
4 Parameter Learning

We have assumed so far that the parameters and structure of our probabilistic
models were known. This chapter addresses the problem of learning or fitting
model parameters from data.1 We begin by introducing an approach where we

1 This chapter focuses on learn-
ing model parameters from data,
which is an important component
of the field of machine learning. A
broad introduction to the field is
provided by K. P. Murphy, Proba-
bilistic Machine Learning: An Intro-
duction. MIT Press, 2022.

identify the parameters of a model that maximize the likelihood of observing
the data. After discussing the limitations of such an approach, we introduce an
alternative Bayesian approach, in which we start with a probability distribution
over the unknown parameters and then update that distribution based on the
observed data using the laws of probability. We then discuss probabilistic models
that avoid committing to a fixed number of parameters.

4.1 Maximum Likelihood Parameter Learning

In maximum likelihood parameter learning, we attempt to find the parameters of a
distribution that maximize the likelihood of observing the data. If θ represents
the parameters of a distribution, then the maximum likelihood estimate is

θ̂ = arg max
θ

P(D | θ) (4.1)

where P(D | θ) is the likelihood that our probability model assigns to the data
D occurring when the model parameters are set to θ.2 We often use the ‘‘hat’’ 2 Here, wewrite P(D | θ) as if it is a

probability mass associated with a
discrete distribution. However, our
probability model may be continu-
ous, in which case we are working
with densities.

accent (‘‘·̂’’) to indicate an estimate of a parameter.
There are two challenges associated with maximum likelihood parameter

learning. One is to choose an appropriate probability model by which we define
P(D | θ). We often assume that the samples in our data D are independently and
identically distributed, which means that our samples D = o1:m are drawn from a
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distribution oi ∼ P(· | θ) with

P(D | θ) = ∏
i

P(oi | θ) (4.2)

Probability models could include, for example, the categorical distributions or
Gaussian distributions mentioned in earlier chapters.

The other challenge is performing the maximization in equation (4.1). For
many common probability models, we can perform this optimization analytically.
Others may be difficult. A common approach is to maximize the log-likelihood,
often denoted as ℓ(θ). Since the log-transformation is monotonically increasing,
maximizing the log-likelihood is equivalent to maximizing the likelihood:3 3 Although it does not matter

whether we maximize the natural
logarithm (base e) or the common
logarithm (base 10) in this equa-
tion, throughout this book we will
use log(x) to mean the logarithm
of x with base e.

θ̂ = arg max
θ

∑
i

log P(oi | θ) (4.3)

Computing the sum of log-likelihoods is typically much more numerically stable
compared to computing the product ofmany small probabilitymasses or densities.
The remainder of this section will demonstrate how to optimize equation (4.1)
for different types of distributions.

4.1.1 Maximum Likelihood Estimates for Categorical Distributions
Suppose that the random variable C represents whether a flight will result in
a midair collision, and we are interested in estimating the distribution P(C).
Because C is either 0 or 1, it is sufficient to estimate the parameter θ = P(c1).
What we want to do is infer θ from data D. We have a historical database spanning
a decade consisting of m flights with n midair collisions. Our intuition, of course,
tells us that a good estimate for θ, given the data D, is n/m. Under the assumption
of independence of outcomes between flights, the probability of a sequence of m

outcomes in D with n midair collisions is:

P(D | θ) = θn(1− θ)m−n (4.4)

The maximum likelihood estimate θ̂ is the value for θ that maximizes equa-
tion (4.4), which is equivalent to maximizing the logarithm of the likelihood:

ℓ(θ) = log
(

θn(1− θ)m−n
) (4.5)

= n log θ + (m− n) log(1− θ) (4.6)
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We can use the standard technique for finding the maximum of a function by
setting the first derivative of ℓ to 0 and then solving for θ. The derivative is given
by

∂

∂θ
ℓ(θ) =

n

θ
− m− n

1− θ
(4.7)

We can solve for θ̂ by setting the derivative to 0:
n

θ̂
− m− n

1− θ̂
= 0 (4.8)

After a few algebraic steps, we see that, indeed, θ̂ = n/m.
Computing the maximum likelihood estimate for a variable X that can assume

k values is also straightforward. If n1:k are the observed counts for the k different
values, then the maximum likelihood estimate for P(xi | n1:k) is given by

θ̂i =
ni

∑
k
j=1 nj

(4.9)

4.1.2 Maximum Likelihood Estimates for Gaussian Distributions
In a Gaussian distribution, the log-likelihood of the mean µ and variance σ2 with
m samples is given by

ℓ(µ, σ2) ∝ −m log σ− ∑i(oi − µ)2

2σ2
(4.10)

Again, we can set the derivative to 0 with respect to the parameters and solve for
the maximum likelihood estimate:

∂
∂µ ℓ(µ, σ2) =

∑i(oi − µ̂)

σ̂2
= 0 (4.11)

∂
∂σ ℓ(µ, σ2) = −m

σ̂
+

∑i(oi − µ̂)2

σ̂3
= 0 (4.12)

After some algebraic manipulation, we get

µ̂ =
∑i oi

m
σ̂2 =

∑i(oi − µ̂)2

m
(4.13)

Figure 4.1 provides an example of fitting a Gaussian to data.
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Figure 4.1. Suppose that we have
airspeed measurements o1:m from
m aircraft tracks, and we want
to fit a Gaussian model. This
figure shows a Gaussian with
the maximum likelihood estimates
µ̂ = 51.5 m/s and σ̂ = 15.9 m/s.
The ‘‘true’’ distribution is shown
for comparison. In this case, the
Gaussian is a fairly reasonable ap-
proximation of the true distribu-
tion.

