
7 Exact Solution Methods

This chapter introduces a model known as a Markov decision process (MDP) to
represent sequential decision problems where the effects of our actions are uncer-
tain.1 We beginwith a description of themodel, which specifies both the stochastic

1 Such models were originally stud-
ied in the 1950s. R. E. Bellman, Dy-
namic Programming. Princeton Uni-
versity Press, 1957. Amodern treat-
ment can be found in M.L. Put-
erman, Markov Decision Processes:
Discrete Stochastic Dynamic Program-
ming. Wiley, 2005.

dynamics of the system as well as the utility associated with its evolution. Dif-
ferent algorithms can be used to compute the utility associated with a decision
strategy and to search for an optimal strategy. Under certain assumptions, we can
find exact solutions to MDPs. Later chapters will discuss approximation methods
that tend to scale better to larger problems.

7.1 Markov Decision Processes

In an MDP (algorithm 7.1), we choose action at at time t based on observing state
st. We then receive a reward rt. The action space A is the set of possible actions,
and the state space S is the set of possible states. Some of the algorithms assume
that these sets are finite, but this is not required in general. The state evolves
probabilistically based on the current state and action we take. The assumption
that the next state depends only on the current state and action and not on any
prior state or action is known as the Markov assumption.

A1 A2 A3

R1 R2 R3

S1 S2 S3

Figure 7.1. MDP decision network
diagram.

At

Rt

St St+1

Figure 7.2. Stationary MDP deci-
sion network diagram. All MDPs
have this general structure.

An MDP can be represented using a decision network as shown in figure 7.1.
There are informational edges (not shown here) from A1:t−1 and S1:t to At. The
utility function is decomposed into rewards R1:t. We focus on stationary MDPs
in which P(St+1 | St, At) and P(Rt | St, At) do not vary with time. Stationary
MDPs can be compactly represented by a dynamic decision diagram as shown
in figure 7.2. The state transition model T(s′ | s, a) represents the probability of
transitioning from state s to s′ after executing action a. The reward function R(s, a)

represents the expected reward received when executing action a from state s.

134 chapter 7. exact solution methods

The reward function is a deterministic function of s and a because it represents
an expectation, but rewards may be generated stochastically in the environment
or even depend on the resulting next state.2 Example 7.1 shows how to frame a

2 For example, if the reward de-
pends on the next state as given
by R(s, a, s′), then the expected re-
ward function would be

R(s, a) = ∑
s′

T(s′ | s, a)R(s, a, s′)collision avoidance problem as an MDP.

The problem of aircraft collision avoidance can be formulated as anMDP. The
states represent the positions and velocities of our aircraft and the intruder
aircraft, and the actions represent whether we climb, descend, or stay level.
We receive a large negative reward for colliding with the other aircraft and a
small negative reward for climbing or descending.

Given knowledge of the current state, we must decide whether an avoid-
ance maneuver is required. The problem is challenging because the positions
of the aircraft evolve probabilistically, and we want to make sure that we
start our maneuver early enough to avoid collision, but late enough so that
we avoid unnecessary maneuvering.

Example 7.1. Aircraft collision
avoidance framed as an MDP.
Many other real-world applica-
tions are discussed in D. J. White,
“A Survey of Applications of
Markov Decision Processes,” Jour-
nal of the Operational Research Soci-
ety, vol. 44, no. 11, pp. 1073–1096,
1993.

struct MDP
γ # discount factor
𝒮 # state space
𝒜 # action space
T # transition function
R # reward function
TR # sample transition and reward

end

Algorithm 7.1. Data structure for
an MDP. We will use the TR field
later to sample the next state and
reward given the current state
and action: s′, r = TR(s, a). In
mathematical writing, MDPs are
sometimes defined in terms of
a tuple consisting of the various
components of the MDP, written
(S ,A, T, R, γ).

The rewards in anMDP are treated as components in an additively decomposed
utility function. In a finite horizon problem with n decisions, the utility associated
with a sequence of rewards r1:n is simply

n

∑
t=1

rt (7.1)

The sum of rewards is sometimes called the return.
In an infinite horizon problem in which the number of decisions is unbounded,

the sum of rewards can become infinite.3 There are several ways to define utility

3 Suppose that strategy A results
in a reward of 1 per time step and
strategy B results in a reward of 100
per time step. Intuitively, a rational
agent should prefer strategy B over
strategy A, but both provide the
same infinite expected utility.in terms of individual rewards in infinite horizon problems. One way is to impose

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.1 . markov decis ion processes 135

a discount factor γ between 0 and 1. The utility is then given by
∞

∑
t=1

γt−1rt (7.2)

This value is sometimes called the discounted return. So long as 0 ≤ γ < 1 and the
rewards are finite, the utility will be finite. The discount factor makes it so that
rewards in the present are worth more than rewards in the future, a concept that
also appears in economics.

Another way to define utility in infinite horizon problems is to use the average
reward, also called the average return, given by

lim
n→∞

1

n

n

∑
t=1

rt (7.3)

This formulation can be attractive because we do not have to choose a discount
factor, but there is often no practical difference between this formulation and a
discounted return with a discount factor close to 1. Because the discounted return
is often computationally simpler to work with, we will focus on the discounted
formulation.

A policy tells us what action to select given the past history of states and
actions. The action to select at time t, given the history ht = (s1:t, a1:t−1), is written
πt(ht). Because the future states and rewards depend only on the current state
and action (as made apparent in the conditional independence assumptions in
figure 7.1), we can restrict our attention to policies that depend only on the current
state. In addition, we will primarily focus on deterministic policies because there is
guaranteed to exist inMDPs an optimal policy that is deterministic. Later chapters
discuss stochastic policies, where πt(at | st) denotes the probability that the policy
assigns to taking action at in state st at time t.

