
5 Structure Learning

The previous chapters of this book assumed that the structures of our probabilistic
models were known. This chapter discusses methods for learning the structure
of models from data.1 We begin by explaining how to compute the probability 1 Overviews of Bayesian network

structure learning can be found
in the following textbooks: D.
Koller and N. Friedman, Probabilis-
tic Graphical Models: Principles and
Techniques. MIT Press, 2009. R. E.
Neapolitan, Learning Bayesian Net-
works. Prentice Hall, 2003.

of a graphical structure, given the data. Generally, we want to maximize this
probability. Because the space of possible graphical structures is usually too large
to enumerate, we also discuss ways to search this space efficiently.

5.1 Bayesian Network Scoring

We want to be able to score a network structure G based on how well it models
the data. A maximum a posteriori approach to structure learning involves finding
a G that maximizes P(G | D). We first explain how to compute a Bayesian score
based on P(G | D) to measure how well G models the data. We then explain how
to go about searching the space of networks for the highest-scoring network. Like
inference in Bayesian networks, it can be shown that for general graphs and input
data, learning the structure of a Bayesian network is NP-hard.2

2 See D.M. Chickering, “Learn-
ing Bayesian Networks is NP-
Complete,” in Learning from Data:
Artificial Intelligence and Statistics
V, D. Fisher and H.-J. Lenz, eds.,
Springer, 1996, pp. 121–130. D.M.
Chickering, D. Heckerman, and C.
Meek, “Large-Sample Learning of
Bayesian Networks is NP-Hard,”
Journal of Machine Learning Research,
vol. 5, pp. 1287–1330, 2004.

We compute P(G | D) using Bayes’ rule and the law of total probability:

P(G | D) ∝ P(G)P(D | G) (5.1)

= P(G)
∫

P(D | θ, G)p(θ | G)dθ (5.2)

where θ contains the network parameters as introduced in the previous chapter.
Integrating with respect to θ results in3 3 For the derivation, see the ap-

pendix of G. F. Cooper and E. Her-
skovits, “A Bayesian Method for
the Induction of Probabilistic Net-
works from Data,” Machine Learn-
ing, vol. 4, no. 9, pp. 309–347, 1992.

P(G | D) = P(G)
n

∏
i=1

qi

∏
j=1
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where the values for αijk are the pseudocounts and mijk are the counts, as intro-
duced in the previous chapter. We also define

αij0 =
ri

∑
k=1

αijk mij0 =
ri

∑
k=1

mijk (5.4)

Finding the G that maximizes equation (5.2) is the same as finding the G that
maximizes what is called the Bayesian score:

log P(G | D) = log P(G) +
n

∑
i=1

qi

∑
j=1

(

log

(

Γ(αij0)

Γ(αij0 + mij0)

)

+
ri

∑
k=1

log

(

Γ(αijk + mijk)

Γ(αijk)

))

(5.5)

The Bayesian score is more convenient to compute numerically because it is
easier to add the logarithm of small numbers together than to multiply small
numbers together. Many software libraries can compute the logarithm of the
gamma function directly.

A variety of graph priors have been explored in the literature, although a
uniform prior is often used in practice, in which case log P(G) can be dropped
from the computation of the Bayesian score in equation (5.5). Algorithm 5.1
provides an implementation.

function bayesian_score_component(M, α)
p = sum(loggamma.(α + M))
p -= sum(loggamma.(α))
p += sum(loggamma.(sum(α,dims=2)))
p -= sum(loggamma.(sum(α,dims=2) + sum(M,dims=2)))
return p

end

function bayesian_score(vars, G, D)
n = length(vars)
M = statistics(vars, G, D)
α = prior(vars, G)
return sum(bayesian_score_component(M[i], α[i]) for i in 1:n)

end

Algorithm 5.1. An algorithm
for computing the Bayesian score
for a list of variables vars and
a graph G given data D. This
method uses a uniform prior
αijk = 1 for all i, j, and k
as generated by algorithm 4.2.
The loggamma function is provided
by SpecialFunctions.jl. Chap-
ter 4 introduced the statistics
and prior functions. Note that
log(Γ(α)/Γ(α + m)) = log Γ(α)−
log Γ(α + m), and that log Γ(1) =
0.