4.1.3 Maximum Likelihood Estimates for Bayesian Networks
We can apply maximum likelihood parameter learning to Bayesian networks.
Here, we will assume that our network is composed of a set of n discrete variables
that we denote as X1:n. Our data D = {o1, . . . , om} consists of observed samples
from those variables. In our network with structure G, ri is the number of instan-
tiations of Xi, and qi is the number of instantiations of the parents of Xi. If Xi has
no parents, then qi = 1. The jth instantiation of the parents of Xi is denoted as
πij.

The factor table for Xi thus has riqi entries, resulting in a total of ∑
n
i=1 riqi

parameters in our Bayesian network. Each parameter is written as θijk and deter-
mines

P(Xi = k | πij) = θijk (4.14)
Although there are ∑

n
i=1 riqi parameters, only ∑

n
i=1(ri − 1)qi are independent. We

use θ to represent the set of all parameters.
Weuse mijk to represent the number of times Xi = k given parental instantiation

j in the data set. Algorithm 4.1 provides an implementation of a function for
extracting these counts or statistics from a data set. The likelihood is given in
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terms of mijk:

P(D | θ, G) =
n

∏
i=1

qi

∏
j=1

ri

∏
k=1

θ
mijk

ijk (4.15)

Similar to the maximum likelihood estimate for the univariate distribution in
equation (4.9), themaximum likelihood estimate in our discrete Bayesian network
model is

θ̂ijk =
mijk

∑k′ mijk′
(4.16)

Example 4.1 illustrates this process.

function sub2ind(siz, x)
k = vcat(1, cumprod(siz[1:end-1]))
return dot(k, x .- 1) + 1

end

function statistics(vars, G, D::Matrix{Int})
n = size(D, 1)
r = [vars[i].r for i in 1:n]
q = [prod([r[j] for j in inneighbors(G,i)]) for i in 1:n]
M = [zeros(q[i], r[i]) for i in 1:n]
for o in eachcol(D)

for i in 1:n
k = o[i]
parents = inneighbors(G,i)
j = 1
if !isempty(parents)

j = sub2ind(r[parents], o[parents])
end
M[i][j,k] += 1.0

end
end
return M

end

Algorithm 4.1. A function for ex-
tracting the statistics, or counts,
from a discrete data set D, assum-
ing a Bayesian network with vari-
ables vars and structure G. The
data set is an n×m matrix, where
n is the number of variables and
m is the number of data points.
This function returns an array M of
length n. The ith component con-
sists of a qi × ri matrix of counts.
The sub2ind(siz, x) function re-
turns a linear index into an array
with dimensions specified by siz
given coordinates x. It is used to
identify which parental instantia-
tion is relevant to a particular data
point and variable.

4.2 Bayesian Parameter Learning

Bayesian parameter learning addresses some of the drawbacks of maximum like-
lihood estimation, especially when the amount of data is limited. For example,
suppose that our aviation safety database was limited to the events of the past
week, and we found no recorded midair collisions. If θ is the probability that a
flight results in a midair collision, then the maximum likelihood estimate would
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Suppose that we have a small network, A→ B← C, and we want to extract
the statistics from data matrix D. We can use the following code:
G = SimpleDiGraph(3)
add_edge!(G, 1, 2)
add_edge!(G, 3, 2)
vars = [Variable(:A,2), Variable(:B,2), Variable(:C,2)]
D = [1 2 2 1; 1 2 2 1; 2 2 2 2]
M = statistics(vars, G, D)

The output is an array M consisting of these three count matrices, each of size
qi × ri:

[

2 2
]











0 0

0 0

2 0

0 2











[

0 4
]

We can compute the maximum likelihood estimate by normalizing the rows
in the matrices in M:
θ = [mapslices(x->normalize(x,1), Mi, dims=2) for Mi in M]

which produces

[

0.5 0.5
]











nan nan
nan nan

1 0

0 1











[

0 1
]

As we can see, the first and second parental instantiations of the second
variable B leads to nan (‘‘not a number’’) estimates. Because there are no
observations of those two parental instantiations in the data, the denominator
of equation (4.16) equals zero, making the parameter estimate undefined.
Most of the other parameters are not nan. For example, the parameter θ112 =

0.5 means that the maximum likelihood estimate of P(a2) is 0.5.

Example 4.1. Using the
statistics function for ex-
tracting the statistics from a data
set. Bayesian parameter learning
can be used to avoid nan values,
but we must specify a prior.
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be θ̂ = 0. Believing that there is zero chance of a midair collision is not a reason-
able conclusion unless our prior hypothesis was, for example, that all flights were
perfectly safe.

