
27 Collaborative Agents

Manymultiagent domains are collaborative, where all agents act independently in
an environment while working toward a common shared objective. Applications
range from robotic search and rescue to interplanetary exploration rovers. The
decentralized partially observable Markov decision process (Dec-POMDP) captures
the generality of POMGs while focusing on such collaborative agent settings.1

1 D. S. Bernstein, R. Givan, N.
Immerman, and S. Zilberstein,
“The Complexity of Decentralized
Control of Markov Decision Pro-
cesses,” Mathematics of Operation
Research, vol. 27, no. 4, pp. 819–840,
2002. A more comprehensive
introduction is provided by
F.A. Oliehoek and C. Amato, A
Concise Introduction to Decentralized
POMDPs. Springer, 2016.

The model is more amenable to scalable approximate algorithms because of its
single shared objective, as opposed to finding an equilibrium among multiple
individual agent objectives. This chapter presents the Dec-POMDP model, high-
lights its subclasses, and describes algorithms that solve them optimally and
approximately.

27.1 Decentralized Partially Observable Markov Decision Processes

A Dec-POMDP (algorithm 27.1) is a POMG where all agents share the same
objective. Each agent i ∈ I selects a local action ai ∈ Ai based on a history of
local observations oi ∈ Oi. The true state of the system s ∈ S is shared by all
agents. A single reward is generated by R(s, a) based on state s and joint action a.
The goal of all agents is to maximize the shared expected reward over time under
local partial observability. Example 27.1 describes a Dec-POMDP version of the
predator-prey problem.

Consider a predator-prey hex world problem in which a team of predators I
strives to capture a single fleeing prey. The predators move independently.
The prey moves randomly to a neighboring cell not occupied by a predator.
The predators must work together to capture the prey.

Example 27.1. The collaborative
predator-prey problem as a Dec-
POMDP. Additional detail is pro-
vided in appendix F.15.
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Many of the same challenges of POMGs persist in Dec-POMDPs, such as
the general inability of agents to maintain a belief state. We focus on policies
represented as conditional plans or controllers. The same algorithms introduced
in the previous chapter can be used to evaluate policies. All that is required is
to create a POMG with Ri(s, a) for each agent i equal to the R(s, a) from the
Dec-POMDP.

struct DecPOMDP
γ # discount factor
ℐ # agents
𝒮 # state space
𝒜 # joint action space
𝒪 # joint observation space
T # transition function
O # joint observation function
R # reward function

end

Algorithm 27.1. Data structure
for a Dec-POMDP. The joint func-
tion from algorithm 24.2 allows the
creation of all combinations of a
set provided, such as 𝒜 or 𝒪. The
tensorform function converts the
Dec-POMDP 𝒫 to a tensor represen-
tation.

27.2 Subclasses

There aremany notable subclasses of Dec-POMDPs. Categorizing these subclasses
is useful when designing algorithms that take advantage of their specific structure.

One attribute of interest is joint full observability, which is when each agent
observes an aspect of the state, such that if theywere to combine their observations,
it would uniquely reveal the true state. The agents, however, do not share their
observations. This property ensures that if O(o | a, s′) > 0 then P(s′ | o) = 1. A
Dec-POMDP with joint full observability is called a decentralized Markov decision
process (Dec-MDP). BothDec-POMDP andDec-MDP problems areNEXP-complete
when the number of steps in the horizon is fewer than the number of states.2

2 In contrast with the complex-
ity classes NP and PSPACE, it
is known that NEXP is not in P.
Hence, we can prove that Dec-
MDPs and Dec-POMDPs do not
allow for polynomial time algo-
rithms. D. S. Bernstein, R. Givan,
N. Immerman, and S. Zilberstein,
“The Complexity of Decentralized
Control of Markov Decision Pro-
cesses,” Mathematics of Operation
Research, vol. 27, no. 4, pp. 819–840,
2002.