In infinite horizon problems with stationary transitions and rewards, we can
further restrict our attention to stationary policies, which do not depend on time.We
will write the action associated with stationary policy π in state s as π(s), without
the temporal subscript. In finite horizon problems, however, it may be beneficial
to select a different action depending on how many time steps are remaining. For
example, when playing basketball, it is generally not a good strategy to attempt a
half-court shot unless there are only a couple of seconds remaining in the game.
We can make stationary policies account for time by incorporating time as a state
variable.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

136 chapter 7. exact solution methods

The expected utility of executing π from state s is denoted as Uπ(s). In the
context of MDPs, Uπ is often referred to as the value function. An optimal policy π∗

is a policy that maximizes expected utility:4 4 Doing so is consistent with the
maximum expected utility princi-
ple introduced in section 6.4.π∗(s) = arg max

π
Uπ(s) (7.4)

for all states s. Depending on the model, there may be multiple policies that are
optimal. The value function associated with an optimal policy π∗ is called the
optimal value function and is denoted as U∗.

An optimal policy can be found by using a computational technique called
dynamic programming,5 which involves simplifying a complicated problem by

5 The term ‘‘dynamic program-
ming’’ was coined by theAmerican
mathematician Richard Ernest Bell-
man (1920–1984). Dynamic refers
to the fact that the problem is time-
varying and programming refers
to a methodology to find an opti-
mal program or decision strategy.
R. Bellman, Eye of the Hurricane:
An Autobiography. World Scientific,
1984.

breaking it down into simpler subproblems in a recursive manner. Although
we will focus on dynamic programming algorithms for MDPs, dynamic pro-
gramming is a general technique that can be applied to a wide variety of other
problems. For example, dynamic programming can be used in computing a Fi-
bonacci sequence and finding the longest common subsequence between two
strings.6 In general, algorithms that use dynamic programming for solving MDPs 6 T.H. Cormen, C. E. Leiserson,

R. L. Rivest, and C. Stein, Intro-
duction to Algorithms, 3rd ed. MIT
Press, 2009.

are much more efficient than brute force methods.

7.2 Policy Evaluation

Before we discuss how to go about computing an optimal policy, we will discuss
policy evaluation, where we compute the value function Uπ . Policy evaluation
can be done iteratively. If the policy is executed for a single step, the utility is
Uπ

1 (s) = R(s, π(s)). Further steps can be obtained from the lookahead equation:

Uπ
k+1(s) = R(s, π(s)) + γ ∑

s′
T(s′ | s, π(s))Uπ

k (s
′) (7.5)

This equation is implemented in algorithm 7.2. Iterative policy evaluation is
implemented in algorithm 7.3. Several iterations are shown in figure 7.3.

The value function Uπ can be computed to an arbitrary precision given suffi-
cient iterations of the lookahead equation. Convergence is guaranteed because the
update in equation (7.5) is a contraction mapping (reviewed in appendix A.15).7 7 See exercise 7.12.
At convergence, the following equality holds:

Uπ(s) = R(s, π(s)) + γ ∑
s′

T(s′ | s, π(s))Uπ(s′) (7.6)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.2. policy evaluation 137

function lookahead(𝒫::MDP, U, s, a)
𝒮, T, R, γ = 𝒫.𝒮, 𝒫.T, 𝒫.R, 𝒫.γ
return R(s,a) + γ*sum(T(s,a,s′)*U(s′) for s′ in 𝒮)

end
function lookahead(𝒫::MDP, U::Vector, s, a)

𝒮, T, R, γ = 𝒫.𝒮, 𝒫.T, 𝒫.R, 𝒫.γ
return R(s,a) + γ*sum(T(s,a,s′)*U[i] for (i,s′) in enumerate(𝒮))

end

Algorithm 7.2. Functions for com-
puting the lookahead state-action
value from a state s given an action
a using an estimate of the value
function U for the MDP 𝒫. The sec-
ond version handles the case when
U is a vector.

function iterative_policy_evaluation(𝒫::MDP, π, k_max)
𝒮, T, R, γ = 𝒫.𝒮, 𝒫.T, 𝒫.R, 𝒫.γ
U = [0.0 for s in 𝒮]
for k in 1:k_max

U = [lookahead(𝒫, U, s, π(s)) for s in 𝒮]
end
return U

end

Algorithm 7.3. Iterative policy
evaluation, which iteratively com-
putes the value function for a pol-
icy π for MDP 𝒫 with discrete state
and action spaces using k_max iter-
ations.

iteration 1 iteration 2

iteration 3 iteration 4

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 7.3. Iterative policy eval-
uation used to evaluate an east-
moving policy on the hex world
problem (see appendix F.1). The
arrows indicate the direction rec-
ommended by the policy (i.e., al-
ways move east), and the colors in-
dicate the values associated with
the states. The values change with
each iteration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

138 chapter 7. exact solution methods

This equality is called the Bellman expectation equation.8 8 This equation is named for
Richard E. Bellman, one of the
pioneers of dynamic program-
ming. R. E. Bellman, Dynamic
Programming. Princeton University
Press, 1957.

Policy evaluation can be done without iteration by solving the system of equa-
tions in the Bellman expectation equation directly. Equation (7.6) defines a set of
|S| linear equations with |S| unknowns corresponding to the values at each state.
One way to solve this system of equations is to first convert it into matrix form:

Uπ = Rπ + γTπUπ (7.7)

where Uπ and Rπ are the utility and reward functions represented in vector
form with |S| components. The |S| × |S| matrix Tπ contains state transition
probabilities where Tπ

ij is the probability of transitioning from the ith state to the
jth state.

The value function is obtained as follows:

Uπ − γTπUπ = Rπ (7.8)
(I− γTπ)Uπ = Rπ (7.9)

Uπ = (I− γTπ)−1
Rπ (7.10)

This method is implemented in algorithm 7.4. Solving for Uπ in this way
requires O(|S|3) time. The method is used to evaluate a policy in figure 7.4.

function policy_evaluation(𝒫::MDP, π)
𝒮, R, T, γ = 𝒫.𝒮, 𝒫.R, 𝒫.T, 𝒫.γ
R′ = [R(s, π(s)) for s in 𝒮]
T′ = [T(s, π(s), s′) for s in 𝒮, s′ in 𝒮]
return (I - γ*T′)\R′

end

Algorithm 7.4. Exact policy eval-
uation, which computes the value
function for a policy π for an MDP
𝒫 with discrete state and action
spaces.