The Bayesian approach to parameter learning involves estimating p(θ | D),
the posterior distribution over θ given our data D. Instead of obtaining a point
estimate θ̂ as in maximum likelihood estimation, we obtain a distribution. This
distribution can help us quantify our uncertainty about the true value of θ. We
can convert this distribution into a point estimate by computing the expectation:

θ̂ = Eθ∼p(·|D)[θ] =
∫

θp(θ | D)dθ (4.17)

In some cases, however, the expectation may not be an acceptable estimate, as
illustrated in figure 4.2. An alternative is to use the maximum a posteriori estimate:

θ̂ = arg max
θ

p(θ | D) (4.18)

This estimate corresponds to a value of θ that is assigned the greatest density.
This is often referred to as the mode of the distribution. As shown in figure 4.2,
the mode may not be unique.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

θ

p
(θ
)

Figure 4.2. An example of a distri-
bution where the expected value
of θ is not a good estimate. The
expected value of 0.5 has a lower
density than occurs at the extreme
values of 0 or 1. This distribution
happens to be a beta distribution, a
type of distribution wewill discuss
shortly, with parameters (0.2, 0.2).

Bayesian parameter learning can be viewed as inference in a Bayesian network
with the structure in figure 4.3, which makes the assumption that the observed
variables are conditionally independent of each other. As with any Bayesian
network, we must specify p(θ) and P(Oi | θ). We often use a uniform prior p(θ).
The remainder of this section discusses how to apply Bayesian parameter learning
to different models of P(Oi | θ).

θ

Oi

i = 1 : n

Parameter

Observations

Figure 4.3. Bayesian network rep-
resenting parameter learning.

4.2.1 Bayesian Learning for Binary Distributions
Suppose we want to learn the parameters of a binary distribution. Here, we will
use P(o1 | θ) = θ. To infer the distribution over θ in the Bayesian network in
figure 4.3, we can proceed with the standard method for performing inference
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discussed in chapter 3. Here, we will assume a uniform prior:

p(θ | o1:m) ∝ p(θ, o1:m) (4.19)

= p(θ)
m

∏
i=1

P(oi | θ) (4.20)

=
m

∏
i=1

P(oi | θ) (4.21)

=
m

∏
i=1

θoi (1− θ)1−oi (4.22)

= θn(1− θ)m−n (4.23)

The posterior is proportional to θn(1− θ)m−n, where n is the number of times
Oi = 1. To find the normalization constant, we integrate

∫ 1

0
θn(1− θ)m−n dθ =

Γ(n + 1)Γ(m− n + 1)

Γ(m + 2)
(4.24)

where Γ is the gamma function. The gamma function is a real-valued generalization
of the factorial. If m is an integer, then Γ(m) = (m− 1)!. Taking normalization
into account, we have

p(θ | o1:m) =
Γ(m + 2)

Γ(n + 1)Γ(m− n + 1)
θn(1− θ)m−n (4.25)

= Beta(θ | n + 1, m− n + 1) (4.26)

The beta distribution Beta(α, β) is defined by parameters α and β, and curves for
this distribution are shown in figure 4.4. The distribution Beta(1, 1) corresponds
to the uniform distribution spanning 0 to 1.

The distribution Beta(α, β) has mean
α

α + β
(4.27)

When α and β are both greater than 1, the mode is

α− 1

α + β− 2
(4.28)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



4.2. bayesian parameter learning 79

0 0.2 0.4 0.6 0.8 1
0

1

2

3

θ

p
(θ
)

Beta(1, 1)

Beta(2, 2)

Beta(6, 2)

Figure 4.4. An overlay of several
beta probability densities.

Conveniently, if a beta distribution is used as a prior over a parameter of a
binary distribution, then the posterior is also a beta distribution. In particular,
if the prior is given by Beta(α, β) and we make an observation oi, then we get a
posterior of Beta(α+ 1, β) if oi = 1 and Beta(α, β+ 1) if oi = 0. Hence, if we started
with a prior given by Beta(α, β) and our data showed that there were n collisions
out of m flights, then the posterior would be given by Beta(α + n, β + m− n). The
α and β parameters in the prior are sometimes called pseudocounts because they
are treated similarly to the observed counts of the two outcome classes in the
posterior, although the pseudocounts need not be integers.

Choosing the prior, in principle, should be done without knowledge of the
data used to compute the posterior. Uniform priors often work well in practice,
although if expert knowledge is available, then it can be encoded into the prior.
For example, suppose that we had a slightly bent coin and we wanted to estimate
θ, the probability that the coin would land heads. Before we collected any data
by flipping the coin, we would start with a belief θ that is likely to be around
0.5. Instead of starting with a uniform prior Beta(1, 1), we might use Beta(2, 2)