In many settings, the state space of a Dec-POMDP is factored, one for each
agent and one for the environment. This is called a factored Dec-POMDP. We
have S = S0 × · · · × Sk, where S i is the factored state component associated
with agent i and S0 is the factored state component associated with the general
environment. For example, in the collaborative predator-prey problem, each agent
has its own state factor for their location, and the position of the prey is associated
with the environment component of the state space.
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In some problems, a factored Dec-POMDP may have one or more of the fol-
lowing properties:

• Transition independence, where agents may not affect each other’s state:

T(s′ | s, a) = T0(s0′ | s0)∏
i

Ti(si ′ | si, ai) (27.1)

• Observation independence, where the observations of agents depend only on
their local state and actions:

O(o | a, s′) = ∏
i

Oi(oi | ai, si ′) (27.2)

• Reward independence, where the reward can be decomposed into multiple inde-
pendent pieces:3 3 Here, we show the combination

of the reward components as a
summation, but any monotoni-
cally nondecreasing function can
be used instead and preserve re-
ward independence.

R(s, a) = R0(s0) + ∑
i

Ri(si, ai) (27.3)

The computational complexity can vary significantly depending on which of
these independence properties are satisfied, as summarized in table 27.1. It is
important to take these independences into account when modeling a problem to
improve scalability.

Independence Complexity
Transitions, observations, and rewards P-complete
Transitions and observations NP-complete
Any other subset NEXP-complete

Table 27.1. The complexity of fac-
tored Dec-POMDPs with different
independence assumptions.

A network distributed partially observable Markov decision process (ND-POMDP)
is a Dec-POMDP with transition and observation independence and a special
reward structure. The reward structure is represented by a coordination graph. In
contrast with the graphs used earlier in this book, a coordination graph is a type of
hypergraph, which allows edges to connect any number of nodes. The nodes in
the ND-POMDP hypergraph correspond to the various agents. The edges relate to
interactions between the agents in the reward function. AnND-POMDP associates
with each edge j in the hypergraph a reward component Rj that depends on the
state and action components to which the edge connects. The reward function in
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an ND-POMDP is simply the sum of the reward components associated with the
edges. Figure 27.1 shows a coordination graph resulting in a reward function that
can be decomposed as follows:

R123(s1, s2, s3, a1, a2, a3) + R34(s3, s4, a3, a4) + R5(s5, a5) (27.4)

Sensor network and target tracking problems are often framed as ND-POMDPs.

1 2

3

4 5

Figure 27.1. An ND-POMDP struc-
ture with five agents. There are
three hyperedges: one involving
agents 1, 2, and 3; another involv-
ing agents 3 and 4; and another in-
volving agent 5 on its own.

The ND-POMDP model is similar to the transition and observation indepen-
dent Dec-MDPmodel, but it does not make the joint full observability assumption.
Even if all observations are shared, the true state of the world may not be known.
Furthermore, even with factored transitions and observations, a policy in an ND-
POMDP is a mapping from observation histories to actions, unlike the transition
and observation Dec-MDP case, in which policies are mappings from local states
to actions. The worst-case complexity remains the same as for a Dec-POMDP, but
algorithms for ND-POMDPs are typically much more scalable in the number of
agents. Scalability can increase as the coordination graph becomes less connected.

If the agents are able to communicate their actions and observations perfectly
without penalty, then they are able to maintain a collective belief state. This
model is called a multiagent MDP (MMDP) or a multiagent POMDP (MPOMDP).
MMDPs and MPOMDPs can also result when there is transition, observation,
and reward independence. Any MDP or POMDP algorithm discussed in earlier
chapters can be applied to solve these problems.

Table 27.2 summarizes some of these subclasses. Figure 27.2 illustrates the
relationships among the models discussed in this book.

