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Fig. 1. LLMCode interface for researcher-aligned LLM-assisted qualitative coding. The interface enables users to compare the model’s
output to their own coding, identify misalignments between the human and LLM annotations, and correct these through iterative
refinement. To aid this process, texts can be sorted using two coding quality metrics, helping users identify areas for improvement.
Users can then adjust the prompt instructions and coding examples provided to the model to enhance alignment.

The use of large language models (LLMs) in qualitative analysis offers enhanced efficiency but raises questions about their alignment
with the contextual nature of research for design (RfD). This research examines the trustworthiness of LLM-driven design insights,
using qualitative coding as a case study to explore the interpretive processes central to RfD. We introduce LLMCode, an open-source
tool integrating two metrics—Intersection over Union (IoU) and Modified Hausdorff Distance—to assess the alignment between human
and LLM-generated insights. Across two studies involving 26 designers, we find that while the model performs well with deductive
coding, its ability to emulate a designer’s deeper interpretive lens over the data is limited, emphasising the importance of human-AI
collaboration. Our results highlight a reciprocal dynamic where users refine LLM outputs and adapt their own perspectives based on
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the model’s suggestions. These findings underscore the importance of fostering appropriate reliance on LLMs by designing tools that
preserve interpretive depth while facilitating intuitive collaboration between designers and AI.
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1 Introduction

Designers’ work often builds upon insights derived from qualitative analysis, where human-generated, often textual,
data, such as interview transcripts or online discussions, are systematically examined to identify patterns, thoughts,
and behaviours. There has been an ongoing shift towards this form of evidence-based design1 across design disciplines
[32], wherein insights extracted from human-centred data are used to inform and justify the design choices for new
artefacts, such as products or services.

In parallel with this increasing research orientation, both academia and industry have actively sought ways to
offload the more laborious aspects of qualitative analysis to automated systems, a pursuit that is often motivated by the
intention of increasing the quantity of data that can be feasibly analysed [2] and freeing up time for more creative tasks
such as ideation [12]. The recent emergence of large language models (LLMs) has accelerated this trend, as they exhibit
an unprecedented ability to process, summarise, and generate human-like text, thereby offering a promising route for
automating various stages of qualitative analysis. In fact, several tools and workflows for LLM-driven qualitative coding
have been proposed in recent years, and numerous commercial platforms, such as Atlas.ti2 and Dovetail3, have begun
advertising AI features that claim to transform complex qualitative data into “instant insights” [10].

Few studies, however, have addressed what it means to evaluate the quality of these LLM-generated insights. Prior
work in human factors has shown that the success of automation hinges on humans’ appropriate reliance on it [24],
making researcher-AI trust—a precursor to reliance—an important factor in the effective adoption of AI within research
for design (RfD) [33]. Yet, because evaluation is a key method for establishing warranted human-AI trust [20], the lack
of tailored assessment methods for this context may leave practitioners unsure whether they can rely on AI-driven
insights. There is already evidence of such a phenomenon: while contemporary Computer-Assisted Qualitative Data
Analysis Software (CAQDAS) have long offered increasingly sophisticated AI features, it has been shown that many
researchers only engage with them at a superficial level—often treating the software as little more than an “electronic
filing cabinet” [28] for their manual analysis practices. The significance of this research gap is compounded by the
inherent opaqueness of many qualitative research approaches, which may, if left unaddressed, lead to situations where
low-quality AI-generated research displaces human work, particularly in settings where costs are the primary driver of
decision-making.

1While specialised research-focused design roles such as "user researcher" exist, many design roles fall under the concept of a "practitioner-researcher"
[16], covering a range of responsibilities, one of which being research. For this reason, we use the terms "designer" and "researcher" interchangeably
throughout the paper.
2https://atlasti.com
3https://dovetail.com
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LLMCode: Evaluating and Enhancing Researcher-AI Alignment in Qualitative Analysis 3

In many qualitative methods employed by design practitioners, such as thematic analysis or affinity diagramming
[27], the designer’s introspection and personal interpretation of the data play a central—and necessary—role in shaping
the outcome [5, 40]. This further complicates the question of appropriate reliance when introducing AI-driven tools: on
one hand, the quest for improved scale and efficiency incentivises collaborative systems in which the designer cedes
some autonomy to a machine partner; on the other hand, these AI collaborators lack direct access to the designer’s tacit
knowledge and, by design, may risk homogenising perspectives rather than supporting the unique, reflexive stance
that RfD thrives on [4]. Given that there is no single source of truth in such interpretive approaches, it follows that
one measure of trustworthiness for an AI system may investigate how closely it can align with the perspectives of an
individual designer who is deeply immersed in a given context.

Building on these observations, our research addresses the following question:

• RQ 1: How can we measure the alignment between AI-generated insights and a designer’s interpretive insights?

By developing tailored evaluation metrics for this context, we aim to ensure appropriate reliance on AI-assisted research
tools. These metrics not only provide a foundation for evaluating trustworthiness, but also allow us to explore how
such tools could preserve the diversity of perspectives inherent in design and avoid diminishing the depth of designers’
insights. To further investigate these dynamics, we pose two additional research questions:

• RQ 2: To what extent can an LLM research tool emulate an individual designer’s perspective on data?
• RQ 3: How and to what extent does LLM assistance shape the research insights generated in a design context?

Whilst acknowledging the diverse research practices and methods of designers, in this study we focus on the specific
task of qualitative coding in order to investigate how insights are shaped with and without AI assistance in a structured,
transparent, and quantifiable setting. Coding is a common practice across a wide range of qualitative research domains,
which entails applying labels to segments of qualitative data to systematically capture insightful patterns, concepts, and
ideas [31].

To this end, we introduce a novel open source qualitative coding tool, LLMCode, that integrates two new metrics for
the evaluation of LLM-driven qualitative coding, inspired by established machine learning approaches: Intersection
over Union (IoU) and Modified Hausdorff Distance (MHD). IoU measures how well the LLM identifies salient content
by comparing the overlaps in coded segments between the model and a human baseline, thereby indicating how closely
the model’s focus aligns with that of a human researcher. Meanwhile, MHD, which calculates the embedding distance
between the labels generated by the LLM and a human, focuses on whether the insights and themes extracted by the
model align with those conceptualised by a human. Together, these metrics help us systematically capture where and
how the LLM’s lens on the data diverges from the designer’s.

