
3 Inference

The previous chapter explained how to represent probability distributions. This
chapter will show how to use these probabilistic representations for inference,
which involves determining the distribution over one or more unobserved vari-
ables given the values associated with a set of observed variables. It begins by
introducing exact inference methods. Because exact inference can be computation-
ally intractable depending on the structure of the network, we will also discuss
several algorithms for approximate inference.

3.1 Inference in Bayesian Networks

In inference problems, we want to infer a distribution over query variables given
some observed evidence variables. The other nodes are referred to as hidden variables.
We often refer to the distribution over the query variables, given the evidence, as
a posterior distribution.

To illustrate the computations involved in inference, recall the Bayesian network
from example 2.5, the structure of which is reproduced in figure 3.1. Suppose we
have B as a query variable and evidence D = 1 and C = 1. The inference task is to
compute P(b1 | d1, c1), which corresponds to computing the probability that we
have a battery failure given an observed trajectory deviation and communication
loss.

B S

E

D C

Figure 3.1. Bayesian network struc-
ture from example 2.5.

From the definition of conditional probability introduced in equation (2.22),
we know that

P(b1 | d1, c1) =
P(b1, d1, c1)

P(d1, c1)
(3.1)
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To compute the numerator, wemust use a process known asmarginalization, where
we sum out variables that are not involved (in this case S and E):

P(b1, d1, c1) = ∑
s

∑
e

P(b1, s, e, d1, c1) (3.2)

We know from the chain rule for Bayesian networks introduced in equation (2.31)
that

P(b1, s, e, d1, c1) = P(b1)P(s)P(e | b1, s)P(d1 | e)P(c1 | e) (3.3)
All the components on the right side are specified in the conditional probability
distributions associated with the nodes in the Bayesian network. We can com-
pute the denominator in equation (3.1) using the same approach, but with an
additional summation over the values for B.

This process of using the definition of conditional probability, marginaliza-
tion, and applying the chain rule can be used to perform exact inference in any
Bayesian network. We can implement exact inference using factors. Recall that
factors represent discrete multivariate distributions. We use the following three
operations on factors to achieve this:
• We use the factor product (algorithm 3.1) to combine two factors to produce a

larger factor whose scope is the combined scope of the input factors. If we have
φ(X, Y) and ψ(Y, Z), then φ · ψ will be over X, Y, and Z with (φ · ψ)(x, y, z) =

φ(x, y)ψ(y, z). The factor product is demonstrated in example 3.1.
• We use factor marginalization (algorithm 3.2) to sum out a particular variable

from the entire factor table, removing it from the resulting scope. Example 3.2
illustrates this process.

• We use factor conditioning (algorithm 3.3) with respect to some evidence to
remove any rows in the table inconsistent with that evidence. Example 3.3
demonstrates factor conditioning.
These three factor operations are used together in algorithm 3.4 to perform

exact inference. It starts by computing the product of all the factors, conditioning
on the evidence, marginalizing out the hidden variables, and normalizing. One
potential issue with this approach is the size of the product of all the factors. The
size of the factor product is equal to the product of the number of values each
variable can assume. For the satellite example problem, there are only 25 = 32

possible assignments, but many interesting problems would have a factor product
that is too large to enumerate practically.
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3.1 . inference in bayesian networks 45

function Base.:*(ϕ::Factor, ψ::Factor)
ϕnames = variablenames(ϕ)
ψnames = variablenames(ψ)
ψonly = setdiff(ψ.vars, ϕ.vars)
table = FactorTable()
for (ϕa,ϕp) in ϕ.table

for a in assignments(ψonly)
a = merge(ϕa, a)
ψa = select(a, ψnames)
table[a] = ϕp * get(ψ.table, ψa, 0.0)

end
end
vars = vcat(ϕ.vars, ψonly)
return Factor(vars, table)

end

Algorithm 3.1. An implementation
of the factor product, which con-
structs the factor representing the
joint distribution of two smaller fac-
tors ϕ and ψ. If we want to compute
the factor product of ϕ and ψ, we
simply write ϕ*ψ.

The factor product of two factors produces a new factor over the union of
their variables. Here, we produce a new factor from two factors that share a
variable:

X Y φ1(X, Y)

0 0 0.3

0 1 0.4

1 0 0.2

1 1 0.1

Y Z φ2(Y, Z)

0 0 0.2

0 1 0.0

1 0 0.3

1 1 0.5

X Y Z φ3(X, Y, Z)

0 0 0 0.06

0 0 1 0.00

0 1 0 0.12

0 1 1 0.20

1 0 0 0.04

1 0 1 0.00

1 1 0 0.03

1 1 1 0.05

Example 3.1. An illustration of
a factor product combining two
factors representing φ1(X, Y) and
φ2(Y, Z) to produce a factor repre-
senting φ3(X, Y, Z).
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function marginalize(ϕ::Factor, name)
table = FactorTable()
for (a, p) in ϕ.table

a′ = delete!(copy(a), name)
table[a′] = get(table, a′, 0.0) + p

end
vars = filter(v -> v.name != name, ϕ.vars)
return Factor(vars, table)

end

Algorithm 3.2. A method for
marginalizing a variable named
name from a factor ϕ.

