367
research in HUT, 367
research internationally, 365
residual, 202
spatial variability, 215
temporal change, 344
textbooks, 368
very local features, 346
gravity formula, 81, 93, 94, 116
gravity gradient, 111, 297, 358
free air, 362
gravity mapping survey, 288
gravity potential
as sum of gravitational and
centrifugal potentials, 84
gradient, 382
in spherical harmonics, 98
of falling atoms, 288
gravity vector, 157
gravity vector field, 382

Index

gravity versus gravitation, 82, 83
gravity-gradient field

of Sun and Moon, 297
gravity-gradient tensor, 296, 297
GRAVSOFT (software), 227
Green equivalent-layer theorem, 32
Green theorem

for external space, 30
Green, George, 27
Greenland, 122, 229, 312, 316
Greenland Aerogeophysics Project

(GAP), 295

Green’s function, 314, 316

of sea level, 314

of the geopotential, 314

of vertical displacement, 315

partial, of deformation, 315
Green’s theorem, 2

exterior point, 28

first, 27

interior point, 29

second, 27

third, 28, 121
Green’s theorems, 2
Greenwich meridian, 48
grid

disturbing potential, 217

gravity anomaly, 216

Stokes kernel, 216
grid integration, 143
grid matrix calculation, 223
grid representation, 216
GRS80

definition, 93

GMg, 6
Gulf of Finland, 308

airborne gravimetry, 295
Gulf Stream, 301, 309-311
Guyana, French, 275
GWR 20 (gravimeter), 290
GWR iGrav (gravimeter), 291

H

Haagmans, Roger, 225
half-height point, 340

Hannover (Germany), 225
Hardanger plateau (Norway), 140

Index

harmonic continuation
of gravity anomalies, 194
harmonic continuation, of the potential,
258
harmonic field
definition, 15
rAg, 192
harmonic oscillator, 42, 415
hat notation, 252
Hayford ellipsoid, 94, 116
Hayford, John Fillmore, 136
heat transport, 309, 311
Heaviside function, 316
hegiht
above mean sea level, 158
height
above mean sea level, 155
above the geoid, 157
above the reference ellipsoid, 49,
104, 159, 321
height anomaly, 115, 116, 159, 164, 165
definition, 159
height system, 367
national, 303, 304
of a country, 330
Heiskanen, Veikko Aleksanteri, 137, 367
helicopter, 294
helium, liquid, 290, 291
Helmert condensation, 2, 133, 134, 197,
403, 408, 409
gravity effect, 407
Helmert ellipsoid, 94
Helmert height, 165, 168, 304
as approximation, 168
Helmert, Friedrich Robert, 133
Helsinki astronomical observatory, 155,
156
Helsinki harbour, 154, 303, 330
Helsinki University of Technology (HUT,
TKK), 367
Helsinki, Finland, 303
Himalayas, 135
Hirvonen, Reino Antero, 246
Hirvonen’s geoid model, 367
Hofmann-Wellenhof, Bernhard, 368
homogeneity

of data precision, 267

of gravimetric data, 295
homogeneity assumption, 239, 240
horizontal gradient, of gravity anomalies,

209

hour angle, of the Moon, 351
Hubble Space Telescope, 3
Huygens, Christiaan, 275
HY-2A (satellite), 321
hydrodynamics, 359
hydrosphere, 344

