
9 Online Planning

The solution methods we have discussed so far compute policies offline, before
any actions are executed in the real problem. Even offline approximation methods
can be intractable in many high-dimensional problems. This chapter discusses
online planning methods that find actions based on reasoning about states that
are reachable from the current state. The reachable state space is often orders of
magnitude smaller than the full state space, which can significantly reduce storage
and computational requirements compared to offline methods. We will discuss
a variety of algorithms that aim to make online planning efficient, including
pruning the state space, sampling, and planning more deeply along trajectories
that appear more promising.

9.1 Receding Horizon Planning

In receding horizon planning, we plan from the current state to a maximum fixed
horizon or depth d. We then execute the action from our current state, transition to
the next state, and replan. The online planning methods discussed in this chapter
follow this receding horizon planning scheme. They differ in how they explore
different courses of action.

A challenge in applying receding horizon planning is determining the appro-
priate depth. Deeper planning generally requires more computation. For some
problems, a shallow depth can be quite effective; the fact that we replan at each
step can compensate for our lack of longer-term modeling. In other problems,
greater planning depths may be necessary so that our planner can be driven
toward goals or away from unsafe states, as illustrated in example 9.1.

182 chapter 9. online planning

Suppose we want to apply receding horizon planning to aircraft collision
avoidance. The objective is to provide descend or climb advisories when
necessary to avoid collision. A collision occurs when our altitude relative
to the intruder h is within ±50 m and the time to potential collision tcol is
zero. We want to plan deeply enough so that we can provide an advisory
sufficiently early to avoid collisionwith a high degree of confidence. The plots
here show the actions that would be taken by a receding horizon planner
with different depths.

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

h
(m

)

Horizon 10

climb
descend

0 10 20 30 40

tcol (s)

Horizon 20

0 10 20 30 40

tcol (s)

Horizon 40

If the depth is d = 10, we provide advisories only within 10 s of collision. Due
to the limitations of the vehicle dynamics and the uncertainty of the behavior
of the other aircraft, providing advisories this late compromises safety. With
d = 20, we can do better, but there are cases where we would want to alert a
little earlier to further reduce collision risk. There is no motivation to plan
deeper than d = 40 because we do not need to advise any maneuvers that
far ahead of potential collision.

Example 9.1. Receding horizon
planning for collision avoidance to
different planning depths. In this
problem, there are four state vari-
ables. These plots show slices of the
state space under the assumption
that the aircraft is currently level
and there has not yet been an ad-
visory. The horizontal axis is the
time to collision tcol, and the ver-
tical axis is our altitude h relative
to the intruder. Appendix F.6 pro-
vides additional details about this
problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.2. lookahead with rollouts 183

9.2 Lookahead with Rollouts

Chapter 8 involved extracting policies that are greedy with respect to an approxi-
mate value function U through the use of one-step lookahead.1 A simple online 1 The lookahead strategy was orig-

inally introduced in algorithm 7.2
as part of our discussion of exact
solution methods.

strategy involves acting greedily with respect to values estimated through simu-
lation to depth d. To run a simulation, we need a policy to simulate. Of course,
we do not know the optimal policy, but we can use what is called a rollout policy
instead. Rollout policies are typically stochastic, with actions drawn from a distri-
bution a ∼ π(s). To produce these rollout simulations, we use a generative model
s′ ∼ T(s, a) to generate successor states s′ from the distribution T(s′ | s, a). This
generative model can be implemented through draws from a random number
generator, which can be easier to implement in practice compared to explicitly
representing the distribution T(s′ | s, a).

Algorithm 9.1 combines one-step lookahead with values estimated through
rollout. This approach often results in better behavior than that of the original
rollout policy, but optimality is not guaranteed. It can be viewed as an approximate
form of policy improvement used in the policy iteration algorithm (section 7.4).
A simple variation of this algorithm is to use multiple rollouts to arrive at a better
estimate of the expected discounted return. If we run m simulations for each
action and resulting state, the time complexity is O(m× |A| × |S| × d).

9.3 Forward Search

Forward search determines the best action to take from an initial state s by ex-
panding all possible transitions up to depth d. These expansions form a search
tree.2 Such search trees have a worst-case branching factor of |S| × |A|, yielding 2 The exploration of the tree oc-

curs as a depth-first search. Ap-
pendix E reviews depth-first search
and other standard search algo-
rithms in the deterministic context.

a computational complexity of O((|S| × |A|)d). Figure 9.1 shows a search tree
applied to a problem with three states and two actions. Figure 9.2 visualizes the
states visited during forward search on the hex world problem.

Algorithm 9.2 calls itself recursively to the specified depth. Once reaching the
specified depth, it uses an estimate of the utility provided by the function U. If
we simply want to plan to the specified horizon, we set U(s) = 0. If our problem
requires planning beyond the depth that we can afford to compute online, we can
use an estimate of the value function obtained offline using, for example, one of
the value function approximations described in the previous chapter. Combining

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

184 chapter 9. online planning

struct RolloutLookahead
𝒫 # problem
π # rollout policy
d # depth

end

randstep(𝒫::MDP, s, a) = 𝒫.TR(s, a)

function rollout(𝒫, s, π, d)
ret = 0.0
for t in 1:d

a = π(s)
s, r = randstep(𝒫, s, a)
ret += 𝒫.γ^(t-1) * r

end
return ret

end

function (π::RolloutLookahead)(s)
U(s) = rollout(π.𝒫, s, π.π, π.d)
return greedy(π.𝒫, U, s).a

end

Algorithm 9.1. A function that
runs a rollout of policy π in prob-
lem 𝒫 from state s to depth d. It re-
turns the total discounted reward.
This function can be used with
the greedy function (introduced in
algorithm 7.5) to generate an ac-
tion that is likely to be an improve-
ment over the original rollout pol-
icy. Wewill use this algorithm later
for problems other than MDPs, re-
quiring us to only have to modify
randstep appropriately.

s

a1

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3depth 2:

depth 1:

Figure 9.1. A forward search tree
for a problem with three states and
two actions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.4. branch and bound 185

online and offline approaches in this way is sometimes referred to as hybrid
planning.