(shown in figure 4.4), which gives more weight to values near 0.5. If we were
more confident in an estimate near 0.5, then we could reduce the variance of the
prior by increasing the pseudocounts. The prior Beta(10, 10) is muchmore peaked
than Beta(2, 2). In general, however, the importance of the prior diminishes with
the amount of data used to compute the posterior. If we observe m flips and n

were heads, then the difference between Beta(1 + n, 1 + m− n) and Beta(10 +

n, 10 + m− n) is negligible if we observe thousands of coin flips.
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4.2.2 Bayesian Learning for Categorical Distributions
The Dirichlet distribution4 is a generalization of the beta distribution and can 4 This distribution is named af-

ter the German mathematician Jo-
hann Peter Gustav Lejeune Dirich-
let (1805–1859).

be used to estimate the parameters of categorical distributions. Suppose that X

is a discrete random variable that takes integer values from 1 to n. We define
the parameters of the distribution to be θ1:n, where P(xi) = θi. Of course, the
parameters must sum to 1, and so only the first n− 1 parameters are independent.
The Dirichlet distribution can be used to represent both the prior and the posterior
distribution and is parameterized by α1:n. The density is given by

Dir(θ1:n | α1:n) =
Γ(α0)

∏
n
i=1 Γ(αi)

n

∏
i=1

θ
αi−1
i (4.29)

where α0 is used to denote the summation of the parameters α1:n.5 If n = 2, then 5 See appendix B for plots of Dirich-
let distribution densities for differ-
ent parameters.it is easy to see that equation (4.29) is equivalent to the beta distribution.

It is common to use a uniform prior where all the Dirichlet parameters α1:n are
set to 1. As with the beta distribution, the parameters in the Dirichlet are often
referred to as pseudocounts. If the prior over θ1:n is given by Dir(α1:n) and there
are mi observations of X = i, then the posterior is given by

p(θ1:n | α1:n, m1:n) = Dir(θ1:n | α1 + m1, . . . , αn + mn) (4.30)

The distribution Dir(α1:n) has a mean vector whose ith component is
αi

∑
n
j=1 αj

(4.31)

When αi > 1, the ith component of the mode is

αi − 1

∑
n
j=1 αj − n

(4.32)

As we have seen, Bayesian parameter estimation is straightforward for binary
and discrete random variables because it involves simply counting the various
outcomes in the data. Bayes’ rule can be used to infer the distribution over the
parameters for other parametric distributions. Depending on the choice of prior
and the form of the parametric distribution, calculating the posterior over the
space of parameters also might be done analytically.
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4.2.3 Bayesian Learning for Bayesian Networks
We can apply Bayesian parameter learning to discrete Bayesian networks. The
prior over the Bayesian network parameters θ can be factorized as follows:

p(θ | G) =
n

∏
i=1

qi

∏
j=1

p(θij) (4.33)

where θij = (θij1, . . . , θijri
). The prior p(θij), under some weak assumptions,

can be shown to follow a Dirichlet distribution Dir(αij1, . . . , αijri
). Algorithm 4.2

provides an implementation for creating a data structure holding αijk, where all
entries are 1, corresponding to a uniform prior.

After observing data in the form of mijk counts (as introduced in section 4.1.3),
the posterior is then

p(θij | αij, mij) = Dir(θij | αij1 + mij1, . . . , αijri
+ mijri

) (4.34)

similar to equation (4.30). Example 4.2 demonstrates this process.

function prior(vars, G)
n = length(vars)
r = [vars[i].r for i in 1:n]
q = [prod([r[j] for j in inneighbors(G,i)]) for i in 1:n]
return [ones(q[i], r[i]) for i in 1:n]

end

Algorithm 4.2. A function for gen-
erating a prior αijk where all en-
tries are 1. The array of matrices
that this function returns takes the
same form as the statistics gener-
ated by algorithm4.1. To determine
the appropriate dimensions, the
function takes as input the list of
variables vars and structure G.

We can compute the parameters of the posterior associated with a Bayesian
network through simple addition of the prior parameters and counts (equa-
tion (4.34)). If we use the matrix of counts M obtained in example 4.1, we can
add it to the matrices of prior parameters α = prior(vars, G) to obtain the
set of posterior parameters M + α:

[

3 3
]











1 1

1 1

3 1

1 3











[

1 5
]

Example 4.2. Computing the pos-
terior parameters in a Bayesian net-
work. Note that unlike example 4.1,
here we do not have nan values.
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4.3 Nonparametric Learning

The previous two sections assumed that the probabilistic model was of a fixed
form and that a fixed set of parameters were to be learned from the data. An
alternative approach is based on nonparametric methods in which the number of
parameters scales with the amount of data. A common nonparametric method is
kernel density estimation (algorithm 4.3). Given observations o1:m, kernel density
estimation represents the density as follows:

p(x) =
1

m

m

∑
i=1

φ(x− oi) (4.35)

where φ is a kernel function, which integrates to 1. The kernel function is used to
assign greater density to values near the observed data points. A kernel function is
generally symmetric, meaning that φ(x) = φ(−x). A common kernel is the zero-
mean Gaussian distribution. When such a kernel is used, the standard deviation
is often referred to as the bandwidth, which can be tuned to control the smoothness
of the density function. Larger bandwidths generally lead to smoother densities.
Bayesian methods can be applied to the selection of the appropriate bandwidth
based on the data. The effect of the bandwidth choice is shown in figure 4.5.

gaussian_kernel(b) = x->pdf(Normal(0,b), x)

function kernel_density_estimate(ϕ, O)
return x -> sum([ϕ(x - o) for o in O])/length(O)

end

Algorithm 4.3. The method
gaussian_kernel returns a
zero-mean Gaussian kernel φ(x)
with bandwidth b. Kernel density
estimation is also implemented for
a kernel ϕ and list of observations
O.