To explore the implications of LLM-driven insights, we employed LLMCode in two empirical studies. The first
study involved 19 students engaging with the tool in the context of game design research projects. By comparing
participants’ initial manual coding with the same texts coded by LLMCode, we demonstrate that while an LLM may
appear to emulate human coding through in-context learning, this capability significantly diminishes when the model
is prompted to analyse texts with unfamiliar codes, suggesting that LLMs are limited in their ability to replicate human
researchers’ inductive reasoning processes. In a subsequent user study involving a smaller, more diverse sample of
designers, we examined the reciprocal dynamics of influence between researcher and AI during an iterative human-AI
coding process using the LLMCode interface (Figure 1). Our findings suggest that while LLMCode’s metrics assist
researchers in curating examples to align the model with their perspective, they were equally willing to adapt their
own coding practices in response to the model’s outputs, underscoring a bi-directional exchange of insights.
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Contribution: In summary, this work makes two key contributions: (1) introducing a systematic framework for
evaluating and aligning LLM-driven coding within the reflexive, constructivist paradigm that underpins research for
design (RfD); and (2) applying this framework in two empirical studies, generating novel insights into the dynamics of
designer-AI collaboration in research contexts. These findings offer valuable guidance for developers and researchers
seeking to create AI tools that preserve the interpretive depth and richness of qualitative analysis, while still offering
substantial gains in efficiency and breadth of analysis. Our open-source AI-assisted qualitative coding toolkit LLMCode
is published on GitHub: <link omitted for anonymous review>.

2 Background

2.1 AI-AssistedQualitative Research

Existing work on AI-assisted qualitative research predominantly focuses on academic contexts, particularly on tech-
nologies that support qualitative coding—a standardised practice for analysing textual qualitative data. In this process,
researchers annotate segments of text, such as field notes or interview transcripts, with short labels, or codes, to sum-
marise and capture key insights [31]. While coding methods vary across researchers and disciplines, this paper centres
on inductive coding, where codes are generated during analysis rather than being predetermined [31]. This approach
aligns well with the constructivist nature of RfD, making it particularly suitable for studying insight development in
design practice.

2.1.1 AI-AssistedQualitative Coding. Numerous AI-assisted workflows have been proposed for coding, offering varying
levels of automation. Early contributions to the inductive domain include Scholastic by Hong et al. [19], an interactive
system designed to support inductive coding by employing topic modelling to generate code suggestions. Similarly,
PaTAT by Gebreegziabher et al. [15] introduces a novel interface that enables researchers to iteratively refine AI-
suggested patterns.

More recently, a growing body of research has explored the potential of LLM-based systems for automated coding,
offering capabilities that go beyond traditional topic modeling techniques. Unlike topic modeling, which typically
represents a category of texts through selected keywords, LLMs can be provided with a sample of texts and prompted
to generate a human-readable description of the category. Several case studies have examined the use of out-of-the-box
LLMs, such as OpenAI’s GPT-3 [6] and ChatGPT [1], for fully automated coding across a diverse range of qualitative
research projects, including media analysis [12, 17], phenomenological research [18], and the social sciences [46].
Argument2Code [47] exemplifies a more sophisticated automated system, focusing on inductive codebook generation
through a multi-step process employing chain-of-thought prompting.

Another line of research has explored the development of human-LLM collaboration frameworks for coding. Hämäläi-
nen et al. [17] and Dai et al. [8] demonstrated that LLM coding is possible using in-context learning [6], by including
human-annotated few-shot examples of coded texts in the prompt. This process can be further refined through an
iterative dialogue between the researcher and the system [8]. Lopez-Fierro and Nguyen [25] investigate methods to
enhance the transparency of human-LLM coding through visualisations and manual tracing of codebook development.
They found that 39.28% of their final codebook comprised codes influenced by LLM suggestions during the coding
process. Similarly, Sinha et al. [41] reflect on their use of GPT-4 to support grounded theory analysis, observing that the
model facilitated the discovery of new codes.
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2.1.2 Evaluating Outputs and Researcher Perspectives. Most of the aforementioned studies evaluate the LLM-generated
outputs either qualitatively [12, 15, 18, 19, 25, 41] or using Cohen’s Kappa [8, 12, 46], a widely employed metric for
measuring inter-annotator agreement in collaborative coding. However, Cohen’s Kappa is only applicable in deductive
coding, where the annotators use a shared codebook. Additionally, Dai et al. [8] and Zhao et al. [47] proposed methods
using cosine similarity between word embeddings to measure the semantic similarity of human- and LLM-generated
codebooks. Building on this, our work introduces an embedding-based method to compare code annotations for
individual inductively coded texts.

Need-finding studies on AI-assisted qualitative coding by Jiang et al. [21] and Feuston and Brubaker [14] have
examined researchers’ attitudes towards human-AI collaboration in qualitative research, motivated by the growing
disparity between advancing coding tools and comparatively outdated industry practices. While these studies highlight
tedious sub-processes within coding that could be streamlined through AI methods, the authors caution against the
complete automation of research, stressing the importance of maintaining user agency and supporting serendipitous
insight discovery. Specifically, they argue that AI should act as a supportive assistant rather than an “eager” collaborator
[14], whose unsolicited suggestions might undermine the researcher’s central role.

Several studies have taken a critical perspective on the use of LLMs for qualitative analysis. Ashwin et al. [2]
employ ChatGPT (gpt-3.5-turbo) and Llama 2 (13b) [42] in coding semantically complex semi-structured interview
data, demonstrating that the outputs often exhibit systematic bias, potentially leading to misleading interpretations in
subsequent analysis. They emphasise the necessity of human expert annotations to validate LLM outputs and suggest
that LLMs are best suited for extending traditional qualitative analysis to larger corpora—provided the analysis begins
on a smaller scale with the more nuanced manual work of human researchers. Similarly, while Sinha et al. [41] found
LLMs useful for identifying gaps in their own grounded theory analysis, they caution that relying on such tools could
discourage the deep immersion in data required by grounded theory, potentially leading to superficial interpretations.
Rather than fully depending on LLMs for coding, the authors recommend researchers independently code their data
before comparing it with LLM-generated outputs.

2.2 Trust in Automation

The trust an operator places in an automated system is widely recognised as a significant factor contributing to
appropriate reliance and the success of automation within organisations [24]. Research shows that people respond to
technology socially [24], which means that trust may hinge on factors akin to interpersonal trust, such as perceived
ability, integrity, and benevolence [29]. However, ideally, trust in automation should align with the system’s actual
capabilities—its trustworthiness—such that the operator does not place too little (i.e., distrust) or too much (i.e., overtrust)
trust upon the system, which may lead to under- or overreliance, respectively [24].

In the context of human-AI trust, Jacovi et al. [20] define warranted trust as trust that arises from an AI system’s
trustworthiness. According to their framework, warranted trust can be established through either intrinsic or extrinsic
factors. Intrinsic trust is closely tied to explainability and is developed when the AI’s observable decision-making
process aligns with the human’s expectations of how the process should function. In contrast, extrinsic trust is based on
an evaluation of the AI’s behaviour or outputs. This encompasses not only the model’s performance but also confidence
in the evaluation methods used to assess the system.

Building on the work of Jacovi et al. [20], Oksanen [33] highlights the difficulty of objective insight evaluation as a
barrier to the development of extrinsic trust in the context of AI-assisted RfD. In the following section, we build a case
for evaluating AI-driven design insights based on their similarity to an individual designer’s insights. This approach
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positions AI-assisted design research as an inherently collaborative process, where the AI system and the designer
work together, with the designer’s choices serving as a baseline for comparison.