struct ForwardSearch
𝒫 # problem
d # depth
U # value function at depth d

end

function forward_search(𝒫, s, d, U)
if d ≤ 0

return (a=nothing, u=U(s))
end
best = (a=nothing, u=-Inf)
U′(s) = forward_search(𝒫, s, d-1, U).u
for a in 𝒫.𝒜

u = lookahead(𝒫, U′, s, a)
if u > best.u

best = (a=a, u=u)
end

end
return best

end

(π::ForwardSearch)(s) = forward_search(π.𝒫, s, π.d, π.U).a

Algorithm 9.2. The forward search
algorithm for finding an approxi-
mately optimal action online for a
problem 𝒫 from a current state s.
The search is performed to depth d,
at which point the terminal value
is estimated with an approximate
value function U. The returned
named tuple consists of the best
action a and its finite-horizon ex-
pected value u. The problem type is
not constrained to be an MDP; sec-
tion 22.2 uses this same algorithm
in the context of partially observ-
able problems with a different im-
plementation for lookahead.

9.4 Branch and Bound

Branch and bound (algorithm 9.3) attempts to avoid the exponential computational
complexity of forward search. It prunes branches by reasoning about bounds
on the value function. The algorithm requires knowing a lower bound on the
value function U(s) and an upper bound on the action value function Q(s, a).
The lower bound is used to evaluate the states at the maximum depth. This lower
bound is propagated upward through the tree through Bellman updates. If we
find that the upper bound of an action at a state is lower than the lower bound
of a previously explored action from that state, then we need not explore that
action, allowing us to prune the associated subtree from consideration.

Branch and bound will give the same result as forward search, but it can be
more efficient depending on how many branches are pruned. The worst-case
complexity of branch and bound is still the same as forward search. To facilitate

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

186 chapter 9. online planning

Depth 1 Depth 2

Depth 3 Depth 4

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.2. Forward search applied
to the hex world problemwith four
maximum depths. The search can
visit a node multiple times. The ac-
tions and colors for visited states
were chosen according to the shal-
lowest, highest-value node in the
search tree for that state. The ini-
tial state has an additional black
border.

struct BranchAndBound
𝒫 # problem
d # depth
Ulo # lower bound on value function at depth d
Qhi # upper bound on action value function

end

function branch_and_bound(𝒫, s, d, Ulo, Qhi)
if d ≤ 0

return (a=nothing, u=Ulo(s))
end
U′(s) = branch_and_bound(𝒫, s, d-1, Ulo, Qhi).u
best = (a=nothing, u=-Inf)
for a in sort(𝒫.𝒜, by=a->Qhi(s,a), rev=true)

if Qhi(s, a) < best.u
return best # safe to prune

end
u = lookahead(𝒫, U′, s, a)
if u > best.u

best = (a=a, u=u)
end

end
return best

end

(π::BranchAndBound)(s) = branch_and_bound(π.𝒫, s, π.d, π.Ulo, π.Qhi).a

Algorithm 9.3. The branch and
bound algorithm for finding an
approximately optimal action on-
line for a discrete MDP 𝒫 from a
current state s. The search is per-
formed to depth d with value func-
tion lower bound Ulo and action
value function upper bound Qhi.
The returned named tuple consists
of the best action a and its finite-
horizon expected value u. This al-
gorithm is also used for POMDPs.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.5. sparse sampling 187

pruning, actions are traversed in descending order by upper bound. Tighter
bounds will generally result in more pruning, as shown in example 9.2.

Consider applying branch and bound to the mountain car problem. We can
use the value function of a heuristic policy for the lower bound U(s), such as
a heuristic policy that always accelerates in the direction of motion. For our
upper bound Q([x, v], a), we can use the return expected when accelerating
toward the goal with no hill. Branch and bound visits about a third as many
states as forward search.

Example 9.2. Branch and bound
applied to the mountain car prob-
lem (appendix F.4). Branch and
bound can achieve a significant
speedup over forward search.

9.5 Sparse Sampling

A method known as sparse sampling3 (algorithm 9.4) attempts to reduce the 3 M. J. Kearns, Y. Mansour, and
A.Y. Ng, “A Sparse Sampling Al-
gorithm for Near-Optimal Plan-
ning in LargeMarkovDecision Pro-
cesses,” Machine Learning, vol. 49,
no. 2–3, pp. 193–208, 2002.

branching factor of forward search and branch and bound. Instead of branching
on all possible next states, we consider only a limited number of samples of the
next state. Although the sampling of the next state results in an approximation,
this method can work well in practice and can significantly reduce computation.
If we draw m samples of the next state for each action node in the search tree,
the computational complexity is O

(

(m× |A|)d
)

, which is still exponential in the
depth but no longer depends on the size of the state space. Figure 9.3 shows an
example.

9.6 Monte Carlo Tree Search

Monte Carlo tree search (algorithm 9.5) avoids the exponential complexity in the
horizon by running m simulations from the current state.4 During these simula-

4 For a survey, see C. B. Browne, E.
Powley, D. Whitehouse, S.M. Lu-
cas, P. I. Cowling, P. Rohlfshagen, S.
Tavener, D. Perez, S. Samothrakis,
and S. Colton, “A Survey of Monte
Carlo Tree Search Methods,” IEEE
Transactions on Computational Intel-
ligence and AI in Games, vol. 4, no. 1,
pp. 1–43, 2012.tions, the algorithm updates estimates of the action value function Q(s, a) and

a record of the number of times a particular state-action pair has been selected,
N(s, a). After running these m simulations from our current state s, we simply
choose the action that maximizes our estimate of Q(s, a).