4.4 Learning with Missing Data

When learning the parameters of our probabilistic model we may have missing
entries in our data.6 For example, if we are conducting a survey, some respondents 6 Learning with missing data is the

subject of a large body of litera-
ture. A comprehensive introduc-
tion and review is provided by G.
Molenberghs, G. Fitzmaurice,M.G.
Kenward, A. Tsiatis, and G. Ver-
beke, eds.,Handbook ofMissingData
Methodology. CRC Press, 2014.

may decide to skip a question. Table 4.1 shows an example of a data set with
missing entries involving three binary variables: A, B, and C. One approach to
handling missing data is to discard all the instances that are incomplete, where
there are one or more missing entries. Depending on how much of the data is
missing, we might have to discard much of it. In table 4.1, we would have to
discard all but one of the rows, which can be wasteful.
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Figure 4.5. Kernel density estima-
tion applied to the same data set
using zero-mean Gaussian kernels
with different bandwidths. The his-
togram in blue shows the underly-
ing data set frequencies, and the
black lines indicate the probability
density from kernel density estima-
tion. Larger bandwidths smooth
out the estimate, whereas smaller
bandwidths can overfit to specific
samples.
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A B C

1 1 0
? 1 1
1 ? ?
? ? ?

Table 4.1. Example of data consist-
ing of four instances with six miss-
ing entries.

We can learn model parameters from missing data using either a maximum
likelihood or a Bayesian approach. If taking a Bayesian maximum a posteriori
approach, we want to find the estimate

θ̂ = arg max
θ

p(θ | Dobs) (4.36)

= arg max
θ

∑
Dmis

p(θ | Dobs, Dmis)P(Dmis | Dobs) (4.37)

where Dobs and Dmis consist of all the observed and missing data, respectively.
If the data is continuous, then the sum would be replaced by an integral. The
marginalization over the missing data can be computationally expensive. The
same marginalization also affects the computational tractability of a Bayesian
approach.

This section discusses two general approaches for learning with missing data
without having to enumerate over all the possible combinations of missing values.
The first involves learning the distribution parameters using predicted values of
the missing entries. The second involves an iterative approach for improving our
parameter estimates.

We will focus on the context where data is missing at random, meaning that
the probability that an entry is missing is conditionally independent of its value,
given the values of the observed variables. An example of a situation that does
not adhere to this assumption might include radar data containing measurements
of the distance to a target, but the measurement may be missing either due to
noise or because the target is beyond the sensing range. The fact that an entry is
missing is an indication that the value is more likely to be high. Accounting for
this form of missingness requires different models and algorithms from what we
discuss here.7 7 Different missingness mechanisms

and associated inference tech-
niques are reviewed by R. J.A.
Little and D. B. Rubin, Statistical
Analysis with Missing Data, 3rd ed.
Wiley, 2020.

4.4.1 Data Imputation
An alternative to discarding incomplete instances is to impute the values of
missing entries. Data imputation is the process of inferring values for missing
entries. One way to view imputation is as an approximation of equation (4.37),
where we find

D̂mis = arg max
Dmis

p(Dmis | Dobs) (4.38)
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Once we have the imputed missing values, we can use that data to produce a
maximum posteriori estimate:

θ̂ = arg max
θ

p(θ | Dobs) ≈ arg max
θ

p(θ | Dobs, D̂mis) (4.39)

or, alternatively, we can take a maximum likelihood approach.
Solving equation (4.38) may still be computationally challenging. One sim-

ple approach for discrete data sets is to replace missing entries with the most
commonly observed value, called the marginal mode. For example, in table 4.1, we
might replace all the missing values for A with its marginal mode of 1.

A B C

−6.5 0.9 4.2
? 4.4 9.2

7.8 ? ?
? ? ?

Table 4.2. Example of data with
continuous values.

Continuous data often lacks duplicates. However, we can fit a distribution
to continuous values and then use the mode of the resulting distribution. For
example, we might fit a Gaussian distribution to the data in table 4.2, and then
fill in the missing entries with the mean of the observed values associated with
each variable. The top-left plot in figure 4.6 illustrates the effect of this approach
on two-dimensional data. The red lines show how values with missing first or
second components are paired with their imputed counterparts. We can then use
the observed and imputed data to arrive at a maximum likelihood estimate of
the parameters of a joint Gaussian distribution. As we can see, this method of
imputation does not always produce sensible predictions and the learned model
is quite poor.

We can often do better if we account for the probabilistic relationships between
the observed and unobserved variables. In figure 4.6, there is clearly correlation
between the two variables; hence, knowing the value of one variable can help
predict the value of the other variable. A common approach to imputation, called
nearest-neighbor imputation, is to use the values associated with the instance that
is nearest with respect to a distance measure defined on the observed variables.
The top-right plot in figure 4.6 uses the Euclidean distance for imputation. This
approach tends to lead to better imputations and learned distributions.

