
6 Simple Decisions

This chapter introduces the notion of simple decisions, where we make a single
decision under uncertainty.1 We will study the problem of decision making from 1 Simple decisions are simple

compared to sequential problems,
which are the focus of the rest of
the book. Simple decisions are
not necessarily simple to solve,
though.

the perspective of utility theory, which involves modeling the preferences of an
agent as a real-valued function over uncertain outcomes.2 This chapter begins

2 Schoemaker provides an
overview of the development
of utility theory. See P. J.H.
Schoemaker, “The Expected Utility
Model: Its Variants, Purposes,
Evidence and Limitations,”
Journal of Economic Literature,
vol. 20, no. 2, pp. 529–563, 1982.
Fishburn surveys the field. See
P.C. Fishburn, “Utility Theory,”
Management Science, vol. 14, no. 5,
pp. 335–378, 1968.

by discussing how a small set of constraints on rational preferences can lead to
the existence of a utility function. This utility function can be inferred from a
sequence of preference queries. We then introduce the maximum expected utility
principle as a definition of rationality, a central concept in decision theory that
will be used as a driving principle for decision making in this book.3 We show

3 A survey of the field of decision
theory is provided by M. Peterson,
An Introduction to Decision Theory.
Cambridge University Press, 2009.

how decision problems can be represented as decision networks and show an
algorithm for solving for an optimal decision. The concept of value of information
is introduced, which measures the utility gained through observing additional
variables. The chapter concludes with a brief discussion of how human decision
making is not always consistent with the maximum expected utility principle.

6.1 Constraints on Rational Preferences

We began our discussion on uncertainty in chapter 2 by identifying the need to
compare our degree of belief in different statements. This chapter requires the
ability to compare the degree of desirability of two different outcomes. We state
our preferences using the following operators:

• A ≻ B if we prefer A over B.

• A ∼ B if we are indifferent between A and B.

• A � B if we prefer A over B or are indifferent.
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Just as beliefs can be subjective, so can preferences.
In addition to comparing events, our preference operators can be used to

compare preferences over uncertain outcomes. A lottery is a set of probabilities
associated with a set of outcomes. For example, if S1:n is a set of outcomes and
p1:n are their associated probabilities, then the lottery involving these outcomes
and probabilities is written as

[S1 : p1; . . . ; Sn : pn] (6.1)

The existence of a real-valued measure of utility emerges from a set of assump-
tions about preferences.4 From this utility function, it is possible to define what it 4 The theory of expected utility

was introduced by the Swiss math-
ematician and physicist Daniel
Bernoulli (1700–1782) in 1738. See
D. Bernoulli, “Exposition of a New
Theory on the Measurement of
Risk,” Econometrica, vol. 22, no. 1,
pp. 23–36, 1954.

means to make rational decisions under uncertainty. Just as we imposed a set of
constraints on beliefs, we will impose some constraints on preferences:5

5 These constraints are some-
times called the von Neumann–
Morgenstern axioms, named
after the Hungarian-American
mathematician and physicist John
von Neumann (1903–1957) and
the Austrian-American economist
Oskar Morgenstern (1902–1977).
They formulated a variation of
these axioms. See J. von Neumann
and O. Morgenstern, Theory of
Games and Economic Behavior.
Princeton University Press, 1944.
Critiques of these axioms are
discussed by P. Anand, “Are
the Preference Axioms Really
Rational?” Theory and Decision,
vol. 23, no. 2, pp. 189–214, 1987.

• Completeness. Exactly one of the following holds: A ≻ B, B ≻ A, or A ∼ B.

• Transitivity. If A � B and B � C, then A � C.

• Continuity. If A � C � B, then there exists a probability p such that [A : p; B :

1− p] ∼ C.

• Independence. If A ≻ B, then for any C and probability p, [A : p; C : 1− p] �
[B : p; C : 1− p].

These are constraints on rational preferences. They say nothing about the preferences
of actual human beings; in fact, there is strong evidence that humans are not
always rational (a point discussed further in section 6.7). Our objective in this
book is to understand rational decision making from a computational perspective
so that we can build useful systems. The possible extension of this theory to
understanding human decision making is only of secondary interest.