A by-product of optimizing the structure with respect to the Bayesian score
is that we are able to find the right balance in the model complexity, given the
available data. We do not want a model that misses out on capturing important
relationships between variables, but we also do not want a model that has too
many parameters to be adequately learned from limited data.
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5.2. directed graph search 99

To illustrate how the Bayesian score helps us balance model complexity, con-
sider the network in figure 5.1. The value of A weakly influences the value of B,
and C is independent of the other variables. We sample from this ‘‘true’’ model to
generate data D, and then try to learn the model structure. There are 25 possible
network structures involving three variables, but we will focus on the scores for
the models in figure 5.2.

A

B

C

P(a1) = 0.5

P(b1 | a0) = 0.45
P(b1 | a1) = 0.5

P(c1) = 0.5

Figure 5.1. A simple Bayesian net-
work to illustrate how the Bayesian
score helps us balance model com-
plexity.A

B

C

A

B

C

A B C

True model
1 + 2 + 1 = 4 parameters

Completely connected
1 + 2 + 4 = 7 parameters

Completely unconnected
1 + 1 + 1 = 3 parameters

Figure 5.2. Three Bayesian network
structures with varying levels of
complexity.

Figure 5.3 shows how the Bayesian scores of the completely connected and
unconnected models compare to the true model as the amount of data increases.
In the plot, we subtract the score of the true model, so values above 0 indicate
that the model provides a better representation than the true model, given the
available data. The plot shows that the unconnected model does better than the
true model when there are fewer than 5× 103 samples. The completely connected
model never does better than the true model, but it starts to do better than the
unconnected model at about 104 samples because there are sufficient data to
adequately estimate its seven independent parameters.

5.2 Directed Graph Search

In a directed graph search, we search the space of directed acyclic graphs for one that
maximizes the Bayesian score. The space of possible Bayesian network structures
grows superexponentially.4 With 10 nodes, there are 4.2× 1018 possible directed 4 R.W. Robinson, “Counting La-

beled Acyclic Digraphs,” in Ann
Arbor Conference on Graph Theory,
1973.

acyclic graphs. With 20 nodes, there are 2.4× 1072. Except for Bayesian networks
with few nodes, we cannot enumerate the space of possible structures to find
the highest-scoring network. Therefore, we have to rely on a search strategy.
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Figure 5.3. Bayesian network struc-
ture learning balances model com-
plexity with the available data.
The completely connected model
never outperforms the true model,
whereas the completely uncon-
nected model eventually underper-
forms when more than about 5×
103 samples have been drawn. This
result indicates that simpler mod-
els can outperform complicated
models when data is scarce—even
when a more complicated model
generated the samples.

Fortunately, search is a general problem, and a wide variety of generic search
algorithms have been studied over the years.

One of the most common search strategies is called K2.5 The search (algo- 5 The name comes from the fact
that it is an evolution of a sys-
tem called Kutató. The algorithm
was introduced by G. F. Cooper
and E. Herskovits, “A Bayesian
Method for the Induction of Prob-
abilistic Networks from Data,” Ma-
chine Learning, vol. 4, no. 9, pp. 309–
347, 1992.

rithm 5.2) runs in polynomial time but does not guarantee finding a globally
optimal network structure. It can use any scoring function, but it is often usedwith
the Bayesian score because of its ability to balance the complexity of the model
with the amount of data available. K2 begins with a graph with no directed edges
and then iterates over the variables according to a provided ordering, greedily
adding parents to the nodes in a way that maximally increases the score. It is
common for K2 to impose an upper bound on the number of parents for any one
node to reduce the required computation. The original K2 algorithm assumed a
unit uniform Dirichlet prior with αijk = 1 for all i, j, and k, but any prior can be
used in principle.