A simulation (algorithm 9.6) begins by traversing the explored state space,
consisting of the states for which we have estimates of Q and N. We follow
an exploration strategy to choose actions from the various states. A common
approach is to select the action that maximizes the UCB1 exploration heuristic:5

5 UCB stands for upper confidence
bound. This is one of many strate-
gies discussed by P. Auer, N. Cesa-
Bianchi, and P. Fischer, “Finite-
Time Analysis of the Multiarmed
Bandit Problem,”Machine Learning,
vol. 47, no. 2–3, pp. 235–256, 2002.
The equation is derived from the
Chernoff-Hoeffding bound.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

188 chapter 9. online planning

struct SparseSampling
𝒫 # problem
d # depth
m # number of samples
U # value function at depth d

end

function sparse_sampling(𝒫, s, d, m, U)
if d ≤ 0

return (a=nothing, u=U(s))
end
best = (a=nothing, u=-Inf)
for a in 𝒫.𝒜

u = 0.0
for i in 1:m

s′, r = randstep(𝒫, s, a)
a′, u′ = sparse_sampling(𝒫, s′, d-1, m, U)
u += (r + 𝒫.γ*u′) / m

end
if u > best.u

best = (a=a, u=u)
end

end
return best

end

(π::SparseSampling)(s) = sparse_sampling(π.𝒫, s, π.d, π.m, π.U).a

Algorithm 9.4. The sparse sam-
pling algorithm for finding an ap-
proximately optimal action online
for a discrete problem 𝒫 from a
current state s to depth d with m
samples per action. The returned
named tuple consists of the best
action a and its finite-horizon ex-
pected value u.

Depth 1 Depth 2

Depth 3 Depth 4

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.3. Sparse sampling with
m = 10 applied to the hex world
problem. Visited tiles are colored
according to their estimated value.
The bordered tile is the initial state.
Compare to forward search in fig-
ure 9.2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 189

struct MonteCarloTreeSearch
𝒫 # problem
N # visit counts
Q # action value estimates
d # depth
m # number of simulations
c # exploration constant
U # value function estimate

end

function (π::MonteCarloTreeSearch)(s)
for k in 1:π.m

simulate!(π, s)
end
return argmax(a->π.Q[(s,a)], π.𝒫.𝒜)

end

Algorithm 9.5. The Monte Carlo
tree search policy for finding an ap-
proximately optimal action from a
current state s.

Q(s, a) + c

√

log N(s)

N(s, a)
(9.1)

where N(s) = ∑a N(s, a) is the total visit count to s and c is an exploration pa-
rameter that scales the value of unexplored actions. The second term corresponds
to an exploration bonus. If N(s, a) = 0, the bonus is defined to be infinity. With
N(s, a) in the denominator, the exploration bonus is higher for actions that have
not been tried as frequently. Algorithm 9.7 implements this exploration strategy.
We will discuss many other exploration strategies later in chapter 15.

As we take actions specified by algorithm 9.7, we step into new states sampled
from the generative model T(s, a), similar to the sparse sampling method. We
increment the visit count N(s, a) and update Q(s, a) to maintain the mean value.

At some point, we will either reach the maximum depth or a state that we
have not yet explored. If we reach an unexplored state s, we initialize N(s, a) and
Q(s, a) to zero for each action a. We may modify algorithm 9.6 to initialize these
counts and value estimates to some other values based on prior expert knowledge
of the problem. After initializing N and Q, we then return a value estimate at the
state s. It is common to estimate this value through a rollout of some policy using
the process outlined in section 9.2.

Examples 9.3 to 9.7 work through an illustration of Monte Carlo tree search
applied to the 2048 problem. Figure 9.4 shows a search tree generated by running
Monte Carlo tree search on 2048. Example 9.8 discusses the impact of using
different strategies for estimating values.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

190 chapter 9. online planning

function simulate!(π::MonteCarloTreeSearch, s, d=π.d)
if d ≤ 0

return π.U(s)
end
𝒫, N, Q, c = π.𝒫, π.N, π.Q, π.c
𝒜, TR, γ = 𝒫.𝒜, 𝒫.TR, 𝒫.γ
if !haskey(N, (s, first(𝒜)))

for a in 𝒜
N[(s,a)] = 0
Q[(s,a)] = 0.0

end
return π.U(s)

end
a = explore(π, s)
s′, r = TR(s,a)
q = r + γ*simulate!(π, s′, d-1)
N[(s,a)] += 1
Q[(s,a)] += (q-Q[(s,a)])/N[(s,a)]
return q

end

Algorithm 9.6. A method for run-
ning a Monte Carlo tree search
simulation starting from state s to
depth d.

bonus(Nsa, Ns) = Nsa == 0 ? Inf : sqrt(log(Ns)/Nsa)

function explore(π::MonteCarloTreeSearch, s)
𝒜, N, Q, c = π.𝒫.𝒜, π.N, π.Q, π.c
Ns = sum(N[(s,a)] for a in 𝒜)
return argmax(a->Q[(s,a)] + c*bonus(N[(s,a)], Ns), 𝒜)

end

Algorithm 9.7. An exploration pol-
icy used inMonte Carlo tree search
when determining which nodes to
traverse through the search tree.
The policy is determined by a dic-
tionary of state-action visitation
counts N and values Q, as well as
an exploration parameter c. When
N[(s,a)] = 0, the policy returns
infinity.

Consider using Monte Carlo tree search to play 2048 (appendix F.2) with
a maximum depth d = 10, an exploration parameter c = 100, and a 10-step
random rollout to estimate U(s). Our first simulation expands the starting
state. The count and value are initialized for each action from the initial state:

2
4

N = 0 Q = 0
left

N = 0 Q = 0
down

N = 0 Q = 0
right

N = 0 Q = 0
up

Example 9.3. An example of solv-
ing 2048 with Monte Carlo tree
search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 191

The second simulation begins by selecting the best action from the initial
state according to our exploration strategy in equation (9.1). Because all
states have the same value, we arbitrarily choose the first action, left. We
then sample a new successor state and expand it, initializing the associated
counts and value estimates. A rollout is run from the successor state and its
value is used to update the value of left:

2
4

N = 1 Q = 72
left

2
4

2

N = 0 Q = 0
left

N = 0 Q = 0
down

N = 0 Q = 0
right

N = 0 Q = 0
up

16 2 8 4

4U(s) = 72

N = 0 Q = 0
down

N = 0 Q = 0
right

N = 0 Q = 0
up

Example 9.4. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

192 chapter 9. online planning

The third simulation begins by selecting the second action, down, because it
has infinite value due to the exploration bonus given for unexplored actions.
The first action has finite value:

Q(s0, left) + c

√

log N(s0)