6.2 Utility Functions

Just as constraints on the comparison of the plausibility of different statements
lead to the existence of a real-valued probability measure, constraints on ratio-
nal preferences lead to the existence of a real-valued utility measure. It follows
from our constraints on rational preferences that there exists a real-valued utility
function U such that
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• U(A) > U(B) if and only if A ≻ B, and

• U(A) = U(B) if and only if A ∼ B.

The utility function is unique up to a positive affine transformation. In other words,
for any constants m > 0 and b, U′(S) = mU(S) + b if and only if the preferences
induced by U′ are the same as U. Utilities are like temperatures: you can com-
pare temperatures using Kelvin, Celsius, or Fahrenheit, all of which are affine
transformations of each other.

It follows from the constraints on rational preferences that the utility of a lottery
is given by

U([S1 : p1; . . . ; Sn : pn]) =
n

∑
i=1

piU(Si) (6.2)

Example 6.1 applies this equation to compute the utility of outcomes involving a
collision avoidance system.

Suppose that we are building a collision avoidance system. The outcome of
an encounter of an aircraft is defined by whether the system alerts (A) and
whether a collision occurs (C). Because A and C are binary, there are four
possible outcomes. So long as our preferences are rational, we can write our
utility function over the space of possible lotteries in terms of four parameters:
U(a0, c0), U(a1, c0), U(a0, c1), and U(a1, c1). For example,

U([a0, c0 : 0.5; a1, c0 : 0.3; a0, c1 : 0.1; a1, c1 : 0.1])

is equal to

0.5U(a0, c0) + 0.3U(a1, c0) + 0.1U(a0, c1) + 0.1U(a1, c1)

Example 6.1. A lottery involving
the outcomes of a collision avoid-
ance system.

If the utility function is bounded, thenwe can define a normalized utility function,
where the best possible outcome is assigned utility 1 and the worst possible
outcome is assigned utility 0. The utility of each of the other outcomes is scaled
and translated as necessary.
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6.3 Utility Elicitation

In building a decision-making or decision support system, it is often helpful to
infer the utility function from a human or a group of humans. This approach is
called utility elicitation or preference elicitation.6 One way to go about doing this 6 A variety of methods for utility

elicitation are surveyed by P.H. Far-
quhar, “Utility Assessment Meth-
ods,” Management Science, vol. 30,
no. 11, pp. 1283–1300, 1984.

is to fix the utility of the worst outcome S to 0 and the best outcome S to 1. So
long as the utilities of the outcomes are bounded, we can translate and scale the
utilities without altering our preferences. If we want to determine the utility of
outcome S, then we determine probability p such that S ∼ [S : p; S : 1− p]. It then
follows that U(S) = p. Example 6.2 applies this process to determine the utility
function associated with a collision avoidance problem.

In our collision avoidance example, the best possible event is to not alert and
not have a collision, and so we set U(a0, c0) = 1. The worst possible event
is to alert and have a collision, and so we set U(a1, c1) = 0. We define the
lottery L(p) to be [a0, c0 : p; a1, c1 : 1− p]. To determine U(a1, c0), we must
find p such that (a1, c0) ∼ L(p). Similarly, to determine U(a0, c1), we find p

such that (a0, c1) ∼ L(p).

Example 6.2. Utility elicitation ap-
plied to collision avoidance.

It may be tempting to use monetary values to infer utility functions. For exam-
ple, if we are building a decision support system for managing wildfires, it may
be tempting to define a utility function in terms of the monetary cost incurred by
property damage and the monetary cost for deploying fire suppression resources.
However, it is well known in economics that the utility of wealth, in general, is
not linear.7 If there were a linear relationship between utility and wealth, then 7 H. Markowitz, “The Utility of

Wealth,” Journal of Political Econ-
omy, vol. 60, no. 2, pp. 151–158,
1952.

decisions should be made in terms of maximizing expected monetary value.
Someone who tries to maximize expected monetary value would have no use
for insurance because the expected monetary values of insurance policies are
generally negative.

Instead of trying to maximize expected wealth, we generally want to maximize
the expected utility of wealth. Of course, different people have different utility
functions. Figure 6.1 shows an example of a utility function. For small amounts
of wealth, the curve is roughly linear, where $100 is about twice as good at $50.
For larger amounts of wealth, however, the curve tends to flatten out; after all,
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$1000 is worth less to a billionaire than it is to the average person. The flattening
of the curve is sometimes referred to as diminishing marginal utility.