Recall the joint probability distribution P(X, Y, Z) from table 2.1. We can
marginalize out Y by summing the probabilities in each row that have match-
ing assignments for X and Z:

X Y Z φ(X, Y, Z)

0 0 0 0.08

0 0 1 0.31

0 1 0 0.09

0 1 1 0.37

1 0 0 0.01

1 0 1 0.05

1 1 0 0.02

1 1 1 0.07

X Z φ(X, Z)

0 0 0.17

0 1 0.68

1 0 0.03

1 1 0.12

Example 3.2. A demonstration of
factor marginalization.
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in_scope(name, ϕ) = any(name == v.name for v in ϕ.vars)

function condition(ϕ::Factor, name, value)
if !in_scope(name, ϕ)

return ϕ
end
table = FactorTable()
for (a, p) in ϕ.table

if a[name] == value
table[delete!(copy(a), name)] = p

end
end
vars = filter(v -> v.name != name, ϕ.vars)
return Factor(vars, table)

end

function condition(ϕ::Factor, evidence)
for (name, value) in pairs(evidence)

ϕ = condition(ϕ, name, value)
end
return ϕ

end

Algorithm 3.3. Two methods for
factor conditioning given some evi-
dence. The first takes a factor ϕ and
returns a new factor whose table
entries are consistent with the vari-
able named name having the value
value. The second takes a factor ϕ
and applies evidence in the form
of a named tuple. The in_scope
method returns true if the variable
named name is within the scope of
the factor ϕ.

Factor conditioning involves dropping any rows inconsistent with the evi-
dence. Here is the factor from table 2.1, and we condition on Y = 1. All rows
for which Y 6= 1 are removed:

X Y Z φ(X, Y, Z)

0 0 0 0.08

0 0 1 0.31

0 1 0 0.09

0 1 1 0.37

1 0 0 0.01

1 0 1 0.05

1 1 0 0.02

1 1 1 0.07

X Z φ(X, Z)

0 0 0.09

0 1 0.37

1 0 0.02

1 1 0.07

Y = 1

Example 3.3. An illustration of set-
ting evidence, in this case for Y, in
a factor. The resulting values must
be renormalized.
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struct ExactInference end

function infer(M::ExactInference, bn, query, evidence)
ϕ = prod(bn.factors)
ϕ = condition(ϕ, evidence)
for name in setdiff(variablenames(ϕ), query)

ϕ = marginalize(ϕ, name)
end
return normalize!(ϕ)

end

Algorithm 3.4. A naive exact in-
ference algorithm for a discrete
Bayesian network bn, which takes
as input a set of query variable
names query and evidence asso-
ciating values with observed vari-
ables. The algorithm computes a
joint distribution over the query
variables in the form of a factor.
We introduce the ExactInference
type to allow infer to be called
with different inference methods,
as shall be seen in the rest of this
chapter.3.2 Inference in Naive Bayes Models

The previous section presented a generalmethod for performing exact inference in
any Bayesian network. This section discusses how this same method can be used
to solve classification problems for a special kind of Bayesian network structure
known as a naive Bayes model. This structure is given in figure 3.2. An equivalent
but more compact representation is shown in figure 3.3 using a plate, shown here
as a rounded box. The i = 1 : n in the bottom of the box specifies that the i in the
subscript of the variable name is repeated from 1 to n.

C

O1 · · · On

Class

Observed features
Figure 3.2. A naive Bayes model.

C

Oi

i = 1 : n

Class

Observed features

Figure 3.3. Plate representation of
a naive Bayes model.

In the naive Bayes model, class C is the query variable, and the observed
features O1:n are the evidence variables. The naive Bayes model is called naive
because it assumes conditional independence between the evidence variables
given the class. Using the notation introduced in section 2.6, we can say (Oi⊥Oj |
C) for all i 6= j. Of course, if these conditional independence assumptions do
not hold, then we can add the necessary directed edges between the observed
features.

We have to specify the prior P(C) and the class-conditional distributions P(Oi | C).
As done in the previous section, we can apply the chain rule to compute the joint
distribution:

P(c, o1:n) = P(c)
n

∏
i=1

P(oi | c) (3.4)

Our classification task involves computing the conditional probability P(c | o1:n).
From the definition of conditional probability, we have

P(c | o1:n) =
P(c, o1:n)

P(o1:n)
(3.5)
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3.3. sum-product variable elimination 49

We can compute the denominator by marginalizing the joint distribution:

P(o1:n) = ∑
c

P(c, o1:n) (3.6)

The denominator in equation (3.5) is not a function of C and can therefore be
treated as a constant. Hence, we can write

P(c | o1:n) = κP(c, o1:n) (3.7)

where κ is a normalization constant such that ∑c P(c | o1:n) = 1. We often drop κ

and write
P(c | o1:n) ∝ P(c, o1:n) (3.8)

where the proportional to symbol ∝ is used to represent that the left side is propor-
tional to the right side. Example 3.4 illustrates how inference can be applied to
classifying radar tracks.

We can use this method to infer a distribution over classes, but for many
applications, we have to commit to a particular class. It is common to classify
according to the class with the highest posterior probability, arg maxc P(c | o1:n).
However, choosing a class is really a decision problem that often should take into
account the consequences of misclassification. For example, if we are interested in
using our classifier to filter out targets that are not aircraft for the purpose of air
traffic control, then we can afford to occasionally let a few birds and other clutter
tracks through our filter. However, we would want to avoid filtering out any real
aircraft because that could lead to a collision. In this case, we would probably
want to classify a track as a bird only if the posterior probability were close to 1.
Decision problems will be discussed in chapter 6.