N(s0, left) = 72 + 100

√

log 1

1
= 72

We take the down action and sample a new successor state, which is expanded.
A rollout is run from the successor state and its value is used to update the
value of down:

2
4

N = 1 Q = 72
left

2
4

2

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 44
down

2 4
4

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

8 8 4 4
2 2

4
U(s) = 44

N = 0 Q = 0
right

N = 0 Q = 0
up

Example 9.5. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 193

The next two simulations select right and up, respectively. This results in
the following:

2
4

N = 1 Q = 72
left

2
4

2

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 44
down

2 4
4

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 36
right

4
4
2

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 88
up

2

2

4

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

Example 9.6. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

194 chapter 9. online planning

In the fifth simulation, up has the highest value. The successor state after
taking up in the source state will not necessarily be the same as the first time
up was selected. We evaluate U(s) = 44 and update our visitation count to
2 and our estimated value to Q← 88 + (44− 88)/2 = 66. A new successor
node is created:

2
4

N = 1 Q = 72
left

2
4

2

N = 1 Q = 44
down

2 4
4

N = 1 Q = 36
right

4
4
2

N = 2 Q = 66
up

2

2

4

2

2 4

Example 9.7. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 195

a(1) s(1) a(2) s(2) a(3) s(3)

s

Figure 9.4. A Monte Carlo tree
search tree on 2048 after 100 sim-
ulations. In general, Monte Carlo
tree search for MDPs produces a
search graph because there can be
multiple ways to reach the same
state. The colors in the tree indicate
the estimated values at the nodes,
with high values in blue and low
values in red. The tree is shallow,
with a fairly high branching factor,
because 2048 has many reachable
states for each action.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

196 chapter 9. online planning

Rollouts are not the only means by which we can estimate utilities in Monte
Carlo tree search. Custom evaluation functions can often be crafted for spe-
cific problems to help guide the algorithm. For example, we can encourage
Monte Carlo tree search to order its tiles in 2048 using evaluation functions
that return the weighted sum across tile values:

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

heuristic A weights heuristic B weights

The plot here compares Monte Carlo tree search on 2048 using rollouts
with a uniform random policy, rollouts with a one-step lookahead policy, the
two evaluation functions, and using the current board score:

102 103 104

104

104.5

number of simulations, m

m
ea

n
re
wa

rd

random rollout
lookahead
weights A
weights B
board score

Rollouts perform well but require more execution time. Here we plot
the average execution time relative to random rollouts for m = 100 from a
starting state:

0 1 2 3 4 5 6

board score
weights B
weights A
lookahead

random rollout

mean relative execution time

Example 9.8. The performance
of Monte Carlo tree search varies
with the number of simulations
and as the board evaluation
method is changed. Heuristic
board evaluations tend to be
efficient and can more effectively
guide the search when run
counts are low. Lookahead rollout
evaluations take about 18 times
longer than heuristic evaluations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.7. heuristic search 197

There are variations of this basic Monte Carlo tree search algorithm that can
better handle large action and state spaces. Instead of expanding all the actions,
we can use progressive widening. The number of actions considered from state s is
limited to θ1N(s)θ2 , where θ1 and θ2 are hyperparameters. Similarly, we can limit
the number of states that result from taking action a from state s in the same way,
using what is called double progressive widening. If the number of states that have
been simulated from state s after action a is below θ3N(s, a)θ4 , then we sample
a new state; otherwise, we sample one of the previously sampled states with
probability proportional to the number of times it has been visited. This strategy
can be used to handle large as well as continuous action and state spaces.6

6 A. Couëtoux, J.-B. Hoock, N.
Sokolovska, O. Teytaud, and N.
Bonnard, “Continuous Upper Con-
fidence Trees,” in Learning and In-
telligent Optimization (LION), 2011.

9.7 Heuristic Search

Heuristic search (algorithm 9.8) uses m simulations of a greedy policy with respect
to a value function U from the current state s.7 The value function U is initialized

7 A.G. Barto, S. J. Bradtke, and S. P.
Singh, “Learning toAct Using Real-
Time Dynamic Programming,” Ar-
tificial Intelligence, vol. 72, no. 1–2,
pp. 81–138, 1995. Other forms of
heuristic search are discussed by
Mausam and A. Kolobov, Planning
with Markov Decision Processes: An
AI Perspective. Morgan & Claypool,
2012.

to an upper bound of the value function U, which is referred to as a heuristic. As
we run these simulations, we update our estimate of U through lookahead. After
running these simulations, we simply select the greedy action from s with respect
to U. Figure 9.5 shows how U and the greedy policy changes with the number of
simulations.

Heuristic search is guaranteed to converge to the optimal utility function so long
as the heuristic U is indeed an upper bound on the value function.8 The efficiency 8 Such a heuristic is referred to as

an admissible heuristic.of the search depends on the tightness of the upper bound. Unfortunately, tight
bounds can be difficult to obtain in practice. While a heuristic that is not a true
upper bound may not converge to the optimal policy, it may still converge to a
policy that performs well. The time complexity is O(m× d× |S| × |A|).

9.8 Labeled Heuristic Search

Labeled heuristic search (algorithm 9.9) is a variation of heuristic search that runs
simulations with value updates while labeling states based on whether their
value is solved.9 We say that a state s is solved if its utility residual falls below a

9 B. Bonet and H. Geffner, “Labeled
RTDP: Improving the Convergence
of Real-Time Dynamic Program-
ming,” in International Conference
on Automated Planning and Schedul-
ing (ICAPS), 2003.

threshold δ > 0:
|Uk+1(s)−Uk(s)| < δ (9.2)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

198 chapter 9. online planning

struct HeuristicSearch
𝒫 # problem
Uhi # upper bound on value function
d # depth
m # number of simulations

end

function simulate!(π::HeuristicSearch, U, s)
𝒫 = π.𝒫
for d in 1:π.d

a, u = greedy(𝒫, U, s)
U[s] = u
s = rand(𝒫.T(s, a))

end
end

function (π::HeuristicSearch)(s)
U = [π.Uhi(s) for s in π.𝒫.𝒮]
for i in 1:π.m

simulate!(π, U, s)
end
return greedy(π.𝒫, U, s).a

end

Algorithm 9.8. Heuristic search
runs m simulations starting from
an initial state s to a depth d. The
search is guided by a heuristic ini-
tial value function Uhi, which leads
to optimality in the limit of simula-
tions if it is an upper bound on the
optimal value function.