2.3 Research for Design

In this paper, we focus on research for design, defined as the process of need-finding and exploration that takes place
within many practical design project contexts [45]. The necessity of research within design projects stems from the
increasing complexity of design briefs, which require designers to address not only form and style but also “the broader
context in which their designs will be used” [32]. This research is frequently human-centred and qualitative in nature,
aiming to foster empathy for the end users that may "inform and inspire" the artefact that is being created [39].

At the same time, unlike many forms of research conducted within traditional science, RfD does not aim for absolute
objectivity by grounding every insight in verifiable evidence. On the contrary, designers are regarded as “expert subjects”
valued for their “distinctive ways of seeing and doing their work” [3]. In other words, RfD is inherently reflexive, with
each designer bringing a unique, situated perspective to a project; their background, experiences, and context all shape
how they interpret problems and envision solutions [16].

This individuality and reflexivity underpins the diversity of thought that design thrives on. Interdisciplinary collabo-
ration is considered one central aspect of design thinking: as diverging perspectives converge in a collaborative setting,
it may result in innovative ideas that break from the mainstream [7, 30]. As proposed by Krippendorff [23]: "Design is
fundamentally concerned with innovation, with making changes happen, and designers are especially challenged by
common beliefs in what cannot be done." Accordingly, RfD is not only concerned with how this are, but also about
uncovering and inspiring novel ideas for how things could be [13].

These prevalent theorisations of design practice introduce a tension when contrasted with the emerging use of
LLM-driven systems in research. LLMs, by virtue of their training, have been described as “stochastic parrots” [4], in
that they are trained on vast corpora of text and generate outputs reflecting aggregate surface patterns already present
in that data. Such systems are—by design—"average" thinkers, which is in direct juxtaposition to the aforementioned
objectives of design to envision novel futures that have not yet transpired [26], by the way of individual perspectives.
If designers allow LLMs to strongly shape or homogenise their thought processes, it could flatten the diversity of
perspectives and reduce the likelihood of genuinely novel insights. This effect is further exacerbated if the same AI
system is used by many designers, nudging everyone toward similar conclusions or ideas.

Due to the subjective and contextual nature of RfD, design insights can be challenging to evaluate objectively. This
complexity, combined with the potentially superficial yet highly convincing outputs generated by LLMs [4], raises
questions about the risk of overtrust—and consequently, overreliance—on LLM-driven insights in this context. While
further investigation is needed, there is a potential concern that LLM systems could unduly influence designers’ situated
interpretation of data. Conversely, systems that focus on emulating an individual designer’s viewpoint, rather than
asserting their own generic perspective, may offer promising opportunities. Such systems could potentially scale
research to much larger corpora while enabling each designer to maintain their personal reflexive stance.

3 LLMCode

LLMCode is an open-source toolkit for qualitative coding with LLMs. It supports a workflow based on initial manual
coding and in-context learning, similar to that proposed by Hämäläinen et al. [17] and Dai et al. [8]. This approach
requires—in addition to the raw input texts to be coded by the model—a smaller example set that has already been
manually coded by a human researcher. LLMCode is differentiated from other qualitative coding tools by its novel
Manuscript submitted to ACM
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integration of two quality metrics—IoU and MHD—to evaluate and improve the alignment between the human user’s
and the LLM’s coding.

The toolkit was developed through an iterative design process, with the aim of improving the trustworthiness of
LLM-driven qualitative coding. In the first of our two studies using the system (Section 4.1), participants interacted
with the LLMCode functions in a Jupyter Notebook environment [22], where they were able to call upon LLMCode’s
functions through Python code and produce tables and visualisations of its output. Based on this study, we identified
that in order to fully take advantage of the system’s capabilities, users would require a custom user interface. Using our
findings from the first study, such an interface was subsequently developed and evaluated in the second study (Section
4.2).

LLMCode includes functions for both inductive and deductive coding. In the studies reported in this paper, participants
used the toolkit’s code_inductively_with_code_consistency function for automated inductive coding. The system
prompts an LLM to annotate each text using markdown notation, where coded segments (highlights) are bolded by
surrounding them with double asterisks **, immediately followed by a list of code labels enclosed in superscript <sup>
tags. This structured output format allows the model to place several highlights with distinct codes across a single
text, where most existing work on LLM-assisted coding has focused on the assignment of codes to entire texts. The
function processes texts sequentially, and each newly generated code is added to a codebook which is included in
subsequent prompts. Similar to manual inductive coding, the codebook is initially empty and expands as new codes
emerge during the process. For datasets where context is crucial, the system accommodates contextual information
within the prompt, such as preceding messages in an online discussion thread. An example of the full prompt structure
is shown in Appendix A.

The model is instructed to reproduce each input text verbatim, adding only the code annotations, in order to retain
the full meaning of the original data. However, the input data may occasionally contain spelling variations or other
irregularities that the model was observed to sometimes “correct” despite explicit instructions not to alter the text.
To ensure that the model does not hallucinate or change the data beyond the correction of minor spelling errors,
LLMCode’s functions check each model output for discrepancies and attempt to correct these through reconstructing
the annotations onto the original text using approximate string matching.

3.1 CodingQuality Metrics

LLMCode utilises Intersection over Union (IoU) and Modified Hausdorff Distance (MHD) to quantify human-LLM
alignment focusing on both: (1) what text is highlighted; and (2): how these highlights are coded. Table 1 illustrates the
two metrics with interview data examples.

3.1.1 Intersection over Union. IoU, also known as Jaccard Index [37], assesses the alignment of LLM and human
highlights, providing insights into how well the LLM identifies key content and how closely the model’s focus matches
that of a human researcher. Specifically, IoU expresses the overlap of human and LLM highlights with a score that is
between zero (no overlap) and one (exactly the same text highlighted), and accounts for differences in both the scope
and precision of the LLM’s highlights relative to human annotations. IoU is a common success metric in other areas of
machine learning, e.g., for measuring the overlap of object detection bounding boxes [38] or the quality of extractive
text summarization [43]. LLMCode implements IoU on the level of individual characters.

3.1.2 Modified Hausdorff Distance. Weutilise theMHDmeasure [11] to evaluate the alignment between codes generated
by an LLM and those created by a human researcher. MHD is common way to calculate the similarity between two
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point clouds in computer vision. Here, we use an LLM-based embedding model to map each code to a point in the
embedding space, and construct LLM and human point clouds from the codes applied to each coded text. MHD between
such point clouds captures relatedness in meaning, even when codes differ in ordering, count, wording, or emphasis.

The interpretation of MHD depends on the embeddings used, which are shaped by the specific embedding model and
its training data. While the values may reflect model-specific biases and are not absolute, they provide a valuable lens for
examining alignment by highlighting nuanced differences in how codes are represented and associated. Together with
IoU, MHD offers a more comprehensive evaluation by combining surface-level agreement with semantic alignment,
enabling a deeper understanding of human-AI coding correspondence.