3.3 Sum-Product Variable Elimination

A variety of methods can be used to perform efficient inference in more compli-
cated Bayesian networks. One method is known as sum-product variable elimination,
which interleaves eliminating hidden variables (summations) with applications
of the chain rule (products). It is more efficient to marginalize variables out as
early as possible to avoid generating large factors.
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Suppose that we have a radar track and we want to determine whether it
was generated by a bird or an aircraft. We base our inference on airspeed
and the amount of heading fluctuation. The first represents our belief about
whether a target is a bird or an aircraft in the absence of any information
about the track. Here are example class-conditional distributions for airspeed
v as estimated from radar data:

0 20 40 60 80 100
0

2

4

6

8

×10−2

v (m/s)

p
(v
|c
)

Aircraft
Bird

Suppose from the chain rule, we determine:

P(bird, slow, little heading fluctuation) = 0.03

P(aircraft, slow, little heading fluctuation) = 0.01

Of course, these probabilities do not sum to 1. If we want to determine the
probability that a target is a bird given the evidence, then we would make
the following calculation:

P(bird | slow, little heading fluctuation) = 0.03

0.03 + 0.01
= 0.75

Example 3.4. Radar target classifi-
cation in which we want to deter-
mine whether a radar track corre-
sponds to a bird or an aircraft.
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3.3. sum-product variable elimination 51

We will illustrate the variable elimination algorithm by computing the distribu-
tion P(B | d1, c1) for the Bayesian network in figure 3.1. The conditional probability
distributions associated with the nodes in the network can be represented by the
following factors:

φ1(B), φ2(S), φ3(E, B, S), φ4(D, E), φ5(C, E) (3.9)

Because D and C are observed variables, the last two factors can be replaced with
φ6(E) and φ7(E) by setting the evidence D = 1 and C = 1.

We then proceed by eliminating the hidden variables in sequence. Different
strategies can be used for choosing an ordering, but for this example, we arbitrarily
choose the ordering E and then S. To eliminate E, we take the product of all the
factors involving E and then marginalize out E to get a new factor:

φ8(B, S) = ∑
e

φ3(e, B, S)φ6(e)φ7(e) (3.10)

We can now discard φ3, φ6, and φ7 because all the information we need from them
is contained in φ8.

Next, we eliminate S. Again, we gather all remaining factors that involve S and
marginalize out S from the product of these factors:

φ9(B) = ∑
s

φ2(s)φ8(B, s) (3.11)

We discard φ2 and φ8 and are left with φ1(B) and φ9(B). Finally, we take the prod-
uct of these two factors and normalize the result to obtain a factor representing
P(B | d1, c1).

This procedure is equivalent to computing the following:

P(B | d1, c1) ∝ φ1(B)∑
s

(

φ2(s)∑
e

(

φ3(e | B, s)φ4(d
1 | e)φ5(c

1 | e)
)

)

(3.12)

This produces the same result as, but is more efficient than, the naive procedure
of taking the product of all the factors and then marginalizing:

P(B | d1, c1) ∝ ∑
s

∑
e

φ1(B)φ2(s)φ3(e | B, s)φ4(d
1 | e)φ5(c

1 | e) (3.13)
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The sum-product variable elimination algorithm is implemented in algorithm3.5.
It takes as input a Bayesian network, a set of query variables, a list of observed
values, and an ordering of the variables. We first set all observed values. Then,
for each variable, we multiply all factors containing it and then marginalize that
variable out. This new factor replaces the consumed factors, and we repeat the
process for the next variable.

For many networks, variable elimination allows inference to be done in an
amount of time that scales linearly with the size of the network, but it has ex-
ponential time complexity in the worst case. What influences the amount of
computation is the variable elimination order. Choosing the optimal elimina-
tion order is NP-hard,1 meaning that it cannot be done in polynomial time in the 1 S. Arnborg, D.G. Corneil, and

A. Proskurowski, “Complexity of
Finding Embeddings in a k-Tree,”
SIAM Journal on Algebraic Discrete
Methods, vol. 8, no. 2, pp. 277–284,
1987.

worst case (section 3.5). Even if we found the optimal elimination order, variable
elimination can still require an exponential number of computations. Variable
elimination heuristics generally try to minimize the number of variables involved
in the intermediate factors generated by the algorithm.

struct VariableElimination
ordering # array of variable indices

end

function infer(M::VariableElimination, bn, query, evidence)
Φ = [condition(ϕ, evidence) for ϕ in bn.factors]
for i in M.ordering

name = bn.vars[i].name
if name ∉ query

inds = findall(ϕ->in_scope(name, ϕ), Φ)
if !isempty(inds)

ϕ = prod(Φ[inds])
deleteat!(Φ, inds)
ϕ = marginalize(ϕ, name)
push!(Φ, ϕ)

end
end

end
return normalize!(prod(Φ))

end

Algorithm 3.5. An implementa-
tion of the sum-product variable
elimination algorithm, which takes
in a Bayesian network bn, a list
of query variables query, and ev-
idence evidence. The variables are
processed in the order given by
ordering.
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3.4 Belief Propagation

An approach to inference known as belief propagation works by propagating ‘‘mes-
sages’’ through the network using the sum-product algorithm in order to compute
the marginal distributions of the query variables.2 Belief propagation requires 2 A tutorial on the sum-product

algorithm with a discussion of
its connections to many other al-
gorithms developed in separate
communities is provided by F.
Kschischang, B. Frey, and H.-A.
Loeliger, “Factor Graphs and the
Sum-Product Algorithm,” IEEE
Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

linear time but provides an exact answer only if the network does not have undi-
rected cycles. If the network has undirected cycles, then it can be converted to a
tree by combining multiple variables into single nodes by using what is known
as the junction tree algorithm. If the number of variables that have to be combined
into any one node in the resulting network is small, then inference can be done
efficiently. A variation of belief propagation known as loopy belief propagation can
provide approximate solutions in networks with undirected cycles. Although this
approach does not provide any guarantees and may not converge, it can work
well in practice.3 3 Belief propagation and related al-

gorithms are covered in detail by
D. Barber, Bayesian Reasoning and
Machine Learning. Cambridge Uni-
versity Press, 2012.