Agents Observability Communication Model
Single Full — MDP
Single Partial — POMDP
Multiple Full Free MMDP
Multiple Full General MMDP
Multiple Joint full Free MMDP
Multiple Joint full General Dec-MDP
Multiple Partial Free MPOMDP
Multiple Partial General Dec-POMDP

Table 27.2. Dec-POMDP sub-
classes categorized by type and
computational complexity. ‘‘Ob-
servability’’ refers to the degree to
which the shared state is observ-
able. ‘‘Communication’’ refers to
whether the cooperative agents can
freely share all observations with
each other. Free communication
happens outside the model (e.g., a
high-speed wireless connection in
robots). General communication is
when agents do not have this avail-
able and must communicate (typi-
cally imperfectly) via their actions.
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POMG

I-POMDP Dec-POMDP

ND-POMDPDec-MDP MPOMDP

MMDPMG

Simple Game

POMDP

MDP

Simple Decision
P PSPACE NEXP PPAD or worse

Figure 27.2. A taxonomy for the
models discussed in this book. Par-
ents generalize their children in
this diagram. For example, Dec-
POMDPs generalize POMDPs by
supporting multiple agents. The
color of the nodes indicate compu-
tational complexity, as indicated in
the key at the bottom left of the fig-
ure. The complexities listed here
are for the common model, pol-
icy, and objective formulations pre-
sented in this book. For a more de-
tailed treatment, see C. Papadim-
itriou and J. Tsitsiklis, “The Com-
plexity of Markov Decision Pro-
cesses,” Mathematics of Operation
Research, vol. 12, no. 3, pp. 441–450,
1987. Also, see S. Seuken and S. Zil-
berstein, “Formal Models and Al-
gorithms for Decentralized Deci-
sion Making Under Uncertainty,”
Autonomous Agents and Multi-Agent
Systems, vol. 17, no. 2, pp. 190–250,
2008.

27.3 Dynamic Programming

The dynamic programming algorithm for Dec-POMDPs applies the Bellman backup
at each step and prunes dominated policies. This process is identical to dynamic
programming for POMGs except that each agent shares the same reward. Algo-
rithm 27.2 implements this procedure.

struct DecPOMDPDynamicProgramming
b # initial belief
d # depth of conditional plans

end

function solve(M::DecPOMDPDynamicProgramming, 𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
R′(s, a) = [R(s, a) for i in ℐ]
𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
M′ = POMGDynamicProgramming(M.b, M.d)
return solve(M′, 𝒫′)

end

Algorithm 27.2. Dynamic pro-
gramming computes the optimal
joint policy π for a Dec-POMDP
𝒫, given an initial belief b and
horizon depth d. We can directly
use the POMG algorithm, as Dec-
POMDPs are a special collabora-
tive class of POMGs.
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27.4 Iterated Best Response

Instead of exploring joint policies directly, we can perform a form of iterated best
response (algorithm 27.3). In this approach, we iteratively select an agent and
compute a best response policy, assuming that the other agents are following a
fixed policy.4 This approximate algorithm is typically fast because it is choosing 4 This type of algorithm is also

called joint equilibrium-based search
for policies (JESP). R. Nair, M.
Tambe, M. Yokoo, D. Pynadath,
and S. Marsella, “Taming Decen-
tralized POMDPs: Towards Effi-
cient Policy Computation for Mul-
tiagent Settings,” in International
Joint Conference on Artificial Intelli-
gence (IJCAI), 2003. It can be im-
proved further by performing dy-
namic programming.

the best policy for only one agent at a time. Moreover, since all agents share the
same reward, it tends to terminate after relatively few iterations.

Iterated best response begins with a random initial joint policy π1. The process
randomly iterates over the agents. If agent i is selected, its policy πi is updated
with a best response to the other agents’ fixed policies π−i with initial belief
distribution b:

πi ← arg max
πi ′

Uπi ′ ,π−i
(b) (27.5)

with ties favoring the current policy. This process can terminate when agents stop
changing their policies.

While this algorithm is fast and guaranteed to converge, it does not always find
the best joint policy. It relies on iterated best response to find a Nash equilibrium,
but there may be many Nash equilibria, with different utilities associated with
them. This approach will find only one of them.

27.5 Heuristic Search

Instead of expanding all joint policies, heuristic search (algorithm 27.4) explores
a fixed number of policies,5 which, stored over iterations, prevents exponential 5 This approach is also known

as memory-bounded dynamic pro-
gramming (MBDP). S. Seuken and
S. Zilberstein, “Memory-Bounded
Dynamic Programming for Dec-
POMDPs,” in International Joint
Conference on Artificial Intelligence
(IJCAI), 2007. There are other
heuristic search algorithms as well,
such as multiagent A∗ (MMA∗). D.
Szer, F. Charpillet, and S. Zilber-
stein, “MAA*: A Heuristic Search
Algorithm for Solving Decentral-
ized POMDPs,” in Conference on
Uncertainty in Artificial Intelligence
(UAI), 2005.

growth. The heuristic exploration guides the search by attempting to expand the
best joint policies only until depth d is reached.