Figure 7.4. Exact policy evaluation
used to evaluate an east-moving
policy for the hex world problem.
The exact solution contains lower
values than what was contained in
the first few steps of iterative pol-
icy evaluation in figure 7.3. If we
ran iterative policy evaluation for
more iterations, it would converge
to the same value function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.3. value function policies 139

7.3 Value Function Policies

The previous section showed how to compute a value function associated with a
policy. This section shows how to extract a policy from a value function, which
we later use when generating optimal policies. Given a value function U, which
may or may not correspond to the optimal value function, we can construct a
policy π that maximizes the lookahead equation introduced in equation (7.5):

π(s) = arg max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

(7.11)

We refer to this policy as a greedy policy with respect to U. If U is the optimal
value function, then the extracted policy is optimal. Algorithm 7.5 implements
this idea.

An alternative way to represent a policy is to use the action value function,
sometimes called the Q-function. The action value function represents the expected
return when starting in state s, taking action a, and then continuing with the
greedy policy with respect to Q:

Q(s, a) = R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′) (7.12)

From this action value function, we can obtain the value function,

U(s) = max
a

Q(s, a) (7.13)

as well as the policy,
π(s) = arg max

a
Q(s, a) (7.14)

Storing Q explicitly for discrete problems requires O(|S| × |A|) storage instead
of O(|S|) storage for U, but we do not have to use R and T to extract the policy.

Policies can also be represented using the advantage function, which quantifies
the advantage of taking an action in comparison to the greedy action. It is defined
in terms of the difference between Q and U:

A(s, a) = Q(s, a)−U(s) (7.15)

Greedy actions have zero advantage, and nongreedy actions have negative advan-
tage. Some algorithms that we will discuss later in the book use U representations,
but others will use Q or A.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

140 chapter 7. exact solution methods

struct ValueFunctionPolicy
𝒫 # problem
U # utility function

end

function greedy(𝒫::MDP, U, s)
u, a = findmax(a->lookahead(𝒫, U, s, a), 𝒫.𝒜)
return (a=a, u=u)

end

(π::ValueFunctionPolicy)(s) = greedy(π.𝒫, π.U, s).a

Algorithm 7.5. A value function
policy extracted from a value func-
tion U for an MDP 𝒫. The greedy
function will be used in other algo-
rithms.

7.4 Policy Iteration

Policy iteration (algorithm 7.6) is one way to compute an optimal policy. It involves
iterating between policy evaluation (section 7.2) and policy improvement through
a greedy policy (algorithm 7.5). Policy iteration is guaranteed to converge given
any initial policy. It converges in a finite number of iterations because there are
finitelymany policies and every iteration improves the policy if it can be improved.
Although the number of possible policies is exponential in the number of states,
policy iteration often converges quickly. Figure 7.5 demonstrates policy iteration
on the hex world problem.

struct PolicyIteration
π # initial policy
k_max # maximum number of iterations

end

function solve(M::PolicyIteration, 𝒫::MDP)
π, 𝒮 = M.π, 𝒫.𝒮
for k = 1:M.k_max

U = policy_evaluation(𝒫, π)
π′ = ValueFunctionPolicy(𝒫, U)
if all(π(s) == π′(s) for s in 𝒮)

break
end
π = π′

end
return π

end

Algorithm 7.6. Policy iteration,
which iteratively improves an ini-
tial policy π to obtain an optimal
policy for an MDP 𝒫 with discrete
state and action spaces.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.5. value iteration 141

iteration 1 iteration 2

iteration 3 iteration 4

Figure 7.5. Policy iteration used to
iteratively improve an initially east-
moving policy in the hex world
problem to obtain an optimal pol-
icy. In the first iteration, we see the
value function associated with the
east-moving policy and arrows in-
dicating the policy that is greedy
with respect to that value function.
Policy iteration converges in four
iterations; if we ran for a fifth or
more iterations, we would get the
same policy.

Policy iteration tends to be expensive because we must evaluate the policy
in each iteration. A variation of policy iteration called modified policy iteration9 9 M.L. Puterman and M.C. Shin,

“Modified Policy Iteration Algo-
rithms for Discounted Markov De-
cision Problems,” Management Sci-
ence, vol. 24, no. 11, pp. 1127–1137,
1978.

approximates the value function using iterative policy evaluation instead of exact
policy evaluation. We can choose the number of policy evaluation iterations
between steps of policy improvement. If we use only one iteration between steps,
then this approach is identical to value iteration.

7.5 Value Iteration

Value iteration is an alternative to policy iteration that is often used because of its
simplicity. Unlike policy improvement, value iteration updates the value function
directly. It begins with any bounded value function U, meaning that |U(s)| < ∞

for all s. One common initialization is U(s) = 0 for all s.
The value function can be improved by applying the Bellman backup, also called

the Bellman update:10 10 It is referred to as a backup oper-
ation because it transfers informa-
tion back to a state from its future
states.Uk+1(s) = max

a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

(7.16)

This backup procedure is implemented in algorithm 7.7.

function backup(𝒫::MDP, U, s)
return maximum(lookahead(𝒫, U, s, a) for a in 𝒫.𝒜)

end

Algorithm 7.7. The backup proce-
dure applied to an MDP 𝒫, which
improves a value function U at state
s.

Repeated application of this update is guaranteed to converge to the optimal
value function. Like iterative policy evaluation, we can use the fact that the update

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

142 chapter 7. exact solution methods

is a contractionmapping to prove convergence.11 This optimal policy is guaranteed 11 See exercise 7.13.
to satisfy the Bellman optimality equation:

U∗(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U∗(s′)

)

(7.17)

Further applications of the Bellman backup once this equality holds do not change
the value function. An optimal policy can be extracted from U∗ using equa-
tion (7.11). Value iteration is implemented in algorithm 7.8 and is applied to the
hex world problem in figure 7.6.

The implementation in algorithm 7.8 stops after a fixed number of iterations,
but it is also common to terminate the iterations early based on the maximum
change in value ‖Uk+1−Uk‖∞, called the Bellman residual. If the Bellman residual
drops below a threshold δ, then the iterations terminate. A Bellman residual
of δ guarantees that the optimal value function obtained by value iteration is
within ǫ = δγ/(1− γ) of U∗.12 Discount factors closer to 1 significantly inflate 12 See exercise 7.8.
this error, leading to slower convergence. If we heavily discount future reward (γ

closer to 0), then we do not need to iterate as much into the future. This effect is
demonstrated in example 7.2.