I
IAG (International Association of
Geodesy), 227, 365
ice age, last, 306, 312, 315
ice cap, 304
ice load, 306, 316
history, 315
ice sheet, 314, 316
Laurentide, 312
ice, multi-year, 341
ICET, 366
ICGEM, 366
IDEMS, 366
identity matrix, 265
1GeC, 365, 366
1GeS, 365
IGFS, 365, 366
ill-posed problem, 197
inclination, orbital, 334, 335, 337
of the Moon, 353
incompressibility, 21, 383
independence, statistical, 249
India, 321
indirect effect, 122
of a constant terrain, 408
of Bouguer reduction, 145, 197
of Helmert condensation, 197, 408,
410
of isostatic reduction, 145, 148, 197
of tidal potential, 357, 359
Indonesia, 340, 345
inertial tensor, 65
instantaneous length, of spring, 281
Institut fiir Erdmessung (Hannover,
Germany), 225
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Institut fiir Erdmessung, Hannover
(Germany), 366
integrability, 396
integral equation, 2
integration by parts, 394
intercomparison, absolute gravimeters,
287, 289
International Isostatic Institute, 367
International Union of Geodesy and
Geophysics (IUGG), 365
interpolation from grid, 217, 218
invariant, 393
inversion calculation, 218, 224
inverted barometer, 301
ISG, 365
isostasy, 136, 137
modern understanding, 141
isostasy hypothesis, 135
isostatic anomaly
definition, 143
interpolation, 143
prediction, 143
Southern Finland, 144
isostatic compensation, 137, 139
definition, 135
percentage, 145
isostatic equilibrium, 276
isostatic geoid, 144
interest, 145
isostatic hypothesis, 136, 137, 143
isostatic reduction, 143, 202
description, 145
and density layers, 147
residual field, 143
isotropic density distribution, 9
isotropic process, 246
isotropy, 189
of the disturbing potential, 255
of the viscosity, 315
isotropy and spectral representation, 189
isotropy assumption, 241
Italy, 366
iteration
calculation of orthometric height,
167, 168
orthometric height

Index

calculationiteration, 158

J
J2 (dynamic flattening), 71, 93, 335
Jacobi, Carl Gustav Jacob, 189
Jacobi’s determinant
definition, 381
map projection co-ordinates, 215
polar co-ordinates, 211, 381
spherical co-ordinates, 189, 213, 241,
381
Jason (satellites), 321, 337
Java Sea (Dutch Indies, Indonesia), 276
Jerry (GRACE satellite), 344
Joensuu (Finland), 289

K
Kaivopuisto (Helsinki, Finland), 155, 156,
303
Kater, Henry, 276
Kater’s reversion pendulum, 276
Kaula, William, 262
Kepler, Johannes, 208, 333
Kepler’s laws, 333
Kepler’s orbital elements, 334
Kepler’s second law, 372, 373
Kepler’s third law, 333, 338, 350
kernel modification
advanced, 206
coefficients, 206
degree, 204
sharp cut-off, 205
Wong-Gore, 205, 206
Kevo (Finland), 289
Kirkkonummi (Finland), 290, 303
KK]J (National Grid Co-ordinate System),
116
Knudsen, Per, 227
Kolkata (India), 136
Krasovsky ellipsoid, 94
Kronecker delta, 265
Kronstadt (Russia), 155
Kuusamo (Finland), 289
Kéaridinen, Jussi, 295

L
LaCoste, Lucien, 280

Index

Lageos (satellite), 333
land uplift
absolute, 305
Fennoscandian, 316
post-glacial, 303, 305, 367
mechanism, 307
relative, 305
Laplace equation, 39, 297
definition, 39
definition, 15
basis solutions, 50
in ellipsoidal co-ordinates, 72
in polar co-ordinates, 45
in rectangular co-ordinates, 41
in spherical co-ordinates, 50, 411
linearity, 40, 41
solution, 39
transformation, 40
Laplace operator (A), 379
definition, 15, 39
linearity, 236
Laplace, Pierre-Simon de, 15, 379
Lapland (Northern Europe), 122
laser interferometer, 284
latitude
astronomical, 88, 103, 116
geocentric, 48, 50, 92
geodetic, 92, 100, 103, 219
geographic, 92
reduced, 50, 92, 100
types, 92
least-squares adjustment, 330
least-squares method, 286, 304
ordinary, 327
Legendre function, 51, 53, 415
fully normalized, 397
of the second kind, 72, 75
Legendre polynomials
as a basis, 395
figure, 54
fully normalized, 63
orthogonality on the interval
[-1,+1], 61
orthogonality on the unit sphere, 63
orthonormality on the unit sphere,
63