0
0

x

U
(x
)

Figure 6.1. The utility of wealth x
is often modeled as linear for small
values and then concave for larger
values, exhibiting risk aversion.

When discussing monetary utility functions, the three terms listed here are
often used. To illustrate this, assume that A represents being given $50 and B

represents a 50 % chance of winning $100.

• Risk neutral. The utility function is linear. There is no preference between $50
and the 50 % chance of winning $100 (A ∼ B).

• Risk seeking. The utility function is convex. There is a preference for the 50 %

chance of winning $100 (A ≺ B).

• Risk averse. The utility function is concave. There is a preference for the $50
(A ≻ B).

There are several common functional forms for modeling risk aversion of scalar
quantities,8 such as wealth or the availability of hospital beds. One is quadratic 8 These functional forms have been

well studied within economics and
finance. J. E. Ingersoll, Theory of Fi-
nancial Decision Making. Rowman
and Littlefield Publishers, 1987.

utility:
U(x) = λx− x2 (6.3)

where the parameter λ > 0 controls the risk aversion. Since we generally want
this utility function to be monotonically increasing when modeling the utility of
quantities like wealth, we would cap this function at x = λ/2. After that point,
the utility starts decreasing. Another simple form is exponential utility:

U(x) = 1− e−λx (6.4)

with λ > 0. Although it has a convenient mathematical form, it is generally not
viewed as a plausible model of the utility of wealth. An alternative is the power
utility:

U(x) =
x1−λ − 1

1− λ
(6.5)

with λ ≥ 0 and λ 6= 1. The logarithmic utility

U(x) = log x (6.6)

with x > 0 can be viewed as a special case of the power utility where λ → 1.
Figure 6.2 shows a plot of the power utility function with the logarithmic utility
as a special case.

1 2 3 4
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1
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U
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λ = 0 λ→ 1

λ = 5 λ = 10

Figure 6.2. Power utility functions.
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6.4 Maximum Expected Utility Principle

We are interested in the problem of making rational decisions with imperfect
knowledge of the state of the world. Suppose that we have a probabilistic model
P(s′ | o, a), which represents the probability that the state of the world becomes
s′, given that we observe o and take action a. We have a utility function U(s′) that
encodes our preferences over the space of outcomes. Our expected utility of taking
action a, given observation o, is given by

EU(a | o) = ∑
s′

P(s′ | a, o)U(s′) (6.7)

The principle of maximum expected utility says that a rational agent should choose
the action that maximizes expected utility:

a∗ = arg max
a

EU(a | o) (6.8)

Because we are interested in building rational agents, equation (6.8) plays a
central role in this book.9 Example 6.3 applies this principle to a simple decision 9 The importance of the maximum

expected utility principle to the
field of artificial intelligence is dis-
cussed by S. Russell and P. Norvig,
Artificial Intelligence: A Modern Ap-
proach, 4th ed. Pearson, 2021.

problem.

6.5 Decision Networks

A decision network, sometimes called an influence diagram, is a generalization of a
Bayesian network to include action and utility nodes so that we may compactly
represent the probability and utility models defining a decision problem.10 The 10 An extensive discussion of de-

cision networks can be found
in F.V. Jensen and T.D. Nielsen,
Bayesian Networks and Decision
Graphs, 2nd ed. Springer, 2007.

state, action, and observation spaces in the previous section may be factored, and
the structure of a decision network captures the relationships between the various
components.

Decision networks are composed of three types of nodes:

• A chance node corresponds to a random variable (indicated by a circle).

• An action node corresponds to a decision variable (indicated by a square).