Knowing the maximum deviation of the estimated value function from the
optimal value function, ‖Uk − U∗‖∞ < ǫ, allows us to bound the maximum
deviation of reward obtained under the extracted policy π from an optimal policy
π∗. This policy loss ‖Uπ −U∗‖∞ is bounded by 2ǫγ/(1− γ).13

13 S. P. Singh and R.C. Yee, “An
Upper Bound on the Loss from
Approximate Optimal-Value Func-
tions,” Machine Learning, vol. 16,
no. 3, pp. 227–233, 1994.

struct ValueIteration
k_max # maximum number of iterations

end

function solve(M::ValueIteration, 𝒫::MDP)
U = [0.0 for s in 𝒫.𝒮]
for k = 1:M.k_max

U = [backup(𝒫, U, s) for s in 𝒫.𝒮]
end
return ValueFunctionPolicy(𝒫, U)

end

Algorithm 7.8. Value iteration,
which iteratively improves a value
function U to obtain an optimal pol-
icy for anMDP 𝒫with discrete state
and action spaces. The method ter-
minates after k_max iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.5. value iteration 143

iteration 0 iteration 1

iteration 2 iteration 3

iteration 4 iteration 5

iteration 6 iteration 7

Figure 7.6. Value iteration in the
hex world problem to obtain an op-
timal policy. Each hex is colored ac-
cording to the value function, and
arrows indicate the policy that is
greedy with respect to that value
function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

144 chapter 7. exact solution methods

Consider a simple variation of the hex world problem, consisting of a straight
line of tiles with a single consuming tile at the end producing a reward of
10. The discount factor directly affects the rate at which reward from the
consuming tile propagates down the line to the other tiles, and thus how
quickly value iteration converges.

γ = 0.9 γ = 0.5

Example 7.2. The effect of the
discount factor on convergence of
value iteration. In each case, value
iteration was run until the Bellman
residual was less than 1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.6. asynchronous value iteration 145

7.6 Asynchronous Value Iteration

Value iteration tends to be computationally intensive, as every entry in the value
function Uk is updated in each iteration to obtain Uk+1. In asynchronous value
iteration, only a subset of the states are updated with each iteration. Asynchronous
value iteration is still guaranteed to converge on the optimal value function,
provided that each state is updated an infinite number of times.

One common asynchronous value iteration method, Gauss-Seidel value iteration
(algorithm 7.9), sweeps through an ordering of the states and applies the Bellman
update in place:

U(s)← max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

(7.18)

The computational savings lies in not having to construct a second value function
in memory with each iteration. Gauss-Seidel value iteration can converge more
quickly than standard value iteration, depending on the ordering chosen.14 In 14 A poor ordering in Gauss-Seidel

value iteration cannot cause the al-
gorithm to be slower than standard
value iteration.

some problems, the state contains a time index that increments deterministically
forward in time. If we apply Gauss-Seidel value iteration starting at the last time
index and work our way backward, this process is sometimes called backward
induction value iteration. An example of the impact of the state ordering is given in
example 7.3.

struct GaussSeidelValueIteration
k_max # maximum number of iterations

end

function solve(M::GaussSeidelValueIteration, 𝒫::MDP)
U = [0.0 for s in 𝒫.𝒮]
for k = 1:M.k_max

for (i, s) in enumerate(𝒫.𝒮)
U[i] = backup(𝒫, U, s)

end
end
return ValueFunctionPolicy(𝒫, U)

end

Algorithm 7.9. Asynchronous
value iteration, which updates
states in a different manner than
value iteration, often saving com-
putation time. The method termi-
nates after k_max iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

146 chapter 7. exact solution methods

Consider the linear variation of the hex world problem from example 7.2. We
can solve the same problem using asynchronous value iteration. The ordering
of the states directly affects the rate at which reward from the consuming
tile propagates down the line to the other tiles, and thus how quickly the
method converges.

left to right right to left

Example 7.3. The effect of the state
ordering on convergence of asyn-
chronous value iteration. In this
case, evaluating right to left allows
convergence to occur in far fewer
iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.7. linear program formulation 147

7.7 Linear Program Formulation

The problem of finding an optimal policy can be formulated as a linear program,
which is an optimization problem with a linear objective function and a set of
linear equality or inequality constraints. Once a problem is represented as a linear
program, we can use one of many linear programming solvers.15 15 For an overview of linear pro-

gramming, see R. Vanderbei, Lin-
ear Programming, Foundations and
Extensions, 4th ed. Springer, 2014.

To show how we can convert the Bellman optimality equation into a linear
program, we begin by replacing the equality in the Bellman optimality equation
with a set of inequality constraints while minimizing U(s) at each state s:16 16 Intuitively, we want to push the

value U(s) at all states s down in
order to convert the inequality con-
straints into equality constraints.
Hence, we minimize the sum of all
utilities.

minimize ∑
s

U(s)

subject to U(s) ≥ max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

for all s
(7.19)

The variables in the optimization are the utilities at each state. Once we know
those utilities, we can extract an optimal policy using equation (7.11).

The maximization in the inequality constraints can be replaced by a set of
linear constraints, making it a linear program:

minimize ∑
s

U(s)

subject to U(s) ≥ R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′) for all s and a
(7.20)

In the linear program shown in equation (7.20), the number of variables is
equal to the number of states and the number of constraints is equal to the number
of states times the number of actions. Because linear programs can be solved in
polynomial time,17 MDPs can be solved in polynomial time as well. Although a

17 This was proved by L.G.
Khachiyan, “Polynomial Algo-
rithms in Linear Programming,”
USSR Computational Mathematics
and Mathematical Physics, vol. 20,
no. 1, pp. 53–72, 1980. Modern
algorithms tend to be more
efficient in practice.

linear programming approach provides this asymptotic complexity guarantee, it
is often more efficient in practice to simply use value iteration. Algorithm 7.10
provides an implementation of this.