3.5 Computational Complexity

We can show that inference in Bayesian networks is NP-hard by using an NP-
complete problem called 3SAT.4 It is easy to construct a Bayesian network from 4 G. F. Cooper, “The Computa-

tional Complexity of Probabilis-
tic Inference Using Bayesian Belief
Networks,” Artificial Intelligence,
vol. 42, no. 2–3, pp. 393–405, 1990.
The Bayesian network construction
in this section follows that text. See
appendix C for a brief review of
complexity classes.

an arbitrary 3SAT problem. For example, consider the following 3SAT formula:5

5 This formula also appears in ex-
ample C.3 in appendix C.

F(x1, x2, x3, x4) =

( x1 ∨ x2 ∨ x3 ) ∧
( ¬x1 ∨ ¬x2 ∨ x3 ) ∧
( x2 ∨ ¬x3 ∨ x4 )

(3.14)

where¬ represents logical negation (‘‘not’’),∧ represents logical conjunction (‘‘and’’),
and ∨ represents logical disjunction (‘‘or’’). The formula consists of a conjunction
of clauses, which are disjunctions of what are called literals. A literal is simply a
variable or its negation.

Figure 3.4 shows the corresponding Bayesian network representation. The
variables are represented by X1:4, and the clauses are represented by C1:3. The
distributions over the variables are uniform. The nodes representing clauses
have as parents the participating variables. Because this is a 3SAT problem, each
clause node has exactly three parents. Each clause node assigns probability 0

to assignments that do not satisfy the clause and probability 1 to all satisfying
assignments. The remaining nodes assign probability 1 to true if all their parents
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are true. The original problem is satisfiable if and only if P(y1) > 0. Hence,
inference in Bayesian networks is at least as hard as 3SAT.

X1 X2 X3 X4

C1 C2 C3

D1 D2 Y

Figure 3.4. Bayesian network rep-
resenting a 3SAT problem.

The reason we go to the effort of showing that inference in Bayesian networks
is NP-hard is so that we know to avoid wasting time looking for an efficient, exact
inference algorithm that works on all Bayesian networks. Therefore, research over
the past couple of decades has focused on approximate inference methods, which
are discussed next.

3.6 Direct Sampling

Motivated by the fact that exact inference is computationally intractable, many
approximation methods have been developed. One of the simplest methods
for inference is based on direct sampling, where random samples from the joint
distribution are used to arrive at a probability estimate.6 To illustrate this point, 6 Sometimes approaches involv-

ing random sampling are referred
to as Monte Carlo methods. The
name comes from the Monte Carlo
Casino in Monaco. An introduc-
tion to randomized algorithms and
their application to a variety of
problem domains is provided by R.
Motwani and P. Raghavan,Random-
ized Algorithms. Cambridge Univer-
sity Press, 1995.

suppose that we want to infer P(b1 | d1, c1) from a set of n samples from the joint
distribution P(b, s, e, d, c). We use parenthetical superscripts to indicate the index
of a sample, where we write (b(i), s(i), e(i), d(i), c(i)) for the ith sample. The direct
sample estimate is

P(b1 | d1, c1) ≈ ∑i(b
(i) = 1∧ d(i) = 1∧ c(i) = 1)

∑i(d
(i) = 1∧ c(i) = 1)

(3.15)

We use the convention where a logical statement in parentheses is treated numer-
ically as 1 when true and 0 when false. The numerator is the number of samples
consistent with b, d, and c all set to 1, and the denominator is the number of
samples consistent with d and c all set to 1.
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Sampling from the joint distribution represented by a Bayesian network is
straightforward. The first step involves finding a topological sort of the nodes in the
Bayesian network. A topological sort of the nodes in a directed acyclic graph is
an ordered list such that if there is an edge A→ B, then A comes before B in the
list.7 For example, a topological sort for the network in figure 3.1 is B, S, E, D, C. 7 A.B. Kahn, “Topological Sorting

of Large Networks,” Communica-
tions of the ACM, vol. 5, no. 11,
pp. 558–562, 1962. An implemen-
tation of topological sorting is pro-
vided by the Graphs.jl package.

A topological sort always exists, but it may not be unique. Another topological
sort for the network is S, B, E, C, D.

Once we have a topological sort, we can begin sampling from the conditional
probability distributions. Algorithm 3.6 shows how to sample from a Bayesian
network given an ordering X1:n that represents a topological sort. We draw a
sample from the conditional distribution associated with Xi given the values of
the parents that have already been assigned. Because X1:n is a topological sort,
we know that all the parents of Xi have already been instantiated, allowing this
sampling to be done. Direct sampling is implemented in algorithm 3.7 and is
demonstrated in example 3.5.

function Base.rand(ϕ::Factor)
tot, p, w = 0.0, rand(), sum(values(ϕ.table))
for (a,v) in ϕ.table

tot += v/w
if tot >= p

return a
end

end
return Assignment()

end

function Base.rand(bn::BayesianNetwork)
a = Assignment()
for i in topological_sort(bn.graph)

name, ϕ = bn.vars[i].name, bn.factors[i]
a[name] = rand(condition(ϕ, a))[name]

end
return a

end

Algorithm 3.6. A method for
sampling an assignment from a
Bayesian network bn. We also pro-
vide a method for sampling an as-
signment from a factor ϕ.
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Suppose we draw 10 random samples from the network in figure 3.1. We
are interested in inferring P(b1 | d1, c1). Only 2 of the 10 samples (pointed
to in the table) are consistent with observations d1 and c1. One sample has
b = 1, and the other sample has b = 0. From these samples, we infer that
P(b1 | d1, c1) = 0.5. Of course, we would want to use more than just 2
samples to accurately estimate P(b1 | d1, c1).