Each iteration k of the algorithm keeps a set of joint policies Πk. This set initially
consists of all one-step conditional plans. Subsequent iterations begin by fully
expanding the conditional plans. The goal is to add a fixed number of these for
the next iteration.

We prioritize the policies that are more likely to maximize the utility when
deciding among the conditional plans to add to the set. However, since we expand
the conditional plans from the bottom up, we cannot simply evaluate the policies
from the initial belief state b. Instead, we need an estimate of the belief d− k steps
into the future, which we compute by taking random actions and simulating state
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struct DecPOMDPIteratedBestResponse
b # initial belief
d # depth of conditional plans
k_max # number of iterations

end

function solve(M::DecPOMDPIteratedBestResponse, 𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
b, d, k_max = M.b, M.d, M.k_max
R′(s, a) = [R(s, a) for i in ℐ]
𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
Π = create_conditional_plans(𝒫, d)
π = [rand(Π[i]) for i in ℐ]
for k in 1:k_max

for i in shuffle(ℐ)
π′(πi) = Tuple(j == i ? πi : π[j] for j in ℐ)
Ui(πi) = utility(𝒫′, b, π′(πi))[i]
π[i] = argmax(Ui, Π[i])

end
end
return Tuple(π)

end

Algorithm 27.3. Iterated best re-
sponse for a collaborative Dec-
POMDP 𝒫 performs a determin-
istic best response for each agent
to rapidly search the space of con-
ditional plan policies. The solve
function executes this procedure
for up to k_max steps, maximizing
the value at an initial belief b for
conditional plans of depth d.

transitions and observations, updating the belief along the way. This belief at
iteration k is denoted as bk. For each available joint policy π ∈ Πk, the utility
Uπ(bk) is examined to find a utility-maximizing joint policy to add. Example 27.2
demonstrates the process.

27.6 Nonlinear Programming

We can use nonlinear programming (NLP) (algorithm 27.5) to find an optimal joint
controller policy representation of a fixed size.6 This method generalizes the NLP

6 C. Amato, D. S. Bernstein,
and S. Zilberstein, “Optimizing
Fixed-Size Stochastic Controllers
for POMDPs and Decentralized
POMDPs,” Autonomous Agents and
Multi-Agent Systems, vol. 21, no. 3,
pp. 293–320, 2010.

approach for POMDPs from section 23.3.
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struct DecPOMDPHeuristicSearch
b # initial belief
d # depth of conditional plans
π_max # number of policies

end

function solve(M::DecPOMDPHeuristicSearch, 𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
b, d, π_max = M.b, M.d, M.π_max
R′(s, a) = [R(s, a) for i in ℐ]
𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
for t in 1:d

allΠ = expand_conditional_plans(𝒫, Π)
Π = [[] for i in ℐ]
for z in 1:π_max

b′ = explore(M, 𝒫, t)
π = argmax(π -> first(utility(𝒫′, b′, π)), joint(allΠ))
for i in ℐ

push!(Π[i], π[i])
filter!(πi -> πi != π[i], allΠ[i])

end
end

end
return argmax(π -> first(utility(𝒫′, b, π)), joint(Π))

end

function explore(M::DecPOMDPHeuristicSearch, 𝒫::DecPOMDP, t)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
b = copy(M.b)
b′ = similar(b)
s = rand(SetCategorical(𝒮, b))
for τ in 1:t

a = Tuple(rand(𝒜i) for 𝒜i in 𝒜)
s′ = rand(SetCategorical(𝒮, [T(s,a,s′) for s′ in 𝒮]))
o = rand(SetCategorical(joint(𝒪), [O(a,s′,o) for o in joint(𝒪)]))
for (i′, s′) in enumerate(𝒮)