7.8 Linear Systems with Quadratic Reward

So far, we have assumed discrete state and action spaces. This section relaxes
this assumption, allowing for continuous, vector-valued states and actions. The
Bellman optimality equation for discrete problems can be modified as follows:18

18 This section assumes that the
problem is undiscounted and finite
horizon, but these equations can be
easily generalized.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

148 chapter 7. exact solution methods

struct LinearProgramFormulation end

function tensorform(𝒫::MDP)
𝒮, 𝒜, R, T = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T
𝒮′ = eachindex(𝒮)
𝒜′ = eachindex(𝒜)
R′ = [R(s,a) for s in 𝒮, a in 𝒜]
T′ = [T(s,a,s′) for s in 𝒮, a in 𝒜, s′ in 𝒮]
return 𝒮′, 𝒜′, R′, T′

end

solve(𝒫::MDP) = solve(LinearProgramFormulation(), 𝒫)

function solve(M::LinearProgramFormulation, 𝒫::MDP)
𝒮, 𝒜, R, T = tensorform(𝒫)
model = Model(GLPK.Optimizer)
@variable(model, U[𝒮])
@objective(model, Min, sum(U))
@constraint(model, [s=𝒮,a=𝒜], U[s] ≥ R[s,a] + 𝒫.γ*T[s,a,:]⋅U)
optimize!(model)
return ValueFunctionPolicy(𝒫, value.(U))

end

Algorithm 7.10. A method for
solving a discrete MDP using a
linear program formulation. For
convenience in specifying the lin-
ear program, we define a func-
tion for converting an MDP into
its tensor form, where the states
and actions consist of integer in-
dices, the reward function is a ma-
trix, and the transition function is
a three-dimensional tensor. It uses
the JuMP.jlpackage formathemat-
ical programming. The optimizer
is set to use GLPK.jl, but others can
be used instead. We also define the
default solve behavior for MDPs to
use this formulation.

Uh+1(s) = max
a

(

R(s, a) +
∫

T(s′ | s, a)Uh(s
′)ds′

)

(7.21)

where s and a in equation (7.16) are replaced with their vector equivalents, the
summation is replaced with an integral, and T provides a probability density
rather than a probability mass. Computing equation (7.21) is not straightforward
for an arbitrary continuous transition distribution and reward function.

In some cases, exact solution methods do exist for MDPs with continuous
state and action spaces.19 In particular, if a problem has linear dynamics and has 19 For a detailed overview, see chap-

ter 4 of volume I of D. P. Bertsekas,
Dynamic Programming and Optimal
Control. Athena Scientific, 2007.

quadratic reward, then the optimal policy can be efficiently found in closed form.
Such a system is known in control theory as a linear quadratic regulator (LQR) and
has been well studied.20 20 For a compact summary of LQR

and other related control problems,
see A. Shaiju and I. R. Petersen,
“Formulas for Discrete Time LQR,
LQG, LEQG and Minimax LQG
Optimal Control Problems,” IFAC
Proceedings Volumes, vol. 41, no. 2,
pp. 8773–8778, 2008.

A problem has linear dynamics if the next state s′ after taking action a from
state s is determined by an equation of the form:

s′ = Tss + Taa + w (7.22)

where Ts and Ta are matrices and w is a random disturbance drawn from a zero
mean, finite variance distribution that does not depend on s and a. One common
choice is the multivariate Gaussian.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.8. l inear systems with quadratic reward 149

A reward function is quadratic if it can be written in the form:21 21 A third term, 2s⊤Rsaa, can also
be included. For an example, see
Shaiju and Petersen (2008).R(s, a) = s⊤Rss + a⊤Raa (7.23)

where Rs and Ra are matrices that determine how state and action component
combinations contribute reward. We additionally require that Rs be negative
semidefinite and Ra be negative definite. Such a reward function penalizes states
and actions that deviate from 0.

Problems with linear dynamics and quadratic reward are common in control
theory where one often seeks to regulate a process such that it does not deviate
far from a desired value. The quadratic cost assigns a much higher cost to states
far from the origin than to those near it. The optimal policy for a problem with
linear dynamics and quadratic reward has an analytic, closed-form solution.
Many MDPs can be approximated with linear quadratic MDPs and solved, often
yielding reasonable policies for the original problem.

Substituting the transition and reward functions into equation (7.21) produces

Uh+1(s) = max
a

(

s⊤Rss + a⊤Raa +
∫

p(w)Uh(Tss + Taa + w)dw

)

(7.24)

where p(w) is the probability density of the random, zero-mean disturbance w.
The optimal one-step value function is

U1(s) = max
a

(

s⊤Rss + a⊤Raa
)

= s⊤Rss (7.25)

for which the optimal action is a = 0.
We will show through induction that Uh(s) has a quadratic form, s⊤Vhs + qh,

with symmetric matrices Vh. For the one-step value function, V1 = Rs and q1 = 0.
Substituting this quadratic form into equation (7.24) yields

Uh+1(s) = s⊤Rss + max
a

(

a⊤Raa +
∫

p(w)
(

(Tss + Taa + w)⊤Vh(Tss + Taa + w) + qh

)

dw

)

(7.26)

This can be simplified by expanding and using the fact that
∫

p(w)dw = 1

and
∫

wp(w)dw = 0:

Uh+1(s) = s⊤Rss + s⊤T⊤s VhTss

+ max
a

(

a⊤Raa + 2s⊤T⊤s VhTaa + a⊤T⊤a VhTaa
)

+
∫

p(w)
(

w⊤Vhw
)

dw + qh

(7.27)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

150 chapter 7. exact solution methods

We can obtain the optimal action by differentiating with respect to a and setting
it to 0:22 22 Recall that

∇xAx = A⊤

∇xx⊤Ax = (A + A⊤)x
0 =

(

Ra + R⊤a
)

a + 2T⊤a VhTss +

(

T⊤a VhTa +
(

T⊤a VhTa

)⊤)
a

= 2Raa + 2T⊤a VhTss + 2T⊤a VhTaa

(7.28)

Solving for the optimal action yields23 23 The matrix Ra + T⊤a VhTa is neg-
ative definite, and thus invertible.

a = −
(

Ra + T⊤a VhTa

)−1
T⊤a VhTss (7.29)

Substituting the optimal action into Uh+1(s) yields the quadratic form that we
were seeking, Uh+1(s) = s⊤Vh+1s + qh+1, with24 24 This equation is sometimes re-

ferred to as the discrete-time Ric-
cati equation, named after the Vene-
tian mathematician Jacopo Riccati
(1676–1754).