table, 54
Legendre, Adrien-Marie, 53
Legendre’s equation, 395, 415
Lego™ brick, 24
Leibniz University (Hannover, Germany),
366
Leibniz, Gottfried Wilhelm, 1
level surface, 86, 156, 157, 302, 347
definition, 85
level, bull’s eye, 279
levelling, 88, 157, 326
principle, 153, 154
geostrophic, 308
new technologies, 367
relativistic, 175
steric, 308
levelling instrument, 153
levelling line, 174, 326
levelling staff, 153
levelling, of gravimeter, 279
lever beam, 278, 283
lever motion, 313
linear partial differential equations,
theory of, 40
linear regression, 323
Liouville, Joseph, 395
local terrain effect, 295
localized kernel, 194, 201
location vector, 64
of a mass element, 65
Lohja (Finland), 358
long water-tube clinometer, 358
longitude
astronomical, 88, 103
geocentric, 48
geodetic, 103
of the Moon, 353, 354
lookup table, 400
Love number, 356, 357, 359, 361
determination, 358
GNSS, 358
Love, Augustus, 356
lunar laser ranging (LLR), 284

magnetic field, 289
of Earth, 145, 290
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Maldives (Indian Ocean), 313
map projection co-ordinates, 213, 214
map projection plane, 203
mareograph, see tide gauge, 305
Mars (planet), gravity field, 263
mass density, 16
mass density layer, 1, 197
double, 19, 31, 409
single, 17, 31, 133, 146, 181
mass distribution inside the Earth, 33
mass point
underground, 273
mass point, underground, 224
mass surface density, 18
matter density, 11, 383
Mauna Kea, 151
Maxwell, James Clerk, 16
mean geoid, 359
mean height, of satellite orbit, 333, 335
mean sea level, 109, 156, 302
definition, 301, 302
global, 303, 304
global location, 113
mean sea surface, 334
measurement axis, 283
measuring telescope, 153
mechanics, of the solid Earth, 358
Meissner effect, 290
Mekong (river), 345
Melchior, Paul, 354
meridian convergence, 218
meridian ellipse, 92
mesh size, of grid, 210
mesoscale eddy, 301, 311
metal fatigue, 283
metallurgy, 283
Metsédhovi research station (Finland),
155, 289-291, 303
microgal (uGal), 111
microseismicity, effect on gravimeter,
282, 285
microwave link (GRACE), 345
mid-Holocene highstand, 313
Milano (Italy), 225, 365
milligal (mGal), 111
Min, Erik de, 225

Index

minimum energy state, 155
mirror antisymmetry, 55, 56
mirror symmetry, 55, 56, 61
missile, submarine-launched ballistic,
319
mixed covariance, 262
Mohorovici¢, Andrija, 148
Mohorovici¢ discontinuity (“Moho”),
148, 232
Molodensky theory, 32, 115
Molodensky, Mikhail Sergeevich, 32, 115,
121, 159, 160, 368
Molodensky’s method, 196
height anomaly, 201
linearization, 199
linearization error, 201
Molodensky’s proof, 160, 163
Molodensky’s realization, 162
momentum
angular, 370
conservation, 372, 373
per unit of mass, 372
linear, 371
Mongolia, 229
monopole, 65, 66
monsoon, 345
Moritz, Helmut, 368
mosaic, 57
mu-metal, 290
Munk, Walter, 321
Mikinen, Jaakko, 158

N
Né6o (height system), 154, 227, 303
N2ooo (height system), 155, 228, 303
nabla (V, operator), definition, 9, 374
National Geospatial-Intelligence Agency
(NGA), 365
National Land Survey of Finland, 290,
367
Navy, United States, 319
network hierarchy, 288
Neumann, Carl Gottfried, 69
Newton, Isaac, 2, 13
Newton’s law of gravitation, 1, 230
definition, 2
spherical Earth, 296