• A utility node corresponds to a utility variable (indicated by a diamond) and
cannot have children.
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Suppose that we are trying to decide whether to bring an umbrella on our
vacation given the weather forecast for our destination. We observe the
forecast o, which may be either rain or sun. Our action a is either to bring
our umbrella or leave our umbrella. The resulting state s′ is a combination of
whether we brought our umbrella and whether there is sun or rain at our
destination. Our probabilistic model is as follows:

o a s′ P(s′ | a, o)

forecast rain bring umbrella rain with umbrella 0.9
forecast rain leave umbrella rain without umbrella 0.9
forecast rain bring umbrella sun with umbrella 0.1
forecast rain leave umbrella sun without umbrella 0.1
forecast sun bring umbrella rain with umbrella 0.2
forecast sun leave umbrella rain without umbrella 0.2
forecast sun bring umbrella sun with umbrella 0.8
forecast sun leave umbrella sun without umbrella 0.8

As shown in the table, we assume that our forecast is imperfect; rain
forecasts are right 90 % of the time and sun forecasts are right 80 % of the
time. In addition, we assume that bringing an umbrella does not affect the
weather, though some may question this assumption. The utility function is
as follows:

s′ U(s′)

rain with umbrella −0.1
rain without umbrella −1
sun with umbrella 0.9
sun without umbrella 1

We can compute the expected utility of bringing our umbrella if we forecast
rain using equation (6.7):

EU(bring umbrella | forecast rain) = 0.9×−0.1 + 0.1× 0.9 = 0

Likewise, we can compute the expected utility of leaving our umbrella if we
forecast rain using equation (6.7):

EU(leave umbrella | forecast rain) = 0.9×−1 + 0.1× 1 = −0.8

Hence, we will want to bring our umbrella.

Example 6.3. Applying the princi-
ple of maximum expected utility to
the simple decision of whether to
bring an umbrella.
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There are three kinds of directed edges:
• A conditional edge ends in a chance node and indicates that the uncertainty in

that chance node is conditioned on the values of all its parents.

• An informational edge ends in an action node and indicates that the decision
associated with that node is made with knowledge of the values of its parents.
(These edges are often drawn with dashed lines and are sometimes omitted
from diagrams for simplicity.)

• A functional edge ends in a utility node and indicates that the utility node is
determined by the outcomes of its parents.

Like Bayesian networks, decision networks cannot have cycles. The utility asso-
ciated with an action is equal to the sum of the values at all the utility nodes.
Example 6.4 illustrates how a decision network canmodel the problem of whether
to treat a disease, given the results of diagnostic tests.

We have a set of results from diagnostic tests thatmay indicate the presence of
a particular disease. Given what is known about the tests, we need to decide
whether to apply a treatment. The utility is a function of whether a treatment
is applied and whether the disease is actually present. Conditional edges
connect D to O1, O2, and O3. Informational edges are not explicitly shown
in the illustration, but they would connect the observations to T. Functional
edges connect T and D to U.

T D U(T, D)

0 0 0

0 1 −10

1 0 −1

1 1 −1

T

D U

O1 O2 O3

Treat?

Disease?

Results from diagnostic tests

Example 6.4. An example of a
decision network used to model
whether to treat a disease, given
information from diagnostic tests.

Solving a simple problem (algorithm 6.1) requires iterating over all possible
decision instantiations to find a decision that maximizes expected utility. For each
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instantiation,we evaluate the associated expected utility.We begin by instantiating
the action nodes and observed chance nodes. We can then apply any inference
algorithm to compute the posterior over the inputs to the utility function. The
expected utility is the sum of the values at the utility nodes. Example 6.5 shows
how this process can be applied to our running example.

struct SimpleProblem
bn::BayesianNetwork
chance_vars::Vector{Variable}
decision_vars::Vector{Variable}
utility_vars::Vector{Variable}
utilities::Dict{Symbol, Vector{Float64}}

end

function solve(𝒫::SimpleProblem, evidence, M)
query = [var.name for var in 𝒫.utility_vars]
U(a) = sum(𝒫.utilities[uname][a[uname]] for uname in query)
best = (a=nothing, u=-Inf)
for assignment in assignments(𝒫.decision_vars)

evidence = merge(evidence, assignment)
ϕ = infer(M, 𝒫.bn, query, evidence)
u = sum(p*U(a) for (a, p) in ϕ.table)
if u > best.u

best = (a=assignment, u=u)
end

end
return best

end

Algorithm 6.1. A simple problem
as a decision network. A decision
network is a Bayesian networkwith
chance, decision, and utility vari-
ables. Utility variables are treated
as deterministic. Because variables
in our Bayesian network take val-
ues from 1 : ri , the utility variables
are mapped to real values by the
utilities field. For example, if we
have a utility variable :u1, the ith
utility associatedwith that variable
is utilities[:u1][i]. The solve
function takes as input the prob-
lem, evidence, and an inference
method. It returns the best assign-
ment to the decision variables and
its associated expected utility.