A general search strategy is local search, which is sometimes called hill climbing.
Algorithm 5.3 provides an implementation of this concept. We start with an initial
graph and then move to the highest-scoring neighbor. The neighborhood of a
graph consists of the graphs that are only one basic graph operation away, where
the basic graph operations include introducing an edge, removing an edge, and
reversing an edge. Of course, not all operations are possible from a particular
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struct K2Search
ordering::Vector{Int} # variable ordering

end

function fit(method::K2Search, vars, D)
G = SimpleDiGraph(length(vars))
for (k,i) in enumerate(method.ordering[2:end])

y = bayesian_score(vars, G, D)
while true

y_best, j_best = -Inf, 0
for j in method.ordering[1:k]

if !has_edge(G, j, i)
add_edge!(G, j, i)
y′ = bayesian_score(vars, G, D)
if y′ > y_best

y_best, j_best = y′, j
end
rem_edge!(G, j, i)

end
end
if y_best > y

y = y_best
add_edge!(G, j_best, i)

else
break

end
end

end
return G

end

Algorithm 5.2. K2 search of the
space of directed acyclic graphs us-
ing a specified variable ordering.
This variable ordering imposes a
topological ordering in the result-
ing graph. The fit function takes
an ordered list variables vars and
a data set D. The method starts
with an empty graph and itera-
tively adds the next parent that
maximally improves the Bayesian
score.
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graph, and operations that introduce cycles into the graph are invalid. The search
continues until the current graph scores no lower than any of its neighbors.

An opportunistic version of local search is implemented in algorithm 5.3. Rather
than generating all graph neighbors at every iteration, this method generates a
single random neighbor and accepts it if its Bayesian score is greater than that of
the current graph.

struct LocalDirectedGraphSearch
G # initial graph
k_max # number of iterations

end

function rand_graph_neighbor(G)
n = nv(G)
i = rand(1:n)
j = mod1(i + rand(2:n)-1, n)
G′ = copy(G)
has_edge(G, i, j) ? rem_edge!(G′, i, j) : add_edge!(G′, i, j)
return G′

end

function fit(method::LocalDirectedGraphSearch, vars, D)
G = method.G
y = bayesian_score(vars, G, D)
for k in 1:method.k_max

G′ = rand_graph_neighbor(G)
y′ = is_cyclic(G′) ? -Inf : bayesian_score(vars, G′, D)
if y′ > y

y, G = y′, G′
end

end
return G

end

Algorithm 5.3. Local directed
graph search, which starts with
an initial directed graph G and
opportunistically moves to a ran-
dom graph neighbor whenever its
Bayesian score is greater. It repeats
this process for k_max iterations.
Random graph neighbors are gen-
erated by either adding or remov-
ing a single edge. This algorithm
can be extended to include revers-
ing the direction of an edge. Edge
addition can result in a graph with
cycles, in which case we assign a
score of −∞.

Local search can get stuck in local optima, preventing it from finding the globally
optimal network structure. Various strategies have been proposed for addressing
local optima, including the following:6 6 The field of optimization is quite

vast, and many methods have been
developed for addressing local op-
tima. This textbook provides an
overview: M. J. Kochenderfer and
T.A. Wheeler, Algorithms for Opti-
mization. MIT Press, 2019.

• Randomized restart. Once a local optima has been found, simply restart the
search at a random point in the search space.

• Simulated annealing. Instead of always moving to the neighbor with greatest
fitness, the search can visit neighbors with lower fitness according to some
randomized exploration strategy. As the search progresses, the randomness in
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the exploration decreases according to a particular schedule. This approach
is called simulated annealing because of its inspiration from annealing in
metallurgy.

• Genetic algorithms. The procedure begins with an initial random population of
points in the search space represented as binary strings. Each bit in a string
indicates the presence or absence of an arrow between two nodes. Stringmanip-
ulation thus allows for searching the space of directed graphs. The individuals
in the population reproduce at a rate proportional to their score. Individuals
selected for reproduction have their strings recombined randomly through
genetic crossover, which involves selecting a crossover point on two randomly
selected individuals and then swapping the strings after that point. Mutations
are also introduced randomly into the population by randomly flipping bits in
the strings. The process of evolution continues until a satisfactory point in the
search space is found.

• Memetic algorithms. This approach, sometimes called genetic local search, is
simply a combination of genetic algorithms and local search. After genetic
recombination, local search is applied to the individuals.