3.2 Interface

A user interface (Figure 1) was developed for LLMCode based on findings from the first study. The interface is designed
to incorporate the aforementioned metrics into an iterative process, enabling researchers to align the model with their
perspective on the data by editing the coding instructions given in the LLM prompt and selecting a representative set of
few-shot examples. Initially, the tool operates similarly to commercial qualitative coding tools: users manually highlight
text segments on the left side using a cursor and enter the corresponding codes into a dedicated space on the right.
After annotating a sufficient number of texts (for a discussion on what can be considered as "sufficient", see Section
6.3), users select a subset of these annotations to serve as the model’s few-shot examples. The rest of the manually
annotated texts are used to calculate the quantitative alignment metrics.

The LLM-generated annotations are displayed alongside the human annotations in a distinct colour, allowing users
to visually compare and identify where the model’s interpretation diverges from their own. The quality metrics are
shown both on average and for each coded text. To enable quickly identifying and inspecting problem cases, the texts
can be sorted based on the metrics. These insights guide users in iteratively refining the examples and prompts provided
to the model, with progress tracked through changes in the metric averages.

Once the user is satisfied with the results both quantitatively and qualitatively, the same coding approach defined by
the prompt and examples can be automatically applied to the remaining non-coded data. This process can significantly
scale up the amount of data that can be analysed, enabling researchers to handle larger datasets with enhanced efficiency
while maintaining oversight of the interpretive process.

Human annotations LLM annotations IoU Hausdorff
distance

Yeah, I know with Barbie and everything, pink is
definitely going up.cultural trends

Yeah, I know with Barbie and everything, pink is
definitely going up.improvements 1.00 0.15

I think it starts on basic actually, basic, silver,
gold. It’s this typical good, better, best. Maybe
they could spice that up a bitimprovement suggestions,
make some more remarkable names or different
colours.

I think it starts on basic actually, basic, silver,
gold.loyalty program structure It’s this typical good,
better, best. Maybe they could spice that up a
bitimprovement suggestions, make some more remark-
able names or different colours.

0.40 0.04

I travel quite oftentravel frequency, or at least maybe
four times a year.

I travel quite often, or at least maybe four times a
yeartravel frequency.

0.00 0.00

Table 1. Examples of human and LLM highlights and the corresponding IoU and MHD scores. IoU is in the range [0, 1], where one
indicates perfect human-LLM alignment (higher is better). As an average of embedding cosine distances, MHD is in the range [0, 2],
where zero indicates perfect alignment (lower is better).
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4 Method

Two studies were conducted in parallel with the development of LLMCode to investigate RQ 2 and RQ 3, respectively,
both utilising the metrics developed in response to RQ 1. The first study observed the use of LLMCode functions by
design students as part of game research projects, with the purpose of gaining an initial understanding of how designers
perceive LLM-assisted qualitative coding in general, and the helpfulness of the metrics in particular. Another objective
of the first study was to collect extensive empirical data on manual qualitative coding in a design context, which could
be utilised as a baseline for evaluating LLM-generated codes for the same texts. The second study involved a more
in-depth investigation of designers’ interaction with the tool through a user interface, investigating the dynamics of
influence between the participants and the tool in insight formation, and specifically what effect the developed metrics
have on researcher-AI alignment.

Several types of data were collected across the two studies, including system interaction logs (both studies), survey
responses (Study 1), and transcripts from think-aloud sessions with users (Study 2). The system interaction logs were
quantitatively analysed to examine how insights are shaped through qualitative coding with and without AI assistance,
as well as to assess the effectiveness of instructing an LLM to emulate these processes. To complement these findings, the
first author conducted a reflexive thematic analysis [5] of the open-ended survey responses and think-aloud transcripts,
providing qualitative insights into participants’ nuanced experiences of integrating LLMs into the research process.

In both studies, LLMCode was used with OpenAI’s current flagship LLM, gpt-4o [36], accessed via the provided API.
Word embeddings were calculated with the text-embedding-3-large model from OpenAI [34].

4.1 Study 1: Exploring LLM-AssistedQualitative Coding in a Design Setting

The first study was conducted in conjunction with a master’s-level university course on game design research. Partici-
pation was voluntary and unincentivised. A total of 19 students took part, with three years of game design experience
on average (see Table 2 for detailed participant information). The study comprised two sessions with a total duration
of five hours. During these sessions, participants conducted game design research projects assisted by the LLMCode
toolkit, addressing research questions of their own choosing.

The first session began with an introduction to reflexive qualitative analysis and inductive coding. Participants then
defined a research question and scraped relevant online discussion threads from Reddit4, which served as their research
material. The scraping was performed using a Jupyter notebook included in LLMCode. Following this, participants spent
the remaining two hours of the session manually coding a subset consisting of up to 200 texts from their collected corpus.
A simple manual coding tool—an initial version of the LLMCode interface in Figure 1 without the AI features—was
provided for this task. The tool retained a log of all changes made to the material, enabling us to track the development
of participants’ insights throughout the manual coding process. Table 2 displays, for each participant, the number
of manually annotated texts with coded segments 𝑛𝑐𝑜𝑑𝑒𝑑 , the number of annotated texts without coded segments
𝑛𝑢𝑛𝑐𝑜𝑑𝑒𝑑 , and the total number of distinct codes 𝑛𝑐𝑜𝑑𝑒𝑠 .

In the second session, participants used LLMCode functions in combination with their manually annotated set
to first select a suitable example set, which was subsequently used to code the entire corpus of scraped texts. After
this, participants utilised another LLMCode function to group their codes into broader themes. At the end of the
second session, participants were asked to distil their key insights into a presentation slide deck, a common practice
for communicating research findings in the design industry. Surveys were administered after the first session and

4https://www.reddit.com
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Label Age group Gender Game design
experience (years)

Qualitative text
analysis experience† 𝑛𝑐𝑜𝑑𝑒𝑑 𝑛𝑢𝑛𝑐𝑜𝑑𝑒𝑑 𝑛𝑐𝑜𝑑𝑒𝑠

P1 30-39 Man 3 TA 48 162 17

P2 20-24 Prefer not to say 1 TA 25 175 14

P3 20-24 Man 1 None 97 102 8

P4 20-24 Woman 1 TA 8 4 6

P5 20-24 Woman 3 TA 55 41 35

P6 25-29 Man 0 None 38 99 15

P7 20-24 Man 10 None 32 76 15

P8 20-24 Man 10 TA 25 11 18

P9 20-24 Man 0 None 77 70 68

P10 25-29 Man 2 Coding 39 244 16

P11 20-24 Man 6 TA 23 228 6

P12 20-24 Woman 2 TA 48 98 48

P13 30-34 Man 5 None 14 43 10

P14 25-29 Man 0 None 47 137 7

P15 20-24 Non-binary 5 CA 35 164 60

P16 20-24 Man 2 Coding 23 87 21

P17 25-29 Prefer not to say 2 None 50 150 16

P18 25-29 Man 4 CA 75 124 29

P19 20-24 Woman 3 TA 42 39 17

Table 2. Detailed information for each Study 1 participant, including statistics for the manual coding part of the study. †TA: Thematic
Analysis; CA: Content Analysis.

again after the completion of the insight decks to gather data on participants’ experiences using the LLM-based tool as
part of their qualitative analysis process. The surveys included free-form questions on participants’ feelings towards
LLM-assisted coding and theme generation, as well as their perceptions on the quality metrics and their own agency
over the final insights.