5 simulations 10 simulations

20 simulations 50 simulations

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.5. Heuristic search runs
simulations with Bellman updates
to improve a value function on the
hex world problem to obtain a pol-
icy froman initial state, shownhere
with an additional black border.
These simulations are run to depth
8 with heuristic U(s) = 10. Each
hex is colored according to the util-
ity function value in that iteration.
We see that the algorithm eventu-
ally finds an optimal policy.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.8. labeled heuristic search 199

We run simulations with value updates until the current state is solved. In contrast
with the heuristic search in the previous section, which runs a fixed number of
iterations, this labeling process focuses computational effort on themost important
areas of the state space.

struct LabeledHeuristicSearch
𝒫 # problem
Uhi # upper bound on value function
d # depth
δ # gap threshold

end

function (π::LabeledHeuristicSearch)(s)
U, solved = [π.Uhi(s) for s in 𝒫.𝒮], Set()
while s ∉ solved

simulate!(π, U, solved, s)
end
return greedy(π.𝒫, U, s).a

end

Algorithm 9.9. Labeled heuris-
tic search, which runs simulations
starting from the current state to
depth d until the current state is
solved. The search is guided by a
heuristic upper bound on the value
function Uhi andmaintains a grow-
ing set of solved states. States are
considered solved when their util-
ity residuals fall below δ. A value
function policy is returned.

Simulations in labeled heuristic search (algorithm 9.10) begin by running to
a maximum depth of d by following a policy that is greedy with respect to our
estimated value function U, similar to the heuristic search in the previous section.
We may stop a simulation before a depth of d if we reach a state that has been
labeled as solved in a prior simulation.

function simulate!(π::LabeledHeuristicSearch, U, solved, s)
visited = []
for d in 1:π.d

if s ∈ solved
break

end
push!(visited, s)
a, u = greedy(π.𝒫, U, s)
U[s] = u
s = rand(π.𝒫.T(s, a))

end
while !isempty(visited)

if label!(π, U, solved, pop!(visited))
break

end
end

end

Algorithm 9.10. Simulations are
run from the current state to a max-
imum depth d. We stop a simula-
tion at depth d or if we encounter a
state that is in the set solved. After
a simulation, we call label! on the
states we visited in reverse order.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

200 chapter 9. online planning

After each simulation, we iterate over the states we visited during that simula-
tion in reverse order, performing a labeling routine on each state and stopping if a
state is found that is not solved. The labeling routine (algorithm 9.11) searches the
states in the greedy envelope of s, which is defined to be the states reachable from s

under a greedy policy with respect to U. The state s is considered not solved if
there is a state in the greedy envelope of s whose utility residual is greater than
threshold δ. If no such state is found, then s is marked as solved—as well as all
states in the greedy envelope of s because they must have converged as well. If
a state with a sufficiently large utility residual is found, then the utilities of all
states traversed during the search of the greedy enveloped are updated.

Figure 9.6 shows several different greedy envelopes. Figure 9.7 shows the states
traversed in a single iteration of labeled heuristic search. Figure 9.8 shows the
progression of heuristic search on the hex world problem.

9.9 Open-Loop Planning

The online methods discussed in this chapter, as well as the offline methods
discussed in the previous chapters, are examples of closed-loop planning, which
involves accounting for future state information in the planning process.10 Often, 10 The loop in this context refers to

the observe-act loop introduced in
section 1.1.open-loop planning can provide a satisfactory approximation of an optimal closed-

loop plan while greatly enhancing computational efficiency by avoiding having
to reason about the acquisition of future information. Sometimes this open-loop
planning approach is referred to as model predictive control.11 As with receding 11 F. Borrelli, A. Bemporad, and M.

Morari, Predictive Control for Lin-
ear and Hybrid Systems. Cambridge
University Press, 2019.

horizon control, model predictive control solves the open-loop problem, executes
the action from our current state, transitions to the next state, and then replans.

Open-loop plans can be represented as a sequence of actions up to a depth d.
The planning process reduces to an optimization problem:

maximize
a1:d

U(a1:d) (9.3)

where U(a1:d) is the expected return when executing the sequence of actions a1:d.
Depending on the application, this optimization problem may be convex or lend
itself to a convex approximation, meaning that it can be solved quickly using
a variety of algorithms.12 Later in this section, we will discuss a few different

12 Appendix A.6 reviews convex-
ity. An introduction to convex op-
timization is provided by S. Boyd
and L. Vandenberghe, Convex Op-
timization. Cambridge University
Press, 2004.

formulations that can be used to transform equation (9.3) into a convex problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 201

function expand(π::LabeledHeuristicSearch, U, solved, s)
𝒫, δ = π.𝒫, π.δ
𝒮, 𝒜, T = 𝒫.𝒮, 𝒫.𝒜, 𝒫.T
found, toexpand, envelope = false, Set(s), []
while !isempty(toexpand)

s = pop!(toexpand)
push!(envelope, s)
a, u = greedy(𝒫, U, s)
if abs(U[s] - u) > δ

found = true
else

for s′ in 𝒮
if T(s,a,s′) > 0 && s′ ∉ (solved ∪ envelope)

push!(toexpand, s′)
end

end
end

end
return (found, envelope)

end

function label!(π::LabeledHeuristicSearch, U, solved, s)
if s ∈ solved

return false
end
found, envelope = expand(π, U, solved, s)
if found

for s ∈ reverse(envelope)
U[s] = greedy(π.𝒫, U, s).u

end
else

union!(solved, envelope)
end
return found

end

Algorithm 9.11. The label! func-
tion will attempt to find a state in
the greedy envelope of s whose
utility residual exceeds a thresh-
old δ. The function expand com-
putes the greedy envelope of s and
determines whether any of those
states have utility residuals above
the threshold. If a state has a resid-
ual that exceeds the threshold, then
we update the utilities of the states
in the envelope. Otherwise, we add
that envelope to the set of solved
states.