Index

Newton'’s law of motion, 4
Newton'’s theory of gravitation, 1, 16
NGA (National Geospatial-Intelligence
Agency, US.), 70
Niethammer, Theodor, 169
Niethammer’s method, 169
NIMA (National Imagery and Mapping
Agency, U.S.), 70
NKG WG for Geoid and Height Systems,
367
NKG2004 (geoid model), 367
NKG2o015 (geoid model), 367
NN (height system), 155
noise
definition, 243
in altimetry observations, 325
observational, 243
noise variance matrix, 243, 253
Nordiska Kommissionen for Geodesi (NKG),
366
norm, of a vector, 5, 370, 386
Normaal Amsterdams Peil (NAP), 155
normal component, of a vector field, 380
normal correction (NC), 173
equation, 173
staff interval, 174
normal derivative, 18
existence, 29
of potential, 18
on surface of sphere, 25
normal direction, 18
existence, 29
normal equation, 286
normal field
choice, 170
high degree, 247
normal gravitational potential, 82
normal gravity, 247
definition, 81
at sea level, 117
calculation, 108
GRS80, 94
linearity along the plumb line, 160,
162, 170
on the equator, 91
on the poles, 91

on the reference ellipsoid, 91, 93
normal gravity field, 82
and reference ellipsoid, 104
ellipsoidal, 92
GRS80, 292
normal gravity potential, 82, 91
normal height, 158, 162, 165
calculation, 170, 173
iteration, 170
precise calculation, 170
normal matrix, 327
normal potential, 81
definition, 81
global average, 113
gradient, 81
GRS8o, 93
in a co-rotating system, 95
in spherical harmonics, 98
on the reference ellipsoid, 91, 93, 161
over the equator, 94, 95
normal vector, of a surface, 380, 382
North American Vertical Datum 1988
(NAVDSS), 155
Norwegian Sea, 140
Nottingham (Great Britain), 27
Nouvel, Henri SJ, 155

o
obliquity, of Earth rotation axis, 363
observation equation, 253, 326
adjustment constraint, 327
of ballistic gravimetry, 286
of crossover adjustment, 325, 329,
349
of satellite altimetry, 324
ocean current, 310, 311
GOCE mission, 311
inversion problem, 348
measurements, 308
permanent, 302
tilt, 309
unit, 310
variation, 311
oceanography, 359
octave (programming language), 61, 338
Ohio (USA), 137, 246
Ohio State University, 70, 71, 367
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one-Earth problem, 238
operator
linear, 33, 389, 391
self-adjoint, 391, 394
spectral representation, 259
optical lattice clock, 175
optic-fibre cable, 176
optimality, least-squares, 245
orbit
35-day, 339
no-shadow, 335, 336
retrograde, 335, 337
satellite, 333
Sun-stationary, 335-337, 346
Sun-synchronous, 335, 349
three-day, 339
orbit error, 325, 329
bias, 331, 332
correction, 321, 342
of satellite, 324, 325
trend, 330, 332
orbit prediction, 330
orbit-error correction, 325
order, harmonic, 51
orientation, of a surface, 382
orthogonal basis, 385, 396
complete, 391
Legendre polynomials, 395
orthogonality
of degree constituents, 257, 260
of functions, 395
of surface spherical harmonics, 204
orthometric correction (OC), 172, 173
equation, 173
staff interval, 174
orthometric height, 104, 155, 165
definition, 88, 157
calculation, 157, 170, 172
precise calculation, 167, 169
orthonormal basis, 9, 64, 83, 85, 386, 391
definition, 5, 373
orthonormality, 184
of surface harmonics, 257
oscillation equation, 278, 281, 393, 395
as an eigenvalue problem, 393
Ostrobothnia (Finland), 303