4.2 Study 2: User Evaluation of LLMCode Interface for Model Alignment

The second study involved sessions where participants with design backgrounds were asked to use the LLMCode
interface to first manually code some research material, and then iterate on their chosen examples to improve the
model’s performance as measured by the two metrics. Seven participants were recruited for the study through a
combination of direct and indirect outreach within the authors’ professional and academic networks. This approach
was chosen to ensure access to individuals from a wide range of design expertise and perspectives (see Table 3 for
details). To enhance the contextual validity of the study, participants were encouraged to bring their own data for
analysis, provided this was permitted by relevant guidelines or regulations. For the four participants unable to do so,
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Label Age group Gender Design experience
(years)

Types of design
experience†

Qualitative text
analysis experience‡

P20 30-39 Woman 3 SD TA

P21 25-29 Woman 2 SD Coding

P22 20-24 Man 7 GD CA

P23 25-29 Woman 8 UX, ID TA

P24 25-29 Prefer not to say 4 PD, SD CA

P25 25-29 Woman 8 UX, UI UR

P26 25-29 Man 6 GD, GrD TA

Table 3. Detailed information for each Study 2 participant. †SD: Service Design; GD: Game Design; ID: Industrial Design; PD: Product
Design; GrD: Graphic Design. ‡TA: Thematic Analysis; CA: Content Analysis; UR: User Research.

transcription data from three interviews conducted by service designers was provided along with a fictional service
design task.

The participants followed a think-aloud protocol while completing the tasks. The sessions were conducted remotely
via video call, with participants sharing their screens throughout the study. Each session lasted approximately 90
minutes, divided evenly between two tasks: manually coding data and iteratively refining the example sets provided to
the model. At the conclusion of the first phase, any unannotated data was discarded, and participants were asked to
select an initial example set to provide to the model that is representative of their coding. The remaining texts were
then coded by the model, with its annotations displayed alongside the participants’ annotations for comparison.

During the second phase, participants were instructed to complete two additional iterations of example selection and
LLM-assisted coding using the tool’s features, with the objective of improving the code quality metrics. In addition
to modifying the example sets, participants were encouraged to refine their own annotations and include additional
prompt instructions for the model. Due to the tool’s complexity, participants were guided through each feature as it was
introduced and encouraged to ask questions as needed. This approach ensured participants could engage effectively
with the tool and focus on the analysis process.

5 Results

5.1 (Superficial) Gains in LLM Performance Through In-Context Learning

5.1.1 In-Context Learning Performance. Most state-of-the-art qualitative coding systems based on LLMs rely on in-
context learning, which assumes that the model can learn coding patterns from a sufficient number of human-coded
examples. To investigate this assumption, we examine how the performance of the model—measured by the IoU and
MHD metrics—improves as the number of few-shot examples increases.

For this analysis, we selected data from 11 participants in Study 1., who had annotated sufficiently large manually
coded datasets, with 𝑛𝑐𝑜𝑑𝑒𝑑 ≥ 38, 𝑛𝑢𝑛𝑐𝑜𝑑𝑒𝑑 ≥ 38, 𝑛𝑐𝑜𝑑𝑒𝑠 ≥ 6. For each participant, we compared their manually
annotated texts with the annotations generated by the LLM. For this purpose, the annotated data for each participant
was divided into two groups: one set of examples was used to teach the model, and the other set was used to evaluate
its performance. The examples used to teach the model included both positive examples—texts containing at least
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Fig. 2. Mean IoU plotted against the number of few-shot examples included in the coding prompt (Study 1, N=11). The metric
increases as the number of few-shot examples increases, indicating improved alignment between the LLM and human annotations.

one coded section—and negative examples—texts with no annotations. To account for variations in coding styles and
corpora, we selected equal numbers of positive and negative examples for training.

To understand how the model’s performance changes with varying amounts of input data, we evaluated its perfor-
mance at different example set sizes. The examples were selected from each participant’s coding logs in chronological
order, reflecting how their insights evolved over time. By doing this, we accounted for the fact that participants might
refine or change their annotations as they progressed.

Figure 2 illustrates how IoU, averaged across all texts, changes with the number of examples for individual participants
and as an average across all included participants. The smaller lines, representing individual participants, reveal
significant variability in the model’s performance depending on the selected examples. Since examples in this analysis
were selected automatically, erroneous or non-representative examples may significantly lower the model’s performance.
In practical applications, we recommend that researchers manually select the most representative examples using a
human-annotated validation set, in a method that is investigated in Study 2.

We observe an increasing trend in the mean IoU values averaged across all participants. This suggests that through
in-context learning, the model can to some degree emulate an individual researcher’s perspective on what content is
interesting or important. To model this behaviour, an asymptotic exponential growth curve is fitted to the data using
the least squares method. The choice of this function is motivated by its previous use in learning curve analysis [44]
as well as the expected asymptotic learning behaviour of the model as the size of the prompt approaches the GPT-4o
model’s context window of 128,000 tokens [36]. The maximum length for an individual prompt in this study was 391,414
characters or approximately 98,000 tokens [35].

A similar trend is observed for the MHD metric in Figure 3, where the mean score decreases as more examples are
provided, indicating improved alignment between the LLM- and human-annotated codes. However, certain codes may
already be present within the selected few-shot examples. In these cases, MHD primarily reflects the model’s deductive
coding capabilities—specifically, its ability to apply existing codes to relevant texts.

As shown in Figure 4, the rate at which participants discover new codes declines over time, evidenced by the decreasing
fraction of newly identified codes as more time is spent analysing the data. This suggests that the improvement in the
MHD metric may not necessarily indicate a deeper emulation of the researcher’s analytical perspective. Instead, it could
result from the examples becoming more representative of the dataset over time, as fewer new codes are introduced.
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Fig. 3. Mean MHD plotted against the number of few-shot examples included in the coding prompt (Study 1, N=11). The metric
decreases as the number of few-shot examples increases, indicating improved alignment between the LLM- and human-annotated
codes.
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Fig. 4. New codes as a fraction of all annotated codes in the given time frame (Study 1, N=15). The rate at which new codes are
discovered decreases over time as the codebook becomes saturated.

Consequently, the metric may be capturing the convergence of examples and inference data rather than the model’s
ability to fully reflect the researcher’s interpretive lens.