Vh+1 = Rs + T⊤s V⊤h Ts −
(

T⊤a VhTs

)⊤(
Ra + T⊤a VhTa

)−1(

T⊤a VhTs

)

(7.30)

and
qh+1 =

h

∑
i=1

Ew

[

w⊤Viw
]

(7.31)

If w ∼ N (0, Σ), then

qh+1 =
h

∑
i=1

Tr(ΣVi) (7.32)

We can compute Vh and qh up to any horizon h starting from V1 = Rs and
q1 = 0 and iterating using equations (7.30) and (7.31). The optimal action for an
h-step policy comes directly from equation (7.29):

πh(s) = −
(

T⊤a Vh−1Ta + Ra

)−1
T⊤a Vh−1Tss (7.33)

Note that the optimal action is independent of the zero-mean disturbance
distribution.25 The variance of the disturbance, however, does affect the expected 25 In this case, we can replace the

random disturbances with its ex-
pected value without changing the
optimal policy. This property is
known as certainty equivalence.

utility. Algorithm 7.11 provides an implementation. Example 7.4 demonstrates
this process on a simple problem with linear Gaussian dynamics.

7.9 Summary

• Discrete MDPs with bounded rewards can be solved exactly through dynamic
programming.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.10. exercises 151

struct LinearQuadraticProblem
Ts # transition matrix with respect to state
Ta # transition matrix with respect to action
Rs # reward matrix with respect to state (negative semidefinite)
Ra # reward matrix with respect to action (negative definite)
h_max # horizon

end

function solve(𝒫::LinearQuadraticProblem)
Ts, Ta, Rs, Ra, h_max = 𝒫.Ts, 𝒫.Ta, 𝒫.Rs, 𝒫.Ra, 𝒫.h_max
V = zeros(size(Rs))
πs = Any[s -> zeros(size(Ta, 2))]
for h in 2:h_max

V = Ts'*(V - V*Ta*((Ta'*V*Ta + Ra) \ Ta'*V))*Ts + Rs
L = -(Ta'*V*Ta + Ra) \ Ta' * V * Ts
push!(πs, s -> L*s)

end
return πs

end

Algorithm 7.11. A method that
computes an optimal policy for
an h_max-step horizon MDP with
stochastic linear dynamics param-
eterized by matrices Ts and Ta and
quadratic reward parameterized
by matrices Rs and Ra. The method
returns a vector of policies where
entry h produces the optimal first
action in an h-step policy.

• Policy evaluation for such problems can be done exactly through matrix inver-
sion or can be approximated by an iterative algorithm.

• Policy iteration can be used to solve for optimal policies by iterating between
policy evaluation and policy improvement.

• Value iteration and asynchronous value iteration save computation by directly
iterating the value function.

• The problem of finding an optimal policy can be framed as a linear program
and solved in polynomial time.

• Continuous problems with linear transition functions and quadratic rewards
can be solved exactly.

7.10 Exercises
Exercise 7.1. Show that for an infinite sequence of constant rewards (rt = r for all t), the
infinite horizon discounted return converges to r/(1− γ).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

152 chapter 7. exact solution methods

Consider a continuous MDP where the state is composed of a scalar posi-
tion and velocity s = [x, v]. Actions are scalar accelerations a that are each
executed over a time step ∆t = 1. Find an optimal five-step policy from
s0 = [−10, 0], given a quadratic reward:

R(s, a) = −x2 − v2 − 0.5a2

such that the system tends toward rest at s = 0.
The transition dynamics are
[

x′

v′

]

=

[

x + v∆t + 1
2 a∆t2 + w1

v + a∆t + w2

]

=

[

1 ∆t

0 1

] [

x

v

]

+

[

0.5∆t2

∆t

]

[a] + w

where w is drawn from a zero-mean multivariate Gaussian distribution with
covariance 0.1I.

The reward matrices are Rs = −I and Ra = −[0.5].
The resulting optimal policies are:

π1(s) =
[

0 0
]

s

π2(s) =
[

−0.286 −0.857
]

s

π3(s) =
[

−0.462 −1.077
]

s

π4(s) =
[

−0.499 −1.118
]

s

π5(s) =
[

−0.504 −1.124
]

s

−12 −10 −8 −6 −4 −2 0 2 4

0

2

4

6

position x

sp
ee

d
v

Example 7.4. Solving a finite hori-
zon MDP with a linear transi-
tion function and quadratic reward.
The illustration shows the progres-
sion of the system from [−10, 0].
The blue contour lines show the
Gaussian distributions over the
state at each iteration. The initial be-
lief is circular, but it gets distorted
to a noncircular shape as we prop-
agate the belief forward using the
Kalman filter.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.10. exercises 153

Solution:We can prove that the infinite sequence of discounted constant rewards converges
to r/(1− γ) in the following steps:

∞

∑
t=1

γt−1rt = r + γ1r + γ2r + · · ·

= r + γ
∞

∑
t=1

γt−1rt

We can move the summation to the left side and factor out (1− γ):

(1− γ)
∞

∑
t=1

γt−1r = r

∞

∑
t=1

γt−1r =
r

1− γ

Exercise 7.2. Suppose we have an MDP consisting of five states, s1:5, and two actions, to
stay (aS) and continue (aC). We have the following:

T(si | si, aS) = 1 for i ∈ {1, 2, 3, 4}
T(si+1 | si, aC) = 1 for i ∈ {1, 2, 3, 4}

T(s5 | s5, a) = 1 for all actions a

R(si, a) = 0 for i ∈ {1, 2, 3, 5} and for all actions a

R(s4, aS) = 0

R(s4, aC) = 10

What is the discount factor γ if the optimal value U∗(s1) = 1?

Solution: The optimal value of U∗(s1) is associated with following the optimal policy π∗

starting from s1. Given the transition model, the optimal policy from s1 is to continue until
reaching s5, which is a terminal state where we can no longer transition to another state or
accumulate additional reward. Thus, the optimal value of s1 can be computed as

U∗(s1) =
∞

∑
t=1

γt−1rt

U∗(s1) = R(s1, aC) + γ1R(s2, aC) + γ2R(s3, aC) + γ3R(s4, aC) + γ4R(s5, aC) + · · ·
U∗(s1) = 0 + γ1 × 0 + γ2 × 0 + γ3 × 10 + γ4 × 0 + 0

1 = 10γ3

Thus, the discount factor is γ = 0.11/3 ≈ 0.464.