Index

OSU model, 71

P
parallellogram, 371
path integral, 9, 381
Peltier effect, 312
Peltier, W. Richard, 313
pendulum clock, 275
pendulum equation, 275
peneplain, 140
period
fortnightly tide, 353
orbital, 333
oscillation, 278, 281, 282
pendulum, 275
theoretical tide, 355, 358
Peru (South America), 122
petroleum extraction industry, 227
phase
of water, 312
phase angle
of atom, 288
of matter waves, 287
tidal, 336
physical geodesy
geometry and physics, 47
potential convention, 10
textbook, 368
physical modelling, 308
physical theory, nature, 1
phytoplankton, 309
Pizzetti, Paolo, 92
planet as a mass point, 13
plasma, 176
plasticity, 282
plate tectonics, 141
Plesetsk Cosmodrome (Russia), 343, 346
plumb line, 86
definition, 81
bending, 136
plumb-line deflection, 103, 104, 119, 135,
186
definition, 81
and the geoid, 104
as a functional, 237
at sea, 319
in Finland, 104

Index

local contribution, 209
observed, 105
definition, 103
plumb-line direction, 103, 107, 294
absolute, 358
measurement, 88
point mass, underground, 32
point variance, 393
Poisson equation, 25, 169, 218
definition, 16
data point, 191
evaluation point, 191
for computing a harmonic field
from surface values, 191
for rAg, 192
gravity potential, 85
spectral form, 193
Poisson kernel for gravity anomalies,
193, 194
Poisson, Siméon Denis, 16
polar holes, 335, 337
polar motion, Earth, 358
polar radius, 93
polynomial fit, of geoid surface, 304
potential
definition, 5
extended body, 6
exterior, 20, 34, 41, 113, 121, 145
of the topography, 404
interior, 20
of the topography, 403
mass line, 13
origin of word, 27
point mass, 10, 15, 33, 64
pointlike body, 6
set of mass points, 11
solid body, 11
spherical shell, 6, 7, 9
terrain point, 154
topography, 14
uniqueness, 379
potential difference, 17, 88, 154
potential energy, 10
potential field, 2, 39
local behaviour, 40
of a dipole, 65

of a mass density layer, 1

vertical shift, 45, 68
potential theory, 2
Potsdam system, 277, 289
PRARE (instrument), 320
Pratt, John Henry, 136
Pratt-Hayford hypothesis, 136
Pratt-Hayford Pratt-Hayford hypothesis,

137

precession, orbital, 335
precise levelling, 154, 303, 307
prediction, 242

homogeneous, 252, 253
Prey reduction, 168
Prey, Adalbert, 168
principal axes, of error ellipse, 393
Principia (book), 2
prism integration, of terrain correction,

128

prism method, of terrain correction, 230
propagation delay

ionospheric, 324

tropospheric

dry, 324
wet, 324

propagation of covariances, 260, 262
propagation of variances, 244, 254
propellant, GOCE, 295
propeller aircraft, 294
proper time, 174
pseudo-force, 294

aircraft motions, 293

Earth rotation, 82

moving on a rotating Earth, 84
Paijanne, Lake (Finland), 158
Pythagoras theorem, 5

Q
quadrature, 208
quadrupole, 66
quadrupole moment

of the Earth, 65
quantization, 393
quantum mechanics, 40
quantum number, 395
quantum state, 175, 287
quantum theory, 287
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quasi-geoid, 115, 158, 163, 164

quasi-geoid height, 159, 165

quasi-geoid model, 115, 145
computation, 227

R
radar, microwave, 319, 342
radio energy, 323
radius of curvature
principal, 314
transversal, 49
Raman effect, 287
Rapp, Richard H., 71, 263
recursion
calculation of orthometric height,
167
computation of Fourier basis
functions, 55
computation of Legendre
polynomials, 60
definition of normal height, 162
recursive algorithm, 53
reduction to sea level, 196
redundancy, 332
reference benchmark, 156
N60, 303
N2000, 303
reference ellipsoid, 49, 109
as a level surface, 81, 92
reference latitude, 219, 221, 222
reference radius, 99
reference-surface thinking, 115
regularization, 197, 232
relativity theory, 1
relaxation time, 316
remote sensing of sea ice, 341
“Remove” step, 198, 215
Remove-Restore method, 122, 202, 203,
410
renormalization, 232
repeat period, of a satellite orbit, 334
repeat track, 342
research school, international, 227, 366
residual, 286
residual terrain modelling (RTM), 198,
200
indirect effect, 199