An alternative approach is to fit a distribution to the fully observed data and
then use that distribution to infer the missing values. We can use the inference
algorithms from the previous chapter to perform this inference. For example, if
our data is discrete and we can assume a Bayesian network structure, we can use
variable elimination or Gibbs sampling to produce a distribution over the missing
variables for an instance from the observed variables. From this distribution, we
might use the mean or mode to impute the missing values. Alternatively, we can
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Figure 4.6. A demonstration of im-
putation techniques. Shown here
are ellipses where the density of
the maximum likelihood estimate
of the joint distribution equals 0.02.
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pull a sample from this distribution. If our data is continuous and we can assume
that the data is jointly Gaussian, we can use algorithm 3.11 to infer the posterior
distribution. The bottom plots in figure 4.6 demonstrate imputation using these
posterior mode and posterior sampling approaches.

4.4.2 Expectation-Maximization
The expectation-maximization (EM) category of approaches involves iterative im-
provement of the distribution parameter estimate θ̂.8 We begin with an initial θ̂, 8 Expectation-maximization was

introduced by A. P. Dempster,
N.M. Laird, and D. B. Rubin,
“Maximum Likelihood from
Incomplete Data via the EM
Algorithm,” Journal of the Royal
Statistical Society, Series B (Method-
ological), vol. 39, no. 1, pp. 1–38,
1977.

which may be a guess, randomly sampled from a prior distribution over distribu-
tion parameters, or estimated using one of the methods discussed in section 4.4.1.
At each iteration, we perform a two-step process to update θ̂.

The first step is called the expectation step (E-step), where we use the current
estimate of θ to infer completions of the data. For example, if we are modeling
our data using a discrete Bayesian network, we can use one of our inference
algorithms to infer a distribution over the missing entries for each instance. When
extracting the counts, we apply a weighting proportional to the likelihood of the
completions as shown in example 4.3. In cases where there are many missing
variables, there may be too many possible completions to practically enumerate,
making a sampling-based approach attractive. We may also want to use sampling
as an approximation method when our variables are continuous.

The second step is called the maximization step (M-step), where we attempt to
find a new θ̂ that maximizes the likelihood of the completed data. If we have
a discrete Bayesian network with the weighted counts in the form shown in
example 4.3, then we can perform the same maximum likelihood estimate as
discussed earlier in this chapter. Alternatively, we can use a maximum a posteriori
estimate if we want to incorporate a prior.

This approach is not guaranteed to converge to model parameters that max-
imize the likelihood of the observed data, but it can work well in practice. To
reduce the risk of the algorithm converging to only a local optimum, we can run
the algorithm to convergence from many different initial points in the param-
eter space. We simply choose the resulting parameter estimate in the end that
maximizes likelihood.

Expectation-maximization can even be used to impute values for variables that
are not observed at all in the data. Such variables are called latent variables. To
illustrate, suppose we have a Bayesian network Z → X, where X is continuous
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Suppose that we have a binary Bayesian network with A→ B. We start by
assuming that θ̂ implies

P(a1) = 0.5 P(b1 | a0) = 0.2 P(b1 | a1) = 0.6

Using these parameters, we can expand the data set with missing values
(left) to a weighted data set with all possible individual completions (right):

A B

1 1

0 1

0 ?

? 0

A B weight
1 1 1

0 1 1

0 0 1− P(b1 | a0) = 0.8

0 1 P(b1 | a0) = 0.2

0 0 αP(a0)P(b0 | a0) = α0.4 = 2/3

1 0 αP(a1)P(b0 | a1) = α0.2 = 1/3

The α in the calculation here is a normalization constant, which enforces that
each instance is expanded to instances whose weights sum to 1. The count
matrices are then

[

(2 + 2/3) (1 + 1/3)
]

[

(0.8 + 2/3) 1.2

1/3 1

]

Example 4.3. Expanding an in-
complete data set using assumed
model parameters.
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and Z is discrete and can take on one of three values. Our model assumes p(x | z)

is conditional Gaussian. Our data set contains only values for X, but none for
Z. We start with an initial θ̂ and use it to infer a probability distribution over
the values of Z, given the value of X for each instance. The distribution over
entry completions are then used to update our estimate of the parameters of P(Z)

and P(X | Z) as illustrated in example 4.4. We iterate to convergence, which
often occurs very quickly. The parameters that we obtain in this example define a
Gaussian mixture model, which was introduced in section 2.2.2.

4.5 Summary

• Parameter learning involves inferring the parameters of a probabilistic model
from data.

• A maximum likelihood approach to parameter learning involves maximizing
a likelihood function, which can be done analytically for some models.

• A Bayesian approach to parameter learning involves inferring a probability
distribution over the underlying parameter using Bayes’ rule.

• The beta and Dirichlet distributions are examples of Bayesian priors that are
easily updated with evidence.

• In contrast with parametric learning, which assumes a fixed parameterization
of a probability model, nonparametric learning uses representations that grow
with the amount of data.