po = O(a, s′, o)
b′[i′] = po*sum(T(s,a,s′)*b[i] for (i,s) in enumerate(𝒮))

end
normalize!(b′, 1)
b, s = b′, s′

end
return b′

end

Algorithm 27.4. Memory-
bounded heuristic search uses
a heuristic function to search
the space of conditional plans
for a Dec-POMDP 𝒫. The solve
function tries to maximize the
value at an initial belief b for joint
conditional plans of depth d. The
explore function generates a belief
t steps into the future by taking
random actions and simulating
actions and observations. The
algorithm is memory-bounded,
keeping only π_max conditional
plans per agent.
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Consider the collaborative predator-prey problem shown at right. We apply
heuristic search to a depth of d = 3, with three policies retained at each
iteration. After iteration k = 1, the policies are
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At the next iteration k = 2, heuristic search again starts at the initial belief
and takes d− k = 3− 2 = 1 steps following the heuristic exploration. The
explored beliefs used to select the next three conditional plans are

b1 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.17

0.0, 0.03, 0.01, 0.0, 0.0, 0.05, 0.0

0.01, 0.23, 0.0, 0.08, 0.01, 0.0, 0.0

0.14, 0.0, 0.03, 0.22, 0.0, 0.01]

b2 = [0.0, 0.21, 0.03, 0.0, 0.04, 0.01, 0.0

0.05, 0.01, 0.0, 0.08, 0.03, 0.0, 0.0

0.01, 0.0, 0.0, 0.01, 0.08, 0.34, 0.03

0.02, 0.05, 0.01, 0.0, 0.01, 0.0]

b3 = [0.0, 0.03, 0.01, 0.0, 0.03, 0.01, 0.0

0.15, 0.05, 0.0, 0.01, 0.0, 0.0, 0.0

0.0, 0.0, 0.0, 0.03, 0.06, 0.11, 0.32

0.06, 0.03, 0.01, 0.01, 0.04, 0.06]

The policies after iteration k = 2 are
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The beliefswere used to determine the root node’s action and the two subtrees
below it. These subtrees are built from the prior iteration’s trees.

Example 27.2. Heuristic search
exploration and conditional plan
expansion for the collaborative
predator-prey hex world problem
shown here. The predators are red
and green. The prey is blue.
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Given a fixed set of nodes Xi for each agent i, initial belief b, and initial joint
nodes x1, the optimization problem is

maximize
U,ψ,η

∑
s

b(s)U(x1, s)

subject to U(x, s) = ∑
a

∏
i

ψi(ai | xi)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

∏
i

ηi(xi ′ | xi, ai, oi)U(x′, s′)

)

for all x, s

ψi(ai | xi) ≥ 0 for all i, xi, ai

∑
a

ψi(ai | xi) = 1 for all i, xi

ηi(xi ′ | xi, ai, oi) ≥ 0 for all i, xi, ai, oi, xi ′

∑
xi ′

ηi(xi ′ | xi, ai, oi) = 1 for all i, xi, ai, oi

(27.6)

27.7 Summary

• Dec-POMDPs are fully cooperative POMGs that model a team of agents work-
ing together toward a shared goal, each acting individually using only local
information.

• Because determining a belief state is infeasible, as in POMGs, policies are
generally represented as conditional plans or controllers, allowing each agent
to map individual sequences of observations to individual actions.

• Many subclasses of Dec-POMDPs exist, with different degrees of computa-
tional complexity.

• Dynamic programming computes the value function iteratively, pruning dom-
inated policies as it iterates using a linear program.

• Iterated best response computes a best utility-maximizing response policy for
a single agent at a time, iteratively converging to a joint equilibrium.

• Heuristic search searches a fixed subset of policies at each iteration, guided by
a heuristic.