Exercise 7.3. What is the time complexity of performing k steps of iterative policy evalua-
tion?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

154 chapter 7. exact solution methods

Solution: Iterative policy evaluation requires computing the lookahead equation:

Uπ
k+1(s) = R(s, π(s)) + γ ∑

s′
T(s′ | s, π(s))Uπ

k (s
′)

Updating the value at a single state requires summing over all |S| states. For a single
iteration over all states, we must do this operation |S| times. Thus, the time complexity of
k steps of iterative policy evaluation is O(k|S|2).

Exercise 7.4. Suppose that we have an MDP with six states, s1:6, and four actions, a1:4.
Using the following tabular form of the action value function Q(s, a), compute U(s), π(s),
and A(s, a).

Q(s, a) a1 a2 a3 a4

s1 0.41 0.46 0.37 0.37
s2 0.50 0.55 0.46 0.37
s3 0.60 0.50 0.38 0.44
s4 0.41 0.50 0.33 0.41
s5 0.50 0.60 0.41 0.39
s6 0.71 0.70 0.61 0.59

Solution: We can compute U(s), π(s), and A(s, a) using the following equations:

U(s) = max
a

Q(s, a) π(s) = arg max
a

Q(s, a) A(s, a) = Q(s, a)−U(s)

s U(s) π(s) A(s, a1) A(s, a2) A(s, a3) A(s, a4)

s1 0.46 a2 −0.05 0.00 −0.09 −0.09
s2 0.55 a2 −0.05 0.00 −0.09 −0.18
s3 0.60 a1 0.00 −0.10 −0.22 −0.16
s4 0.50 a2 −0.09 0.00 −0.17 −0.09
s5 0.60 a2 −0.10 0.00 −0.19 −0.21
s6 0.71 a1 0.00 −0.01 −0.10 −0.12

Exercise 7.5. Suppose that we have a three-tile, straight-line hex world (appendix F.1)
where the rightmost tile is an absorbing state. When we take any action in the rightmost
state, we get a reward of 10 and we are transported to a fourth terminal state where we no
longer receive any reward. Use a discount factor of γ = 0.9, and perform a single step of
policy iteration where the initial policy π has us move east in the first tile, northeast in the
second tile, and southwest in the third tile. For the policy evaluation step, write out the
transition matrix Tπ and the reward vector Rπ , and then solve the infinite horizon value
function Uπ directly using matrix inversion. For the policy improvement step, compute
the updated policy π′ by maximizing the lookahead equation.

Solution: For the policy evaluation step, we use equation (7.10), repeated here:

Uπ = (I− γTπ)−1
Rπ

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.10. exercises 155

Forming the transition matrix Tπ and reward vector Rπ with an additional state for the
terminal state, we can solve for the infinite horizon value function Uπ :26 26 The hex world problem defines

R(s, a, s′), so in order to produce
entries for Rπ , we must compute

R(s, a) = ∑
s′

T(s′ | s, a)R(s, a, s′)

For example, −0.3 comes from
the 30 % chance that moving east
causes a collision with the border,
with cost −1.

Uπ =





















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











− (0.9)











0.3 0.7 0 0

0 0.85 0.15 0

0 0 0 1

0 0 0 1





















−1 









−0.3

−0.85

10

0











≈











1.425

2.128

10

0











For the policy improvement step, we apply equation (7.11) using the updated value
function. The actions in the arg max term correspond to aE, aNE, aNW , aW , aSW , and aSE:

π(s1) = arg max(1.425, 0.527, 0.283, 0.283, 0.283, 0.527) = aE

π(s2) = arg max(6.575, 2.128, 0.970, 1.172, 0.970, 2.128) = aE

π(s3) = arg max(10, 10, 10, 10, 10, 10) (all actions are equally desirable)

Exercise 7.6. Perform two steps of value iteration to the problem in exercise 7.5, starting
with an initial value function U0(s) = 0 for all s.

Solution: We need to use the Bellman backup (equation (7.16)) to iteratively update the
value function. The actions in the max term correspond to aE, aNE, aNW , aW , aSW , and aSE.
For our first iteration, the value function is zero for all states, so we only need to consider
the reward component:

U1(s1) = max(−0.3,−0.85,−1,−1,−1,−0.85) = −0.3

U1(s2) = max(−0.3,−0.85,−0.85,−0.3,−0.85,−0.85) = −0.3

U1(s3) = max(10, 10, 10, 10, 10, 10) = 10

For the second iteration,

U2(s1) = max(−0.57,−1.12,−1.27,−1.27,−1.27,−1.12) = −0.57

U2(s2) = max(5.919, 0.271,−1.12,−0.57,−1.12, 0.271) = 5.919

U2(s3) = max(10, 10, 10, 10, 10, 10) = 10

Exercise 7.7. Apply one sweep of asynchronous value iteration to the problem in exer-
cise 7.5, starting with an initial value function U0(s) = 0 for all s. Update the states from
right to left.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

156 chapter 7. exact solution methods

Solution: We use the Bellman backup (equation (7.16)) to iteratively update the value
function over each state following our ordering. The actions in the max term correspond
to aE, aNE, aNW , aW , aSW , and aSE:

U(s3) = max(10, 10, 10, 10, 10, 10) = 10

U(s2) = max(6, 0.5,−0.85,−0.3,−0.85, 0.5) = 6

U(s1) = max(3.48,−0.04,−1,−1,−1,−0.04) = 3.48

Exercise 7.8. Prove that a Bellman residual of δ guarantees that the value function obtained
by value iteration is within δγ/(1− γ) of U∗(s) at every state s.

Solution: For a given Uk, suppose we know that ‖Uk −Uk−1‖∞ < δ. Then we bound the
improvement in the next iteration:

Uk+1(s)−Uk(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

−max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk−1(s
′)

)

< max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

−max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)
(

Uk(s
′)− δ

)

)

= δγ

Similarly,

Uk+1(s)−Uk(s) > max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

−max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)
(

Uk(s
′) + δ

)

)

= −δγ

The accumulated improvement after infinite iterations is thus bounded by

‖U∗(s)−Uk(s)‖∞ <

∞

∑
i=1

δγi =
δγ

1− γ

A Bellman residual of δ thus guarantees that the optimal value function obtained by
value iteration is within δγ/(1− γ) of U∗.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.10. exercises 157

Exercise 7.9. Suppose that we run policy evaluation on an expert policy to obtain a value
function. If acting greedily with respect to that value function is equivalent to the expert
policy, what can we deduce about the expert policy?