A variety of methods have been developed to make evaluating decision net-
works more efficient.11 One method involves removing action and chance nodes

11 R.D. Shachter, “Evaluating In-
fluence Diagrams,” Operations Re-
search, vol. 34, no. 6, pp. 871–882,
1986. R.D. Shachter, “Probabilis-
tic Inference and Influence Dia-
grams,”Operations Research, vol. 36,
no. 4, pp. 589–604, 1988.from decision networks if they have no children, as defined by conditional, infor-

mational, or functional edges. In example 6.5, we can remove O2 and O3 because
they have no children. We cannot remove O1 because we treated it as observed,
indicating that there is an informational edge from O1 to T (although it is not
drawn explicitly).

6.6 Value of Information

Wemake decisions based onwhatwe observe. Inmany applications, it is natural to
want to quantify the value of information, which is how much observing additional
variables is expected to increase our utility.12 For example, in the disease treatment

12 R.A. Howard, “Information
Value Theory,” IEEE Transactions
on Systems Science and Cybernetics,
vol. 2, no. 1, pp. 22–26, 1966.
Applications to decision networks
can be found in: S. L. Dittmer and
F.V. Jensen, “Myopic Value of In-
formation in Influence Diagrams,”
in Conference on Uncertainty in
Artificial Intelligence (UAI), 1997.
R.D. Shachter, “Efficient Value
of Information Computation,”
in Conference on Uncertainty in
Artificial Intelligence (UAI), 1999.
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We can use equation (6.7) to compute the expected utility of treating a disease
for the decision network in example 6.4. For now, we will assume that we
have the result from only the first diagnostic test and it came back positive.
If we wanted to make the knowledge of the first diagnostic test explicit in
the diagram, then we would draw an informational edge from O1 to T, and
we would have

EU(t1 | o1
1) = ∑

o3

∑
o2

∑
d

P(d, o2, o3 | t1, o1
1)U(t1, d, o1

1, o2, o3)

We can use the chain rule for Bayesian networks and the definition of con-
ditional probability to compute P(d, o2, o3 | t1, o1

1). Because the utility node
depends only on whether the disease is present and whether we treat it, we
can simplify U(t1, d, o1

1, o2, o3) to U(t1, d). Hence,

EU(t1 | o1
1) = ∑

d

P(d | t1, o1
1)U(t1, d)

Any of the exact or approximate inference methods introduced in the previ-
ous chapter can be used to evaluate P(d | t1, o1

1). To decide whether to apply
a treatment, we compute EU(t1 | o1

1) and EU(t0 | o1
1) and make the decision

that provides the highest expected utility.

Example 6.5. Decision network
evaluation of the diagnostic test
problem.
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application in example 6.5, we assumed that we have only observed o1
1. Given

the positive result from that one diagnostic test alone, we may decide against
treatment. However, it may be beneficial to administer additional diagnostic tests
to reduce the risk of not treating a disease that is really present.

In computing the value of information, we will use EU∗(o) to denote the
expected utility of an optimal action, given observation o. The value of information
about variable O′, given o, is

VOI(O′ | o) =

(

∑
o′

P(o′ | o)EU∗(o, o′)

)

− EU∗(o) (6.9)

In otherwords, the value of information about a variable is the increase in expected
utility if that variable is observed. Algorithm 6.2 provides an implementation of
this.

function value_of_information(𝒫, query, evidence, M)
ϕ = infer(M, 𝒫.bn, query, evidence)
voi = -solve(𝒫, evidence, M).u
query_vars = filter(v->v.name ∈ query, 𝒫.chance_vars)
for o′ in assignments(query_vars)

oo′ = merge(evidence, o′)
p = ϕ.table[o′]
voi += p*solve(𝒫, oo′, M).u

end
return voi

end

Algorithm 6.2. A method for com-
puting the value of information
of a query query given observed
chance variables and their values
evidence. The method addition-
ally takes a simple problem 𝒫 and
an inference strategy M.

The value of information is never negative. The expected utility can increase
only if additional observations can lead to different optimal decisions. If observing
a new variable O′ makes no difference in the choice of action, then EU∗(o, o′) =
EU∗(o) for all o′, in which case equation (6.9) evaluates to 0. For example, if the
optimal decision is to treat the disease regardless of the outcome of the diagnostic
test, then the value of observing the outcome of the test is 0.