• Nonlinear programming can be used to generate controllers of a fixed size.
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struct DecPOMDPNonlinearProgramming
b # initial belief
ℓ # number of nodes for each agent

end

function tensorform(𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, R, T, O = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.R, 𝒫.T, 𝒫.O
ℐ′ = eachindex(ℐ)
𝒮′ = eachindex(𝒮)
𝒜′ = [eachindex(𝒜i) for 𝒜i in 𝒜]
𝒪′ = [eachindex(𝒪i) for 𝒪i in 𝒪]
R′ = [R(s,a) for s in 𝒮, a in joint(𝒜)]
T′ = [T(s,a,s′) for s in 𝒮, a in joint(𝒜), s′ in 𝒮]
O′ = [O(a,s′,o) for a in joint(𝒜), s′ in 𝒮, o in joint(𝒪)]
return ℐ′, 𝒮′, 𝒜′, 𝒪′, R′, T′, O′

end

function solve(M::DecPOMDPNonlinearProgramming, 𝒫::DecPOMDP)
𝒫, γ, b = 𝒫, 𝒫.γ, M.b
ℐ, 𝒮, 𝒜, 𝒪, R, T, O = tensorform(𝒫)
X = [collect(1:M.ℓ) for i in ℐ]
jointX, joint𝒜, joint𝒪 = joint(X), joint(𝒜), joint(𝒪)
x1 = jointX[1]
model = Model(Ipopt.Optimizer)
@variable(model, U[jointX,𝒮])
@variable(model, ψ[i=ℐ,X[i],𝒜[i]] ≥ 0)
@variable(model, η[i=ℐ,X[i],𝒜[i],𝒪[i],X[i]] ≥ 0)
@objective(model, Max, b⋅U[x1,:])
@NLconstraint(model, [x=jointX,s=𝒮],

U[x,s] == (sum(prod(ψ[i,x[i],a[i]] for i in ℐ)
*(R[s,y] + γ*sum(T[s,y,s′]*sum(O[y,s′,z]

*sum(prod(η[i,x[i],a[i],o[i],x′[i]] for i in ℐ)
*U[x′,s′] for x′ in jointX)

for (z, o) in enumerate(joint𝒪)) for s′ in 𝒮))
for (y, a) in enumerate(joint𝒜))))

@constraint(model, [i=ℐ,xi=X[i]],
sum(ψ[i,xi,ai] for ai in 𝒜[i]) == 1)

@constraint(model, [i=ℐ,xi=X[i],ai=𝒜[i],oi=𝒪[i]],
sum(η[i,xi,ai,oi,xi′] for xi′ in X[i]) == 1)

optimize!(model)
ψ′, η′ = value.(ψ), value.(η)
return [ControllerPolicy(𝒫, X[i],

Dict((xi,𝒫.𝒜[i][ai]) => ψ′[i,xi,ai]
for xi in X[i], ai in 𝒜[i]),

Dict((xi,𝒫.𝒜[i][ai],𝒫.𝒪[i][oi],xi′) => η′[i,xi,ai,oi,xi′]
for xi in X[i], ai in 𝒜[i], oi in 𝒪[i], xi′ in X[i]))

for i in ℐ]
end

Algorithm27.5. NLP computes the
optimal joint controller policy π for
a Dec-POMDP 𝒫, given an initial
belief b and number of controller
nodes ℓ for each agent. This gen-
eralizes the NLP solution in algo-
rithm 23.5.
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27.8 Exercises
Exercise 27.1. Why is a Dec-MDP with joint full observability different from agents
knowing the state?

Solution: Full joint observability means if agents were to share their individual observations,
then the team would know the true state. This can be done offline during planning. Thus
in Dec-MDPs, the true state is essentially known during planning. The issue is that it
requires agents to share their individual observations, which cannot be done online during
execution. Therefore, planning still needs to reason about the uncertain observations made
by the other agents.

Exercise 27.2. Propose a fast algorithm for a Dec-MDP with transition, observation, and
reward independence. Prove that it is correct.