B S E D C

0 0 1 1 0

0 0 0 0 0

1 0 1 0 0

1 0 1 1 1

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 1 1

0 0 0 0 0

0 0 0 1 0

Example 3.5. An example of how
direct samples from a Bayesian net-
work can be used for inference.

struct DirectSampling
m # number of samples

end

function infer(M::DirectSampling, bn, query, evidence)
table = FactorTable()
for i in 1:(M.m)

a = rand(bn)
if all(a[k] == v for (k,v) in pairs(evidence))

b = select(a, query)
table[b] = get(table, b, 0) + 1

end
end
vars = filter(v->v.name ∈ query, bn.vars)
return normalize!(Factor(vars, table))

end

Algorithm 3.7. The direct sam-
pling inference method, which
takes a Bayesian network bn, a
list of query variables query, and
evidence evidence. The method
draws m samples from the Bayesian
network and retains those samples
that are consistent with the evi-
dence. A factor over the query vari-
ables is returned. This method can
fail if no samples that satisfy the
evidence are found.
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3.7 Likelihood Weighted Sampling

The problem with direct sampling is that we may waste time generating samples
that are inconsistent with the observations, especially if the observations are
unlikely. An alternative approach is called likelihood weighted sampling, which
involves generating weighted samples that are consistent with the observations.

To illustrate, we will again attempt to infer P(b1 | d1, c1). We have a set of n

samples, where the ith sample is again denoted (b(i), s(i), e(i), d(i), c(i)). The weight
of the ith sample is wi. The weighted estimate is

P(b1 | d1, c1) ≈ ∑i wi(b
(i) = 1∧ d(i) = 1∧ c(i) = 1)

∑i wi(d(i) = 1∧ c(i) = 1)
(3.16)

=
∑i wi(b

(i) = 1)

∑i wi
(3.17)

To generate these weighted samples, we begin with a topological sort and
sample from the conditional distributions in sequence. The only difference in
likelihood weighting is how we handle observed variables. Instead of sampling
their values from a conditional distribution, we assign variables to their observed
values and adjust the weight of the sample appropriately. The weight of a sample
is simply the product of the conditional probabilities at the observed nodes.
Likelihood weighted sampling is implemented in algorithm 3.8. Example 3.6
demonstrates inference with likelihood weighted sampling.
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struct LikelihoodWeightedSampling
m # number of samples

end

function infer(M::LikelihoodWeightedSampling, bn, query, evidence)
table = FactorTable()
ordering = topological_sort(bn.graph)
for i in 1:(M.m)

a, w = Assignment(), 1.0
for j in ordering

name, ϕ = bn.vars[j].name, bn.factors[j]
if haskey(evidence, name)

a[name] = evidence[name]
w *= ϕ.table[select(a, variablenames(ϕ))]

else
a[name] = rand(condition(ϕ, a))[name]

end
end
b = select(a, query)
table[b] = get(table, b, 0) + w

end
vars = filter(v->v.name ∈ query, bn.vars)
return normalize!(Factor(vars, table))

end

Algorithm 3.8. The likelihood
weighted sampling inference
method, which takes a Bayesian
network bn, a list of query
variables query, and evidence
evidence. The method draws
m samples from the Bayesian
network but sets values from
evidence when possible, keeping
track of the conditional probability
when doing so. These probabilities
are used to weight the samples
such that the final inference
estimate is accurate. A factor over
the query variables is returned.
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The table here shows five likelihood weighted samples from the network in
figure 3.1. We sample from P(B), P(S), and P(E | B, S), as we would with
direct sampling. When we come to D and C, we assign D = 1 and C = 1. If
the sample has E = 1, then the weight is P(d1 | e1)P(c1 | e1); otherwise, the
weight is P(d1 | e0)P(c1 | e0). If we assume

P(d1 | e1)P(c1 | e1) = 0.95

P(d1 | e0)P(c1 | e0) = 0.01

then we may approximate from the samples in the table:

P(b1 | d1, c1) =
0.95

0.95 + 0.95 + 0.01 + 0.01 + 0.95
≈ 0.331

B S E D C Weight
1 0 1 1 1 P(d1 | e1)P(c1 | e1)

0 1 1 1 1 P(d1 | e1)P(c1 | e1)

0 0 0 1 1 P(d1 | e0)P(c1 | e0)

0 0 0 1 1 P(d1 | e0)P(c1 | e0)

0 0 1 1 1 P(d1 | e1)P(c1 | e1)

Example 3.6. Likelihood weighted
samples from a Bayesian network.
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C

D

P(c1) = 0.001

P(d1 | c0) = 0.001
P(d1 | c1) = 0.999

Figure 3.5. Chemical detection
Bayesian network, with C indi-
cating whether the chemical is
present and D indicating whether
the chemical is detected.

Although likelihood weighting makes it so that all samples are consistent with
the observations, it can still be wasteful. Consider the simple chemical detection
Bayesian network shown in figure 3.5, and assume that we detected a chemical of
interest. We want to infer P(c1 | d1). Because this network is small, we can easily
compute this probability exactly by using Bayes’ rule:

P(c1 | d1) =
P(d1 | c1)P(c1)

P(d1 | c1)P(c1) + P(d1 | c0)P(c0)
(3.18)

=
0.999× 0.001

0.999× 0.001 + 0.001× 0.999
(3.19)

= 0.5 (3.20)

If we use likelihood weighting, then 99.9 % of the samples will have C = 0,
with a weight of 0.001. Until we get a sample of C = 1, which has an associated
weight of 0.999, our estimate of P(c1 | d1) will be 0.

3.8 Gibbs Sampling

An alternative approach to inference is to use Gibbs sampling,8 which is a kind of 8 Named for the American scientist
Josiah Willard Gibbs (1839–1903),
who, with James Clerk Maxwell
and Ludwig Boltzman, created the
field of statistical mechanics.