The value of information only captures the increase in expected utility from
making an observation. A cost may be associated with making a particular obser-
vation. Some diagnostic tests may be inexpensive, such as a temperature reading;
other diagnostic tests are more costly and invasive, such as a lumbar puncture.
The value of information obtained by a lumbar puncture may be much greater
than that of a temperature reading, but the costs of the tests should be taken into
consideration.
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Value of information is an important and often-used metric for choosing what
to observe. Sometimes the value of information metric is used to determine an
appropriate sequence of observations. After each observation, the value of infor-
mation is determined for the remaining unobserved variables. The unobserved
variable with the greatest value of information is then selected for observation. If
there are costs associated with making different observations, then these costs are
subtracted from the value of information when determining which variable to
observe. The process continues until it is no longer beneficial to observe any more
variables. The optimal action is then chosen. This greedy selection of observations
is only a heuristic; it may not represent the truly optimal sequence of observations.
The optimal selection of observations can be determined by using the techniques
for sequential decision making introduced in later chapters.

6.7 Irrationality

Decision theory is a normative theory, which is prescriptive, not a descriptive theory,
which is predictive of human behavior. Human judgment and preference often do
not follow the rules of rationality outlined in section 6.1.13 Even human experts 13 Kahneman and Tversky provide

a critique of expected utility the-
ory and introduce an alternative
model called prospect theory, which
appears to be more consistent with
human behavior. D. Kahneman
and A. Tversky, “Prospect Theory:
An Analysis of Decision Under
Risk,” Econometrica, vol. 47, no. 2,
pp. 263–292, 1979.

may have an inconsistent set of preferences, which can be problematic when
designing a decision support system that attempts to maximize expected utility.

Example 6.6 shows that certainty often exaggerates losses that are certain
compared to losses that are merely probable. This certainty effect works with gains
as well. A smaller gain that is certain is often preferred over a much greater
gain that is only probable, in a way that the axioms of rationality are necessarily
violated.

Example 6.7 demonstrates the framing effect, where people decide on options
based on whether they are presented as a loss or as a gain. Many other cognitive
biases can lead to deviations from what is prescribed by utility theory.14 Special 14 Several recent books discuss

apparent human irrationality. D.
Ariely, Predictably Irrational: The
Hidden Forces That Shape Our Deci-
sions. Harper, 2008. J. Lehrer, How
We Decide. Houghton Mifflin, 2009.

care must be given when trying to elicit utility functions from human experts to
build decision support systems. Although the recommendations of the decision
support system may be rational, they may not exactly reflect human preferences
in certain situations.
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Tversky and Kahneman studied the preferences of university students who
answered questionnaires in a classroom setting. They presented students
with questions dealing with the response to an epidemic. The students were
to reveal their preference between the following two outcomes:

• A: 100 % chance of losing 75 lives

• B: 80 % chance of losing 100 lives

Most preferred B over A. From equation (6.2), we know

U(lose 75) < 0.8U(lose 100) (6.10)

They were then asked to choose between the following two outcomes:

• C: 10 % chance of losing 75 lives

• D: 8 % chance of losing 100 lives

Most preferred C over D. Hence, 0.1U(lose 75) > 0.08U(lose 100). We mul-
tiply both sides by 10 and get

U(lose 75) > 0.8U(lose 100) (6.11)

Of course, equations (6.10) and (6.11) result in a contradiction.We havemade
no assumption about the actual value of U(lose 75) and U(lose 100)—we did
not even assume that losing 100 lives was worse than losing 75 lives. Because
equation (6.2) follows directly from the von Neumann–Morgenstern axioms
given in section 6.1, theremust be a violation of at least one of the axioms, even
though many people who select B and C seem to find the axioms agreeable.

Example 6.6. An experiment
demonstrating that certainty often
exaggerates losses that are certain
relative to losses that are merely
probable. A. Tversky and D. Kah-
neman, “The Framing of Decisions
and the Psychology of Choice,” Sci-
ence, vol. 211, no. 4481, pp. 453–458,
1981.
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Tversky and Kahneman demonstrated the framing effect using a hypothetical
scenario in which an epidemic is expected to kill 600 people. They presented
students with the following two outcomes:

• E: 200 people will be saved.