• We can approach the problem of learning parameters from missing data using
methods such as data imputation or expectation-maximization, where we
make inferences based on observed values.

4.6 Exercises
Exercise 4.1. Suppose that Anna is shooting basketball free throws. Before we see her
play, we start with an independent uniform prior over the probability that she successfully
makes a basket per shot. We observe her take three shots, with two of them resulting in
successful baskets. What is the probability that we assign to her making the next basket?
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We have a Bayesian network Z → X, where Z is a discrete latent variable
with three values and X is continuous with p(x | z)modeled as a conditional
Gaussian. Hence, we have parameters defining P(z1), P(z2), and P(z3), as
well as µi and σi for each of the three Gaussian distributions associated with
different values of Z. In this example, we use an initial parameter vector θ̂
that specifies P(zi) = 1/3 and σi = 1 for all i. We spread out the means with
µ1 = −4, µ2 = 0, and µ3 = 4.

Suppose our first instance in our data has X = 4.2. We want to infer the
distribution over Z for that instance:

P(zi | X = 4.2) =
P(zi)N (4.2 | µi, σ2

i )

∑j P(zj)N (4.2 | µj, σ2
j )

We compute this distribution for all the instances in our data set. For the
weighted completions, we can obtain a new estimate for θ̂. We estimate P(zi)

by taking the mean across the instances in our data set. To estimate µi and
σi, we use the mean and standard deviation of the values for X over the
instances in our data set, weighted by the probability of zi associated with
the various instances.

We repeat the process until convergence occurs. The plot here shows three
iterations. The histogram was generated from the values of X. The dark blue
function indicates the inferred density. By the third iteration, our parameters
of the Gaussian mixture model closely represent the data distribution.

−5 0 5
0

0.1

0.2

0.3

0.4

x

p
(x
)

Iteration 1

−5 0 5

x

Iteration 2

−5 0 5

x

Iteration 3

Example 4.4. Expectation maxi-
mization applied to learning the
parameters of a Gaussian mixture
model.
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Solution: We denote the probability of making a basket as θ. Since we start with a uniform
prior Beta(1, 1) and observe two baskets and one miss, our posterior is then Beta(1+ 2, 1+

1) = Beta(3, 2). We want to compute the probability of a basket as follows:

P(basket) =
∫

P(basket | θ)Beta(θ | 3, 2)dθ =
∫

θ Beta(θ | 3, 2)dθ

This expression is just the expectation (or mean) of a beta distribution, which gives us
P(basket) = 3/5.

Exercise 4.2. Consider a continuous random variable X that follows the Laplace distribution
parameterized by µ and b, with density

p(x | µ, b) =
1

2b
exp

(

−|x− µ|
b

)

Compute the maximum likelihood estimates of the parameters of a Laplace distribution
given a data set D of m independent observations x1:m. Note that ∂|u|/∂x = sign(u)∂u/∂x ,
where the sign function returns the sign of its argument.

Solution: Since the observations are independent, we can write the log-likelihood function
as the summation:

ℓ(µ, b) =
m

∑
i=1

log

[

1

2b
exp

(

−|xi − µ|
b

)]

= −
m

∑
i=1

log 2b−
m

∑
i=1

|xi − µ|
b

= −m log 2b− 1

b

m

∑
i=1

|xi − µ|

To obtain the maximum likelihood estimates of the true parameters µ and b, we take the
partial derivatives of the log-likelihood with respect to each of the parameters, set them to
zero, and solve for each parameter. First, we solve for µ̂:

∂
∂µ ℓ(µ, b) =

1

b̂

m

∑
i=1

sign(xi − µ)

0 =
1

b̂

m

∑
i=1

sign(xi − µ̂)

0 =
m

∑
i=1

sign(xi − µ̂)

µ̂ = median(x1:m)
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Now, solving for b̂:

∂
∂b ℓ(µ, b) = −m

b
+

1

b2

m

∑
i=1

|xi − µ̂|

0 = −m

b̂
+

1

b̂2

m

∑
i=1

|xi − µ̂|

m

b̂
=

1

b̂2

m

∑
i=1

|xi − µ̂|

b̂ =
1

m

m

∑
i=1

|xi − µ̂|

Thus, the maximum likelihood estimates for the parameters of a Laplace distribution are µ̂,
the median of the observations, and b̂, the mean of absolute deviations from the median.

Exercise 4.3. This question explores the application of maximum likelihood estimation to
censored data, where some measurements are only partially known. Suppose that we are
building electric motors for a quadcopter drone, and we want to produce a model of how
long they last until failure. Although there may bemore suitable distributions for modeling
the reliability of components,9 we will use an exponential distribution parameterized by 9 K. S. Trivedi and A. Bobbio, Reli-

ability and Availability Engineering.
Cambridge University Press, 2017.

λ with probability density function λ exp(−λx) and cumulative distribution function
1− exp(−λx). We fly five drones. Three have motor failures after 132 hours, 42 hours,
and 89 hours. We stopped testing the other two after 200 hours without failure; we do not
know their failure times; we just know that they are greater than 200 hours. What is the
maximum likelihood estimate for λ given this data?