5.1.2 Finding New Insights Beyond the Examples. To ascertain whether the model can extrapolate the researcher’s lens
beyond the provided examples, we conduct an additional analysis using data from Study 1. For each participant, their
final codes are clustered into five distinct groups via K-Means clustering on the code embeddings. This method aims to
capture broader themes within the data by grouping codes that are semantically similar while maximising differences
between groups, as determined by the semantic information encoded in the embeddings.

To evaluate whether the model can uncover new insights beyond a familiar theme, it is provided with texts containing
codes from only one of these clusters as examples. The model is then tested on texts annotated by the human researcher
with a more diverse range of codes spanning different clusters. For each processed text, we examine the correlation
between the similarity of the text’s human-annotated codes to the example set (measured by the MHD between the
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Fig. 5. Scatter plot showing the correlation (Pearson coefficient = 0.53) between the similarity of human-annotated codes to the
example set and the model’s performance (Study 1, N=8). Higher dissimilarity generally leads to lower alignment, though some cases
show the model successfully extrapolating beyond the examples. A line of equality 𝑦 = 𝑥 is added to illustrate how the model rarely
performs worse than what is expected based on its examples’ similarity to the texts’ underlying codes.

human codes and the example set) and the model’s performance on that text (measured by the MHD between the
human codes and the LLM-generated codes).

The results, presented visually in Figure 5, reveal a Pearson correlation coefficient of 0.53, indicating a moderate
positive correlation. This suggests that as the dissimilarity of the human annotations to the example set increases, the
model’s performance generally declines, meaning that its output diverges from the human output. Interestingly, some
cases in the lower right-hand corner of the plot show instances where the model successfully generates codes similar
to those of the human researcher despite having been given examples that differ significantly. This indicates that the
model may, in certain instances, be capable of extrapolating beyond the provided examples to identify patterns aligned
with the researcher’s lens.

However, the overall trend suggests that the model performs better on texts that are more similar to its example set.
This finding underscores the model’s limitations in generalising across broader perspectives and inductively generating
new ones, highlighting the importance of providing diverse and representative examples to enable its alignment with
the human researcher. This finding, together with the declining rate of new code discovery over time, supports a
practical workflow where researchers begin by manually coding a subset of texts to generate an initial codebook, which
the automated system can subsequently apply to larger datasets.

5.2 Human Oversight Can Lead to Improved Alignment

To evaluate whether researchers can improve the model’s alignment by iteratively refining their few-shot example sets
using our tool, we compared their results across the iterations in Study 2 to a random selection baseline, as shown
in Figure 6. Since the model’s performance generally improves with the number of provided examples, the random
baseline was designed to match the number of examples selected by participants at each iteration, maintaining an
equal balance of positive (coded) and negative (uncoded) examples. To account for variability in random selection, the
baseline results were averaged over five randomly generated example sets for each participant and iteration.

The findings suggest that iterating on the examples using our tool can lead to better results, particularly for the IoU
metric. In the first iteration, participants lacked insight into the model’s behaviour from prior iterations, requiring them
Manuscript submitted to ACM
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Fig. 6. The development of (a) IoU and (b) Modified Hausdorff Distance as participants in Study 2 manually iterated on their few-shot
example sets (human), compared to a random sampling baseline with equal numbers of positive and negative examples (random).
Curves for individual participants are adjusted to match the initial mean, for visualisation purposes.

to make initial guesses about which examples would be most representative. This likely explains why their scores in the
first iteration were similar to, or slightly lower than, the random baseline. In subsequent iterations, participants gained
access to the model’s annotations from the previous iteration, enabling more informed adjustments. This iterative
process resulted in more significant improvements in IoU scores compared to the random baseline, particularly by the
third iteration.

However, the data from this study is limited, and similar trends were less conclusive for the MHD metric. Despite
this, the increasing rate of improvement in the third iteration aligns with qualitative observations from the user study,
where participants initially struggled to grasp the rationale behind example selection but eventually found the tool
valuable in refining their alignment.

5.3 Thematic Analysis

The thematic analysis is based on the responses to open-ended survey questions from Study 1 and 428 minutes of
transcribed think-aloud recording data from Study 2, resulting in 149 quotations and 63 codes that were iteratively
refined and grouped under two overarching themes. In line with our study topic, we adopted a reflexive approach to
thematic analysis, allowing themes to to be determined organically through iterative coding rather than adhering to a
structured theoretical framework [5]. This approach enabled us to capture the richness and complexity of participants’
experiences, providing qualitative insights into how they interacted with the tool and sought to align their understanding
with its analysis.

5.3.1 If AI Tells Me to Change It... Participants found that ranking texts by the highlight and code similarity metrics
allowed them to efficiently identify cases where the model’s coding diverged from their own annotations, particularly
in the context of the full LLMCode user interface. Where in the context of the initial study’s Notebook environment
some participants had perceived the metrics as "unintuitive" (P4) and "uncontrollable" (P10), the ranking feature in
the user interface provided a straightforward way to focus on areas of disagreement, making it easier to evaluate the
model’s performance, find better examples for the model, and keep track of the model’s development.
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A key complaint on the system’s coding among participants was that its annotations were often uninformative or
lacked contextual understanding, rendering them meaningless in relation to the research question. One participant
noted that the model’s inability to distinguish "meme comments” (P10) made it difficult to utilise in the context of online
forum data, which often includes niche humour that may entirely shift the meaning of a text. Another participant
observed that the AI “used very vague codes that sometimes overlapped a lot.” (P2) Similarly, another participant
expressed frustration with the AI assigning codes to what they perceived as trivial responses: “When they’re just very
short answers like ‘yes,’ [...] they’re not that interesting.” (P26) These comments highlight the model’s inability to
consistently produce nuanced or contextually appropriate annotations.

Despite these limitations, participants often found that the system’s annotations prompted them to reconsider and
refine their own coding. Participant P25, for example, initially coded a segment as “background info” but removed it
after noticing that the model had not annotated the same segment. In a subsequent iteration, the model assigned the
code “Participant Background” to the same segment, prompting the participant to adopt this suggestion back into their
own coding. Reflecting on this, they admitted being influenced by the AI’s annotations, revealing how the system could
subtly shape research insights.

Furthermore, the alternative perspective provided by the AI sometimes led participants to question their own
interpretations. While this divergence could feel disorienting, it occasionally appeared to encourage deeper introspection
and re-framing of their analytical lens. The model’s tendency to introduce slightly different wordings, for instance,
occasionally sparked confusion but also led to new insights. One participant (P23), while comparing AI-generated codes
related to a game, reflected: "There are a few codes that are new, ’surprise’ and ’story’. But I’m thinking, how useful
are they? They are very close to novelty and lore, I would say. But, I guess lore is more about, like, facts of the world
and the stories about, like, how things happen." These moments show how the system’s suggestions could prompt
participants to reconsider and refine their understanding of nuanced concepts.