Index

resolution, of measurement, 235
resonance, 337
rest length, of spring, 277, 279
“Restore” step, 199, 215, 410
retracking, 340, 341
return pulse
analysis, 340
time measurement, 340
travel time, 341
rheology, 315
Richer, Jean, 275
rising dough model, 306
Robin, Victor Gustave, 112
rocket engine
ionic, 346
Romberg, Arnold, 280
Romberg, Werner, 208
root, of mountain, 135, 136, 143
density, 136, 137
depth, 138, 139
rotational potential, 82
rotational symmetry, 79, 221, 263, 265,
413
Royal Society of Edinburgh, 16
Royal Society of London, 2, 4, 16, 114

S
Sacks, Oliver, 4
salinity (sea water), 302, 309
salinity gradient, 308
sampling, spatial, 235
San Francisco (USA), 366
Sandwell, David, 229
Sanso, Fernando, 225
SARAL/AltiKa (satellite), 321
saros (lunar motion periodicity), 302
satellite altimetry, 71, 307, 319
concepts, 323
geoid, 341
location of sea surface, 347
measured range, 321
measurement method, 321
orbital geometry, 331
results, 340
sea-surface variability, 341
satellite geodesy, 262
satellite laser ranging (SLR), 333

Index

satellite orbit
Sun-stationary, 336
satellite orbit perturbations, 71, 235
satellite-to-satellite tracking (SST), 345
Saturn (planet), ring, 275
scalar field, definition, 373
scalar product, 207
definition, 369
commutativity, 385
in a function space, 394
in a vector space, 5, 385, 391
linearity, 385
of force and path, 370
of Legendre polynomials, 61, 395
of operator and vector, 375
of two functions, 386
of vector fields, 369
of vectors, 370
on the sphere, 396
Schrodinger equation, 40
Schrodinger, Erwin, 40
Schrodinger’s cat, 40
Schwarz, Klaus Peter, 225
Schwarzschild metric, 174
Schwarzschild, Karl, 174
sea ice, 340
sea-floor pressure, 344
sea-level equation, 313
convolution, 314
data point, 314
evaluation point, 314, 315
integration point, 315
sea-level oscillation, amplitude, 308
sea-level rise, 304
global, 321
Holocene, 315
Seasat (satellite), 319
sea-surface topography, 302, 310, 321,
325, 343
definition, 302
change, 305
determination, 307
global, 309
map, 311
mapping, 320
sea-surface variability, 325, 334, 341