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.6. The greedy envelope
for δ = 1 for several states visu-
alized for a value function on the
hexworld problem. The value func-
tion was obtained by running ba-
sic heuristic search for 10 iterations
from an initial state, shown with
a white hex center, to a maximum
depth of 8. We find that the size
of the greedy envelope, outlined in
gray, can vary widely depending
on the state.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

202 chapter 9. online planning

Figure 9.7. A single iteration of
labeled heuristic search conducts
an exploratory run (arrows), fol-
lowed by labeling (hexagonal bor-
der). Only two states are labeled in
this iteration: the hidden terminal
state and the state with a hexag-
onal border. Both the exploratory
run and the labeling step update
the value function.

1 simulation 2 simulations

3 simulations 4 simulations

5 simulations (solved)

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.8. A progression of heuris-
tic search on the hex world prob-
lem using δ = 1 and a heuris-
tic U(s) = 10. The solved states
in each iteration are covered in a
gray wash. The set of solved states
grows from the terminal reward
state back toward the initial state
with the dark border.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 203

Open-loop planning can often allow us to devise effective decision strategies
in high-dimensional spaces where closed-loop planning is computationally in-
feasible. This type of planning gains this efficiency by not accounting for future
information. Example 9.9 provides a simple instance of where open-loop planning
can result in poor decisions, even when we account for stochasticity.

Consider a problem with nine states, as shown in the margin, with two
decision steps starting from the initial state s1. In our decisions, we must
decide between going up (blue arrows) and going down (green arrows).
The effects of these actions are deterministic, except that if we go up from
s1, then we end up in state s2 half the time and in state s3 half the time. We
receive a reward of 30 in states s5 and s7 and a reward of 20 in states s8 and
s9, as indicated in the illustration.

There are exactly four open-loop plans: (up, up), (up, down), (down,
up), and (down, down). In this simple example, it is easy to compute their
expected utilities:

• U(up, up) = 0.5× 30 + 0.5× 0 = 15

• U(up, down) = 0.5× 0 + 0.5× 30 = 15

• U(down, up) = 20

• U(down, down) = 20

According to the set of open-loop plans, it is best to choose down from s1

because our expected reward is 20 instead of 15.
Closed-loop planning, in contrast, takes into account the fact that we can

base our next decision on the observed outcome of our first action. If we
choose to go up from s1, then we can choose to go down or up depending on
whether we end up in s2 or s3, thereby guaranteeing a reward of 30.

Example 9.9. Suboptimality of
open-loop planning.

s1

s2

s3

s4

s5

s6

s7

s8

s9

(0.5)

(0.5)

30

0

30

20

20

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

204 chapter 9. online planning

9.9.1 Deterministic Model Predictive Control
A common approximation to make U(a1:d) amenable to optimization is to assume
deterministic dynamics:

maximize
a1:d ,s2:d

d

∑
t=1

γtR(st, at)

subject to st+1 = T(st, at), t ∈ 1 : d− 1

(9.4)

where s1 is the current state and T(s, a) is a deterministic transition function that
returns the state that results from taking action a from state s. A common strategy
for producing a suitable deterministic transition function from a stochastic transi-
tion function is to use the most likely transition. If the dynamics in equation (9.4)
are linear and the reward function is convex, then the problem is convex.

Example 9.10 provides an instance involving navigating to a goal state while
avoiding an obstacle and minimizing acceleration effort. Both the state space and
action space are continuous, and we can find a solution in well under a second.
Replanning after every step can help compensate for stochasticity or unexpected
events. For example, if the obstacle moves, we can readjust our plan, as illustrated
in figure 9.9.

9.9.2 Robust Model Predictive Control
We can change the problem formulation to provide robustness to outcome un-
certainty. There are many robust model predictive control formulations,13 but one 13 A. Bemporad andM.Morari, “Ro-

bust Model Predictive Control: A
Survey,” in Robustness in Identifica-
tion and Control, A. Garulli, A. Tesi,
and A. Vicino, eds., Springer, 1999,
pp. 207–226.

involves choosing the best open-loop plan given the worst-case state transitions.
This formulation defines T(s, a) to be an uncertainty set consisting of all possible
states that can result from taking action a in state s. In other words, the uncer-
tainty set is the support of the distribution T(· | s, a). Optimizing with respect to
worst-case state transitions requires transforming the optimization problem in
equation (9.4) into a minimax problem:

maximize
a1:d

minimize
s2:d

d

∑
t=1

γtR(st, at)

subject to st+1 ∈ T(st, at), t ∈ 1 : d− 1

(9.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 205

In this problem, our state s represents our agent’s two-dimensional position
concatenated with its two-dimensional velocity vector, with s initially set to
[0, 0, 0, 0]. Our action a is an acceleration vector, where each component must
be between ±1. At each step, we use our action to update our velocity, and
we use our velocity to update our position. Our objective is to reach a goal
state of sgoal = [10, 10, 0, 0]. We plan up to d = 10 steps with no discounting.
With each step, we accumulate a cost of ‖at‖2

2 to minimize acceleration effort.
At the last step, we want to be as close to the goal state as possible, with a
penalty of 100‖sd − sgoal‖2

2. We also have to ensure that we avoid a circular
obstacle with radius 2 centered at [3, 4]. We can formulate this problem as
follows and extract the first action from the plan:
model = Model(Ipopt.Optimizer)
d = 10
current_state = zeros(4)
goal = [10,10,0,0]
obstacle = [3,4]
@variables model begin

s[1:4, 1:d]
-1 ≤ a[1:2,1:d] ≤ 1

end
velocity update
@constraint(model, [i=2:d,j=1:2], s[2+j,i] == s[2+j,i-1] + a[j,i-1])
position update
@constraint(model, [i=2:d,j=1:2], s[j,i] == s[j,i-1] + s[2+j,i-1])
initial condition
@constraint(model, s[:,1] .== current_state)
obstacle
@constraint(model, [i=1:d], sum((s[1:2,i] - obstacle).^2) ≥ 4)
@objective(model, Min, 100*sum((s[:,d] - goal).^2) + sum(a.^2))
optimize!(model)
action = value.(a[:,1])