• F: 1/3 chance that 600 people will be saved and 2/3 chance that no people
will be saved.

The majority of students chose E over F. They then asked them to choose
between the following:

• G: 400 people will die.

• H: 1/3 chance that nobody will die and 2/3 chance that 600 people will
die.

The majority of students chose H over G, even though E is equivalent to G

and F is equivalent to H. This inconsistency is due to how the question is
framed.

Example 6.7. An experiment
demonstrating the framing effect.
A. Tversky and D. Kahneman,
“The Framing of Decisions and
the Psychology of Choice,” Science,
vol. 211, no. 4481, pp. 453–458,
1981.
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6.8 Summary

• Rational decision making combines probability and utility theory.

• The existence of a utility function follows from constraints on rational prefer-
ences.

• A rational decision is one that maximizes expected utility.

• Decision problems can be modeled using decision networks, which are exten-
sions of Bayesian networks that include actions and utilities.

• Solving a simple decision involves inference in Bayesian networks and is thus
NP-hard.

• The value of information measures the gain in expected utility should a new
variable be observed.

• Humans are not always rational.

6.9 Exercises
Exercise 6.1. Suppose that we have a utility function U(s) with a finite maximum value
U and a finite minimum value U. What is the corresponding normalized utility function
Û(s) that preserves the same preferences?

Solution: A normalized utility function has a maximum value of 1 and a minimum value of
0. Preferences are preserved under affine transforms, so we determine the affine transform
of U(s) that matches the unit bounds. This transform is

Û(s) =
U(s)−U

U −U
=

1

U −U
U(s)− U

U −U

Exercise 6.2. If A � C � B and the utilities of each outcome are U(A) = 450, U(B) =

−150, and U(C) = 60, what is the lottery over A and B that will make us indifferent
between the lottery and C?
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Solution:A lottery over A and B is defined as [A : p; B : 1− p]. To satisfy indifference between
the lottery and C ([A : p; B : 1− p] ∼ C), we must have U([A : p; B : 1− p]) = U(C). Thus,
we must compute p that satisfies the equality

U([A : p; B : 1− p]) = U(C)

pU(A) + (1− p)U(B) = U(C)

p =
U(C)−U(B)

U(A)−U(B)

p =
60− (−150)

450− (−150)
= 0.35

This implies that the lottery [A : 0.35; B : 0.65] is equally as desired as C.

Exercise 6.3. Suppose that for a utility function U over three outcomes A, B, and C, that
U(A) = 5, U(B) = 20, and U(C) = 0. We are given a choice between a lottery that gives
us a 50 % probability of B and a 50 % probability of C and a lottery that guarantees A.
Compute the preferred lottery and show that, under the positive affine transformation
with m = 2 and b = 30, that we maintain a preference for the same lottery.

Solution: The first lottery is given by [A : 0.0; B : 0.5; C : 0.5], and the second lottery is given
by [A : 1.0; B : 0.0; C : 0.0]. The original utilities for each lottery are given by

U([A : 0.0; B : 0.5; C : 0.5]) = 0.0U(A) + 0.5U(B) + 0.5U(C) = 10

U([A : 1.0; B : 0.0; C : 0.0]) = 1.0U(A) + 0.0U(B) + 0.0U(C) = 5

Thus, since U([A : 0.0; B : 0.5; C : 0.5]) > U([A : 1.0; B : 0.0; C : 0.0]), we prefer the first
lottery. Under the positive affine transformation m = 2 and b = 30, our new utilities can
be computed as U′ = 2U + 30. The new utilities are then U′(A) = 40, U′(B) = 70, and
U′(C) = 30. The new utilities for each lottery are

U′([A : 0.0; B : 0.5; C : 0.5]) = 0.0U′(A) + 0.5U′(B) + 0.5U′(C) = 50

U′([A : 1.0; B : 0.0; C : 0.0]) = 1.0U′(A) + 0.0U′(B) + 0.0U′(C) = 40

Since U′([A : 0.0; B : 0.5; C : 0.5]) > U′([A : 1.0; B : 0.0; C : 0.0]), we maintain a preference for
the first lottery.