secular effect, in sea level, 302
seismicity, 316
seismology, 34, 135
seismometer, 291
self-adjoint differential equation, 393, 395
semi-major axis, 100, 333, 334
Earth ellipsoid, 50, 93
semi-minor axis, 100
semi-minor axis, of the Earth ellipsoid,
50,93
sensitivity, instrument, 278, 279
Sentinel 3A (satellite), 321
separation of variables, 41, 46, 50, 413,
415
shoebox world, 42, 230
Sideris, Michael, 225
sight axis, of a level, 153
signal covariance matrix, 243
signal variance, 246
signal variance matrix, 242
of gravity anomalies, 248
signal, definition, 243
significant wave height (SWH), 323, 324
Simpson integration, 209
Simpson, Thomas, 208
Simpson’s rule, 208
singularity, of normal matrix, 327, 330
sink (vector field), 21, 376
Skylab (space station), 319
slowing-down ratio, of time, 174
snow clearing, 291
Sodankyld (Finland), 289
solar panel, 335
Solar time, 337
Solheim, Dag, 227
solid body, 11
solid spherical harmonic, 51
Somigliana, Carlo, 92
Somigliana—-Pizzetti equation, 92
source (vector field), 10, 21, 375, 376
source function, 21
space domain, 45, 217
space geodesy, 71
spatial frequency, 217
spectral coefficients, 51
spectral constituent function, 66
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sphere
celestial, 396
spherica-harmonic expansion
degree one, 64
spherical Bouguer reduction, 133
mass effect, 132
spherical cap, 203
spherical harmonic
algebraic sign, 58
sectorial, 57, 58
semi-wavelength, 57, 59, 76
tesseral, 57, 58
wavelength, 57
zonal, 57, 58
spherical shell, 7, 8
spherical symmetry, 316, 357
of mass distribution, 34
of the Earth, 239, 241
spherical-cap
integration, 143
spherical-harmonic coefficient
fully normalized, 397
spherical-harmonic coefficients, 258, 335
as linear functionals, 237
fully normalized, 70
GRS8o, 96, 97
spherical-harmonic expansion, 2, 59, 215,
247
coefficients, 51
ellipsoidal gravitational field, 96
first terms, 96
global, 70
high degree, 76
model, 71, 204
normal gravitational potential, 96
of the topography, 59
resolution, 59
rotational symmetry, 61
spheroid
Bruns, 97
Helmert, 97
spirit level, 153
Spitsbergen (island), 142
spline, 225
spring balance, linear, 277
spring constant, 277

Index

spring lengthening, 278
stability (gravimeter), 291
stabilized platform, 283, 293
staff reading difference, 172
stationarity, of a stochastic process, 242
stationary field, 5
steel, 283
stepwise network densification, 288
stereographic map projection, 214
Sterneck, Robert von, 276
stochastic process
definition, 237
ergodic, 239
of location, 238
on the Earth’s surface, 238
stochastic quantity, 237
realization, 238
Stokes curl theorem, 380, 381
Stokes equation, 114, 181, 203, 213, 306
at sea level, 200
differentiation, 186
evaluation point, 181, 213
exterior space, 181
geoid height, 181
in collocation, 252
in plane co-ordinates, 215
inner zone, 209
integration, 181
observation point, 181
spectral form, 179
Stokes equation and harmonicity, 196
Stokes kernel, 114, 180, 182, 221
closed expression, 182
modified, 204, 205
on the Earth'’s surface, 182
re-written, 219
smoothness, 207
spectral form, 181
Taylor series expansion, 221
two-dimensional, 185
Stokes, George Gabriel, 32, 114
Strang van Hees, Govert, 220, 225
Sturm, Jacques, 395
Sturm-Liouville problem, 395
submarine measurements, 276
subsidence, land, 312

Index

superconduction, 289
superconductivity, 290
superspring, 285
support latitude, 220
surface element, oriented, 381
surface normal
Earth, 112
ellipsoidal, 103, 107
surface spherical harmonic, 50, 57, 415
as map, 58
fully normalized, 397
plotting, 61
surface spherical harmonics, linear
combination of, 204
surface spherical-harmonic
plotting, 62
sverdrup (unit), 310
sweet water, 301
swinging time, 275
symbolic algebra software, 195
symmetric matrix, eigenvectors, 391
Synthetic Aperture Radar Altimeter
(SRAL), 321

T
tangent plane, 213, 214
to a level surface, 86
to the Earth, 309
tapering, 226
tapering function, 225
25%, 225
Taylor series expansion, 13, 14, 20
Helmert condensation, 404, 405
tea break, 291
telluroid, 115, 163
definition, 115
telluroid mapping, 115, 164
temperature (sea water), 302
terrain correction, 150
terrain correction (TC), 126, 128, 130, 168,
229, 230, 407
bias, 128
calculation, 128
data point, 230
equation, 128
evaluation point, 230, 232
example, 129

in the exterior space, 232
spherical geometry, 132
values, 129
thermal expansion
of pendulum, 275
of sea water, 304
thermostat (gravimeter), 283
thruster, on-board, 334, 339
tidal decomposition equation, of Laplace,