Solution: This problem has n = 3 fully observed measurements and m = 2 censored mea-
surements. We use ti to represent the ith fully observed measurement and tj to represent
the jth censored measurement. The likelihood of a single measurement above tj is the
complement of the cumulative distribution function, which is simply exp(−λtj). Hence,
the likelihood of the data is

(

n

∏
i=1

λe−λti

)





m

∏
j=1

e−λtj





We use our standard approach of maximizing the log-likelihood, which is given by

ℓ(λ) =
n

∑
i=1

(log λ− λti) +
m

∑
j=1

−λtj

The derivative with respect to λ is

∂ℓ

∂λ
=

n

λ
−

n

∑
i=1

ti −
m

∑
j=1

tj
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Setting this derivative to 0, we can solve for λ to obtain the maximum likelihood estimate:

λ̂ =
n

∑
n
i=1 ti + ∑

m
j=1 tj

=
3

132 + 42 + 89 + 200 + 200
≈ 0.00452

The mean of the exponential distribution is 1/λ, making the mean in our problem 221

hours.

Exercise 4.4. We have a Bayesian network where the variables X1:3 can take on values in
{1, 2} and X4 can take on values in {1, 2, 3}. Given the data set D of observations o1:m, as
illustrated here, generate the maximum likelihood estimates of the associated conditional
distribution parameters θ.

X1

X4 X3

X2

D =











1 2 1 1 1 2 1 2 1 1

2 2 2 1 2 1 1 1 2 1

2 2 2 1 1 1 1 1 2 1

3 2 1 1 1 3 3 1 1 1











Solution:Wecan generate countmatrices Mi of size qi× ri for each node by iterating through
the data set and storing the counts. We then normalize each row in the count matrices to
yield the matrices containing the maximum likelihood estimates of the parameters:

M1 =
[

7 3
]

M2 =



















3 1

0 0

2 0

0 2

0 1

0 1



















M3 =
[

6 4
]

M4 =

[

5 0 2

1 1 1

]

θ̂1 =
[

0.7 0.3
]

θ̂2 =



















0.75 0.25

nan nan
1.0 0.0

0.0 1.0

0.0 1.0

0.0 1.0



















θ̂3 =
[

0.6 0.4
]

θ̂4 ≈
[

0.71 0.0 0.29

0.33 0.33 0.34

]

Exercise 4.5. We have a biased coin, and we want to estimate the Bernoulli parameter
φ that specifies the probability the coin lands on heads. If the first toss lands on heads
(o1 = 1), answer the following questions:
• What is the maximum likelihood estimate of φ?
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• Using a uniform prior, what is the maximum a posteriori estimate of φ?
• Using a uniform prior, what is the expectation of our posterior distribution over φ?
Solution: Since our first toss lands on heads, we have n = 1 successes and m = 1 trials.
• The maximum likelihood estimate of φ is n/m = 1.
• Using a uniform Beta(1, 1) prior, the posterior distribution is Beta(1 + n, 1 + m− n) =

Beta(2, 1). The maximum a posteriori estimate of φ or mode of the posterior distribution
is

α− 1

α + β− 2
=

2− 1

2 + 1− 2
= 1

• The mean of the posterior distribution is
α

α + β
=

2

2 + 1
=

2

3

Exercise 4.6. Suppose we are given the following data set, with one missing value. What
is the value that will be imputed using marginal mode imputation, assuming that the
marginal distribution is a Gaussian? What is the value that will be imputed using nearest-
neighbor imputation?

X1 X2

0.5 1.0
? 0.3
−0.6 −0.3

0.1 0.2

Solution: Assuming that the marginal distribution over X1 is a Gaussian, we can compute
the marginal mode, which is the mean parameter of the Gaussian distribution:

µ =
1

m

m

∑
i=1

xi =
0.5− 0.6 + 0.1

3
= 0

Thus, formarginalmode imputation, themissing valuewill be set to 0. For nearest-neighbor
imputation, the nearest sample to X2 = 0.3 is the fourth sample, so the missing value will
be set to 0.1.
Exercise 4.7. Suppose we are given a data set over two variables X1:2, with several missing
values. We assume that X1:2 are jointly Gaussian and use the fully-observed samples to fit
the following distribution:

[

X1

X2

]

∼ N
([

5

2

]

,

[

4 1

1 2

])

What is the value that will be imputed for X1 for the sample X2 = 1.5 using posterior
mode imputation? What distribution do we need to sample from for posterior sample
imputation?
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Solution: Since we assumed that X1:2 are jointly Gaussian, the posterior distribution over X1

given X2 is also Gaussian, and its mode is the mean parameter of the posterior distribution.
We can compute the mean of the posterior distribution as follows:

p(x1 | x2) = N
(

x1 | µx1|x2
, σ2

x1|x2

)

µx1|x2=1.5 = 5 + (1)(2)−1(1.5− 2) = 4.75

Thus, for posterior mode imputation, the missing value will be set to 4.75. For posterior
sample imputation, we will sample a value X1 ∼ N (4.75, 3.5).
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