Example 9.10. Open-loop planning
in a deterministic environment.We
attempt to find a path around a
circular obstacle. This implemen-
tation uses the JuMP.jl interface to
the Ipopt solver. A. Wächter and
L. T. Biegler, “On the Implementa-
tion of an Interior-Point Filter Line-
Search Algorithm for Large-Scale
Nonlinear Programming,” Mathe-
matical Programming, vol. 106, no. 1,
pp. 25–57, 2005.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

206 chapter 9. online planning

0

2

4

6

8

10

0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10 0 2 4 6 8 10

Figure 9.9. Model predictive con-
trol applied to the problem in ex-
ample 9.10, with the addition of
a moving obstacle. The sequence
progresses left-to-right, and top-to-
bottom. Initially, we have a plan
that passes to the right of the ob-
stacle, but in the third cell, we see
that we must change our mind and
pass to the left. We have to maneu-
ver around a little to adjust our
velocity vector appropriately with
minimal effort. Of course, we could
have created a better path (in terms
of our utility function) if our plan-
ning process had known that the
obstacle wasmoving in a particular
direction.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 207

Unfortunately, this formulation can result in extremely conservative behavior. If
we adapt example 9.10 to model the uncertainty in the motion of the obstacle, the
accumulation of uncertainty may become quite large, even when planning with
a relatively short horizon. One way to reduce the accumulation of uncertainty
is to restrict the uncertainty set output by T(s, a) to contain only, say, 95 % of
the probability mass. Another issue with this approach is that the minimax
optimization problem is often not convex and difficult to solve.

9.9.3 Multiforecast Model Predictive Control
One way to address the computational challenge within the minimax problem
in equation (9.5) is to use m forecast scenarios, each of which follows its own
deterministic transition function.14 There are various formulations of this kind of

14 S. Garatti and M.C. Campi,
“Modulating Robustness in Con-
trol Design: Principles and Algo-
rithms,” IEEE Control Systems Mag-
azine, vol. 33, no. 2, pp. 36–51, 2013.multiforecast model predictive control, which is a type of hindsight optimization.15 One
15 It is called hindsight optimiza-
tion because it represents a solu-
tion that is optimizing using knowl-
edge about action outcomes that
can only be known in hindsight.
E.K. P. Chong, R. L. Givan, and
H. S. Chang, “A Framework for
Simulation-Based Network Con-
trol via Hindsight Optimization,”
in IEEE Conference on Decision and
Control (CDC), 2000.

common approach is to have the deterministic transition functions depend on
the step k, Ti(s, a, k), which is the same as augmenting the state space to include
depth. Example 9.11 demonstrates how this might be done for a linear Gaussian
model.

Suppose we have a problem with linear Gaussian dynamics:

T(s′ | s, a) = N (Tss + Taa, Σ)

The problem in figure 9.9 is linear, with no uncertainty, but if we allow the
obstacle to move according to a Gaussian distribution at each step, then the
dynamics become linear Gaussian. We can approximate the dynamics using
a set of m forecast scenarios, each consisting of d steps. We can pull m× d

samples ǫik ∼ N (0, Σ) and define the deterministic transition functions:

Ti(s, a, k) = Tss + Taa + ǫik

Example 9.11. Modeling linear
Gaussian transition dynamics in
multiforecastmodel predictive con-
trol.

We try to find the best sequence of actions for the worst sampled scenario:

maximize
a1:d

minimize
i, s2:d

d

∑
k=1

γkR(sk, ak)

subject to sk+1 = Ti(sk, ak, k), k ∈ 1 : d− 1

(9.6)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

208 chapter 9. online planning

This problem can be much easier to solve than the original robust problem.
We can also use a multiforecast approach to optimize the average case.16 The 16 This approach was applied to op-

timizing power flow policies by N.
Moehle, E. Busseti, S. Boyd, and M.
Wytock, “Dynamic Energy Man-
agement,” in Large Scale Optimiza-
tion in Supply Chains and SmartMan-
ufacturing, Springer, 2019, pp. 69–
126.

formulation is similar to equation (9.6), except that we replace the minimization
with an expectation and allow different action sequences to be taken for different
scenarios, with the constraint that the first action must agree:

maximize
a
(1:m)
1:d ,s

(i)
2:d

1

m

m

∑
i=1

d

∑
k=1

γkR(s
(i)
k , a

(i)
k)

subject to s
(i)
k+1 = Ti(s

(i)
k , a

(i)
k , k), k ∈ 1 : d− 1, i ∈ 1 : m

a
(i)
1 = a

(j)
1 , i ∈ 1 : m, j ∈ 1 : m

(9.7)

This formulation can result in robust behavior without being overly conservative,
while still maintaining computational tractability. Both formulations in equa-
tions (9.6) and (9.7) can be made more robust by increasing the number of
forecast scenarios m at the expense of additional computation.

9.10 Summary

• Online methods plan from the current state, focusing computation on states
that are reachable.

• Receding horizon planning involves planning to a certain horizon and then
replanning with each step.

• Lookahead with rollouts involves acting greedily with respect to values es-
timated using simulations of a rollout policy; it is computationally efficient
compared to other algorithms, but there are no guarantees on performance.

• Forward search considers all state-action transitions up to a certain depth,
resulting in computational complexity that grows exponentially in both the
number of states and the number of actions.

• Branch and bound uses upper and lower bound functions to prune portions of
the search tree that will not lead to a better outcome in expectation.

• Sparse sampling avoids the exponential complexity in the number of states by
limiting the number of sampled transitions from every search node.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.11. exercises 209

• Monte Carlo tree search guides search to promising areas of the search space
by taking actions that balance exploration with exploitation.

• Heuristic search runs simulations of a policy that is greedy with respect to a
value function that is updated along the way using lookahead.

• Labeled heuristic search reduces computation by not reevaluating states whose
values have converged.

• Open-loop planning aims to find the best possible sequence of actions and can
be computationally efficient if the optimization problem is convex.

9.11 Exercises
Exercise 9.1. Why does branch and bound have the same worst-case computational
complexity as forward search?

Solution: In the worst case, branch and bound will never prune, resulting in a traversal of
the same search tree as forward search with the same complexity.