Solution: We know from the Bellman optimality equation that greedy lookahead on an
optimal value function is stationary. If the greedy policy matches the expert policy, then
both policies are optimal.

Exercise 7.10. Show how an LQR problem with a quadratic reward function R(s, a) =

s⊤Rss + a⊤Raa can be reformulated so that the reward function includes linear terms in s

and a.

Solution: We can introduce an additional state dimension that is always equal to 1, yielding
a new system with linear dynamics:

[

s′

1

]

=

[

Ts 0

0⊤ 1

] [

s

1

]

+ Taa

The reward function of the augmented system can now have linear state reward terms:
[

s

1

]⊤
Raugmented

[

s

1

]

= s⊤Rss + 2r⊤s,linears + rs,scalar

Similarly, we can include an additional action dimension that is always 1 in order to obtain
linear action reward terms.

Exercise 7.11. Why does the optimal policy obtained in example 7.4 produce actions with
greater magnitude when the horizon is greater?

Solution: The problem in example 7.4 has quadratic reward that penalizes deviations from
the origin. The longer the horizon, the greater the negative reward that can be accumulated,
making it more worthwhile to reach the origin sooner.

Exercise 7.12. Prove that iterative policy evaluation converges to the solution of equa-
tion (7.6).

Solution: Consider iterative policy evaluation applied to a policy π as given in equa-
tion (7.5):

Uπ
k+1(s) = R(s, π(s)) + γ ∑

s′
T(s′ | s, π(s))Uπ

k (s
′)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

158 chapter 7. exact solution methods

Let us define an operator Bπ and rewrite this as Uπ
k+1 = BπUπ

k . We can show that Bπ is a
contraction mapping:

BπUπ(s) = R(s, π(s)) + γ ∑
s′

T(s′ | s, π(s))Uπ(s′)

= R(s, π(s)) + γ ∑
s′

T(s′ | s, π(s))
(

Uπ(s′)− Ûπ(s′) + Ûπ(s′)
)

= BπÛπ(s) + γ ∑
s′

T(s′ | s, π(s))
(

Uπ(s′)− Ûπ(s′)
)

≤ BπÛπ(s) + γ‖Uπ − Ûπ‖∞

Hence, ‖BπUπ − BπÛπ‖∞ ≤ α‖Uπ − Ûπ‖∞ for α = γ, implying that Bπ is a contraction
mapping. As discussed in appendix A.15, limt→∞ Bt

πUπ
1 converges to a unique fixed point

Uπ , for which Uπ = BπUπ .
Exercise 7.13. Prove that value iteration converges to a unique solution.
Solution: The value iteration update (equation (7.16)) is

Uk+1(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

Wewill denote the Bellman operator as B and rewrite an application of the Bellman backup
as Uk+1 = BUk. As with the previous problem, if B is a contractionmapping, then repeated
application of B to U will converge to a unique fixed point.

We can show that B is a contraction mapping:

BU(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

= max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)
(

U(s′)− Û(s′) + Û(s′)
)

)

≤ BÛ(s) + γ max
a

∑
s′

T(s′ | s, a)
(

U(s′)− Û(s′)
)

≤ BÛ(s) + α‖U − Û‖∞

for α = γ maxs maxa ∑s′ T(s′ | s, a), with 0 ≤ α < 1. Hence, ‖BU − BÛ‖∞ ≤ α‖U − Û‖∞,
which implies that B is a contraction mapping.
Exercise 7.14. Show that the point to which value iteration converges corresponds to the
optimal value function.
Solution: Let U be the value function produced by value iteration. We want to show that
U = U∗. At convergence, we have BU = U. Let U0 be a value function that maps all states
to 0. For any policy π, it follows from the definition of Bπ that BπU0 ≤ BU0. Similarly,
Bt

πU0 ≤ BtU0. Because Bt
π∗U0 → U∗ and BtU0 → U as t → ∞, it follows that U∗ ≤ U,

which can be the case only if U = U∗.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

7.10. exercises 159

Exercise 7.15. Suppose that we have a linear Gaussian problem with disturbance w ∼
N (0, Σ) and quadratic reward. Show that the scalar term in the utility function has the
form:

qh+1 =
h

∑
i=1

Ew

[

w⊤Viw
]

=
h

∑
i=1

Tr(ΣVi)

You may want to use the trace trick:

x⊤Ax = Tr
(

x⊤Ax
)

= Tr
(

Axx⊤
)

Solution: This equation is true if Ew

[

w⊤Viw
]

= Tr(ΣVi). Our derivation is

E
w∼N (0,Σ)

[

w⊤Viw
]

= E
w∼N (0,Σ)

[

Tr
(

w⊤Viw
)]

= E
w∼N (0,Σ)

[

Tr
(

Viww⊤
)]

= Tr

(

E
w∼N (0,Σ)

[

Viww⊤
]

)

= Tr

(

Vi E
w∼N (0,Σ)

[

ww⊤
]

)

= Tr(ViΣ)

= Tr(ΣVi)

Exercise 7.16. What is the role of the scalar term q in the LQR optimal value function, as
given in equation (7.31)?

qh+1 =
h

∑
i=1

Ew

[

w⊤Viw
]

Solution: A matrix M is positive definite if, for all nonzero x, x⊤Mx > 0. In equation (7.31),
every Vi is negative semidefinite, so w⊤Vw ≤ 0 for all w. Thus, these q terms are guar-
anteed to be nonpositive. This should be expected, as it is impossible to obtain positive
reward in LQR problems, and we seek instead to minimize cost.

The q scalars are offsets in the quadratic optimal value function:

U(s) = s⊤Vs + q

Each q represents the baseline reward around which the s⊤Vs term fluctuates. We
know that V is negative definite, so s⊤Vs ≤ 0, and q thus represents the expected reward
that one could obtain if one were at the origin, s = 0.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