Exercise 6.4. Prove that the power utility function in equation (6.5) is risk averse for all
x > 0 and λ > 0 with λ 6= 1.
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Solution: Risk aversion implies that the utility function is concave, which requires that the
second derivative of the utility function is negative. The utility function and its derivatives
are computed as follows:

U(x) =
x1−λ − 1

1− λ
dU

dx
=

1

xλ

d2U

dx2
=
−λ

xλ+1

For x > 0 and λ > 0, λ 6= 1, xλ+1 is a positive number raised to a positive exponent, which
is guaranteed to be positive. Multiplying this by −λ guarantees that the second derivative
is negative. Thus, for all x > 0 and λ > 0, λ 6= 1, the power utility function is risk averse.

Exercise 6.5. Using the parameters given in example 6.3, compute the expected utility of
bringing our umbrella if we forecast sun and the expected utility of leaving our umbrella
behind if we forecast sun. What is the action that maximizes our expected utility, given
that we forecast sun?

Solution:

EU(bring umbrella | forecast sun) = 0.2×−0.1 + 0.8× 0.9 = 0.7

EU(leave umbrella | forecast sun) = 0.2×−1.0 + 0.8× 1.0 = 0.6

The action that maximizes our expected utility if we forecast sun is to bring our umbrella!

Exercise 6.6. Suppose that we are trying to optimally decide whether or not to feed (F)
our new puppy based on the likelihood that the puppy is hungry (H). We can observe
whether the puppy is whining (W) and whether someone else has recently fed the puppy
(R). The utilities of each combination of feeding and hunger and the decision network
representation are provided here:

F H U(F, H)

0 0 0.0

0 1 −1.0

1 0 −0.5

1 1 −0.1

F

H U

W R

Feed?

Hungry?

Whining? Recently Fed?
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Given that P(h1 | w1) = 0.78, if we observe the puppywhining (w1), what are the expected
utilities of not feeding the puppy ( f 0) and feeding the puppy ( f 1)? What is the optimal
action?

Solution: We start with the definition of expected utility and recognize that the utility
depends only on H and F:

EU( f 0 | w1) = ∑
h

P(h | w1)U( f 0, h)

Now, we can compute the expected utility of feeding the puppy given that it is whining
and, in a similar fashion as before, the expected utility of not feeding the puppy given that
it is whining:

EU( f 0 | w1) = 0.22× 0.0 + 0.78×−1.0 = −0.78

EU( f 1 | w1) = 0.22×−0.5 + 0.78×−0.1 = −0.188

Thus, the optimal action is to feed the puppy ( f 1) since this maximizes our expected utility
EU∗(w1) = −0.188.

Exercise 6.7. Using the results from exercise 6.6, if P(r1 | w1) = 0.2, P(h1 | w1, r0) = 0.9,
and P(h1 | w1, r1) = 0.3, what is the value of information of asking someone else if the
puppy has recently been fed, given that we observe the puppy to be whining (w1)?

Solution: We are interested in computing

VOI(R | w1) =

(

∑
r

P(r | w1)EU∗(w1, r)

)

− EU∗(w1)

We start by computing EU( f | w1, r) for all f and r. Following a similar derivation as in
exercise 6.6, we have

EU( f 0 | w1, r0) = ∑
h

P(h | w1, r0)U( f 0, h)

So, for each combination of F and R, we have the following expected utilities:

EU( f 0 | w1, r0) = ∑
h

P(h | w1, r0)U( f 0, h) = 0.1× 0.0 + 0.9×−1.0 = −0.9

EU( f 1 | w1, r0) = ∑
h

P(h | w1, r0)U( f 1, h) = 0.1×−0.5 + 0.9×−0.1 = −0.14

EU( f 0 | w1, r1) = ∑
h

P(h | w1, r1)U( f 0, h) = 0.7× 0.0 + 0.3×−1.0 = −0.3

EU( f 1 | w1, r1) = ∑
h

P(h | w1, r1)U( f 1, h) = 0.7×−0.5 + 0.3×−0.1 = −0.38
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The optimal expected utilities are

EU∗(w1, r0) = −0.14

EU∗(w1, r1) = −0.3

Now, we can compute the value of information:

VOI(R | w1) = 0.8(−0.14) + 0.2(−0.3)− (−0.188) = 0.016
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