Exercise 9.2. Given two admissible heuristics h1 and h2, how can we use both of them in
heuristic search?

Solution: Create a new heuristic h(s) = min{h1(s), h2(s)} and use it instead. This new
heuristic is guaranteed to be admissible and cannot be a worse bound than either h1 or h2.
Both h1(s) ≥ U∗(s) and h2(s) ≥ U∗(s) imply that h(s) ≥ U∗(s).

Exercise 9.3. Given two inadmissible heuristics h1 and h2, describe a way we can use both
of them in heuristic search.

Solution: We could define a new heuristic h3(s) = max(h1(s), h2(s)) to get a potentially
admissible, or ‘‘less-inadmissible,’’ heuristic. It may be slower to converge, but it may be
more likely to not miss out on a better solution.

Exercise 9.4. Suppose we have a discrete MDP with state space S and action space A and
we want to perform forward search to depth d. Due to computational constraints and the
requirement that wemust simulate to depth d, we decide to generate new, smaller state and
action spaces by re-discretizing the original state and action spaces on a coarser scale with
|S ′| < |S| and |A′| < |A|. In terms of the original state and action spaces, what would
the size of the new state and action spaces need to be in order to make the computational
complexity of forward search approximately depth-invariant with respect to the size of
our original state and action spaces, that is, O (|S||A|)?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

210 chapter 9. online planning

Solution: We need
|S ′| = |S| 1

d and |A′| = |A| 1
d

This results in the following complexity:

O
(

|S ′|d|A′|d
)

= O

(

(

|S| 1
d

)d (

|A| 1
d

)d
)

= O(|S||A|)

Exercise 9.5. Building on the previous exercise, suppose now that we want to keep all the
original actions in our action space and only re-discretize the state space. What would the
size of the new state space need to be to make the computational complexity of forward
search approximately depth-invariant with respect to the size of our original state and
action spaces?

Solution: The computational complexity of forward search is given by O
(

(|S||A|)d
)

, which
can also be written as O

(

|S|d|A|d
)

. Thus, in order for our coarser state space to lead to
forward search that is approximately depth-invariant with respect to the size of our original
state and action spaces, we need

|S ′| =
(|S|
|A|d−1

)
1
d

This gives us:

O
(

|S ′|d|A′|d
)

= O

[

(|S|
|A|d−1

)
1
d

]d

|A|d

 = O

(

|S| |A|
d

|A|d−1

)

= O(|S||A|)

Exercise 9.6. Will changing the ordering of the action space cause forward search to take
different actions? Will changing the ordering of the action space cause branch and bound
to take different actions? Can the ordering of the action space affect how many states are
visited by branch and bound?

Solution: Forward search enumerates over all possible future actions. It may return different
actions if there are ties in their expected utilities. Branch and bound maintains the same
optimality guarantee over the horizon as forward search by sorting by upper bound. The
ordering of the action space can affect branch and bound’s visitation rate when the upper
bound produces the same expected value for two or more actions. Below we show this
effect on the modified mountain car problem from example 9.2. The plot compares the
number of states visited in forward search to that of branch and bound for different action
orderings to depth 6. Branch and bound consistently visits far fewer states than forward
search, but action ordering can still affect state visitation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

9.11. exercises 211

0 50 100 150 200 250 300 350

order: [−1, 0, 1]
order: [−1, 1, 0]
order: [0,−1, 1]
order: [0, 1,−1]
order: [1,−1, 0]
order: [1, 0,−1]
forward search

mean visitation count

Exercise 9.7. Is sparse sampling with m = |S| equivalent to forward search?

Solution: No. While the computational complexities are identical at O
(

|S|d|A|d
)

, forward
search will branch on all states in the state space, while sparse sampling will branch on
|S| randomly sampled states.

Exercise 9.8. Given an MDP with |S| = 10, |A| = 3, and a uniform transition distribution
T(s′ | s, a) = 1/|S| for all s and a, what is the probability that sparse sampling with
m = |S| samples and depth d = 1 yields the exact same search tree produced by forward
search with depth d = 1?

Solution: For both forward search and sparse sampling, we branch on all actions from
the current state node. For forward search, at each of these action nodes, we branch on
all states, while for sparse sampling, we will branch on m = |S| sampled states. If these
sampled states are exactly equal to the state space, that action branch is equivalent to the
branch produced in forward search. Thus, for a single action branch we have:

the probability the first state is unique 10

10

the probability the second state is unique (not equal to the first state) 9

10

the probability the third state is unique (not equal to the first or second state) 8

10
...

...

Since each of these sampled states is independent, this leads to the probability of all unique
states in the state space being selected with probability

10× 9× 8× · · ·
10× 10× 10× · · · =

10!

1010
≈ 0.000363

Since each of the sampled states across different action branches is independent, the
probability that all three action branches sample the unique states in the state space is

(

10!

1010

)3

≈ (0.000363)3 ≈ 4.78× 10−11

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

212 chapter 9. online planning

Exercise 9.9. Given the following tables of Q(s, a) and N(s, a), use the upper confidence
bound in equation (9.1) to compute the MCTS traversal action for each state with an
exploration parameter of c1 = 10 and again for c2 = 20.

Q(s, a1) Q(s, a2)

s1 10 −5

s2 12 10

N(s, a1) N(s, a2)

s1 27 4

s2 32 18

Solution: For the first exploration parameter c1 = 10, we tabulate the upper confidence
bound of each state-action pair and select the action maximizing the bound for each state:

UCB(s, a1) UCB(s, a2) arg maxa UCB(s, a)

s1 10 + 10

√

log 31
27 ≈ 13.566 −5 + 10

√

log 31
4 ≈ 4.266 a1

s2 12 + 10

√

log 50
32 ≈ 15.496 10 + 10

√

log 50
18 ≈ 14.662 a1

And for c2 = 20, we have:

UCB(s, a1) UCB(s, a2) arg maxa UCB(s, a)

s1 10 + 20

√

log 31
27 ≈ 17.133 −5 + 20

√

log 31
4 ≈ 13.531 a1

s2 12 + 20

√

log 50
32 ≈ 18.993 10 + 20

√

log 50
18 ≈ 19.324 a2

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