• Tabu search. Previous methods can be augmented to maintain a tabu list con-
taining recently visited points in the search space. The search algorithm avoids
neighbors in the tabu list.

Some search strategies may work better than others on certain data sets, but in
general, finding the global optima remains NP-hard. Many applications, however,
do not require the globally optimal network structure. A locally optimal structure
is often acceptable.

5.3 Markov Equivalence Classes

As discussed earlier, the structure of a Bayesian network encodes a set of con-
ditional independence assumptions. An important observation to make when
trying to learn the structure of a Bayesian network is that two different graphs
can encode the same independence assumptions. As a simple example, the two-
variable network A → B has the same independence assumptions as A ← B.
Solely on the basis of the data, we cannot justify the direction of the edge between
A and B.
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If two networks encode the same conditional independence assumptions, we
say that they are Markov equivalent. It can be proven that two graphs are Markov
equivalent if and only if they have (1) the same edges, without regard to di-
rection; and (2) the same set of immoral v-structures. An immoral v-structure is
a v-structure X → Y ← Z, with X and Z not directly connected, as shown in
figure 5.4. A Markov equivalence class is a set containing all the directed acyclic
graphs that are Markov equivalent to each other. A method for checking Markov
equivalence is given in algorithm 5.4.

X

Y

Z X

Y

Z

moral immoral Figure 5.4. Moral and immoral v-
structures.

In general, two structures belonging to the sameMarkov equivalence class may
be given different scores. However, if the Bayesian score is used with Dirichlet
priors such that κ = ∑j ∑k αijk is constant for all i, then two Markov equivalent
structures are assigned the same score.7 Such priors are called BDe, and a special 7 This was shown by D. Hecker-

man, D. Geiger, and D.M. Chick-
ering, “Learning Bayesian Net-
works: The Combination of Knowl-
edge and Statistical Data,” Machine
Learning, vol. 20, no. 3, pp. 197–243,
1995.

case is the BDeu prior,8 which assigns αijk = κ/(qiri). Although the commonly

8 W.L. Buntine, “Theory Refine-
ment on Bayesian Networks,” in
Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 1991.

used uniform prior αijk = 1 does not always result in identical scores being
assigned to structures in the same equivalence class, they are often fairly close. A
scoring function that assigns the same score to all structures in the same class is
called score equivalent.

5.4 Partially Directed Graph Search

A Markov equivalence class can be represented as a partially directed graph, some-
times called an essential graph or a directed acyclic graph pattern. A partially directed
graph can contain both directed edges and undirected edges. An example of a
partially directed graph that encodes a Markov equivalence class is shown in
figure 5.5. A directed acyclic graph G is a member of the Markov equivalence
class encoded by a partially directed graph G′ if and only if G has the same edges
as G′ without regard to direction and has the same immoral v-structures as G′.
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function are_markov_equivalent(G, H)
if nv(G) != nv(H) || ne(G) != ne(H) ||

!all(has_edge(H, e) || has_edge(H, reverse(e))
for e in edges(G))

return false
end
for (I, J) in [(G,H), (H,G)]

for c in 1:nv(I)
parents = inneighbors(I, c)
for (a, b) in subsets(parents, 2)

if !has_edge(I, a, b) && !has_edge(I, b, a) &&
!(has_edge(J, a, c) && has_edge(J, b, c))
return false

end
end

end
end

return true
end

Algorithm 5.4. A method for de-
termining whether the directed
acyclic graphs G and H are Markov
equivalent. The subsets function
from IterTools.jl returns all sub-
sets of a given set and a specified
size.

A C E

B D

Markov equivalence class

A C E

B D

Member

A C E

B D

Member
A C E

B D

Nonmember

Figure 5.5. A Markov equivalence
class and examples of members
and a nonmember. The nonmem-
ber does not belong to the Markov
equivalence class because it in-
troduces an immoral v-structure,
A → B ← C, which is not in-
dicated in the partially directed
graph.
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Instead of searching the space of directed acyclic graphs, we can search the
space of Markov equivalence classes represented by partially directed graphs.9 9 Details of how to search this

space are provided by D.M. Chick-
ering, “Learning Equivalence
Classes of Bayesian-Network Struc-
tures,” Journal of Machine Learning
Research, vol. 2, pp. 445–498, 2002.