Participants’ attitudes toward the AI’s output varied. Some preferred to stick to their original insights, as one
explained: “I’m not sure what to do with the AI’s annotations—should I incorporate them into my coding framework
or not? I assume this tool is meant to assist me in my work, but since I’ve already coded this myself, I’m not sure
if I want to include them.” (P20) These reflections illustrate the tension between embracing new perspectives and
over-attributing meaning to the AI’s output, which participants sometimes found inconsistent. As one noted, trusting
the AI’s annotations could feel like “a leap of faith” (P26), highlighting the complex interplay between human judgment
and AI influence in the tool’s collaborative analysis.

5.3.2 Let Me Explain My Examples. The primary interaction method for teaching the model—designed around the
in-context learning paradigm and involving iterative selection of representative few-shot examples—proved challenging
for many participants, especially those with limited experience using LLMs beyond standard chat interfaces. Participants
often expressed confusion about how to select and use examples to train the model, with several describing the “make
example” feature as vague or difficult to interpret. As one participant put it: “This is a bit unclear to me [. . . ] I’m making
this an example, but an example of what exactly?” (P20)

Many participants appeared to intuitively associate examples with the model’s perceived actions in relation to the
human-coded texts. One participant explained: “It was able to use the codes I gave it and subdivide them into individual
smaller parts: I think that’s what makes this example particularly good. So if I put this comment as an example, maybe
I would see more of this subdivision behaviour.” (P23) This suggests that participants viewed examples as a means
of reinforcing desirable changes between the human- and LLM-generated annotations, rather than as independent
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demonstrations of appropriate outputs. This framing of examples as actions rather than outputs shaped how participants
interacted with the system and contributed to their difficulty grasping the intended purpose of example selection.

Another, possibly related, challenge stemmed from participants’ inability to specify why an example was chosen.
Some expressed frustration with the lack of options to communicate the reasoning behind their choices. For instance,
P26 deliberated over whether to include a poorly annotated text in the example set, saying: “I wonder if this will just
make [the model] confused. If I now put this as an example, will it [understand what I mean]? I wish there was an
option here to mark that ‘You’ve misunderstood the text.’” To be able to interpret such feedback, the model would
necessarily have to learn from a more multidimensional history of both correct and mistaken annotations, rather than
relying solely on a set of static, exemplary annotations. This reflects participants’ desire for the system to engage with
the reasoning behind their selections rather than treating examples as isolated data points. Similarly, P20 wished for
the ability to “qualitatively describe” why an example was selected, while P23 longed for text-level prompting to build
upon their own annotations: “Here’s an emotion: now, go figure it out, machine!”

On the other hand, many participants faced difficulties in articulating the instructions they wished to communicate
to the model. For example, P22 struggled to craft a prompt that would encourage the model to generate more nuanced
emotional codes: “Similar to the AI, I have no idea about human emotion, so I don’t know what to write although I
want the correct answer [. . . ] because the definitions are a little bit ambiguous.” This comment reflects the interpretive
nature of RfD, where correct answers often coexist with ambiguous definitions, leaving researchers to rely on what P26
described as their “gut feeling” to determine the validity of insights. In such situations, the use of illustrative examples
may provide the simplest way forward, as P22 ultimately chose to do.

6 Discussion

Based on our results, finding a path towards true researcher-LLM alignment remains a challenge. In this paper, we
focused on methods based on in-context learning, given that this is the standard for LLM tools in this domain. The
following sections discuss our findings, first relating to our empirical study of the model’s capabilities for in-context
learning in this task, and after that, to our study of human-AI interaction in facilitating the learning process. We
conclude by discussing best practices for those looking to use LLMCode in practical qualitative research settings.

6.1 LLMs May Only Emulate Surface-level Analysis

Our empirical findings detailed in Section 5.1 indicate that increasing the number of few-shot examples can enhance
alignment between an LLM and a human researcher’s analytical perspective, as observed in the upward trend of
the IoU metric and the decreasing Modified Hausdorff distance. However, closer examination suggests that these
gains may primarily reflect the model’s ability to adapt or reuse codes present in the training examples, rather than
provide evidence of deeper, inductive reasoning. The plateauing rate at which participants discovered new codes further
underscores that the model’s improved performance may be largely attributable to converging on a codebook that is
already stabilising, rather than genuinely learning novel or more nuanced insights.

The model’s performance was correlated to a significant degree with the representativeness of the examples it was
given. Although there were instances where the model succeeds in coding texts whose themes differ significantly from
its initial examples, these cases were the exception. Overall, such observations reinforce that the model’s apparent
learning remains confined to the surface features supplied by the human-annotated examples. The challenge of true
interpretive alignment—where an LLM would spontaneously identify, refine, or propose new codes that mirror a
researcher’s emergent understanding—remains largely unmet.
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Prior work by Ashwin et al. [2] has proposed that LLMs be used for extending human analysis to larger corpora, and
our study clarifies when this application is likely to be effective. In contexts where the codebook is relatively established
and the new data remains thematically close to previously annotated examples, the model’s performance can scale to
facilitate broader analysis. However, if truly novel themes or codes arise in the data, the model may struggle to adapt in
a meaningful and contextual manner, highlighting the need for ongoing human oversight and potential recoding when
stepping beyond the scope of the original examples.

6.2 Designing Tools for Researcher-AI Alignment inQualitative Analysis

Our findings reveal both the promise and complexity of integrating LLMs into interpretive research processes. Partic-
ipants appreciated how our tool could quickly highlight areas of disagreement, but many struggled to improve this
alignment through the proposed method of example selection.

6.2.1 Disconnect Between Chat Mental Models and In-Context Learning. A core challenge in our user studies was the
disconnect between the mental models participants had formed through typical chat interactions with LLMs and the
fundamentally different requirements of few-shot in-context learning. In conventional chat-like interactions, users
iteratively refine the model’s behaviour by responding directly to its actions—correcting mistakes, prompting for
clarifications, and building on previous turns. Users in our study carried this assumption into their interactions with
LLMCode, naturally seeing corrections and prompts as feedback that would accumulate over time.

However, in-context learning as implemented in our tool worked differently. Rather than creating a long-term
conversational memory, users had to manually select and compile a static set of annotated examples, all of which were
submitted to the LLM at once to shape its coding behavior. The system did not automatically “remember” prior turns or
corrections; it also provided no default interface for explaining why an example was correct or incorrect. This design
led many participants to focus on “rewarding” perceived improvements by selecting examples where the AI seemed to
have done something new or valuable—an interesting finding that underscores how interface design can strongly shape
user expectations and behaviour.

Notably, the participant who adapted most fluidly to this static example-based paradigm was someone who had
prior experience building LLM applications, suggesting that familiarity with in-context learning significantly reduces
confusion. Future iterations of few-shot learning interfaces might therefore need more explicit guidance or visual cues
to reinforce how in-context learning differs from conversational AI. Alternatively, such tools might allow users to
provide more flexible examples of how the coding should change—for instance, showing the AI’s initial annotation and
then demonstrating a “corrected” version—which would align better with users’ intuitive teaching practices.