Markov chain Monte Carlo technique. Gibbs sampling involves drawing samples
consistent with the evidence in a way that does not involve weighting. From these
samples, we can infer the distribution over the query variables.

Gibbs sampling involves generating a sequence of samples, starting with an
initial sample, x

(1)
1:n , generated randomly with the evidence variables set to their

observed values. The kth sample x
(k)
1:n depends probabilistically on the previous

sample, x
(k−1)
1:n . We modify x

(k−1)
1:n in place to obtain x

(k)
1:n as follows. Using any

ordering of the unobserved variables, which need not be a topological sort, x
(k)
i is

sampled from the distribution represented by P(Xi | x
(k)
−i ). Here, x

(k)
−i represents

the values of all other variables except Xi in sample k. Sampling from P(Xi | x
(k)
−i )

can be done efficiently because we only need to consider the Markov blanket of
variable Xi (see section 2.6).

Unlike the other sampling methods discussed so far, the samples produced
by this method are not independent. However, it can be proven that, in the
limit, samples are drawn exactly from the joint distribution over the unobserved
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variables given the observations. Algorithm 3.9 shows how to compute a factor
for P(Xi | x−i). Gibbs sampling is implemented in algorithm 3.10.

function blanket(bn, a, i)
name = bn.vars[i].name
val = a[name]
a = delete!(copy(a), name)
Φ = filter(ϕ -> in_scope(name, ϕ), bn.factors)
ϕ = prod(condition(ϕ, a) for ϕ in Φ)
return normalize!(ϕ)

end

Algorithm 3.9. A method for ob-
taining P(Xi | x−i) for a Bayesian
network bn given a current assign-
ment a.

Gibbs sampling can be applied to our running example. We can use our m

samples to estimate
P(b1 | d1, c1) ≈ 1

m ∑
i

(b(i) = 1) (3.21)

Figure 3.6 compares the convergence of the estimate of P(c1 | d1) in the chem-
ical detection network using direct, likelihood weighted, and Gibbs sampling.
Direct sampling takes the longest to converge. The direct sampling curve has long
periods during which the estimate does not change because samples are incon-
sistent with the observations. Likelihood weighted sampling converges faster in
this example. Spikes occur when a sample is generated with C = 1, and then
gradually decrease. Gibbs sampling, in this example, quickly converges to the
true value of 0.5.

As mentioned earlier, Gibbs sampling, like other Markov chain Monte Carlo
methods, produces samples from the desired distribution in the limit. In practice,
we have to run Gibbs for some amount of time, called the burn-in period, before
converging to a steady-state distribution. The samples produced during burn-in
are normally discarded. If many samples are to be used from a single Gibbs
sampling series, it is common to thin the samples by keeping only every hth
sample because of potential correlation between samples.
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function update_gibbs_sample!(a, bn, evidence, ordering)
for i in ordering

name = bn.vars[i].name
if !haskey(evidence, name)

b = blanket(bn, a, i)
a[name] = rand(b)[name]

end
end

end

function gibbs_sample!(a, bn, evidence, ordering, m)
for j in 1:m

update_gibbs_sample!(a, bn, evidence, ordering)
end

end

struct GibbsSampling
m_samples # number of samples to use
m_burnin # number of samples to discard during burn-in
m_skip # number of samples to skip for thinning
ordering # array of variable indices

end

function infer(M::GibbsSampling, bn, query, evidence)
table = FactorTable()
a = merge(rand(bn), evidence)
gibbs_sample!(a, bn, evidence, M.ordering, M.m_burnin)
for i in 1:(M.m_samples)

gibbs_sample!(a, bn, evidence, M.ordering, M.m_skip)
b = select(a, query)
table[b] = get(table, b, 0) + 1

end
vars = filter(v->v.name ∈ query, bn.vars)
return normalize!(Factor(vars, table))

end

Algorithm 3.10. Gibbs sampling
implemented for a Bayesian net-
work bn with evidence evidence
and an ordering ordering. The
method iteratively updates the as-
signment a for m iterations.
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Figure 3.6. A comparison of
sampling-based inferencemethods
on the chemical detection network.
Both likelihood weighted and di-
rect sampling have poor conver-
gence due to the rarity of events,
whereas Gibbs sampling is able
to converge to the true value effi-
ciently, even with no burn-in pe-
riod or thinning.

3.9 Inference in Gaussian Models

If the joint distribution is Gaussian, we can perform exact inference analytically.
Two jointly Gaussian random variables a and b can be written

[

a

b

]

∼ N
([

µa

µb

]

,

[

A C

C⊤ B

])

(3.22)

The marginal distribution of a multivariate Gaussian is also Gaussian:

a ∼ N (µa, A) b ∼ N (µb, B) (3.23)

The conditional distribution of a multivariate Gaussian is also Gaussian, with
a convenient closed-form solution:

p(a | b) = N
(

a | µa|b, Σa|b
)

(3.24)
µa|b = µa + CB−1(b− µb) (3.25)
Σa|b = A−CB−1C⊤ (3.26)

Algorithm 3.11 shows how to use these equations to infer a distribution over a
set of query variables given evidence. Example 3.7 illustrates how to extract the
marginal and conditional distributions from a multivariate Gaussian.
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function infer(D::MvNormal, query, evidencevars, evidence)
μ, Σ = D.μ, D.Σ.mat
b, μa, μb = evidence, μ[query], μ[evidencevars]
A = Σ[query,query]
B = Σ[evidencevars,evidencevars]
C = Σ[query,evidencevars]
μ = μa + C * (B\(b - μb))
Σ = A - C * (B \ C')
return MvNormal(μ, Σ)

end

Algorithm 3.11. Inference in a mul-
tivariate Gaussian distribution D.
A vector of integers specifies the
query variables in the query ar-
gument, and a vector of integers
specifies the evidence variables
in the evidencevars argument.
The values of the evidence vari-
ables are contained in the vector
evidence. The Distributions.jl
package defines the MvNormal dis-
tribution.