Although the space of Markov equivalence classes is, of course, smaller than the
space of directed acyclic graphs, it is not significantly smaller; the ratio of directed
acyclic graphs to equivalence classes asymptotes to around 3.7 fairly quickly.10

10 S. B. Gillispie and M.D. Perlman,
“The Size Distribution for Markov
Equivalence Classes of Acyclic Di-
graph Models,” Artificial Intelli-
gence, vol. 141, no. 1–2, pp. 137–155,
2002.

A problem with hill climbing in the space of directed acyclic graphs is that the
neighborhood may consist of other graphs that are in the same equivalence
class with the same score, which can lead to the search becoming stuck in a local
optimum. Searching the space of equivalence classes allows us to jump to different
directed acyclic graphs outside the current equivalence class.

Any of the general search strategies presented in section 5.2 can be used. If a
form of local search is used, then we need to define the local graph operations
that define the neighborhood of the graph. Examples of local graph operations
include:

• If an edge between X and Y does not exist, add either X−Y or X → Y.

• If X−Y or X → Y, then remove the edge between X and Y.

• If X → Y, then reverse the direction of the edge to get X ← Y.

• If X−Y− Z, then add X → Y ← Z.

To score a partially directed graph, we generate a member of its Markov equiva-
lence class and compute its score.

5.5 Summary

• Fitting a Bayesian network to data requires selecting the Bayesian network
structure that dictates the conditional dependencies between variables.

• Bayesian approaches to structure learning maximize the Bayesian score, which
is related to the probability of the graph structure given a data set.

• The Bayesian score promotes simpler structures for smaller data sets and
supports more complicated structures for larger data sets.

• The number of possible structures is superexponential in the number of vari-
ables, and finding a structure that maximizes the Bayesian score is NP-hard.
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• Directed graph search algorithms like K2 and local search can be efficient but
do not guarantee optimality.

• Methods like partially directed graph search traverse the space of Markov
equivalence classes, which may be more efficient than searching the larger
space of directed acyclic graphs.

5.6 Exercises
Exercise 5.1. How many neighbors does an edgeless directed acyclic graph with m nodes
have?

Solution:Of the three basic graph operations,we can only add edges.We can add any edge to
an edgeless directed acyclic graph and it will remain acyclic. There are m(m− 1) = m2−m

node pairs, and therefore that many neighbors.

Exercise 5.2. How many networks are in the neighborhood of the following Bayesian
network?

A B

C D

Solution: We can perform the following graph operations:
• Add A→ D, D → A, D → C

• Remove A→ B, A→ C, B→ C, D → B

• Flip A→ B, B→ C, D → B

Thus, there are 10 Bayesian networks in the neighborhood.

Exercise 5.3. Suppose we start local search with a Bayesian network G. What is the fewest
number of iterations of local search that could be performed to converge to the optimal
Bayesian network G∗?

G A B C D E F

G∗ A B C D E F
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Solution: At each iteration, local search can move from the original network to a network in
its neighborhood, which is at most one edge operation from the original network. Since
there are three differences between the edges of G and G∗, performing local search from
G would require a minimum of three iterations to arrive at G∗. One potential minimal
sequence of local search iterations could be flipping A→ B, removing B→ C, and adding
E→ D. We assume that the graphs formed with these edge operations yielded the highest
Bayesian scores of all graphs in the considered neighborhood.

Exercise 5.4. Draw the partially directed acyclic graph representing the Markov equiv-
alence class of the following Bayesian network. How many graphs are in this Markov
equivalence class?

A B C

D E F

Solution: The Markov equivalence class can be represented by the following partially
directed acyclic graph:

A B C

D E F
There are six networks in this Markov equivalence class, which are shown here:

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F
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Exercise 5.5. Give an example of a partially directed acyclic graph with four nodes that
does not define a nonempty Markov equivalence class.

Solution: Consider the following partially directed acyclic graph:

A B

C D

We cannot replace the undirected edge with a directed edge because doing so would
introduce a new v-structure.
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