6.2.2 The Reciprocal Influence of AI Suggestions on Human Analysis. Although participants faced obstacles when trying
to teach the model via few-shot examples, our findings also illuminate a reverse flow of influence. Many participants
willingly incorporated new perspectives introduced by the LLM. For instance, when participants noticed that the AI
generated an unfamiliar code, they sometimes adopted that code as an additional lens for interpreting the data. In
these instances, the model’s output prompted users to revisit or refine their original coding frameworks. This openness
often stemmed from curiosity—participants wanted to see if the AI might surface patterns they had overlooked. At the
same time, they exercised caution, especially in cases where the model’s recommendations clashed with their domain
knowledge or research goals.

Ultimately, these findings suggest that a well-designed tool could not only help align AI outputs with a user’s
perspective, but also empower users to see their data from alternative angles, blending both human and machine
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insights into a richer analytical process. However, in light of our previous discussion in Section 6.1, trusting LLMs
as research partners requires further research into how reliably they can approximate the interpretive reasoning of
human researchers. If it remains beyond current capabilities to emulate real-world researchers, then it becomes even
more critical to understand the model’s inherent perspectives and biases, and how these might shape or constrain the
insights it produces. In addition, there is a need to investigate appropriate reliance on such tools more deeply, following
the approach suggested by Jacovi et al. [20], which examines the relationship between model correctness and user
reliance in interactive scenarios. Through such investigations, we can better establish the conditions under which
LLM-driven tools are beneficial to qualitative research, ensuring that their adoption does not compromise the reflexive
and context-rich nature of design inquiry.

6.3 Training, Validation, and Test Data

The example iteration approach introduced in Section 3.2 and evaluated in Study 2 is susceptible to overfitting, which is
an important consideration for using LLMCode in high-stakes qualitative studies, such as those conducted in academia
where rigorous quality standards are expected. Overfitting, a common issue in machine learning [9], occurs when a
model performs exceptionally well on the data it was fine-tuned with but fails to generalise to unseen data. In the
context of LLMCode, this would mean high alignment scores on the annotated texts used during the example iteration
process, but potentially poorer performance on texts excluded from this set.

To account for overfitting, standard machine learning practices should be followed, dividing data into training,
validation, and test datasets. The training set is typically used to fit a model’s parameters—which is not applicable here
since LLMs are pre-trained—while the validation set serves to optimise hyperparameters, in this case the prompt and
examples. The test set, crucially, evaluates how well the model and chosen hyperparameters generalise to new data
outside the validation process.

In Study 2, we did not employ a separate test set due to the time-intensive nature of manual coding and to avoid
participant fatigue. As a result, while the score improvements reported in Section 5.2 signal that the tool helps researchers
align their analysis within the validation set, these scores may not fully reflect the true human-AI alignment. A further
complication in measuring the true alignment is our finding that the iterative process of refining prompts and examples
can influence the researcher’s coding approach itself (see Section 5.3.1), thereby shifting the baseline against which
alignment is assessed.

For those employing LLMCode in rigorous academic qualitative research or high-stakes RfD applications, we
recommend the following steps to verify human-LLM alignment:

(1) Manually code a separate test set. The test set should be coded only after completing the iterative refinement of
prompts and examples based on the validation set. This avoids introducing bias from changes in the researcher’s
coding approach during the iteration process.

(2) Report alignment metrics. Calculate and report IoU and Modified Hausdorff distance metrics for both the
validation and test sets, ensuring transparency about the model’s generalisation capabilities.

(3) Manually inspect worst-case performance. Include a table of worst-case results by sorting the test set based
on the alignment metrics.

By following these procedures, stakeholders can evaluate human-LLM alignment both qualitatively and quantitatively,
ensuring the robustness of insights derived from the LLM-assisted analysis.
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7 Conclusion

Based on the qualitative feedback from our studies, the proposed IoU and MHD metrics appear to be suitable indicators
for the quality of LLM-assisted coding, as measured by its output’s similarity to a researcher’s annotations. In this study,
we applied the metrics in two distinct ways. Firstly, we used the metrics to investigate the capability of a state-of-the-art
LLM in emulating an individual designer’s perspective on data through in-context learning. Secondly, the metrics were
integrated into the interactive LLMCode coding tool, which was employed in a user study investigating the ways and
extent to which AI assistance shapes the insights generated through RfD.

These studies generated important insights two sides of the appropriate reliance equation: firstly, the technology’s
trustworthiness, and secondly, users’ willingness to rely upon it. Our results indicate that while the model could
learn to capture similar surface patterns, it does not always appear to be capable of emulating the researcher’s deeper
interpretive lens over the data from examples alone. On the other hand, researchers interacting with the tool were
willing to both educate the model on their own perspective as well as to adapt their analysis the model’s output,
sometimes to a significant degree.

These findings underscore the complex relationship between AI capabilities and human judgment in qualitative
analysis, revealing howAI can both complement and challenge human interpretations, while emphasising the importance
of aligning technological assistance with the nuanced demands of reflexive analysis. While the metrics provide a useful
means to evaluate alignment, they also underscore the need for careful consideration of how LLM-based tools are
integrated into RfD workflows. Future work should focus on further investigating and enhancing the interpretive
capabilities of LLMs while exploring novel interfaces that encourage fluid collaboration between researchers and these
models.
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A LLMCode Inductive Coding Prompt

You are an expert qualitative researcher. You are given a text to code inductively. Please carry out the following
task:
- Respond by repeating the original text, but highlighting the coded statements by surrounding the statements
with double asterisks, as if they were bolded text in a Markdown document.
- Include the associated code(s) immediately after the statement, separated by a semicolon and enclosed in
<sup></sup> tags, as if they were superscript text in a Markdown document.
- Preserve exact formatting of the original text. Do not correct typos or remove unnecessary spaces.

Custom user-defined instructions, e.g.
- Do not code interviewer questions.

Some examples of codes in the format "{code}: {description}". Please create new codes when needed:

Code descriptions (automatically generated by a separate LLM prompt for each new code), e.g.
- travel frequency: Describes instances where the participant shares how often they travel.
...

Below, I first give you examples of the output you should produce given an example input. After that, I give you
the actual input to process. The input may come from a thread of texts, and any preceding texts are added as
context (labelled CONTEXT). Your task is to code only the last text (labelled TEXT).

Few-shot examples, e.g.
EXAMPLE INPUT:
CONTEXT: How often do you travel?
TEXT: I travel quite often, or at least maybe four times a year.
EXAMPLE OUTPUT: **I travel quite often**<sup>travel frequency</sup>, or at least maybe four times a
year.
...

ACTUAL INPUT:

A single input text, e.g.
CONTEXT: In your own words, can you describe how the loyalty program works?
TEXT: I think it starts on basic actually, basic, silver, gold. It’s this typical good, better, best. Maybe they
could spice that up a bit, make some more remarkable names or different colours.
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