Consider
[

x1

x2

]

∼ N
([

0

1

]

,

[

3 1

1 2

])

The marginal distribution for x1 is N (0, 3), and the marginal distribution
for x2 is N (1, 2).

The conditional distribution for x1 given x2 = 2 is

µx1|x2=2 = 0 + 1 · 2−1 · (2− 1) = 0.5

Σx1|x2=2 = 3− 1 · 2−1 · 1 = 2.5

x1 | (x2 = 2) ∼ N (0.5, 2.5)

We can perform this inference calculation using algorithm 3.11 by construct-
ing the joint distribution
D = MvNormal([0.0,1.0],[3.0 1.0; 1.0 2.0])
and then calling infer(D, [1], [2], [2.0]).

Example 3.7. Marginal and condi-
tional distributions for a multivari-
ate Gaussian.
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3.10 Summary

• Inference involves determining the probability of query variables given some
evidence.

• Exact inference can be done by computing the joint distribution over the vari-
ables, setting evidence, and marginalizing out any hidden variables.

• Inference can be done efficiently in naive Bayesmodels, in which a single parent
variable affects many conditionally independent children.

• The variable elimination algorithm can make exact inference more efficient by
marginalizing variables in sequence.

• Belief propagation represents another method for inference, in which informa-
tion is iteratively passed between factors to arrive at a result.

• Inference in a Bayesian network can be shown to be NP-hard through a re-
duction to the 3SAT problem, motivating the development of approximate
inference methods.

• Approximate inference can be done by directly sampling from the joint distri-
bution represented by a Bayesian network, but it may involve discarding many
samples that are inconsistent with the evidence.

• Likelihood weighted sampling can reduce computation required for approxi-
mate inference by only generating samples that are consistentwith the evidence
and weighting each sample accordingly.

• Gibbs sampling generates a series of unweighted samples that are consistent
with the evidence and can greatly speed approximate inference.

• Exact inference can be done efficiently through matrix operations when the
joint distribution is Gaussian.
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3.11 Exercises
Exercise 3.1. Given the following Bayesian network and its associated conditional proba-
bility distributions, write the equation required to perform exact inference for the query
P(a1 | d1).

A B C D

Solution: We first expand the inference expression using the definition of conditional
probability.

P(a1 | d1) =
P(a1, d1)

P(d1)

We can rewrite the numerator as a marginalization over the hidden variables and we can
rewrite the denominator as a marginalization over both the hidden and query variables:

P(a1 | d1) =
∑b ∑c P(a1, b, c, d1)

∑a ∑b ∑c P(a, b, c, d1)

The definition of the joint probability in both the numerator and the denominator can be
rewritten using the chain rule for Bayesian networks and the resulting equation can be
simplified by removing constants from inside the summations:

P(a1 | d1) =
∑b ∑c P(a1)P(b | a1)P(c | b)P(d1 | c)

∑a ∑b ∑c P(a)P(b | a)P(c | b)P(d1 | c)

=
P(a1)∑b ∑c P(b | a1)P(c | b)P(d1 | c)

∑a ∑b ∑c P(a)P(b | a)P(c | b)P(d1 | c)

=
P(a1)∑b P(b | a1)∑c P(c | b)P(d1 | c)

∑a P(a)∑b P(b | a)∑c P(c | b)P(d1 | c)

Exercise 3.2. Given the following Bayesian network and its associated conditional proba-
bility distributions, write the equation required to perform an exact inference for the query
P(c1, d1 | a0, f 1).

A B C

D E F

Solution: We first expand the inference expression using the definition of conditional
probability:

P(c1, d1 | a0, f 1) =
P(a0, c1, d1, f 1)

P(a0, f 1)
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We can rewrite the numerator as a marginalization over the hidden variables, and we can
rewrite the denominator as a marginalization over both the hidden and query variables:

P(c1, d1 | a0, f 1) =
∑b ∑e P(a0, b, c1, d1, e, f 1)

∑b ∑c ∑d ∑e P(a0, b, c, d, e, f 1)

The definition of the joint probability in both the numerator and the denominator can be
rewritten using the chain rule for Bayesian networks, and the resulting equation can be
simplified by removing constants from inside the summations. Note that there are multiple
possible orderings of the summations in the final equation:

P(c1, d1 | a0, f 1) =
∑b ∑e P(a0)P(b | a0, c1)P(c1)P(d1 | a0)P(e | b, c1, d1)P( f 1 | e)

∑b ∑c ∑d ∑e P(a0)P(b | a0, c)P(c)P(d | a0)P(e | b, c, d)P( f 1 | e)

=
P(a0)P(c1)P(d1 | a0)∑b ∑e P(b | a0, c1)P(e | b, c1, d1)P( f 1 | e)

P(a0)∑b ∑c ∑d ∑e P(b | a0, c)P(c)P(d | a0)P(e | b, c, d)P( f 1 | e)

=
P(c1)P(d1 | a0)∑b P(b | a0, c1)∑e P(e | b, c1, d1)P( f 1 | e)

∑c P(c)∑b P(b | a0, c)∑d P(d | a0)∑e P(e | b, c, d)P( f 1 | e)

Exercise 3.3. Suppose thatwe are developing an object detection system for an autonomous
vehicle driving in a city. Our vehicle’s perception system reports an object’s size S (either
small, medium, or large) and speed V (either slow, moderate, or fast). We want to design
a model that will determine the class C of an object—either a vehicle, pedestrian, or a
ball—given observations of the object’s size and speed. Assuming a naive Bayes model
with the following class prior and class-conditional distributions, what is the detected
class given observations S = medium and V = slow?