Solution: If a factored Dec-MDP satisfies all three independence assumptions, then we can
solve it as |I| separate MDPs. The resulting policy πi for each agent i’s MDP can then be
combined to form the optimal joint policy. To prove this fact, consider the utility of each
agent’s individual MDP:

Uπi
(si) = R

(

si, πi()
)

+ γ

[

∑
si ′

Ti
(

si ′ | si, πi()
)

∑
oi

Oi
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]

As in equation (26.1), πi() refers to the root action of i’s conditional plan, and πi(oi)

refers to i’s subplans after making observation oi. We sum up each of their individual
contributions as follows:

∑
i

Uπi
(s) = ∑

i

[

R
(

si, πi()
)

+ γ

[

∑
si ′

Ti
(

si ′ | si, πi()
)

∑
oi

Oi
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]

We can combine Ti and Oi into a single probability distribution P, move the summation,
and apply the definition of reward independence:

∑
i

Uπi
(s) = ∑

i

[

R
(

si, πi()
)

+ γ

[

∑
si ′

P
(

si ′ | si, πi()
)

∑
oi

P
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]

= ∑
i

R
(

si, πi()
)

+ ∑
i

[

γ

[

∑
si ′

P
(

si ′ | si, πi()
)

∑
oi

P
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]

= R(s, π()) + ∑
i

[

γ

[

∑
si ′

P
(

si ′ | si, πi()
)

∑
oi

P
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]
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Now, we marginalize over all successors s and observations o. Because of the transition
and observation independence, we can freely condition the distributions on these other
non-i state and observation factors, which is the same as conditioning on s and o. We can
then apply the definition of transition and observation independence. Finally, we can move
the summation in and recognize Uπ(s) results:

∑
i

Uπi
(s) = R(s,π()) + ∑

i

[

γ

[

∑
s′

P
(

s′ | si, πi()
)

∑
o

P
(

o | πi(), si ′
)

Uπi(oi)(si ′)

]]

= R(s,π()) + ∑
i



γ



∑
s′

P
(

s0′ | s0
)

∏
j

P
(

sj ′ | si, πi()
)

∑
o

∏
j

P
(

oj | πi(), si ′
)

Uπi(oi)(si ′)









= R(s,π()) + ∑
i



γ



∑
s′

P
(

s0′ | s0
)

∏
j

P
(

sj ′ | s, π()
)

∑
o

∏
j

P
(

oj | π(), s′
)

Uπi(oi)(si ′)









= R(s,π()) + ∑
i

[

γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

Uπi(oi)(si ′)

]]

= R(s,π()) + γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

[

∑
i

Uπi(oi)(si ′)

]]

= R(s,π()) + γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

Uπ(o)(s′)

]

= Uπ(s)

This is the Dec-MDP utility function derived from equation (26.1), completing the proof.

Exercise 27.3. How can we use an MMDP or MPOMDP as a heuristic in Dec-POMDP
heuristic search?

Solution: We can assume free communication for planning. At each time step t, all agents
know at and ot, allowing us to maintain a multiagent belief bt, resulting in an MPOMDP.
This MPOMDP solution can be used as a heuristic to guide the search of policy trees.
Alternatively, we create a heuristic where we assume that the true state and joint actions
are known. This results in an MMDP, and it can also be used as a heuristic. These assump-
tions are used only for planning. Execution is still a Dec-POMDP wherein agents receive
individual observations without free communication. Either heuristic results in a joint
policy π̂ for heuristic exploration.

Exercise 27.4. How can we compute a best response controller? Describe how this could
be used in an iterated best response.
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Solution: For an agent i, the best response controller Xi, ψi, and ηi can be computed by
solving a nonlinear program. The program is similar to what is given in section 27.6, except
that X−i, ψ−i, and η−i are now given and are no longer variables:

maximize
U,ψi ,ηi

∑
s

b(s)U(x1, s)

subject to U(x, s) = ∑
a

∏
i

ψi(ai | xi)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

∏
i

ηi(xi ′ | xi, ai, oi)U(x′, s′)

)

for all x, s

ψi(ai | xi) ≥ 0 for all xi, ai

∑
a

ψi(ai | xi) = 1 for all xi

ηi(xi ′ | xi, ai, oi) ≥ 0 for all xi, ai, oi, xi ′

∑
xi ′

ηi(xi ′ | xi, ai, oi) = 1 for all xi, ai, oi

Adapting algorithm 27.3 for controller policies, this program replaces the inner best
response operation.
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