353
tidal field, 297
tidal force, 355, 358
tidal loading
atmospheric, 361
ocean, 361, 362
tidal loading, ocean, 362
tidal potential, 351, 357
tidal reduction, permanent deformation,
359
tide, 13, 301, 321, 325
amplitude, 358
diurnal, 336, 354, 355
fortnightly, 354
frequency, 357
ocean, 324, 361
period, 357
permanent part, 358, 359, 362
deformation, 358
effect on height difference, 361
geoid effect, 360
phase angle, 358
semidiurnal, 354
semi-diurnal, 336, 355
solid-Earth, 324, 367
theoretical, 352, 355, 356, 358
tide gauge, 303, 305
tide-free geoid, 359, 361
Tikhonov regularization, 330, 332
Tikhonov, Andrey Nikolayevich, 330
Toeplitz circulant matrix, 266
Toeplitz, Otto, 266
Tom (GRACE satellite), 344
tomography, seismic, 144
TOPEX/Poseidon (satellite), 303, 320,
322,337
topographic-potential integral
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Ot

evaluation point, 403
observation point, 403
topography, 125, 132
topography shift to inside geoid, 197
Torge, Wolfgang, 368
torque, 278
torsion balance, 4, 297
total mass
body, 12
of a column of air and water, 344
of a column of matter, 137
of the Earth, 70, 93, 99, 113
Toulouse (France), 365
trace, of a matrix, 393
transformation surface, geoidal, 304, 367
translation (parallel shift), 330
trench, ocean, 276
triangle inequality, 12
Trieste (Italy), 155
true anomaly, 334
Tscherning, Carl Christian, 227, 263
Tscherning-Rapp formula, 263
Tukey taper, 225
turbulence, in a vector field, 377
Turku harbour, 330
Turku, Finland, 330
Tuvalu (Pacific Ocean), 313
Tytyri limestone mine (Lohja, Finland),
358

8]
uncertainty
a priori, 330
inside the Earth, 235
of co-ordinate measurement, 294
of estimate, 242, 251
of observation, 235, 249, 253
of vertical acceleration, 294
uniform convergence, 389, 403, 405
unit matrix, 265
unit sphere, 396
unknown (adjustment parameter), 286,
332
upper culmination, of the Moon, 351

\%
Vaasa (Finland), 289

Index

variance, 237
variance function, of a stochastic process,
238
variance matrix, of location, 392
variance of prediction, 249, 251, 254, 269
definition, 244
minimization, 245
vector, 369
vector field
definition, 373
differentiable, 21
vector space, 386
abstract, 385, 395
n-dimensional, 389
vector sum, 85
vectorial product, 370, 371
of operator and vector, 377
Vening Meinesz, Felix Andries, 143, 189
submarine measurements, 276
Vening-Meinesz equations, 189, 209
Verbaandert-Melchior pendulum, 358
vertical displacement, of test mass, 281
vertical gravity gradient, 94, 117, 286
anomalous, 196, 199, 201, 218
at sea level, 196
kernel, 194, 195
Earth surface, 111
free air, 296
free-air, 168
inside rock, 168
vertical normal gravity gradient, 116,
130, 165
vertical reference system, see height
system, 330
viscosity, 315
viscous relaxation mode, 316
Von Sterneck device, 276

w
water vapour radiometer, 324
water, flowing upward, 158
wave equation

of matter, 40

relativistic, for the electron, 25
wave number, 231
weighing visitors, 291
weightlessness, 295

Index

Wenzel, Hans-Georg, 361

wind field, 377

wind pile-up, 301

wire pendulum, very long, 276
wire-frame model, 330

work integral, 370, 380, 382

world aether, 1

World Geodetic System 1984 (WGS84),

65, 93

V4
zenith angle, of the Moon, 351, 352
zenith tube, 358
zero geoid, 359
zero potential
at infinity, 17
at mean sea surface, 17
zero topography compensation level, 139
zero-length spring, 279-282
how to build, 280