C P(C)

vehicle 0.80
pedestrian 0.19
ball 0.01

C S P(S | C)

vehicle small 0.001
vehicle medium 0.009
vehicle large 0.990
pedestrian small 0.200
pedestrian medium 0.750
pedestrian large 0.050
ball small 0.800
ball medium 0.199
ball large 0.001

C V P(V | C)

vehicle slow 0.2
vehicle moderate 0.2
vehicle fast 0.6
pedestrian slow 0.5
pedestrian moderate 0.4
pedestrian fast 0.1
ball slow 0.4
ball moderate 0.4
ball fast 0.2

Solution: To compute the posterior distribution P(c | o1:n), we use the definition of the joint
distribution for a naive Bayes model in equation (3.4):

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com



68 chapter 3. inference

P(c | o1:n) ∝ P(c)
n

∏
i=1

P(oi | c)

P(vehicle | medium, slow) ∝ P(vehicle)P(S = medium | vehicle)P(V = slow | vehicle)
P(vehicle | medium, slow) ∝ (0.80)(0.009)(0.2) = 0.00144

P(pedestrian | medium, slow) ∝ P(pedestrian)P(S = medium | pedestrian)P(V = slow | pedestrian)
P(pedestrian | medium, slow) ∝ (0.19)(0.75)(0.5) = 0.07125

P(ball | medium, slow) ∝ P(ball)P(S = medium | ball)P(V = slow | ball)
P(ball | medium, slow) ∝ (0.01)(0.199)(0.4) = 0.000796

Since P(pedestrian | medium, slow) has the largest probability, the object is classified as a
pedestrian.

Exercise 3.4. Given the 3SAT formula in equation (3.14) and the Bayesian network structure
in figure 3.4, what are the values of P(c1

3 | x1
2, x0

3, x1
4) and P(y1 | d1

2, c0
3)?

Solution: We have P(c1
3 | x1

2, x0
3, x1

4) = 1 because x1
2, x0

3, x1
4 makes the third clause true, and

P(y1 | d1
2, c0

3) = 0, because Y = 1 requires that both D2 and C3 be true.

Exercise 3.5. Give a topological sort for each of the following directed graphs:

D

A

C

F

B

E

(1)

D

A

C

F

B

E

(2)

Solution: There are three valid topological sorts for the first directed graph (Bayesian
network): (F, D, A, B, C, E), (D, A, F, B, C, E), and (D, F, A, B, C, E). There are no valid
topological sorts for the second directed graph since it is cyclic.

Exercise 3.6. Suppose that we have the following Bayesian network and we are interested
in generating an approximation of the inference query P(e1 | b0, d1) using likelihood
weighted sampling. Given the following samples, write the expressions for each of the
sample weights. In addition, write the equation for estimating P(e1 | b0, d1) in terms of
the sample weights wi.
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A

B C

D E

A B C D E

0 0 0 1 0
1 0 0 1 0
0 0 0 1 1
1 0 1 1 1
0 0 1 1 0
1 0 1 1 1

Solution: For likelihood weighted sampling, the sample weights are the product of the
distributions over evidence variables conditioned on the values of their parents. Thus, the
general form for our weights is P(b0 | a)P(d1 | b0, c). We then match each of the values for
each sample from the joint distribution:

A B C D E Weight
0 0 0 1 0 P(b0 | a0)P(d1 | b0, c0)
1 0 0 1 0 P(b0 | a1)P(d1 | b0, c0)
0 0 0 1 1 P(b0 | a0)P(d1 | b0, c0)
1 0 1 1 1 P(b0 | a1)P(d1 | b0, c1)
0 0 1 1 0 P(b0 | a0)P(d1 | b0, c1)
1 0 1 1 1 P(b0 | a1)P(d1 | b0, c1)

To estimate P(e1 | b0, d1), we simply need to sum the weights of samples consistent
with the query variable and divide this by the sum of all the weights:

P(e1 | b0, d1) =
∑i wi(e

(i) = 1)

∑i wi
=

w3 + w4 + w6

w1 + w2 + w3 + w4 + w5 + w6

Exercise 3.7. Each year, we receive student scores on standardizedmathematics M, reading
R, and writing W exams. Using data from prior years, we create the following distribution:







M

R

W






∼ N













81

82

80






,







25 −9 −16

−9 36 16

−16 16 36













Compute the parameters of the conditional distribution over a student’s math and reading
test scores, given a writing score of 90.
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Solution: If we let a represent the vector of math and reading scores and b represent the
writing score, the joint and conditional distributions are as follows:

[

a

b

]

∼ N
([

µa

µb

]

,

[

A C

C⊤ B

])

p(a | b) = N
(

a | µa|b, Σa|b
)

µa|b = µa + CB−1(b− µb)

Σa|b = A−CB−1C⊤

In the example, we have the following definitions:

µa =

[

81

82

]

µb =
[

80
]

A =

[

25 −9

−9 36

]

B =
[

36
]

C =

[

−16

16

]

Thus, the parameters of our conditional distribution given b = W = 90 are

µM,R|W=90 =

[

81

82

]

+

[

−16

16

]

1

36
(90− 80) ≈

[

76.5

86.4

]

ΣM,R|W=90 =

[

25 −9

−9 36

]

−
[

−16

16

]

1

36

[

−16 16
]

≈
[

25 −9

−9 36

]

−
[

7.1 −7.1

−7.1 7.1

]

=

[

17.9 −1.9

−1.9 28.9

]

Given that the student scores a 90 on the writing test, based on our conditional distribution,
we expect the student to earn a 76.5 on the math test, with a standard deviation of

√
17.9,

and an 86.4 on the reading test, with a standard deviation of
√

28.9.
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